WO2014192458A1 - 建設機械の油圧駆動装置 - Google Patents

建設機械の油圧駆動装置 Download PDF

Info

Publication number
WO2014192458A1
WO2014192458A1 PCT/JP2014/061205 JP2014061205W WO2014192458A1 WO 2014192458 A1 WO2014192458 A1 WO 2014192458A1 JP 2014061205 W JP2014061205 W JP 2014061205W WO 2014192458 A1 WO2014192458 A1 WO 2014192458A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
flow rate
actuator
pressure oil
discharge port
Prior art date
Application number
PCT/JP2014/061205
Other languages
English (en)
French (fr)
Inventor
高橋 究
釣賀 靖貴
圭文 竹林
和繁 森
夏樹 中村
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to EP14804940.6A priority Critical patent/EP3006744B1/en
Priority to KR1020157022404A priority patent/KR101754290B1/ko
Priority to CN201480009601.7A priority patent/CN105008724B/zh
Priority to JP2015519741A priority patent/JP6200498B2/ja
Priority to US14/769,922 priority patent/US10107311B2/en
Publication of WO2014192458A1 publication Critical patent/WO2014192458A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • E02F3/325Backhoes of the miniature type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/425Drive systems for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • F15B2211/20584Combinations of pumps with high and low capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/255Flow control functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/265Control of multiple pressure sources
    • F15B2211/2654Control of multiple pressure sources one or more pressure sources having priority
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/265Control of multiple pressure sources
    • F15B2211/2656Control of multiple pressure sources by control of the pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • F15B2211/3053In combination with a pressure compensating valve
    • F15B2211/30535In combination with a pressure compensating valve the pressure compensating valve is arranged between pressure source and directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/31523Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source and an output member
    • F15B2211/31535Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source and an output member having multiple pressure sources and a single output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41509Flow control characterised by the connections of the flow control means in the circuit being connected to a pressure source and a directional control valve
    • F15B2211/41518Flow control characterised by the connections of the flow control means in the circuit being connected to a pressure source and a directional control valve being connected to multiple pressure sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/465Flow control with pressure compensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7135Combinations of output members of different types, e.g. single-acting cylinders with rotary motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7142Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being arranged in multiple groups

Definitions

  • the present invention relates to a hydraulic drive device for a construction machine such as a hydraulic excavator, and particularly includes a pump device having two discharge ports and whose discharge flow rate is controlled by a single pump regulator (pump control device).
  • the present invention relates to a hydraulic drive device for a construction machine including a load sensing system that is controlled so that a discharge pressure of a pump device is higher than a maximum load pressure of a plurality of actuators.
  • a construction machine such as a hydraulic excavator is equipped with a load sensing system that controls the discharge flow rate of the hydraulic pump so that the discharge pressure of the hydraulic pump (main pump) is higher than the maximum load pressure of multiple actuators by the target differential pressure.
  • a load sensing system that controls the discharge flow rate of the hydraulic pump so that the discharge pressure of the hydraulic pump (main pump) is higher than the maximum load pressure of multiple actuators by the target differential pressure.
  • Patent Document 1 in a hydraulic drive device for a construction machine having such a load sensing system, two first and second hydraulic pumps are provided corresponding to the first actuator group and the second actuator group.
  • a pump load sensing system is described.
  • the maximum capacity of one of the two hydraulic pumps is made larger than the maximum capacity of the other hydraulic pump, and the maximum capacity of one of the hydraulic pumps is the actuator having the largest maximum required flow rate.
  • the specific actuator assuming a boom cylinder
  • a split flow type hydraulic pump having two discharge ports is used instead of using two hydraulic pumps.
  • a two-pump load sensing system is described that can be independently controlled based on the respective maximum load pressures of the second actuator group.
  • a split / merge switching valve running independent valve
  • the split / merge switch is used when traveling only or when using a dozer device while traveling.
  • the hydraulic pump for driving the arm cylinder and the hydraulic pump for driving the boom cylinder are separately provided and separated, so that the water averaging operation can be performed.
  • the throttle pressure loss due to the pressure compensation valve for driving the arm cylinder with a low load pressure can be reduced, and wasteful energy consumption can be prevented.
  • the water averaging operation is a combination of a small boom cylinder flow rate + a large arm cylinder flow rate.
  • both the boom cylinder and the arm cylinder are actuators having a maximum required flow rate larger than that of other actuators, and in the actual excavation operation of the hydraulic excavator, there is a combined operation in which the boom cylinder has a large flow rate.
  • the combination of the boom cylinder large flow rate and the arm cylinder small flow rate is obtained.
  • the main body of the hydraulic excavator is horizontally arranged on the upper side of the slope, and from there, the bucket toe is moved obliquely from the valley side to the mountain side (upper side), so-called oblique pulling operation from the upper side of the slope,
  • the arm operation lever is a full input
  • the boom operation lever is a half input
  • the boom cylinder medium flow rate + the arm cylinder large flow rate In this oblique pulling operation, the amount of boom lifting operation varies depending on the angle of the slope and the arm angle relative to the slope (distance between the vehicle body and the tip of the bucket), and the boom cylinder flow is accordingly between the medium flow and the large flow. Will change.
  • Patent Document 1 a confluence valve is provided on one hydraulic pump side, and when the required flow rate of the boom cylinder increases only when the required flow rate of the arm cylinder is small, the discharge flow rate of one hydraulic pump is changed to the discharge rate of the other hydraulic pump. It can be supplied to the boom cylinder by merging with the flow rate.
  • the flow rate of the pressure oil supplied to the boom cylinder may not reach the flow rate required to quickly perform the bucket scraping operation. There is a problem that the speed becomes slow.
  • the object of the present invention is to achieve various flow balances required for the two actuators while suppressing wasteful energy consumption due to the throttle pressure loss of the pressure compensation valve in the combined operation of simultaneously driving the two actuators having the largest required flow rate. It is an object of the present invention to provide a hydraulic drive device for a construction machine that can flexibly respond.
  • the present invention provides a split flow type first pump device having a first discharge port and a second discharge port, and a single flow type second pump device having a third discharge port.
  • a plurality of actuators driven by pressure oil discharged from the first to third discharge ports of the first and second pump devices, and supplied to the plurality of actuators from the first to third discharge ports.
  • a plurality of flow rate control valves for controlling the flow of pressure oil, a plurality of pressure compensation valves for controlling the differential pressure across the plurality of flow rate control valves, and a discharge pressure on the high pressure side of the first and second discharge ports Controls the capacity of the first pump device so as to be higher by the target differential pressure than the maximum load pressure of the actuator driven by the pressure oil discharged from the first and second discharge ports.
  • the discharge pressure of the first pump control device having one load sensing control unit and the third discharge port is higher by the target differential pressure than the maximum load pressure of the actuator driven by the pressure oil discharged from the third discharge port.
  • a second pump control device having a second load sensing control unit for controlling the capacity of the second pump device, wherein the plurality of actuators have a first required flow rate and a maximum required flow rate larger than other actuators.
  • the required flow rate of the first actuator is smaller than a predetermined flow rate, the first actuator is driven only by the pressure oil discharged from the third discharge port of the single-flow type second pump device.
  • the single flow type first flow rate Pressure oil discharged from the third discharge port of the pump device and pressure oil discharged from one of the first and second discharge ports of the split flow type first pump device are merged to form the first actuator
  • the first discharge port of the first pump device and the third discharge port of the second pump device are connected to the first actuator so that the first actuator is driven, and the required flow rate of the second actuator is smaller than a predetermined flow rate
  • the second actuator is driven only by pressure oil discharged from the other of the first and second discharge ports of the split flow type first pump device, and the required flow rate of the second actuator is larger than the predetermined flow rate.
  • the pressure oil discharged from both the first and second discharge ports of the first pump of the split flow type is joined and the It is assumed that the first and second discharge ports of the first pump device and the second actuator are connected so as to drive the second actuator.
  • a combined operation for example, water averaging operation in which the required flow rate of the first actuator (for example, boom cylinder) is small and the required flow rate of the second actuator (for example, arm cylinder) is large. Then, a large flow rate required by the second actuator is supplied from the first discharge port and the second discharge port to the second actuator, the required flow rate of the first actuator (for example, the boom cylinder) is large, and the second actuator (for example, the arm)
  • the combined operation for example, bucket squeezing operation in which the required flow rate of the cylinder) is small
  • a large flow rate required by the first actuator is supplied to the first actuator from the first discharge port and the third discharge port, and the first actuator (for example,
  • the required flow rate of the boom cylinder is equal to or higher than the medium flow rate
  • the second actuator for example, the actuator
  • the first actuator is supplied with a large required flow rate (for example, diagonal pulling operation from the upper side of the slope)
  • the first actuator and the second actuator are respectively driven by pressure oil from separate discharge ports. Even in the combined operation in which the required flow rates of the actuator and the second actuator are both medium flow rate or higher, the first actuator and the second actuator are respectively supplied with pressure oil from separate discharge ports for the third discharge port and the second discharge port. Since it is driven, useless energy consumption due to the throttle pressure loss at the pressure compensation valve of the low load side actuator can be suppressed.
  • the split flow type first pump device is configured to discharge pressure oil of the same flow rate from the first and second discharge ports
  • the plurality of actuators are A third actuator and a fourth actuator that are driven simultaneously and perform a predetermined function when the supply flow rate becomes equal
  • the third actuator is connected to the first and second actuators of the split flow type first pump device.
  • the fourth actuator is driven by pressure oil discharged from the other of the first and second discharge ports of the split flow type first pump device.
  • the first and second discharge ports of the first pump device and the third and fourth actuators are connected.
  • the pressure oil of equal flow rate is discharged from the first and second discharge ports to the respective pressure oil supply passages, and the same amount of pressure oil is always supplied to the third and fourth actuators (for example, the left and right traveling motors),
  • the third and fourth actuators can reliably perform a predetermined function.
  • the first pump control device includes a first torque control actuator to which a discharge pressure of the first discharge port of the split flow type first pump device is guided; An actuator for second torque control to which the discharge pressure of the second discharge port is guided, and the discharge pressure of the first discharge port and the second discharge port by the first and second torque control actuators. As the average pressure of the discharge pressure increases, the capacity of the first pump device is decreased.
  • the third and fourth actuators for example, left and right travel motors
  • the flow rate is less likely to be limited by torque control (horsepower control), and the work efficiency is not greatly reduced.
  • the third and fourth actuators can perform a predetermined function (for example, traveling steering).
  • the first pressure oil supply path connected to the first discharge port of the split flow type first pump device and the second discharge port are connected.
  • the third and fourth actuators and the other actuators driven by the split flow type first pump device are simultaneously driven, they are switched to the communication position.
  • a switching valve that is switched to the shut-off position is further provided.
  • the first discharge port and the second discharge port of the first pump device are equal to each other.
  • a combined operation for example, a traveling combined operation
  • the third and fourth actuators for example, left and right traveling motors
  • the third and fourth actuators for example, left and right traveling motors
  • the plurality of flow control valves are configured to connect a third pressure oil supply path connected to a third discharge port of the second pump device to the first actuator.
  • a second flow rate control valve provided in an oil passage connecting the first pressure oil supply path connected to the first discharge port of the first pump device to the first actuator.
  • a third flow rate control valve provided in an oil passage that connects a second pressure oil supply passage connected to the second discharge port of the first pump device to the second actuator, and a first pressure control valve of the first pump device.
  • a fourth flow rate control valve provided in an oil passage connecting the first pressure oil supply path connected to one discharge port to the second actuator, and the first and third flow rate control valves have a spool stroke
  • the opening area increases as the
  • the opening area characteristic is set so that the maximum opening area is maintained at the intermediate stroke and then the maximum opening area is maintained up to the maximum spool stroke.
  • the second and fourth flow control valves have the spool stroke of the intermediate stroke. The opening area is zero until the upper limit is reached, the opening area increases as the spool stroke increases beyond the intermediate stroke, and the opening area characteristic is set so that the opening area becomes the maximum opening area immediately before the maximum spool stroke. .
  • the connection configuration of the first to third discharge ports and the first and second actuators described in (1) above (if the required flow rate of the first actuator is smaller than the predetermined flow rate, the first actuator is When driven by only the pressure oil discharged from the third discharge port of the second pump device and the required flow rate of the first actuator is larger than the predetermined flow rate, the discharge is made from the third discharge port of the single flow type second pump device. And the pressure oil discharged from one of the first and second discharge ports of the split flow type first pump device are combined to drive the first actuator, and the required flow rate of the second actuator is a predetermined flow rate. If smaller, the second actuator is discharged from the other of the first and second discharge ports of the split flow type first pump device. When the required flow rate of the second actuator is larger than the predetermined flow rate, the pressure oil discharged from both the first and second discharge ports of the split flow type first pump device is merged. Thus, the second actuator can be realized.
  • the first and second actuators are, for example, a boom cylinder and an arm cylinder for driving a boom and an arm of a hydraulic excavator, respectively.
  • the third and fourth actuators are, for example, left and right traveling motors for driving a traveling body of a hydraulic excavator, respectively.
  • the present invention at the time of combined operation in which two actuators having a maximum required flow rate are simultaneously driven, it is possible to achieve various flow balances required for the two actuators while suppressing wasteful energy consumption due to throttle pressure loss of the pressure compensation valve. It can respond flexibly and obtain good composite operability.
  • FIG. 1 shows the hydraulic drive apparatus of the hydraulic shovel (construction machine) concerning the 1st Embodiment of this invention. It is a figure which shows the opening area characteristic of each meter-in channel
  • FIG. 1 is a diagram showing a hydraulic drive device for a hydraulic excavator (construction machine) according to a first embodiment of the present invention.
  • a hydraulic drive device is driven by a prime mover (for example, a diesel engine) 1 and the prime mover 1, and discharges pressure oil to first and second pressure oil supply paths 105 and 205.
  • a split flow type variable displacement main pump 102 (first pump device) having second discharge ports 102a and 102b, and a third discharge driven by the prime mover 1 to discharge the pressure oil to the third pressure oil supply passage 305. It is discharged from a single flow type variable displacement main pump 202 (second pump device) having a port 202a, first and second discharge ports 102a and 102b of the main pump 102, and a third discharge port 202a of the main pump 202.
  • a plurality of actuators 3a, 3b, 3c, 3d, 3e, 3f, 3g, 3h driven by pressure oil; are connected to the third pressure oil supply passages 105, 205, and 305, and are supplied to the plurality of actuators 3 a to 3 h from the first and second discharge ports 102 a and 102 b of the main pump 102 and the third discharge port 202 a of the main pump 202.
  • a control valve unit 4 for controlling the flow of pressure oil, a regulator 112 (first pump control device) for controlling the discharge flow rates of the first and second discharge ports 102a and 102b of the main pump 102, and the main pump 202.
  • a regulator 212 second pump control device for controlling the discharge flow rate of the third discharge port 202a.
  • the control valve unit 4 is connected to the first to third pressure oil supply paths 105, 205, and 305, and a plurality of control valve units 4 are provided from the first and second discharge ports 102 a and 102 b of the main pump 102 and the third discharge port 202 a of the main pump 202.
  • a plurality of flow control valves 6a, 6b, 6c, 6d, 6e, 6f, 6g, 6h, 6i, and 6j for controlling the flow rate of the pressure oil supplied to the actuators 3a to 3h, and a plurality of flow control valves 6a to 6j.
  • a plurality of pressure compensation valves 7a, 7b, 7c, 7d, 7e, 7f, 7g, 7h, 7i for controlling the differential pressure across the plurality of flow control valves 6a to 6j, respectively, so that the differential pressure before and after becomes equal to the target differential pressure.
  • a main relief valve 114 that is connected to the first pressure oil supply passage 105 and controls the pressure of the first pressure oil supply passage 105 so as not to exceed the set pressure; Connected to the second pressure oil supply path 205 and connected to the main pressure relief valve 214 for controlling the pressure of the second pressure oil supply path 105 not to exceed the set pressure and the third pressure oil supply path 305, the third pressure oil A main relief valve 314 that controls the pressure of the supply passage 305 so as not to exceed the set pressure and the first pressure oil supply passage 105 are connected, and the pressure of the first pressure oil supply passage 105 is discharged from the first discharge port 102a.
  • the first pressure oil supply path 105 When the pressure is higher than the pressure (unload valve set pressure) obtained by adding the set pressure (predetermined pressure) of the spring to the maximum load pressure of the actuator driven by the pressure oil, the first pressure oil supply path 105 is opened.
  • An unload valve 115 for returning the pressure oil to the tank and an actuator connected to the second pressure oil supply passage 205 and driven by the pressure oil discharged from the second discharge port 102b are connected to the second pressure oil supply passage 205.
  • An unload valve 215 that is opened when the pressure (unload valve set pressure) obtained by adding the spring set pressure (predetermined pressure) to the maximum load pressure is opened and returns the pressure oil in the second pressure oil supply passage 205 to the tank.
  • the third pressure oil supply path 305, and the pressure of the third pressure oil supply path 305 is set to the maximum load pressure of the actuator driven by the pressure oil discharged from the third discharge port 202a.
  • an unloading valve 315 that opens when the pressure (unloading valve set pressure) is higher than the pressure (unloading valve set pressure) and returns the pressure oil in the third pressure oil supply passage 305 to the tank.
  • the control valve unit 4 is also connected to the load port of the flow rate control valves 6c, 6d, 6f, 6i, 6j connected to the first pressure oil supply passage 105, and the highest of the actuators 3a, 3b, 3c, 3d, 3f.
  • a first load pressure detection circuit 131 including a shuttle valve 9c, 9d, 9f, 9i, 9j for detecting the load pressure Plmax1, and flow control valves 6b, 6e, 6g, 6h connected to the second pressure oil supply passage 205;
  • a second load pressure detection circuit 132 including a shuttle valve 9b, 9e, 9g, 9h that is connected to the load port and detects the maximum load pressure Plmax2 of the actuators 3b, 3e, 3g, 3h, and a third pressure oil supply path 305
  • a third load pressure detection circuit 133 is connected to the load port of the flow control valve 6a to be connected and detects the load pressure (maximum load pressure) Plmax3 of the actuator 3a, and the pressure of the first pressure oil supply path 105.
  • the pressure of the third pressure oil supply passage 305 that is, the pump pressure of the third discharge port 202a) P3 and the maximum load pressure Plmax3 detected by the third load pressure detection circuit 133 (in the third pressure oil supply passage 305)
  • Load pressure of the actuators 3a to be continued - and a differential pressure reducing valve 311 which outputs the difference between the load pressure) of the boom cylinder 3a in the illustrated embodiment the (LS differential pressure) as an absolute pressure PLS3.
  • the above-described unload valve 115 receives the maximum load pressure Plmax1 detected by the first load pressure detection circuit 131 as the maximum load pressure of the actuator driven by the pressure oil discharged from the first discharge port 102a.
  • the maximum load pressure Plmax2 detected by the second load pressure detection circuit 132 is guided to the unload valve 215 as the maximum load pressure of the actuator driven by the pressure oil discharged from the second discharge port 102b.
  • a maximum load pressure Plmax3 detected by the third load pressure detection circuit 133 is guided to the unload valve 315 as the maximum load pressure of the actuator driven by the pressure oil discharged from the third discharge port 202a.
  • the LS differential pressure (absolute pressure Pls1) output from the differential pressure reducing valve 111 is a pressure compensation valve 7c, 7d, 7f, 7i, 7j connected to the first pressure oil supply passage 105 and a regulator 112 of the main pump 102.
  • LS differential pressure (absolute pressure Pls2) output from the differential pressure reducing valve 211 is supplied to the pressure compensating valves 7b, 7e, 7g, 7h connected to the second pressure oil supply passage 205 and the regulator 112 of the main pump 102.
  • the LS differential pressure (absolute pressure Pls3) output from the differential pressure reducing valve 311 is guided to the pressure compensating valve 7a connected to the third pressure oil supply passage 305 and the regulator 212 of the main pump 202.
  • the actuator 3a is connected to the first discharge port 102a through the flow control valve 6i and the pressure compensation valve 7i and the first pressure oil supply passage 105, and the flow control valve 6a and the pressure compensation valve 7a and the third pressure. It is connected to the third discharge port 202a via the oil supply path 305.
  • the actuator 3a is, for example, a boom cylinder that drives a boom of a hydraulic excavator, the flow control valve 6a is for main driving of the boom cylinder 3a, and the flow control valve 6i is for driving assist of the boom cylinder 3a.
  • the actuator 3b is connected to the first discharge port 102a via the flow control valve 6j and the pressure compensation valve 7j and the first pressure oil supply path 105, and the flow control valve 6b, the pressure compensation valve 7b and the second pressure oil supply path. It is connected to the second discharge port 102b via 205.
  • the actuator 3b is, for example, an arm cylinder that drives the arm of a hydraulic excavator, the flow control valve 6b is for main drive of the arm cylinder 3b, and the flow control valve 6j is for assist drive of the arm cylinder 3b.
  • the actuators 3c, 3d, and 3f are connected to the first discharge port 102a through the flow rate control valves 6c, 6d, and 6f and the pressure compensation valves 7c, 7d, and 7f and the first pressure oil supply path 105, respectively.
  • 3h is connected to the second discharge port 102b via the flow rate control valves 6g, 6e, 6h and the pressure compensation valves 7g, 7e, 7h and the second pressure oil supply passage 205, respectively.
  • the actuators 3c, 3d, and 3f are, for example, a turning motor that drives an upper turning body of a hydraulic excavator, a bucket cylinder that drives a bucket, and a left traveling motor that drives a left crawler track of the lower traveling body.
  • the actuators 3g, 3e, and 3h are, for example, a right traveling motor that drives the right track of the lower traveling body of the excavator, a swing cylinder that drives the swing post, and a blade cylinder that drives the blade.
  • the control valve 4 includes a travel combined operation detection oil passage 53 whose upstream side is connected to a pilot pressure oil supply passage 31b (described later) via a throttle 43 and whose downstream side is connected to a tank via operation detection valves 8a to 8j.
  • the first switching valve 40, the second switching valve 146, and the third switching valve 246 that switch based on the operation detection pressure generated by the traveling composite operation detection oil passage 53 are provided.
  • the travel combined operation detection oil passage 53 is at least one of the operation detection valves 8a to 8j when it is not a travel combined operation that simultaneously drives the left travel motor 3f and / or the right travel motor 3g and at least one of the other actuators.
  • the pressure of the oil passage becomes the tank pressure by communicating with the tank via the, and at the time of traveling combined operation, any of the operation detection valves 8f and 8g and the operation detection valves 8a to 8j together with the corresponding flow control valve
  • the operation detection pressure (operation detection signal) is generated when the tank is disconnected and the communication with the tank is cut off.
  • the first switching valve 40 When the first switching valve 40 is not a travel combined operation, the first switching valve 40 is in a first position (blocking position) on the lower side in the figure, and blocks communication between the first pressure oil supply path 105 and the second pressure oil supply path 205. During the traveling combined operation, the first pressure oil supply path 105 and the second pressure oil supply path 205 are switched to the second position (communication position) on the upper side in the figure by the operation detection pressure generated in the traveling combined operation detection oil path 53. To communicate.
  • the second switching valve 146 is in the first position on the lower side of the figure when it is not a travel combined operation, and guides the tank pressure to the shuttle valve 9g at the most downstream side of the second load pressure detection circuit 132, and during the travel combined operation,
  • the operation detection pressure generated in the travel combined operation detection oil passage 53 is switched to the second position on the upper side in the figure, and the maximum load pressure Plmax1 (in the first pressure oil supply passage 105 detected by the first load pressure detection circuit 131) is switched.
  • the maximum load pressure of the connected actuators 3a, 3b, 3c, 3d, 3f) is guided to the most downstream shuttle valve 9g of the second load pressure detection circuit 132.
  • the third switching valve 246 is in the first position on the lower side of the drawing when it is not a travel combined operation, and guides the tank pressure to the shuttle valve 9f at the most downstream side of the first load pressure detection circuit 131.
  • the operation detection pressure generated in the traveling combined operation detection oil passage 53 is switched to the second position on the upper side in the figure, and the maximum load pressure Plmax2 (in the second pressure oil supply passage 205 is detected by the second load pressure detection circuit 132).
  • the maximum load pressure of the connected actuators 3b, 3e, 3g, and 3h) is guided to the most downstream shuttle valve 9f of the first load pressure detection circuit 131.
  • the hydraulic drive apparatus is connected to a fixed displacement pilot pump 30 driven by the prime mover 1 and a pressure oil supply passage 31a of the pilot pump 30, and the discharge flow rate of the pilot pump 30 is set to an absolute pressure Pgr.
  • a pilot relief valve 32 that is connected to a pilot pressure oil supply passage 31b downstream of the prime mover rotation speed detection valve 13 and generates a constant pilot pressure in the pilot pressure oil supply passage 31b.
  • a gate lock valve 100 connected to the pilot pressure oil supply passage 31b and switching the downstream pressure oil supply passage 31c to the pressure oil supply passage 31b or the tank by the gate lock lever 24;
  • a plurality of flow rate control valves 6a which will be described later, are connected to a pilot pressure oil supply passage 31c on the downstream side of 100.
  • a plurality of operating devices 122, 123, 124a, 124b having a plurality of pilot valves (pressure reducing valves) for generating operating pilot pressures for controlling b, 6c, 6d, 6e, 6f, 6g, 6h; It has.
  • the prime mover rotational speed detection valve 13 includes a flow rate detection valve 50 connected between the pressure oil supply passage 31a and the pilot pressure oil supply passage 31b of the pilot pump 30, and an absolute pressure Pgr. And a differential pressure reducing valve 51 that outputs as follows.
  • the flow rate detection valve 50 has a variable throttle portion 50a that increases the opening area as the passing flow rate (discharge flow rate of the pilot pump 30) increases.
  • the oil discharged from the pilot pump 30 passes through the variable throttle 50a of the flow rate detection valve 50 and flows toward the pilot oil passage 31b.
  • a differential pressure increases and decreases in the variable throttle portion 50a of the flow rate detection valve 50 as the passing flow rate increases, and the differential pressure reducing valve 51 outputs the differential pressure before and after as an absolute pressure Pgr. Since the discharge flow rate of the pilot pump 30 varies depending on the rotational speed of the prime mover 1, the discharge flow rate of the pilot pump 30 can be detected by detecting the differential pressure across the variable throttle 50a. Can be detected.
  • the regulator 112 (first pump control device) of the main pump 102 is a low pressure of the LS differential pressure (absolute pressure Pls1) output from the differential pressure reducing valve 111 and the LS differential pressure (absolute pressure Pls2) output from the differential pressure reducing valve 211.
  • the output pressure (absolute pressure) Pgr the input side is connected to the pilot pressure oil supply passage 31b to increase the output pressure.
  • the input side is connected to the tank
  • the main pump 102 first and Torque control (horsepower control) pistons 112e and 112d that reduce the tilt (capacity) of the main pump 102 by the pressures of the two pressure oil supply passages 105 and 205 being led
  • the pressure of the 3rd discharge port 305 is guide
  • the regulator 212 (second pump control device) of the main pump 202 is a differential pressure between the LS differential pressure (absolute pressure Pls3) output from the differential pressure reducing valve 311 and the output pressure (absolute pressure) Pgr of the prime mover rotational speed detection valve 13.
  • the LS control valve 212b When the LS differential pressure> the output pressure (absolute pressure) Pgr, the LS control valve 212b operates according to the above, the input side is connected to the pilot pressure oil supply passage 31b to increase the output pressure, and the LS differential pressure ⁇ output
  • the pressure (absolute pressure) Pgr When the pressure (absolute pressure) Pgr is reached, the output pressure of the LS control valve 212b and the LS control valve 212b that reduce the output pressure by communicating the input side with the tank is guided, and the increase in the output pressure causes the main pump 202 to Torque control that reduces the tilt (capacity) of the main pump 202 by introducing the pressure of the LS control piston 212c that decreases the tilt (capacity) and the pressure of the third pressure oil supply passage 305 of the main pump 202. (Horsepower control) piston 212d.
  • the low pressure selection valve 112a, the LS control valve 112b, and the LS control piston 112c of the regulator 112 have a discharge pressure of the first and second discharge ports 102a and 102b, and the first and second discharge ports 102a
  • a first load sensing control unit is configured to control the capacity of the main pump 102 (first pump device) so as to be higher by the target differential pressure than the maximum load pressure of the actuator driven by the pressure oil discharged from 102b.
  • the LS control valve 212b and the LS control piston 212c of the regulator 212 (second pump control device) are configured so that the discharge pressure of the third discharge port 202a is the maximum load of the actuator driven by the pressure oil discharged from the third discharge port 202a.
  • a second load sensing control unit is configured to control the capacity of the main pump 202 (second pump device) so as to be higher than the pressure by the target differential pressure.
  • the torque control pistons 112d and 112e, the pressure reducing valve 112g, and the torque control piston 112f of the regulator 112 have an average pressure of the discharge pressure of the first discharge port 102a and the discharge pressure of the second discharge port 102b.
  • a torque control unit that decreases the capacity of the main pump 102 (first pump device) as it increases, and decreases the capacity of the main pump 102 (first pump device) as the discharge pressure of the third discharge port 202a increases.
  • the torque control piston 212d of the regulator 212 reduces the capacity of the main pump 202 (second pump device) as the discharge pressure of the third discharge port 202a increases.
  • FIG. 2A is a diagram showing the opening area characteristics of the meter-in passages of the flow control valves 6c to 6h of the actuators 3c to 3h other than the boom cylinder 3a and the arm cylinder 3b.
  • These flow control valves have an opening area characteristic so that the opening area increases as the spool stroke increases beyond the dead zone 0-S1, and the maximum opening area A3 is set immediately before the maximum spool stroke S3. Yes.
  • the maximum opening area A3 has a specific size depending on the type of actuator.
  • FIG. 2B shows the flow control valves 6a and 6i (first and second flow control valves) of the boom cylinder 3a and the flow control valves 6b and 6j (third and fourth flow control valves) of the arm cylinder 3b. It is a figure which shows the opening area characteristic of a meter-in channel
  • the flow control valve 6a (first flow control valve) for main drive of the boom cylinder 3a increases in opening area as the spool stroke increases beyond the dead zone 0-S1, and reaches the maximum opening area A1 in the intermediate stroke S2. Thereafter, the opening area characteristic is set so that the maximum opening area A1 is maintained up to the maximum spool stroke S3. The same applies to the opening area characteristics of the main drive flow control valve 6b (third flow control valve) of the arm cylinder 3b.
  • the flow control valve 6i (second flow control valve) for assist drive of the boom cylinder 3a has an opening area of zero until the spool stroke reaches the intermediate stroke S2, and the spool stroke increases beyond the intermediate stroke S2. Therefore, the opening area characteristic is set so that the opening area increases and the maximum opening area A2 is reached immediately before the maximum spool stroke S3.
  • the opening area characteristic of the flow control valve 6j (fourth flow control valve) for assist driving of the arm cylinder 3b is also the same.
  • FIG. 2B is a diagram showing a composite opening area characteristic of meter-in passages of the flow control valves 6a and 6i of the boom cylinder 3a and the flow control valves 6b and 6j of the arm cylinder 3b.
  • the meter-in passages of the flow control valves 6a and 6i of the boom cylinder 3a each have the opening area characteristics as described above.
  • the opening area increases as the spool stroke increases beyond the dead zone 0-S1, and the maximum The combined opening area characteristic is the maximum opening area A1 + A2 immediately before the spool stroke S3.
  • the synthetic opening area characteristics of the synthetic opening area characteristics of the flow control valves 6b and 6j of the arm cylinder 3b are the same.
  • the combined maximum opening area A1 + A2 of 6b and 6j has a relationship of A1 + A2> A3. That is, the boom cylinder 3a and the arm cylinder 3b are actuators having a maximum required flow rate higher than those of other actuators.
  • the required flow rate of the boom cylinder 3a (first actuator) can be reduced.
  • the boom cylinder 3a (first actuator) is driven only by the pressure oil discharged from the third discharge port 202a of the single flow type main pump 202 (second pump device).
  • the discharge is discharged from the third discharge port 202a of the single flow type main pump 202 (second pump device).
  • Pressure oil and split flow type main pump 201 first pump device
  • the first discharge port 102a and the main pump of the main pump 102 are combined with the pressure oil discharged from the outlet port 102a (one of the first and second discharge ports) to drive the boom cylinder 3a (first actuator).
  • the split floater Main pump 102 so as to drive the arm cylinder 3b (second actuator) by merging the pressure oil discharged from both the first and second discharge ports 102a, 102b of the main pump 102 (first pump device).
  • the first and second discharge ports 102a and 102b are connected to the arm cylinder 3b.
  • the actuator 3f is, for example, a left traveling motor of a hydraulic excavator
  • the actuator 3g is, for example, a right traveling motor of a hydraulic excavator.
  • Acting actuator In the present embodiment, the left traveling motor 3f (third actuator) is discharged from the first discharge port 102a (one of the first and second discharge ports) of the split flow type main pump 102 (first pump device). Driven by pressure oil, the right travel motor 3g (fourth actuator) is discharged from the second discharge port 102b (the other of the first and second discharge ports) of the split flow type main pump 102 (first pump device).
  • the first and second discharge ports 102a and 102b of the split flow type main pump 102 (first pump device) and the left and right traveling motors 3f and 3g (third and fourth actuators) are connected so as to be driven by pressure oil. Has been.
  • FIG. 3 is a diagram showing the external appearance of a hydraulic excavator in which the above-described hydraulic drive device is mounted.
  • a hydraulic excavator well known as a work machine includes a lower traveling body 101, an upper swing body 109, and a swing-type front work machine 104.
  • the front work machine 104 includes a boom 104a, an arm 104b, The bucket 104c is configured.
  • the upper swing body 109 can swing with respect to the lower traveling body 101 by a swing motor 3c.
  • a swing post 103 is attached to the front portion of the upper swing body 109, and a front work machine 104 is attached to the swing post 103 so as to be movable up and down.
  • the swing post 103 can be rotated in the horizontal direction with respect to the upper swing body 109 by expansion and contraction of the swing cylinder 3e. It can be turned up and down by 3d expansion and contraction.
  • a blade 106 that moves up and down by expansion and contraction of the blade cylinder 3h is attached to the central frame of the lower traveling body 102.
  • the lower traveling body 101 travels by driving the left and right crawler belts 101a and 101b by the rotation of the traveling motors 3f and 3g.
  • the upper swing body 109 is provided with a canopy type driver's cab 108.
  • the driver's cab 108 there is a driver's seat 121, left / right operation devices 122 and 123 for front / turn (only the left side is shown in FIG. 3), and for driving.
  • Operating devices 124a and 124b (only the left side is shown in FIG. 3), a swing operating device (not shown), a blade operating device, a gate lock lever 24, and the like.
  • the operation levers of the operation devices 122 and 123 can be operated in any direction based on the cross direction from the neutral position. When the left operation lever of the operation device 122 is operated in the front-rear direction, the operation device 122 is used for turning.
  • the operating device 122 When functioning as an operating device and operating the operating lever of the operating device 122 in the left-right direction, the operating device 122 functions as an operating device for the arm, and when operating the operating lever of the right operating device 123 in the front-rear direction, The operation device 123 functions as a boom operation device. When the operation lever of the operation device 123 is operated in the left-right direction, the operation device 123 functions as a bucket operation device.
  • the pressure oil discharged from the fixed displacement pilot pump 30 driven by the prime mover 1 is supplied to the pressure oil supply passage 31a.
  • a prime mover rotation speed detection valve 13 is connected to the pressure oil supply passage 31a. Is output as the absolute pressure Pgr.
  • a pilot relief valve 32 is connected downstream of the prime mover rotation speed detection valve 13 to generate a constant pressure in the pilot pressure oil supply passage 31b.
  • the maximum load pressures Plmax1, Plmax2, Plmax3 are the tank pressures as described above, and assuming that the tank pressure is approximately 0 MPa, the unload valve set pressure is equal to the spring set pressure Pun0, The pressures P1, P2, and P3 of the first, second, and third pressure oil supply passages 105, 205, and 305 are maintained at Pun0.
  • Pun0 is set slightly higher than the output pressure Pgr of the prime mover rotation speed detection valve 13 (Pun0> Pgr).
  • the differential pressure reducing valves 111, 211, 311 are respectively pressures P1, P2, P3 and maximum load pressures Plmax1, Plmax2, Plmax3 (tank pressure) of the first, second and third pressure oil supply passages 105, 205, 305.
  • Pls1 and Pls2, which are LS differential pressures, are led to the low pressure selection valve 112a of the regulator 112, and Pls3 is led to the LS control valve 212b of the regulator 212.
  • the low pressure side of the LS differential pressures Pls1 and Pls2 led to the low pressure selection valve 112a is selected and led to the LS control valve 112b.
  • Pls1 or Pls2> Pgr so the LS control valve 122b is pushed leftward in the figure to switch to the right position, and is generated by the pilot relief valve 32.
  • the constant pilot pressure is guided to the LS control piston 112c. Since pressure oil is guided to the LS control piston 112c, the capacity of the main pump 102 is kept to a minimum.
  • the LS differential pressure Pls3 is guided to the LS control valve 212b of the regulator 212. Since Pls3> Pgr, the LS control valve 212b is pushed rightward in the drawing to switch to the left position, and guides a constant pilot pressure generated by the pilot relief valve 32 to the LS control piston 212c. Since pressure oil is guided to the LS control piston 212c, the capacity of the main pump 202 is kept to a minimum.
  • the load pressure on the bottom side of the boom cylinder 3a is set to the maximum load pressure Plmax3 by the third load pressure detection circuit 133 via the load port of the flow rate control valve 6a. Detected and guided to the unload valve 315 and the differential pressure reducing valve 311.
  • the set pressure of the unload valve 315 is the pressure obtained by adding the spring set pressure Pun0 to the maximum load pressure Plmax3 (load pressure on the bottom side of the boom cylinder 3a).
  • the oil passage that rises and discharges the pressure oil in the third pressure oil supply passage 305 to the tank is shut off.
  • the differential pressure reducing valve 311 absolutely calculates the differential pressure (LS differential pressure) between the pressure P3 of the third pressure oil supply passage 305 and the maximum load pressure Plmax3. Output as pressure Pls3.
  • This Pls3 is guided to the LS control valve 212b.
  • the LS control valve 212b compares the output pressure Pgr of the prime mover rotational speed detection valve 13, which is the target LS differential pressure, with the Pls3.
  • the first load pressure detection circuit 131 connected to the load port of the flow control valve 6i detects the tank pressure as the maximum load pressure Plmax1. For this reason, the discharge flow rate of the main pump 102 is kept to a minimum as in the case where all the operation levers are neutral.
  • the flow rate of the main pump 202 is controlled so that Pls3 is equal to Pgr according to the load pressure on the bottom side of the boom cylinder 3a detected via the flow rate control valve 6a.
  • a flow rate corresponding to the input of the boom operation lever is supplied to the bottom side of the cylinder 3a.
  • the load pressure on the bottom side of the boom cylinder 3a is detected as the maximum load pressure Plmax1 by the first load pressure detection circuit 131 via the load port of the flow rate control valve 6i, and is supplied to the unload valve 115 and the differential pressure reducing valve 111.
  • the set pressure of the unload valve 115 becomes a pressure obtained by adding the spring set pressure Pun0 to the maximum load pressure Plmax1 (load pressure on the bottom side of the boom cylinder 3a).
  • the oil passage that rises and discharges the pressure oil in the first pressure oil supply passage 105 to the tank is shut off.
  • the differential pressure reducing valve 111 absolutely calculates the differential pressure (LS differential pressure) between the pressure P1 of the first pressure oil supply passage 105 and the maximum load pressure Plmax1. Output as pressure Pls1.
  • This Pls1 is led to the low pressure selection valve 112a of the regulator 112, and the low pressure side of Pls1 and Pls2 is selected by the low pressure selection valve 112a.
  • the LS control valve 112b compares the output pressures Pgr and Pls1 of the prime mover rotational speed detection valve 13 which is the target LS differential pressure.
  • the pressure oil having the same flow rate as the pressure oil supplied to the first pressure oil supply passage 105 is supplied to the second pressure oil supply passage 205, and the pressure oil is supplied to the tank via the unload valve 215 as an excessive flow rate.
  • the second load pressure detection circuit 132 detects the tank pressure as the maximum load pressure Plmax2. For this reason, the set pressure of the unload valve 215 becomes equal to the set pressure Pun0 of the spring, and the pressure P2 of the second pressure oil supply passage 205 is kept at a low pressure of Pun0. As a result, the pressure loss of the unload valve 215 when the surplus flow returns to the tank is reduced, and operation with less energy loss becomes possible.
  • the load pressure on the bottom side of the arm cylinder 3b is set to the maximum load pressure Plmax2 by the second load pressure detection circuit 132 via the load port of the flow rate control valve 6b. Detected and guided to the unload valve 215 and the differential pressure reducing valve 211.
  • the maximum load pressure Plmax2 is guided to the unload valve 215, the set pressure of the unload valve 215 becomes the pressure obtained by adding the spring set pressure Pun0 to the maximum load pressure Plmax2 (load pressure on the bottom side of the arm cylinder 3b).
  • the oil passage that rises and discharges the pressure oil in the second pressure oil supply passage 205 to the tank is shut off.
  • the differential pressure reducing valve 211 absolutely calculates the differential pressure (LS differential pressure) between the pressure P2 of the second pressure oil supply passage 205 and the maximum load pressure Plmax2. Output as pressure Pls2.
  • This Pls2 is guided to the low pressure selection valve 112a of the regulator 112, and the low pressure side of Pls1 and Pls2 is selected by the low pressure selection valve 112a.
  • the LS control valve 112b compares the output pressures Pgr and Pls2 of the prime mover rotational speed detection valve 13 that are target LS differential pressures.
  • Pls2 which is the LS differential pressure
  • Pls2 ⁇ Pgr the capacity of the main pump 102
  • the pressure oil having the same flow rate as the pressure oil supplied to the second pressure oil supply passage 205 is supplied to the first pressure oil supply passage 105, and the pressure oil is supplied to the tank via the unload valve 115 as an excessive flow rate.
  • the first load pressure detection circuit 131 detects the tank pressure as the maximum load pressure Plmax1, the set pressure of the unload valve 115 becomes equal to the set pressure Pun0 of the spring, and the pressure P1 of the first pressure oil supply path 105 Is kept at the low pressure of Pun0.
  • the pressure loss of the unload valve 115 when the surplus flow returns to the tank is reduced, and operation with less energy loss becomes possible.
  • the load pressure on the bottom side of the arm cylinder 3b is detected as the maximum load pressure Plmax2 by the second load pressure detection circuit 132 via the load port of the flow control valve 6b, and the unload valve 215 Shuts off the oil passage for discharging the pressure oil in the second pressure oil supply passage 205 to the tank. Further, when the maximum load pressure Plmax2 is led to the differential pressure reducing valve 211, Pls2 which is an LS differential pressure is outputted and led to the low pressure selection valve 112a of the regulator 112.
  • the unload valve 115 blocks the oil passage for discharging the pressure oil in the first pressure oil supply passage 105 to the tank.
  • the water average operation is a combination of a boom raising fine operation and a full arm cloud operation.
  • the actuator is an operation in which the arm cylinder 3b extends and the boom cylinder 3a extends.
  • the opening area of the meter-in passage of the main drive flow control valve 6a of the boom cylinder 3a is A1, and flow control for assist drive is performed.
  • the opening area of the meter-in passage of the valve 6i is maintained at zero.
  • the load pressure of the boom cylinder 3a is detected as the maximum load pressure Plmax3 by the third load pressure detection circuit 133 via the load port of the flow control valve 6a, and the unload valve 315 tanks the pressure oil in the third pressure oil supply passage 305.
  • the maximum load pressure Plmax3 is fed back to the regulator 212 of the main pump 202, the capacity (flow rate) of the main pump 202 increases according to the required flow rate (opening area) of the flow control valve 6a, and the third discharge of the main pump 202 is performed.
  • the flow rate according to the input of the boom operation lever is supplied from the port 202a to the bottom side of the boom cylinder 3a, and the boom cylinder 3a is driven in the extending direction by the pressure oil from the third discharge port 202a.
  • the valves 115 and 215 block the oil passages for discharging the pressure oil from the first and second pressure oil supply passages 105 and 205 to the tank, respectively.
  • the maximum load pressures Plmax1 and Plmax2 are fed back to the regulator 112 of the main pump 102, and the capacity (flow rate) of the main pump 102 increases according to the required flow rate (opening area) of the flow control valves 6b and 6j.
  • the first and second discharge ports 102a and 102b are supplied with pressure oil at a flow rate corresponding to the input of the arm operation lever to the bottom side of the arm cylinder 3b.
  • the arm cylinder 3b is supplied from the first and second discharge ports 102a and 102b. It is driven in the extension direction by the pressure oil that has joined.
  • the load pressure of the arm cylinder 3b is usually low and the load pressure of the boom cylinder 3a is often high.
  • the hydraulic pump that drives the boom cylinder 3a is the main pump 202
  • the hydraulic pump that drives the arm cylinder 3b is the main pump 102, and the like.
  • the maximum load pressure Plmax3 is fed back to the regulator 212 of the main pump 202, and the capacity (flow rate) of the main pump 202 increases in accordance with the required flow rate (opening area) of the flow control valve 6a.
  • Pressure oil having a flow rate corresponding to the input of the boom operation lever is supplied from the port 202a to the bottom side of the boom cylinder 3a.
  • Pls1 which is the LS differential pressure, is outputted and led to the low pressure selection valve 112a of the regulator 112.
  • the opening area of the meter-in passage of the assist control flow control valve 6j is maintained at 0, and the main drive flow control valve 6b
  • the opening area of the meter-in passage is A1.
  • the load pressure of the arm cylinder 3b is detected as the maximum load pressure Plmax2 by the second load pressure detection circuit 132, and the unload valve 215 blocks the oil passage through which the pressure oil in the second pressure oil supply passage 205 is discharged to the tank. Further, when the maximum load pressure Plmax2 is led to the differential pressure reducing valve 211, Pls2 which is an LS differential pressure is outputted and led to the low pressure selection valve 112a of the regulator 112.
  • Pls1 becomes the low pressure side
  • Pls1 is selected by the low pressure selection valve 112a
  • the capacity (flow rate) of the main pump 102 increases in accordance with the required flow rate of the flow control valve 6i for assist driving of the boom cylinder 3a.
  • the discharge flow rate of the second discharge port 102b of the main pump 102 also increases accordingly, and the flow rate of the pressure oil supplied to the bottom side of the arm cylinder 3b is smaller than the discharge flow rate of the second discharge port 102b. Therefore, an excessive flow rate is generated in the second pressure oil supply path 205. This excess flow rate is discharged to the tank via the unload valve 211.
  • the load pressure of the arm cylinder 3b is led to the unload valve 211 as the maximum load pressure Plmax2. Since the load pressure of the arm cylinder 3b is low as described above, the set pressure of the unload valve 211 is also set low. Has been. For this reason, when the surplus flow rate of the pressure oil in the second discharge port 102b is discharged to the tank via the unload valve 211, the energy consumed in vain by the discharged oil is kept small.
  • the arm operation lever In the diagonal pulling operation from the upper side of the slope, the arm operation lever is normally operated with full input in the arm cloud direction, and the boom operation lever is operated with half input in the boom raising direction in order to move the bucket toe along the slope. That is, it is a combination of a boom raising half operation and an arm cloud full operation.
  • the lever operation amount for raising the boom is determined by the arm angle (distance between the vehicle body and the bucket tip) with respect to the slope. For example, the lever operation amount for raising the boom increases at the start of the pulling operation of the diagonal pulling operation, but the lever operation amount for raising the boom decreases as the diagonal pulling operation proceeds.
  • each flow control valve 6a, 6i for main / assist drive for boom raising stroked by half operation of raising the boom is S2 or more and S3 or less in FIG. 2B. think of.
  • the flow control valve 6a for main drive for raising the boom is switched upward in the figure, and the load pressure of the boom cylinder 3a is maximized by the third load pressure detection circuit 133 as described in the above (b).
  • the load pressure Plmax3 is detected, and the unload valve 315 blocks the oil passage for discharging the pressure oil in the third pressure oil supply passage 305 to the tank.
  • the maximum load pressure Plmax3 is fed back to the regulator 212 of the main pump 202, and the capacity (flow rate) of the main pump 202 increases according to the required flow rate (opening area) of the flow control valve 6a. Is supplied to the bottom side of the boom cylinder 3a.
  • the flow rate control valve 6i for assist driving is also switched upward in the figure by the half operation of raising the boom, and the load pressure of the boom cylinder 3a is the shuttle valve of the first load pressure detection circuit 131 via the flow rate control valve 6i. 9i. Since the arm cloud is fully operated, the load pressure of the arm cylinder 3b is also guided to the shuttle valve 9i via the flow control valve 6j and the shuttle valves 9j, 9d, 9c of the first load pressure detection circuit 131.
  • the load pressure of the boom cylinder 3a is higher than the load pressure of the arm cylinder 3b.
  • the unload valve 115 blocks the oil passage for discharging the pressure oil in the first pressure oil supply passage 105 to the tank. Further, when the maximum load pressure Plmax1 is led to the differential pressure reducing valve 111, Pls1, which is the LS differential pressure, is outputted and led to the low pressure selection valve 112a of the regulator 112.
  • the load pressure of the arm cylinder 3b is detected as the maximum load pressure Plmax2 by the second load pressure detection circuit 132 via the load port of the flow control valve 6b, and the unload valve 215 is the pressure of the second pressure oil supply passage 205. Shut off the oil passage that drains the oil into the tank. Further, when the maximum load pressure Plmax2 is led to the differential pressure reducing valve 211, Pls2 which is an LS differential pressure is outputted and led to the low pressure selection valve 112a of the regulator 112.
  • the low pressure side of Pls1 and Pls2 led to the low pressure selection valve 112a is selected and led to the LS control valve 112b.
  • the LS control valve 112b controls the capacity (flow rate) of the main pump 102 so that the low pressure side of Pls1 and Pls2 is equal to the target LS differential pressure Pgr, and the pressure oil at the flow rate is supplied from the main pump 102 to the first and second discharge oils.
  • the ink is discharged to the paths 102a and 102b.
  • the pressure oil discharged to the first pressure oil supply passage 105 is supplied to the boom cylinder 3a via the pressure compensation valve 7i and the flow rate control valve 6i, and also via the pressure compensation valve 7j and the flow rate control valve 6j. It is also supplied to the arm cylinder 3b.
  • the pressure oil discharged to the second pressure oil supply passage 205 is supplied only to the arm cylinder 3b via the pressure compensation valve 7b and the flow rate control valve 6b.
  • the required flow rate on the first pressure oil supply path 105 side and the required flow rate on the second pressure oil supply path 205 side are compared, the required flow rate on the first pressure oil supply path 105 side is larger, and Pls1 and Pls2 , Pls1 becomes the low pressure side, Pls1 is selected by the low pressure selection valve 112a, and the capacity (flow rate) of the main pump 102 depends on Pls1 (that is, according to the required flow rates of the flow control valve 6i and the flow control valve 6j). To increase.
  • the main pump 102 can supply pressure oil to the second pressure oil supply passage 205 without being insufficient with respect to the required flow rate of the flow control valve 6b.
  • so-called saturation occurs in which the sum of the required flow rates of the flow rate control valve 6 i of the boom cylinder 3 a and the flow rate control valve 6 j of the arm cylinder 3 b exceeds the discharge flow rate of the main pump 102.
  • the second pressure oil supply passage 205 is supplied with the pressure oil that exceeds the required flow rate of the flow control valve 6b. Excess pressure oil supplied to the second pressure oil supply passage 205 is discharged to the tank by the unload valve 215.
  • the operation detection valves 8f and 8g are also switched.
  • pressure oil is supplied via the throttle 43.
  • the pressure oil supplied from the path 31b to the traveling combined operation detection oil path 43 is discharged to the tank.
  • the pressure for switching the first to third switching valves 40, 146 and 246 downward in the figure is equal to the tank pressure, so that the first to third switching valves 40, 146 and 246 are actuated by the action of the spring. It is held at the middle / lower switching position.
  • the first pressure oil supply path 105 and the second pressure oil supply path 205 are shut off, and the most downstream shuttle valve 9g of the second load pressure detection circuit 132 is connected to the tank pressure via the first switching valve 146.
  • the tank pressure is guided to the shuttle valve 9 f at the most downstream side of the first load pressure detection circuit 131 via the second switching valve 246. Therefore, the load pressure of the travel motor 3f is detected as the maximum load pressure Plmax1 by the first load pressure detection circuit 131 via the load port of the flow control valve 6f, and the load pressure of the travel motor 3g is detected by the load of the flow control valve 6g.
  • the oil pressure is detected as the maximum load pressure Plmax2 by the second load pressure detection circuit 132 through the port, and the unload valves 115 and 215 are oil passages for discharging the pressure oil of the first and second pressure oil supply passages 105 and 205 to the tank, respectively. Shut off. Further, when the maximum load pressures Plmax1 and Plmax2 are led to the differential pressure reducing valves 111 and 211, respectively, the LS differential pressures Pls1 and Pls2 are output. 112a.
  • the low pressure side of the LS differential pressures Pls1 and Pls2 led to the low pressure selection valve 112a is selected and led to the LS control valve 112b.
  • the LS control valve 112b controls the capacity (flow rate) of the main pump 102 so that the low pressure side of Pls1 and Pls2 is equal to the target LS differential pressure Pgr.
  • the main pump 102 increases the capacity (flow rate) until the flow rate matches the required flow rate.
  • the flow according to the input of the travel operation lever is supplied from the first and second discharge ports 102a and 102b of the main pump 102 to the left travel motor 3f and the right travel motor 3g, and the travel motors 3f and 3g are driven in the forward direction. Is done.
  • the main pump 102 is a split flow type, and the flow rate supplied to the first pressure oil supply passage 105 is equal to the flow rate supplied to the second pressure oil supply passage 205, so that the left and right traveling motors are always equal. An amount of pressure oil is supplied, and straight running can be performed reliably.
  • the horsepower control is performed with the average pressure of the pressures P1 and P2.
  • equal amounts of pressure oil are supplied to the left and right traveling motors from the first and second discharge ports 102a and 102b of the main pump 102, so that the first and second pressure oil supply oil passages 105 and 205 In either case, straight traveling can be performed without generating an excessive flow rate.
  • the pressure of the traveling composite operation detection oil passage 53 becomes equal to the pressure of the pilot pressure oil supply passage 31b, and the first switching valve 40, the second switching valve 146, and the third switching valve 246 are pushed downward in the drawing.
  • the first pressure oil supply path 105 and the second pressure oil supply path 205 communicate with each other, and the first switching valve 146 is connected to the most downstream shuttle valve 9g of the second load pressure detection circuit 132.
  • the maximum load pressure Plmax1 detected by the first load pressure detection circuit 131 is guided to the shuttle valve 9f on the most downstream side of the first load pressure detection circuit 131 via the second switching valve 246.
  • the maximum load pressure Plmax2 detected by the circuit 132 is derived.
  • the opening area of the meter-in passage of the main control flow control valve 6a increases from 0 to A1.
  • the opening area of the meter-in passage of the assist control flow control valve 6i is maintained at zero. Therefore, the load pressure on the high side of the traveling motors 3f and 3g is detected as the maximum load pressure Plmax1 and Plmax2 in the first load pressure detection circuit 131 and the second load pressure detection circuit 132, respectively, and the unload valves 115 and 215 are respectively detected.
  • the oil passage for discharging the pressure oil from the first and second pressure oil supply passages 105 and 205 to the tank is shut off. Further, when the maximum load pressure Plmax1, Plmax2 is led to the differential pressure reducing valves 111, 211, Pls1, Pls2, which are LS differential pressures, are outputted and led to the low pressure selection valve 112a of the regulator 112.
  • the low pressure side of Pls1 and Pls2 led to the low pressure selection valve 112a is selected and led to the LS control valve 112b.
  • the LS control valve 112b controls the capacity (flow rate) of the main pump 102 so that the low pressure side of Pls1 and Pls2 is equal to the target LS differential pressure Pgr. Two discharge oil passages 102a and 102b are discharged.
  • the first and second discharge ports 102a and 102b are 1
  • the discharge oil of the first discharge port 102a and the discharge oil of the second discharge port 102b of the main pump 102 merge, and the combined pressure oil is the pressure compensation valves 7f and 7g and the flow control valves 6f and 6g.
  • the opening area of the meter-in passage of the flow control valve 6a for main drive of the boom cylinder 3a is A1 as described in (b) above, and the flow rate for assist drive.
  • the opening area of the meter-in passage of the control valve 6i is maintained at zero.
  • the load pressure of the boom cylinder 3a is detected as the maximum load pressure Plmax3 by the third load pressure detection circuit 133 via the load port of the flow control valve 6a, and the unload valve 315 tanks the pressure oil in the third pressure oil supply path 305 to the tank.
  • the maximum load pressure Plmax3 is fed back to the regulator 212 of the main pump 202, the capacity (flow rate) of the main pump 202 increases according to the required flow rate (opening area) of the flow control valve 6a, and the third discharge of the main pump 202 is performed.
  • a flow rate corresponding to the input of the boom operation lever is supplied from the port 202a to the bottom side of the boom cylinder 3a.
  • differential pressure reducing valves 111 and 211 output LS differential pressures Pls1 and Pls2 to the regulator 112, respectively, and the low pressure selection valve 112a selects the low pressure side of Pls1 and Pls2 and guides it to the LS control valve 112b.
  • the low pressure side of Pls1 and Pls2 led to the low pressure selection valve 112a is selected and led to the LS control valve 112b.
  • the LS control valve 112b controls the capacity (flow rate) of the main pump 102 so that the low pressure side of Pls1 and Pls2 is equal to the target LS differential pressure Pgr, and the pressure oil at the flow rate is supplied from the main pump 102 to the first and second discharge oils.
  • the ink is discharged to the paths 102a and 102b.
  • the discharge oil of the first discharge port 102a and the discharge oil of the second discharge port 102b of the main pump 102 merge, and the left traveling motor is passed through the pressure compensation valves 7f and 7g and the flow control valves 6f and 6g. 3f and the right traveling motor 3g are supplied to the bottom side of the boom cylinder 3a through the pressure compensation valve 7i and the flow rate control valve 6i.
  • the regulator 212 of the main pump 202 operates in the same manner as when the boom operation lever is finely operated, and pressure oil is also supplied from the main pump 202 to the bottom side of the boom cylinder 3a.
  • the first and second discharge ports 102a and 102b of the main pump 102 function as one pump, and the pressure oil of the two discharge ports 102a and 102b merges.
  • the left and right traveling motors 3f, 3g and the boom operation lever is finely operated, only the pressure oil of the main pump 202 is supplied to the bottom side of the boom cylinder 3a, and when the boom operation lever is fully operated, The pressure oil of the pump 202 and a part of the pressure oil joined by the main pump 102 are supplied to the bottom side of the boom cylinder 3a. This makes it possible to drive the boom cylinder at a desired speed while maintaining straight travel performance when the left and right travel motor operation levers are operated with the same input amount, and to obtain good travel composite operability. be able to.
  • the regulator 212 of the main pump 202 is also input when the left and right traveling operation levers and operation levers other than the boom are simultaneously input.
  • the operation is almost the same as when the boom control lever is fully operated in the combined operation of traveling and boom, except that the load pressure of the boom cylinder is not fed back and the capacity (flow rate) of the main pump 202 is kept to a minimum. Is obtained. That is, the first and second discharge ports 102a and 102b of the main pump 102 function as one pump, and the discharge oil of the first discharge port 102a and the discharge oil of the second discharge port 102b of the main pump 102 merge to each other.
  • the other actuators can be operated at the desired speed while maintaining straight traveling performance. It becomes possible to drive, and a good traveling composite operation can be obtained.
  • the flow control valve 6f for driving the travel motor 3f is switched upward in a full stroke, and the travel motor 3g drive
  • the meter-in passage opening area of the flow control valve 6f is A3
  • the meter-in passage opening area of the flow control valve 6g is from A3.
  • the operation detection valves 8f and 8g are also switched.
  • pressure oil is supplied via the throttle 43.
  • the pressure oil supplied from the path 31b to the traveling combined operation detection oil path 43 is discharged to the tank.
  • the pressure for switching the first to third switching valves 40, 146 and 246 downward in the figure is equal to the tank pressure, so that the first to third switching valves 40, 146 and 246 are actuated by the action of the spring. It is held at the middle / lower switching position.
  • the first pressure oil supply path 105 and the second pressure oil supply path 205 are shut off, and the most downstream shuttle valve 9g of the second load pressure detection circuit 132 is connected to the tank pressure via the first switching valve 146.
  • the tank pressure is guided to the shuttle valve 9 f at the most downstream side of the first load pressure detection circuit 131 via the second switching valve 246. Therefore, the load pressure of the travel motor 3f is detected as the maximum load pressure Plmax1 by the first load pressure detection circuit 131 via the load port of the flow control valve 6f, and the load pressure of the travel motor 3g is detected by the load of the flow control valve 6g.
  • the oil pressure is detected as the maximum load pressure Plmax2 by the second load pressure detection circuit 132 through the port, and the unload valves 115 and 215 are oil passages for discharging the pressure oil of the first and second pressure oil supply passages 105 and 205 to the tank, respectively. Shut off. Further, when the maximum load pressures Plmax1 and Plmax2 are led to the differential pressure reducing valves 111 and 211, respectively, the LS differential pressures Pls1 and Pls2 are output. 112a.
  • the low pressure side of the LS differential pressures Pls1 and Pls2 led to the low pressure selection valve 112a is selected and led to the LS control valve 112b.
  • the LS control valve 112b controls the capacity (flow rate) of the main pump 102 so that the low pressure side of Pls1 and Pls2 is equal to the target LS differential pressure Pgr.
  • the operation lever for the left traveling motor 3f is full operation
  • the operation lever for the right traveling motor 3g is half operation
  • the hydraulic excavator performs an operation that bends to the right with respect to the traveling traveling, this is considered.
  • the load pressure of the left traveling motor 3f is dragged to the right traveling motor 3g
  • the load pressure of the left traveling motor 3f > the load pressure of the right traveling motor 3g.
  • the required flow rate the relationship of the required flow rate of the left traveling motor 3f> the required flow rate of the right traveling motor 3g is established.
  • Pls1 becomes the low pressure side between Pls1 and Pls2, Pls1 is selected by the low pressure selection valve 112a, and the capacity (flow rate) of the main pump 102 In accordance with Pls1, the capacity (flow rate) is increased until the flow rate matches the required flow rate of the travel motor 3f. In this way, the first pressure oil supply passage 105 is supplied with a flow rate that matches the required flow rate of the travel motor 3f.
  • the second pressure oil supply passage 205 is supplied with a flow rate larger than the required flow rate of the travel motor 3g. Excess pressure oil supplied to the second pressure oil supply path 205 is discharged from the unload valve 215 to the tank. At this time, the set pressure of the unload valve 215 is the maximum load pressure Plmax2 (the load pressure of the travel motor 3g) + the spring set pressure Pun0. Thus, the pressure of the first pressure oil supply path 105 is maintained at the load pressure of the travel motor 3f + the target LS differential pressure by the LS control valve 112b, and the pressure of the second pressure oil supply path 205 is the unload valve 215.
  • the load pressure of the traveling motor 3g + the set pressure Pun0 of the spring ( ⁇ the load pressure of the traveling motor 3g + the target LS differential pressure) is maintained.
  • the pressure in the second pressure oil supply path 205 is lower than the pressure in the first pressure oil supply path 105 by the difference between the load pressure of the travel motor 3f and the load pressure of the travel motor 3g.
  • the main pump 102 is a split flow type, and torque control (horsepower control) of the torque control pistons 112d and 112e is performed by the total pressure (average pressure) of the first pressure oil supply passage 105 and the second pressure oil supply passage 205. Therefore, when the pressure of one pressure oil supply path is lower than the pressure of the other pressure oil supply path, such as during traveling steering, the total pressure (average pressure) is kept low by that amount. Thereby, compared with the case where the left and right traveling motors are driven by a single pump, the flow rate is less likely to be limited by the horsepower control, and the traveling steering operation can be performed without significantly reducing the work efficiency.
  • the boom cylinder 3a and the arm are suppressed while suppressing wasteful energy consumption due to the throttle pressure loss of the pressure compensation valve during the combined operation of simultaneously driving the boom cylinder 3a and the arm cylinder 3b of the hydraulic excavator. It is possible to flexibly cope with various flow rate balances required for the cylinder 3b and to obtain good composite operability.
  • FIG. 4 is a view showing a hydraulic drive device of a hydraulic excavator (construction machine) according to the second embodiment of the present invention.
  • the difference between the hydraulic drive device of the present embodiment and the first embodiment is that the actuator connected to the first and second discharge ports 102a, 102b of the main pump 102 and the first of the main pump 202 are different.
  • the number and types of actuators connected to the three discharge ports 202a are changed, and accordingly, the corresponding pressure compensation valves and flow control valves and the arrangement of the shuttle valves constituting the first to third load pressure detection circuits 131 to 133 are arranged. This is the point where the position has changed.
  • the actuator connected to the third discharge port 202a of the main pump 202 includes not only the boom cylinder 3a but also the swing cylinder 3e and the blade cylinder 3h, and the first discharge port 102a of the main pump 102.
  • 102b includes a boom cylinder 3a, an arm cylinder 3b, a bucket cylinder 3d, and a left travel motor 3f.
  • An actuator connected to the second discharge port 102b of the main pump 102 includes an arm cylinder 3b, a swing motor. 3c and right traveling motor 3g.
  • the boom cylinder 3a, swing cylinder 3e, and blade cylinder 3h are connected to the third discharge port 202a of the main pump 202 via pressure compensation valves 7a, 7e, 7h and flow control valves 6a, 6e, 6h, respectively.
  • the arm cylinder 3b, the bucket cylinder 3d and the left traveling motor 3f are respectively connected to the first discharge ports 102a and 102b of the main pump 102 via the pressure compensation valves 7i, 7j, 7d and 7f and the flow rate control valves 6i, 6j, 6d and 6f.
  • the arm cylinder 3b, the turning motor 3c, and the right traveling motor 3g are connected to the second discharge port 102b of the main pump 102 via pressure compensating valves 7b, 7c, 7g and flow control valves 6b, 6c, 6g, respectively.
  • the swing cylinder 3e and the blade cylinder 3h connected to the second discharge port 102b of the main pump 102 in the first embodiment are connected to the third discharge port 202a of the main pump 202.
  • the swing motor 3c connected to the first discharge port 102a of the main pump 102 in the first embodiment is connected to the second discharge port 102b of the main pump 102.
  • the first load pressure detection circuit 131 includes shuttle valves 9d, 9f, 9i, 9j connected to the load ports of the flow control valves 6d, 6f, 6i, 6j, and the second load pressure detection circuit 132 is a flow control.
  • the connection relationship between the second discharge ports 102a and 102b and the connection relationship between the left and right traveling motors 3f and 3g and the first and second discharge ports 102a and 102b of the main pump 102 are the same as those in the first embodiment.
  • the boom cylinder 3a, the arm cylinder 3b, and the left and right traveling motors 3f and 3g operate in the same manner as in the first embodiment, and the same effects as in the first embodiment can be obtained.
  • the construction machine is a hydraulic excavator
  • the first actuator is the boom cylinder 3a
  • the second actuator is the arm cylinder 3b.
  • the third and fourth actuators are the left and right traveling motors 3f and 3g.
  • the supply flow rate is equalized to perform a predetermined function.
  • the third and fourth actuators may be other than the left and right traveling motors.
  • the present invention is applied to a construction machine other than a hydraulic excavator, such as a hydraulic traveling crane, as long as the construction machine includes an actuator that satisfies the operating conditions of the first and second actuators or the third and fourth actuators. May be.
  • the load sensing system of the above embodiment is an example, and the load sensing system can be variously modified.
  • a differential pressure reducing valve that outputs the pump discharge pressure and the maximum load pressure as absolute pressure is provided, the output pressure is guided to the pressure compensation valve, the target compensation differential pressure is set, and the LS control valve is provided.
  • the target differential pressure for load sensing control is set, the pump discharge pressure and the maximum load pressure may be guided to the pressure control valve and the LS control valve through separate oil passages.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

 最大の要求流量が大きい2つのアクチュエータを同時に駆動する複合操作時に、圧力補償弁の絞り圧損による無駄なエネルギー消費を抑えつつ、2つのアクチュエータに要求される様々な流量バランスに柔軟に対応するため、ブームシリンダ3aの要求流量が所定流量より小さい場合は、ブームシリンダ3aをシングルフロータイプのメインポンプ202から吐出される圧油のみで駆動し、所定流量より大きい場合は、当該圧油とスプリットフロータイプのメインポンプ201の第1吐出ポート102aから吐出される圧油とを合流して駆動し、アームシリンダ3bの要求流量が所定流量より小さい場合は、アームシリンダ3bをスプリットフロータイプのメインポンプ102の第2吐出ポート102bから吐出される圧油のみで駆動し、所定流量より大きい場合は、第1及び第2吐出ポート102a,102bの両方から吐出される圧油を合流して駆動する。

Description

建設機械の油圧駆動装置
 本発明は、油圧式ショベル等の建設機械の油圧駆動装置に係わり、特に、2つの吐出ポートを有しかつ単一のポンプレギュレータ(ポンプ制御装置)によって吐出流量が制御されるポンプ装置を備えるとともに、ポンプ装置の吐出圧が複数のアクチュエータの最高負荷圧より高くなるよう制御されるロードセンシングシステムを備えた建設機械の油圧駆動装置に関する。
 油圧ポンプ(メインポンプ)の吐出圧が複数のアクチュエータの最高負荷圧より目標差圧だけ高くなるよう油圧ポンプの吐出流量を制御するロードセンシングシステムを備えたものが、油圧ショベルのような建設機械の油圧駆動装置として広く利用されている。
 特許文献1には、そのようなロードセンシングシステムを備えた建設機械の油圧駆動装置において、第1アクチュエータ群及び第2アクチュエータ群に対応して第1及び第2の2つの油圧ポンプを設けた2ポンプロードセンシングシステムが記載されている。この2ポンプロードセンシングシステムでは、2つの油圧ポンプのうち、一方の油圧ポンプの最大容量を他方の油圧ポンプの最大容量よりも大きくし、一方の油圧ポンプの最大容量を最大要求流量が最も大きいアクチュエータ(アームシリンダを想定)を駆動可能な容量に設定するとともに、他方の油圧ポンプの吐出流量により特定のアクチュエータ(ブームシリンダを想定)を駆動するように構成している。また、上記一方の油圧ポンプ側に合流弁を設け、最大要求流量が最も大きいアクチュエータ(アームシリンダを想定)の要求流量が少ないときのみ、特定のアクチュエータ(ブームシリンダを想定)の要求流量が大きいときは、合流弁を介して一方の油圧ポンプの吐出流量を他方の油圧ポンプの吐出流量に合流して特定のアクチュエータ(ブームシリンダを想定)に供給可能としている。
 特許文献2には、2つの油圧ポンプを用いる代わりに、2つの吐出ポートを有するスプリットフロータイプの油圧ポンプを用い、第1の吐出ポート及び第2の吐出ポートの吐出流量を第1アクチュエータ群及び第2アクチュエータ群のそれぞれの最大負荷圧に基づいてそれぞれ独立して制御できるようにした2ポンプロードセンシングシステムが記載されている。このシステムにおいても、2つの吐出ポートの吐出油路間に分・合流切換弁(走行独立弁)を設け、走行のみする場合或いは走行しながらドーザ装置を使用する場合などには、分・合流切換弁を分流位置に切り換えて2つの吐出ポートの吐出流量を独立してアクチュエータに供給し、ブームシリンダ、アームシリンダ等の走行やドーザ以外のアクチュエータを駆動するときは、分・合流切換弁を合流位置に切り換えて2つの吐出ポートの吐出流量を合流してアクチュエータに供給できるようにしている。
特開2011-196438号公報 特開2012-67459号公報
 特許文献1で指摘されているように、通常の1ポンプロードセンシングシステムを備えた油圧駆動装置では、油圧ポンプの吐出圧は常に複数のアクチュエータの最高負荷圧よりもある設定圧分だけ高くなるように制御されるため、負荷圧の高いアクチュエータと負荷圧の低いアクチュエータを複合して駆動する場合(例えば、ブーム上げ(負荷圧:高)とアームクラウド(負荷圧:低)操作を同時に行う、所謂水平均し動作を行った場合など)には、油圧ポンプの吐出圧はブームシリンダの高い負荷圧よりもある設定圧分だけ高くなるように制御される。このとき、負荷圧の低いアームシリンダに流量が流れすぎるのを防ぐために設けられたアームシリンダ駆動用の圧力補償弁が絞られるため、この圧力補償弁の圧損のために無駄なエネルギーを消費していた。
 特許文献1に記載の2ポンプロードセンシングシステムを備えた油圧駆動装置では、アームシリンダ駆動用の油圧ポンプとブームシリンダ駆動用の油圧ポンプを別々に設けて分離することで、水平均し動作などで、負荷圧の低いアームシリンダ駆動用の圧力補償弁による絞り圧損を低減し、無駄なエネルギー消費を防ぐことができる。
 しかしながら、特許文献1に記載の2ポンプロードセンシングシステムには以下のような別の問題がある。
 油圧ショベルの掘削動作において、水平均し動作はブームシリンダ小流量+アームシリンダ大流量の組み合わせである。しかし、油圧ショベルにおいて、ブームシリンダとアームシリンダは共に最大の要求流量が他のアクチュエータに比べて大きいアクチュエータであり、油圧ショベルの実際の掘削動作では、ブームシリンダが大流量となる複合動作もある。例えば、バケット掘削後、ブーム上げを最大スピードで行いながら(ブーム上げフル操作)アームクラウドを微操作するバケットかき寄せ動作では、ブームシリンダ大流量+アームシリンダ小流量の組み合わせとなる。また、斜面上側に油圧ショベルの本体を水平に配置し、そこから、斜面の谷側から山側(上側)に向かってバケット爪先を斜めに移動させる、いわゆる斜面上側からの斜め引き動作では、通常、アーム操作レバーはフル入力、ブーム操作レバーはハーフ入力であり、ブームシリンダ中流量+アームシリンダ大流量の組み合わせとなる。また、この斜め引き動作では、ブーム上げの操作量は斜面の角度と斜面に対するアーム角度(車体とバケット先端との距離)によって変化し、それに応じてブームシリンダ流量は中流量と大流量との間で変化する。
 特許文献1では、一方の油圧ポンプ側に合流弁を設け、アームシリンダの要求流量が少ないときのみ、ブームシリンダの要求流量が増加した場合に一方の油圧ポンプの吐出流量を他方の油圧ポンプの吐出流量に合流してブームシリンダに供給可能としている。しかし、このような回路構成でバケット掘削後のバケットかき寄せ動作を行った場合、ブームシリンダに供給される圧油の流量はバケットかき寄せ動作を素早く行うのに必要な流量に達しない場合があり、ブーム速度が遅くなるという問題がある。
 また、アームシリンダの要求流量が大きいときは合流弁は閉じられるため、ブームシリンダには小容量側の油圧ポンプの圧油しか供給することができない。このため、ブームシリンダの要求流量が中流量以上となる斜面上側からの斜め引き動作を行うことができなかった。
 このように特許文献1では、水平均し動作という特定の複合動作に対してはブームシリンダとアームシリンダに要求される流量バランスが得られるが、ブームシリンダに中流量以上の流量が要求される複合動作に対しては、必要な流量バランスが得られず、適切な複合動作が行えないか、複合動作そのものが行えないという問題があった。
 特許文献2に記載のロードセンシングシステムにおいては、走行及び/又はドーザ装置を使用する場合以外は、2つの吐出ポートの吐出流量を合流させてアクチュエータを駆動するため、そのときの油圧回路の形態は1ポンプの油圧回路と実質的に同じとなる。このため通常の1ポンプロードセンシングシステムを備えた油圧駆動装置と同様、負荷圧の高いアクチュエータと負荷圧の低いアクチュエータを複合して駆動する複合操作時に、圧力補償弁の圧損のために無駄なエネルギー消費が発生するという基本的な問題がある。
 本発明の目的は、最大の要求流量が大きい2つのアクチュエータを同時に駆動する複合操作時に、圧力補償弁の絞り圧損による無駄なエネルギー消費を抑えつつ、2つのアクチュエータに要求される様々な流量バランスに柔軟に対応することができる建設機械の油圧駆動装置を提供することにある。
 (1)上記目的を達成するために、本発明は、第1吐出ポート及び第2吐出ポートを有するスプリットフロータイプの第1ポンプ装置と、第3吐出ポートを有するシングルフロータイプの第2ポンプ装置と、前記第1及び第2ポンプ装置の前記第1~第3吐出ポートから吐出された圧油により駆動される複数のアクチュエータと、前記第1~第3吐出ポートから前記複数のアクチュエータに供給される圧油の流れを制御する複数の流量制御弁と、前記複数の流量制御弁の前後差圧をそれぞれ制御する複数の圧力補償弁と、前記第1及び第2吐出ポートの高圧側の吐出圧が、前記第1及び第2吐出ポートから吐出される圧油によって駆動されるアクチュエータの最高負荷圧より目標差圧だけ高くなるよう前記第1ポンプ装置の容量を制御する第1ロードセンシング制御部を有する第1ポンプ制御装置と、前記第3吐出ポートの吐出圧が、前記第3吐出ポートから吐出される圧油によって駆動されるアクチュエータの最高負荷圧より目標差圧だけ高くなるよう前記第2ポンプ装置の容量を制御する第2ロードセンシング制御部を有する第2ポンプ制御装置とを備え、前記複数のアクチュエータは、他のアクチュエータよりも最大の要求流量が大きい第1及び第2アクチュエータを含み、前記第1アクチュエータの要求流量が所定流量より小さい場合は、前記第1アクチュエータを前記シングルフロータイプの第2ポンプ装置の前記第3吐出ポートから吐出される圧油のみで駆動し、前記第1アクチュエータの要求流量が前記所定流量より大きい場合は、前記シングルフロータイプの第2ポンプ装置の前記第3吐出ポートから吐出される圧油と前記スプリットフロータイプの第1ポンプ装置の前記第1及び第2吐出ポートの一方から吐出される圧油とを合流して前記第1アクチュエータを駆動するよう、前記第1ポンプ装置の第1吐出ポート及び前記第2ポンプ装置の第3吐出ポートと前記第1アクチュエータとを接続し、前記第2アクチュエータの要求流量が所定流量より小さい場合は、前記第2アクチュエータを前記スプリットフロータイプの第1ポンプ装置の前記第1及び第2吐出ポートの他方から吐出される圧油のみで駆動し、前記第2アクチュエータの要求流量が前記所定流量より大きい場合は、前記スプリットフロータイプの第1ポンプ装置の前記第1及び第2吐出ポートの両方から吐出される圧油を合流して前記第2アクチュエータを駆動するよう、前記第1ポンプ装置の第1及び第2吐出ポートと前記第2アクチュエータとを接続したものとする。
 このように構成した本発明においては、第1アクチュエータ(例えばブームシリンダ)の要求流量が小流量で、第2アクチュエータ(例えばアームシリンダ)の要求流量が大流量の複合動作(例えば水平均し動作)では、第2アクチュエータに第1吐出ポートと第2吐出ポートから第2アクチュエータが要求する大流量が供給され、第1アクチュエータ(例えばブームシリンダ)の要求流量が大流量で、第2アクチュエータ(例えばアームシリンダ)の要求流量が小流量の複合動作(例えばバケットかき寄せ動作)では、第1アクチュエータに第1吐出ポートと第3吐出ポートから第1アクチュエータが要求する大流量が供給され、第1アクチュエータ(例えばブームシリンダ)の要求流量が中流量以上で、第2アクチュエータ(例えばアームシリンダ)の要求流量が大流量の複合動作(例えば斜面上側からの斜め引き動作)では、第1アクチュエータに第1吐出ポートと第3吐出ポートから第1アクチュエータが要求する中流量以上の流量が供給され、第2アクチュエータに第1吐出ポートと第2吐出ポートから第2アクチュエータが要求する大流量が供給される。
 このように最大の要求流量が大きい2つのアクチュエータを同時に駆動する複合操作時に、2つのアクチュエータに要求される様々な流量バランスに柔軟に対応することができる。
 また、第1アクチュエータと第2アクチュエータの要求流量が共に中流量以上となる複合動作以外の複合動作では、第1アクチュエータと第2アクチュエータはそれぞれ別々の吐出ポートからの圧油で駆動され、第1アクチュエータと第2アクチュエータの要求流量が共に中流量以上となる複合動作においても、第3吐出ポートと第2吐出ポートについては、第1アクチュエータと第2アクチュエータはそれぞれ別々の吐出ポートからの圧油で駆動されるため、低負荷側アクチュエータの圧力補償弁での絞り圧損による無駄なエネルギー消費を抑えることができる。
 (2)上記(1)において、好ましくは、前記スプリットフロータイプの第1ポンプ装置は前記第1及び第2吐出ポートから同じ流量の圧油を吐出するように構成され、前記複数のアクチュエータは、同時に駆動されかつそのとき供給流量が同等になることで所定の機能を果たす第3及び第4アクチュエータを含み、前記第3アクチュエータを、前記スプリットフロータイプの第1ポンプ装置の前記第1及び第2吐出ポートの一方から吐出される圧油で駆動し、前記第4アクチュエータを、前記スプリットフロータイプの第1ポンプ装置の前記第1及び第2吐出ポートの他方から吐出される圧油で駆動するよう、前記第1ポンプ装置の第1及び第2吐出ポートと前記第3及び第4アクチュエータとを接続する。
 これにより第1及び第2吐出ポートから等しい流量の圧油がそれぞれの圧油供給路に吐出され、第3及び第4アクチュエータ(例えば左右の走行モータ)に常に等量の圧油を供給し、第3及び第4アクチュエータに確実に所定の機能を果たさせることができる。
 (3)上記(2)において、好ましくは、前記第1ポンプ制御装置は、前記スプリットフロータイプの第1ポンプ装置の前記第1吐出ポートの吐出圧が導かれる第1トルク制御用のアクチュエータと、前記第2吐出ポートの吐出圧が導かれる第2トルク制御用のアクチュエータとを有し、前記第1及び第2トルク制御用のアクチュエータによって、前記第1吐出ポートの吐出圧と前記第2吐出ポートの吐出圧の平均圧力が高くなるにしたがって第1ポンプ装置の容量を減少させる。
 これにより一つのポンプによって第3及び第4アクチュエータ(例えば左右の走行モータ)を駆動する場合に比べて、トルク制御(馬力制御)によって流量が制限されにくくなり、作業効率が大きく低下することなく第3及び第4アクチュエータは所定の機能(例えば走行ステアリング)を果たすことができる。
 (4)上記(2)又は(3)において、好ましくは、前記スプリットフロータイプの第1ポンプ装置の前記第1吐出ポートに接続される第1圧油供給路と前記第2吐出ポートに接続される第2圧油供給路との間に接続され、前記第3及び第4アクチュエータと前記スプリットフロータイプの第1ポンプ装置によって駆動されるその他アクチュエータとが同時に駆動されるときは連通位置に切り換えられ、それ以外のときは遮断位置に切り換えられる切換弁を更に備える。
 これにより第3及び第4アクチュエータ(例えば左右の走行モータ)とその他アクチュエータとが同時に駆動される複合動作(例えば走行複合動作)では、第1ポンプ装置の第1吐出ポートと第2吐出ポートは一つのポンプとして機能するため、
第3及び第4アクチュエータとその他アクチュエータに必要な流量を供給することが可能となり、良好な複合操作性が得られる。
 (5)上記(1)において、好ましくは、前記複数の流量制御弁は、前記第2ポンプ装置の第3吐出ポートに接続された第3圧油供給路を前記第1アクチュエータに接続する油路に設けられた第1流量制御弁と、前記第1ポンプ装置の第1吐出ポートに接続された第1圧油供給路を前記第1アクチュエータに接続する油路に設けられた第2流量制御弁と、前記第1ポンプ装置の第2吐出ポートに接続された第2圧油供給路を前記第2アクチュエータに接続する油路に設けられた第3流量制御弁と、前記第1ポンプ装置の第1吐出ポートに接続された前記第1圧油供給路を前記第2アクチュエータに接続する油路に設けられた第4流量制御弁とを含み、前記第1及び第3流量制御弁は、スプールストロークが増加するにしたがって開口面積が増加し、中間ストロークで最大開口面積となり、その後、最大のスプールストロークまで最大開口面積が維持されるように開口面積特性を設定し、前記第2及び第4流量制御弁は、スプールストロークが中間ストロークになるまでは開口面積はゼロであり、スプールストロークが前記中間ストロークを超えて増加するにしたがって開口面積が増加し、最大のスプールストロークの直前で最大開口面積となるように開口面積特性を設定する。
 これにより上記(1)で述べた第1~第3吐出ポートと第1及び第2アクチュエータとの接続構成(第1アクチュエータの要求流量が所定流量より小さい場合は、第1アクチュエータをシングルフロータイプの第2ポンプ装置の第3吐出ポートから吐出される圧油のみで駆動し、第1アクチュエータの要求流量が所定流量より大きい場合は、シングルフロータイプの第2ポンプ装置の第3吐出ポートから吐出される圧油とスプリットフロータイプの第1ポンプ装置の第1及び第2吐出ポートの一方から吐出される圧油とを合流して第1アクチュエータを駆動するとともに、第2アクチュエータの要求流量が所定流量より小さい場合は、第2アクチュエータをスプリットフロータイプの第1ポンプ装置の第1及び第2吐出ポートの他方から吐出される圧油のみで駆動し、第2アクチュエータの要求流量が所定流量より大きい場合は、スプリットフロータイプの第1ポンプ装置の第1及び第2吐出ポートの両方から吐出される圧油を合流して第2アクチュエータを駆動する構成)を実現することができる。
 (6)上記(1)~(5)において、前記第1及び第2アクチュエータは、例えばそれぞれ、油圧ショベルのブーム及びアームを駆動するブームシリンダ及びアームシリンダである。
 これにより油圧ショベルのブームシリンダとアームシリンダを同時に駆動する複合操作時に、圧力補償弁の絞り圧損による無駄なエネルギー消費を抑えつつ、ブームシリンダとアームシリンダに要求される様々な流量バランスに柔軟に対応し、良好な複合操作性を得ることができる。
 (7)上記(2)~(6)において、前記第3及び第4アクチュエータは、例えばそれぞれ、油圧ショベルの走行体を駆動する左右の走行モータである。
 これにより油圧ショベルにおいて良好な直進走行性を得ることができる。また、油圧ショベルの走行ステアリング動作では、良好なステアリングフィーリングを実現することができる。
 本発明によれば、最大の要求流量が大きい2つのアクチュエータを同時に駆動する複合操作時に、圧力補償弁の絞り圧損による無駄なエネルギー消費を抑えつつ、2つのアクチュエータに要求される様々な流量バランスに柔軟に対応し、良好な複合操作性を得ることができる。
 また、油圧ショベルのブームシリンダとアームシリンダを同時に駆動する複合操作時に、圧力補償弁の絞り圧損による無駄なエネルギー消費を抑えつつ、ブームシリンダとアームシリンダに要求される様々な流量バランスに柔軟に対応し、良好な複合操作性を得ることができる。
 更に、油圧ショベルの良好な直進走行性を得ることができる。また、油圧ショベルの走行ステアリング動作では、良好なステアリングフィーリングを実現することができる。
本発明の第1の実施の形態に係わる油圧ショベル(建設機械)の油圧駆動装置を示す図である。 ブームシリンダ及びアームシリンダ以外のアクチュエータの流量制御弁のそれぞれのメータイン通路の開口面積特性を示す図である。 ブームシリンダのメイン及びアシスト流量制御弁及びアームシリンダのメイン及びアシスト流量制御弁のそれぞれのメータイン通路の開口面積特性(上側)と、ブームシリンダのメイン及びアシスト流量制御弁及びアームシリンダのメイン及びアシスト流量制御弁のメータイン通路の合成開口面積特性(下側)を示す図である。 本発明の油圧駆動装置が搭載される建設機械である油圧ショベルの外観を示す図である。 本発明の第2の実施の形態に係わる油圧ショベル(建設機械)の油圧駆動装置を示す図である。
 以下、本発明の実施の形態を図面に従い説明する。
<第1の実施の形態>
 ~構成~
 図1は本発明の第1の実施の形態に係わる油圧ショベル(建設機械)の油圧駆動装置を示す図である。
 図1において、本実施の形態の油圧駆動装置は、原動機(例えばディーゼルエンジン)1と、その原動機1によって駆動され、第1及び第2圧油供給路105,205に圧油を吐出する第1及び第2吐出ポート102a,102bを有するスプリットフロータイプの可変容量型メインポンプ102(第1ポンプ装置)と、原動機1によって駆動され、第3圧油供給路305に圧油を吐出する第3吐出ポート202aを有するシングルフロータイプの可変容量型メインポンプ202(第2ポンプ装置)と、メインポンプ102の第1及び第2吐出ポート102a,102b及びメインポンプ202の第3吐出ポート202aから吐出される圧油により駆動される複数のアクチュエータ3a,3b,3c,3d,3e,3f,3g,3hと、第1~第3圧油供給路105,205,305に接続され、メインポンプ102の第1及び第2吐出ポート102a,102b及びメインポンプ202の第3吐出ポート202aから複数のアクチュエータ3a~3hに供給される圧油の流れを制御するコントロールバルブユニット4と、メインポンプ102の第1及び第2吐出ポート102a,102bの吐出流量を制御するためのレギュレータ112(第1ポンプ制御装置)と、メインポンプ202の第3吐出ポート202aの吐出流量を制御するためのレギュレータ212(第2ポンプ制御装置)とを備えている。
 コントロールバルブユニット4は、第1~第3圧油供給路105,205,305に接続され、メインポンプ102の第1及び第2吐出ポート102a,102b、メインポンプ202の第3吐出ポート202aから複数のアクチュエータ3a~3hに供給される圧油の流量を制御する複数の流量制御弁6a,6b,6c,6d,6e,6f,6g,6h,6i,6jと、複数の流量制御弁6a~6jの前後差圧が目標差圧に等しくなるよう複数の流量制御弁6a~6jの前後差圧をそれぞれ制御する複数の圧力補償弁7a,7b,7c,7d,7e,7f,7g,7h,7i、7jと、複数の流量制御弁6a~6jのスプールと一緒にストロークし、各流量制御弁の切り換わりを検出するための複数の操作検出弁8a,8b,8c,8d,8e,8f,8g,8h,8i、8jと、第1圧油供給路105に接続され、第1圧油供給路105の圧力を設定圧力以上にならないように制御するメインリリーフ弁114と、第2圧油供給路205に接続され、第2圧油供給路105の圧力を設定圧力以上にならないように制御するメインリリーフ弁214と、第3圧油供給路305に接続され、第3圧油供給路305の圧力を設定圧力以上にならないように制御するメインリリーフ弁314と、第1圧油供給路105に接続され、第1圧油供給路105の圧力が第1吐出ポート102aから吐出される圧油によって駆動されるアクチュエータの最高負荷圧にバネの設定圧力(所定圧力)を加算した圧力(アンロード弁セット圧)よりも高くなると開状態になって第1圧油供給路105の圧油をタンクに戻すアンロード弁115と、第2圧油供給路205に接続され、第2圧油供給路205の圧力が第2吐出ポート102bから吐出される圧油によって駆動されるアクチュエータの最高負荷圧にバネの設定圧力(所定圧力)を加算した圧力(アンロード弁セット圧)よりも高くなると開状態になって第2圧油供給路205の圧油をタンクに戻すアンロード弁215と、第3圧油供給路305に接続され、第3圧油供給路305の圧力が第3吐出ポート202aから吐出される圧油によって駆動されるアクチュエータの最高負荷圧にバネの設定圧力(所定圧力)を加算した圧力(アンロード弁セット圧)よりも高くなると開状態になって第3圧油供給路305の圧油をタンクに戻すアンロード弁315とを備えている。
 コントロールバルブユニット4は、また、第1圧油供給路105に接続される流量制御弁6c,6d,6f,6i,6jの負荷ポートに接続され、アクチュエータ3a,3b,3c,3d,3fの最高負荷圧Plmax1を検出するシャトル弁9c,9d,9f,9i,9jを含む第1負荷圧検出回路131と、第2圧油供給路205に接続される流量制御弁6b,6e,6g,6hの負荷ポートに接続され、アクチュエータ3b,3e,3g,3hの最高負荷圧Plmax2を検出するシャトル弁9b,9e,9g,9hを含む第2負荷圧検出回路132と、第3圧油供給路305に接続される流量制御弁6aの負荷ポートに接続され、アクチュエータ3aの負荷圧(最高負荷圧)Plmax3を検出する第3負荷圧検出回路133と、第1圧油供給路105の圧力(すなわち第1吐出ポート102aのポンプ圧)P1と第1負荷圧検出回路131によって検出された最高負荷圧Plmax1(第1圧油供給路105に接続されるアクチュエータ3a,3b,3c,3d,3fの最高負荷圧)との差(LS差圧)を絶対圧Pls1として出力する差圧減圧弁111と、第2圧油供給路205の圧力(すなわち第2吐出ポート102bのポンプ圧)P2と第2負荷圧検出回路132によって検出された最高負荷圧Plmax2(第2圧油供給路205に接続されるアクチュエータ3b,3e,3g,3hの最高負荷圧)を絶対圧Pls2として出力する差圧減圧弁211と、第3圧油供給路305の圧力(すなわち第3吐出ポート202aのポンプ圧)P3と第3負荷圧検出回路133によって検出された最高負荷圧Plmax3(第3圧油供給路305に接続されるアクチュエータ3aの負荷圧-図示の実施の形態ではブームシリンダ3aの負荷圧)との差(LS差圧)を絶対圧Pls3として出力する差圧減圧弁311とを備えている。
 前述したアンロード弁115には、第1吐出ポート102aから吐出される圧油によって駆動されるアクチュエータの最高負荷圧として第1負荷圧検出回路131によって検出された最高負荷圧Plmax1が導かれ、前述したアンロード弁215には、第2吐出ポート102bから吐出される圧油によって駆動されるアクチュエータの最高負荷圧として第2負荷圧検出回路132によって検出された最高負荷圧Plmax2が導かれ、前述したアンロード弁315には、第3吐出ポート202aから吐出される圧油によって駆動されるアクチュエータの最高負荷圧として第3負荷圧検出回路133によって検出された最高負荷圧Plmax3が導かれる。
 また、差圧減圧弁111が出力するLS差圧(絶対圧Pls1)は、第1圧油供給路105に接続された圧力補償弁7c,7d,7f,7i,7jとメインポンプ102のレギュレータ112に導かれ、差圧減圧弁211が出力するLS差圧(絶対圧Pls2)は、第2圧油供給路205に接続された圧力補償弁7b,7e,7g,7hとメインポンプ102のレギュレータ112に導かれ、差圧減圧弁311が出力するLS差圧(絶対圧Pls3)は、第3圧油供給路305に接続された圧力補償弁7aとメインポンプ202のレギュレータ212に導かれる。
 ここで、アクチュエータ3aは、流量制御弁6i及び圧力補償弁7iと第1圧油供給路105を介して第1吐出ポート102aに接続され、かつ流量制御弁6a及び圧力補償弁7aと第3圧油供給路305を介して第3吐出ポート202aに接続されている。アクチュエータ3aは、例えば油圧ショベルのブームを駆動するブームシリンダであり、流量制御弁6aはブームシリンダ3aのメイン駆動用であり、流量制御弁6iはブームシリンダ3aアシスト駆動用である。アクチュエータ3bは、流量制御弁6j及び圧力補償弁7jと第1圧油供給路105を介して第1吐出ポート102aに接続され、かつ流量制御弁6b及び圧力補償弁7bと第2圧油供給路205を介して第2吐出ポート102bに接続されている。アクチュエータ3bは、例えば油圧ショベルのアームを駆動するアームシリンダであり、流量制御弁6bはアームシリンダ3bのメイン駆動用であり、流量制御弁6jはアームシリンダ3bのアシスト駆動用である。
 アクチュエータ3c,3d,3fはそれぞれ流量制御弁6c,6d,6f及び圧力補償弁7c,7d,7fと第1圧油供給路105を介して第1吐出ポート102aに接続され、アクチュエータ3g,3e,3hはそれぞれ流量制御弁6g,6e,6h及び圧力補償弁7g,7e,7hと第2圧油供給路205を介して第2吐出ポート102bに接続されている。アクチュエータ3c,3d,3fは、それぞれ、例えば油圧ショベルの上部旋回体を駆動する旋回モータ、バケットを駆動するバケットシリンダ、下部走行体の左側履帯を駆動する左走行モータである。アクチュエータ3g,3e,3hは、それぞれ、例えば油圧ショベルの下部走行体の右側履帯を駆動する右走行モータ、スイングポストを駆動するスイングシリンダ,ブレードを駆動するブレードシリンダである。
 また、コントロールバルブ4は、上流側が絞り43を介してパイロット圧油供給路31b(後述)に接続され下流側が操作検出弁8a~8jを介してタンクに接続された走行複合操作検出油路53と、この走行複合操作検出油路53によって生成される操作検出圧に基づいて切り換わる第1切換弁40,第2切換弁146及び第3切換弁246とを備えている。
 走行複合操作検出油路53は、左走行モータ3f及び/又は右走行モータ3gとその他のアクチュエータの少なくとも1つとを同時で駆動する走行複合操作でないときは、少なくとも操作検出弁8a~8jのいずれかを介してタンクに連通することで油路の圧力がタンク圧となり、走行複合操作時は、操作検出弁8f,8gと、操作検出弁8a~8jのいずれかがそれぞれ対応する流量制御弁と一緒にストロークしてタンクとの連通が遮断されることで操作検出圧(操作検出信号)を生成する。
 第1切換弁40は、走行複合操作でないときは、図示下側の第1位置(遮断位置)にあって、第1圧油供給路105と第2圧油供給路205の連通を遮断し、走行複合操作時に、走行複合操作検出油路53にて生成された操作検出圧によって図示上側の第2位置(連通位置)に切り替わって、第1圧油供給路105と第2圧油供給路205を連通させる。
 第2切換弁146は、走行複合操作でないときは、図示下側の第1位置にあって、タンク圧を第2負荷圧検出回路132の最下流のシャトル弁9gに導き、走行複合操作時に、走行複合操作検出油路53にて生成された操作検出圧によって図示上側の第2位置に切り替わって、第1負荷圧検出回路131によって検出された最高負荷圧Plmax1(第1圧油供給路105に接続されるアクチュエータ3a,3b,3c,3d,3fの最高負荷圧)を第2負荷圧検出回路132の最下流のシャトル弁9gに導く。
 第3切換弁246は、走行複合操作でないときは、図示下側の第1位置にあって、タンク圧を第1負荷圧検出回路131の最下流のシャトル弁9fに導き、走行複合操作時に、走行複合操作検出油路53にて生成された操作検出圧によって図示上側の第2位置に切り替わって、第2負荷圧検出回路132によって検出された最高負荷圧Plmax2(第2圧油供給路205に接続されるアクチュエータ3b,3e,3g,3hの最高負荷圧)を第1負荷圧検出回路131の最下流のシャトル弁9fに導く。
 また、本実施の形態における油圧駆動装置は、原動機1によって駆動される固定容量型のパイロットポンプ30と、パイロットポンプ30の圧油供給路31aに接続され、パイロットポンプ30の吐出流量を絶対圧Pgrとして検出する原動機回転数検出弁13と、原動機回転数検出弁13の下流側のパイロット圧油供給路31bに接続され、パイロット圧油供給路31bに一定のパイロット圧を生成するパイロットリリーフバルブ32と、パイロット圧油供給路31bに接続され、ゲートロックレバー24により下流側の圧油供給路31cを圧油供給路31bに接続するかタンクに接続するかを切り替えるゲートロック弁100と、ゲートロック弁100の下流側のパイロット圧油供給路31cに接続され、後述する複数の流量制御弁6a,6b,6c,6d,6e,6f,6g,6hを制御するための操作パイロット圧を生成する複数のパイロットバルブ(減圧弁)を有する複数の操作装置122,123,124a,124b(図3)とを備えている。
 原動機回転数検出弁13は、パイロットポンプ30の圧油供給路31aとパイロット圧油供給路31bとの間に接続された流量検出弁50と、その流量検出弁50の前後差圧を絶対圧Pgrとして出力する差圧減圧弁51とを有している。
 流量検出弁50は通過流量(パイロットポンプ30の吐出流量)が増大するにしたがって開口面積を大きくする可変絞り部50aを有している。パイロットポンプ30の吐出油は流量検出弁50の可変絞り部50aを通過してパイロット油路31b側へと流れる。このとき、流量検出弁50の可変絞り部50aには通過流量が増加するにしたがって大きくなる前後差圧が発生し、差圧減圧弁51はその前後差圧を絶対圧Pgrとして出力する。パイロットポンプ30の吐出流量は原動機1の回転数によって変化するため、可変絞り部50aの前後差圧を検出することにより、パイロットポンプ30の吐出流量を検出することができ、原動機1の回転数を検出することができる。
 メインポンプ102のレギュレータ112(第1ポンプ制御装置)は、差圧減圧弁111が出力するLS差圧(絶対圧Pls1)と差圧減圧弁211が出力するLS差圧(絶対圧Pls2)の低圧側を選択する低圧選択弁112aと、低圧選択されたLS差圧と原動機回転数検出弁13の出力圧(絶対圧)Pgrとの差圧により動作するLS制御弁112bであって、LS差圧>出力圧(絶対圧)Pgrのときは入力側をパイロット圧油供給路31bに連通させて出力圧を上昇させ、LS差圧<出力圧(絶対圧)Pgrのときは入力側をタンクに連通させて出力圧を減少させるLS制御弁112bと、LS制御弁112bの出力圧が導かれ、その出力圧の上昇によってメインポンプ102の傾転(容量)を減少させるLS制御ピストン112cと、メインポンプ102の第1及び第2圧油供給路105,205のそれぞれの圧力が導かれ、それらの圧力の上昇によってメインポンプ102の傾転(容量)を減少させるトルク制御(馬力制御)ピストン112e,112dと、メインポンプ202の第3吐出ポート305の圧力が減圧弁112gを介して導かれ、その圧力の上昇によってメインポンプ102の傾転(容量)を減少させるトルク制御(馬力制御)ピストン112fとを備えている。
 メインポンプ202のレギュレータ212(第2ポンプ制御装置)は、差圧減圧弁311が出力するLS差圧(絶対圧Pls3)と原動機回転数検出弁13の出力圧(絶対圧)Pgrとの差圧により動作するLS制御弁212bであって、LS差圧>出力圧(絶対圧)Pgrのときは、入力側をパイロット圧油供給路31bに連通させて出力圧を上昇させ、LS差圧<出力圧(絶対圧)Pgrのときは、入力側をタンクに連通させて出力圧を減少させるLS制御弁212bと、LS制御弁212bの出力圧が導かれ、その出力圧の上昇によってメインポンプ202の傾転(容量)を減少させるLS制御ピストン212cと、メインポンプ202の第3圧油供給路305の圧力が導かれ、その圧力の上昇によってメインポンプ202の傾転(容量)を減少させるトルク制御(馬力制御)ピストン212dとを備えている。
 レギュレータ112(第1ポンプ制御装置)の低圧選択弁112a、LS制御弁112b,LS制御ピストン112cは、第1及び第2吐出ポート102a,102bの吐出圧が、第1及び第2吐出ポート102a,102bから吐出される圧油によって駆動されるアクチュエータの最高負荷圧より目標差圧だけ高くなるようメインポンプ102(第1ポンプ装置)の容量を制御する第1ロードセンシング制御部を構成する。レギュレータ212(第2ポンプ制御装置)のLS制御弁212bとLS制御ピストン212cは、第3吐出ポート202aの吐出圧が、第3吐出ポート202aから吐出される圧油によって駆動されるアクチュエータの最高負荷圧より目標差圧だけ高くなるようメインポンプ202(第2ポンプ装置)の容量を制御する第2ロードセンシング制御部を構成する。
 また、レギュレータ112(第1ポンプ制御装置)のトルク制御ピストン112d,112eと減圧弁112gとトルク制御ピストン112fは、第1吐出ポート102aの吐出圧と第2吐出ポート102bの吐出圧の平均圧力が高くなるにしたがってメインポンプ102(第1ポンプ装置)の容量を減少させ、かつ第3吐出ポート202aの吐出圧が高くなるにしたがってメインポンプ102(第1ポンプ装置)の容量を減少させるトルク制御部を構成し、レギュレータ212(第2ポンプ制御装置)のトルク制御ピストン212dは、第3吐出ポート202aの吐出圧が高くなるにしたがってメインポンプ202(第2ポンプ装置)の容量を減少させるトルク制御部を構成する。
 図2Aは、ブームシリンダ3a及びアームシリンダ3b以外のアクチュエータ3c~3hの流量制御弁6c~6hのそれぞれのメータイン通路の開口面積特性を示す図である。これらの流量制御弁は、スプールストロークが不感帯0-S1を超えて増加するにしたがって開口面積が増加し、最大のスプールストロークS3の直前で最大開口面積A3となるように開口面積特性が設定されている。最大開口面積A3は、アクチュエータの種類に応じてそれぞれ固有の大きさを持つ。
 図2Bの上側は、ブームシリンダ3aの流量制御弁6a,6i(第1及び第2流量制御弁)及びアームシリンダ3bの流量制御弁6b,6j(第3及び第4流量制御弁)のそれぞれのメータイン通路の開口面積特性を示す図である。
 ブームシリンダ3aのメイン駆動用の流量制御弁6a(第1流量制御弁)は、スプールストロークが不感帯0-S1を超えて増加するにしたがって開口面積が増加し、中間ストロークS2で最大開口面積A1となり、その後、最大のスプールストロークS3まで最大開口面積A1が維持されるように開口面積特性が設定されている。アームシリンダ3bのメイン駆動用の流量制御弁6b(第3流量制御弁)の開口面積特性も同様である。
 ブームシリンダ3aのアシスト駆動用の流量制御弁6i(第2流量制御弁)は、スプールストロークが中間ストロークS2になるまでは開口面積はゼロであり、スプールストロークが中間ストロークS2を超えて増加するにしたがって開口面積が増加し、最大のスプールストロークS3の直前で最大開口面積A2となるように開口面積特性が設定されている。アームシリンダ3bのアシスト駆動用の流量制御弁6j(第4流量制御弁)の開口面積特性も同様である。
 図2Bの下側は、ブームシリンダ3aの流量制御弁6a,6i及びアームシリンダ3bの流量制御弁6b,6jのメータイン通路の合成開口面積特性を示す図である。
 ブームシリンダ3aの流量制御弁6a,6iのメータイン通路は、それぞれが上記のような開口面積特性を有する結果、スプールストロークが不感帯0-S1を超えて増加するにしたがって開口面積が増加し、最大のスプールストロークS3の直前で最大開口面積A1+A2となるような合成開口面積特性となる。アームシリンダ3bの流量制御弁6b,6jの合成開口面積特性の合成開口面積特性も同様である。
 ここで、図2Aに示すアクチュエータ3c~3hの流量制御弁6c,6d,6e,6f,6g,6hの最大開口面積A3とブームシリンダ3aの流量制御弁6a,6i及びアームシリンダ3bの流量制御弁6b,6jの合成した最大開口面積A1+A2は、A1+A2>A3の関係にある。すなわち、ブームシリンダ3a及びアームシリンダ3bは、他のアクチュエータよりも最大の要求流量が大きいアクチュエータである。
 また、ブームシリンダ3aの流量制御弁6a,6iとアームシリンダ3bの流量制御弁6b,6jのメータインの開口面積を上記のように構成することで、ブームシリンダ3a(第1アクチュエータ)の要求流量が開口面積A1に対応する所定流量より小さい場合は、ブームシリンダ3a(第1アクチュエータ)をシングルフロータイプのメインポンプ202(第2ポンプ装置)の第3吐出ポート202aから吐出される圧油のみで駆動し、ブームシリンダ3a(第1アクチュエータ)の要求流量が開口面積A1に対応する所定流量より大きい場合は、シングルフロータイプのメインポンプ202(第2ポンプ装置)の第3吐出ポート202aから吐出される圧油とスプリットフロータイプのメインポンプ201(第1ポンプ装置)の第1吐出ポート102a(第1及び第2吐出ポートの一方)から吐出される圧油とを合流してブームシリンダ3a(第1アクチュエータ)を駆動するよう、メインポンプ102の第1吐出ポート102a及びメインポンプ202の第3吐出ポート202aとブームシリンダ3aとが接続され、アームシリンダ3b(第2アクチュエータ)の要求流量が開口面積A1に対応する所定流量より小さい場合は、アームシリンダ3b(第2アクチュエータ)をスプリットフロータイプのメインポンプ102(第1ポンプ装置)の第2吐出ポート102b(第1及び第2吐出ポートの他方)から吐出される圧油のみで駆動し、アームシリンダ3b(第2アクチュエータ)の要求流量が開口面積A1に対応する所定流量より大きい場合は、スプリットフロータイプのメインポンプ102(第1ポンプ装置)の第1及び第2吐出ポート102a,102bの両方から吐出される圧油を合流してアームシリンダ3b(第2アクチュエータ)を駆動するよう、メインポンプ102の第1及び第2吐出ポート102a,102bとアームシリンダ3bとが接続されている。
 また、アクチュエータ3fは例えば油圧ショベルの左走行モータであり、アクチュエータ3gは例えば油圧ショベルの右走行モータであり、これらのアクチュエータは同時に駆動されかつそのとき供給流量が同等になることで所定の機能を果たすアクチュエータである。本実施の形態において、左走行モータ3f(第3アクチュエータ)をスプリットフロータイプのメインポンプ102(第1ポンプ装置)の第1吐出ポート102a(第1及び第2吐出ポートの一方)から吐出される圧油で駆動し、右走行モータ3g(第4アクチュエータ)をスプリットフロータイプのメインポンプ102(第1ポンプ装置)の第2吐出ポート102b(第1及び第2吐出ポートの他方)から吐出される圧油で駆動するよう、スプリットフロータイプのメインポンプ102(第1ポンプ装置)の第1及び第2吐出ポート102a,102bと左右の走行モータ3f,3g(第3及び第4アクチュエータ)とが接続されている。
 図3は、上述した油圧駆動装置が搭載される油圧ショベルの外観を示す図である。
 図3において、作業機械としてよく知られている油圧ショベルは、下部走行体101と、上部旋回体109と、スイング式のフロント作業機104を備え、フロント作業機104は、ブーム104a、アーム104b、バケット104cから構成されている。上部旋回体109は下部走行体101に対して旋回モータ3cによって旋回可能である。上部旋回体109の前部にはスイングポスト103が取り付けられ、このスイングポスト103にフロント作業機104が上下動可能に取り付けられている。スイングポスト103はスイングシリンダ3eの伸縮により上部旋回体109に対して水平方向に回動可能であり、フロント作業機104のブーム104a、アーム104b、バケット104cはブームシリンダ3a,アームシリンダ3b,バケットシリンダ3dの伸縮により上下方向に回動可能である。下部走行体102の中央フレームには、ブレードシリンダ3hの伸縮により上下動作を行うブレード106が取り付けられている。下部走行体101は、走行モータ3f,3gの回転により左右の履帯101a,101bを駆動することによって走行を行う。
 上部旋回体109にはキャノピータイプの運転室108が設置され、運転室108内には、運転席121、フロント/旋回用の左右の操作装置122,123(図3では左側のみ図示)、走行用の操作装置124a,124b(図3では左側のみ図示)、図示しないスイング用の操作装置及びブレード用の操作装置、ゲートロックレバー24等が設けられている。操作装置122,123の操作レバーは中立位置から十字方向を基準とした任意の方向に操作可能であり、左側の操作装置122の操作レバーを前後方向に操作するとき、操作装置122は旋回用の操作装置として機能し、同操作装置122の操作レバーを左右方向に操作するとき、操作装置122はアーム用の操作装置として機能し、右側の操作装置123の操作レバーを前後方向に操作するとき、操作装置123はブーム用の操作装置として機能し、同操作装置123の操作レバーを左右方向に操作するとき、操作装置123はバケット用の操作装置として機能する。
 ~動作~
 次に、本実施の形態の動作を説明する。
 まず、原動機1によって駆動される固定容量型のパイロットポンプ30から吐出された圧油は、圧油供給路31aに供給される。圧油供給路31aには原動機回転数検出弁13が接続されており、原動機回転数検出弁13は流量検出弁50と差圧減圧弁51によりパイロットポンプ30の吐出流量に応じた流量検出弁50の前後差圧を絶対圧Pgrとして出力する。原動機回転数検出弁13の下流にはパイロットリリーフバルブ32が接続されており、パイロット圧油供給路31bに一定の圧力を生成している。
 (a)全ての操作レバーが中立の場合
 全ての操作装置の操作レバーが中立なので、全ての流量制御弁6a~6jが中立位置となる。全ての流量制御弁6a~6jが中立位置なので、第1負荷圧検出回路131,第2負荷圧検出回路132,第3負荷圧検出回路133は、それぞれ、最高負荷圧Plmax1,Plmax2,Plmax3としてタンク圧を検出する。この最高負荷圧Plmax1,Plmax2,Plmax3は、それぞれ、アンロード弁115,215,315と差圧減圧弁111,211,311に導かれる。 
 最高負荷圧Plmax1,Plmax2,Plmax3がアンロード弁115,215,315に導かれることによって、第1、第2及び第3圧油供給路105,205,305の圧力P1,P2,P3は、最高負荷圧Plmax1,Plmax2,Plmax3にアンロード弁115,215,315のそれぞれのバネの設定圧力Pun0を加算した圧力(アンロード弁セット圧)に保たれる。ここで、最高負荷圧Plmax1,Plmax2,Plmax3は上述したようにそれぞれタンク圧であり、タンク圧はほぼ0MPaであると仮定した場合、アンロード弁セット圧はバネの設定圧力Pun0に等しくなり、第1、第2及び第3圧油供給路105,205,305の圧力P1,P2,P3はPun0に保たれる。通常、Pun0は原動機回転数検出弁13の出力圧Pgrよりも若干高く設定される(Pun0>Pgr)。
 差圧減圧弁111,211,311は、それぞれ、第1、第2及び第3圧油供給路105,205,305の圧力P1,P2,P3と最高負荷圧Plmax1,Plmax2,Plmax3(タンク圧)との差圧(LS差圧)を絶対圧Pls1,Pls2,Pls3として出力する。最高負荷圧Plmax1,Plmax2,Plmax3は上述したようにそれぞれタンク圧であるので、Pls1=P1-Plmax1=P1=Pun0>Pgr,Pls2=P2-Plmax2=P2=Pun0>Pgr,Pls3=P3-Plmax3=P3=Pun0>Pgrとなる。LS差圧であるPls1,Pls2はレギュレータ112の低圧選択弁112aに導かれ、Pls3はレギュレータ212のLS制御弁212bに導かれる。
 レギュレータ112において、低圧選択弁112aに導かれたLS差圧Pls1,Pls2はそれらの低圧側が選択され、LS制御弁112bに導かれる。このとき、Pls1,Pls2のいずれが選択されても、Pls1又はPls2>Pgrであるので、LS制御弁122bは図中で左方向に押されて右側の位置に切り換わり、パイロットリリーフバルブ32によって生成される一定のパイロット圧をLS制御ピストン112cに導く。LS制御ピストン112cに圧油が導かれるので、メインポンプ102の容量は最小に保たれる。
 一方、レギュレータ212のLS制御弁212bにLS差圧Pls3が導かれる。Pls3>Pgrであるので、LS制御弁212bは図中で右方向に押されて左側の位置に切り換わり,パイロットリリーフバルブ32によって生成される一定のパイロット圧をLS制御ピストン212cに導く。LS制御ピストン212cに圧油が導かれるので、メインポンプ202の容量は最小に保たれる。
 (b)ブーム操作レバーを入力した場合(微操作)
 例えばブーム用の操作装置の操作レバー(ブーム操作レバー)をブームシリンダ3aが伸長する向き、つまりブーム上げ方向に入力すると、ブームシリンダ3a駆動用の流量制御弁6a,6iが図中で上方向に切り換わる。ここで、ブームシリンダ3a駆動用の流量制御弁6a,6iの開口面積特性は、図2Bを用いて説明したように流量制御弁6aがメイン駆動用であり、流量制御弁6iがアシスト駆動用である。流量制御弁6a,6iは、操作装置のパイロットバルブによって出力された操作パイロット圧に応じてストロークする。
 ブーム操作レバーが微操作で、流量制御弁6a,6iのストロークが図2BのS2以下の場合、ブーム操作レバーの操作量(操作パイロット圧)が増加していくと、メイン駆動用の流量制御弁6aのメータイン通路の開口面積は0からA1に増加していく。一方、アシスト駆動用の流量制御弁6iのメータイン通路の開口面積は0に維持される。
 このため流量切換弁6aが図中で上方向に切り換わると、ブームシリンダ3aのボトム側の負荷圧が流量制御弁6aの負荷ポートを介して第3負荷圧検出回路133によって最高負荷圧Plmax3として検出され、アンロード弁315と差圧減圧弁311に導かれる。最高負荷圧Plmax3がアンロード弁315に導かれることによって、アンロード弁315のセット圧は、最高負荷圧Plmax3(ブームシリンダ3aのボトム側の負荷圧)にバネの設定圧力Pun0を加算した圧力に上昇し、第3圧油供給路305の圧油をタンクに排出する油路を遮断する。また、最高負荷圧Plmax3が差圧減圧弁311に導かれることによって、差圧減圧弁311は第3圧油供給路305の圧力P3と最高負荷圧Plmax3との差圧(LS差圧)を絶対圧Pls3として出力する。このPls3はLS制御弁212bに導かれる。LS制御弁212bは、目標LS差圧である原動機回転数検出弁13の出力圧Pgrと上記Pls3を比較する。
 ブーム上げ起動時の操作レバー入力直後は、ブームシリンダ3aの負荷圧が第3圧油供給路305に伝わり両者の圧力差は殆ど無くなるから、LS差圧であるPls3はほぼ0に等しくなる。よって、Pls3<Pgrの関係となるので、LS制御弁212bは図中で左方向に切り換わり、LS制御ピストン212cの圧油をタンクに放出する。このためメインポンプ202の容量(流量)は増加してゆき、その流量増加はPls3=Pgrになるまで継続する。これによりブーム操作レバーの入力に応じた流量の圧油がブームシリンダ3aのボトム側に供給され、ブームシリンダ3aは伸長方向に駆動される。
 一方、流量制御弁6iの負荷ポートに接続され第1負荷圧検出回路131は最高負荷圧Plmax1としてタンク圧を検出する。このためメインポンプ102の吐出流量は全ての操作レバーが中立の場合と同様に最小に保たれる。
 (c)ブーム操作レバーを入力した場合(フル操作)
 例えばブーム操作レバーをブームシリンダ3aが伸長する向き、つまりブーム上げ方向にフルに操作した場合、ブームシリンダ3a駆動用の流量制御弁6a,6iが図中で上方向に切り換わり、図2Bに示したように、流量制御弁6a,6iのスプールストロークはS2以上となり、流量制御弁6aのメータイン通路の開口面積はA1に保たれ、流量制御弁6iのメータイン通路の開口面積はA2となる。
 前述したように、流量制御弁6aを介して検出されるブームシリンダ3aのボトム側の負荷圧に応じて、メインポンプ202の流量はPls3がPgrに等しくなるように制御され、メインポンプ202からブームシリンダ3aのボトム側にブーム操作レバーの入力に応じた流量が供給される。
 一方、ブームシリンダ3aのボトム側の負荷圧は、流量制御弁6iの負荷ポートを介して第1負荷圧検出回路131によって最高負荷圧Plmax1として検出され、アンロード弁115と差圧減圧弁111に導かれる。最高負荷圧Plmax1がアンロード弁115に導かれることによって、アンロード弁115のセット圧は、最高負荷圧Plmax1(ブームシリンダ3aのボトム側の負荷圧)にバネの設定圧力Pun0を加算した圧力に上昇し、第1圧油供給路105の圧油をタンクに排出する油路を遮断する。また、最高負荷圧Plmax1が差圧減圧弁111に導かれることによって、差圧減圧弁111は第1圧油供給路105の圧力P1と最高負荷圧Plmax1との差圧(LS差圧)を絶対圧Pls1として出力する。このPls1はレギュレータ112の低圧選択弁112aに導かれ、低圧選択弁112aによってPls1とPls2の低圧側が選択される。
 ブーム上げ起動時の操作レバー入力直後は、ブームシリンダ3aの負荷圧が第1圧油供給路105に伝わり両者の圧力の差は殆ど無くなるから、LS差圧であるPls1はほぼ0に等しくなる。一方、このとき、Pls2は操作レバーの中立時と同様、Pgrよりも大きな値に保たれている(Pls2=P2-Plmax2=P2=Pun0>Pgr)。よって、低圧選択弁112aではPls1が低圧として選択され、LS制御弁112bに導かれる。LS制御弁112bは、目標LS差圧である原動機回転数検出弁13の出力圧PgrとPls1を比較する。この場合、上記のようにLS差圧であるPls1はほぼ0に等しく、Pls1<Pgrの関係となるので、LS制御弁112bは図中で右方向に切り換わり、LS制御ピストン112cの圧油をタンクに放出する。このためメインポンプ102の容量(流量)は増加してゆき、その流量増加はPls1=Pgrになるまで継続する。これによりメインポンプ102の第1吐出ポート102aからブームシリンダ3aのボトム側にブーム操作レバーの入力に応じた流量の圧油が供給され、ブームシリンダ3aは、メインポンプ202の第3吐出ポート202aとメインポンプ102の第1吐出ポート102aからの合流した圧油により伸長方向に駆動される。
 このとき、第2圧油供給路205に、第1圧油供給路105に供給される圧油と同じ流量の圧油が供給され、その圧油は余剰流量としてアンロード弁215を介してタンクに戻される。ここで、第2負荷圧検出回路132は最高負荷圧Plmax2としてタンク圧を検出している。このためアンロード弁215のセット圧はバネの設定圧力Pun0に等しくなり、第2圧油供給路205の圧力P2はPun0の低圧に保たれる。これにより余剰流量がタンクに戻るときのアンロード弁215の圧損が低減し、エネルギーロスの少ない運転が可能となる。
 (d)アーム操作レバーを入力した場合(微操作)
 例えばアーム用の操作装置の操作レバー(アーム操作レバー)をアームシリンダ3bが伸長する向き、つまりアームクラウド方向に入力すると、アームシリンダ3b駆動用の流量制御弁6b,6jが図中で下方向に切り換わる。ここで、アームシリンダ3b駆動用の流量制御弁6b,6jの開口面積特性は、図2Bを用いて説明したように流量制御弁6bがメイン駆動用であり、流量制御弁6jがアシスト駆動用である。流量制御弁6b,6jは、操作装置のパイロットバルブによって出力された操作パイロット圧に応じてストロークする。
 アーム操作レバーが微操作で、流量制御弁6b,6jのストロークが図2BのS2以下の場合、アーム操作レバーの操作量(操作パイロット圧)が増加していくと、メイン駆動用の流量制御弁6bのメータイン通路の開口面積は0からA1に増加していく。一方、アシスト駆動用の流量制御弁6jのメータイン通路の開口面積は0に維持される。
 このため流量切換弁6bが図中で下方向に切り換わると、アームシリンダ3bのボトム側の負荷圧が流量制御弁6bの負荷ポートを介して第2負荷圧検出回路132によって最高負荷圧Plmax2として検出され、アンロード弁215と差圧減圧弁211に導かれる。最高負荷圧Plmax2がアンロード弁215に導かれることによって、アンロード弁215のセット圧は、最高負荷圧Plmax2(アームシリンダ3bのボトム側の負荷圧)にバネの設定圧力Pun0を加算した圧力に上昇し、第2圧油供給路205の圧油をタンクに排出する油路を遮断する。また、最高負荷圧Plmax2が差圧減圧弁211に導かれることによって、差圧減圧弁211は第2圧油供給路205の圧力P2と最高負荷圧Plmax2との差圧(LS差圧)を絶対圧Pls2として出力する。このPls2はレギュレータ112の低圧選択弁112aに導かれ、低圧選択弁112aによってPls1とPls2の低圧側が選択される。
 アームクラウド起動時の操作レバー入力直後は、アームシリンダ3bの負荷圧が第2圧油供給路205に伝わり両者の圧力の差は殆ど無くなるから、LS差圧であるPls2はほぼ0に等しくなる。一方、このとき、Pls1は操作レバーの中立時と同様、Pgrよりも大きな値に保たれている(Pls1=P1-Plmax1=P1=Pun0>Pgr)。よって、低圧選択弁112aではPls2が低圧として選択され、LS制御弁112bに導かれる。LS制御弁112bは、目標LS差圧である原動機回転数検出弁13の出力圧PgrとPls2を比較する。この場合、上記のようにLS差圧であるPls2はほぼ0に等しく、Pls2<Pgrの関係となるので、LS制御弁112bは図中で右方向に切り換わり、LS制御ピストン112cの圧油をタンクに放出する。このためメインポンプ102の容量(流量)は増加してゆき、その流量増加はPls2=Pgrになるまで継続する。これによりメインポンプ102の第2吐出ポート102bからアーム操作レバーの入力に応じた流量の圧油がアームシリンダ3bのボトム側に供給され、アームシリンダ3bは伸長方向に駆動される。
 このとき、第1圧油供給路105に、第2圧油供給路205に供給される圧油と同じ流量の圧油が供給され、その圧油は余剰流量としてアンロード弁115を介してタンクに戻される。ここで、第1負荷圧検出回路131は最高負荷圧Plmax1としてタンク圧を検出するため、アンロード弁115のセット圧はバネの設定圧力Pun0に等しくなり、第1圧油供給路105の圧力P1はPun0の低圧に保たれる。これにより余剰流量がタンクに戻るときのアンロード弁115の圧損が低減し、エネルギーロスの少ない運転が可能となる。
 (e)アーム操作レバーを入力した場合(フル操作)
 例えばアーム操作レバーをアームシリンダ3bが伸長する向き、つまりアームクラウド方向にフルに操作した場合、アームシリンダ3b駆動用の流量制御弁6b,6jが図中で下方向に切り換わり、図2Bに示したように、流量制御弁6b,6jのスプールストロークはS2以上となり、流量制御弁6bのメータイン通路の開口面積はA1に保たれ、流量制御弁6jのメータイン通路の開口面積はA2となる。
 上記(d)で説明したように、アームシリンダ3bのボトム側の負荷圧が流量制御弁6bの負荷ポートを介して第2負荷圧検出回路132によって最高負荷圧Plmax2として検出され、アンロード弁215が第2圧油供給路205の圧油をタンクに排出する油路を遮断する。また、最高負荷圧Plmax2が差圧減圧弁211に導かれることによって、LS差圧であるPls2が出力され、レギュレータ112の低圧選択弁112aに導かれる。
 一方、アームシリンダ3bのボトム側の負荷圧は、流量制御弁6jの負荷ポートを介して第1負荷圧検出回路131によって最高負荷圧Plmax1(=Plmax2)として検出され、アンロード弁115と差圧減圧弁111に導かれる。最高負荷圧Plmax1がアンロード弁115に導かれることによって、アンロード弁115は第1圧油供給路105の圧油をタンクに排出する油路を遮断する。また、最高負荷圧Plmax1が差圧減圧弁111に導かれることによって、LS差圧であるPls1(=Pls2)がレギュレータ112の低圧選択弁112aに導かれる。
 アームクラウド起動時の操作レバー入力直後は、アームシリンダ3bの負荷圧が第1及び第2圧油供給路105,205に伝わり両者の圧力の差は殆ど無くなるから、LS差圧であるPls1,Pls2は、共に、ほぼ0に等しくなる。よって、低圧選択弁112aでは、Pls1とPls2のいずれかが低圧側として選択され、LS制御弁112bに導かれる。この場合、上記のようにPls1,Pls2は、共に、ほぼ0に等しく、Pls1又はPls2<Pgrであるので、LS制御弁112bは図中で右方向に切り換わり、LS制御ピストン112cの圧油をタンクに放出する。このためメインポンプ102の容量(流量)は増加してゆき、その流量増加はPls1又はPls2=Pgrになるまで継続する。これによりメインポンプ102の第1及び第2吐出ポート102a,102bからアームシリンダ3bのボトム側にアーム操作レバーの入力に応じた流量の圧油が供給され、アームシリンダ3bは第1及び第2吐出ポート102a,102bからの合流した圧油により伸長方向に駆動される。
 (f)水平均し動作をした場合
 水平均し動作はブーム上げ微操作とアームクラウドのフル操作との組み合わせとなる。アクチュエータとしては、アームシリンダ3bが伸長し、ブームシリンダ3aが伸長する動作である。
 水平均し動作では、ブーム上げ微操作なので、上記(b)で説明したように、ブームシリンダ3aのメイン駆動用の流量制御弁6aのメータイン通路の開口面積はA1となり、アシスト駆動用の流量制御弁6iのメータイン通路の開口面積は0に維持される。ブームシリンダ3aの負荷圧は流制御弁6aの負荷ポートを介して第3負荷圧検出回路133によって最高負荷圧Plmax3として検出され、アンロード弁315が第3圧油供給路305の圧油をタンクに排出する油路を遮断する。また、最高負荷圧Plmax3がメインポンプ202のレギュレータ212にフィードバックされ、メインポンプ202の容量(流量)が流量制御弁6aの要求流量(開口面積)に応じて増加し、メインポンプ202の第3吐出ポート202aからブーム操作レバーの入力に応じた流量がブームシリンダ3aボトム側に供給され、ブームシリンダ3aは第3吐出ポート202aからの圧油により伸長方向に駆動される。
 一方、アーム操作レバーはフル入力となるので、上記(e)で説明したように、アームシリンダ3bのメイン駆動用の流量制御弁6bとアシスト駆動用の流量制御弁6jのそれぞれのメータイン通路の開口面積はA1,A2となる。アームシリンダ3bの負荷圧は、流量制御弁6b,6jの負荷ポートを介して第1及び第2負荷圧検出回路131,132によって最高負荷圧Plmax1,Plmax2(Plmax1=Plmax2)として検出され、アンロード弁115,215がそれぞれ第1及び第2圧油供給路105,205の圧油をタンクに排出する油路を遮断する。また、最高負荷圧Plmax1,Plmax2がメインポンプ102のレギュレータ112にフィードバックされ、メインポンプ102の容量(流量)が流量制御弁6b,6jの要求流量(開口面積)に応じて増加し、メインポンプ102の第1及び第2吐出ポート102a,102bからアームシリンダ3bのボトム側にアーム操作レバーの入力に応じた流量の圧油が供給され、アームシリンダ3bは第1及び第2吐出ポート102a,102bからの合流した圧油により伸長方向に駆動される。
 ここで、水平均し動作の場合、通常アームシリンダ3bの負荷圧は低く、ブームシリンダ3aの負荷圧は高いことが多い。本実施の形態では、水平均し動作では、ブームシリンダ3aを駆動する油圧ポンプはメインポンプ202、アームシリンダ3bを駆動する油圧ポンプはメインポンプ102というように、負荷圧の異なるアクチュエータを駆動するポンプが別個になるので、1つのポンプで負荷圧の異なる複数のアクチュエータを駆動する従来技術の1ポンプロードセンシングシステムの場合のように、低負荷側の圧力補償弁7bでの絞り圧損による無駄なエネルギー消費を発生させることはない。
 (g)バケット掘削後のバケットかき寄せ動作
 バケット掘削後のバケットかき寄せ動作では、バケット掘削後にブーム上げを最大スピードで行いながら(ブーム上げフル操作)アームクラウドを微操作する。ブーム上げがフル操作であるから、上記(c)で説明したように、ブームシリンダ3aのメイン駆動用の流量制御弁6aとアシスト駆動用の流量制御弁6iのそれぞれのメータイン通路の開口面積はA1,A2となる。ブームシリンダ3aの負荷圧は第1及び第3負荷圧検出回路131,133によって最高負荷圧Plmax1,Plmax3として検出され、アンロード弁115,315がそれぞれ第1及び第3圧油供給路105,305の圧油をタンクに排出する油路を遮断する。また、最高負荷圧Plmax3はメインポンプ202のレギュレータ212にフィードバックされ、メインポンプ202の容量(流量)が流量制御弁6aの要求流量(開口面積)に応じて増加し、メインポンプ202の第3吐出ポート202aからブーム操作レバーの入力に応じた流量の圧油がブームシリンダ3aのボトム側に供給される。また、最高負荷圧Plmax1が差圧減圧弁111に導かれることによって、LS差圧であるPls1が出力され、レギュレータ112の低圧選択弁112aに導かれる。
 一方、アームクラウドが微操作であるので、上記(d)で説明したように、アシスト駆動用の流量制御弁6jのメータイン通路の開口面積は0に維持され、メイン駆動用の流量制御弁6bのメータイン通路の開口面積はA1となる。アームシリンダ3bの負荷圧は第2負荷圧検出回路132によって最高負荷圧Plmax2として検出され、アンロード弁215が第2圧油供給路205の圧油をタンクに排出する油路を遮断する。また、最高負荷圧Plmax2が差圧減圧弁211に導かれることによって、LS差圧であるPls2が出力され、レギュレータ112の低圧選択弁112aに導かれる。
 ここで、レギュレータ112の低圧選択弁112aにおいてPls1とPls2の低圧側が選択されるとき、Pls1とPls2のいずれが低圧側になるかは、ブームシリンダ3aのアシスト駆動用の流量制御弁6iの要求流量(開口面積)とアームシリンダ3bのメイン駆動用の流量制御弁3bの要求流量(開口面積)の大小関係に依存しており、要求流量の大きな側の圧油供給路の圧力(吐出ポートの圧力)の方がより大きく低下するため、LS差圧もより小さくなる。バケット掘削後のバケットかき寄せ動作では、ブーム上げがフル操作で、アームクラウドが微操作であるので、ブーム操作レバーの要求流量がアーム操作レバーの要求流量よりも大きい場合が多い。この場合、Pls1が低圧側となり、低圧選択弁112aによってPls1が選択され、メインポンプ102の容量(流量)はブームシリンダ3aのアシスト駆動用の流量制御弁6iの要求流量に合わせて増加する。このとき、メインポンプ102の第2吐出ポート102bの吐出流量もそれに合わせて増加しており、アームシリンダ3bのボトム側に供給される圧油の流量は第2吐出ポート102bの吐出流量よりも少ないため、第2圧油供給路205に余剰流量が発生する。この余剰流量は、アンロード弁211を介してタンクに排出される。ここで、アンロード弁211には最高負荷圧Plmax2としてアームシリンダ3bの負荷圧が導かれており、前述したようにアームシリンダ3bの負荷圧は低いため、アンロード弁211のセット圧も低く設定されている。このため、第2吐出ポート102bの圧油の余剰流量がアンロード弁211を介してタンクに排出されるとき、その排出油によって無駄に消費されるエネルギーは小さく抑えられる。
 (h)斜面上側からの斜め引き動作
 斜面上側に油圧ショベルの本体を水平に配置し、そこから、斜面の谷側から山側(上側)に向かってバケット爪先を斜めに移動させる、いわゆる斜面上側からの斜め引き動作を行う場合について説明する。
 斜面上側からの斜め引き動作では、通常アーム操作レバーはアームクラウド方向にフル入力、斜面に沿ってバケット爪先を移動させるためにブーム操作レバーはブーム上げ方向にハーフ入力で行う。つまり、ブーム上げハーフ操作とアームクラウドのフル操作の組み合わせとなる。斜面の角度が大きくなると、ブーム上げの操作量も大きくなる傾向がある。また、ブーム上げのレバー操作量は、斜面に対するアーム角度(車体とバケット先端との距離)によって決まる。例えば、斜め引き動作の引き始めでは、ブーム上げのレバー操作量が増えるが、斜め引き動作が進むにつれてブーム上げのレバー操作量は少なくなる。
 斜め引き動作の引き始めで、図2Bにおいて、ブーム上げのハーフ操作によってストロークするブーム上げのメイン/アシスト駆動用のそれぞれの流量制御弁6a,6iのスプールストロークが、S2以上でS3以下にある場合を考える。このとき、ブーム上げのメイン駆動用の流量制御弁6aが図中上方向に切り換わり、上記(b)で説明したように、ブームシリンダ3aの負荷圧は、第3負荷圧検出回路133によって最高負荷圧Plmax3として検出され、アンロード弁315が第3圧油供給路305の圧油をタンクに排出する油路を遮断する。また、最高負荷圧Plmax3がメインポンプ202のレギュレータ212にフィードバックされ、メインポンプ202の容量(流量)が流量制御弁6aの要求流量(開口面積)に応じて増加し、メインポンプ202からブーム操作レバーの入力に応じた流量の圧油がブームシリンダ3aのボトム側に供給される。
 一方、アシスト駆動用の流量制御弁6iもブーム上げのハーフ操作で図中上方向に切り換わり、ブームシリンダ3aの負荷圧は、流量制御弁6iを介して第1負荷圧検出回路131のシャトル弁9iに導かれる。また、アームクラウドをフル操作するので、アームシリンダ3bの負荷圧も流量制御弁6j及び第1負荷圧検出回路131のシャトル弁9j,9d,9cを介してシャトル弁9iに導かれる。
 ここで、斜め引き動作では、ブームシリンダ3aの負荷圧はアームシリンダ3bの負荷圧よりも高いので、ブームシリンダ3aの負荷圧が第1負荷圧検出回路131(シャトル弁9i)によって最高負荷圧Plmax1として検出され、アンロード弁115は第1圧油供給路105の圧油をタンクに排出する油路を遮断する。また、最高負荷圧Plmax1が差圧減圧弁111に導かれることによって、LS差圧であるPls1が出力され、レギュレータ112の低圧選択弁112aに導かれる。
 一方、アームシリンダ3bの負荷圧は、流量制御弁6bの負荷ポートを介して第2負荷圧検出回路132によって最高負荷圧Plmax2として検出され、アンロード弁215は第2圧油供給路205の圧油をタンクに排出する油路を遮断する。また、最高負荷圧Plmax2が差圧減圧弁211に導かれることによって、LS差圧であるPls2が出力され、レギュレータ112の低圧選択弁112aに導かれる。
 レギュレータ112において、低圧選択弁112aに導かれたPls1とPls2はその低圧側が選択され、LS制御弁112bに導かれる。LS制御弁112bはPls1とPls2の低圧側が目標LS差圧Pgrと等しくなるようにメインポンプ102の容量(流量)を制御し、その流量の圧油がメインポンプ102から第1及び第2吐出油路102a、102bに吐出される。
 ここで、第1圧油供給路105に吐出された圧油は圧力補償弁7i、流量制御弁6iを介してブームシリンダ3aに供給されるとともに、圧力補償弁7j、流量制御弁6jを介してアームシリンダ3bにも供給される。一方、第2圧油供給路205に吐出された圧油は、圧力補償弁7b、流量制御弁6bを介してアームシリンダ3bだけに供給される。このため、第1圧油供給路105側の要求流量と第2圧油供給路205側の要求流量を比較した場合、第1圧油供給路105側の要求流量の方が大きく、Pls1とPls2とではPls1が低圧側となり、低圧選択弁112aによってPls1が選択され、メインポンプ102の容量(流量)はそのPls1に応じて(つまり流量制御弁6iと流量制御弁6jの要求流量に応じて)増加する。
 また、アームクラウドがフル操作であるので、アームシリンダ3bの流量制御弁6j,6bの要求流量が等しく、かつ流量制御弁6j,6bの要求流量がメインポンプ102の第1及び第2吐出ポート102a,102bより吐出される吐出流量とそれぞれ等しかったとすると、第2圧油供給路205については流量制御弁6bの要求流量に対して不足することなくメインポンプ102は圧油を供給できるが、第1圧油供給路105については、ブームシリンダ3aの流量制御弁6iとアームシリンダ3bの流量制御弁6jの要求流量の合計がメインポンプ102の吐出流量を上回る、いわゆるサチュレーションを起こす。特に、ブームシリンダ3aの負荷圧が高く、第1及び第3圧油供給路105,305の圧力が高い場合は、その圧力がトルク制御(馬力制御)ピストン112d,112fに導かれ、トルク制御ピストン112d,112fのトルク制御(馬力制御)によって予め定められたトルクを超えないようメインポンプ102の容量の増加が制限される(LS制御が行えなくなる)ため、サチュレーションが顕著となる。このサチュレーション状態では、第1圧油供給路105の圧力を、最高負荷圧Plmax1に対して目標LS差圧のPgrだけ高く維持することができないため、Pls1が低下する。Pls1が低下すると、圧力補償弁7i,7jの目標差圧が低下するので、それぞれ閉じ勝手となり、流量制御弁6i,6jの要求流量の比に第1圧油供給路105の圧油を分配する。
 一方、メインポンプ102は第1圧油供給路105がサチュレーションを起こしている場合には、前述のようにロードセンシング制御をせずに、馬力制御によって予め定められたトルクを超えない範囲で圧油を供給するので、第2圧油供給路205には、流量制御弁6bの要求流量以上の圧油が供給される。第2圧油供給路205に供給された余剰な圧油は、アンロード弁215によってタンクに排出される。
 このように、斜面上側からの斜め引き動作のように、アームクラウドのレバー操作がフル入力、ブーム上げレバー操作がハーフ入力のような場合においても、オペレータが意図した通りに圧油がブームシリンダ3a及びアームシリンダ3bに供給されるので、違和感なく操作することができる。
 (i)左右走行操作レバーを入力した場合(直進走行)
 直進走行を行うため、左右の走行操作レバーを前進方向に同じ量だけ操作すると、左走行モータ3f駆動用の流量制御弁6fと右走行モータ3g駆動用の流量制御弁6gがそれぞれ図中で上方向に切り換わり、左右の走行操作レバーをフル操作したときは、図2Aに示したように、流量制御弁6f,6gのメータイン通路の開口面積は同じA3となる。
 流量制御弁6f,6gが切り換わると、操作検出弁8f,8gも切り換わる。しかし、このときは、その他のアクチュエータ駆動用の流量制御弁の操作検出弁8a,8i,8c,8d,8j,8b,8e,8hが中立位置にあるため、絞り43を経由して圧油供給路31bから走行複合操作検出油路43に供給される圧油は、タンクに排出される。このため、第1~第3切換弁40,146,246を図中下方向に切り換える圧力はタンク圧と等しくなるので、第1~第3切換弁40,146,246は、バネの働きによって図中下側の切換位置に保持される。これにより、第1圧油供給路105と第2圧油供給路205とは遮断され、かつ第2負荷圧検出回路132の最下流のシャトル弁9gには第1切換弁146を介してタンク圧が導かれ、第1負荷圧検出回路131の最下流のシャトル弁9fには第2切換弁246を介してタンク圧が導かれる。このため走行モータ3fの負荷圧が、流量制御弁6fの負荷ポートを介して第1負荷圧検出回路131によって最高負荷圧Plmax1として検出され、走行モータ3gの負荷圧が、流量制御弁6gの負荷ポートを介して第2負荷圧検出回路132によって最高負荷圧Plmax2として検出され、アンロード弁115,215はそれぞれ第1及び第2圧油供給路105,205の圧油をタンクに排出する油路を遮断する。また、最高負荷圧Plmax1,Plmax2がそれぞれ差圧減圧弁111,211に導かれることによって、LS差圧であるPls1,Pls2が出力され、これらのLS差圧Pls1,Pls2はレギュレータ112の低圧選択弁112aに導かれる。
 レギュレータ112において、低圧選択弁112aに導かれたLS差圧Pls1,Pls2はその低圧側が選択され、LS制御弁112bに導かれる。LS制御弁112bはPls1とPls2の低圧側が目標LS差圧Pgrと等しくなるようにメインポンプ102の容量(流量)を制御する。
 ここで、前述のように、左走行モータ3fの要求流量と右走行モータ3gの要求流量は等しく、メインポンプ102はその要求流量に見合った流量となるまで容量(流量)を増加させる。これによりメインポンプ102の第1及び第2吐出ポート102a,102bから左走行モータ3fと右走行モータ3gに走行操作レバーの入力に応じた流量が供給され、走行モータ3f,3gは前進方向に駆動される。このとき、メインポンプ102はスプリットフロータイプであり、第1圧油供給路105に供給される流量と第2圧油供給路205に供給される流量は等しいため、左右の走行モータには常に等量の圧油が供給され、確実に直進走行を行わせることができる。
 また、メインポンプ102の第1及び第2圧油供給路105,205のそれぞれの圧力P1,P2がトルク制御(馬力制御)ピストン112d,112eに導かれているため、走行モータ3f、3gの負荷圧が上昇した場合は、圧力P1,P2の平均圧力で馬力制御が行われる。そしてこの場合も、メインポンプ102の第1及び第2吐出ポート102a,102bから等量の圧油が左右の走行モータに供給されるため、第1及び第2圧油供給油路105,205のいずれにも余剰流量を発生させずに、直進走行を行うことができる。
 (j)走行操作レバーとブーム等その他の操作レバーを同時入力した場合
 例えば左右の走行操作レバーとブーム操作レバーのブーム上げ操作を同時に入力した場合、走行モータ3f,3g駆動用の流量制御弁6f,6gとブームシリンダ3a駆動用の流量制御弁6a,6iが図中で上方向に切り換わる。流量制御弁6f,6g,6a,6iが切り換わると、操作検出弁8f,8g,8a,8iも切り換わり、走行複合操作検出油路53をタンクに導く全ての油路が遮断される。このため、走行複合操作検出油路53の圧力はパイロット圧油供給路31bの圧力に等しくなり、第1切換弁40、第2切換弁146及び第3切換弁246は図中下方向に押されて第2位置に切り換わり、第1圧油供給路105と第2圧油供給路205は連通し、かつ第2負荷圧検出回路132の最下流のシャトル弁9gには第1切換弁146を介して第1負荷圧検出回路131によって検出された最高負荷圧Plmax1が導かれ、第1負荷圧検出回路131の最下流のシャトル弁9fには第2切換弁246を介して第2負荷圧検出回路132によって検出された最高負荷圧Plmax2が導かれる。
 ここで、ブーム操作レバーが微操作で、流量制御弁6a,6iのストロークが図2BのS2以下の場合は、メイン駆動用の流量制御弁6aのメータイン通路の開口面積は0からA1に増加していくが、アシスト駆動用の流量制御弁6iのメータイン通路の開口面積は0に維持される。このため走行モータ3f,3gの高圧側の負荷圧が第1負荷圧検出回路131及び第2負荷圧検出回路132のそれぞれで最高負荷圧Plmax1, Plmax2として検出され、アンロード弁115,215はそれぞれ第1及び第2圧油供給路105,205の圧油をタンクに排出する油路を遮断する。また、最高負荷圧Plmax1, Plmax2が差圧減圧弁111,211に導かれることによって、LS差圧であるPls1,Pls2が出力され、レギュレータ112の低圧選択弁112aに導かれる。
 レギュレータ112において、低圧選択弁112aに導かれたPls1とPls2はその低圧側が選択され、LS制御弁112bに導かれる。LS制御弁112bはPls1とPls2の低圧側が目標LS差圧Pgrと等しくなるようにメインポンプ102の容量(流量)を制御し、その制御された流量の圧油がメインポンプ102から第1及び第2吐出油路102a、102bに吐出される。このとき、第1切換弁40が第2位置に切り換わって第1圧油供給路105と第2圧油供給路205は連通しているため、第1及び第2吐出ポート102a,102bは1つのポンプとして機能し、メインポンプ102の第1吐出ポート102aの吐出油と第2吐出ポート102bの吐出油は合流し、その合流した圧油が圧力補償弁7f,7g及び流量制御弁6f,6gを介して左走行モータ3fと右走行モータ3gに供給される。
 一方、このとき、ブーム操作レバーが微操作なので、上記(b)で説明したように、ブームシリンダ3aのメイン駆動用の流量制御弁6aのメータイン通路の開口面積はA1となり、アシスト駆動用の流量制御弁6iのメータイン通路の開口面積は0に維持される。ブームシリンダ3aの負荷圧は流制御弁6aの負荷ポートを介して第3負荷圧検出回路133によって最高負荷圧Plmax3として検出され、アンロード弁315は第3圧油供給路305の圧油をタンクに排出する油路を遮断する。また、最高負荷圧Plmax3がメインポンプ202のレギュレータ212にフィードバックされ、メインポンプ202の容量(流量)が流量制御弁6aの要求流量(開口面積)に応じて増加し、メインポンプ202の第3吐出ポート202aからブーム操作レバーの入力に応じた流量がブームシリンダ3aボトム側に供給される。
 また、走行とブームの複合操作でブーム操作レバーをフル操作し、流量制御弁6a,6iの開口面積が図2BのA1,A2となった場合は、ブームシリンダ3aと走行モータ3f,3gの高圧側の負荷圧が第1負荷圧検出回路131及び第2負荷圧検出回路132のそれぞれで最高負荷圧Plmax1, Plmax2として検出され、アンロード弁115,215はそれぞれ第1及び第2圧油供給路105,205の圧油をタンクに排出する油路を遮断する。また、差圧減圧弁111,211はそれぞれLS差圧Pls1,Pls2をレギュレータ112に出力し、低圧選択弁112aによってPls1とPls2の低圧側が選択され、LS制御弁112bに導かれる。
 レギュレータ112において、低圧選択弁112aに導かれたPls1とPls2はその低圧側が選択され、LS制御弁112bに導かれる。LS制御弁112bはPls1とPls2の低圧側が目標LS差圧Pgrと等しくなるようにメインポンプ102の容量(流量)を制御し、その流量の圧油がメインポンプ102から第1及び第2吐出油路102a、102bに吐出される。
 また、このときも、メインポンプ102の第1吐出ポート102aの吐出油と第2吐出ポート102bの吐出油は合流し、圧力補償弁7f,7g及び流量制御弁6f,6gを介して左走行モータ3fと右走行モータ3gに供給されるとともに、その合流した圧油の一部は圧力補償弁7i及び流量制御弁6iを介してブームシリンダ3aのボトム側にも供給される。一方、メインポンプ202のレギュレータ212は、ブーム操作レバーが微操作であるときと同様に動作し、メインポンプ202からも圧油がブームシリンダ3aのボトム側に供給される。
 このように走行とブームを同時に駆動する複合動作では、メインポンプ102の第1及び第2吐出ポート102a,102bが一つのポンプとして機能し、2つの吐出ポート102a,102bの圧油が合流して左右の走行モータ3f,3gに供給され、かつブーム操作レバーを微操作したときは、メインポンプ202の圧油のみがブームシリンダ3aボトム側に供給され、ブーム操作レバーをフル操作したときは、メインポンプ202の圧油とメインポンプ102の合流した圧油の一部とがブームシリンダ3aボトム側に供給される。これにより、左右の走行モータの操作レバーを同じ入力量で操作した場合は、直進走行性を維持しつつ、所望の速度でブームシリンダを駆動することが可能となり、良好な走行複合操作性を得ることができる。
 以上では、左右の走行操作レバーとブーム操作レバーのブーム上げ操作を同時に入力した場合について説明したが、左右の走行操作レバーとブーム以外の操作レバーを同時に入力した場合も、メインポンプ202のレギュレータ212にブームシリンダの負荷圧がフィードバックされず、メインポンプ202の容量(流量)が最小に保たれる点を除いて、走行とブームの複合操作でブーム操作レバーをフル操作した場合とほぼ同様の動作が得られる。すなわち、メインポンプ102の第1及び第2吐出ポート102a,102bが一つのポンプとして機能し、メインポンプ102の第1吐出ポート102aの吐出油と第2吐出ポート102bの吐出油は合流してそれぞれの圧力補償弁と流量制御弁を介して各アクチュエータに供給され、左右の走行モータの操作レバーを同じ入力量で操作した場合は、直進走行性を維持しつつ、所望の速度で他のアクチュエータを駆動することが可能となり、良好な走行複合操作を得ることができる。
 (k)走行ステアリング動作の場合
 一方の走行操作レバーをフル、他方の走行操作レバーをハーフ操作する、いわゆるステアリング動作をする場合について、以下に説明する。
 例えば左走行モータ3f用操作レバーをフル操作、右走行モータ3g用操作レバーをハーフ操作した場合、走行モータ3f駆動用の流量制御弁6fがフルストロークで上方向に切り換わり、走行モータ3g駆動用の流量制御弁6gがハーフストロークで上方向に切り換わり、図2Aに示したように、流量制御弁6fのメータイン通路の開口面積はA3となり、流量制御弁6gのメータイン通路の開口面積はA3よりも小さな中間の大きさとなる(左走行モータ3fの要求流量>右走行モータ3gの要求流量)。
 流量制御弁6f,6gが切り換わると、操作検出弁8f,8gも切り換わる。しかし、このときは、その他のアクチュエータ駆動用の流量制御弁の操作検出弁8a,8i,8c,8d,8j,8b,8e,8hが中立位置にあるため、絞り43を経由して圧油供給路31bから走行複合操作検出油路43に供給される圧油は、タンクに排出される。このため、第1~第3切換弁40,146,246を図中下方向に切り換える圧力はタンク圧と等しくなるので、第1~第3切換弁40,146,246は、バネの働きによって図中下側の切換位置に保持される。これにより、第1圧油供給路105と第2圧油供給路205とは遮断され、かつ第2負荷圧検出回路132の最下流のシャトル弁9gには第1切換弁146を介してタンク圧が導かれ、第1負荷圧検出回路131の最下流のシャトル弁9fには第2切換弁246を介してタンク圧が導かれる。このため走行モータ3fの負荷圧が、流量制御弁6fの負荷ポートを介して第1負荷圧検出回路131によって最高負荷圧Plmax1として検出され、走行モータ3gの負荷圧が、流量制御弁6gの負荷ポートを介して第2負荷圧検出回路132によって最高負荷圧Plmax2として検出され、アンロード弁115,215はそれぞれ第1及び第2圧油供給路105,205の圧油をタンクに排出する油路を遮断する。また、最高負荷圧Plmax1,Plmax2がそれぞれ差圧減圧弁111,211に導かれることによって、LS差圧であるPls1,Pls2が出力され、これらのLS差圧Pls1,Pls2はレギュレータ112の低圧選択弁112aに導かれる。
 レギュレータ112において、低圧選択弁112aに導かれたLS差圧Pls1,Pls2はその低圧側が選択され、LS制御弁112bに導かれる。LS制御弁112bはPls1とPls2の低圧側が目標LS差圧Pgrと等しくなるようにメインポンプ102の容量(流量)を制御する。
 ここで、左走行モータ3f用操作レバーがフル操作、右走行モータ3g用操作レバーがハーフ操作で、油圧ショベルとしては進行走行に対して右方向に大曲がりする動作をする場合を考えると、この場合は、左側の走行モータ3fが右側の走行モータ3gを引きずる格好となるので、左走行モータ3fの負荷圧>右走行モータ3gの負荷圧となる。また、要求流量については、左走行モータ3fの要求流量>右走行モータ3gの要求流量の関係が成り立つ。
 このように走行モータ3fの要求流量が走行モータ3gの要求流量よりも大きいので、Pls1とPls2とではPls1が低圧側となり、低圧選択弁112aによってPls1が選択され、メインポンプ102の容量(流量)はそのPls1に応じて、走行モータ3fの要求流量に見合った流量となるまで容量(流量)を増加させる。このように、第1圧油供給路105には走行モータ3fの要求流量に見合った流量が供給される。
 一方、第2圧油供給路205には、走行モータ3gの要求流量よりも大きい流量が供給される。第2圧油供給路205に供給された余分な圧油は、アンロード弁215からタンクに排出される。このとき、アンロード弁215のセット圧は、最高負荷圧Plmax2(走行モータ3gの負荷圧)+バネの設定圧力Pun0となる。このように第1圧油供給路105の圧力は、LS制御弁112bにより、走行モータ3fの負荷圧+目標LS差圧に保たれ、第2圧油供給路205の圧力は、アンロード弁215により、走行モータ3gの負荷圧+バネの設定圧力Pun0(≒走行モータ3gの負荷圧+目標LS差圧)に保たれる。このように第2圧油供給路205の圧力は、走行モータ3fの負荷圧と走行モータ3gの負荷圧の差の分だけ、第1圧油供給路105の圧力よりも低くなる。
 メインポンプ102は、スプリットフロータイプであり、トルク制御ピストン112d,112eのトルク制御(馬力制御)は、第1圧油供給路105及び第2圧油供給路205の合計圧力(平均圧力)によって行われるので、走行ステアリング時など、一方の圧油供給路の圧力が他方の圧油供給路の圧力よりも低い場合には、合計圧力(平均圧力)がその分低く抑えられる。これにより一つのポンプによって左右走行モータを駆動する場合に比べて、馬力制御によって流量が制限されにくく、作業効率が大きく低下することなく走行ステアリング動作を行うことができる。
 ~効果~
 以上のように本実施の形態によれば、油圧ショベルのブームシリンダ3aとアームシリンダ3bを同時に駆動する複合操作時に、圧力補償弁の絞り圧損による無駄なエネルギー消費を抑えつつ、ブームシリンダ3aとアームシリンダ3bに要求される様々な流量バランスに柔軟に対応し、良好な複合操作性を得ることができる。
 また、油圧ショベルの良好な直進走行性を得ることができる。
 更に、油圧ショベルの走行ステアリング動作では、良好なステアリングフィーリングを実現することができる。
<第2の実施の形態>
 図4は、本発明の第2の実施の形態に係わる油圧ショベル(建設機械)の油圧駆動装置を示す図である。
 図4において、本実施の形態の油圧駆動装置の第1の実施の形態との相違点は、メインポンプ102の第1及び第2吐出ポート102a,102bに接続されるアクチュエータとメインポンプ202の第3吐出ポート202aに接続されるアクチュエータの数と種類を変更し、それに伴って、対応する圧力補償弁及び流量制御弁と第1~第3負荷圧検出回路131~133を構成するシャトル弁の配置位置を変更した点である。
 すなわち、本実施の形態では、メインポンプ202の第3吐出ポート202aに接続されるアクチュエータは、ブームシリンダ3aだけでなく、スイングシリンダ3eとブレードシリンダ3hを含み、メインポンプ102の第1吐出ポート102a,102bに接続されるアクチュエータは、ブームシリンダ3a、アームシリンダ3b、バケットシリンダ3d及び左走行モータ3fを含み、メインポンプ102の第2吐出ポート102bに接続されるアクチュエータは、アームシリンダ3b、旋回モータ3c及び右走行モータ3gを含んでいる。ブームシリンダ3a、スイングシリンダ3e及びブレードシリンダ3hはそれぞれ圧力補償弁7a,7e,7h及び流量制御弁6a,6e,6hを介してメインポンプ202の第3吐出ポート202aに接続され、ブームシリンダ3a、アームシリンダ3b、バケットシリンダ3d及び左走行モータ3fはそれぞれ圧力補償弁7i,7j,7d,7f及び流量制御弁6i,6j,6d,6fを介してメインポンプ102の第1吐出ポート102a,102bに接続され、アームシリンダ3b、旋回モータ3c及び右走行モータ3gはそれぞれ圧力補償弁7b,7c,7g及び流量制御弁6b,6c,6gを介してメインポンプ102の第2吐出ポート102bに接続されている。このように本実施の形態では、第1の実施の形態においてメインポンプ102の第2吐出ポート102bに接続されていたスイングシリンダ3eとブレードシリンダ3hがメインポンプ202の第3吐出ポート202aに接続され、第1の実施形態においてメインポンプ102の第1吐出ポート102aに接続されていた旋回モータ3cがメインポンプ102の第2吐出ポート102bに接続されている。
 また、第1負荷圧検出回路131は、流量制御弁6d,6f,6i,6jの負荷ポートに接続されたシャトル弁9d,9f,9i,9jを含み、第2負荷圧検出回路132は流量制御弁6b,6c,6gの負荷ポートに接続されたシャトル弁9b,9c,9gを含み、第3負荷圧検出回路133は流量制御弁6a,6e,6hの負荷ポートに接続されたシャトル弁9e,9hを含む構成となっている。
 上記以外の構成は第1の実施の形態と同じである。
 このように構成した本実施の形態においても、ブームシリンダ3aとメインポンプ202の第3吐出ポート202a及びメインポンプ102の第1吐出ポート102aとの接続関係、アームシリンダ3bとメインポンプ102の第1及び第2吐出ポート102a,102bとの接続関係、及び左右走行モータ3f,3gとメインポンプ102の第1及び第2吐出ポート102a,102bとの接続関係は第1の実施形態と同じである。本実施の形態によってもブームシリンダ3a,アームシリンダ3b、左右走行モータ3f,3gを第1の実施の形態と同様に動作し、第1の実施の形態と同様の効果が得られる。
 ~その他~
 以上の実施の形態では、建設機械が油圧ショベルであり、第1アクチュエータがブームシリンダ3aであり,第2アクチュエータがアームシリンダ3bである場合について説明したが、他のアクチュエータよりも要求流量が大きいアクチュエータであれば、ブームシリンダとアームシリンダ以外であってもよい。
 また、上記実施の形態では、第3及び第4アクチュエータが左右の走行モータ3f,3gである場合について説明したが、同時に駆動されるときに供給流量が同等になることで所定の機能を果たす第3及び第4アクチュエータであれば、左右の走行モータ以外であってもよい。
 更に、そのような第1及び第2アクチュエータ或いは第3及び第4アクチュエータの動作条件を満たすアクチュエータを備えた建設機械であれば、油圧走行クレーン等、油圧ショベル以外の建設機械に本発明を適用してもよい。
 また、上記実施の形態のロードセンシングシステムは一例であり、ロードセンシングシステムは種々の変形が可能である。例えば、上記実施の形態では、ポンプ吐出圧と最高負荷圧を絶対圧として出力する差圧減圧弁を設け、その出力圧を圧力補償弁に導いて目標補償差圧を設定しかつLS制御弁に導き、ロードセンシング制御の目標差圧を設定したが、ポンプ吐出圧と最高負荷圧を別々の油路で圧力制御弁やLS制御弁に導くようにしてもよい。
1 原動機
102 スプリットフロータイプの可変容量型メインポンプ(第1ポンプ装置)
102a,102b 第1及び第2吐出ポート
112 レギュレータ(第1ポンプ制御装置)
112a 低圧選択弁
112b LS制御弁
112c LS制御ピストン
112d,112e,112f トルク制御(馬力制御)ピストン
112g 減圧弁
202 シングルフロータイプの可変容量型メインポンプ(第2ポンプ装置)
202a 第3吐出ポート
212 レギュレータ(第2ポンプ制御装置)
212b LS制御弁
212c LS制御ピストン
212d トルク制御(馬力制御)ピストン
105 第1圧油供給路
205 第2圧油供給路
305 第3圧油供給路
115 アンロード弁(第1アンロード弁)
215 アンロード弁(第2アンロード弁)
315 アンロード弁(第3アンロード弁)
111,211,311 差圧減圧弁
146,246 第2及び第3切換弁
3a~3h 複数のアクチュエータ
3a ブームシリンダ(第1アクチュエータ)
3b アームシリンダ(第2アクチュエータ)
3f,3g 左右走行モータ(第3及び第4アクチュエータ)
4 コントロールバルブユニット
6a~6j 流量制御弁
7a~7j 圧力補償弁
8a~8j 操作検出弁
9b~9j シャトル弁
13 原動機回転数検出弁
24 ゲートロックレバー
30 パイロットポンプ
31a,31b,31c パイロット圧油供給路
32 パイロットリリーフバルブ
40 第3切換弁
53 走行複合操作検出油路
43 絞り
100 ゲートロック弁
122,123,124a,124b 操作装置
131,132,133 第1,第2,第3負荷圧検出回路

Claims (7)

  1.  第1吐出ポート及び第2吐出ポートを有するスプリットフロータイプの第1ポンプ装置と、
     第3吐出ポートを有するシングルフロータイプの第2ポンプ装置と、
     前記第1及び第2ポンプ装置の前記第1~第3吐出ポートから吐出された圧油により駆動される複数のアクチュエータと、
     前記第1~第3吐出ポートから前記複数のアクチュエータに供給される圧油の流れを制御する複数の流量制御弁と、
     前記複数の流量制御弁の前後差圧をそれぞれ制御する複数の圧力補償弁と、
     前記第1及び第2吐出ポートの高圧側の吐出圧が、前記第1及び第2吐出ポートから吐出される圧油によって駆動されるアクチュエータの最高負荷圧より目標差圧だけ高くなるよう前記第1ポンプ装置の容量を制御する第1ロードセンシング制御部を有する第1ポンプ制御装置と、
     前記第3吐出ポートの吐出圧が、前記第3吐出ポートから吐出される圧油によって駆動されるアクチュエータの最高負荷圧より目標差圧だけ高くなるよう前記第2ポンプ装置の容量を制御する第2ロードセンシング制御部を有する第2ポンプ制御装置とを備え、
     前記複数のアクチュエータは、他のアクチュエータよりも最大の要求流量が大きい第1及び第2アクチュエータを含み、
     前記第1アクチュエータの要求流量が所定流量より小さい場合は、前記第1アクチュエータを前記シングルフロータイプの第2ポンプ装置の前記第3吐出ポートから吐出される圧油のみで駆動し、前記第1アクチュエータの要求流量が前記所定流量より大きい場合は、前記シングルフロータイプの第2ポンプ装置の前記第3吐出ポートから吐出される圧油と前記スプリットフロータイプの第1ポンプ装置の前記第1及び第2吐出ポートの一方から吐出される圧油とを合流して前記第1アクチュエータを駆動するよう、前記第1ポンプ装置の第1吐出ポート及び前記第2ポンプ装置の第3吐出ポートと前記第1アクチュエータとを接続し、前記第2アクチュエータの要求流量が所定流量より小さい場合は、前記第2アクチュエータを前記スプリットフロータイプの第1ポンプ装置の前記第1及び第2吐出ポートの他方から吐出される圧油のみで駆動し、前記第2アクチュエータの要求流量が前記所定流量より大きい場合は、前記スプリットフロータイプの第1ポンプ装置の前記第1及び第2吐出ポートの両方から吐出される圧油を合流して前記第2アクチュエータを駆動するよう、前記第1ポンプ装置の第1及び第2吐出ポートと前記第2アクチュエータとを接続したことを特徴とする建設機械の油圧駆動装置。
  2.  請求項1記載の建設機械の油圧駆動装置において、
     前記スプリットフロータイプの第1ポンプ装置は前記第1及び第2吐出ポートから同じ流量の圧油を吐出するように構成され、
     前記複数のアクチュエータは、同時に駆動されかつそのとき供給流量が同等になることで所定の機能を果たす第3及び第4アクチュエータを含み、
     前記第3アクチュエータを、前記スプリットフロータイプの第1ポンプ装置の前記第1及び第2吐出ポートの一方から吐出される圧油で駆動し、前記第4アクチュエータを、前記スプリットフロータイプの第1ポンプ装置の前記第1及び第2吐出ポートの他方から吐出される圧油で駆動するよう、前記第1ポンプ装置の第1及び第2吐出ポートと前記第3及び第4アクチュエータとを接続したことを特徴とする建設機械の油圧駆動装置。
  3.  請求項2記載の建設機械の油圧駆動装置において、
     前記第1ポンプ制御装置は、前記スプリットフロータイプの第1ポンプ装置の前記第1吐出ポートの吐出圧が導かれる第1トルク制御用のアクチュエータと、前記第2吐出ポートの吐出圧が導かれる第2トルク制御用のアクチュエータとを有し、前記第1及び第2トルク制御用のアクチュエータによって、前記第1吐出ポートの吐出圧と前記第2吐出ポートの吐出圧の平均圧力が高くなるにしたがって第1ポンプ装置の容量を減少させることを特徴とする建設機械の油圧駆動装置。
  4.  請求項2又は3記載の建設機械の油圧駆動装置において、
     前記スプリットフロータイプの第1ポンプ装置の前記第1吐出ポートに接続される第1圧油供給路と前記第2吐出ポートに接続される第2圧油供給路との間に接続され、前記第3及び第4アクチュエータと前記スプリットフロータイプの第1ポンプ装置によって駆動されるその他アクチュエータとが同時に駆動されるときは連通位置に切り換えられ、それ以外のときは遮断位置に切り換えられる切換弁を更に備えることを特徴とする建設機械の油圧駆動装置。
  5.  請求項1記載の建設機械の油圧駆動装置において、
     前記複数の流量制御弁は、前記第2ポンプ装置の第3吐出ポートに接続された第3圧油供給路を前記第1アクチュエータに接続する油路に設けられた第1流量制御弁と、前記第1ポンプ装置の第1吐出ポートに接続された第1圧油供給路を前記第1アクチュエータに接続する油路に設けられた第2流量制御弁と、前記第1ポンプ装置の第2吐出ポートに接続された第2圧油供給路を前記第2アクチュエータに接続する油路に設けられた第3流量制御弁と、前記第1ポンプ装置の第1吐出ポートに接続された前記第1圧油供給路を前記第2アクチュエータに接続する油路に設けられた第4流量制御弁とを含み、
     前記第1及び第3流量制御弁は、スプールストロークが増加するにしたがって開口面積が増加し、中間ストロークで最大開口面積となり、その後、最大のスプールストロークまで最大開口面積が維持されるように開口面積特性を設定し、
     前記第2及び第4流量制御弁は、スプールストロークが中間ストロークになるまでは開口面積はゼロであり、スプールストロークが前記中間ストロークを超えて増加するにしたがって開口面積が増加し、最大のスプールストロークの直前で最大開口面積となるように開口面積特性を設定したことを特徴とする建設機械の油圧駆動装置。
  6.  請求項1~5のいずれか1項記載の建設機械の油圧駆動装置において、
     前記第1及び第2アクチュエータは、それぞれ、油圧ショベルのブーム及びアームを駆動するブームシリンダ及びアームシリンダであることを特徴とする建設機械の油圧駆動装置。
  7.  請求項2~6のいずれか1項記載の建設機械の油圧駆動装置において、
     前記第3及び第4アクチュエータは、それぞれ、油圧ショベルの走行体を駆動する左右の走行モータであることを特徴とする建設機械の油圧駆動装置。
PCT/JP2014/061205 2013-05-30 2014-04-21 建設機械の油圧駆動装置 WO2014192458A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14804940.6A EP3006744B1 (en) 2013-05-30 2014-04-21 Hydraulic drive device for construction machinery
KR1020157022404A KR101754290B1 (ko) 2013-05-30 2014-04-21 건설 기계의 유압 구동 장치
CN201480009601.7A CN105008724B (zh) 2013-05-30 2014-04-21 工程机械的液压驱动装置
JP2015519741A JP6200498B2 (ja) 2013-05-30 2014-04-21 建設機械の油圧駆動装置
US14/769,922 US10107311B2 (en) 2013-05-30 2014-04-21 Hydraulic drive system for construction machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-114128 2013-05-30
JP2013114128 2013-05-30

Publications (1)

Publication Number Publication Date
WO2014192458A1 true WO2014192458A1 (ja) 2014-12-04

Family

ID=51988497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061205 WO2014192458A1 (ja) 2013-05-30 2014-04-21 建設機械の油圧駆動装置

Country Status (6)

Country Link
US (1) US10107311B2 (ja)
EP (1) EP3006744B1 (ja)
JP (1) JP6200498B2 (ja)
KR (1) KR101754290B1 (ja)
CN (1) CN105008724B (ja)
WO (1) WO2014192458A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145604A (ja) * 2015-02-06 2016-08-12 日立建機株式会社 建設機械の油圧駆動装置
JP2019066018A (ja) * 2017-10-05 2019-04-25 ヤンマー株式会社 作業車両
JP2020153444A (ja) * 2019-03-20 2020-09-24 ヤンマーパワーテクノロジー株式会社 作業機械

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5878811B2 (ja) * 2012-04-10 2016-03-08 日立建機株式会社 建設機械の油圧駆動装置
US9890801B2 (en) * 2013-03-22 2018-02-13 Hitachi Construction Machinery Tierra Co., Ltd. Hydraulic drive system for construction machine
JP6021226B2 (ja) * 2013-11-28 2016-11-09 日立建機株式会社 建設機械の油圧駆動装置
JP6555709B2 (ja) * 2015-04-17 2019-08-07 キャタピラー エス エー アール エル 流体圧回路および作業機械
JP6831648B2 (ja) * 2016-06-20 2021-02-17 川崎重工業株式会社 液圧駆動システム
JP6625963B2 (ja) * 2016-12-15 2019-12-25 株式会社日立建機ティエラ 作業機械の油圧駆動装置
JP6732650B2 (ja) * 2016-12-22 2020-07-29 株式会社クボタ 作業機
JP6663539B2 (ja) * 2017-09-08 2020-03-11 日立建機株式会社 油圧駆動装置
CN108757651A (zh) * 2018-08-20 2018-11-06 杭叉集团股份有限公司 电动叉车及其液压控制***
JP7471901B2 (ja) * 2020-04-28 2024-04-22 ナブテスコ株式会社 流体圧駆動装置
FR3113097B1 (fr) * 2020-08-03 2022-08-12 Ekiplus Petit engin de travaux sur chantier chenillé à moteurs hydrauliques.
US11680381B2 (en) 2021-01-07 2023-06-20 Caterpillar Underground Mining Pty. Ltd. Variable system pressure based on implement position
CN114506800B (zh) * 2022-04-20 2022-07-05 杭叉集团股份有限公司 一种电动叉车门架动作控制***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03260401A (ja) * 1990-03-09 1991-11-20 Hitachi Constr Mach Co Ltd 土木・建設機械の油圧駆動装置
JP2002206256A (ja) * 2001-01-05 2002-07-26 Kubota Corp バックホウの油圧装置
JP2008082521A (ja) * 2006-09-29 2008-04-10 Kubota Corp バックホーの油圧システム
JP2011196438A (ja) 2010-03-18 2011-10-06 Yanmar Co Ltd 作業車両の油圧回路
JP2012067459A (ja) 2010-09-21 2012-04-05 Kubota Corp 作業機の油圧システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3535877A (en) * 1969-05-09 1970-10-27 Gen Signal Corp Three-pump hydraulic system incorporating an unloader
WO1988005937A1 (en) * 1987-01-30 1988-08-11 Kabushiki Kaisha Komatsu Seisakusho Operation controller
US6050090A (en) * 1996-06-11 2000-04-18 Kabushiki Kaisha Kobe Seiko Sho Control apparatus for hydraulic excavator
JP4480565B2 (ja) * 2004-12-10 2010-06-16 株式会社クボタ バックホウの油圧回路構造
US7412827B2 (en) * 2005-09-30 2008-08-19 Caterpillar Inc. Multi-pump control system and method
JP4764923B2 (ja) * 2006-05-15 2011-09-07 株式会社小松製作所 油圧走行車両および油圧走行車両の制御方法
EP2157245B1 (en) * 2008-08-21 2021-03-17 Volvo Construction Equipment AB Hydraulic system for construction equipment
JP2012031753A (ja) 2010-07-29 2012-02-16 Hitachi Constr Mach Co Ltd 建設機械の油圧駆動装置
CN102229328B (zh) * 2011-05-05 2013-05-08 四川大学 一种多泵合流的车辆机械节能液压***
JP5791360B2 (ja) 2011-05-09 2015-10-07 ナブテスコ株式会社 建設機械の油圧回路
JP5480847B2 (ja) * 2011-06-21 2014-04-23 株式会社クボタ 作業機
US9890801B2 (en) * 2013-03-22 2018-02-13 Hitachi Construction Machinery Tierra Co., Ltd. Hydraulic drive system for construction machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03260401A (ja) * 1990-03-09 1991-11-20 Hitachi Constr Mach Co Ltd 土木・建設機械の油圧駆動装置
JP2002206256A (ja) * 2001-01-05 2002-07-26 Kubota Corp バックホウの油圧装置
JP2008082521A (ja) * 2006-09-29 2008-04-10 Kubota Corp バックホーの油圧システム
JP2011196438A (ja) 2010-03-18 2011-10-06 Yanmar Co Ltd 作業車両の油圧回路
JP2012067459A (ja) 2010-09-21 2012-04-05 Kubota Corp 作業機の油圧システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145604A (ja) * 2015-02-06 2016-08-12 日立建機株式会社 建設機械の油圧駆動装置
JP2019066018A (ja) * 2017-10-05 2019-04-25 ヤンマー株式会社 作業車両
JP2020153444A (ja) * 2019-03-20 2020-09-24 ヤンマーパワーテクノロジー株式会社 作業機械
JP7063835B2 (ja) 2019-03-20 2022-05-09 ヤンマーパワーテクノロジー株式会社 作業機械

Also Published As

Publication number Publication date
EP3006744A1 (en) 2016-04-13
KR101754290B1 (ko) 2017-07-06
CN105008724B (zh) 2017-03-08
JP6200498B2 (ja) 2017-09-20
US10107311B2 (en) 2018-10-23
EP3006744B1 (en) 2019-06-12
US20160115974A1 (en) 2016-04-28
JPWO2014192458A1 (ja) 2017-02-23
EP3006744A4 (en) 2017-02-22
CN105008724A (zh) 2015-10-28
KR20150108898A (ko) 2015-09-30

Similar Documents

Publication Publication Date Title
JP6200498B2 (ja) 建設機械の油圧駆動装置
JP5996778B2 (ja) 建設機械の油圧駆動装置
JP4799624B2 (ja) 油圧駆動制御装置
US9080310B2 (en) Closed-loop hydraulic system having regeneration configuration
JP6005088B2 (ja) 建設機械の油圧駆動装置
JP6021231B2 (ja) 建設機械の油圧駆動装置
JP6231949B2 (ja) 建設機械の油圧駆動装置
JP6005185B2 (ja) 建設機械の油圧駆動装置
JP6021226B2 (ja) 建設機械の油圧駆動装置
JP5952405B2 (ja) 建設機械の油圧駆動装置
JPH11218102A (ja) 圧油供給装置
JP6226844B2 (ja) 建設機械の油圧駆動装置
JP2016061387A5 (ja)
JP6082690B2 (ja) 建設機械の油圧駆動装置
JP6262676B2 (ja) 建設機械の油圧駆動装置
JP2017133559A (ja) 建設機械の油圧駆動装置
JP2015110981A5 (ja)
JP2018145984A (ja) 建設機械の油圧駆動装置
WO2019064555A1 (ja) 作業機械の油圧駆動装置
US20170009429A1 (en) Working machine control system
JPH1018357A (ja) 油圧機械の油圧再生回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804940

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015519741

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157022404

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014804940

Country of ref document: EP

Ref document number: 14769922

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE