WO2014157655A1 - 耐熱オーステナイト系ステンレス鋼板 - Google Patents

耐熱オーステナイト系ステンレス鋼板 Download PDF

Info

Publication number
WO2014157655A1
WO2014157655A1 PCT/JP2014/059251 JP2014059251W WO2014157655A1 WO 2014157655 A1 WO2014157655 A1 WO 2014157655A1 JP 2014059251 W JP2014059251 W JP 2014059251W WO 2014157655 A1 WO2014157655 A1 WO 2014157655A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
austenitic stainless
heat
steel sheet
less
Prior art date
Application number
PCT/JP2014/059251
Other languages
English (en)
French (fr)
Inventor
井上 宜治
信彦 平出
敦久 矢川
Original Assignee
新日鐵住金ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金ステンレス株式会社 filed Critical 新日鐵住金ステンレス株式会社
Priority to ES14774814.9T priority Critical patent/ES2667993T3/es
Priority to PL14774814T priority patent/PL2980244T3/pl
Priority to MX2015013607A priority patent/MX2015013607A/es
Priority to JP2015508782A priority patent/JP6190873B2/ja
Priority to US14/779,364 priority patent/US9945016B2/en
Priority to EP14774814.9A priority patent/EP2980244B1/en
Priority to CN201480017607.9A priority patent/CN105051233B/zh
Priority to KR1020157028931A priority patent/KR101744432B1/ko
Publication of WO2014157655A1 publication Critical patent/WO2014157655A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing

Definitions

  • the present invention relates to a heat-resistant austenitic stainless steel sheet used in a high temperature environment reaching a maximum temperature of 1100 ° C.
  • SUS310S 25Cr-20Ni
  • SUSXM15J1 (19Cr-13Ni-3Si)
  • these steel types can be used in an environment with a maximum temperature of 1100 ° C. Is questionable.
  • austenitic stainless steel sheet In order to develop a heat-resistant austenitic stainless steel sheet that can be used in an environment reaching 1100 ° C., the present inventors first investigated the characteristics of the austenitic stainless steel sheet necessary at 1100 ° C. As a result, regarding the high temperature strength, since it is necessary to prevent deformation, it was considered that the 0.2% proof stress should be used as an index for evaluation. As for oxidation resistance, austenitic stainless steel sheet has a larger coefficient of thermal expansion than ferritic stainless steel sheet. It was considered appropriate to evaluate by repeated intermittent oxidation tests at the highest temperature and room temperature rather than the continuous oxidation test to be held, and it was considered to evaluate by repeated intermittent oxidation tests at 1100 ° C. and room temperature. As a result, it has been found that the heat resistance at 1100 ° C. is actually insufficient in a stainless steel plate conventionally used in an environment of 1000 ° C.
  • the inventors further studied and found that addition of C, N, and Mo is effective for the high temperature strength of austenitic stainless steel that can be used in an environment reaching 1100 ° C.
  • C and N improve the high temperature strength even when added alone, but the combined addition with Mo improves the high temperature strength particularly at 1000 ° C. or higher. This is presumed to be an effect of interaction with C, N and Mo, for example, cluster formation.
  • it has been found that it is also effective to add one or more elements of Nb, V, W, and Co to austenitic stainless steel in addition to C, N, and Mo.
  • oxidation resistance of austenitic stainless steel it has been found that it is necessary to add an appropriate amount of Mo in addition to Cr, Si, and Mn and to suppress the amount of Ti added.
  • Si and Mo it is important to add Si and Mo to austenitic stainless steel, which suppresses scale growth and delamination and significantly reduces the oxidation loss (thinning loss) in the intermittent oxidation test at 1100 ° C. I understood.
  • Ti is added to the austenitic stainless steel, scale growth and exfoliation are promoted, so that addition of Ti should be suppressed as much as possible.
  • the present invention has been invented based on these findings, and means for solving the problems of the present invention, that is, the austenitic stainless steel sheet of the present invention is as follows.
  • the heat-resistant austenite according to (1) wherein the total amount of Mo, Nb, V, W, and Co (Mo + Nb + V + W + Co) is 1.5% or less.
  • the heat-resistant austenitic stainless steel of the present invention it is possible to provide a stainless steel plate excellent in heat resistance because it is excellent in high-temperature strength and oxidation resistance and excellent in workability.
  • C 0.05-0.15%
  • C is effective for improving the high temperature strength of austenitic stainless steel.
  • the improvement effect exists even in a region exceeding 600 ° C. This is considered to be due to the interaction between N and other alloy elements (Mo, Nb, V, etc.), not the effect of C alone.
  • N and other alloy elements Mo, Nb, V, etc.
  • excessive C tends to form Cr carbide, and deteriorates formability, corrosion resistance, and hot-rolled sheet toughness. Therefore, the appropriate amount of C added is 0.05 to 0.15%.
  • the amount of C added is more preferably 0.07% to 0.15%.
  • N 0.10 to 0.30%)
  • N is effective in improving the high temperature strength of austenitic stainless steel.
  • the improvement effect exists even in a region exceeding 600 ° C. This is thought to be due to the interaction between N and other alloy elements (Mo, Nb, V, etc.), not the effect of N alone.
  • the appropriate amount of N is 0.1 to 0.30%.
  • the amount of N added is more preferably 0.15% to 0.25%.
  • C + N 0.25 to 0.35%
  • Both C and N are effective in improving the high temperature strength, but in order to obtain a sufficient effect, the total amount of C and N (C + N) needs to be added by 0.25% or more. However, excessive addition leads to coarse carbonitrides and not only reduces the effect of improving high-temperature strength, but also reduces workability, so 0.35% is made the upper limit.
  • the total amount of C and N is more preferably 0.30% to 0.35%.
  • Si is an element that is also useful as a deoxidizer and is an element that improves the oxidation resistance of austenitic stainless steel, and is an important element in the present invention. Oxidation resistance improves with increasing Si content. Since the effect is manifested when the Si content is 1.0% or more, the lower limit is made 1.0%. Above 1.5%, the effect is more reliable. However, Si is an element that greatly reduces toughness, and excessive addition reduces toughness and room temperature ductility. Therefore, the Si content is 3.5% or less, preferably 2.0% or less. A more preferable range of the Si content is 1.60% to 2.0%.
  • Mn is an austenite stabilizing element and is an element added to austenitic stainless steel as a deoxidizer. In addition, it is an element that contributes to an increase in high temperature strength in the middle temperature range. In order to save expensive Ni, 0.5% or more of Mn is added. On the other hand, excessive addition of Mn forms MnS and lowers the corrosion resistance, so the upper limit of the amount of Mn added is 2.0%. The amount of Mn added is more preferably 0.7% to 1.6%.
  • P 0.04% or less
  • the content of P in the austenitic stainless steel is set to 0.04% or less. In addition, Preferably it is 0.03% or less.
  • the lower limit of the P content is not particularly limited, but may be inevitably mixed by 0.015%.
  • S (S: 0.01% or less) S is an element inevitably mixed in production, but has an adverse effect on weldability. Moreover, MnS is formed, and corrosion resistance and oxidation resistance are deteriorated. Therefore, the content of S in the austenitic stainless steel needs to be reduced as much as possible, and is 0.01% or less. In addition, Preferably it is 0.002% or less.
  • the lower limit of the S content is not particularly limited, but may be inevitably mixed by 0.0010%.
  • Cr is an essential element for ensuring oxidation resistance and corrosion resistance of austenitic stainless steel. However, it is also an element that tends to cause ⁇ brittleness when added in excess. Therefore, the appropriate range of Cr addition is set to 23.0 to 26.0%. The amount of Cr added is more preferably 23.0% to 25.0%.
  • Ni is an austenite stabilizing element and is an element that improves the corrosion resistance of austenitic stainless steel. If the amount of Ni is small, the austenite phase is not formed stably, so Ni is added at 10.0% or more. However, since Ni is an expensive element, if it is added excessively, the cost becomes high. Therefore, the upper limit of the addition amount of Ni is set to 15.0%. The amount of Ni added is more preferably 11.0% to 14.0%.
  • Mo 0.50 to 1.20%
  • Mo is an important element in the present invention. It is an element that improves the high temperature strength of austenitic stainless steel. Although this action is considered to be solid solution strengthening, in the present invention, when Mo coexists with C and N, the strengthening ability more than mere solid solution strengthening is expressed. Although the mechanism is not clear, it is thought that it may be strengthened by the interaction between Mo and C or N, particularly the formation of clusters. On the other hand, excessive addition of Mo tends to form a ⁇ phase. Therefore, the appropriate range of addition of Mo is 0.50 to 1.20%. In particular, when high temperature strength is required, the addition amount of Mo is more preferably 1.0% to 1.2%.
  • Ti is an element that is easily bonded to N to form coarse nitrides (TiN).
  • N is used for high-temperature strengthening, the formation of coarse TiN causes deterioration of high-temperature characteristics. It is also an element that adversely affects oxidation resistance. Therefore, in the present invention, it is necessary to reduce the amount of Ti in the austenitic stainless steel as much as possible, and the upper limit is made 0.1%.
  • the lower limit of content of Ti is not specifically limited, 0.010% may be mixed unavoidable.
  • Al 0.01-0.10%
  • Al is useful as a deoxidizing element, and the effect is manifested when the addition amount in the austenitic stainless steel is 0.005% or more.
  • the upper limit of the addition amount is 0.10%.
  • the amount of Al added is more preferably 0.02% to 0.07%.
  • austenitic stainless steel is made of Nb: 0.01 to 0.5%, V: 0.01 to 0.5%, W: 0.01 to 0.5%, Co : Any one or more of 0.01 to 0.5% may be added.
  • Nb 0.01 to 0.5%
  • V 0.01 to 0.5%
  • W 0.01 to 0.5%
  • Co Any one or more of 0.01 to 0.5% may be added.
  • these elements improve the high temperature strength.
  • the amount of each element added is Nb: 0.1 to 0.5%
  • W 0.1 to 0.5%
  • Co More preferably, 0.1 to 0.5%.
  • This effect is also considered to be a solid solution strengthening like Mo, but it is presumed that there is also an interaction with C or N.
  • the total amount of Mo, Nb, W, V, and Co is preferably 1.5% or less.
  • the lower limit of the total amount of Mo, Nb, W, V and Co is not particularly limited, but may be 0.1%.
  • the total amount of Mo, Nb, W, V and Co is more preferably more than 1.0%.
  • the high temperature strength is required, less than 1.2% is more preferable.
  • one or more of Cu, B and Sn may be added to the austenitic stainless steel.
  • Cu is an austenite stabilizing element and has the effect of improving the high temperature strength in the middle temperature range of austenitic stainless steel. The effect is manifested when the addition amount in the austenitic stainless steel is 0.1% or more. However, if excessively added, abnormal oxidation occurs during hot rolling heating and causes surface defects, so the upper limit is 2%.
  • the content is 0.1 to 1%, and more preferably 0.1 to 0.5%.
  • B is an element having an effect of improving the high temperature strength in the middle temperature range of austenitic stainless steel. The effect is manifested when the added amount in the austenitic stainless steel is 0.0001%. However, since hot workability will deteriorate if it adds excessively, the upper limit is 0.01%. The amount of B added is more preferably 0.0003% to 0.0050%.
  • Sn is an element effective for improving the corrosion resistance of austenitic stainless steel and the high temperature strength in the middle temperature range. Further, there is an effect that the mechanical properties at normal temperature of the austenitic stainless steel are not greatly deteriorated. The effect on the corrosion resistance is manifested when the added amount in the austenitic stainless steel is 0.005% or more, so Sn is 0.005% or more, more preferably 0.01% or more. On the other hand, if added excessively, manufacturability and weldability deteriorate significantly, so Sn is made 0.1% or less.
  • the stainless steel according to the present invention based on the definition of these components has very excellent heat resistance.
  • the stainless steel according to the present invention is assumed to be used at 1100 ° C., and the evaluation at 1100 ° C. is used as an index.
  • 1100 degreeC high temperature strength is good in it being 20% or more by 0.2% yield strength.
  • the 1100 ° C. high temperature strength is more preferably 30 MPa or more with a 0.2% proof stress.
  • the heat resistance which the weight loss in a 1100 degreeC intermittent oxidation test is 50 mg / cm ⁇ 2 > or less is shown.
  • the 1100 ° C. intermittent oxidation test is a test in which a cycle in which the holding time after heating to 1100 ° C. is 30 minutes and the cooling time from 1100 ° C. to room temperature is 15 minutes is repeated 300 times.
  • the steel of the present invention becomes a product through processes of melting, casting, hot rolling, annealing, cold rolling, annealing, and pickling. There are no particular restrictions on the equipment, and conventional manufacturing equipment can be used.
  • steels having the component compositions shown in Tables 1A and 1B were melted and cast into slabs.
  • the slab was heated to 1150 to 1250 ° C. and then hot-rolled to a plate thickness of 3 to 5 mm with a finishing temperature in the range of 850 to 950 ° C. Thereafter, it was annealed at 1000 to 1200 ° C., pickled, then cold-rolled to 1.5 mm, and then annealed and pickled at 1000 ° C. to 1200 ° C. to obtain a test steel.
  • Table 1A and Table 1B numerical values that are outside the scope of the present invention are underlined.
  • the cold rolled annealed sheet thus obtained was subjected to normal temperature and high temperature tensile tests and intermittent oxidation tests.
  • the tensile test at room temperature is for evaluating workability, and using a JIS 13B test piece having a longitudinal direction parallel to the rolling direction in accordance with JIS Z 2201 (corresponding international standard: ISO 6892, 1984), A tensile test was performed in accordance with JIS Z 2241 (corresponding international standard: ISO 6892, 1984).
  • the total elongation was regarded as a workability index, and a total elongation of 40% or more was regarded as acceptable (A), and a value less than 40% was regarded as unacceptable (C).
  • the high temperature tensile test was evaluated according to JIS G 0567 (corresponding international standard: ISO 6892-2, 2011) using a test piece with a flange.
  • a 0.2% proof stress at 1100 ° C. is used as an indicator of high temperature strength, steel having a high temperature strength of less than 20 MPa is rejected (C), steel having 20 MPa or more is passed (B), and steel having 30 MPa or more is excellent steel ( A).
  • the oxidation resistance was evaluated using an intermittent oxidation test.
  • a sample of 20 mm ⁇ 20 mm was taken from each steel plate, the end face was # 600 buffed to make an oxidation test piece, the holding time after heating to 1100 ° C. in air was 15 minutes, and the temperature from 1100 ° C. to room temperature.
  • a cycle with a cooling time of 15 minutes was defined as 1 cycle, which was repeated up to 300 cycles, and the weight loss due to oxidation (thickness loss due to scale formation / dropping) was measured.
  • the case where this oxidation weight loss was 50 mg / cm 2 or less was regarded as acceptable (A), and the case where it exceeded 50 mg / cm 2 was regarded as unacceptable (C).
  • the evaluation results are shown in Table 2A and Table 2B.
  • the steel sheet having the component composition to which the present invention was applied exhibited excellent properties in all of workability, high temperature strength, and oxidation resistance.
  • the comparative example which deviates from this invention any one of workability, high temperature strength, and oxidation resistance failed. Thereby, it turns out that this invention steel is excellent with respect to the austenitic stainless steel of a comparative example.
  • the heat-resistant austenitic stainless steel of the present invention it is possible to provide a stainless steel plate excellent in heat resistance because it is excellent in high-temperature strength and oxidation resistance and excellent in workability. . That is, the material to which the present invention is applied can be applied to exhaust system members such as exhaust pipes of automobiles in particular, and an exhaust pipe that can achieve engine efficiency improvement of automobiles and the like can be provided.
  • the present invention is very useful in industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 この耐熱オーステナイト系ステンレス鋼板は、質量%で、C:0.05~0.15%、Si:1.0~3.5%、Mn:0.5~2.0%、P:0.04%以下、S:0.01%以下、Cr:23.0~26.0%、Ni:10.0~15.0%、Mo:0.50~1.20%、Ti:0.1%以下、Al:0.01~0.10%、N:0.10~0.30%を含有し、CとNの合計量(C+N)が0.25~0.35%であり、残部がFe及び不可避的不純物からなり、最高温度1100℃に達する高温環境で使用可能である。

Description

耐熱オーステナイト系ステンレス鋼板
 本発明は、最高温度1100℃に達する高温環境で使用される耐熱オーステナイト系ステンレス鋼板に関する。
 本願は、2013年3月28日に、日本に出願された特願2013-069220号に基づき優先権を主張し、その内容をここに援用する。
 近年の自動車の排ガス規制強化に伴い、エンジンの高効率化を追求する傾向となっている。エンジンの燃焼効率を向上させようとすると、排ガス温度が上昇する傾向にある。また、ターボチャージャーに代表される過給機の使用も大きく増加する傾向にある。そのため、エキゾーストマニホールドやターボチャージャーのハウジング等の部材に、より優れた耐熱性が要求されている。今後の動向として、排ガス温度は1100℃に達すると想定されている。従来、この温度域になると、ステンレス鋼板を使用せず、鋳鋼が使用される場合が多いが、この場合、重量が重くなる、熱容量が大きいために熱効率が低下する、下流の排ガス浄化触媒コンバータでの温度低下が大きく触媒効率が低下する、などの問題がある。したがって、最高温度1100℃で使用可能なステンレス鋼板が望まれていた。
 耐熱オーステナイト系ステンレス鋼には、代表的な鋼として、SUS310S(25Cr-20Ni)やSUSXM15J1(19Cr-13Ni-3Si)等が知られているが、これらの鋼種は最高温度1100℃の環境で使用できるかは疑問である。
 SUS310SやSUS XM15J1を超える耐熱性も持つオーステナイト系ステンレス鋼として、特許文献1に開示されている鋼や特許文献2に開示されている鋼があるが、これらも1100℃までの使用を想定したものでない。したがって、これまで最高温度1100℃で使用可能なステンレス鋼板はなかったのである。
特公昭56-24028号公報 特開2010-202936号公報
 従来のオーステナイト系ステンレス鋼板では、1100℃での高温強度または耐酸化性が十分でなく、最高温度が1100℃に達する環境で使用することは困難であった。そこで本発明は、最高温度1100℃に達する高温環境で使用可能な耐熱オーステナイト系ステンレス鋼板を提供することを課題とする。
 本発明者らは、1100℃に達する環境で使用可能な耐熱オーステナイト系ステンレス鋼板を開発するために、まず、1100℃で必要なオーステナイト系ステンレス鋼板の特性を調査した。その結果、高温強度に関しては、変形を防止する必要があることから、0.2%耐力を指標して評価すべきと考えた。また、耐酸化性に関しては、オーステナイト系ステンレス鋼板は、フェライト系ステンレス鋼鋼板と比較して熱膨張係数が大きいことから、自動車排気系等の温度変化が激しい部位で使用する場合、最高温度での保持する連続酸化試験よりも、最高温度、室温を繰り返す断続酸化試験で評価することが適切と考え、1100℃と室温での繰り返しの断続酸化試験で評価することを考えた。その結果、従来から1000℃の環境下で使用されるステンレス鋼板では、実際には1100℃での耐熱性が不十分であることが判明した。
 本発明者らはさらに検討を進め、1100℃に達する環境で使用可能なオーステナイト系ステンレス鋼の高温強度に関しては、CとNおよびMoの添加が有効であることを知見した。オーステナイト系ステンレス鋼において、C、Nは単独添加でも高温強度を向上させるが、Moとの複合添加により、特に1000℃以上での高温強度を向上させることが判明した。これは、C、NとMoと相互作用、例えば、クラスター形成による効果ではないかと推定している。さらには、オーステナイト系ステンレス鋼に、CとNおよびMoに加えて、Nb、V、W、及びCoの何れか1種以上の元素を添加することも有効であることが判明した。Nb、V、W、及びCoの何れか1種以上の元素のオーステナイト系ステンレス鋼への添加は、C、Nに対するMoの効果と同様の作用を奏しているものと推定される。しかし、Nb、V、W、及びCoの何れか1種以上の元素をオーステナイト系ステンレス鋼に過剰に添加すると、炭窒化物が形成され、粗大化することにより高温強度向上効果が減少することも確認された。
 また、オーステナイト系ステンレス鋼の耐酸化性に関しては、CrとSi、Mnに加えてMoの適正量を添加することと、Tiの添加量の抑制することが必要であることが判明した。特に、オーステナイト系ステンレス鋼にSi、Moを添加することは重要であり、スケールの成長および剥離を抑制し、1100℃での断続酸化試験での酸化減量(減肉量)を著しく減少させることが分かった。また、オーステナイト系ステンレス鋼にTiを添加すると、スケール成長および剥離を促進するため、Tiの添加はできるだけ抑制した方がよいことも分かった。
 本発明は、これらの知見に基づいて発明するに到ったものであり、本発明の課題を解決する手段、すなわち、本発明のオーステナイト系ステンレス鋼板は以下の通りである。
(1) 質量%で、C: 0.05~0.15%、Si:1.0~3.5%、Mn:0.5~2.0%P:0.04%以下、S:0.01%以下、Cr:23.0~26.0%、Ni:10.0~15.0%、Mo:0.50~1.20%、Ti:0.1%以下、Al:0.01~0.10%、N:0.10~0.30%を含有し、CとNの合計量(C+N)が0.25~0.35%であり、残部がFe及び不可避的不純物からなることを特徴とする耐熱オーステナイト系ステンレス鋼板。
(2) さらに、質量%で、Nb:0.01~0.5%、V:0.01~0.5%、W:0.01~0.5%、Co:0.01~0.5%、のいずれか1種または2種以上を含有し、さらに、MoとNbとVとWとCoとの合計量(Mo+Nb+V+W+Co)が1.5%以下である(1)に記載の耐熱オーステナイト系ステンレス鋼板。
(3) さらに、質量%で、Cu:0.1~2.0%、B:0.0001~0.01%、Sn:0.005~0.1%のいずれか1種または2種以上を含有する(1)または(2)に記載の耐熱オーステナイト系ステンレス鋼板。
(4) 1100℃高温強度が、0.2%耐力で20MPa以上である(1)乃至(3)の何れか一項に記載の耐熱オーステナイト系ステンレス鋼板。
(5) 1100℃高温強度が、0.2%耐力で30MPa以上ある(1)乃至(3)の何れか一項に記載の耐熱オーステナイト系ステンレス鋼板。
(6) 1100℃断続酸化試験における重量減が50mg/cm以下である(1)乃至(5)の何れか一項に記載の耐熱オーステナイト系ステンレス鋼板。
 本発明の耐熱オーステナイト系ステンレス鋼によれば、高温強度、耐酸化性に優れる上に、加工性に優れるため、耐熱性に優れたステンレス鋼板を提供できる。
 以下、本発明の実施の形態について説明する。まず、本実施形態のステンレス鋼板の鋼組成を限定した理由について説明する。なお、組成についての%の表記は、特に断りのない場合は、質量%を意味する。
(C:0.05~0.15%)
 Cは、オーステナイト系ステンレス鋼の高温強度向上に有効である。特に、600℃を超える領域でもその向上効果は存在する。これは、C単体の効果ではなく、Nと他合金元素(Mo,Nb,V等)との相互作用によるものと考えている。しかし、過剰のCはCr炭化物を形成しやすくなり、成形性と耐食性、熱延板靭性を劣化させる。そのため、適正なCの添加量を0.05~0.15%とする。Cの添加量はより好ましくは0.07%~0.15%である。
(N:0.10~0.30%)
 Nは、Cと同様にオーステナイト系ステンレス鋼の高温強度向上に有効である。特に、600℃を超える領域でもその向上効果は存在する。これは、N単体の効果ではなく、Nと他合金元素(Mo,Nb,V等)との相互作用によるものと考えている。しかし、過剰のNはCr窒化物を形成しやすくなり、成形性と耐食性、熱延板靭性を劣化させる。そのため、適正なNの添加量を0.1~0.30%とする。Nの添加量はより好ましくは0.15%~0.25%である。
(C+N:0.25~0.35%)
 CおよびNはともに高温強度向上に効果はあるが、十分な効果を得るためには、CとNの合計量(C+N)を0.25%以上添加する必要がある。しかし、過剰な添加は、粗大な炭窒化物を招き、高温強度の向上効果を減少させるたけでなく、加工性を低下させるので、0.35%を上限とする。CとNの合計量はより好ましくは0.30%~0.35%である。
(Si:1.0%~3.5%)
 Siは、脱酸剤としても有用な元素であるとともに、オーステナイト系ステンレス鋼の耐酸化性を向上させる元素であり、本発明では重要な元素である。耐酸化性に対しては、Si量の増加とともに向上する。
 その効果はSiの含有量が1.0%以上で発現するため、下限を1.0%とする。1.5%超で効果はより確実になる。しかし、Siは靭性を大きく低下させる元素であり、過度の添加は靭性ならびに常温延性を低下させる。そのため、Siの含有量を3.5%以下とし、好ましくは2.0%以下とする。より好ましいSiの含有量の範囲は、1.60%~2.0%である。
(Mn:0.5~2.0%)
 Mnは、オーステナイト安定化元素であり、脱酸剤としてオーステナイト系ステンレス鋼に添加される元素である。また、中温域での高温強度上昇に寄与する元素である。高価なNiを節約するため、Mnを0.5%以上添加する。一方、Mnの過度な添加は、MnSを形成して耐食性を低下させるため、Mnの添加量の上限を2.0%とする。Mnの添加量はより好ましくは0.7%~1.6%である。
(P:0.04%以下)
 Pは、製造上不可避に混入する元素であるが、溶接性に悪影響を与えるため、その含有量は、できるだけ低減する必要がある。そのため、オーステナイト系ステンレス鋼におけるPの含有量を0.04%以下とする。なお、好ましくは0.03%以下である。なお、Pの含有量の下限値は特に限定されないが0.015%不可避に混入することがある。
(S:0.01%以下)
 Sは、製造上不可避に混入する元素であるが、溶接性に悪影響を与える。また、MnSを形成し、耐食性、耐酸化性を劣化させる。そのため、オーステナイト系ステンレス鋼におけるSの含有量は、できるだけ低減する必要があり、0.01%以下とする。なお、好ましくは0.002%以下である。なお、Sの含有量の下限値は特に限定されないが0.0010%不可避に混入することがある。
(Cr:23.0~26.0%)
 Crは、オーステナイト系ステンレス鋼の耐酸化性、耐食性確保のために必須な元素である。しかしながら、過剰に添加させるとσ脆性が起こりやすくなる元素でもある。そのため、Crの添加量の適正範囲を23.0~26.0%とする。Crの添加量はより好ましくは23.0%~25.0%である。
(Ni:10.0~15.0%)
 Niは、オーステナイト安定化元素であり、オーステナイト系ステンレス鋼の耐食性を向上させる元素である。Niが少ないとオーステナイト相が安定に形成されないため、Niは10.0%以上添加する。しかし、Niは高価な元素であるため、過剰に添加すると高コストとなる。したがって、Niの添加量の上限を15.0%とする。Niの添加量はより好ましくは11.0%~14.0%である。
(Mo:0.50~1.20%)
 Moは、本発明で重要な元素である。オーステナイト系ステンレス鋼の高温強度を向上させる元素である。この作用は固溶強化と考えられているが、本発明において、MoがC、Nと共存する場合、単なる固溶強化以上の強化能を発現している。その機構は明確でないが、Moと、CまたはNとの相互作用、特に、クラスターの形成により強化されている可能性があると考えている。一方、Moの過度の添加は、σ相を形成しやすくなる。したがって、Moの添加の適正範囲は、0.50~1.20%とする。特に高温強度が必要な場合は、Moの添加量は1.0%~1.2%がより好ましい。
(Ti:0.1%以下)
 Tiは、Nと結合して粗大な窒化物(TiN)を形成しやすい元素である。本発明では、Nを高温強化に用いているため、粗大なTiNの形成は高温特性の低下を招く。また、耐酸化性にも悪影響を与える元素でもある。したがって、本発明では、オーステナイト系ステンレス鋼におけるTi量をできるだけ低減する必要があり、その上限を0.1%とする。なお、Tiの含有量の下限値は特に限定されないが、0.010%不可避に混入することがある。
(Al:0.01~0.10%)
 Alは脱酸元素として有用であり、その効果は、オーステナイト系ステンレス鋼における添加量が0.005%以上で発現する。しかし、過度の添加は、常温延性の低下、靭性の低下を招くため、添加量の上限を0.10%とする。Alの添加量はより好ましくは0.02%~0.07%である。
 さらに、高温特性を向上させるために、オーステナイト系ステンレス鋼に、Nb:0.01~0.5%、V:0.01~0.5%、W:0.01~0.5%、Co:0.01~0.5%の何れか1種または2種以上を添加してもよい。これらの元素は高温強度を向上させる。特に高温強度を必要とする場合は、それぞれの元素の添加量は、Nb:0.1~0.5%、V:0.1~0.5%、W:0.1~0.5%、Co:0.1~0.5%であることがより好ましい。この効果もMoと同じく、固溶強化と考えられているが、それのみでなく、CまたはNとの相互作用も存在すると推定される。したがって、大きな炭窒化物が形成されるような多量添加は好ましくないため、Mo、Nb、W、V及びCoの合計量(Mo+Nb+W+V+Co)を1.5%以下とすることが好ましい。また、Mo、Nb、W、V及びCoの合計量の下限値は特に限定されないが0.1%であるとよい。特に高温強度を必要とする場合は、Mo、Nb、W、V及びCoの合計量は、1.0%を超えるとより好ましい。しかしながら、多量に添加すると粗大な炭窒化物を形成し、かえって高温強度を低下させるので、高温強度を必要とする場合でも、1.2%未満がより好ましい。
 また、オーステナイト系ステンレス鋼の中温域(600~800℃)の高温強度を向上させるため、オーステナイト系ステンレス鋼に、Cu、B、Snの1種または2種以上を添加してもよい。
(Cu:0.1~2%)
 Cuはオーステナイト安定化元素であるとともにオーステナイト系ステンレス鋼の中温域の高温強度を向上させる効果を持つ。
 その効果は、オーステナイト系ステンレス鋼における添加量が0.1%以上で発現する。しかし、過度に添加すると熱延加熱時に異常酸化を生じ表面疵の原因ともなるため、その添加量は、2%を上限とする。好ましくは、0.1~1%であり、より好ましくは0.1~0.5%である。
(B:0.0001~0.01%)
 Bはオーステナイト系ステンレス鋼の中温域の高温強度を向上させる効果を持つ元素である。その効果は、オーステナイト系ステンレス鋼における添加量が0.0001%で発現する。しかし、過度に添加すると熱間加工性を劣化させるため、その添加量は、0.01%を上限とする。Bの添加量はより好ましくは0.0003%~0.0050%である。
(Sn:0.005~0.1%)
 Snは、オーステナイト系ステンレス鋼の耐食性や中温域の高温強度の向上に有効な元素である。また、オーステナイト系ステンレス鋼の常温の機械的特性を大きく劣化させない効果もある。耐食性への効果は、オーステナイト系ステンレス鋼における添加量が0.005%以上で発現するため、Snは0.005%以上とし、より好ましくは0.01%以上である。一方、過度に添加すると製造性や溶接性が著しく劣化するため、Snを0.1%以下とする。
 これらの成分の規定による本発明に係るステンレス鋼は、非常に優れた耐熱性を持つ。
 本発明に係るステンレス鋼は1100℃における使用を想定しており、1100℃における評価を指標とする。まず、1100℃高温強度が、0.2%耐力で20MPa以上であるとよい。1100℃高温強度は、0.2%耐力で30MPa以上であるとより好ましい。さらに、1100℃断続酸化試験における重量減が50mg/cm以下という優れた耐熱性を示す。なお、1100℃断続酸化試験は、1100℃まで加熱した後の保持時間を30分とし、1100℃から室温への冷却時間を15分とするサイクルを300回繰り返す試験である。
 本発明鋼は、溶解、鋳造、熱延、焼鈍、冷延、焼鈍、酸洗の工程を経て製品となる。設備に特段の制限はなく、常法の製造設備を使用できる。
 以下、実施例により本発明の効果を説明するが、本発明は、以下の実施例で用いた条件に限定されるものではない。
 本実施例では、まず、表1A及び表1Bに示す成分組成の鋼を溶製してスラブに鋳造した。このスラブを1150~1250℃に加熱後、仕上げ温度を850~950℃の範囲内として、板厚3~5mmまで熱間圧延した。その後、1000~1200℃で焼鈍し、酸洗した後、冷間圧延で、1.5mmまで圧延し、その後、1000℃~1200℃で焼鈍・酸洗し、供試鋼とした。表1A及び表1Bにおいて、本発明範囲から外れる数値にはアンダーラインを付している。
 このようにして得られた冷延焼鈍板に対して、常温および高温の引張試験、断続酸化試験を実施した。常温の引張試験は、加工性を評価するものであり、JIS Z 2201(対応国際規格:ISO 6892、1984)に準拠して圧延方向と平行方向を長手方向とするJIS13B号試験片を用いて、JIS Z 2241(対応国際規格:ISO 6892、1984)に準拠して引張試験を行った。全伸びを加工性指標とし、全伸び40%以上を合格(A)とし、40%未満を不合格(C)とした。
 また、高温の引張試験は、つば付き試験片を用いて、JIS G 0567(対応国際規格:ISO 6892-2、2011)に準拠し、評価した。1100℃の0.2%耐力を高温強度の指標とし、高温強度20MPa未満の鋼を不合格(C)とし、20MPa以上の鋼を合格(B)とし、さらに、30MPa以上の鋼を優良鋼(A)とした。
 耐酸化性は、断続酸化試験を用いて評価した。各鋼板から、20mm×20mmのサンプルを採取し、端面を#600バフ研磨して酸化試験片とし、大気中で、1100℃まで加熱した後の保持時間を15分とし、1100℃から室温までの冷却時間を15分とするサイクルを1サイクルとし、これを300サイクルまで実施し、酸化減量(スケールの生成・脱落による減肉量)を測定した。この酸化減量が、50mg/cm以下である場合を合格(A)とし、50mg/cmを超える場合を不合格(C)とした。評価結果を表2A及び表2Bに示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1A~表2Bより明らかなように、本発明を適用した成分組成の鋼板は、加工性、高温強度、耐酸化性、いずれも優れた特性を示した。一方、本発明から外れる比較例では、加工性、高温強度、耐酸化性、の何れかが、1つ以上不合格であった。これにより、本発明鋼が比較例のオーステナイト系ステンレス鋼に対して優れている事が分かる。
 以上の説明から明らかなように、本発明の耐熱オーステナイト系ステンレス鋼によれば、高温強度、耐酸化性に優れる上に、加工性に優れるため、耐熱性に優れたステンレス鋼板を提供可能になる。つまり、本発明を適用した材料を、特に自動車の排気管等の排気系部材に適用する事が可能になり、自動車等のエンジン効率化を達成できる排気管を提供することができる。本発明は産業上、非常に有益である。

Claims (6)

  1.  質量%で、C: 0.05~0.15%、Si:1.0~3.5%、Mn:0.5~2.0%、P:0.04%以下、S:0.01%以下、Cr:23.0~26.0%、Ni:10.0~15.0%、Mo:0.50~1.20%、Ti:0.1%以下、Al:0.01~0.10%、N:0.10~0.30%を含有し、
     CとNの合計量(C+N)が0.25~0.35%であり、
     残部がFe及び不可避的不純物からなることを特徴とする耐熱オーステナイト系ステンレス鋼板。
  2.  さらに、質量%で、Nb:0.01~0.5%、V:0.01~0.5%、W:0.01~0.5%、Co:0.01~0.5%、のいずれか1種または2種以上を含有し、
     さらに、MoとNbとVとWとCoとの合計量(Mo+Nb+V+W+Co)が1.5%以下である請求項1に記載の耐熱オーステナイト系ステンレス鋼板。
  3.  さらに、質量%で、Cu:0.1~2.0%、B:0.0001~0.01%、Sn:0.005~0.1%のいずれか1種または2種以上を含有する請求項1または2に記載の耐熱オーステナイト系ステンレス鋼板。
  4.  1100℃高温強度が、0.2%耐力で20MPa以上である請求項1乃至3の何れか一項に記載の耐熱オーステナイト系ステンレス鋼板。
  5.  1100℃高温強度が、0.2%耐力で30MPa以上ある請求項1乃至3の何れか一項に記載の耐熱オーステナイト系ステンレス鋼板。
  6.  1100℃断続酸化試験における重量減が50mg/cm以下である請求項1乃至5の何れか一項に記載の耐熱オーステナイト系ステンレス鋼板。
PCT/JP2014/059251 2013-03-28 2014-03-28 耐熱オーステナイト系ステンレス鋼板 WO2014157655A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
ES14774814.9T ES2667993T3 (es) 2013-03-28 2014-03-28 Lámina de acero inoxidable austenítico resistente al calor
PL14774814T PL2980244T3 (pl) 2013-03-28 2014-03-28 Blacha cienka z nierdzewnej żaroodpornej stali austenitycznej
MX2015013607A MX2015013607A (es) 2013-03-28 2014-03-28 Hoja de acero inoxidable austenitico resistente al calor.
JP2015508782A JP6190873B2 (ja) 2013-03-28 2014-03-28 耐熱オーステナイト系ステンレス鋼板
US14/779,364 US9945016B2 (en) 2013-03-28 2014-03-28 Heat-resistant austenitic stainless steel sheet
EP14774814.9A EP2980244B1 (en) 2013-03-28 2014-03-28 Heat-resistant austenitic stainless steel sheet
CN201480017607.9A CN105051233B (zh) 2013-03-28 2014-03-28 耐热奥氏体系不锈钢板
KR1020157028931A KR101744432B1 (ko) 2013-03-28 2014-03-28 내열 오스테나이트계 스테인리스 강판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013069220 2013-03-28
JP2013-069220 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014157655A1 true WO2014157655A1 (ja) 2014-10-02

Family

ID=51624611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059251 WO2014157655A1 (ja) 2013-03-28 2014-03-28 耐熱オーステナイト系ステンレス鋼板

Country Status (9)

Country Link
US (1) US9945016B2 (ja)
EP (1) EP2980244B1 (ja)
JP (1) JP6190873B2 (ja)
KR (1) KR101744432B1 (ja)
CN (1) CN105051233B (ja)
ES (1) ES2667993T3 (ja)
MX (1) MX2015013607A (ja)
PL (1) PL2980244T3 (ja)
WO (1) WO2014157655A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159011A1 (ja) * 2015-03-31 2016-10-06 新日鐵住金ステンレス株式会社 断続酸化特性に優れた排気系部品用ステンレス鋼板及び排気系部品
WO2017061487A1 (ja) * 2015-10-06 2017-04-13 新日鐵住金株式会社 オーステナイト系ステンレス鋼板
JP2017088928A (ja) * 2015-11-05 2017-05-25 新日鐵住金ステンレス株式会社 耐熱性と加工性に優れたオーステナイト系ステンレス鋼板とその製造方法、および当該ステンレス鋼製排気部品
WO2017164344A1 (ja) 2016-03-23 2017-09-28 新日鐵住金ステンレス株式会社 耐熱性と加工性に優れた排気部品用オーステナイト系ステンレス鋼板およびターボチャージャー部品と、排気部品用オーステナイト系ステンレス鋼板の製造方法
JP2018115385A (ja) * 2017-01-20 2018-07-26 新日鐵住金ステンレス株式会社 排気部品用オーステナイト系ステンレス鋼板およびその製造方法、ならびに排気部品およびその製造方法
JP6429957B1 (ja) * 2017-08-08 2018-11-28 新日鐵住金ステンレス株式会社 オーステナイト系ステンレス鋼およびその製造方法、ならびに燃料改質器および燃焼器の部材
JP2019002030A (ja) * 2017-06-12 2019-01-10 新日鐵住金ステンレス株式会社 オーステナイト系ステンレス鋼板およびその製造方法、ならびに排気部品
JP2020147770A (ja) * 2019-03-11 2020-09-17 日鉄ステンレス株式会社 高温高サイクル疲労特性に優れたオーステナイト系ステンレス鋼板およびその製造方法ならびに排気部品
JP2020164949A (ja) * 2019-03-29 2020-10-08 日鉄ステンレス株式会社 高温高サイクル疲労特性に優れたオーステナイト系ステンレス鋼板およびその製造方法ならびに排気部品

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107406945B (zh) * 2015-03-26 2019-12-03 新日铁住金不锈钢株式会社 钎焊性优良的不锈钢
CN105369128B (zh) * 2015-12-17 2017-08-08 江苏省沙钢钢铁研究院有限公司 奥氏体耐热铸钢、其制备方法及应用
KR101836715B1 (ko) 2016-10-12 2018-03-09 현대자동차주식회사 고온 내산화성이 우수한 스테인리스강
JP6740974B2 (ja) * 2017-07-14 2020-08-19 株式会社デンソー ガスセンサ
US10633726B2 (en) * 2017-08-16 2020-04-28 The United States Of America As Represented By The Secretary Of The Army Methods, compositions and structures for advanced design low alloy nitrogen steels
ES2717692A1 (es) * 2017-12-22 2019-06-24 Univ Madrid Politecnica Acero refractario resistente al desgaste endurecible por formacion termica y/o mecanica de fase sigma
CN110499455B (zh) * 2018-05-18 2021-02-26 宝武特种冶金有限公司 一种时效硬化奥氏体不锈钢及其制备方法
US10927439B2 (en) 2018-05-30 2021-02-23 Garrett Transportation I Inc Stainless steel alloys, turbocharger components formed from the stainless steel alloys, and methods for manufacturing the same
JP7050584B2 (ja) * 2018-06-06 2022-04-08 日本特殊陶業株式会社 センサ
CN112368411B (zh) * 2018-10-30 2022-05-10 日铁不锈钢株式会社 奥氏体系不锈钢板
CN110257690B (zh) * 2019-06-25 2021-01-08 宁波宝新不锈钢有限公司 一种资源节约型奥氏体耐热钢及其制备方法
CN112342473A (zh) * 2020-09-17 2021-02-09 江苏华久辐条制造有限公司 一种冷轧带钢表面耐蚀处理方法
KR102497442B1 (ko) * 2020-11-25 2023-02-08 주식회사 포스코 접촉저항이 향상된 고분자 연료전지 분리판용 오스테나이트계 스테인리스강 및 그 제조 방법
CN112980116B (zh) * 2021-01-22 2022-02-15 北京理工大学 一种可伸缩螺旋结构储能破片的制备方法
CN113388790B (zh) * 2021-06-08 2022-11-25 常州腾飞特材科技有限公司 一种06Cr19Ni10N奥氏体不锈钢管及其生产工艺
FR3124804B1 (fr) * 2021-06-30 2023-11-10 Association Pour La Rech Et Le Developpement Des Methodes Et Processus Industriels Armines Acier inoxydable austénitique
CN114908294A (zh) * 2022-05-19 2022-08-16 山西太钢不锈钢股份有限公司 汽车排气***用耐高温奥氏体不锈钢冷轧板及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514015A (en) * 1974-06-25 1976-01-13 Nippon Steel Corp Netsukankakoseino sugureta tainetsuseioosutenaitosutenresuko
JPS52109420A (en) * 1976-03-10 1977-09-13 Nippon Steel Corp Heat resisting austenite stainless steel
JPH02213451A (ja) * 1989-02-15 1990-08-24 Nippon Stainless Steel Co Ltd 耐食性に優れた安価なオーステナイト系ステンレス鋼
JPH05320756A (ja) * 1992-05-21 1993-12-03 Nippon Steel Corp 耐海水性に優れた高強度オーステナイト系ステンレス鋼の製造方法
JP2010202936A (ja) 2009-03-04 2010-09-16 Nisshin Steel Co Ltd 耐熱部材用オーステナイト系ステンレス鋼

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2970432B2 (ja) * 1993-11-11 1999-11-02 住友金属工業株式会社 高温用ステンレス鋼とその製造方法
JP2970532B2 (ja) 1996-05-17 1999-11-02 三菱自動車工業株式会社 モールディングの取付用クリップ
JP4785302B2 (ja) * 2001-09-10 2011-10-05 日新製鋼株式会社 メタルガスケット用高強度オーステナイト系ステンレス鋼
JP5208354B2 (ja) * 2005-04-11 2013-06-12 新日鐵住金株式会社 オーステナイト系ステンレス鋼
WO2008093453A1 (ja) * 2007-01-31 2008-08-07 National Institute Of Advanced Industrial Science And Technology オーステナイト系ステンレス鋼、及びその水素除去方法
JP5670103B2 (ja) * 2010-06-15 2015-02-18 山陽特殊製鋼株式会社 高強度オーステナイト系耐熱鋼
JP6016331B2 (ja) 2011-03-29 2016-10-26 新日鐵住金ステンレス株式会社 耐食性及びろう付け性に優れたオーステナイト系ステンレス鋼
CN102230137A (zh) * 2011-06-20 2011-11-02 宣达实业集团有限公司 奥氏体耐热不锈钢及其加工方法
CN102877006A (zh) * 2012-10-15 2013-01-16 常州大学 一种高耐热性铸造奥氏体不锈钢及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514015A (en) * 1974-06-25 1976-01-13 Nippon Steel Corp Netsukankakoseino sugureta tainetsuseioosutenaitosutenresuko
JPS52109420A (en) * 1976-03-10 1977-09-13 Nippon Steel Corp Heat resisting austenite stainless steel
JPS5624028B2 (ja) 1976-03-10 1981-06-03
JPH02213451A (ja) * 1989-02-15 1990-08-24 Nippon Stainless Steel Co Ltd 耐食性に優れた安価なオーステナイト系ステンレス鋼
JPH05320756A (ja) * 1992-05-21 1993-12-03 Nippon Steel Corp 耐海水性に優れた高強度オーステナイト系ステンレス鋼の製造方法
JP2010202936A (ja) 2009-03-04 2010-09-16 Nisshin Steel Co Ltd 耐熱部材用オーステナイト系ステンレス鋼

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101988150B1 (ko) * 2015-03-31 2019-06-11 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 배기계 부품
CN107429358B (zh) * 2015-03-31 2019-12-13 新日铁住金不锈钢株式会社 断续氧化特性优异的排气***部件用不锈钢板和排气***部件
WO2016159011A1 (ja) * 2015-03-31 2016-10-06 新日鐵住金ステンレス株式会社 断続酸化特性に優れた排気系部品用ステンレス鋼板及び排気系部品
JPWO2016159011A1 (ja) * 2015-03-31 2017-08-31 新日鐵住金ステンレス株式会社 排気系部品
EP3279359A4 (en) * 2015-03-31 2018-08-22 Nippon Steel & Sumikin Stainless Steel Corporation Stainless steel sheet for exhaust system component having excellent intermittent oxidation characteristics, and exhaust system component
US20180080106A1 (en) * 2015-03-31 2018-03-22 Nippon Steel & Sumikin Stainless Steel Corporation Stainless steel sheet for exhaust system part use excellent in intermittent oxidation characteristic and exhaust system part
KR20170123647A (ko) * 2015-03-31 2017-11-08 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 단속 산화 특성이 우수한 배기계 부품용 스테인리스 강판 및 배기계 부품
CN107429358A (zh) * 2015-03-31 2017-12-01 新日铁住金不锈钢株式会社 断续氧化特性优异的排气***部件用不锈钢板和排气***部件
TWI639712B (zh) * 2015-10-06 2018-11-01 新日鐵住金股份有限公司 沃斯田鐵系不鏽鋼板
KR20180059548A (ko) * 2015-10-06 2018-06-04 신닛테츠스미킨 카부시키카이샤 오스테나이트계 스테인리스 강판
KR102077414B1 (ko) 2015-10-06 2020-02-13 닛테츠 스테인레스 가부시키가이샤 오스테나이트계 스테인리스 강판
WO2017061487A1 (ja) * 2015-10-06 2017-04-13 新日鐵住金株式会社 オーステナイト系ステンレス鋼板
JPWO2017061487A1 (ja) * 2015-10-06 2017-10-05 新日鐵住金株式会社 オーステナイト系ステンレス鋼板およびその製造方法
JP2017088928A (ja) * 2015-11-05 2017-05-25 新日鐵住金ステンレス株式会社 耐熱性と加工性に優れたオーステナイト系ステンレス鋼板とその製造方法、および当該ステンレス鋼製排気部品
WO2017164344A1 (ja) 2016-03-23 2017-09-28 新日鐵住金ステンレス株式会社 耐熱性と加工性に優れた排気部品用オーステナイト系ステンレス鋼板およびターボチャージャー部品と、排気部品用オーステナイト系ステンレス鋼板の製造方法
JPWO2017164344A1 (ja) * 2016-03-23 2019-01-17 新日鐵住金ステンレス株式会社 耐熱性と加工性に優れた排気部品用オーステナイト系ステンレス鋼板およびターボチャージャー部品と、排気部品用オーステナイト系ステンレス鋼板の製造方法
US10894995B2 (en) 2016-03-23 2021-01-19 Nippon Steel & Sumikin Stainless Steel Corporation Austenitic stainless steel sheet for exhaust component having excellent heat resistance and workability, turbocharger component, and method for producing austenitic stainless steel sheet for exhaust component
KR102165108B1 (ko) 2016-03-23 2020-10-13 닛테츠 스테인레스 가부시키가이샤 내열성과 가공성이 우수한 배기 부품용 오스테나이트계 스테인리스 강판 및 터보 차저 부품과, 배기 부품용 오스테나이트계 스테인리스 강판의 제조 방법
KR20180115288A (ko) 2016-03-23 2018-10-22 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 내열성과 가공성이 우수한 배기 부품용 오스테나이트계 스테인리스 강판 및 터보 차저 부품과, 배기 부품용 오스테나이트계 스테인리스 강판의 제조 방법
JP2018115385A (ja) * 2017-01-20 2018-07-26 新日鐵住金ステンレス株式会社 排気部品用オーステナイト系ステンレス鋼板およびその製造方法、ならびに排気部品およびその製造方法
JP2019002030A (ja) * 2017-06-12 2019-01-10 新日鐵住金ステンレス株式会社 オーステナイト系ステンレス鋼板およびその製造方法、ならびに排気部品
JP2019031717A (ja) * 2017-08-08 2019-02-28 新日鐵住金ステンレス株式会社 オーステナイト系ステンレス鋼およびその製造方法、ならびに燃料改質器および燃焼器の部材
JP6429957B1 (ja) * 2017-08-08 2018-11-28 新日鐵住金ステンレス株式会社 オーステナイト系ステンレス鋼およびその製造方法、ならびに燃料改質器および燃焼器の部材
JP2020147770A (ja) * 2019-03-11 2020-09-17 日鉄ステンレス株式会社 高温高サイクル疲労特性に優れたオーステナイト系ステンレス鋼板およびその製造方法ならびに排気部品
JP7270419B2 (ja) 2019-03-11 2023-05-10 日鉄ステンレス株式会社 高温高サイクル疲労特性に優れたオーステナイト系ステンレス鋼板およびその製造方法ならびに排気部品
JP2020164949A (ja) * 2019-03-29 2020-10-08 日鉄ステンレス株式会社 高温高サイクル疲労特性に優れたオーステナイト系ステンレス鋼板およびその製造方法ならびに排気部品
JP7270445B2 (ja) 2019-03-29 2023-05-10 日鉄ステンレス株式会社 高温高サイクル疲労特性に優れたオーステナイト系ステンレス鋼板およびその製造方法ならびに排気部品

Also Published As

Publication number Publication date
EP2980244A1 (en) 2016-02-03
CN105051233B (zh) 2017-03-08
KR101744432B1 (ko) 2017-06-08
ES2667993T3 (es) 2018-05-16
US20160032434A1 (en) 2016-02-04
CN105051233A (zh) 2015-11-11
JPWO2014157655A1 (ja) 2017-02-16
JP6190873B2 (ja) 2017-09-06
US9945016B2 (en) 2018-04-17
EP2980244A4 (en) 2016-09-28
EP2980244B1 (en) 2018-03-28
KR20150126053A (ko) 2015-11-10
MX2015013607A (es) 2016-01-12
PL2980244T3 (pl) 2018-09-28

Similar Documents

Publication Publication Date Title
JP6190873B2 (ja) 耐熱オーステナイト系ステンレス鋼板
JP5546911B2 (ja) 耐熱性と加工性に優れたフェライト系ステンレス鋼板
JP4702493B1 (ja) 耐熱性に優れるフェライト系ステンレス鋼
JP6205407B2 (ja) 耐熱性に優れたフェライト系ステンレス鋼板
JP5141296B2 (ja) 高温強度と靭性に優れるフェライト系ステンレス鋼
JP5709875B2 (ja) 耐酸化性に優れた耐熱フェライト系ステンレス鋼板
JP5025671B2 (ja) 高温強度に優れたフェライト系ステンレス鋼板およびその製造方法
JP5540637B2 (ja) 耐熱性に優れるフェライト系ステンレス鋼
JP2008240143A (ja) 耐熱性に優れたフェライト系ステンレス鋼板
WO2011118854A1 (ja) 耐熱性と加工性に優れたフェライト系ステンレス鋼板及びその製造方法
JP5012243B2 (ja) 高温強度、耐熱性および加工性に優れるフェライト系ステンレス鋼
WO2013133429A1 (ja) フェライト系ステンレス鋼板
JP6343548B2 (ja) 耐熱オーステナイト系ステンレス鋼板
JP2009197307A (ja) 高温強度、耐水蒸気酸化性および加工性に優れるフェライト系ステンレス鋼
US10400318B2 (en) Ferritic stainless steel
JP2017179398A (ja) 排気マニホールド用フェライト系ステンレス鋼板および排気マニホールド
JP5937861B2 (ja) 溶接性に優れた耐熱フェライト系ステンレス鋼板
WO2020090936A1 (ja) オーステナイト系ステンレス鋼板
JP5677819B2 (ja) 耐酸化性に優れたフェライト系ステンレス鋼板
JP7278079B2 (ja) ステンレス冷延鋼板、ステンレス熱延鋼板及びステンレス熱延鋼板の製造方法
JP2018119196A (ja) 耐熱性に優れた耐熱部材締結部品用フェライト系ステンレス鋼板および締結部品並びに耐熱管状部材用円状クランプ
JP2020050936A (ja) ステンレス鋼
JP2005200746A (ja) 自動車排気系部材用フェライト系ステンレス鋼
WO2018135028A1 (ja) フェライト系ステンレス鋼及び自動車排ガス経路部材用フェライト系ステンレス鋼

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480017607.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774814

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508782

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14779364

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/013607

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157028931

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014774814

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201506628

Country of ref document: ID