WO2014200067A1 - 有機エレクトロルミネッセンス素子、及び、電子機器 - Google Patents

有機エレクトロルミネッセンス素子、及び、電子機器 Download PDF

Info

Publication number
WO2014200067A1
WO2014200067A1 PCT/JP2014/065618 JP2014065618W WO2014200067A1 WO 2014200067 A1 WO2014200067 A1 WO 2014200067A1 JP 2014065618 W JP2014065618 W JP 2014065618W WO 2014200067 A1 WO2014200067 A1 WO 2014200067A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
electrode
functional layer
layer
emitting functional
Prior art date
Application number
PCT/JP2014/065618
Other languages
English (en)
French (fr)
Inventor
有章 志田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015522862A priority Critical patent/JPWO2014200067A1/ja
Publication of WO2014200067A1 publication Critical patent/WO2014200067A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/60Circuit arrangements for operating LEDs comprising organic material, e.g. for operating organic light-emitting diodes [OLED] or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to an organic electroluminescence element and an electronic device including the organic electroluminescence element.
  • organic electroluminescence element (organic EL element) has advantages such as less viewing angle dependency, a high contrast ratio, and a reduction in thickness as compared with a liquid crystal display device.
  • organic EL element has advantages such as less viewing angle dependency, a high contrast ratio, and a reduction in thickness as compared with a liquid crystal display device.
  • portable displays and portable rear displays using organic EL elements have been actively put on the market. Display using these organic EL elements is expected to be put on the market for large TVs due to its high visibility, and some plans for launch are reported. Yes.
  • the organic EL element is a self-luminous light source and is a surface-emitting light source, it has been spotlighted as next-generation illumination and has been developed in various places as organic EL illumination.
  • the organic EL element has RGB light emitting materials between the electrodes, and is prepared by arbitrarily adjusting and driving RGB light output, or by applying a layer design including the thickness of the organic layer.
  • the emission color and emission color intensity can be freely changed.
  • the organic EL element can emit light freely as a white color required for illumination use, for example, from a light bulb color such as a color temperature of 2000K or 3000K to a daylight white color such as 5000K or 6000K.
  • a phosphorescent material it is possible to realize luminous efficiency equivalent to or exceeding that of LEDs and fluorescent lamps, and realization as thinning illumination is expected.
  • an illumination or a light source that changes the color by forming an RGB light emitting layer in a strip shape in the horizontal direction and changing the intensity ratio of each light emitting color has been proposed (For example, refer to Patent Document 1). Furthermore, it has also been proposed to increase the aperture ratio by stacking RGB light-emitting layers in a direction perpendicular to a transparent substrate to perform color matching (see, for example, Patent Document 2).
  • organic EL lighting it is necessary to increase the size of the organic EL element and to improve the light emission luminance in order to obtain a lumen required for lighting applications. Further, when the RGB light emitting layer of the organic EL element is formed with a fine pattern as in a display, the aperture ratio is reduced and the luminance is lowered.
  • each RGB light emitting layer is stacked in a straight line with the substrate to correct the aperture ratio
  • one electrode is formed between the light emitting layers of each color. It is necessary to function as an anode in one color and as a cathode in the other color. For this reason, when the organic EL element having a stack structure is toned, independent duty driving is required for the light emitting layers of the respective colors. Therefore, the respective colors cannot be emitted at the same time, and the light emission efficiency under actual driving of the organic EL element is lowered.
  • the present invention provides an organic electroluminescence element and an electronic device capable of improving luminance.
  • the organic electroluminescence device of the present invention is provided on the first electrode, the first light emitting functional layer provided on the first electrode, the second electrode provided on the first light emitting functional layer, and the second electrode.
  • the first electrode and the third electrode are electrodes having the same polarity
  • the second electrode is an electrode having a polarity opposite to that of the first electrode and the third electrode.
  • the organic electroluminescence element of the present invention includes a first electrode, a first light emitting functional layer provided on the first electrode, a second electrode provided on the first light emitting functional layer, and a second electrode.
  • the first electrode and the third electrode are electrodes having opposite polarities, and the second electrode has an opposite polarity with respect to the first light emitting functional layer, the second light emitting functional layer, and the third light emitting functional layer. It becomes an electrode.
  • an electronic apparatus of the present invention includes the organic electroluminescence element.
  • the second electrode provided between the first light emitting functional layer and the second light emitting functional layer is the same as the first light emitting functional layer and the second light emitting functional layer. Functions as a polar electrode. For this reason, the first light emitting functional layer and the second light emitting functional layer can be driven simultaneously. Therefore, the brightness of the organic electroluminescence element can be improved.
  • the 2nd light emission functional layer and the 3rd light emission functional layer are provided on the 1st light emission functional layer.
  • the aperture ratio of the first light emitting functional layer can be configured to be larger than that of the second light emitting functional layer and the third light emitting functional layer, and the luminance of the first light emitting functional layer can be improved. Therefore, the brightness of the organic electroluminescence element can be improved.
  • an organic electroluminescence element and an electronic device capable of improving luminance.
  • Organic electroluminescence device (first embodiment) 2. Organic electroluminescence device (second embodiment and modifications) 3. Organic electroluminescence device (third embodiment)
  • Organic Electroluminescence Element (First Embodiment)> Specific embodiments of the organic electroluminescence element (hereinafter referred to as organic EL element) of the present invention will be described.
  • FIG. 1 the schematic block diagram (sectional drawing) of the organic EL element of 1st Embodiment is shown.
  • the organic EL element shown in FIG. 1 includes a first light emitting unit 18, a second light emitting unit 19, and an insulating layer 17 serving as a partition wall for element separation between the first light emitting unit 18 and the second light emitting unit 19.
  • an organic EL element having these configurations is mounted on the support substrate 20.
  • the first light emitting unit 18 has a configuration in which the first electrode 14, the first light emitting functional layer 11, the second electrode 15, the second light emitting functional layer 12, and the third electrode 16 are laminated in this order.
  • the second light emitting unit 19 has a configuration in which the first electrode 14, the first light emitting functional layer 11, the second electrode 15, the third light emitting functional layer 13, and the third electrode 16 are laminated in this order.
  • the first light emitting unit 18 and the second light emitting unit 19 in which the two light emitting layers are stacked via the electrodes are alternately arranged on the support substrate 20 via the insulating layers 17 serving as partition walls. Yes.
  • the first electrode 14 is provided independently for each of the first light emitting unit 18 and the second light emitting unit 19 on the support substrate 20.
  • the first electrodes 14 are insulated from each other by an insulating layer 17. Further, the first electrode 14 is connected to a power supply circuit of a driving unit of an organic EL element (not shown).
  • the first light emitting functional layer 11 is provided on the first electrode 14.
  • the first light emitting functional layer 11 has a configuration that will be described in detail later, and includes at least one organic light emitting layer.
  • the second electrode 15 is provided on the first light emitting functional layer 11.
  • the second electrode 15 is connected to a power supply circuit of a driving unit (not shown) of the organic EL element, similar to the first electrode 14 described above.
  • the second light emitting functional layer 12 is provided on the second electrode 15.
  • the third light emitting functional layer 13 is provided on the second electrode 15.
  • Each of the second light emitting functional layer 12 and the third light emitting functional layer 13 includes an organic light emitting layer having an emission color different from that of the first light emitting functional layer 11 described above. That is, in the organic EL element, the first light emitting functional layer 11, the second light emitting functional layer 12, and the third light emitting functional layer 13 have different light emitting layers.
  • the third electrode 16 is provided on the second light emitting functional layer 12. Similarly, in the second light emitting unit 19, the third electrode 16 is provided on the third light emitting functional layer 13.
  • the third electrode 16 is connected to a power supply circuit of a driving unit (not shown) of the organic EL element, similar to the first electrode 14 described above.
  • the organic EL element of this example is configured to extract emitted light from the support substrate 20 side. For this reason, the 1st electrode 14 and the 2nd electrode 15 are comprised by the transparent electrode.
  • the support substrate 20 is a transparent substrate.
  • the first light emitting unit 18 includes the first light emitting functional layer 11 and the second light emitting functional layer 12.
  • the second light emitting unit 19 includes the first light emitting functional layer 11 and the third light emitting functional layer 13. Therefore, for example, the first light emitting functional layer 11 of the first light emitting unit 18 is configured to have a blue (B) light emitting layer, and the second light emitting functional layer 12 is configured to have a green (G) light emitting layer. . Further, in the second light emitting unit 19, the first light emitting functional layer 11 is configured to have a blue (B) light emitting layer, and the third light emitting functional layer 13 is configured to have a red (R) light emitting layer.
  • the organic EL element has the first to third light emitting functional layers in the two light emitting units, and thus can emit light of three colors composed of RGB.
  • the first light emitting functional layer 11 is sandwiched between the first electrode 14 and the second electrode 15.
  • the second light emitting functional layer 12 is sandwiched between the second electrode 15 and the third electrode 16.
  • the first light emitting functional layer 11 is sandwiched between the first electrode 14 and the second electrode 15.
  • the third light emitting functional layer 13 is sandwiched between the second electrode 15 and the third electrode 16. That is, the second electrode 15 is configured as a common electrode for the first light emitting functional layer 11 and the second light emitting functional layer 12 and the third light emitting functional layer 13 formed on the second electrode 15. .
  • first electrode 14 and the third electrode 16 are electrodes having the same polarity
  • the second electrode 15 is an electrode having a polarity opposite to that of the first electrode 14 and the third electrode 16.
  • first electrode 14 described above functions as a cathode with respect to the first light emitting functional layer 11.
  • the third electrode 16 functions as a cathode with respect to the second light emitting functional layer 12 and the third light emitting functional layer 13 in this example.
  • the second electrode 15 functions as an anode with respect to the first light emitting functional layer 11.
  • the second electrode 15 also functions as an anode for the second light emitting functional layer 12 and the third light emitting functional layer 13 provided on the second electrode 15.
  • the organic EL element has a configuration including a pair of electrodes and a light emitting functional layer having light emitting properties between the electrodes.
  • the following structures can be raised, but the invention is not limited to these.
  • the light emitting layer is formed of a single layer or a plurality of layers.
  • a non-light emitting intermediate layer may be provided between the light emitting layers.
  • a hole blocking layer (hole blocking layer), an electron injection layer (cathode buffer layer), or the like may be provided between the light emitting layer and the cathode, and between the light emitting layer and the anode.
  • An electron blocking layer (electron barrier layer), a hole injection layer (anode buffer layer), or the like may be provided.
  • the electron transport layer is a layer having a function of transporting electrons.
  • the electron transport layer includes an electron injection layer and a hole blocking layer in a broad sense.
  • the electron transport layer may be composed of a plurality of layers.
  • the hole transport layer is a layer having a function of transporting holes.
  • the hole transport layer includes a hole injection layer and an electron blocking layer in a broad sense.
  • the hole transport layer may be composed of a plurality of layers.
  • the light-emitting layer used in the organic EL element is a layer that provides a field in which electrons and holes injected from an electrode or an adjacent layer are recombined to emit light via excitons.
  • the light emitting portion may be within the layer of the light emitting layer or may be the interface between the light emitting layer and the adjacent layer.
  • the total thickness of the light emitting layer is not particularly limited, and is determined from the viewpoint of the uniformity of the film to be formed, the voltage required for light emission, and the stability of the emission color with respect to the drive current.
  • the total thickness of the light emitting layers is preferably adjusted to a range of 2 nm to 5 ⁇ m, for example, more preferably adjusted to a range of 2 nm to 500 nm, and further preferably adjusted to a range of 5 nm to 200 nm.
  • the individual film thickness of the light emitting layer is preferably adjusted to a range of 2 nm to 1 ⁇ m, more preferably adjusted to a range of 2 nm to 200 nm, and further preferably adjusted to a range of 3 nm to 150 nm.
  • the light emitting layer preferably contains a light emitting dopant (a light emitting dopant compound, a dopant compound, also simply referred to as a dopant) and a host compound (a matrix material, a light emitting host compound, also simply referred to as a host).
  • a light emitting dopant a light emitting dopant compound, a dopant compound, also simply referred to as a dopant
  • a host compound a matrix material, a light emitting host compound, also simply referred to as a host.
  • Luminescent dopant As the light-emitting dopant used in the light-emitting layer, a fluorescent light-emitting dopant (also referred to as a fluorescent dopant or a fluorescent compound) and a phosphorescent dopant (also referred to as a phosphorescent dopant or a phosphorescent compound) are preferably used. Of these, at least one light emitting layer preferably contains a phosphorescent dopant.
  • the concentration of the light emitting dopant in the light emitting layer can be arbitrarily determined based on the specific dopant used and the requirements of the device.
  • the concentration of the optical dopant may be contained at a uniform concentration relative to the thickness direction of the light emitting layer, or may have an arbitrary concentration distribution.
  • the light emitting layer may contain a plurality of types of light emitting dopants. For example, a combination of dopants having different structures, or a combination of a fluorescent luminescent dopant and a phosphorescent luminescent dopant may be used. Thereby, arbitrary luminescent colors can be obtained.
  • the color emitted by the organic EL element is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Society for Color Science, University of Tokyo Press, 1985), with a spectral radiance meter CS-2000 (Konica Minolta Sensing ( It is determined by the color when the result measured by (made by Co., Ltd.) is applied to the CIE chromaticity coordinates.
  • CS-2000 Konica Minolta Sensing ( It is determined by the color when the result measured by (made by Co., Ltd.) is applied to the CIE chromaticity coordinates.
  • the light emitting layer of one layer or a plurality of layers contains a plurality of light emitting dopants having different light emission colors and emits white light.
  • the combination of light-emitting dopants that exhibit white but examples include a combination of blue and orange, a combination of blue, green, and red.
  • the phosphorescent dopant is a compound in which light emission from an excited triplet is observed.
  • the phosphorescent dopant is a compound that emits phosphorescence at room temperature (25 ° C.), and has a phosphorescence quantum yield of 0 at 25 ° C. .01 or more compounds.
  • a preferable phosphorescence quantum yield is 0.1 or more.
  • the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 4 of the 4th edition.
  • the phosphorescence quantum yield in a solution can be measured using various solvents.
  • the phosphorescence emitting dopant used for the light emitting layer should just achieve the said phosphorescence quantum yield (0.01 or more) in any solvent.
  • an excited state of the host compound is generated by recombination of carriers on the host compound to which carriers are transported. It is an energy transfer type in which light is emitted from the phosphorescent dopant by transferring this energy to the phosphorescent dopant.
  • the other is a carrier trap type in which a phosphorescent dopant becomes a carrier trap, carrier recombination occurs on the phosphorescent dopant, and light emission from the phosphorescent dopant is obtained. In any case, it is a condition that the excited state energy of the phosphorescent dopant is lower than the excited state energy of the host compound.
  • the phosphorescent dopant can be appropriately selected from known materials used for the light emitting layer of the organic EL element. Specific examples of known phosphorescent dopants include compounds described in the following documents.
  • a preferable phosphorescent dopant is an organometallic complex having Ir as a central metal. More preferably, a complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond is preferable.
  • the fluorescent light-emitting dopant is a compound that can emit light from an excited singlet, and is not particularly limited as long as light emission from the excited singlet is observed.
  • Examples of the fluorescent light-emitting dopant include anthracene derivatives, pyrene derivatives, chrysene derivatives, fluoranthene derivatives, perylene derivatives, fluorene derivatives, arylacetylene derivatives, styrylarylene derivatives, styrylamine derivatives, arylamine derivatives, boron complexes, coumarin derivatives, Examples include pyran derivatives, cyanine derivatives, croconium derivatives, squalium derivatives, oxobenzanthracene derivatives, fluorescein derivatives, rhodamine derivatives, pyrylium derivatives, perylene derivatives, polythiophene derivatives, rare earth complex compounds, and the like.
  • a light emitting dopant using delayed fluorescence may be used as the fluorescent light emitting dopant.
  • the luminescent dopant using delayed fluorescence include compounds described in, for example, International Publication No. 2011/156793, Japanese Patent Application Laid-Open No. 2011-213643, Japanese Patent Application Laid-Open No. 2010-93181, and the like.
  • the host compound is a compound mainly responsible for charge injection and transport in the light emitting layer, and its own light emission is not substantially observed in the organic EL element.
  • it is a compound having a phosphorescence quantum yield of phosphorescence of less than 0.1 at room temperature (25 ° C.), more preferably a compound having a phosphorescence quantum yield of less than 0.01.
  • the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer.
  • the excited state energy of a host compound is higher than the excited state energy of the light emission dopant contained in the same layer.
  • a host compound may be used independently or may be used in combination of multiple types. By using a plurality of types of host compounds, it is possible to adjust the movement of electric charges, and it is possible to increase the efficiency of the organic EL element.
  • the compound conventionally used with an organic EL element can be used.
  • it may be a low molecular compound, a high molecular compound having a repeating unit, or a compound having a reactive group such as a vinyl group or an epoxy group.
  • Tg glass transition temperature
  • the glass transition point (Tg) is a value determined by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).
  • the electron transport layer used for the organic EL element is made of a material having a function of transporting electrons, and has a function of transmitting electrons injected from the cathode to the light emitting layer.
  • the electron transport material may be used alone or in combination of two or more.
  • the total thickness of the electron transport layer is not particularly limited, but is usually in the range of 2 nm to 5 ⁇ m, more preferably 2 nm to 500 nm, and further preferably 5 nm to 200 nm.
  • the organic EL element when the light generated in the light emitting layer is extracted from the electrode, the light extracted directly from the light emitting layer and the light extracted after being reflected by the electrode from which the light is extracted and the electrode located at the counter electrode are: It is known to cause interference. When light is reflected by the electrode, this interference effect can be efficiently utilized by appropriately adjusting the total film thickness of the electron transport layer between several nanometers and several micrometers. On the other hand, since the voltage is likely to increase when the thickness of the electron transport layer is increased, the electron mobility of the electron transport layer is preferably 10 ⁇ 5 cm 2 / Vs or more, particularly when the thickness is large. .
  • the material used for the electron transport layer may have any of the electron injection property or the transport property or the hole barrier property. Any one can be selected and used.
  • Examples include nitrogen-containing aromatic heterocyclic derivatives, aromatic hydrocarbon ring derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, silole derivatives, and the like.
  • nitrogen-containing aromatic heterocyclic derivatives examples include carbazole derivatives, azacarbazole derivatives (one or more carbon atoms constituting the carbazole ring are substituted with nitrogen atoms), pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, pyridazine derivatives, triazine derivatives.
  • aromatic hydrocarbon ring derivative examples include naphthalene derivatives, anthracene derivatives, triphenylene and the like.
  • a metal complex having a quinolinol skeleton or a dibenzoquinolinol skeleton as a ligand such as tris (8-quinolinol) aluminum (Alq3), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7- Dibromo-8-quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc., and metal complexes thereof
  • a metal complex in which the central metal is replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as an electron transporting material.
  • metal-free or metal phthalocyanine or those having the terminal substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylpyrazine derivative exemplified as the material for the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si, n-type-SiC, etc. as in the case of the hole injection layer and the hole transport layer. Can also be used as an electron transporting material.
  • a polymer material in which these materials are introduced into a polymer chain, or a polymer material having these materials as a polymer main chain can also be used.
  • a doping material may be doped into the electron transport layer as a guest material to form an electron transport layer having a high n property (electron rich).
  • the doping material include metal compounds such as metal complexes and metal halides, and other n-type dopants.
  • Specific examples of the electron transport layer having such a structure include, for example, JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J. Appl. Phys., 95, 5773 (2004) and the like.
  • preferable electron transport materials used in the organic EL device include, but are not limited to, compounds described in the following documents.
  • U.S. Pat.No. 6,528,187, U.S. Pat.No. 7,230,107 U.S. Patent Publication No. 20050025993, U.S. Pat. Publication No. 2004036077, U.S. Pat. Publication No. 200901115316, U.S. Pat. Publication No. 20090101870, U.S. Pat. 2003060956, WO200008132085, Appl. Phys. Lett. 75, 4 (1999), Appl. Phys. Lett. 79, 449 (2001), Appl. Phys. Lett. 81, 162 (2002), Appl.
  • More preferable electron transport materials include pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, triazine derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, carbazole derivatives, azacarbazole derivatives, and benzimidazole derivatives.
  • the hole blocking layer is a layer having a function of an electron transport layer in a broad sense. Preferably, it is made of a material having a function of transporting electrons and a small ability to transport holes. By blocking holes while transporting electrons, the recombination probability of electrons and holes can be improved. Moreover, the structure of the above-mentioned electron carrying layer can be used as a hole-blocking layer as needed.
  • the hole blocking layer provided in the organic EL element is preferably provided adjacent to the cathode side of the light emitting layer.
  • the thickness of the hole blocking layer is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
  • the material used for the hole blocking layer the material used for the above-described electron transport layer is preferably used, and the material used as the above-described host compound is also preferably used for the hole blocking layer.
  • the electron injection layer (also referred to as “cathode buffer layer”) is a layer provided between the cathode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance.
  • An example of an electron injection layer can be found in the second chapter, Chapter 2, “Electrode Materials” (pages 123-166) of “Organic EL devices and their industrialization front line (issued by NTT Corporation on November 30, 1998)”. Are listed.
  • the electron injection layer is provided as necessary, and is provided between the cathode and the light emitting layer or between the cathode and the electron transport layer as described above.
  • the electron injection layer is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 nm, depending on the material.
  • membrane in which a constituent material exists intermittently may be sufficient.
  • JP-A-6-325871, JP-A-9-17574, and JP-A-10-74586 Specific examples of materials preferably used for the electron injection layer include metals typified by strontium and aluminum, alkali metal compounds typified by lithium fluoride, sodium fluoride, and potassium fluoride, magnesium fluoride, and fluoride. Examples thereof include alkaline earth metal compounds typified by calcium, metal oxides typified by aluminum oxide, metal complexes typified by lithium 8-hydroxyquinolate (Liq), and the like.
  • the material used for said electron injection layer may be used independently, and may be used in combination of multiple types.
  • the hole transport layer is made of a material having a function of transporting holes.
  • the hole transport layer is a layer having a function of transmitting holes injected from the anode to the light emitting layer.
  • the total thickness of the hole transport layer is not particularly limited, but is usually in the range of 5 nm to 5 ⁇ m, more preferably 2 nm to 500 nm, and further preferably 5 nm to 200 nm.
  • the material used for the hole transport layer may have any of a hole injection property or a transport property and an electron barrier property.
  • a hole transport material an arbitrary material can be selected and used from conventionally known compounds.
  • the hole transport material may be used alone or in combination of two or more.
  • Hole transport materials include, for example, porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, tria Reelamine derivatives, carbazole derivatives, indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, polyvinyl carbazole, polymer materials having aromatic amine introduced in the main chain or side chain, or Oligomer, polysilane, conductive polymer or oligomer (eg, PEDOT: PSS, aniline copolymer, polyaniline, polythiophene, etc.) And the like.
  • PEDOT PEDOT: PS
  • triarylamine derivative examples include a benzidine type typified by ⁇ -NPD, a starburst type typified by MTDATA, and a compound having fluorene or anthracene in the triarylamine linking core part.
  • hexaazatriphenylene derivatives described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as the hole transport material.
  • a hole transport layer having a high p property doped with impurities can also be used.
  • the configurations described in JP-A-4-297076, JP-A-2000-196140, 2001-102175, J. Appl. Phys., 95, 5773 (2004), etc. It can also be applied to the transport layer.
  • Inorganic compounds such as -Si and p-type -SiC can also be used. Further, ortho-metalated organometallic complexes having Ir or Pt as the central metal as typified by Ir (ppy) 3 are also preferably used.
  • the above-mentioned materials can be used as the hole transport material, a triarylamine derivative, a carbazole derivative, an indolocarbazole derivative, an azatriphenylene derivative, an organometallic complex, or an aromatic amine is introduced into the main chain or side chain.
  • the polymer materials or oligomers used are preferably used.
  • the hole transport material used for the organic EL element include, but are not limited to, the compounds described in the following documents in addition to the documents listed above.
  • the electron blocking layer is a layer having a function of a hole transport layer in a broad sense. Preferably, it is made of a material having a function of transporting holes and a small ability to transport electrons.
  • the electron blocking layer can improve the probability of recombination of electrons and holes by blocking electrons while transporting holes.
  • the structure of the above-described hole transport layer can be used as an electron blocking layer of an organic EL element as necessary.
  • the electron blocking layer provided in the organic EL element is preferably provided adjacent to the anode side of the light emitting layer.
  • the thickness of the electron blocking layer is preferably in the range of 3 to 100 nm, and more preferably in the range of 5 to 30 nm.
  • a material used for an electron blocking layer the material used for the above-mentioned hole transport layer can be preferably used.
  • the material used as the above-mentioned host compound can also be preferably used as the electron blocking layer.
  • the hole injection layer (also referred to as “anode buffer layer”) is a layer provided between the anode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance.
  • An example of the hole injection layer is “Organic EL device and its industrialization front line (November 30, 1998, issued by NTT)”, Chapter 2, Chapter 2, “Electrode material” (pages 123-166). It is described in.
  • the hole injection layer is provided as necessary, and is provided between the anode and the light emitting layer or between the anode and the hole transport layer as described above.
  • Examples of the material used for the hole injection layer include the materials used for the hole transport layer described above. Among them, phthalocyanine derivatives represented by copper phthalocyanine, hexaazatriphenylene derivatives as described in JP-T-2003-519432, JP-A-2006-135145, etc., metal oxides represented by vanadium oxide, amorphous Conductive polymers such as carbon, polyaniline (emeraldine) and polythiophene, orthometalated complexes represented by tris (2-phenylpyridine) iridium complex, and triarylamine derivatives are preferred.
  • the materials used for the hole injection layer described above may be used alone or in combination of two or more.
  • the light emitting functional layer constituting the organic EL element may further contain other inclusions.
  • the inclusion include halogen elements such as bromine, iodine, and chlorine, halogenated compounds, alkali metals such as Pd, Ca, and Na, alkaline earth metals, transition metal compounds, complexes, and salts.
  • the content of the inclusion can be arbitrarily determined, but is preferably 1000 ppm or less, more preferably 500 ppm or less, and even more preferably 50 ppm or less with respect to the total mass% of the contained layer. . However, it is not within this range depending on the purpose of improving the transportability of electrons and holes or the purpose of favoring the exciton energy transfer.
  • a method for forming a light emitting functional layer (hole injection layer, hole transport layer, light emitting layer, hole blocking layer, electron transport layer, electron injection layer, etc.) of the organic EL element will be described.
  • the method for forming the light emitting functional layer is not particularly limited, and can be formed by a conventionally known method such as a vacuum deposition method or a wet method (wet process).
  • Examples of the wet method include a spin coating method, a casting method, an ink jet method, a printing method, a die coating method, a blade coating method, a roll coating method, a spray coating method, a curtain coating method, and an LB method (Langmuir-Blodgett method).
  • a method having high suitability for a roll-to-roll method such as a die coating method, a roll coating method, an ink jet method, or a spray coating method is preferable.
  • liquid medium for dissolving or dispersing the material of the light emitting functional layer in the wet method examples include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, and the like.
  • Aromatic hydrocarbons such as mesitylene and cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin and dodecane, and organic solvents such as DMF and DMSO can be used.
  • it can disperse
  • the vapor deposition conditions vary depending on the type of compound used, etc., but generally the boat heating temperature is 50 ° C. to 450 ° C., and the degree of vacuum is 10 ⁇ 6 Pa to 10 ⁇ . It is desirable to appropriately select 2 Pa, a deposition rate of 0.01 nm / second to 50 nm / second, a substrate temperature of ⁇ 50 ° C. to 300 ° C., and a film thickness of 0.1 nm to 5 ⁇ m, preferably 5 nm to 200 nm.
  • the organic EL element For the formation of the organic EL element, it is preferable to consistently produce the light emitting functional layer to the cathode by a single evacuation, but it may be taken out halfway and subjected to different film forming methods. In that case, it is preferable to perform the work in a dry inert gas atmosphere. Different formation methods may be applied for each layer.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, and a mixture thereof having a high work function (4 eV or more, preferably 4.3 eV or more) is used.
  • an electrode substance include metals such as Au and Ag, alloys thereof, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • a thin film is formed by depositing these electrode materials by a method such as vapor deposition or sputtering, and a pattern having a desired shape is formed by a photolithography method.
  • a pattern accuracy is not so required (about 100 ⁇ m or more)
  • the pattern may be formed through a mask having a desired shape when the electrode material is formed by vapor deposition or sputtering.
  • a wet film forming method such as a printing method or a coating method can be used.
  • the transmittance be greater than 10%.
  • the sheet resistance as the anode is several hundred ⁇ / sq. The following is preferred. Further, although the thickness of the anode depends on the material, it is usually selected in the range of 10 nm to 1 ⁇ m, preferably 10 nm to 200 nm.
  • cathode As the cathode, an electrode substance made of a metal having a low work function (4 eV or less) (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, aluminum, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal having a work function value larger and more stable than that of the electron injecting metal for example, magnesium / Silver mixtures, magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by using the above electrode material by vapor deposition or sputtering.
  • the sheet resistance of the cathode is several hundred ⁇ / sq. The following is preferred.
  • the thickness of the cathode is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 nm to 200 nm.
  • a transparent or semi-transparent cathode can be produced by producing a conductive transparent material mentioned in the description of the anode on the cathode after producing the metal with a thickness of 1 nm to 20 nm. By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.
  • the support substrate 20 (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL element is not particularly limited in the type of glass, plastic, etc., and even if it is transparent, it is opaque. It may be. When light is extracted from the support substrate 20 side, the support substrate 20 is preferably transparent. Examples of the transparent support substrate 20 preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate 20 is a resin film capable of giving flexibility to the organic EL element.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfone , Polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylates, cyclone resins such as Arton (trade name, manufactured by JSR) or Appel (trade name
  • a barrier film made of an inorganic film, an organic film, or a hybrid film of both may be formed on the surface of the resin film.
  • the barrier film had a water vapor transmission rate (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) of 0.01 g / (m 2 ⁇ 24 h) measured by a method according to JIS K 7129-1992.
  • the following barrier films are preferred.
  • the oxygen permeability measured by a method according to JIS K 7126-1987 is 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less, and the water vapor permeability is 10 ⁇ 5 g / (m 2 ⁇ 24h)
  • the following high-barrier film is preferable.
  • the material for forming the barrier film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • the method for forming the barrier film is not particularly limited.
  • the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is preferable.
  • the opaque support substrate examples include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
  • the organic EL element may include a sealing portion. Although the organic EL emits light with a small amount of power, it is weak against moisture and a non-light emitting portion is formed by moisture absorption, so that it is preferably sealed with a sealing portion.
  • sealing means used for sealing the organic EL element include a method of bonding a sealing member, an electrode, and a support substrate with an adhesive.
  • a sealing member it should just be arrange
  • transparency and electrical insulation are not particularly limited.
  • Specific examples include a glass plate, a polymer plate / film, and a metal plate / film.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum. For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
  • the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 ml / (m 2 / 24h) or less, and was measured by a method according to JIS K 7129-1992.
  • water vapor permeability 25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)%) is preferably at 1 ⁇ 10 -3 g / (m 2 / 24h) or less.
  • the adhesive examples include photocuring and thermosetting adhesives having reactive vinyl groups such as acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to.
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • an organic EL element may deteriorate by heat processing, what can be adhesively cured from room temperature to 80 ° C. or lower is preferable. Further, a desiccant may be dispersed in the adhesive. Application
  • coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
  • a sealing film is formed by forming an inorganic or organic layer on the electrode on the side facing the supporting substrate with the light emitting functional layer sandwiched between and covering the electrode and the light emitting functional layer.
  • the material for forming the sealing film may be any material having a function of suppressing entry of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • the sealing film it is preferable to have a laminated structure of an inorganic layer and a layer made of an organic material, like the above-described barrier film.
  • the method for forming these films is not particularly limited. For example, vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma A polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • a gas phase with an inert gas such as nitrogen or argon or a liquid phase with an inert liquid such as fluorinated hydrocarbon or silicon oil into the gap between the sealing member and the display area of the organic EL element.
  • an inert gas such as nitrogen or argon
  • a liquid phase with an inert liquid such as fluorinated hydrocarbon or silicon oil
  • the gap between the sealing member and the display area of the organic EL element can be evacuated.
  • a hygroscopic compound can be enclosed in the gap between the sealing member and the display area of the organic EL element.
  • the hygroscopic compound include metal oxides such as sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, and aluminum oxide, sulfates such as sodium sulfate, calcium sulfate, magnesium sulfate, and cobalt sulfate, calcium chloride, Magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide and other metal halides, barium perchlorate, and perchloric acids such as magnesium perchlorate Can be mentioned.
  • Anhydrous salts are preferably used as sulfates, metal halides and perchloric acids.
  • a protective film or a protective plate may be provided outside the sealing film or sealing film for sealing the organic EL element in order to increase the mechanical strength of the element.
  • the mechanical strength is not necessarily high, and thus a protective film or a protective plate is preferably provided.
  • the material that can be used as the protective film or the protective plate include a glass plate, a polymer plate / film, a metal plate / film, and the like, similar to the above-described sealing member.
  • As the protective film or protective plate it is preferable to use a polymer film that can be reduced in weight and thickness.
  • the organic EL element can be applied to electronic devices such as display devices, displays, and various light emission sources.
  • light-emitting light sources include lighting devices such as home lighting and interior lighting, backlights for clocks and liquid crystals, signboard advertisements, traffic lights, optical storage media and other light sources, light sources for electrophotographic copying machines, and light sources for optical communication processors. Examples include, but are not limited to, a light source of an optical sensor. In particular, it can be effectively used as a backlight of a liquid crystal display device and an illumination light source.
  • patterning may be performed by a metal mask, an inkjet printing method, or the like at the time of film formation as necessary. In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire element layer may be patterned. In manufacturing the element, a conventionally known method can be used.
  • the first light emitting functional layer 11 is sandwiched between the first electrode 14 and the second electrode 15.
  • the second light emitting functional layer 12 is sandwiched between the second electrode 15 and the third electrode 16.
  • the first light emitting functional layer 11 is sandwiched between the first electrode 14 and the second electrode 15.
  • the third light emitting functional layer 13 is sandwiched between the second electrode 15 and the third electrode 16.
  • the second electrode 15 is configured as a common electrode for the first light emitting functional layer 11 and the second light emitting functional layer 12 or the third light emitting functional layer 13. ing. Therefore, for example, the second electrode 15 can function as a cathode common to the first light emitting functional layer 11, the second light emitting functional layer 12, and the third light emitting functional layer 13. The first electrode 14 and the third electrode 16 can function as the anode of the first light emitting functional layer 11 or the second light emitting functional layer 12 and the third light emitting functional layer 13.
  • FIG. 2 shows driving waveforms of the organic EL element having such a configuration.
  • the first light emitting functional layer 11 and the second light emitting functional layer 12 can emit light simultaneously.
  • the 1st light emission functional layer 11 and the 3rd light emission functional layer 13 can be light-emitted simultaneously. For this reason, the luminous efficiency of an organic EL element can be improved.
  • the first light emitting unit 18 and the second light emitting unit 19 can also be duty driven.
  • the 2nd light emission functional layer 12 and the 3rd light emission functional layer 13 can control light emission separately. Accordingly, any color adjustment of the organic EL element is possible.
  • the first light emitting functional layer 11 common to the first light emitting unit 18 and the second light emitting unit 19 is formed of a light emitting layer having inferior light emission efficiency, and the second light emitting functional layer 12 and the third light emitting functional layer 12 are provided.
  • the light emitting functional layer 13 is preferably composed of a light emitting layer having a light emitting efficiency higher than that of the first light emitting functional layer 11.
  • the first light emitting functional layer 11 common to the first light emitting unit 18 and the second light emitting unit 19 can emit light. For this reason, two or more light emitting functional layers can emit light simultaneously, and the light emission efficiency of the organic EL element is improved.
  • the second light emitting functional layer 12 and the third light emitting functional layer 13 can also drive the first light emitting unit 18 and the second light emitting unit 19 in accordance with the respective light emission efficiencies. For this reason, arbitrary toning becomes possible in an organic EL element.
  • the organic EL element having the above-described configuration can also emit the first light emitting unit 18 and the second light emitting unit 19 simultaneously. That is, the two first light emitting functional layers 11, the second light emitting functional layer 12, and the third light emitting functional layer 13 can emit light simultaneously. In this case, the light emission efficiency is improved as compared with the case where the light emitting layers of the respective colors of the organic EL element are driven by duty.
  • the organic EL element having the above configuration even if the second electrode 15 is common, the first light emitting functional layer 11, the second light emitting functional layer 12, or the third light emitting functional layer 13 can be driven independently. Is possible. For this reason, more precise color matching can be achieved by arbitrarily driving each light emitting functional layer.
  • the above-described first light-emitting unit 18 and second light-emitting unit 19 are duty-driven, the first light-emitting unit 18 and the second light-emitting unit 19 are simultaneously emitted, and
  • arbitrary driving methods such as a method of driving each light emitting functional layer, it is possible to configure an organic EL element capable of achieving both precise color matching and improvement in light emission efficiency.
  • the area of the light emitting layer with low light emission efficiency can be increased by using the light emitting layer with low light emission efficiency for the first light emitting functional layer 11. Therefore, the area of the light emitting layer with low light emission efficiency can be increased without reducing the aperture ratio of the light emitting layer with high light emission efficiency. As a result, the light emission efficiency and brightness of the organic EL element can be improved. Further, by arbitrarily selecting a combination of emission colors of the first light emitting functional layer 11 and the second light emitting functional layer 12 or the third light emitting functional layer 13, an increase in the area of the light emitting layer having a lower light emitting efficiency or an opening The rate can be improved.
  • red light emission and green light emission use a phosphorescent material in order to obtain high light emission efficiency, and blue emits blue light in the first light emitting functional layer 11 even when a fluorescent material is used in order to obtain color purity.
  • the area ratio of the blue light emitting layer is made larger than that of the red or green light emitting layer. be able to. Since the life can be extended by greatly increasing the area of the blue light emitting layer, the life balance of each light emitting layer can be adjusted.
  • the luminance of the second light emitting functional layer 12 and the third light emitting functional layer 13 can be adjusted. Also in this case, since the total area of the first light emitting unit 18 and the second light emitting unit 19 is the total area of the first light emitting functional layer 11, the luminance of the first light emitting functional layer 11 is improved. Moreover, the lifetime of the 1st light emission functional layer 11, the 2nd light emission functional layer 12, and the 3rd light emission functional layer 13 can be adjusted by changing an area according to light emission efficiency.
  • the aperture ratio of an arbitrary light emitting layer can be improved without narrowing the light emitting region of another light emitting layer, so that the luminous efficiency can be improved without impairing the visibility. Become. Therefore, the display quality of the organic EL element can be improved.
  • the stacking order of the light emitting functional layers of each color, the polarity of the electrodes, and the like are not limited to the above-described embodiments, and other configurations may be employed. It is only necessary that the light emitting functional layer is laminated via the common electrode.
  • the common electrode may function as a cathode or an anode for the stacked light emitting functional layers, and the electrodes other than the common electrode may function as electrodes having a polarity opposite to the common electrode for the stacked light emitting functional layers.
  • the first to third light emitting functional layers are configured to include the light emitting layers having different light emission colors.
  • the present invention is not limited to this, and the first to third light emitting functional layers have the same structure.
  • a light emitting functional layer having the same light emitting color may be stacked, or a light emitting functional layer other than the first to third light emitting functional layers may be included in the light emitting unit.
  • the configuration of the light emitting layer applied to the light emitting functional layer and the combination of the color tone are not particularly limited, and any configuration can be adopted.
  • the layers from the first electrode to the third electrode are separated by the first light emitting unit and the second light emitting unit.
  • the first light emitting unit and the second light emitting unit may have a common configuration.
  • the first electrode may have a common configuration for the first light emitting unit and the second light emitting unit.
  • each layer constituting the first light emitting functional layer in particular, the electron transport layer, the hole transport layer, and the like may be configured in common between the first light emitting unit and the second light emitting unit.
  • Organic Electroluminescence Element (Second Embodiment and Modification)> Next, a second embodiment of the organic electroluminescence element (organic EL element) will be described.
  • the organic EL element of 2nd Embodiment is the structure similar to the above-mentioned 1st Embodiment except that the laminated structure of each light emitting functional layer and an electrode differs. For this reason, description is abbreviate
  • FIG. 3 the schematic block diagram (sectional drawing) of the organic EL element of 2nd Embodiment is shown.
  • the organic EL element shown in FIG. 3 includes a first electrode 34, a first light emitting functional layer 31, a second electrode 35, a second light emitting functional layer 32, a third light emitting functional layer 33, and a third electrode 36. 39.
  • the light emitting unit 39 having these configurations is mounted on the support substrate 20.
  • an insulating layer 37 surrounding the light emitting region of the light emitting unit 39 is provided.
  • the first electrode 34 is provided on the support substrate 20. Further, in the light emitting unit 39, the first electrode 34 is continuously provided over the entire area in a predetermined region of the light emitting region of the light emitting unit 39.
  • the 1st electrode 34 is connected to the power circuit of the drive part of the organic EL element which is not illustrated.
  • the first light emitting functional layer 31 is provided on the first electrode 34. Similar to the first electrode 34, the first light emitting functional layer 31 is continuously provided over the entire area within a predetermined region of the light emitting region of the light emitting unit 39.
  • the second electrode 35 is provided on the first light emitting functional layer 31. Similar to the first electrode 34, the second electrode 35 is provided continuously over the entire region within a predetermined region of the light emitting region of the organic EL element. Similar to the first electrode 34 described above, the second electrode 35 is connected to a power supply circuit of an organic EL element driving unit (not shown).
  • the second light emitting functional layer 32 and the third light emitting functional layer 33 are provided on the second electrode 35.
  • the second light emitting functional layer 32 and the third light emitting functional layer 33 are provided independently at predetermined intervals.
  • the second light emitting functional layers 32 and the third light emitting functional layers 33 are alternately arranged.
  • the third electrode 36 is provided on the second light emitting functional layer 32 and the third light emitting functional layer 33.
  • the third electrode 36 is provided independently on the second light emitting functional layer 32 and the third light emitting functional layer 33 that are provided separately from each other, and is independent of the second light emitting functional layer 32 or the third light emitting functional layer 33. Thus, a potential can be supplied.
  • the third electrode 36 is connected to a power supply circuit of a driving unit (not shown) of the organic EL element, similarly to the first electrode 34 described above.
  • the first light-emitting functional layer 31, the second light-emitting functional layer 32, and the third light-emitting functional layer 33 can have the same configuration as the light-emitting functional layer described in the first embodiment, and include at least one layer.
  • the organic light emitting layer is provided.
  • the 2nd light emission functional layer 32 and the 3rd light emission functional layer 33 may each be comprised with the same area, and may be comprised with a different area.
  • the organic EL element of this example a configuration in which a plurality of second light emitting functional layers 32 and third light emitting functional layers 33 are provided in one light emitting unit 39 is shown.
  • at least one third light emitting functional layer 33 may be provided.
  • the organic EL element may be configured to include a plurality of light emitting units 39, or may be configured to include a plurality of second light emitting functional layers 32 and a third light emitting functional layer 33 in a single light emitting unit 39. .
  • an insulating layer 37 is disposed between the light emitting units 39.
  • the organic EL element described above has a configuration in which the second light emitting functional layer 32 or the third light emitting functional layer 33 is laminated on the first light emitting functional layer 31 via the second electrode 35 in the light emitting unit 39.
  • the first light emitting functional layer 31 is sandwiched between the first electrode 34 and the second electrode 35.
  • the second light emitting functional layer 32 and the third light emitting functional layer 33 are shared by the first light emitting functional layer 31, the second light emitting functional layer 32, and the third light emitting functional layer 33, respectively. It is sandwiched between independent third electrodes 36.
  • the first electrode 34 and the third electrode 36 have the same polarity, and the second electrode 35 has the opposite polarity to the first electrode 34 and the third electrode 36.
  • the first electrode 34 described above functions as a cathode with respect to the first light emitting functional layer 31.
  • the third electrode 36 functions as a cathode with respect to the second light emitting functional layer 32 and the third light emitting functional layer 33 in this example.
  • the second electrode 35 functions as an anode with respect to the first light emitting functional layer 31 in this example.
  • the second electrode 35 also functions as an anode for the second light emitting functional layer 32 and the third light emitting functional layer 33 provided on the second electrode 35.
  • the second electrode 35 is configured as a common electrode for the first light emitting functional layer 31 and the second light emitting functional layer 32 and the third light emitting functional layer 33 formed on the second electrode 35. Since the third electrode 36 is formed independently, the second light emitting functional layer 32 and the third light emitting functional layer 33 can be driven independently.
  • FIG. 4 shows driving waveforms of the organic EL element having such a configuration.
  • the first light emitting functional layer 31 provided in the entire light emitting region can emit light.
  • the second light emitting functional layer 32 and the third light emitting functional layer 33 can arbitrarily emit light.
  • the 1st light emission functional layer 31 and the 2nd light emission functional layer 32 can be light-emitted simultaneously.
  • the 1st light emission functional layer 31 and the 3rd light emission functional layer 33 can be light-emitted simultaneously.
  • the first light emitting functional layer 31, the second light emitting functional layer 32, and the third light emitting functional layer 33 can emit light simultaneously. For this reason, the luminous efficiency of an organic EL element can be improved.
  • the second electrode 35 and the third electrode 36 without driving the first electrode 34, the second light emitting functional layer 32 and the third light emitting function are not emitted without causing the first light emitting functional layer 31 to emit light.
  • the layer 33 can also emit light simultaneously or independently. Further, by driving only the first electrode 34 and the second electrode 35, it is possible to cause only the first light emitting functional layer 31 to emit light.
  • the first light emitting functional layer 31, the second light emitting functional layer 32, or the third light emitting functional layer 33 can be independently driven.
  • duty driving can be performed according to the light emission efficiency of each light emitting layer.
  • precise color matching is possible by setting each light emitting functional layer to an arbitrary duty drive.
  • the first light emitting functional layer 31, the second light emitting functional layer 32, and the third light emitting functional layer 33 are driven by duty, simultaneously emitted, and the first light emitting function.
  • driving methods such as the method of causing the layer 31 and the second light emitting functional layer 32 or the third light emitting functional layer 33 to emit light at the same time, it is possible to achieve both precise color matching and improvement in light emission efficiency. .
  • the area can be increased by using a light emitting layer having low light emission efficiency for the first light emitting functional layer 31. Therefore, the area of the light emitting layer with low light emission efficiency can be increased without reducing the aperture ratio of the light emitting layer with high light emission efficiency. As a result, the light emission efficiency and brightness of the organic EL element can be improved.
  • red light emission and green light emission use a phosphorescent material in order to obtain high light emission efficiency, and blue emits blue light in the first light emitting functional layer 31 even when a fluorescent material is used in order to obtain color purity.
  • the area ratio of the blue light emitting layer is formed larger than that of the red or green light emitting layer. be able to. For this reason, since the area of a blue light emitting layer can be increased significantly and the life difference with another light emitting layer can be offset, the life balance of each light emitting layer can be adjusted. Further, since it is not necessary to reduce the area of the green or red light emitting layer, it is possible to reduce the aperture ratio and suppress the luminance gradient during color emission.
  • the luminance of the second light emitting functional layer 32 and the third light emitting functional layer 33 can be adjusted.
  • the total area of the first light emitting functional layer 31 is equal to or greater than the total area of the second light emitting functional layer 32 and the third light emitting functional layer 33, and the first light emitting functional layer 31 and the second light emitting functional layer. 32 and the lifetime of the third light emitting functional layer 13 can be adjusted.
  • the area ratio of the first light emitting functional layer, the second light emitting functional layer, and the third light emitting functional layer can be arbitrarily adjusted. For this reason, even when the light emission efficiency of the first light emission functional layer, the second light emission functional layer, and the third light emission functional layer is different, the difference in light emission efficiency can be corrected by the area ratio. Therefore, the emission color of the organic EL element can be arbitrarily adjusted by adjusting the area ratio of the first light emitting functional layer, the second light emitting functional layer, and the third light emitting functional layer.
  • the structure of the organic EL element of the modification of 2nd Embodiment is shown in FIG.
  • the organic EL element shown in FIG. 5 differs from the second embodiment described above only in the polarities of the first electrode 34, the second electrode 35, and the third electrode 36. That is, in the organic EL element of the second embodiment described above, the first electrode 34 becomes the anode of the first light emitting functional layer 31.
  • the second electrode 35 serves as the cathode of the first light emitting functional layer 31 and the anode of the second light emitting functional layer 32 and the third light emitting functional layer 33.
  • the third electrode 36 serves as a cathode of the second light emitting functional layer 32 and the third light emitting functional layer 33.
  • the arrangement of the cathode and the anode is opposite to that in the second embodiment. For this reason, when the 1st light emission functional layer 31 is provided with an electron carrying layer, a hole transport layer, etc. other than a light emitting layer, the lamination
  • a switch 38 for switching driving of the first electrode 34, the second electrode 35, and the third electrode 36 is provided in the circuit of the driving unit.
  • a switch 38 having one circuit and two contacts is illustrated as a switch for switching in the circuit of the driving unit.
  • the driving of the first electrode 34 and the second electrode 35 or the driving of the second electrode 35 and the third electrode 36 can be arbitrarily controlled by switching the switch 38. For this reason, by driving the first electrode 34 and the second electrode 35, the first electrode 34 becomes an anode and the second electrode 35 becomes a cathode, and the first light emitting functional layer 31 emits light. Further, by driving the second electrode 35 and the third electrode 36, the second electrode 35 becomes an anode and the third electrode 36 becomes a cathode, and the second light emitting functional layer 32 and the third light emitting functional layer 33 emit light. .
  • the second electrode 35 is shared by the first light emitting functional layer 31, the second light emitting functional layer 32, or the third light emitting functional layer 33. Then, the first light emitting functional layer 31, the second light emitting functional layer 32, or the third light emitting functional layer 33 is arbitrarily selected by switching the polarity of the second electrode 35 between the cathode and the anode according to the driving timing. Can be emitted.
  • the first light emitting functional layer 31 and the second light emitting functional layer 32 or the third light emitting functional layer 33 cannot emit light simultaneously, but the second light emitting functional layer 32 and the third light emitting functional layer 33 are It is possible to emit light simultaneously.
  • the formation area of the first light emitting functional layer 31, the second light emitting functional layer 32, and the third light emitting functional layer 33 is the same as that of the second embodiment, the area of the light emitting layer is increased and the aperture ratio is improved. Can be made.
  • the first light emitting functional layer 31, the second light emitting functional layer 32, or the third light emitting functional layer 33 can be driven independently, each layer can be arbitrarily driven to perform more precise color matching. Is possible. Therefore, it is possible to configure an organic EL element capable of achieving both improvement in luminous efficiency and arbitrary color matching.
  • Organic Electroluminescence Element (Third Embodiment)> Next, a third embodiment of the organic electroluminescence element (organic EL element) will be described.
  • the organic EL element of 3rd Embodiment is the structure similar to the above-mentioned 1st Embodiment except the laminated structure of each light emitting functional layer and an electrode. For this reason, description is abbreviate
  • FIG. 6 the schematic block diagram (sectional drawing) of the organic EL element of 3rd Embodiment is shown.
  • the organic EL element shown in FIG. 6 includes a first electrode 44, a first light emitting functional layer 41, a second electrode 45, a second light emitting functional layer 42, a third electrode 46, a third light emitting functional layer 43, and a fourth electrode. 47 is provided. Further, the light emitting unit 49 having these configurations is mounted on the support substrate 20. Further, an insulating layer 48 serving as a partition wall is provided between the light emitting units 49.
  • the first electrode 44 is provided independently for each light emitting unit 49 on the support substrate 20.
  • the first electrodes 44 are insulated from each other by an insulating layer 48. Further, the first electrode 44 is connected to a power supply circuit of an organic EL element driving unit (not shown).
  • a first light emitting functional layer 41 is provided on the first electrode 44.
  • a second electrode 45 is provided on the first light emitting functional layer 41. Similar to the first electrode 44 described above, the second electrode 45 is connected to a power supply circuit of an organic EL element driving unit (not shown). A second light emitting functional layer 42 is provided on the second electrode 45.
  • a third electrode 46 is provided on the second light emitting functional layer 42. Similar to the first electrode 44 described above, the third electrode 46 is connected to a power supply circuit of a driving unit (not shown) of the organic EL element. A third light emitting functional layer 43 is provided on the third electrode 46.
  • the fourth electrode 47 is provided on the third light emitting functional layer 43.
  • the fourth electrode 47 is connected to a power supply circuit of a driving unit (not shown) of the organic EL element, similar to the first electrode 44 described above.
  • the first light-emitting functional layer 41, the second light-emitting functional layer 42, and the third light-emitting functional layer 43 can have the same configuration as the light-emitting functional layer described in the first embodiment, and include at least one layer.
  • the organic light emitting layer is provided. In the organic EL element, the first light emitting functional layer 41, the second light emitting functional layer 42, and the third light emitting functional layer 43 have different light emitting layers.
  • the light emitting unit 49 includes three light emitting functional layers, a first light emitting functional layer 41, a second light emitting functional layer 42, and a third light emitting functional layer 43. Therefore, for example, the first light emitting functional layer 41 is configured to have a green (G) light emitting layer, the second light emitting functional layer 42 is configured to have a blue (B) light emitting layer, and the third light emitting functional layer 43 is formed. A structure having a red (R) light emitting layer is adopted. As described above, in the organic EL element, the light emitting unit 49 includes the three light emitting functional layers, so that it is possible to obtain three colors of emitted light of RGB.
  • first light emitting functional layer 41 is sandwiched between the first electrode 44 and the second electrode 45.
  • the second light emitting functional layer 42 is sandwiched between the second electrode 45 and the third electrode 46.
  • the third light emitting functional layer 43 is sandwiched between the third electrode 46 and the fourth electrode 47. That is, the second electrode 45 is configured as a common electrode for the first light emitting functional layer 41 and the second light emitting functional layer 42 formed on the second electrode 45. Further, the third electrode 46 is configured as a common electrode for the second light emitting functional layer 42 and the third light emitting functional layer 43 formed on the third electrode 46.
  • the first electrode 44 and the third electrode 46 are electrodes having the same polarity
  • the second electrode 45 and the fourth electrode 47 are electrodes having opposite polarities to the first electrode 44 and the third electrode 46.
  • the first electrode 44 described above functions as a cathode with respect to the first light emitting functional layer 41.
  • the second electrode 45 functions as an anode with respect to the first light emitting functional layer 41 and the second light emitting functional layer 42.
  • the third electrode 46 functions as a cathode with respect to the second light emitting functional layer 42 and the third light emitting functional layer 43.
  • the fourth electrode 47 functions as an anode with respect to the third light emitting functional layer 43.
  • FIG. 7 shows drive waveforms in the organic EL element described above.
  • the first electrode 44 and the third electrode 46 have the same polarity, and the second electrode 45 and the fourth electrode 47 are connected to the first electrode 44 and the light emitting functional layer. It functions as a polarity opposite to that of the third electrode 46. Therefore, as shown in FIG. 7, the first electrode 44, the second electrode 45 and the third electrode 46 serving as the shared electrode, and the fourth electrode 47 can be driven simultaneously.
  • the first light emitting functional layer 41, the second light emitting functional layer 42, and the third light emitting functional layer 43 can emit light simultaneously. For this reason, the luminous efficiency of an organic EL element can be improved.
  • the first light emitting functional layer 41 and the second light emitting functional layer 42 are caused to emit light simultaneously by simultaneously driving the first electrode 44, the second electrode 45, and the third electrode 46. Can do. Furthermore, as shown in FIG. 7, the second light emitting functional layer 42 and the third light emitting functional layer 43 are caused to emit light simultaneously by driving the second electrode 45, the third electrode 46, and the fourth electrode 47 simultaneously. Can do.
  • any one of the first light emitting functional layer 41 and the second light emitting functional layer 42 or the second light emitting functional layer 42 and the third light emitting functional layer 43 can be arbitrarily selected to emit light. it can. This can be selected by switching the electrode to be driven between the first electrode 44 and the fourth electrode 47.
  • the second light emitting functional layer 42 emits light during both the period during which the first light emitting functional layer 41 emits light and the period during which the third light emitting functional layer 43 emits light. Therefore, the second light emitting functional layer 42 has a longer light emission period than the first light emitting functional layer 41 and the third light emitting functional layer 43, and can increase the lighting rate. Therefore, for example, even when the second light emitting functional layer 42 is formed of a light emitting layer having inferior light emission efficiency, it is not necessary to increase the area for improving the luminance.
  • first light emitting functional layer 41 and the third light emitting functional layer 43 can be duty-driven according to the respective light emission efficiencies. For this reason, arbitrary toning becomes possible in an organic EL element.
  • two or more light emitting functional layers can be caused to emit light simultaneously in the organic EL element. Furthermore, an organic EL element capable of arbitrary toning by duty driving can be configured. Therefore, it is possible to configure an organic EL element capable of achieving both improvement in luminous efficiency and arbitrary color matching.
  • a sample 101 of the organic EL element having the configuration shown in FIG. 3 was prepared as follows.
  • a transparent substrate having an outer size of 90 mm ⁇ 90 mm was prepared as a support substrate for forming an organic EL element.
  • the transparent substrate was then subjected to acetone ultrasonic cleaning, semi-clean ultrasonic cleaning, and ozone cleaning to clean the surface of the substrate.
  • the 1st electrode used as the anode of an organic EL element was formed on the wash
  • a 1st electrode 300 nm of ITO layers were formed using sputtering method.
  • the first electrode is approximately 5 ⁇ / sq. It formed so that it might become a sheet resistance value of a grade.
  • DC magnetron sputtering was used for sputtering.
  • the substrate was placed under a vacuum level of 90 ° C. and a vacuum level of 1 ⁇ 10 ⁇ 4 (Pa), oxygen 2% mixed argon gas was introduced at 0.5 Pa, and 500 W DC was applied to the ITO.
  • An ITO layer was formed on the substrate by adding to the target.
  • the ITO layer used in this example is approximately 5 ⁇ / sq. It was designed to have a sheet resistance value of about.
  • the ITO layer was patterned in the shape of an electrode so that the light emitting portion was 80 mm ⁇ 80 mm.
  • a resist is spin-coated on a substrate by 1 ⁇ m, pre-baked at 80 ° C. for 5 minutes, exposed by an exposure machine, developed by immersing in NaOH for 3 minutes, rinsed with pure water, spin-dried and post-baked Was carried out at 100 ° C. for 40 minutes.
  • Etching of the ITO layer uses 15% aqueous ferric chloride solution, rinses with pure water after etching, soaks in NaOH for 3 minutes to strip the resist, strips the resist, similarly rinses with pure water, spin-dry By applying, it was etched into a desired shape.
  • an insulating layer made of polyimide was formed in order to prevent an electrical short in the vicinity of the ITO pattern edge serving as the anode.
  • the substrate on which the ITO patterning was completed was again subjected to acetone ultrasonic cleaning, semi-clean ultrasonic cleaning, spin drying, and ozone cleaning. Thereafter, polyimide was spin-coated to a thickness of 1 ⁇ m.
  • prebaking was performed at 85 ° C. for 3 minutes, and after exposure with an exposure machine, development was performed by immersing in 3% TMAH for 5 minutes. After development, pure water rinsing was performed, and post-baking was performed at 100 ° C. for 80 minutes after spin drying.
  • a first light emitting functional layer emitting blue light was formed on the first electrode by vacuum deposition.
  • UV cleaning was performed for 5 minutes to activate the surface state of the first electrode, and then the substrate was placed in a vacuum deposition apparatus and evacuated to a vacuum degree of 1 ⁇ 10 ⁇ 5 (Pa).
  • each layer constituting the first light emitting functional layer was formed by vapor deposition as needed.
  • 30 nm of MoO 3 was deposited as a hole injection layer and 50 nm of ⁇ -NPD was deposited as a hole transport layer on the first electrode.
  • a light emitting layer a light emitting dopant having a blue light emitting color and a light emitting host material were deposited by evaporation so as to have a concentration of 3 to 5% of the light emitting dopant.
  • 30 nm of Alq3 was formed as an electron transport layer, and 1 nm of LiF was formed as an electron injection layer.
  • a second electrode serving as a cathode was formed on the first light emitting functional layer.
  • the second electrode was formed by depositing 15 nm of Al by EB vapor deposition so as to cover the first light emitting functional layer. The second electrode was taken out on one side of the substrate.
  • a second light emitting functional layer emitting green light and a third light emitting functional layer emitting red light were formed on the second electrode.
  • the second light-emitting functional layer and the third light-emitting functional layer were each formed in a strip shape on the second electrode by being separately applied using a vapor deposition mask.
  • the second light emitting functional layer was formed so that the light emitting area line was 1 mm ⁇ 70 mm.
  • the third light emitting functional layer was formed so that the light emitting area line was 2.3 mm ⁇ 70 mm.
  • the space between the second light emitting functional layer and the third light emitting functional layer was formed to be 60 ⁇ m.
  • the alignment of the vapor deposition mask was corrected with a CCD camera having an accuracy of ⁇ 5 ⁇ m, and a vapor deposition apparatus was used so that the desired position was obtained.
  • the second light emitting functional layer and the third light emitting functional layer were formed simultaneously as a common layer except for the light emitting layer and the third electrode.
  • the light-emitting layer of the second light-emitting functional layer that emits green light is used to form a light-emitting dopant and a light-emitting host material at a concentration of 3% using a vapor deposition mask that opens the light-emitting region of the second light-emitting functional layer.
  • a vapor deposition mask that opens the light-emitting region of the second light-emitting functional layer.
  • the light-emitting layer of the third light-emitting functional layer that emits red light is used to form a light-emitting dopant and a light-emitting host material with a light-emitting dopant of 0.5% using an evaporation mask having an opening in the light-emitting region of the third light-emitting functional layer.
  • a concentration 30 nm was deposited.
  • the common holes of the second light emitting functional layer and the third light emitting functional layer are used.
  • ⁇ -NPD was formed to a thickness of 30 nm.
  • the hole injection layer was formed with 30 nm of MoO 3 as a common layer of the second light emitting functional layer and the third light emitting functional layer.
  • a third electrode serving as an anode was formed on the second light emitting functional layer and the third light emitting functional layer.
  • an Al layer having a thickness of 150 nm was formed by EB vapor deposition.
  • an opening capable of simultaneously forming the light emitting regions of the second light emitting functional layer and the third light emitting functional layer, and an opening of the lead routing portion to the end of the substrate for electrical connection of the third electrode A vapor deposition mask having the following was used.
  • sealing In order to seal the light emitting unit formed by the above steps, a sealing portion was formed.
  • a UV curable epoxy adhesive resin was applied as an adhesive to a region where the counterbore digging was not formed in a portion where the sealing substrate and the element substrate were in contact with each other, and was pressed against the element substrate. Furthermore, in order to cure the adhesive, UV irradiation is performed from the sealing substrate side so that the integrated illuminance becomes 10 J with metal halide, and further, the adhesive is cured by thermal curing at 80 ° C. for about 1 hour to cure the adhesive. The curing of the agent was promoted, and the sealing substrate and the transparent substrate as the element substrate were bonded.
  • the first light-emitting functional layer is formed in a normal lamination in which a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer are stacked in this order on the first electrode.
  • the second light emitting functional layer and the third light emitting functional layer were formed by reverse lamination in which an electron injection layer, an electron transport layer, a light emitting layer, a hole transport layer, and a hole injection layer were stacked in this order on the second electrode. . That is, in the sample 101, the first light emitting functional layer was formed by normal lamination, and the second light emitting functional layer and the third light emitting functional layer were formed by reverse lamination.
  • the light emitting layers of the second light emitting functional layer and the third light emitting functional layer, and the third electrode were formed by patterning using an evaporation mask. For this reason, in consideration of vapor deposition blur due to wraparound from the vapor deposition mask, a large space area of the light emitting layer between the second light emitting functional layer and the third light emitting functional layer is formed in order to suppress short circuit and mixed color light emission due to vapor deposition blur.
  • the organic EL element of Sample 101 thus manufactured had an aperture ratio of 95% for the blue light emitting region, 28% for the green light emitting region, and 64% for the red light emitting region.
  • a sample 102 of the organic EL element having the configuration shown in FIG. 1 was prepared as follows.
  • a transparent substrate having an outer size of 90 mm ⁇ 90 mm was prepared as a support substrate for forming the organic EL element.
  • the transparent substrate was then subjected to acetone ultrasonic cleaning, semi-clean ultrasonic cleaning, and ozone cleaning to clean the surface of the substrate.
  • the 1st electrode used as the cathode of an organic EL element was formed on the wash
  • an ITO layer having a thickness of 300 nm was formed.
  • the first electrode is approximately 5 ⁇ / sq. Using a sputtering method. It formed so that it might become a sheet resistance value of a grade.
  • DC magnetron sputtering was used for sputtering.
  • the substrate was placed under a vacuum level of 90 ° C. and a vacuum level of 1 ⁇ 10 ⁇ 4 (Pa), oxygen 2% mixed argon gas was introduced at 0.5 Pa, and 500 W DC was applied to the ITO.
  • An ITO layer was formed on the substrate by adding to the target.
  • the ITO layer was patterned in the shape of an electrode so that the light emitting portion was 80 mm ⁇ 80 mm.
  • a resist is spin-coated on a substrate by 1 ⁇ m, pre-baked at 80 ° C. for 5 minutes, exposed by an exposure machine, developed by immersing in NaOH for 3 minutes, rinsed with pure water, spin-dried and post-baked Was carried out at 100 ° C. for 40 minutes.
  • Etching of the ITO layer uses 15% aqueous ferric chloride solution, rinses with pure water after etching, soaks in NaOH for 3 minutes to strip the resist, strips the resist, similarly rinses with pure water, spin-dry By applying, it was etched into a desired shape.
  • an insulating layer made of polyimide was formed in order to prevent an electrical short in the vicinity of the ITO pattern edge serving as the cathode.
  • the substrate on which the ITO patterning was completed was again subjected to acetone ultrasonic cleaning, semi-clean ultrasonic cleaning, spin drying, and ozone cleaning. Thereafter, polyimide was spin-coated to a thickness of 1 ⁇ m.
  • prebaking was performed at 85 ° C. for 3 minutes, and after exposure with an exposure machine, development was performed by immersing in 3% TMAH for 5 minutes. After development, pure water rinsing was performed, and post-baking was performed at 100 ° C. for 80 minutes after spin drying.
  • an inversely tapered insulating layer serving as a partition wall for element separation between the first light emitting unit and the second light emitting unit of the organic EL element was formed.
  • This insulating layer was formed by spin-coating polyimide to a thickness of 2.5 ⁇ m, pre-baking at 85 ° C. for 3 minutes, exposing with an exposure machine, and then developing by immersing in 3% TMAH for 5 minutes. . After the development, rinsing with pure water was performed, and post-baking was performed at 250 ° C. for 30 minutes after spin drying.
  • the insulating layer for element isolation has a light emitting area line of the first light emitting unit of 1 mm ⁇ 70 mm, a light emitting area line of the second light emitting unit of 2.3 mm ⁇ 70 mm, and a space between the first light emitting unit and the second light emitting unit.
  • a light emitting area line of the first light emitting unit of 1 mm ⁇ 70 mm
  • a light emitting area line of the second light emitting unit of 2.3 mm ⁇ 70 mm
  • a space between the first light emitting unit and the second light emitting unit was formed into a pattern having a thickness of 60 ⁇ m.
  • a first light-emitting functional layer that emits blue light was formed by vacuum deposition on the first electrode in a region surrounded by the element isolation insulating layer.
  • UV cleaning was performed for 5 minutes, and then the substrate was put into a vacuum vapor deposition machine and evacuated until a vacuum degree of 1 ⁇ 10 ⁇ 5 (Pa) was obtained.
  • each layer constituting the first light emitting functional layer was formed by vapor deposition at any time using an evaporation mask in which only the formation region of the first light emitting functional layer was opened.
  • Al was formed to 0.5 nm on the first electrode by EB vapor deposition. Then, 1 nm of LiF was formed as the electron injection layer, and 30 nm of Alq3 was formed as the electron transport layer. Then, as a light emitting layer, a light emitting dopant having a blue light emitting color and a light emitting host material were deposited by evaporation so as to have a concentration of 3 to 5% of the light emitting dopant. Furthermore, 50 nm of ⁇ -NPD was formed as a hole transport layer, and 30 nm of MoO 3 was formed as a hole injection layer.
  • a second electrode serving as an anode was formed on the patterned first light emitting functional layer.
  • the second electrode was formed by sputtering IZO so as to cover the first light emitting functional layer.
  • the second electrode was patterned by using C magnetron sputtering for sputtering and using a mask method.
  • the substrate is placed under a degree of vacuum of 1 ⁇ 10 ⁇ 4 (Pa), an argon gas mixed with 2.5% oxygen is introduced at 0.75 Pa, and 300 W of DC is applied to the IZO target.
  • an IZO electrode was formed on the first light emitting functional layer.
  • the second electrode has an IZO sheet resistance value of approximately 6 ⁇ / sq. Designed to be about. The second electrode was taken out on one side of the substrate.
  • a second light emitting functional layer emitting green light and a third light emitting functional layer emitting red light were formed on the second electrode.
  • the second light-emitting functional layer and the third light-emitting functional layer were each formed in a strip shape on the second electrode by being separately applied using a vapor deposition mask.
  • the second light emitting functional layer was formed so that the light emitting area line was 1 mm ⁇ 70 mm.
  • the third light emitting functional layer was formed so that the light emitting area line was 2.3 mm ⁇ 70 mm.
  • the space between the second light emitting functional layer and the third light emitting functional layer was formed to be 60 ⁇ m.
  • MoO 3 was formed to 30 nm as a hole injection layer.
  • 30 nm of ⁇ -NPD was formed as a hole transport layer.
  • the light-emitting layer of the second light-emitting functional layer that emits green light is used to form a light-emitting dopant and a light-emitting host material at a concentration of 3% using a vapor deposition mask that opens the light-emitting region of the second light-emitting functional layer.
  • a vapor deposition mask that opens the light-emitting region of the second light-emitting functional layer.
  • the light-emitting layer of the third light-emitting functional layer that emits red light is used to form a light-emitting dopant and a light-emitting host material with a light-emitting dopant of 0.5% using an evaporation mask having an opening in the light-emitting region of the third light-emitting functional layer.
  • a concentration 30 nm was deposited.
  • a third electrode serving as a cathode was formed on the second light emitting functional layer and the third light emitting functional layer.
  • an Al layer having a thickness of 150 nm was formed by EB vapor deposition.
  • an opening capable of simultaneously forming the light emitting regions of the second light emitting functional layer and the third light emitting functional layer, and an opening of the lead routing portion to the end of the substrate for electrical connection of the third electrode A vapor deposition mask having the following was used.
  • IZO which is a transparent electrode
  • a transparent oxide electrode having high transmittance was formed by a sputtering method using the second electrode as a common anode. Since the second electrode was used as a common anode and a transparent oxide electrode having high transmittance was formed, an organic EL device having good transmittance and luminous efficiency was produced.
  • the organic EL element of Sample 102 thus manufactured had an aperture ratio of 93% for the blue light emitting region, 28% for the green light emitting region, and 64% for the red light emitting region.
  • a sample 103 of the organic EL element having the configuration shown in FIG. 5 was prepared as follows.
  • a first electrode serving as an anode, an insulating layer, a first light emitting functional layer, and a second electrode serving as a cathode and an anode were formed on a supporting substrate using a method similar to that of the sample 101 described above.
  • a second light emitting functional layer emitting green light and a third light emitting functional layer emitting red light were formed on the second electrode.
  • the second light-emitting functional layer and the third light-emitting functional layer were each formed in a strip shape on the second electrode by being separately applied using a vapor deposition mask.
  • the second light emitting functional layer was formed so that the light emitting area line was 1 mm ⁇ 70 mm.
  • the third light emitting functional layer was formed so that the light emitting area line was 2.3 mm ⁇ 70 mm.
  • the space between the second light emitting functional layer and the third light emitting functional layer was formed to be 60 ⁇ m.
  • the alignment of the vapor deposition mask was corrected with a CCD camera having an accuracy of ⁇ 5 ⁇ m, and a vapor deposition apparatus was used so that the desired position was obtained.
  • the second light emitting functional layer and the third light emitting functional layer were formed simultaneously as a common layer except for the light emitting layer and the third electrode.
  • the second light emitting functional layer, the third light emitting functional layer, and the second light emitting functional layer are formed on the second electrode using an evaporation mask capable of simultaneously forming the light emitting region of the second light emitting functional layer and the light emitting region of the third light emitting functional layer.
  • an evaporation mask capable of simultaneously forming the light emitting region of the second light emitting functional layer and the light emitting region of the third light emitting functional layer.
  • MoO 3 was formed to a thickness of 30 nm.
  • 30 nm of ⁇ -NPD was formed as a hole transport layer.
  • the light-emitting layer of the second light-emitting functional layer that emits green light is used to form a light-emitting dopant and a light-emitting host material at a concentration of 3% using a vapor deposition mask that opens the light-emitting region of the second light-emitting functional layer.
  • a vapor deposition mask that opens the light-emitting region of the second light-emitting functional layer.
  • the light-emitting layer of the third light-emitting functional layer that emits red light is used to form a light-emitting dopant and a light-emitting host material with a light-emitting dopant of 0.5% using an evaporation mask having an opening in the light-emitting region of the third light-emitting functional layer.
  • a concentration 30 nm was deposited.
  • a common electron transporting layer for the second light emitting functional layer and the third light emitting functional layer using a vapor deposition mask capable of simultaneously forming the light emitting region of the second light emitting functional layer and the light emitting region of the third light emitting functional layer As a result, 30 nm of Alq3 was formed.
  • 1 nm of LiF was formed as an electron injection layer using the same vapor deposition mask.
  • the first electrode serves as an anode with respect to the first light emitting functional layer.
  • the second electrode serves as a cathode for the first light emitting functional layer and serves as an anode for the second light emitting functional layer and the third light emitting functional layer.
  • the third electrode serves as a cathode for the first light emitting functional layer.
  • the first light-emitting functional layer was formed on the first electrode by a normal stacking in which a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer were stacked in this order.
  • the second light-emitting functional layer and the third light-emitting functional layer were formed in a normal stack in which a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer were stacked in this order on the second electrode.
  • the first light-emitting functional layer, the second light-emitting functional layer, and the third light-emitting functional layer are both formed in a normal stack.
  • the organic EL element of Sample 103 thus produced had an aperture ratio of 95% for the blue light emitting region, 28% for the green light emitting region, and 64% for the red light emitting region.
  • a sample 104 of the organic EL element having the configuration shown in FIG. 1 was prepared as follows. Note that the sample 104 has a structure in which an insulating layer for element isolation is removed from the structure shown in FIG.
  • a first light emitting functional layer was formed on the first electrode by vacuum deposition.
  • UV cleaning was performed for 5 minutes, and then the substrate was put into a vacuum vapor deposition machine and evacuated until a vacuum degree of 1 ⁇ 10 ⁇ 5 (Pa) was obtained.
  • each layer constituting the first light emitting functional layer was formed by vapor deposition as needed using a vapor deposition mask having only the formation region of the first light emitting functional layer opened.
  • the light emitting area line of the first light emitting unit is 1 mm ⁇ 70 mm
  • the light emitting area line of the second light emitting unit is 2.3 mm ⁇ 70 mm
  • Al was formed to 0.5 nm on the first electrode by EB vapor deposition. Then, 1 nm of LiF was formed as the electron injection layer, and 30 nm of Alq3 was formed as the electron transport layer. Then, as a light emitting layer, a light emitting dopant having a blue light emitting color and a light emitting host material were deposited to a thickness of 3 to 5% so as to have a concentration of 3-5%. Furthermore, 50 nm of ⁇ -NPD was formed as a hole transport layer, and 30 nm of MoO 3 was formed as a hole injection layer.
  • a second electrode serving as an anode was formed on the patterned first light-emitting functional layer using a method similar to that of the sample 102 described above. Further, a second light emitting functional layer that emits green light is formed on the second electrode of the first light emitting unit using the same method as that of the sample 102 described above, and red light is emitted on the second electrode of the second light emitting unit. A third light emitting functional layer was formed.
  • the formed light emitting unit is similar to the sample 101 described above. Sealed using the method.
  • the sample 104 has a structure in which an insulating layer serving as a partition wall for element isolation is removed from the sample 102 described above.
  • the organic EL element of Sample 104 thus produced had an aperture ratio of 93% for the blue light emitting region, 28% for the green light emitting region, and 64% for the red light emitting region.
  • sample 105 of an organic EL element was produced using the following conventional method.
  • each color light emitting layer of RGB was formed by a conventionally known vapor deposition coating method.
  • an ITO layer was patterned as a first electrode on a support substrate in a strip shape.
  • the cleaning of the support substrate, the formation of the ITO layer, the patterning of the ITO layer, and the formation of the insulating film at the pattern edge of the ITO layer were performed in the same manner as in the sample 101 described above.
  • the aperture ratio was determined so that the lifetime of each color was the same, and the first electrode was formed with dimensions based on this aperture ratio.
  • the pattern of the first light emitting functional layer that emits blue light is 2.5 mm ⁇ 70 mm
  • the second light emitting functional layer that emits green light is 500 ⁇ m ⁇ 70 mm
  • the third light emitting functional layer that emits red light is 1000 ⁇ m ⁇ 70 mm.
  • the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer have the same structure as each light-emitting functional layer, and the above-described sample 101 is formed using a vapor deposition mask having openings that can be formed simultaneously.
  • the second light emitting functional layer and the third light emitting functional layer were formed by the same method.
  • a second electrode made of Al was formed on each light emitting functional layer using the same method as the formation of the third electrode of the sample 101 described above.
  • the manufactured organic EL element of Sample 105 had an aperture ratio of 58% in the blue light emitting region, an aperture ratio in the green light emitting region of 12%, and an aperture ratio in the red light emitting region of 23%.
  • a sample 106 of an organic EL element was produced using the following conventional method.
  • each color light emitting layer of RGB was formed by a method of vertically stacking on a conventionally known transparent substrate.
  • an ITO layer was patterned as a first electrode on a support substrate in a strip shape.
  • the cleaning of the support substrate, the formation of the ITO layer, the patterning of the ITO layer, and the formation of the insulating film at the pattern edge of the ITO layer were performed in the same manner as in the sample 101 described above.
  • the first light-emitting functional layer has, in order from the first electrode side, 30 nm of MoO 3 as a hole injection layer, 50 nm of ⁇ -NPD as a hole transport layer, 30 nm of a blue light-emitting layer, 30 nm of Alq3 as an electron transport layer, As an injection layer, 1 nm of LiF was formed.
  • Al was formed as a second electrode with a thickness of 10 nm on the first light emitting functional layer using an EB vapor deposition method.
  • a second light emitting functional layer that emits green light was formed on the second electrode.
  • the second light emitting functional layer has, in order from the second electrode side, 30 nm of MoO 3 as the hole injection layer, 30 nm of ⁇ -NPD as the hole transport layer, 30 nm of the green light emitting layer, 30 nm of Alq3 as the electron transport layer, As an injection layer, 1 nm of LiF was formed.
  • Al was formed as a third electrode with a thickness of 10 nm on the second light emitting functional layer using an EB vapor deposition method.
  • a third light emitting functional layer that emits red light was formed on the third electrode.
  • the third light emitting functional layer is, in order from the third electrode side, 30 nm of MoO 3 as a hole injection layer, 30 nm of ⁇ -NPD as a hole transport layer, 30 nm of a green light emitting layer, 30 nm of Alq3 as an electron transport layer, As an injection layer, 1 nm of LiF was formed.
  • Al was formed as a fourth electrode with a thickness of 150 nm on the third light emitting functional layer using an EB vapor deposition method.
  • the organic EL element of the produced sample 106 had an aperture ratio of 95% for the blue, red, and green light emitting regions.
  • the luminous efficiency of this evaluation is the result of measuring each color under the actual driving condition of 1,000 cd / m 2 in a room temperature environment.
  • the sensory evaluation of this evaluation is the result of evaluating the visibility of appearance when RGB and white which is a mixed color are displayed to 10 people.
  • the simple coloring method according to the conventional example is adopted, so that the chromaticity is good, but the lifetime is reduced because the luminance required for each light emitting layer is increased.
  • the lifetime of a blue light-emitting layer using a fluorescent material with low emission efficiency is lower than that of the organic EL elements of Samples 101 to 104.
  • the green light emitting layer is 500 ⁇ m, which is narrower than the blue light emitting layer of 2.5 mm and the red light emitting layer of 1000 ⁇ m. An unfavorable result was obtained in the sensory evaluation.
  • each light emitting functional layer since each light emitting functional layer is formed by stacking, each light emitting layer has the same area and a large aperture ratio. For this reason, although the sensory evaluation of visibility was preferable, it was confirmed that the color change, the light emission efficiency was lowered, and the life was lowered depending on the light emission efficiency of each light emitting layer.
  • the organic EL element of the sample 101 has 95, 28, and 64% aperture ratios in the blue, green, and red emission regions, and can sufficiently compensate for the difference in emission efficiency between blue, green, and red. .
  • the lifetime of each light emitting layer can be improved.
  • the aperture ratio of the blue light emitting layer is large, and the difference in light emission efficiency can be sufficiently compensated. For this reason, the lifetime of each light emitting layer can be improved and the fall of luminous efficiency can be suppressed.
  • the organic EL device using the configuration of the present invention can improve the aperture ratio of the light emitting layer with low light emission efficiency, and thus suppress the improvement of the life of the light emitting layer and the decrease of the light emission efficiency. Can do. Accordingly, it is possible to suppress a decrease in luminance of the organic EL element.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

 第1電極と、第1電極上に設けられた第1発光機能層と、第1発光機能層上に設けられた第2電極と、第2電極上に設けられた第2発光機能層と、第2発光機能層上に設けられた第3電極とを備える。そして、第1電極と第3電極とが同じ極性の電極であり、第2電極が第1電極及び第3電極と逆の極性の電極である有機エレクトロルミネッセンス素子を構成する。

Description

有機エレクトロルミネッセンス素子、及び、電子機器
 本発明は、有機エレクトロルミネッセンス素子、及び、有機エレクトロルミネッセンス素子を備える電子機器に係わる。
 有機エレクトロルミネッセンス素子(有機EL素子)は液晶表示装置に比べ視野角依存性が少ない、コントラスト比が高い、薄膜化が可能等の利点を有している。
 また、近年では、有機EL素子を利用した携帯ディスプレイや携帯背面ディスプレイ等も積極的に市場投入されている。これらの有機EL素子を利用したディスプレイは、視認性の高さから、大型テレビへの市場投入が期待され、一部投入計画が報道されるなどフラットパネルディスプレイでの市場投入に拍車がかかってきている。
 また、有機EL素子は自己発光型光源であり、面発光光源であるため、次世代照明として脚光をあびており、有機EL照明として各所で開発がなされている。
 有機EL素子は、電極間内にRGBの発各光材料を有し、RGBの発光出力を任意に調製して駆動することで、又は、有機層の厚さを含めた層設計を施すことで、発光色や発光色強度を自由に変えることが可能となる。このため、有機EL素子は、照明用途として要求される白色として、例えば、色温度2000Kや3000Kなどの電球色から、5000Kや6000Kなどの昼白色まで、自由に発光することが可能である。さらに、燐光材料を使用することで、LEDや蛍光灯と同等又はそれを超える発光効率を実現でき、薄型化照明としての実現が期待されている。
 また、ディスプレイのように複数の色を可変するため、例えば、RGB発光層を水平方向に短冊状に形成し、それぞれの発光色の強度比を変えることで色を変える照明や光源も提案されている(例えば、特許文献1参照)。
 さらに、RGBの発光層を透明基板と垂直方向にスタックすることで開口率を増やし、調色することも提案されている(例えば、特許文献2参照)。
特開2003-066868号公報 特表2008-503055号公報
 有機EL照明においては、照明用途に必要なルーメンを得るため、有機EL素子の大型化や、発光輝度を向上させる必要がある。また、ディスプレイのように、有機EL素子のRGBの発光層をファインパターンで形成すると、開口率が低減し、輝度が低下する。
 開口率の低減、及び、輝度の低下を補うために、RGBの各発光層を基板と素直方向にスタックして開口率を補正する構成では、各色の発光層の間に形成する電極を、一方の色で陽極として機能させ、他方の色で陰極として機能させる必要がある。このため、スタック構造の有機EL素子を調色する際には、各色の発光層で独立したduty駆動が必要となる。従って、各色を同時に発光することができず、有機EL素子の実駆動下での発光効率が低下してしまう。
 上述した問題の解決のため、本発明においては、輝度の向上が可能な有機エレクトロルミネッセンス素子、及び、電子機器を提供するものである。
 本発明の有機エレクトロルミネッセンス素子は、第1電極と、第1電極上に設けられた第1発光機能層と、第1発光機能層上に設けられた第2電極と、第2電極上に設けられた第2発光機能層と、第2発光機能層上に設けられた第3電極とを備える。そして、第1電極と第3電極とが同じ極性の電極であり、第2電極が第1電極及び第3電極と逆の極性の電極である。
 また、本発明の有機エレクトロルミネッセンス素子は、第1電極と、第1電極上に設けられた第1発光機能層と、第1発光機能層上に設けられた第2電極と、第2電極上に設けられた第2発光機能層と、第2発光機能層と異なる位置で、第2電極上に設けられた第3発光機能層と、第2発光機能層上及び第3発光機能層上に設けられた第3電極とを備える。そして、第1電極と第3電極とが逆の極性の電極であり、第2電極が、第1発光機能層と、第2発光機能層及び第3発光機能層とに対して逆の極性の電極となる。
 また、本発明の電子機器は、上記有機エレクトロルミネッセンス素子を備える。
 本発明の有機エレクトロルミネッセンス素子によれば、第1発光機能層と第2発光機能層との間に設けられた第2電極が、第1発光機能層及び第2発光機能層に対して、同じ極性の電極として機能する。このため、第1発光機能層と第2発光機能層とを同時に駆動することができる。従って、有機エレクトロルミネッセンス素子の輝度を向上させることができる。
 また、本発明の有機エレクトロルミネッセンス素子によれば、第1発光機能層上に、第2発光機能層と第3発光機能層とが設けられている。このため、第1発光機能層の開口率を、第2発光機能層及び第3発光機能層よりも大きく構成することができ、第1発光機能層の輝度を向上させることができる。従って、有機エレクトロルミネッセンス素子の輝度を向上させることができる。
 本発明によれば、輝度の向上が可能な有機エレクトロルミネッセンス素子及び電子機器を提供することができる。
第1実施形態の有機EL素子の概略構成を示す図である。 第1実施形態の有機EL素子の駆動波形を示す図である。 第2実施形態の有機EL素子の概略構成を示す図である。 第2実施形態の有機EL素子の駆動波形を示す図である。 第2実施形態の変形例の有機EL素子の概略構成を示す図である。 第3実施形態の有機EL素子の概略構成を示す図である。 第3実施形態の有機EL素子の駆動波形を示す図である。
 以下、本発明を実施するための最良の形態の例を説明するが、本発明は以下の例に限定されるものではない。
 なお、説明は以下の順序で行う。
1.有機エレクトロルミネッセンス素子(第1実施形態)
2.有機エレクトロルミネッセンス素子(第2実施形態、及び、変形例)
3.有機エレクトロルミネッセンス素子(第3実施形態)
〈1.有機エレクトロルミネッセンス素子(第1実施形態)〉
 本発明の有機エレクトロルミネッセンス素子(以下有機EL素子と記す)の具体的な実施の形態について説明する。
[有機エレクトロルミネッセンス素子の構成]
 図1に、第1実施形態の有機EL素子の概略構成図(断面図)を示す。
 図1に示す有機EL素子は、第1発光ユニット18、第2発光ユニット19、及び、第1発光ユニット18と第2発光ユニット19との素子分離用の隔壁となる絶縁層17を備える。また、これらの構成からなる有機EL素子が、支持基板20上に搭載されている。
 第1発光ユニット18は、第1電極14、第1発光機能層11、第2電極15、第2発光機能層12、及び、第3電極16がこの順に積層された構成である。また、第2発光ユニット19は、第1電極14、第1発光機能層11、第2電極15、第3発光機能層13、及び、第3電極16がこの順に積層された構成である。このように、2つの発光層が電極を介して積層された第1発光ユニット18、第2発光ユニット19は、互いに隔壁となる絶縁層17を介して、支持基板20上に交互に配置されている。
 第1電極14は、支持基板20上において、第1発光ユニット18及び第2発光ユニット19毎に独立して設けられている。第1電極14同士は、絶縁層17により絶縁されている。また、第1電極14は、図示しない有機EL素子の駆動部の電源回路に接続されている。
 第1発光ユニット18及び第2発光ユニット19において、第1電極14上に第1発光機能層11が設けられている。第1発光機能層11は、詳細を後述する構成であり、少なくとも1層の有機発光層を備えている。
 第1発光ユニット18及び第2発光ユニット19において、第1発光機能層11上には、第2電極15が設けられている。第2電極15は、上述の第1電極14と同様に、図示しない有機EL素子の駆動部の電源回路に接続されている。
 そして、第1発光ユニット18においては、第2電極15上に第2発光機能層12が設けられている。また、第2発光ユニット19においては、第2電極15上に第3発光機能層13が設けられている。第2発光機能層12及び第3発光機能層13は、それぞれ上述の第1発光機能層11とは異なる発光色を有する有機発光層を備える構成である。つまり、有機EL素子において、第1発光機能層11、第2発光機能層12及び第3発光機能層13は、それぞれ異なる発光層を有する構成である。
 第1発光ユニット18においては、第2発光機能層12上に、第3電極16が設けられている。同様に、第2発光ユニット19においても、第3発光機能層13上に、第3電極16が設けられている。第3電極16は、上述の第1電極14と同様に、図示しない有機EL素子の駆動部の電源回路に接続されている。
 本例の有機EL素子は、支持基板20側から発光光を取り出す構成である。このため、第1電極14、及び、第2電極15は透明電極により構成される。また、支持基板20には透明基板が用いられる。
 上述のように、第1発光ユニット18は、第1発光機能層11と、第2発光機能層12とを有している。そして、第2発光ユニット19は、第1発光機能層11と、第3発光機能層13とを有している。このため、例えば、第1発光ユニット18の、第1発光機能層11を青色(B)の発光層を有する構成とし、第2発光機能層12を緑色(G)の発光層を有する構成とする。さらに、第2発光ユニット19の、第1発光機能層11を青色(B)の発光層を有する構成とし、第3発光機能層13を赤色(R)の発光層を有する構成とする。このように、有機EL素子は、2つの発光ユニットにおいて、第1から第3の発光機能層を有することで、RGBからなる3色の発光を得ることができる。
 また、第1発光ユニット18では、第1発光機能層11が、第1電極14と第2電極15とに挟持されている。そして、第2発光機能層12が、第2電極15と第3電極16とに挟持されている。
 第2発光ユニット19では、第1発光機能層11が、第1電極14と第2電極15とに挟持されている。そして、第3発光機能層13が、第2電極15と第3電極16とに挟持されている。
 つまり、第2電極15は、第1発光機能層11と、第2電極15上に形成される第2発光機能層12及び第3発光機能層13とに対して、共通電極として構成されている。
 また、第1電極14と第3電極16とを同じ極性の電極とし、第2電極15を第1電極14及び第3電極16と逆の極性の電極とする。例えば、上述の第1電極14は、第1発光機能層11に対して、陰極として機能する。同様に、第3電極16は、本例では第2発光機能層12及び第3発光機能層13に対して、陰極として機能する。そして、第2電極15は、第1発光機能層11に対して、陽極として機能する。さらに、第2電極15は、第2電極15上に設けられる第2発光機能層12及び第3発光機能層13に対しても、陽極として機能する。
 以下、有機EL素子の各構成について説明する。
[発光機能層]
 有機EL素子は、対となる電極と、電極間に発光性を有する発光機能層を備える構成である。発光機能層の代表的な素子構成としては、以下の構成を上げることができるが、これらに限定されるものではない。
(1)発光層
(2)発光層/電子輸送層
(3)正孔輸送層/発光層
(4)正孔輸送層/発光層/電子輸送層
(5)正孔輸送層/発光層/電子輸送層/電子注入層
(6)正孔注入層/正孔輸送層/発光層/電子輸送層
(7)正孔注入層/正孔輸送層/(電子阻止層/)発光層/(正孔阻止層/)電子輸送層/電子注入層
 上記の中で(7)の構成が好ましく用いられるが、これに限定されるものではない。
 上記構成において、発光層は、単層又は複数層で構成される。発光層が複数の場合は、各発光層の間に非発光性の中間層を設けてもよい。
 また、必要に応じて、発光層と陰極との間に正孔阻止層(正孔障壁層)や電子注入層(陰極バッファー層)等を設けてもよく、また、発光層と陽極との間に電子阻止層(電子障壁層)や正孔注入層(陽極バッファー層)等を設けてもよい。
 電子輸送層は、電子を輸送する機能を有する層である。電子輸送層には、広い意味で電子注入層、及び、正孔阻止層も含まれる。また、電子輸送層は、複数層で構成されていてもよい。
 正孔輸送層は、正孔を輸送する機能を有する層である。正孔輸送層には、広い意味で正孔注入層、及び、電子阻止層も含まれる。また、正孔輸送層は、複数層で構成されていてもよい。
[発光層]
 有機EL素子に用いる発光層は、電極又は隣接層から注入される電子と正孔とが再結合し、励起子を経由して発光する場を提供する層である。発光層において、発光する部分は発光層の層内であっても、発光層と隣接層との界面であってもよい。
 発光層の厚さの総和は、特に制限されず、形成する膜の均質性、発光時に必要とされる電圧、及び、駆動電流に対する発光色の安定性等の観点から決められる。発光層の厚さの総和は、例えば、2nm~5μmの範囲に調整することが好ましく、より好ましくは2nm~500nmの範囲に調整され、更に好ましくは5nm~200nmの範囲に調整される。また、発光層の個々の膜厚としては、2nm~1μmの範囲に調整することが好ましく、より好ましくは2nm~200nmnmの範囲に調整され、更に好ましくは3nm~150nmの範囲に調整される。
 発光層は、発光ドーパント(発光性ドーパント化合物、ドーパント化合物、単にドーパントともいう)と、ホスト化合物(マトリックス材料、発光ホスト化合物、単にホストともいう)とを含有することが好ましい。
(1.発光ドーパント)
 発光層に用いられる発光ドーパントとしては、蛍光発光性ドーパント(蛍光ドーパント、蛍光性化合物ともいう)、及び、リン光発光性ドーパント(リン光ドーパント、リン光性化合物ともいう)が好ましく用いられる。これらのうち、少なくとも1層の発光層がリン光発光ドーパントを含有することが好ましい。
 発光層中の発光ドーパントの濃度については、使用される特定のドーパント及びデバイスの必要条件に基づいて、任意に決定することができる。光ドーパントの濃度は、発光層の膜厚方向に対し、均一な濃度で含有されていてもよく、また任意の濃度分布を有していてもよい。
 また、発光層は、複数種の発光ドーパントが含まれていてもよい。例えば、構造の異なるドーパント同士の組み合わせや、蛍光発光性ドーパントとリン光発光性ドーパントとを組み合わせて用いてもよい。これにより、任意の発光色を得ることができる。
 有機EL素子が発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS-2000(コニカミノルタセンシング(株)製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
 有機EL素子は、1層又は複数層の発光層が、発光色の異なる複数の発光ドーパントを含有し、白色発光を示すことも好ましい。白色を示す発光ドーパントの組み合わせについては特に限定はないが、例えば青と橙との組み合わせや、青と緑と赤との組み合わせ等が挙げられる。
 有機EL素子における白色としては、2度視野角正面輝度を前述の方法により測定した際に、1000cd/mでのCIE1931表色系における色度がx=0.30±0.09、y=0.30±0.08の領域内にあることが好ましい。
(1-1.リン光発光性ドーパント)
 リン光発光性ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、25℃においてリン光量子収率が0.01以上の化合物である。発光層に用いるリン光発光性ドーパントにおいて、好ましいリン光量子収率は0.1以上である。
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できる。発光層に用いるリン光発光性ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。
 リン光発光性ドーパントの発光は、原理として二種挙げられる。
 一つは、キャリアが輸送されるホスト化合物上で、キャリアの再結合によるホスト化合物の励起状態が生成される。このエネルギーをリン光発光性ドーパントに移動させることでリン光発光性ドーパントからの発光を得るというエネルギー移動型である。もう一つは、リン光発光性ドーパントがキャリアトラップとなり、リン光発光性ドーパント上でキャリアの再結合が起こり、リン光発光性ドーパントからの発光が得られるというキャリアトラップ型である。いずれの場合においても、リン光発光性ドーパントの励起状態のエネルギーは、ホスト化合物の励起状態のエネルギーよりも低いことが条件となる。
 リン光発光性ドーパントは、有機EL素子の発光層に使用される公知の材料から適宜選択して用いることができる。
 公知のリン光発光性ドーパントの具体例としては、以下の文献に記載されている化合物等が挙げられる。
 Nature 395,151 (1998)、Appl. Phys. Lett. 78, 1622 (2001)、Adv. Mater. 19, 739 (2007)、Chem. Mater. 17, 3532 (2005)、Adv. Mater. 17, 1059 (2005)、国際公開第2009100991号、国際公開第2008101842号、国際公開第2003040257号、米国特許公開第2006835469号、米国特許公開第20060202194号、米国特許公開第20070087321号、米国特許公開第20050244673号
 Inorg. Chem. 40, 1704 (2001)、Chem. Mater. 16, 2480 (2004)、Adv. Mater. 16, 2003 (2004)、Angew. Chem. lnt. Ed. 2006, 45, 7800、Appl. Phys. Lett. 86, 153505 (2005)、Chem. Lett. 34, 592 (2005)、Chem. Commun. 2906 (2005)、Inorg. Chem. 42, 1248 (2003)、国際公開第2009050290号、国際公開第2002015645号、国際公開第2009000673号、米国特許公開第20020034656号、米国特許第7332232号、米国特許公開第20090108737号、米国特許公開第20090039776号、米国特許第6921915号、米国特許第6687266号、米国特許公開第20070190359号、米国特許公開第20060008670号、米国特許公開第20090165846号、米国特許公開第20080015355号、米国特許第7250226号、米国特許第7396598号、米国特許公開第20060263635号、米国特許公開第20030138657号、米国特許公開第20030152802号、米国特許第7090928号
 Angew. Chem. lnt. Ed. 47, 1 (2008)、Chem. Mater. 18, 5119 (2006)、Inorg. Chem. 46, 4308 (2007)、Organometallics 23, 3745 (2004)、Appl. Phys. Lett. 74, 1361 (1999)、国際公開第2002002714号、国際公開第2006009024号、国際公開第2006056418号、国際公開第2005019373号、国際公開第2005123873号、国際公開第2005123873号、国際公開第2007004380号、国際公開第2006082742号、米国特許公開第20060251923号、米国特許公開第20050260441号、米国特許第7393599号、米国特許第7534505号、米国特許第7445855号、米国特許公開第20070190359号、米国特許公開第20080297033号、米国特許第7338722号、米国特許公開第20020134984号、米国特許第7279704号、米国特許公開第2006098120号、米国特許公開第2006103874号
 国際公開第2005076380号、国際公開第2010032663号、国際公開第第2008140115号、国際公開第2007052431号、国際公開第2011134013号、国際公開第2011157339号、国際公開第2010086089号、国際公開第2009113646号、国際公開第2012020327号、国際公開第2011051404号、国際公開第2011004639号、国際公開第2011073149号、米国特許公開第2012228583号、米国特許公開第2012212126号、特開2012-069737号公報、特開2012-195554号公報、特開2009-114086号公報、特開2003-81988号公報、特開2002-302671号公報、特開2002-363552号公報
 中でも、好ましいリン光発光性ドーパントとしては、Irを中心金属に有する有機金属錯体が挙げられる。さらに好ましくは、金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合の少なくとも1つの配位様式を含む錯体が好ましい。
 以下、発光層に適用可能な公知のリン光発光性ドーパントの具体例を挙げるが、リン光発光性ドーパントはこれらに限定されず、その他の化合物を適用することもできる。
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000005
 
(1-2.蛍光発光性ドーパント)
 蛍光発光性ドーパントは、励起一重項からの発光が可能な化合物であり、励起一重項からの発光が観測される限り特に限定されない。
 蛍光発光性ドーパントしては、例えば、アントラセン誘導体、ピレン誘導体、クリセン誘導体、フルオランテン誘導体、ペリレン誘導体、フルオレン誘導体、アリールアセチレン誘導体、スチリルアリーレン誘導体、スチリルアミン誘導体、アリールアミン誘導体、ホウ素錯体、クマリン誘導体、ピラン誘導体、シアニン誘導体、クロコニウム誘導体、スクアリウム誘導体、オキソベンツアントラセン誘導体、フルオレセイン誘導体、ローダミン誘導体、ピリリウム誘導体、ペリレン誘導体、ポリチオフェン誘導体、又は希土類錯体系化合物等が挙げられる。
 また、蛍光発光性ドーパントして、遅延蛍光を利用した発光ドーパント等を用いてもよい。
 遅延蛍光を利用した発光ドーパントの具体例としては、例えば、国際公開第2011/156793号公報、特開2011-213643号公報、特開2010-93181号公報等に記載の化合物が挙げられる。
(2.ホスト化合物)
 ホスト化合物は、発光層において主に電荷の注入及び輸送を担う化合物であり、有機EL素子においてそれ自体の発光は実質的に観測されない。
 好ましくは室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物であり、さらに好ましくは、リン光量子収率が0.01未満の化合物である。また、発光層に含有される化合物の内で、その層中での質量比が20%以上であることが好ましい。
 また、ホスト化合物の励起状態エネルギーは、同一層内に含有される発光ドーパントの励起状態エネルギーよりも高いことが好ましい。
 ホスト化合物は、単独で用いてもよく、または複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子の高効率化が可能となる。
 発光層に用いるホスト化合物としては、特に制限はなく、従来有機EL素子で用いられる化合物を用いることができる。例えば、低分子化合物や、繰り返し単位を有する高分子化合物でもよく、或いは、ビニル基やエポキシ基のような反応性基を有する化合物でもよい。
 公知のホスト化合物としては、正孔輸送能または電子輸送能を有しつつ、発光の長波長化を防ぎ、さらに、有機EL素子を高温駆動時や素子駆動中の発熱に対する安定性の観点から、高いガラス転移温度(Tg)を有することが好ましい。ホスト化合物としては、Tgが90℃以上であることが好ましく、より好ましくは120℃以上である。
 ここで、ガラス転移点(Tg)とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS-K-7121に準拠した方法により求められる値である。
 有機EL素子に用いられる、公知のホスト化合物の具体例としては、以下の文献に記載の化合物等が挙げられるが、これらに限定されない。
 特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報、米国特許公開第20030175553号、米国特許公開第20060280965号、米国特許公開第20050112407号、米国特許公開第20090017330号、米国特許公開第20090030202号、米国特許公開第20050238919号、国際公開第2001039234号、国際公開第2009021126号、国際公開第2008056746号、国際公開第2004093207号、国際公開第2005089025号、国際公開第2007063796号、国際公開第2007063754号、国際公開第2004107822号、国際公開第2005030900号、国際公開第2006114966号、国際公開第2009086028号、国際公開第2009003898号、国際公開第2012023947号公報、特開2008-074939号公報、特開2007-254297号公報、EP2034538等である。
[電子輸送層]
 有機EL素子に用いる電子輸送層とは、電子を輸送する機能を有する材料からなり、陰極より注入された電子を発光層に伝達する機能を有する。
 電子輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。
 電子輸送層の総厚については特に制限はないが、通常は2nm~5μmの範囲であり、より好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。
 また、有機EL素子においては、発光層で生じた光を電極から取り出す際、発光層から直接取り出される光と、光を取り出す電極と対極に位置する電極で反射されてから取り出される光とが、干渉を起こすことが知られている。光が電極で反射される場合は、電子輸送層の総膜厚を数nm~数μmの間で適宜調整することにより、この干渉効果を効率的に利用することが可能である。
 一方で、電子輸送層の膜厚を厚くすると電圧が上昇しやすくなるため、特に膜厚が厚い場合においては、電子輸送層の電子移動度は10-5cm/Vs以上であることが好ましい。
 電子輸送層に用いられる材料(以下、電子輸送材料という)としては、電子の注入性若しくは輸送性、又は、正孔の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。
 例えば、含窒素芳香族複素環誘導体、芳香族炭化水素環誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、シロール誘導体等が挙げられる。
 上記含窒素芳香族複素環誘導体としては、カルバゾール誘導体、アザカルバゾール誘導体(カルバゾール環を構成する炭素原子の1つ以上が窒素原子に置換)、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピリダジン誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、フェナントロリン誘導体、アザトリフェニレン誘導体、オキサゾール誘導体、チアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体等が挙げられる。
 芳香族炭化水素環誘導体としては、ナフタレン誘導体、アントラセン誘導体、トリフェニレン等が挙げられる。
 また、配位子にキノリノール骨格やジベンゾキノリノール骨格を有する金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq3)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及び、これらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。
 その他、メタルフリー若しくはメタルフタロシアニン、又は、それらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。
 また、これらの材料を高分子鎖に導入した高分子材料、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 有機EL素子では、ゲスト材料として電子輸送層にドープ材をドープして、n性の高い(電子リッチ)電子輸送層を形成してもよい。ドープ材としては、金属錯体及びハロゲン化金属等の金属化合物や、その他のn型ドーパントが挙げられる。このような構成の電子輸送層の具体例としては、例えば、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等の文献に記載されたものが挙げられる。
 有機EL素子に用いられる、公知の好ましい電子輸送材料の具体例としては、以下の文献に記載の化合物等が挙げられるが、これらに限定されない。
 米国特許第6528187号、米国特許第7230107号、米国特許公開第20050025993号、米国特許公開第20040036077号、米国特許公開第20090115316号、米国特許公開第20090101870号、米国特許公開第20090179554号、国際公開第2003060956号、国際公開第2008132085号、Appl. Phys. Lett. 75, 4 (1999)、Appl. Phys. Lett. 79, 449 (2001)、Appl. Phys. Lett. 81, 162 (2002)、Appl. Phys. Lett. 81, 162 (2002)、Appl. Phys. Lett. 79, 156 (2001)、米国特許第7964293号、米国特許公開第2009030202号、国際公開第2004080975号、国際公開第2004063159号、国際公開第2005085387号、国際公開第2006067931号、国際公開第2007086552号、国際公開第2008114690号、国際公開第2009069442号、国際公開第2009066779号、国際公開第2009054253号、国際公開第2011086935号、国際公開第2010150593号、国際公開第2010047707号、EP2311826号、特開2010-251675号公報、特開2009-209133号公報、特開2009-124114号公報、特開2008-277810号公報、特開2006-156445号公報、特開2005-340122号公報、特開2003-45662号公報、特開2003-31367号公報、特開2003-282270号公報、国際公開第2012115034号等
 より好ましい電子輸送材料としては、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、トリアジン誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、カルバゾール誘導体、アザカルバゾール誘導体、ベンズイミダゾール誘導体が挙げられる。
[正孔阻止層]
 正孔阻止層は、広い意味では電子輸送層の機能を有する層である。好ましくは、電子を輸送する機能を有しつつ、正孔を輸送する能力が小さい材料からなる。電子を輸送しつつ正孔を阻止することで、電子と正孔の再結合確率を向上させることができる。
 また、上述の電子輸送層の構成を、必要に応じて正孔阻止層として用いることができる。
 有機EL素子に設ける正孔阻止層は、発光層の陰極側に隣接して設けられることが好ましい。
 有機EL素子において、正孔阻止層の厚さは、好ましくは3~100nmの範囲であり、さらに好ましくは5~30nmの範囲である。
 正孔阻止層に用いられる材料としては、上述の電子輸送層に用いられる材料が好ましく用いられ、また、上述のホスト化合物として用いられる材料も正孔阻止層に好ましく用いられる。
[電子注入層]
 電子注入層(「陰極バッファー層」ともいう)は、駆動電圧低下や発光輝度向上のために陰極と発光層との間に設けられる層である。電子注入層の一例は、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に記載されている。
 有機EL素子において、電子注入層は必要に応じて設けられ、上述のように陰極と発光層との間、又は、陰極と電子輸送層との間に設けられる。
 電子注入層はごく薄い膜であることが好ましく、素材にもよるがその膜厚は0.1nm~5nmの範囲が好ましい。また構成材料が断続的に存在する不均一な膜であってもよい。
 電子注入層は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されている。電子注入層に好ましく用いられる材料の具体例としては、ストロンチウムやアルミニウム等に代表される金属、フッ化リチウム、フッ化ナトリウム、フッ化カリウム等に代表されるアルカリ金属化合物、フッ化マグネシウム、フッ化カルシウム等に代表されるアルカリ土類金属化合物、酸化アルミニウムに代表される金属酸化物、リチウム8-ヒドロキシキノレート(Liq)等に代表される金属錯体等が挙げられる。また、上述の電子輸送材料を用いることも可能である。
 また、上記の電子注入層に用いられる材料は単独で用いてもよく、複数種を併用して用いてもよい。
[正孔輸送層]
 正孔輸送層は、正孔を輸送する機能を有する材料からなる。正孔輸送層は、陽極より注入された正孔を発光層に伝達する機能を有する層である。
 有機EL素子において、正孔輸送層の総膜厚に特に制限はないが、通常は5nm~5μmの範囲であり、より好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。
 正孔輸送層に用いられる材料(以下、正孔輸送材料という)は、正孔の注入性または輸送性、電子の障壁性のいずれかを有していればよい。正孔輸送材料は、従来公知の化合物の中から任意のものを選択して用いることができる。正孔輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。
 正孔輸送材料は、例えば、ポルフィリン誘導体、フタロシアニン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリアリールアルカン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、イソインドール誘導体、アントラセンやナフタレン等のアセン系誘導体、フルオレン誘導体、フルオレノン誘導体、ポリビニルカルバゾール、芳香族アミンを主鎖若しくは側鎖に導入した高分子材料又はオリゴマー、ポリシラン、導電性ポリマー又はオリゴマー(例えばPEDOT:PSS、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。
 トリアリールアミン誘導体としては、α-NPDに代表されるベンジジン型や、MTDATAに代表されるスターバースト型、トリアリールアミン連結コア部にフルオレンやアントラセンを有する化合物等が挙げられる。
 また、特表2003-519432号公報や特開2006-135145号公報等に記載されているヘキサアザトリフェニレン誘導体も正孔輸送材料として用いることができる。
 さらに、不純物をドープしたp性の高い正孔輸送層を用いることもできる。例えば、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載された構成を正孔輸送層に適用することもできる。
 また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、所謂p型正孔輸送材料やp型-Si、p型-SiC等の無機化合物を用いることもできる。さらにIr(ppy)に代表されるような中心金属にIrやPtを有するオルトメタル化有機金属錯体も好ましく用いられる。
 正孔輸送材料としては、上記のものを使用することができるが、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、アザトリフェニレン誘導体、有機金属錯体、芳香族アミンを主鎖若しくは側鎖に導入した高分子材料又はオリゴマー等が好ましく用いられる。
 有機EL素子に用いられる正孔輸送材料の具体例としては、上記で挙げた文献の他、以下の文献に記載の化合物等が挙げられるが、これらに限定されない。
 Appl. Phys. Lett. 69, 2160 (1996)、J. Lμmin. 72-74, 985 (1997)、Appl. Phys. Lett. 78, 673 (2001)、Appl. Phys. Lett. 90, 183503 (2007)、Appl. Phys. Lett. 90, 183503 (2007)、Appl. Phys. Lett. 51, 913 (1987)、Synth. Met. 87, 171 (1997)、Synth. Met. 91, 209 (1997)、Synth. Met. 111,421 (2000)、SID Symposiμm Digest, 37, 923 (2006)、J. Mater. Chem. 3, 319 (1993)、Adv. Mater. 6, 677 (1994)、Chem. Mater. 15,3148 (2003)、米国特許公開第20030162053号、米国特許公開第20020158242号、米国特許公開第20060240279号、米国特許公開第20080220265号、米国特許第5061569号、国際公開第2007002683号、国際公開第2009018009号、EP650955、米国特許公開第20080124572号、米国特許公開第20070278938号、米国特許公開第20080106190号、米国特許公開第20080018221号、国際公開第2012115034号、特表2003-519432号公報、特開2006-135145号公報、米国特許出願番号13/585981号
[電子阻止層]
 電子阻止層は、広い意味では正孔輸送層の機能を有する層である。好ましくは、正孔を輸送する機能を有しつつ電子を輸送する能力が小さい材料からなる。電子阻止層は、正孔を輸送しつつ電子を阻止することで、電子と正孔の再結合確率を向上させることができる。
 また、上述の正孔輸送層の構成を必要に応じて、有機EL素子の電子阻止層として用いることができる。有機EL素子に設ける電子阻止層は、発光層の陽極側に隣接して設けられることが好ましい。
 電子阻止層の厚さとしては、好ましくは3~100nmの範囲であり、更に好ましくは5~30nmの範囲である。
 電子阻止層に用いられる材料としては、上述の正孔輸送層に用いられる材料を好ましく用いることができる。また、上述のホスト化合物として用いられる材料も、電子阻止層として好ましく用いることができる。
[正孔注入層]
 正孔注入層(「陽極バッファー層」ともいう)は、駆動電圧低下や発光輝度向上のために陽極と発光層との間に設けられる層である。正孔注入層の一例は、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に記載されている。
 正孔注入層は必要に応じて設けられ、上述のように陽極と発光層との間、又は、陽極と正孔輸送層との間に設けられる。
 正孔注入層は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されている。
 正孔注入層に用いられる材料は、例えば上述の正孔輸送層に用いられる材料等が挙げられる。中でも、銅フタロシアニンに代表されるフタロシアニン誘導体、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体、酸化バナジウムに代表される金属酸化物、アモルファスカーボン、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子、トリス(2-フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体、トリアリールアミン誘導体等が好ましい。
 上述の正孔注入層に用いられる材料は単独で用いてもよく、また複数種を併用して用いてもよい。
[含有物]
 有機EL素子を構成する発光機能層は、更に他の含有物を含んでもよい。
 含有物としては、例えば臭素、ヨウ素及び塩素等のハロゲン元素やハロゲン化化合物、Pd、Ca、Na等のアルカリ金属やアルカリ土類金属、遷移金属の化合物や錯体、塩等が挙げられる。
 含有物の含有量は、任意に決定することができるが、含有される層の全質量%に対して1000ppm以下であることが好ましく、より好ましくは500ppm以下であり、さらに好ましくは50ppm以下である。
 ただし、電子や正孔の輸送性を向上させる目的や、励起子のエネルギー移動を有利にするための目的などによってはこの範囲内ではない。
[発光機能層の形成方法]
 有機EL素子の発光機能層(正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、電子注入層等)の形成方法について説明する。
 発光機能層の形成方法は、特に制限はなく、従来公知の例えば真空蒸着法、湿式法(ウェットプロセス)等により形成することができる。
 湿式法としては、スピンコート法、キャスト法、インクジェット法、印刷法、ダイコート法、ブレードコート法、ロールコート法、スプレーコート法、カーテンコート法、LB法(ラングミュア-ブロジェット法)等がある。均質な薄膜が得られやすく、且つ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法等のロール・ツー・ロール方式に適性の高い方法が好ましい。
 湿式法において、発光機能層の材料を溶解又は分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。
 また、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。
 発光機能層を構成する各層の形成に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50℃~450℃、真空度10-6Pa~10-2Pa、蒸着速度0.01nm/秒~50nm/秒、基板温度-50℃~300℃、膜厚0.1nm~5μm、好ましくは5nm~200nmの範囲で適宜選ぶことが望ましい。
 有機EL素子の形成は、一回の真空引きで一貫して発光機能層から陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施しても構わない。その際は作業を乾燥不活性ガス雰囲気下で行うことが好ましい。
 また、層毎に異なる形成方法を適用してもよい。
[陽極]
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上、好ましくは4.3eV以上)金属、合金、電気伝導性化合物、及び、これらの混合物からなる電極物質が用いられる。このような電極物質の具体例としては、AuやAg等の金属及びこれらの合金、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等の非晶質で透明導電膜を作製可能な材料を用いてもよい。
 陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成し、フォトリソグラフィー法で所望の形状のパターンを形成する。或いは、パターン精度をあまり必要としない(100μm以上程度)場合は、上記電極物質を蒸着法又はスパッタリング法で形成する際に、所望の形状のマスクを介してパターン形成してもよい。
 有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。
 陽極側から発光光を取り出す場合には、透過率を10%より大きくすることが望ましい。また、陽極としてのシート抵抗は数百Ω/sq.以下が好ましい。また、陽極の厚さは、材料にもよるが、通常10nm~1μm、好ましくは10nm~200nmの範囲で選ばれる。
[陰極]
 陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物、及び、これらの混合物からなる電極物質が用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、アルミニウム、希土類金属等が挙げられる。
 これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属と、この電子注入性金属よりも仕事関数の値が大きく安定な第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
 陰極は、上記電極物質を蒸着やスパッタリング等の方法を用いて、作製することができる。また、陰極のシート抵抗は、数百Ω/sq.以下が好ましい。また、陰極の厚さは通常10nm~5μm、好ましくは50nm~200nmの範囲で選ばれる。
 なお、発光した光を透過させるため、有機EL素子の電極の一方が透明又は半透明であれば、発光輝度が向上し好都合である。
 また、陰極に上記金属を1nm~20nmの膜厚で作製した後に、陽極の説明で挙げる導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができる。これを応用することで、陽極と陰極の両方が透過性を有する素子を作製することができる。
[支持基板]
 有機EL素子に用いることができる支持基板20(以下、基体、基板、基材、支持体等とも言う)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板20側から光を取り出す場合には、支持基板20は透明であることが好ましい。好ましく用いられる透明な支持基板20としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板20は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。
 樹脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド被膜等によるバリア膜が形成されていてもよい。バリア膜は、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m・24h)以下のバリア性フィルムであることが好ましい。更には、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、10-3ml/(m・24h・atm)以下、水蒸気透過度が、10-5g/(m・24h)以下の高バリア性フィルムであることが好ましい。
 バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよい。例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に、バリア膜の脆弱性を改良するために、これら無機層と有機材料からなる層との積層構造を持たせることがより好ましい。無機層と発光機能層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
 バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ-イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。例えば、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが好ましい。
 不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
[封止]
 有機EL素子は、封止部を備えていてもよい。
 有機ELは少ない電力で良好な発光をするものの、水分に弱く、水分吸水により非発光部ができてしまうため、封止部により封止することが好ましい。
 有機EL素子の封止に用いられる封止手段としては、例えば、封止部材と、電極、支持基板とを接着剤で接着する方法を挙げることができる。封止部材としては、有機EL素子の表示領域を覆うように配置されていればよく、凹板状でも、平板状でもよい。また、透明性、電気絶縁性は特に限定されない。
 具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。
 ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。
 ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。
 金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウムおよびタンタルからなる群から選ばれる一種以上の金属または合金からなるものが挙げられる。
 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
 有機EL素子の薄膜化のためには、ポリマーフィルム、金属フィルムを使用することが好ましい。さらに、ポリマーフィルムはJIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m/24h)以下、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度(90±2)%)が、1×10-3g/(m/24h)以下であることが好ましい。
 接着剤としては、例えば、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化型及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
 なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃以下までで接着硬化できるものが好ましい。また、接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
 また、発光機能層を挟み支持基板と対向する側の電極上に、この電極と発光機能層とを被覆して支持基板と接する形で、無機物や有機物の層を形成することで封止膜とすることもできる。この場合、封止膜を形成する材料としては、水分や酸素等素子等の浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。
 さらに、封止膜の脆弱性を改良するために、上述のバリア膜と同様に、無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ-イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。
 封止部材と有機EL素子の表示領域との間隙には、窒素、アルゴン等の不活性気体による気相、又は、フッ化炭化水素、シリコンオイルのような不活性液体による液相を注入することが好ましい。また、封止部材と有機EL素子の表示領域との間隙を、真空とすることも可能である。
 さらに、封止部材と有機EL素子の表示領域との間隙の内部に、吸湿性化合物を封入することもできる。
 吸湿性化合物としては、例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等の金属酸化物、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等の硫酸塩、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等の金属ハロゲン化物、過塩素酸バリウム、及び、過塩素酸マグネシウム等の過塩素酸類等が挙げられる。硫酸塩、金属ハロゲン化物及び過塩素酸類としては無水塩が好適に用いられる。
[保護膜、保護板]
 有機EL素子を封止する封止膜又は封止用フィルムの外側には、素子の機械的強度を高めるために、保護膜又は保護板を設けてもよい。特に、封止膜により有機EL素子の封止が行われている場合には、機械的強度が必ずしも高くないため、保護膜又は保護板を設けることが好ましい。保護膜又は保護板として使用することが可能な材料としては、例えば、上述の封止部材と同様に、ガラス板、ポリマー板・フィルム、金属板・フィルム等を挙げることができる。保護膜又は保護板としては、軽量化及び薄膜化が可能なポリマーフィルムを用いることが好ましい。
[用途]
 有機EL素子は、表示デバイス、ディスプレイ、各種発光光源などの電子機器に適用することができる。
 発光光源としては、例えば、家庭用照明や車内照明等の照明装置、時計や液晶用バックライト、看板広告、信号機、光記憶媒体等の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではない。特に、液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
 有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよく、電極と発光層をパターニングしてもよく、又は、素子全層をパターニングしてもよい。素子の作製においては、従来公知の方法を用いることができる。
[駆動方法]
 上述の有機EL素子では、第1発光ユニット18は、第1発光機能層11が、第1電極14と第2電極15とに挟持されている。そして、第2発光機能層12が、第2電極15と第3電極16とに挟持されている。また、第2発光ユニット19は、第1発光機能層11が、第1電極14と第2電極15とに挟持されている。そして、第3発光機能層13が、第2電極15と第3電極16とに挟持されている。
 つまり、第1発光ユニット18及び第2発光ユニット19において、第2電極15が、第1発光機能層11と、第2発光機能層12又は第3発光機能層13との共通の電極として構成されている。
 このため、例えば、第2電極15を第1発光機能層11、第2発光機能層12及び第3発光機能層13に共通の陰極として機能させることができる。そして、第1電極14及び第3電極16を、第1発光機能層11、又は、第2発光機能層12、第3発光機能層13の陽極として機能させることができる。
 このような構成の有機EL素子の駆動波形を図2に示す。
 図2に示すように、第1発光ユニット18では、第1発光機能層11と第2発光機能層12とを同時に発光させることができる。また、第2発光ユニット19では、第1発光機能層11と第3発光機能層13とを同時に発光させることができる。
 このため、有機EL素子の発光効率を向上させることができる。
 さらに、第1発光ユニット18と第2発光ユニット19とは、duty駆動させることもできる。このため、第2発光機能層12と第3発光機能層13とは、別々に発光を制御することができる。従って、有機EL素子の任意の調色も可能となる。
 上記構成の有機EL素子は、第1発光ユニット18と第2発光ユニット19とに共通の第1発光機能層11を、発光効率の劣る発光層で構成し、第2発光機能層12と第3発光機能層13を第1発光機能層11よりも発光効率の高い発光層で構成することが好ましい。
 第1発光ユニット18及び第2発光ユニット19のいずかを駆動した際にも、第1発光ユニット18と第2発光ユニット19とに共通の第1発光機能層11を発光させることができる。このため、2層以上の発光機能層を同時に発光させることができ、有機EL素子の発光効率が向上する。
 さらに、第2発光機能層12と第3発光機能層13とは、それぞれの発光効率に応じて、第1発光ユニット18と第2発光ユニット19とをduty駆動させることもできる。
 このため、有機EL素子において、任意の調色が可能となる。
 また、上記構成の有機EL素子は、第1発光ユニット18と第2発光ユニット19とを同時に発光することもできる。つまり、2つの第1発光機能層11と、第2発光機能層12及び第3発光機能層13とを、同時に発光させることができる。この場合には、有機EL素子の各色の発光層をduty駆動させている場合よりも、発光効率が向上する。
 さらに、上記構成の有機EL素子は、第2電極15が共通であっても、第1発光機能層11、第2発光機能層12、又は、第3発光機能層13を単独で駆動することが可能である。このため、任意に各発光機能層をduty駆動させることによる、より精密な調色が可能となる。
 また、上記構成の有機EL素子では、上述の第1発光ユニット18と第2発光ユニット19とをduty駆動させる方法、第1発光ユニット18と第2発光ユニット19とを同時に発光させる方法、及び、各発光機能層をduty駆動させる方法等、任意の駆動方法を組み合わせることにより、精密な調色と発光効率の向上との両立が可能な有機EL素子を構成することができる。
[効果]
 上記構成の有機EL素子では、発光効率の低い発光層を第1発光機能層11に用いることにより、発光効率の低い発光層の面積を増加させることができる。よって、発光効率の高い発光層の開口率を低減することなく、発光効率の低い発光層の面積を大きくすることができる。この結果、有機EL素子の発光効率や輝度を向上させることができる。
 さらに、第1発光機能層11と第2発光機能層12又は第3発光機能層13との発光色の組み合わせを任意に選択することにより、さらに発光効率の低い発光層の面積の増加や、開口率を向上させることができる。
 このため、例えば、赤色発光及び緑色発光は、高い発光効率を得るために燐光材料を使用し、青色は色純度を得るために蛍光材料を使用した場合でも、第1発光機能層11に青色の発光層を設け、第2発光機能層12又は第3発光機能層13に赤色や緑色の発光層を設けることで、青色の発光層の面積比を、赤色や緑色の発光層に比べ大きく形成することができる。
 青色の発光層の面積を大幅に増大することで寿命を延ばすことができるため、各発光層の寿命バランスを調整することができる。さらに、青色の発光層の面積を大幅に増大しても、緑や赤の発光層の面積を縮小する必要がないため、開口率の低減や、色発光時の輝度傾斜を抑制することができる。
 また、第1発光ユニット18と第2発光ユニット19との面積を調整することにより、第2発光機能層12と第3発光機能層13との輝度の調整が可能となる。
 この場合にも、第1発光ユニット18と第2発光ユニット19との面積の合計が第1発光機能層11の合計の面積となるため、第1発光機能層11の輝度が向上する。また、発光効率に応じて面積を変えることにより、第1発光機能層11、第2発光機能層12、及び、第3発光機能層13の寿命を調整することができる。
 上述の有機EL素子の構成によれば、他の発光層の発光領域を狭めずに任意の発光層の開口率を向上することができるため、視認性を損なわずに発光効率の向上が可能となる。従って、有機EL素子の表示品質の向上が可能となる。
 なお、有機EL素子において、各色の発光機能層の積層順や、電極の極性等は、上述の実施形態に限られず、他の構成とすることも可能である。発光機能層が共通電極を介して積層されていればよい。積層された発光機能層に対して共通電極が陰極又は陽極として機能し、共通電極以外の電極が、それぞれ積層された発光機能層に対して共通電極と逆の極性の電極として機能すればよい。発光機能層の積層数や、発光機能層の面積、発光ユニットの数等については、特に限定されない。
 また、上述の実施形態では、第1~3発光機能層において、それぞれ異なる発光色の発光層を備える構成としているが、これに限られず、第1~3発光機能層について、同様の構成の発光機能層としてもよく、同じ発光色の発光機能層を積層する構成や、第1~3発光機能層以外の発光機能層を、発光ユニット内に含む構成としてもよい。発光機能層に適用される発光層の構成や、色調等の組み合わせについても特に限定されず、任意の構成とすることができる。
 さらに、上述の実施形態では、図1において、第1電極から第3電極までの各層が、第1発光ユニットと第2発光ユニットとで分離された構成を示しているが、これらの各層は、有機EL素子として機能する限り、第1発光ユニットと第2発光ユニットとで共通の構成となっていてもよい。例えば、第1電極を第1発光ユニットと第2発光ユニットとで共通の構成としてもよい。また、例えば、第1発光機能層を構成する各層、特に、電子輸送層や正孔輸送層等を第1発光ユニットと第2発光ユニットとで共通の構成としてもよい。
〈2.有機エレクトロルミネッセンス素子(第2実施形態、及び、変形例)〉
 次に、有機エレクトロルミネッセンス素子(有機EL素子)の第2実施形態について説明する。なお、第2実施形態の有機EL素子は、各発光機能層と電極との積層構成が異なることを除き、上述の第1実施形態と同様の構成である。このため、上述の第1実施形態と同様の構成については、説明を省略する。
[有機エレクトロルミネッセンス素子の構成]
 図3に、第2実施形態の有機EL素子の概略構成図(断面図)を示す。
 図3に示す有機EL素子は、第1電極34、第1発光機能層31、第2電極35、第2発光機能層32、第3発光機能層33、及び、第3電極36からなる発光ユニット39を備える。また、これらの構成からなる発光ユニット39が、支持基板20上に搭載されている。さらに、発光ユニット39の発光領域を囲む絶縁層37が設けられている。
 発光ユニット39において、第1電極34は、支持基板20上に設けられている。また、発光ユニット39において、第1電極34は、発光ユニット39の発光領域の所定の領域内の全域に渡って連続して設けられている。第1電極34は、図示しない有機EL素子の駆動部の電源回路に接続されている。
 第1電極34上には、第1発光機能層31が設けられている。第1発光機能層31は、第1電極34と同様に発光ユニット39の発光領域の所定の領域内の全域に渡って連続して設けられている。
 第1発光機能層31上には、第2電極35が設けられている。第2電極35は、第1電極34と同様に有機EL素子の発光領域の所定の領域内の全域に渡って連続して設けられている。第2電極35は、上述の第1電極34と同様に、図示しない有機EL素子の駆動部の電源回路に接続されている。
 第2電極35上には、第2発光機能層32と第3発光機能層33とが設けられている。第2発光機能層32と第3発光機能層33とは、それぞれ所定の間隔を開けて、独立して設けられている。また、第2発光機能層32と第3発光機能層33とは、それぞれ交互に配置されている。
 第2発光機能層32、及び、第3発光機能層33上には、第3電極36が設けられている。第3電極36は、離間して設けられた第2発光機能層32及び第3発光機能層33上にそれぞれ独立して設けられ、第2発光機能層32又は第3発光機能層33に、独立して電位を供給することができる構成である。第3電極36は、上述の第1電極34と同様に、有機EL素子の図示しない駆動部の電源回路に接続されている。
 第1発光機能層31、第2発光機能層32、及び、第3発光機能層33は、上述の第1実施形態で説明する発光機能層と同様の構成を適用することができ、少なくとも1層の有機発光層を備えている。
 なお、第2発光機能層32と、第3発光機能層33とは、それぞれ同じ面積で構成してもよく、また、異なる面積で構成してもよい。また、本例の有機EL素子では、1つの発光ユニット39内に、複数の第2発光機能層32及び第3発光機能層33が設けられた構成を示しているが、第2発光機能層32と、第3発光機能層33とは、それぞれ少なくとも1つ設けられていればよい。さらに、有機EL素子は、複数の発光ユニット39を備える構成としてもよく、単一発光ユニット39に複数の第2発光機能層32と、第3発光機能層33とを配置させた構成としてもよい。有機EL素子に複数の発光ユニット39が設けられる構成とする場合には、各発光ユニット39の間に絶縁層37を配置する。
[駆動方法]
 上述の有機EL素子は、発光ユニット39において、第1発光機能層31上に、第2電極35を介して、第2発光機能層32又は第3発光機能層33が積層された構成である。また、第1発光機能層31が、第1電極34と第2電極35とに挟持されている。そして、第2発光機能層32と第3発光機能層33が、第1発光機能層31と第2発光機能層32と第3発光機能層33とに共有された第2電極35、及び、それぞれ独立した第3電極36に挟持されている。
 有機EL素子は、第1電極34と第3電極36が同じ極性であり、第2電極35が、第1電極34及び第3電極36と逆の極性となる。
 例えば本例では、上述の第1電極34は、第1発光機能層31に対して、陰極として機能する。同様に、第3電極36は、本例では第2発光機能層32及び第3発光機能層33に対して、陰極として機能する。
 また、第2電極35は、本例では、第1発光機能層31に対して、陽極として機能する。さらに、第2電極35は、第2電極35上に設けられる第2発光機能層32及び第3発光機能層33に対しても、陽極として機能する。
 つまり、第2電極35は、第1発光機能層31と、第2電極35上に形成される第2発光機能層32及び第3発光機能層33に対して、共通電極として構成されている。そして、第3電極36が独立して形成されているため、第2発光機能層32と第3発光機能層33をそれぞれ独立して駆動させることができる。
 このような構成の有機EL素子の駆動波形を図4に示す。
 図4に示すように、第1電極34と第2電極35とが駆動することにより、発光領域の所定の領域内の全域に設けられた第1発光機能層31を発光させることができる。また、第1電極34と第2電極35の駆動に合わせて、第2発光機能層32上に設けられた第3電極36と、第3発光機能層33上に設けられた第3電極36とが独立して駆動することにより、第2発光機能層32、及び、第3発光機能層33を任意に発光させることができる。
 このように、第1発光機能層31と第2発光機能層32とを同時に発光させることができる。また、第1発光機能層31と第3発光機能層33とを同時に発光させることができる。さらに、第1発光機能層31、第2発光機能層32、及び、第3発光機能層33を同時に発光させることもできる。
 このため、有機EL素子の発光効率を向上させることができる。
 さらに、第1電極34を駆動せず、第2電極35と第3電極36とを駆動することにより、第1発光機能層31を発光させずに、第2発光機能層32と第3発光機能層33とを、同時に又は独立して発光させることもできる。また、第1電極34と第2電極35のみを駆動することにより、第1発光機能層31のみを発光させることもできる。
 このように、第2電極35が共通であっても、第1発光機能層31、第2発光機能層32、又は、第3発光機能層33を、それぞれ独立して駆動することが可能である。このため、例えば、それぞれの発光層の発光効率に応じてduty駆動させることができる。つまり、各発光機能層を任意のduty駆動とすることにより、精密な調色が可能となる。
 従って、本例の有機EL素子の構成では、第1発光機能層31と第2発光機能層32と第3発光機能層33とをduty駆動させる方法、同時に発光させる方法、及び、第1発光機能層31と、第2発光機能層32若しくは第3発光機能層33とを同時に発光させる方法等、駆動方法を任意に組み合わせることにより、精密な調色と発光効率の向上との両立が可能となる。
[効果]
 上記構成の有機EL素子では、例えば、発光効率の低い発光層を第1発光機能層31に用いることにより、面積を拡大することができる。よって、発光効率の高い発光層の開口率を低減することなく、発光効率の低い発光層の面積を大きくすることができる。この結果、有機EL素子の発光効率や輝度を向上させることができる。
 このため、例えば、赤色発光及び緑色発光は、高い発光効率を得るために燐光材料を使用し、青色は色純度を得るために蛍光材料を使用した場合でも、第1発光機能層31に青色の発光層を設け、第2発光機能層32又は第3発光機能層33に赤色や緑色の発光層を設けることで、青色の発光層の面積比を、赤色や緑色の発光層に比べ大きく形成することができる。
 このため、青色の発光層の面積を大幅に増大して他の発光層との寿命差を相殺することができるため、各発光層の寿命バランスを調整することができる。さらに、緑や赤の発光層の面積を縮小する必要がないため、開口率の低減や、色発光時の輝度傾斜を抑制することができる。
 また、第2発光機能層32と第3発光機能層33との面積を調整することにより、第2発光機能層32と第3発光機能層33との輝度の調整が可能となる。
 この場合にも、第1発光機能層31の合計の面積が、第2発光機能層32と第3発光機能層33との合計の面積以上となり、第1発光機能層31、第2発光機能層32、及び、第3発光機能層13の寿命を調整することができる。
 上述のように、第2実施形態の有機EL素子では、第1発光機能層、第2発光機能層、第3発光機能層の面積比を、任意に調整することができる。このため、第1発光機能層、第2発光機能層、及び、第3発光機能層の発光効率がそれぞれ異なる場合にも、面積比によって発光効率の差を補正することができる。このため、第1発光機能層、第2発光機能層、及び、第3発光機能層の面積比を調整することにより、有機EL素子の発光色を任意に調整することができる。
 さらに、第1発光機能層31と、第2発光機能層32又は第3発光機能層33との発光色の組み合わせを任意に選択することにより、発光効率の低い発光層の面積の増加や、開口率を向上させることができる。
[有機エレクトロルミネッセンス素子の変形例]
 次に、上述の第2実施形態の有機エレクトロルミネッセンス素子(有機EL素子)の変形例について説明する。なお、第2実施形態の変形例の有機EL素子において、上述の第2実施形態と同様の構成については、説明を省略する。
 第2実施形態の変形例の有機EL素子の構成を図5に示す。
 図5に示す有機EL素子は、第1電極34、第2電極35及び第3電極36の極性のみが、上述の第2実施形態と異なる。即ち、上述の第2実施形態の有機EL素子において、第1電極34が、第1発光機能層31の陽極となる。そして、第2電極35が、第1発光機能層31の陰極、且つ、第2発光機能層32及び第3発光機能層33の陽極となる。さらに、第3電極36が第2発光機能層32及び第3発光機能層33の陰極となる構成である。
 なお、第1発光機能層31において、陰極、陽極の配置が上述の第2実施形態と逆となる。このため、第1発光機能層31に、発光層以外に電子輸送層や正孔輸送層等を備える場合には、第1発光機能層31の積層順が上述の第2実施形態と逆になる。
 また、図5に示す有機EL素子では、第1電極34、第2電極35及び第3電極36の駆動を切り替えるためのスイッチ38が駆動部の回路に設けられている。図5に示す有機EL素子では、駆動部の回路における切り替え用のスイッチとして、1回路2接点のスイッチ38を例示している。
 上述の構成の有機EL素子では、スイッチ38の切り替えにより、第1電極34及び第2電極35の駆動、又は、第2電極35及び第3電極36の駆動を任意に制御することができる。このため、第1電極34と第2電極35とを駆動することより、第1電極34が陽極、第2電極35が陰極となり、第1発光機能層31が発光する。また、第2電極35と第3電極36とを駆動することより、第2電極35が陽極、第3電極36が陰極となり、第2発光機能層32と第3発光機能層33とが発光する。
 上述のように、有機EL素子では、第2電極35を、第1発光機能層31と、第2発光機能層32又は第3発光機能層33とで共有する構成である。そして、駆動するタイミングに応じて第2電極35の極性を陰極と陽極とに切り変えることにより、第1発光機能層31、第2発光機能層32又は第3発光機能層33を、任意に選択して発光させることができる。
 この構成では、第1発光機能層31と、第2発光機能層32又は第3発光機能層33とを同時に発光させることはできないが、第2発光機能層32と第3発光機能層33とを同時に発光させることは可能である。また、第1発光機能層31、第2発光機能層32及び第3発光機能層33の形成面積は、上述の第2実施形態と同様のため、発光層の面積の増加や、開口率を向上させることができる。
 さらに、第1発光機能層31、第2発光機能層32、又は、第3発光機能層33を単独で駆動することが可能であるため、任意に各層をduty駆動させて、より精密な調色が可能となる。
 従って、発光効率の向上と、任意の調色との両立が可能な有機EL素子を構成することができる。
〈3.有機エレクトロルミネッセンス素子(第3実施形態)〉
 次に、有機エレクトロルミネッセンス素子(有機EL素子)の第3実施形態について説明する。なお、第3実施形態の有機EL素子は、各発光機能層と電極との積層構成を除き、上述の第1実施形態と同様の構成である。このため、上述の第1実施形態と同様の構成については、説明を省略する。
[有機エレクトロルミネッセンス素子の構成]
 図6に、第3実施形態の有機EL素子の概略構成図(断面図)を示す。
 図6に示す有機EL素子は、第1電極44、第1発光機能層41、第2電極45、第2発光機能層42、第3電極46、第3発光機能層43、及び、第4電極47からなる発光ユニット49を備える。また、これらの構成からなる発光ユニット49が、支持基板20上に搭載されている。さらに、発光ユニット49の間に、互いの隔壁となる絶縁層48が設けられている。
 第1電極44は、支持基板20上において、発光ユニット49毎に独立して設けられている。第1電極44同士は、絶縁層48により絶縁されている。また、第1電極44は、図示しない有機EL素子の駆動部の電源回路に接続されている。
 また、第1電極44上に第1発光機能層41が設けられている。
 第1発光機能層41上には、第2電極45が設けられている。第2電極45は、上述の第1電極44と同様に、図示しない有機EL素子の駆動部の電源回路に接続されている。
 また、第2電極45上に第2発光機能層42が設けられている。
 第2発光機能層42上には、第3電極46が設けられている。第3電極46は、上述の第1電極44と同様に、図示しない有機EL素子の駆動部の電源回路に接続されている。
 また、第3電極46上に第3発光機能層43が設けられている。
 第3発光機能層43上には、第4電極47が設けられている。第4電極47は、上述の第1電極44と同様に、図示しない有機EL素子の駆動部の電源回路に接続されている。
 第1発光機能層41、第2発光機能層42、及び、第3発光機能層43は、上述の第1実施形態で説明する発光機能層と同様の構成を適用することができ、少なくとも1層の有機発光層を備えている。また、有機EL素子において、第1発光機能層41、第2発光機能層42及び第3発光機能層43は、それぞれ異なる発光層を備える構成である。
 発光ユニット49は、第1発光機能層41と、第2発光機能層42と、第3発光機能層43との3つの発光機能層を有している。このため、例えば、第1発光機能層41を緑色(G)の発光層を有する構成とし、第2発光機能層42を青色(B)の発光層を有する構成とし、第3発光機能層43を赤色(R)の発光層を有する構成とする。
 このように、有機EL素子では発光ユニット49に3つの発光機能層を有することで、RGBからなる3色の発光光を得ることができる。
 また、第1発光機能層41が、第1電極44と第2電極45とに挟持されている。そして、第2発光機能層42が、第2電極45と第3電極46とに挟持されている。さらに、第3発光機能層43が、第3電極46と第4電極47とに挟持されている。
 つまり、第2電極45は、第1発光機能層41と、第2電極45上に形成される第2発光機能層42に対して、共通電極として構成されている。さらに、第3電極46は、第2発光機能層42と、第3電極46上に形成される第3発光機能層43に対して、共通電極として構成されている。
 また、第1電極44と第3電極46とを同じ極性の電極とし、第2電極45及び第4電極47を第1電極44及び第3電極46と逆の極性の電極とする。例えば本例では、上述の第1電極44は、第1発光機能層41に対して陰極として機能する。第2電極45は、第1発光機能層41及び第2発光機能層42に対して陽極として機能する。第3電極46は、第2発光機能層42及び第3発光機能層43に対して陰極として機能する。そして、第4電極47は、第3発光機能層43に対して陽極として機能する。
[駆動方法]
 上述の有機EL素子における駆動波形を図7に示す。
 有機EL素子の発光ユニット49では、各発光機能層に対して、第1電極44と第3電極46とが同じ極性であり、第2電極45と第4電極47とが、第1電極44及び第3電極46と逆の極性として機能する。このため、図7に示すように、第1電極44、共有電極となる第2電極45及び第3電極46、並びに、第4電極47を同時に駆動することができる。この結果、第1発光機能層41、第2発光機能層42及び第3発光機能層43を同時に発光させることができる。
 このため、有機EL素子の発光効率を向上させることができる。
 また、図7に示すように、第1電極44と第2電極45と第3電極46とを同時に駆動することにより、第1発光機能層41と第2発光機能層42とを同時に発光させることができる。さらに、図7に示すように、第2電極45と第3電極46と第4電極47とを同時に駆動することにより、第2発光機能層42と第3発光機能層43とを同時に発光させることができる。
 つまり、発光ユニット49において、第1発光機能層41と第2発光機能層42、又は、第2発光機能層42と第3発光機能層43のいずれかを、任意に選択して発光させることができる。これは、駆動する電極を、第1電極44と第4電極47とで切り替えることにより、選択することができる。
 このとき、第2発光機能層42は、第1発光機能層41が発光する期間と、第3発光機能層43が発光する期間の両方の期間で発光する。このため、第2発光機能層42は、第1発光機能層41と第3発光機能層43よりも発光期間が長く、点灯率を高くすることができる。従って、例えば、第2発光機能層42を、発光効率の劣る発光層で構成した場合にも、輝度向上のための面積の増加が必要ない。
 また、第1発光機能層41と第3発光機能層43とは、それぞれの発光効率に応じてduty駆動させることができる。このため、有機EL素子において、任意の調色が可能となる。
 上述のように、本実施形態によれば、有機EL素子において、2層以上の発光機能層を同時に発光させることができる。さらに、duty駆動による任意の調色が可能な有機EL素子を構成することができる。従って、発光効率の向上と、任意の調色との両立が可能な有機EL素子を構成することができる。
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
[試料101の有機EL素子の作製]
 以下のように、上述の図3に示す構成の有機EL素子の試料101を作製した。
(支持基板)
 まず、有機EL素子を形成する支持基板として、90mm×90mmの外形サイズ有する透明基板を準備した。そして、この透明基板に、アセトン超音波洗浄、セミコクリーン超音波洗浄、オゾンクリーニングを施し、基板の表面を洗浄した。
(第1電極)
 次に、洗浄した基板上に、有機EL素子の陽極となる第1電極を形成した。第1電極としては、スパッタリング法を用いてITO層を300nm形成した。第1電極は、おおよそ5Ω/sq.程度のシート抵抗値となるように形成した。
 スパッタリングにはDCマグネトロンスパッタを使用した。基板加熱温度90℃、真空度1×10-4(Pa)となる真空度下に基板を設置し、酸素2%混合アルゴンガスを0.5Paとなるように導入し、500WのDC印加をITOターゲットに加えることで基板上にITO層を形成した。本実施例で使用したITO層はおおよそ5Ω/sq.程度のシート抵抗値になるように設計した。
 次に、発光部が80mm×80mmとなるように、ITO層を電極の形状にパターニングした。パターニングは、レジストを基板上に1μmスピン塗布し、80℃、5分のプリベーク後、露光機にて露光、NaOHに3分浸漬することで現像し、純水リンスを施し、スピン乾燥後にポストベークを100℃、40分実施した。
 ITO層のエッチングは15%の塩化第二鉄水溶液を使用し、エッチング後に純水リンスし、レジストを剥離するべくNaOHに3分浸漬、レジストを剥離、同様に純水リンスを施し、スピン乾燥を施すことで所望の形状にエッチングした。
(絶縁層)
 次に、陽極となるITOパターンエッジ近傍での電気的ショートを防ぐために、ポリイミドからなる絶縁層を形成した。
 まず、ITOのパターニングが完了した基板を、再度アセトン超音波洗浄、セミコクリーン超音波洗浄、スピン乾燥、オゾンクリーニングを施した。その後、ポリイミドを1μmの厚さにスピン塗布した。そして、プリベークを85℃、3分施し、露光機にて露光後、3%のTMAHに5分浸漬することで現像した。現像後は純水リンスを施し、スピン乾燥後にポストベークを100℃、80分施すことで実施した。
(第1発光機能層)
 次に、第1電極上に、青色発光する第1発光機能層を真空蒸着にて形成した。
 まず、第1電極の表面状態を活性化するべくUV洗浄を5分実施し、その後基板を真空蒸着装置に入れ、1×10-5(Pa)の真空度になるまで真空引きした。
 真空引きが完了後に、第1発光機能層を構成する各層を随時蒸着にて形成した。
 まず、第1電極上に正孔注入層としてMoOを30nm、正孔輸送層としてα-NPDを50nm蒸着形成した。
 次に、発光層として、青色発光色を有する発光ドーパントと発光用ホスト材料とを、発光ドーパントが3~5%の濃度になるように30nm蒸着形成した。
 次に、電子輸送層としてAlq3を30nm形成し、電子注入層としてLiFを1nm形成した。
(第2電極)
 次に、第1発光機能層上に、陰極となる第2電極を形成した。
 第2電極は、第1発光機能層上を覆うようにAlをEB蒸着にて15nm形成した。第2電極の取り出しは、基板の1辺に取り出すように形成した。
(第2発光機能層、第3発光機能層)
 次に、第2電極上に、緑色発光する第2発光機能層と赤色発光する第3発光機能層とを形成した。第2発光機能層と第3発光機能層とは、蒸着マスクを用いて塗り分けることで、第2電極上にそれぞれ短冊状に形成した。
 第2発光機能層は、発光領域ラインが1mm×70mmとなるよう形成した。第3発光機能層は、発光領域ラインが2.3mm×70mmとなるよう形成した。第2発光機能層と第3発光機能層とのスペースは60μmとなるよう形成した。
 蒸着マスクのアライメントは±5μmの精度有するCCDカメラにてアライメント補正し、所望の位置になるような蒸着装置を使用した。
 なお、第2発光機能層と第3発光機能層は、発光層と第3電極以外は共通層として同時形成した。
 まず、第2電極のAlから電子注入するための電子注入層は、第2発光機能層と第3発光機能層との共通層として、LiFを1nm形成した。次に、電子輸送層も同様に、第2発光機能層と第3発光機能層との共通層として、Alq3を30nm形成した。
 次に、緑色発光する第2発光機能層の発光層のみを、第2発光機能層の発光領域を開口した蒸着マスクを用いて、発光ドーパントと発光ホスト材料とを発光ドーパントが3%の濃度になるように、30nm蒸着形成した。
 次に、赤色発光する第3発光機能層の発光層のみを、第3発光機能層の発光領域を開口した蒸着マスクを用いて、発光ドーパントと発光ホスト材料とを発光ドーパントが0.5%の濃度になるように、30nm蒸着形成した。
 次に、第2発光機能層の発光領域と第3発光機能層の発光領域との同時形成が可能な蒸着マスクを用いて、第2発光機能層と第3発光機能層との共通の正孔輸送層として、α-NPDを30nm形成した。次に、正孔注入層も同様に、第2発光機能層と第3発光機能層との共通層として、MoOを30nm形成した。
(第3電極)
 次に、第2発光機能層、及び、第3発光機能層上に、陽極となる第3電極を形成した。第3電極は、EB蒸着法を用いてAl層を150nm形成した。第3電極の形成には、第2発光機能層及び第3発光機能層の発光領域を同時に形成可能な開口と、第3電極の電気接続を行うための基板端部へのリード引き回し部の開口とを有する蒸着マスクを用いた。
(封止)
 以上の工程により形成した発光ユニットを封止するために、封止部を形成した。本実施例ではザグリ加工を施した封止基板を用いて封止を実施した。
 具体的には、4辺のリードを残すように85mm×85mmの外形サイズのガラス缶(t=1.1mm)に、ザグリ掘り込み量0.7mmを彫り込み、同部位に吸湿剤を張り付け、水分を吸着するように施した。
 また、封止基板と素子基板が接触する部位のザグリ掘り込みが形成されていない領域に、接着剤としてUV硬化性のエポキシ系接着樹脂を塗布し、素子基板と密着させて加圧した。
 さらに、接着剤を硬化するため、メタルハライドにて積算照度10Jとなるように封止基板側からUV照射を行い、さらに、接着剤を硬化させるべく、80℃、1時間程度の熱硬化にて接着剤の硬化を促進させ、封止基板と素子基板である透明基板を接着した。
(有機EL素子)
 以上の工程により、有機EL素子の試料101を作製した。
 上述の試料101では、第1発光機能層を、第1電極上に、正孔注入層、正孔輸送層、発光層、電子輸送層、及び、電子注入層をこの順に積層した順積層で形成した。また、第2発光機能層及び第3発光機能層を、第2電極上に、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層の順に積層した逆積層で形成した。
 つまり、試料101では、第1発光機能層を順積層、第2発光機能層及び第3発光機能層を逆積層で形成した。
 試料101では、第2発光機能層及び第3発光機能層の発光層と、第3電極とを蒸着マスクにてパターニング形成した。このため、蒸着マスクからの回り込みによる蒸着ボケを考慮し、蒸着ボケによるショートや混色発光を抑えるための、第2発光機能層と第3発光機能層との発光層のスペース領域を大きく形成した。
 作製した試料101の有機EL素子は、青色発光領域の開口率が95%、緑色発光領域の開口率が28%、赤色発光領域の開口率が64%であった。
[試料102の有機EL素子の作製]
 以下のように、上述の図1に示す構成の有機EL素子の試料102を作製した。
(支持基板)
 上述の試料101と同様に、有機EL素子を形成する支持基板として、90mm×90mmの外形サイズ有する透明基板を準備した。そして、この透明基板に、アセトン超音波洗浄、セミコクリーン超音波洗浄、オゾンクリーニングを施し、基板の表面を洗浄した。
(第1電極)
 次に、洗浄した基板上に、有機EL素子の陰極となる第1電極を形成した。第1電極としては、ITO層を300nm形成した。第1電極は、スパッタリング法を用いて、おおよそ5Ω/sq.程度のシート抵抗値となるように形成した。
 スパッタリングにはDCマグネトロンスパッタを使用した。基板加熱温度90℃、真空度1×10-4(Pa)となる真空度下に基板を設置し、酸素2%混合アルゴンガスを0.5Paとなるように導入し、500WのDC印加をITOターゲットに加えることで基板上にITO層を形成した。
 次に、発光部が80mm×80mmとなるように、ITO層を電極の形状にパターニングした。パターニングは、レジストを基板上に1μmスピン塗布し、80℃、5分のプリベーク後、露光機にて露光、NaOHに3分浸漬することで現像し、純水リンスを施し、スピン乾燥後にポストベークを100℃、40分実施した。
 ITO層のエッチングは15%の塩化第二鉄水溶液を使用し、エッチング後に純水リンスし、レジストを剥離するべくNaOHに3分浸漬、レジストを剥離、同様に純水リンスを施し、スピン乾燥を施すことで所望の形状にエッチングした。
(絶縁層)
 次に、陰極となるITOパターンエッジ近傍での電気的ショートを防ぐために、ポリイミドからなる絶縁層を形成した。
 まず、ITOのパターニングが完了した基板を、再度アセトン超音波洗浄、セミコクリーン超音波洗浄、スピン乾燥、オゾンクリーニングを施した。その後、ポリイミドを1μmの厚さにスピン塗布した。そして、プリベークを85℃、3分施し、露光機にて露光後、3%のTMAHに5分浸漬することで現像した。現像後は純水リンスを施し、スピン乾燥後にポストベークを100℃、80分施すことで実施した。
(素子分離)
 さらに、有機EL素子の第1発光ユニットと第2発光ユニットとの素子分離用の隔壁となる、逆テーパ状の絶縁層を形成した。
 この絶縁層は、ポリイミドを2.5μmの厚さにスピン塗布し、プリベークを85℃、3分施し、露光機にて露光後、3%のTMAHに5分浸漬することで現像して形成した。現像後は純水リンスを施し、スピン乾燥後にポストベークを250℃、30分施すことで実施した。
 また、素子分離用の絶縁層は、第1発光ユニットの発光領域ラインが1mm×70mm、第2発光ユニットの発光領域ラインが2.3mm×70mm、第1発光ユニットと第2発光ユニットとのスペースが60μmとなるパターンに形成した。
(第1発光機能層)
 次に、素子分離用の絶縁層で囲まれた領域内の第1電極上に、青色発光する第1発光機能層を真空蒸着にて形成した。
 まず、第1電極の表面状態を活性化するためにUV洗浄を5分実施し、その後基板を真空蒸着機に入れ、1×10-5(Pa)の真空度になるまで真空引きした。
 次に、真空引きが完了後に、第1発光機能層の形成領域のみを開口した蒸着マスクを用いて、第1発光機能層を構成する各層を随時蒸着にて形成した。
 まず、第1電極上に、AlをEB蒸着法にて0.5nm形成した。そして、電子注入層としてLiFを1nm形成し、電子輸送層としてAlq3を30nm形成した。
 そして、発光層として、青色発光色を有する発光ドーパントと発光用ホスト材料とを発光ドーパントが3~5%の濃度になるように30nm蒸着形成した。
 さらに、正孔輸送層としてα-NPDを50nm形成し、正孔注入層としてMoOを30nm形成した。
(第2電極)
 次に、パターン形成した第1発光機能層上に、陽極となる第2電極を形成した。第2電極は、第1発光機能層上を覆うようにIZOをスパッタリング法にて形成した。第2電極は、スパッタリングにはCマグネトロンスパッタを使用し、マスク法を用いてパターニングした。
 まず、真空度1×10-4(Pa)となる真空度下に基板を設置し、酸素2.5%混合アルゴンガスを0.75Paとなるように導入、300WのDC印加をIZOターゲットに加えることで第1発光機能層上にIZO電極を形成した。第2電極は、IZOのシート抵抗値がおおよそ6Ω/sq.程度となるように設計した。
 また、第2電極の取り出しは、基板の1辺に取り出すように形成した。
(第2発光機能層、第3発光機能層)
 次に、第2電極上に、緑色発光する第2発光機能層と赤色発光する第3発光機能層とを形成した。第2発光機能層と第3発光機能層とは、蒸着マスクを用いて塗り分けることで、第2電極上にそれぞれ短冊状に形成した。
 第2発光機能層は、発光領域ラインが1mm×70mmとなるよう形成した。第3発光機能層は、発光領域ラインが2.3mm×70mmとなるよう形成した。第2発光機能層と第3発光機能層とのスペースは60μmとなるよう形成した。
 まず、第2発光機能層の発光領域と第3発光機能層の発光領域との同時形成が可能な蒸着マスクを用いて、正孔注入層として、MoOを30nm形成した。次に、正孔輸送層として、α-NPDを30nm形成した。
 次に、緑色発光する第2発光機能層の発光層のみを、第2発光機能層の発光領域を開口した蒸着マスクを用いて、発光ドーパントと発光ホスト材料とを発光ドーパントが3%の濃度になるように、30nm蒸着形成した。
 次に、赤色発光する第3発光機能層の発光層のみを、第3発光機能層の発光領域を開口した蒸着マスクを用いて、発光ドーパントと発光ホスト材料とを発光ドーパントが0.5%の濃度になるように、30nm蒸着形成した。
 次に、第2発光機能層の発光領域と第3発光機能層の発光領域との同時形成が可能な蒸着マスクを用いて、電子輸送層として、Alq3を30nm形成した。次に、電子注入層として、LiFを1nm形成した。
(第3電極)
 次に、第2発光機能層、及び、第3発光機能層上に、陰極となる第3電極を形成した。第3電極は、EB蒸着法を用いてAl層を150nm形成した。第3電極の形成には、第2発光機能層及び第3発光機能層の発光領域を同時に形成可能な開口と、第3電極の電気接続を行うための基板端部へのリード引き回し部の開口とを有する蒸着マスクを用いた。
(封止)
 次に、上述の試料101と同様の方法で第1発光ユニットと第2発光ユニットとを封止し、有機EL素子の試料102を作製した。
(有機EL素子)
 以上の工程により作製した試料102では、第2電極を共通陽極として透明電極であるIZOをスパッタリング法にて形成した。第2電極を共通陽極として使用するため、また、高透過率性を有する透明酸化物電極を形成したため、透過率及び発光効率が良好な有機EL素子が作製された。
 作製した試料102の有機EL素子は、青色発光領域の開口率が93%、緑色発光領域の開口率が28%、赤色発光領域の開口率が64%であった。
[試料103の有機EL素子の作製]
 以下のように、上述の図5に示す構成の有機EL素子の試料103を作製した。
(支持基板~第2電極)
 まず、上述の試料101と同様の方法を用いて、支持基板上に、陽極となる第1電極、絶縁層、第1発光機能層、及び、陰極及び陽極となる第2電極を形成した。
(第2発光機能層、第3発光機能層)
 次に、第2電極上に、緑色発光する第2発光機能層と赤色発光する第3発光機能層とを形成した。第2発光機能層と第3発光機能層とは、蒸着マスクを用いて塗り分けることで、第2電極上にそれぞれ短冊状に形成した。
 第2発光機能層は、発光領域ラインが1mm×70mmとなるよう形成した。第3発光機能層は、発光領域ラインが2.3mm×70mmとなるよう形成した。第2発光機能層と第3発光機能層とのスペースは60μmとなるよう形成した。
 蒸着マスクのアライメントは±5μmの精度有するCCDカメラにてアライメント補正し、所望の位置になるような蒸着装置を使用した。
 なお、第2発光機能層と第3発光機能層は、発光層と第3電極以外は共通層として同時形成した。
 まず、第2発光機能層の発光領域と第3発光機能層の発光領域との同時形成が可能な蒸着マスクを用いて、第2電極上に、第2発光機能層と第3発光機能層との共通の正孔注入層として、MoOを30nm形成した。次に、同様の蒸着マスクを用いて、正孔輸送層として、α-NPDを30nm形成した。
 次に、緑色発光する第2発光機能層の発光層のみを、第2発光機能層の発光領域を開口した蒸着マスクを用いて、発光ドーパントと発光ホスト材料とを発光ドーパントが3%の濃度になるように、30nm蒸着形成した。
 次に、赤色発光する第3発光機能層の発光層のみを、第3発光機能層の発光領域を開口した蒸着マスクを用いて、発光ドーパントと発光ホスト材料とを発光ドーパントが0.5%の濃度になるように、30nm蒸着形成した。
 次に、第2発光機能層の発光領域と第3発光機能層の発光領域の同時形成が可能な蒸着マスクを用いて、第2発光機能層と第3発光機能層との共通の電子輸送層として、Alq3を30nm形成した。次に、同様の蒸着マスクを用いて、電子注入層として、LiFを1nm形成した。
(第3電極~封止)
 次に、上述の試料101と同様の方法を用いて第3電極を形成した後、形成した発光ユニットを上述の試料101と同様の方法を用いて封止した。
(有機EL素子)
 以上の工程により、有機EL素子の試料103を作製した。
 試料103では、第1電極は、第1発光機能層に対して陽極となる。また、第2電極は、第1発光機能層に対して陰極となり、第2発光機能層及び第3発光機能層に対して陽極となる。第3電極は、第1発光機能層に対して陰極となる。
 試料103では、第1発光機能層を、第1電極上に、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層の順に積層した順積層で形成した。また、第2発光機能層及び第3発光機能層を、第2電極上に、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層の順に積層した順積層で形成した。
 このように、試料103では、第1発光機能層と、第2発光機能層及び第3発光機能層とを、共に順積層で形成した。
 作製した試料103の有機EL素子は、青色発光領域の開口率が95%、緑色発光領域の開口率が28%、赤色発光領域の開口率が64%であった。
[試料104の有機EL素子の作製]
 以下のように、上述の図1に示す構成の有機EL素子の試料104を作製した。なお、試料104は、図1に示す構成から素子分離となる絶縁層を除いた構成である。
(支持基板~絶縁層)
 上述の試料102と同様の方法を用いて、支持基板上に、陰極となる第1電極、及び、第1電極のパターンエッジ近傍での電気的ショートを防ぐため絶縁層を形成した。
(第1発光機能層)
 次に、第1電極上に、第1発光機能層を真空蒸着にて形成した。
 まず、第1電極の表面状態を活性化するためにUV洗浄を5分実施し、その後基板を真空蒸着機に入れ、1×10-5(Pa)の真空度になるまで真空引きした。
 次に、真空引きを完了後に、第1発光機能層の形成領域のみを開口した蒸着マスクを用いて、第1発光機能層を構成する各層を随時蒸着にて形成した。
 また、第1発光機能層は、第1発光ユニットの発光領域ラインが1mm×70mm、第2発光ユニットの発光領域ラインが2.3mm×70mm、第1発光ユニットと第2発光ユニットとのスペースが60μmとなるパターンに形成した。
 まず、第1電極上に、AlをEB蒸着法にて0.5nm形成した。そして、電子注入層としてLiFを1nm形成し、電子輸送層としてAlq3を30nm形成した。
 そして、発光層として、青色発光色有する発光ドーパントと発光用ホスト材料を3~5%の濃度になるように30nm蒸着形成した。
 さらに、正孔輸送層としてα-NPDを50nm形成し、正孔注入層としてMoOを30nm形成した。
(第2電極~封止)
 次に、上述の試料102と同様の方法を用いて、パターン形成した第1発光機能層上に、陽極となる第2電極を形成した。さらに、上述の試料102と同様の方法を用いて、第1発光ユニットの第2電極上に、緑色発光する第2発光機能層を形成し、第2発光ユニットの第2電極上に、赤色発光する第3発光機能層を形成した。
 次に、上述の試料102と同様の方法を用いて、第2発光機能層上と第3発光機能層上とに第3電極を形成した後、形成した発光ユニットを上述の試料101と同様の方法を用いて封止した。
(有機EL素子)
 以上の工程により、有機EL素子の試料104を作製した。
 試料104は、上述の試料102から素子分離用の隔壁となる絶縁層を除いた構成である。
 作製した試料104の有機EL素子は、青色発光領域の開口率が93%、緑色発光領域の開口率が28%、赤色発光領域の開口率が64%であった。
[試料105の有機EL素子の作製]
 以下の従来手法を用いて、有機EL素子の試料105を作製した。試料105では、RGBの各色発光層を、従来公知の蒸着塗り分け方法にて形成した。
 まず、支持基板上に、第1電極として、ITO層を短冊状にパターニング形成した。支持基板の洗浄からITO層の形成、ITO層のパターニング、及び、ITO層のパターンエッジの絶縁膜の形成は、上述の試料101と同様の方法で行った。
 第1電極のパターニングは、各発光機能層の発光効率と寿命を考慮し、各色の寿命が同じになるように開口率を決定し、この開口率に基づいた寸法で形成した。青色発光する第1発光機能層のパターンを2.5mm×70mm、緑色発光する第2発光機能層を500μm×70mm、赤色発光する第3発光機能層を1000μm×70mmとして、各発光機能層のスペースを20μmとして形成した。
 また、正孔注入層、正孔輸送層、電子輸送層、及び、電子注入層は、各発光機能層の共通の構成として、同時形成可能な開口を有する蒸着マスクを用いて、上述の試料101の第2発光機能層及び第3発光機能層の形成と同様の方法により形成した。
 さらに、上述の試料101の第3電極の形成と同様の方法を用いて、各発光機能層上にAlによる第2電極を形成した。
 以上の工程により、有機EL素子の試料105を作製した。
 作製した試料105の有機EL素子は、青色発光領域の開口率が58%、緑色発光領域の開口率比が12%、赤色発光領域の開口率比が23%だった。
[試料106の有機EL素子の作製]
 以下の従来手法を用いて、有機EL素子の試料106を作製した。試料106では、RGBの各色発光層を、従来公知の透明基板に対して垂直に積層する方法を用いて形成した。
 まず、支持基板上に、第1電極として、ITO層を短冊状にパターニング形成した。支持基板の洗浄からITO層の形成、ITO層のパターニング、及び、ITO層のパターンエッジの絶縁膜の形成は、上述の試料101と同様の方法で行った。
 次に、第1電極上に、青色発光する第1発光機能層を形成した。
 第1発光機能層は、第1電極側から順に、正孔注入層としてMoOを30nm、正孔輸送層としてα-NPDを50nm、青色発光層を30nm、電子輸送層としてAlq3を30nm、電子注入層としてLiFを1nm形成した。
 次に、第1発光機能層上に、第2電極として、Alを10nmの厚さでEB蒸着法を用いて形成した。
 次に、第2電極上に、緑色発光する第2発光機能層を形成した。
 第2発光機能層は、第2電極側から順に、正孔注入層としてMoOを30nm、正孔輸送層としてα-NPDを30nm、緑色発光層を30nm、電子輸送層としてAlq3を30nm、電子注入層としてLiFを1nm形成した。
 次に、第2発光機能層上に、第3電極として、Alを10nmの厚さでEB蒸着法を用いて形成した。
 次に、第3電極上に、赤色発光する第3発光機能層を形成した。
 第3発光機能層は、第3電極側から順に、正孔注入層としてMoOを30nm、正孔輸送層としてα-NPDを30nm、緑色発光層を30nm、電子輸送層としてAlq3を30nm、電子注入層としてLiFを1nm形成した。
 次に、第3発光機能層上に、第4電極として、Alを150nm厚さでEB蒸着法を用いて形成した。
 以上の工程により、有機EL素子の試料106を作製した。
 作製した試料106の有機EL素子は、青色、赤色、緑色発光領域の開口率が95%だった。
[実施例の各試料の評価]
 上記方法で作製した試料101~106有機EL素子について、発光効率、半減寿命、色度、官能評価、を測定した。この結果を下記表1に示す。
[発光効率]
 本評価の発光効率は、室温環境下で各色を1,000cd/mの実駆動下の条件において測定した結果である。
[半減寿命]
 本評価の半減寿命は、室温環境下で実駆動させた場合の、初期輝度に対して輝度が半減する寿命結果を示している。
[色度]
 本評価の色度は、実駆動下の条件で赤・青・緑を単独発光させた時の色度を示している。
[官能評価]
 本評価の官能評価は、10人にRGB及び混色である白色を表示したときの見た目の視認性を評価した結果である。
Figure JPOXMLDOC01-appb-T000006
[実施例の評価結果]
 表1に示すように、試料101~104の有機EL素子と、試料105~106の有機EL素子とを比較すると、試料101~104の有機EL素子は、発光効率や色度が良好であり、寿命も長く、視認に伴う官能評価でも良好な結果が得られた。
 試料105の有機EL素子では、従来例による単純な塗り分け方式を採用したため、色度は良好であるが、各発光層に要求される輝度が高くなるため寿命が低下している。特に、発光効率の低い蛍光材料を用いている青色の発光層の寿命が、試料101~104の有機EL素子よりも低下している。
 また、試料105の有機EL素子では、緑色発光層が500μmであり、青色発光層の2.5mmや赤色発光層の1000μmに比べて狭いため、緑色単色発光時には非点灯領域が多く、視認性の官能評価において好ましくない結果となった。
 試料106の有機EL素子では、各発光機能層を積層して形成しているため、各発光層が同じ面積であり、開口率が大きい構成である。このため、視認性の官能評価は好ましいものの、各発光層の発光効率に依存した、色の変化、発光効率の低下、及び、寿命の低下が確認された。
 一方、試料101の有機EL素子は、青色、緑色、赤色発光領域の開口率が、95%、28%、64%であり、青色、緑色、赤色の発光効率の差を十分に補うことができる。このため、各発光層の寿命を向上することができる。特に、青色発光層の寿命を向上し、発光効率の低下を抑制することができる。
 同様に、試料102~104の有機EL素子においても、青色発光層の開口率が大きく、発光効率の差を十分に補うことができる。このため、各発光層の寿命を向上し、発光効率の低下を抑制することができる。
 以上の結果から、本発明の構成を用いた有機EL素子は、発光効率の低い発光層の開口率を向上することができるため、この発光層の寿命の向上及び発光効率の低下を抑制することができる。従って、有機EL素子の輝度の低下を抑制することができる。
 なお、本発明は上述の実施形態例において説明した構成に限定されるものではなく、その他本発明の構成を逸脱しない範囲において種々の変形、変更が可能である。
 11,31,41・・・第1発光機能層、12,32,42・・・第2発光機能層、13,33,43・・・第3発光機能層、14,34,44・・・第1電極、15,35,45・・・第2電極、16,36,46・・・第3電極、17,37,48・・・絶縁層、18・・・第1発光ユニット、19・・・第2発光ユニット、20・・・支持基板、38・・・スイッチ、39,49・・・発光ユニット、47・・・第4電極

Claims (7)

  1.  第1電極と、
     前記第1電極上に設けられた第1発光機能層と、
     前記第1発光機能層上に設けられた第2電極と、
     前記第2電極上に設けられた第2発光機能層と、
     前記第2発光機能層上に設けられた第3電極と、を備え、
     前記第1電極と前記第3電極とが同じ極性の電極であり、
     前記第2電極が前記第1電極及び前記第3電極と逆の極性の電極である
     有機エレクトロルミネッセンス素子。
  2.  前記第2発光機能層と異なる位置で、前記第2電極上に第3発光機能層を有し、前記第3発光機能層上に前記第3電極を備える請求項1に記載の有機エレクトロルミネッセンス素子。
  3.  前記第2発光機能層と前記第3発光機能層とに対し、共通の前記第1電極、前記第1発光機能層、及び、前記第2電極が設けられている請求項2に記載の有機エレクトロルミネッセンス素子。
  4.  第1発光ユニットと、第2発光ユニットとを有し、
     前記第1発光ユニットが、前記第1電極、前記第1発光機能層、前記第2電極、前記第2発光機能層、及び、前記第3電極を含み、
     前記第2発光ユニットが、前記第1電極、前記第1発光機能層、前記第2電極、前記第3発光機能層、及び、前記第3電極を含む
     請求項2に記載の有機エレクトロルミネッセンス素子。
  5.  前記第3電極上に設けられた第3発光機能層と、前記第3発光機能層上に設けられた第4電極とを有し、前記第1電極と前記第3電極とが同じ極性の電極であり、前記第2電極と前記第4電極とが前記第1電極及び前記第3電極と逆の極性の電極である請求項1に記載の有機エレクトロルミネッセンス素子。
  6.  第1電極と、
     前記第1電極上に設けられた第1発光機能層と、
     前記第1発光機能層上に設けられた第2電極と、
     前記第2電極上に設けられた第2発光機能層と、
     前記第2発光機能層と異なる位置で、前記第2電極上に設けられた第3発光機能層と、
     前記第2発光機能層上及び前記第3発光機能層上に設けられた第3電極と、
    を備え、
     前記第1電極と前記第3電極とが逆の極性の電極であり、
     前記第2電極が、第1発光機能層と、前記第2発光機能層及び前記第3発光機能層とに対して逆の極性の電極となる
     有機エレクトロルミネッセンス素子。
  7.  請求項1~6のいずれかに記載の有機エレクトロルミネッセンス素子を備える
     電子機器。
PCT/JP2014/065618 2013-06-13 2014-06-12 有機エレクトロルミネッセンス素子、及び、電子機器 WO2014200067A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015522862A JPWO2014200067A1 (ja) 2013-06-13 2014-06-12 有機エレクトロルミネッセンス素子、及び、電子機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013124956 2013-06-13
JP2013-124956 2013-06-13

Publications (1)

Publication Number Publication Date
WO2014200067A1 true WO2014200067A1 (ja) 2014-12-18

Family

ID=52022353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065618 WO2014200067A1 (ja) 2013-06-13 2014-06-12 有機エレクトロルミネッセンス素子、及び、電子機器

Country Status (2)

Country Link
JP (1) JPWO2014200067A1 (ja)
WO (1) WO2014200067A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017203787A1 (ja) * 2016-05-26 2017-11-30 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
WO2022209886A1 (ja) * 2021-03-31 2022-10-06 ソニーグループ株式会社 発光装置、表示装置及び電子機器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199276A (ja) * 1996-01-17 1997-07-31 Nec Corp 有機薄膜el素子
JP2010027595A (ja) * 2008-06-20 2010-02-04 Canon Inc 積層型有機発光素子およびそれを有する画像表示装置またはデジタルカメラ
JP2010040523A (ja) * 2008-07-11 2010-02-18 Canon Inc 有機el表示装置
JP2011060482A (ja) * 2009-09-08 2011-03-24 Canon Inc 有機el表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199276A (ja) * 1996-01-17 1997-07-31 Nec Corp 有機薄膜el素子
JP2010027595A (ja) * 2008-06-20 2010-02-04 Canon Inc 積層型有機発光素子およびそれを有する画像表示装置またはデジタルカメラ
JP2010040523A (ja) * 2008-07-11 2010-02-18 Canon Inc 有機el表示装置
JP2011060482A (ja) * 2009-09-08 2011-03-24 Canon Inc 有機el表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017203787A1 (ja) * 2016-05-26 2017-11-30 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
WO2022209886A1 (ja) * 2021-03-31 2022-10-06 ソニーグループ株式会社 発光装置、表示装置及び電子機器

Also Published As

Publication number Publication date
JPWO2014200067A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
JP4904821B2 (ja) 有機エレクトロルミネッセンス素子および有機エレクトロルミネッセンスディスプレイ
JP2010045281A (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP7107223B2 (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス用材料
KR20170082447A (ko) 유기 일렉트로루미네센스 소자, 유기 일렉트로루미네센스 소자의 제조 방법, 표시 장치 및 조명 장치
CN105706261A (zh) 有机电致发光元件、显示装置及照明装置
JPWO2012029750A1 (ja) 有機エレクトロルミネッセンス素子、その製造方法、表示装置及び照明装置
WO2016056562A1 (ja) イリジウム錯体、有機エレクトロルミネッセンス材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
KR102426959B1 (ko) 유기 일렉트로루미네센스 소자용 재료, 유기 일렉트로루미네센스 소자, 표시 장치 및 조명 장치
WO2011132550A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP6197404B2 (ja) 有機エレクトロルミネッセンス素子、及び、電子機器
JPWO2009116414A1 (ja) 有機エレクトロルミネッセンス素子
WO2014200067A1 (ja) 有機エレクトロルミネッセンス素子、及び、電子機器
JP7173145B2 (ja) 薄膜、電子デバイス、有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス用材料、表示装置、及び、照明装置
JP2009289716A (ja) 有機エレクトロルミネセンス素子及びその製造方法
JP2010177338A (ja) 有機エレクトロルミネッセンス素子及びその製造方法
WO2019107424A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス用材料、表示装置、及び、照明装置
WO2018116923A1 (ja) 透明電極及び電子デバイス
WO2013176069A1 (ja) 有機エレクトロルミネッセンス素子およびその製造方法
JP2009152033A (ja) 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2008305613A (ja) 有機エレクトロルミネッセンス素子の製造方法
JP2021166212A (ja) 有機エレクトロルミネッセンス素子
JP6687013B2 (ja) 透明電極及び電子デバイス
JP7029404B2 (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス用材料
WO2014181695A1 (ja) 有機エレクトロルミネッセンス素子
WO2014109265A1 (ja) 透明電極、及び、電子デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810435

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522862

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14810435

Country of ref document: EP

Kind code of ref document: A1