WO2014148130A1 - 炭化珪素半導体装置およびその製造方法 - Google Patents

炭化珪素半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2014148130A1
WO2014148130A1 PCT/JP2014/052542 JP2014052542W WO2014148130A1 WO 2014148130 A1 WO2014148130 A1 WO 2014148130A1 JP 2014052542 W JP2014052542 W JP 2014052542W WO 2014148130 A1 WO2014148130 A1 WO 2014148130A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
side wall
silicon carbide
semiconductor device
semiconductor layer
Prior art date
Application number
PCT/JP2014/052542
Other languages
English (en)
French (fr)
Inventor
光亮 内田
増田 健良
雄 斎藤
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2014528779A priority Critical patent/JP6265122B2/ja
Priority to US14/768,713 priority patent/US9666681B2/en
Priority to DE112014001539.3T priority patent/DE112014001539T5/de
Priority to CN201480008899.XA priority patent/CN105074933B/zh
Publication of WO2014148130A1 publication Critical patent/WO2014148130A1/ja
Priority to US15/497,544 priority patent/US9984879B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/049Conductor-insulator-semiconductor electrodes, e.g. MIS contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/045Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide passivating silicon carbide surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes

Definitions

  • the present invention relates to a silicon carbide semiconductor device and a method for manufacturing the same, and more particularly to a silicon carbide semiconductor device having a trench and a method for manufacturing the same.
  • Patent Document 1 JP-A-7-326755 discloses a trench gate type MOSFET (Metal Oxide Semiconductor Field Effect Transistor) using a silicon carbide substrate. According to this publication, the thickness of the gate thermal oxide film on the bottom surface of the trench is larger than the thickness of the gate thermal oxide film on the side surface of the trench.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • a smaller gate electrode capacity is desired.
  • MISFET Metal Insulator Semiconductor Field Effect Transistor
  • the gate electrode capacitance can be reduced to some extent by increasing the thickness of the bottom surface of the gate insulating film (gate thermal oxide film), a smaller gate electrode capacitance is desired. It is.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a silicon carbide semiconductor device having a small gate electrode capacity and a method for manufacturing the same.
  • the silicon carbide semiconductor device of the present invention has a silicon carbide substrate, a gate insulating film, a gate insulating film, and a gate electrode.
  • the silicon carbide substrate is provided on the first semiconductor layer having the first conductivity type, the second semiconductor layer having the second conductivity type provided on the first semiconductor layer, and the second semiconductor layer. And a third semiconductor layer having a first conductivity type and separated from the first semiconductor layer by the second semiconductor layer.
  • the silicon carbide substrate is provided with a trench.
  • the trench includes a bottom surface made of the first semiconductor layer and a side wall surface having first to third side surfaces made of the first to third semiconductor layers.
  • the gate insulating film is provided on the trench.
  • the gate insulating film includes a first insulating film that directly covers each of the sidewall surface and the bottom surface, and a second insulating film provided on the first insulating film.
  • the first insulating film has a first bottom portion located on the bottom surface and a first sidewall portion located on the sidewall surface.
  • the first side wall portion has first to third regions located on the first to third side surfaces, respectively.
  • the second insulating film has a second bottom portion located on the first bottom portion and a second sidewall portion located on the first sidewall portion.
  • the second side wall portion has one end connected to the second bottom portion, and the other end located on one of the first and second regions and away from the third region.
  • the gate electrode is provided on the trench via the gate insulating film.
  • the manufacturing method of the silicon carbide semiconductor device of this invention has the following processes.
  • a silicon carbide substrate including a third semiconductor layer having a first conductivity type separated from the first semiconductor layer by the layer is prepared.
  • a trench is formed in the silicon carbide substrate.
  • the trench includes a bottom surface made of the first semiconductor layer and a side wall surface having first to third side surfaces made of the first to third semiconductor layers.
  • a first insulating film that directly covers each of the side wall surface and the bottom surface is formed.
  • the first insulating film has a first bottom portion located on the bottom surface and a first sidewall portion located on the sidewall surface.
  • the first side wall portion has first to third regions located on each of the first to third side surfaces.
  • a silicon film is formed on the first insulating film.
  • the silicon film has a second bottom portion located on the first bottom portion and a second sidewall portion located on the first sidewall portion.
  • the second side wall portion has one end connected to the second bottom portion, and the other end located on one of the first and second regions and away from the third region.
  • a second insulating film is formed by oxidizing the silicon film.
  • the first and second insulating films constitute a gate insulating film.
  • a gate electrode is formed on the trench through the gate insulating film.
  • the gate electrode capacitance can be reduced.
  • FIG. 1 is a partial cross sectional view schematically showing a configuration of a silicon carbide semiconductor device in a first embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing a shape of a silicon carbide substrate included in the silicon carbide semiconductor device of FIG. 1.
  • FIG. 3 is a diagram illustrating the configuration of FIG. 2 in more detail, and is a diagram in which a region of a second conductivity type is hatched for easy viewing of the diagram.
  • FIG. 2 is an enlarged view of FIG. 1, in particular, explaining the components of the first insulating film.
  • FIG. 2 is an enlarged view of FIG. 1, particularly illustrating a dimension of a gate insulating film.
  • FIG. 8 is a partial cross sectional view schematically showing a first step of the method for manufacturing the silicon carbide semiconductor device of FIG. 1.
  • FIG. 8 is a partial cross sectional view schematically showing a second step of the method for manufacturing the silicon carbide semiconductor device of FIG. 1.
  • FIG. 8 is a partial cross sectional view schematically showing a third step of the method for manufacturing the silicon carbide semiconductor device of FIG. 1.
  • FIG. 8 is a partial cross sectional view schematically showing a fourth step of the method for manufacturing the silicon carbide semiconductor device of FIG. 1.
  • FIG. 8 is a partial cross sectional view schematically showing a fifth step of the method for manufacturing the silicon carbide semiconductor device of FIG. 1.
  • FIG. 8 is a partial cross sectional view schematically showing a sixth step of the method for manufacturing the silicon carbide semiconductor device of FIG. 1.
  • FIG. 8 is a partial cross sectional view schematically showing a seventh step of the method for manufacturing the silicon carbide semiconductor device of FIG. 1.
  • FIG. 12 is a partial cross sectional view schematically showing an eighth step of the method for manufacturing the silicon carbide semiconductor device of FIG. 1.
  • FIG. 12 is a partial cross sectional view schematically showing a ninth step of the method for manufacturing the silicon carbide semiconductor device of FIG. 1.
  • FIG. 12 is a partial cross sectional view schematically showing a tenth step of the method for manufacturing the silicon carbide semiconductor device of FIG. 1.
  • FIG. 12 is a partial cross sectional view schematically showing an eleventh step of the method for manufacturing the silicon carbide semiconductor device of FIG. 1.
  • FIG. 12 is a partial cross sectional view schematically showing a twelfth step of the method for manufacturing the silicon carbide semiconductor device of FIG. 1.
  • FIG. 14 is a partial cross sectional view schematically showing a thirteenth step of the method for manufacturing the silicon carbide semiconductor device of FIG. 1. It is a fragmentary sectional view which shows schematically the structure of the silicon carbide semiconductor device in Embodiment 2 of this invention. It is a fragmentary sectional view which shows schematically the structure of the silicon carbide semiconductor device in Embodiment 3 of this invention.
  • FIG. 3 is a diagram showing a crystal structure of a (000-1) plane in polytype 4H hexagonal crystal.
  • FIG. 23 is a view showing a crystal structure of a (11-20) plane along line XXIII-XXIII in FIG.
  • FIG. 22 is a view showing a crystal structure in the vicinity of the surface of the composite surface in FIG. 21 in the (11-20) plane.
  • FIG. 22 is a diagram when the composite surface of FIG. 21 is viewed from the (01-10) plane.
  • FIG. 3 is a diagram showing a crystal structure of a (000-1) plane in polytype 4H hexagonal crystal.
  • FIG. 23 is a view showing a crystal structure of a (11-20) plane along line XXIII-XXIII in FIG.
  • FIG. 22 is a view showing a crystal structure in the vicinity of the surface of the composite surface in FIG. 21 in the (11-20) plane.
  • FIG. 22 is a diagram when the composite surface of FIG. 21 is viewed from the (01
  • FIG. 5 is a graph showing an example of a relationship between a channel surface and a (000-1) plane viewed macroscopically and channel mobility when a thermal etching is performed and when it is not performed. It is. It is a graph which shows an example of the relationship between the angle between a channel direction and the ⁇ 0-11-2> direction, and channel mobility. It is a figure which shows the modification of FIG. And the capacitance C gd between the gate electrode and the drain electrode is a diagram showing the relationship between the voltage V DS between the drain electrode and the source electrode.
  • Silicon carbide semiconductor devices 501 to 503 have silicon carbide substrate 100, gate insulating film 200, and gate electrode 230.
  • the silicon carbide substrate 100 includes a first semiconductor layer 121 having a first conductivity type, a second semiconductor layer 122 having a second conductivity type provided on the first semiconductor layer 121, and a second semiconductor.
  • a third semiconductor layer 123 provided on the layer 122 and separated from the first semiconductor layer 121 by the second semiconductor layer 122 and having the first conductivity type.
  • Silicon carbide substrate 100 is provided with a trench TR.
  • Trench TR includes a bottom surface BT made of first semiconductor layer 121 and side wall surface SW having first to third side faces SW1 to SW3 made of first to third semiconductor layers 121 to 123, respectively.
  • Gate insulating film 200 is provided on trench TR.
  • the gate insulating film 200 includes a first insulating film 201 that directly covers each of the side wall surface SW and the bottom surface BT, and a second insulating film 202 provided on the first insulating film 201.
  • the first insulating film 201 has a first bottom portion 201B located on the bottom surface BT and a first sidewall portion 201S located on the sidewall surface SW.
  • the first side wall portion 201S includes first to third regions 201a to 201c located on the first to third side surfaces SW1 to SW3, respectively.
  • the second insulating film 202 has a second bottom 202B located on the first bottom 201B and a second sidewall 202S located on the first sidewall 201S.
  • the second side wall portion 202S has one end E1 connected to the second bottom portion 202B and the other end E2 located on one of the first and second regions 201a and 201b and separated from the third region 201c. And have.
  • Gate electrode 230 is provided on trench TR through gate insulating film 200.
  • second insulating film 202 that forms gate insulating film 200 together with first insulating film 201 is not only on first bottom portion 201 B of first insulating film 201.
  • the first insulating film 201 is also provided on the first sidewall portion 201S.
  • gate insulating film 200 has a greater thickness not only on bottom surface BT of trench TR but also on side wall surface SW that forms corner portion CR together with bottom surface BT in the vicinity of bottom surface BT. Therefore, the gate electrode capacitance can be further reduced as compared with the case where the gate insulating film 200 is thickened only on the bottom surface BT of the trench.
  • the other end E2 of the second side wall 202S may be located on the boundary between the first region 201a and the second region 201b.
  • the second side wall portion 202S is extended to the maximum extent within a range that does not cover the second region 201b constituting the channel surface. Therefore, the gate electrode capacitance can be effectively reduced within a range that hardly affects the channel characteristics.
  • the other end E2 of the second side wall portion 202S may be located on the first region 201a away from the second region 201b.
  • the second side wall 202S is extended within a range not approaching the second region 201b constituting the channel surface. Therefore, the gate electrode capacitance can be reduced within a range that does not affect the channel characteristics.
  • the other end E2 of the second side wall portion 202S may be located on the second region 201b apart from the third region 201c.
  • the second side wall 202S is further extended as compared with the case where the second side wall 202S is provided only on the first region 201a. Further, the second side wall portion 202S is provided apart from the boundary between the second region 201b and the third region 201c, which has a large influence on the channel characteristics. Therefore, the gate electrode capacitance can be more effectively reduced while suppressing the influence on the channel characteristics.
  • the second semiconductor layer 122 has a depth position DP where the impurity concentration reaches a peak, and the other end E2 of the second side wall 202S is located deeper than the depth position DP. May be.
  • the second side wall 202S is further extended as compared with the case where the second side wall 202S is provided only on the first region 201a. Further, the second side wall portion 202S is provided apart from the depth position DP that has a great influence on the channel characteristics. Therefore, it is possible to more effectively reduce the gate electrode capacitance while further suppressing the influence on the channel characteristics.
  • the other end E2 of the second side wall portion 202S may have an inclination angle AG of less than 70 degrees with respect to the first side wall portion 201S.
  • each of the first and second insulating films 201 and 202 has the first and second carbon atom concentrations, and the second carbon atom concentration is the first carbon atom concentration. It may be smaller than the carbon atom concentration.
  • the second insulating film 202 has high dielectric breakdown resistance due to low carbon atom concentration. Therefore, silicon carbide semiconductor devices 501 to 503 have a large breakdown voltage.
  • the first carbon atom concentration may be greater than 1 ⁇ 10 15 cm ⁇ 3 and the second carbon atom concentration may be less than 1 ⁇ 10 15 cm ⁇ 3 .
  • the carbon atom concentration of the second insulating film 202 is sufficiently lowered. Therefore, the breakdown voltage of silicon carbide semiconductor devices 501 to 503 can be further increased.
  • the second insulating film 202 may be made of at least one of silicon oxide, silicon nitride, and phosphosilicate glass.
  • the breakdown voltage of silicon carbide semiconductor devices 501 to 503 can be further increased.
  • the second insulating film 202 may be a thermal oxide film that contains silicon and does not contain carbon.
  • the method for manufacturing silicon carbide semiconductor devices 501 to 503 includes the following steps.
  • Silicon carbide substrate 100 including a third semiconductor layer 123 having a first conductivity type and separated from first semiconductor layer 121 by second semiconductor layer 122 is prepared.
  • Trench TR is formed in silicon carbide substrate 100.
  • Trench TR includes a bottom surface BT made of first semiconductor layer 121 and side wall surface SW having first to third side faces SW1 to SW3 made of first to third semiconductor layers 121 to 123, respectively.
  • a first insulating film 201 that directly covers each of the side wall surface SW and the bottom surface BT is formed.
  • the first insulating film 201 has a first bottom portion 201B located on the bottom surface BT and a first sidewall portion 201S located on the sidewall surface SW.
  • the first side wall portion 201S includes first to third regions 201a to 201c located on the first to third side surfaces SW1 to SW3, respectively.
  • a silicon film 302 is formed on the first insulating film 201.
  • the silicon film 302 has a second bottom portion 302B located on the first bottom portion 201B and a second side wall portion 302S located on the first side wall portion 201S.
  • the second side wall portion 302S has one end E1 connected to the second bottom portion 302B and the other end E2 located on one of the first and second regions 201a and 201b and separated from the third region 201c. And have.
  • the second insulating film 202 is formed by oxidizing the silicon film 302.
  • the first and second insulating films 201 and 202 constitute the gate insulating film 200.
  • Gate electrode 230 is formed on trench TR via gate insulating film 200.
  • the second insulating film 202 that forms the gate insulating film 200 together with the first insulating film 201 is not only on the first bottom 201B of the first insulating film 201, but also on the first insulating film 201.
  • the insulating film 201 is also provided on the first side wall portion 201S.
  • the gate insulating film 200 has a larger thickness not only on the bottom surface BT of the trench but also on the side wall surface SW surface that forms the corner CR together with the bottom surface BT in the vicinity of the bottom surface BT. Therefore, the gate electrode capacitance can be further reduced as compared with the case where the gate insulating film 200 is thickened only on the bottom surface BT of the trench.
  • the step of forming the second insulating film 202 by oxidizing the silicon film 302 may be performed at 800 ° C. or higher and 1150 ° C. or lower.
  • the surface roughness of the silicon film 302 can be suppressed by oxidizing the silicon film 302 at 800 ° C. or higher. Further, by oxidizing the silicon film at 1150 ° C. or lower, it is possible to suppress an increase in the vapor pressure of the second insulating film 202 made of silicon dioxide formed by oxidizing the silicon film 302. As a result, the shape of the second insulating film 202 can be maintained.
  • the step of forming the second insulating film 202 is performed so that the angle AG of the other end E2 of the second side wall portion 202S with respect to the first side wall portion 201S becomes smaller.
  • a step of heating the side wall portion 202 ⁇ / b> S may be included.
  • the step of heating the second side wall 202S may be performed at 1300 ° C. or higher and 1400 ° C. or lower.
  • the angle AG of the other end E2 can be made sufficiently small without using an excessively high temperature.
  • a vertical MOSFET 501 (silicon carbide semiconductor device) of the present embodiment includes an epitaxial substrate 100 (silicon carbide substrate), a gate insulating film 200, a gate electrode 230, an interlayer insulating film 203, A source electrode 221, a drain electrode 211, a source wiring 222, and a protective electrode 212 are included.
  • Epitaxial substrate 100 is made of silicon carbide, and has single crystal substrate 110 and an epitaxial layer provided thereon.
  • Single crystal substrate 110 has n-type (first conductivity type).
  • the plane orientation (hklm) of one main surface (upper surface in FIG. 1) of single crystal substrate 110 preferably has a negative m, more preferably approximately (000-1).
  • the epitaxial layer includes an n ⁇ layer 121 (first semiconductor layer), a p-type body layer 122 (second semiconductor layer), an n region 123 (third semiconductor layer), and a contact region 124.
  • Silicon carbide of epitaxial substrate 100 preferably has a hexagonal crystal structure, and more preferably has polytype 4H.
  • the n ⁇ layer 121 has an n-type by adding a donor.
  • the donor is preferably added to the n ⁇ layer 121 not by ion implantation but by impurity addition during the epitaxial growth of the n ⁇ layer 121.
  • the donor concentration of n ⁇ layer 121 is preferably lower than the donor concentration of single crystal substrate 110.
  • the donor concentration of the n ⁇ layer 121 is preferably 1 ⁇ 10 15 cm ⁇ 3 or more and 5 ⁇ 10 16 cm ⁇ 3 or less, for example, 8 ⁇ 10 15 cm ⁇ 3 .
  • the p-type body layer 122 is provided on the n ⁇ layer 121 and has p-type (second conductivity type) by adding an acceptor.
  • the acceptor concentration of p-type body layer 122 is, for example, 1 ⁇ 10 18 cm ⁇ 3 .
  • N region 123 has n type. N region 123 is provided on p type body layer 122 and is separated from n ⁇ layer 121 by p type body layer 122. Contact region 124 has a p-type. Contact region 124 is formed on part of p type body layer 122 so as to be connected to p type body layer 122.
  • epitaxial substrate 100 is provided with a trench TR.
  • Trench TR has side wall surface SW passing through n region 123 and p-type body layer 122 to n ⁇ layer 121, and bottom surface BT formed of n ⁇ layer 121.
  • Sidewall surface SW includes channel surface CH (FIG. 3) on p-type body layer 122.
  • Bottom surface BT is a flat surface substantially parallel to the main surface of epitaxial substrate 100.
  • the fact that the epitaxial substrate 100 has the trench TR corresponds to the fact that the epitaxial layer is partially removed on the upper surface of the single crystal substrate 110. In this embodiment, a large number of mesa structures are formed on the upper surface of single crystal substrate 110.
  • the mesa structure has a hexagonal shape at the top and bottom, and the side walls thereof are inclined with respect to the top surface of the single crystal substrate 110.
  • the trench TR expands toward the opening side.
  • sidewall surface SW has a predetermined crystal plane (also referred to as a special plane), particularly on p-type body layer 122. Details of the special surface will be described later.
  • side wall surface SW has first to third side surfaces SW1 to SW3 formed of n ⁇ layer 121, p type body layer 122, and n region 123, respectively.
  • Gate insulating film 200 is provided on trench TR. Gate insulating film 200 separates epitaxial substrate 100 and gate electrode 230 in trench TR.
  • the gate insulating film 200 includes a first insulating film 201 that directly covers each of the side wall surface SW and the bottom surface BT, and a second insulating film 202 provided on the first insulating film 201.
  • Each of the first and second insulating films 201 and 202 has first and second carbon atom concentrations.
  • the second carbon atom concentration may be smaller than the first carbon atom concentration.
  • the first carbon atom concentration may be greater than 1 ⁇ 10 15 cm ⁇ 3 .
  • the second carbon atom concentration may be less than 1 ⁇ 10 15 cm ⁇ 3 and may be substantially zero.
  • the first insulating film 201 has a first bottom portion 201B located on the bottom surface BT and a first sidewall portion 201S located on the sidewall surface SW.
  • the first side wall portion 201S has first to third regions 201a to 201c located on the first to third side surfaces SW1 to SW3, respectively.
  • the first insulating film 201 is preferably an oxide film, and more preferably obtained by thermally oxidizing the surface of the trench TR of the epitaxial substrate 100.
  • second insulating film 202 has a portion located on corner portion CR (FIG. 1) formed by bottom surface BT and side wall surface SW through first insulating film 201.
  • the second insulating film 202 includes a second bottom portion 202B located on the first bottom portion 201B, and a second sidewall portion 202S located on the first sidewall portion 201S.
  • the second side wall portion 202S is located on one end E1 connected to the second bottom portion 202B and one of the first and second regions 201a and 201b (FIG. 4) and is away from the third region.
  • the other end E2 is located on the second region 201b away from the third region 201c.
  • the other end E2 has an inclination angle AG (FIG. 5) with respect to the first side wall 201S.
  • the inclination angle AG is an angle formed by the tip portion of the surface of the other end E2 and the portion of the surface of the first side wall portion 201S that is in contact with the other end E2.
  • the inclination angle AG is preferably less than 70 degrees.
  • the second semiconductor layer 122 may have a depth position DP (FIG. 5) where the impurity concentration reaches a peak. In this case, the other end E2 is preferably located deeper than the depth position DP.
  • the second insulating film 202 may be made of at least one of silicon oxide, silicon nitride, and phosphosilicate glass.
  • the second insulating film 202 may be a thermal oxide film that contains silicon and does not contain carbon, and is made of, for example, SiO 2 .
  • Gate insulating film 200 includes a portion having first and second insulating films 201 and 202 on bottom surface BT of trench TR, and this portion has thickness d 0 .
  • Gate insulating film 200 has a portion having first insulating film 201 and not having second insulating film 202 on sidewall surface SW of trench TR, that is, a portion made only of first insulating film 201. This part has a thickness d 1 .
  • the gate insulating film 200 includes a portion having first and second insulating films 201 and 202 on the first side surface SW1 side wall surface SW of the trench TR, this portion has a thickness d 2.
  • d 2 > d 1 ⁇ 1.5 is satisfied.
  • d 2 ⁇ d 1 ⁇ 5 is satisfied.
  • d 0 > d 1 is satisfied.
  • d 0 ⁇ d 2 is satisfied.
  • the gate electrode 230 is provided in the trench TR. Specifically, the gate electrode 230 is provided on the trench TR through the gate insulating film 200. The gate electrode 230 is in contact with the second region 201 b of the first insulating film 201. The upper surface of the gate electrode 230 is substantially the same height as the upper surface of the portion of the gate insulating film 200 located on the upper surface of the n region 123.
  • the interlayer insulating film 203 is provided so as to cover a portion of the gate insulating film 200 that extends to the upper surface of the n region 123 and the gate electrode 230.
  • the source electrode 221 passes through the interlayer insulating film 203 and is in contact with each of the n region 123 and the contact region 124.
  • the source wiring 222 is provided on the source electrode 221 and the interlayer insulating film 203 so as to be in contact with the source electrode 221.
  • Drain electrode 211 is provided on the surface of epitaxial substrate 100 opposite to the surface on which trench TR is provided.
  • the protective electrode 212 covers the drain electrode 211.
  • n ⁇ layer 121 is formed on single crystal substrate 110 by epitaxial growth.
  • This epitaxial growth is performed by a CVD (Chemical Vapor Deposition) method using, for example, a mixed gas of silane (SiH 4 ) and propane (C 3 H 8 ) as a source gas and using, for example, hydrogen gas (H 2 ) as a carrier gas.
  • CVD Chemical Vapor Deposition
  • H 2 hydrogen gas
  • p type body layer 122 on n ⁇ layer 121 and n region 123 on p type body layer 122 are formed.
  • ion implantation is performed on the upper surface of n ⁇ layer 121.
  • an acceptor such as aluminum (Al) is ion-implanted.
  • a donor such as phosphorus (P) is ion-implanted.
  • epitaxial substrate 100 having n ⁇ layer 121, p type body layer 122, and n region 123 is formed.
  • epitaxial growth may be used with the addition of impurities.
  • the contact region 124 is formed by ion implantation.
  • activation heat treatment for activating the impurities added by ion implantation is performed.
  • the temperature of this heat treatment is preferably 1500 ° C. or higher and 1900 ° C. or lower, for example, about 1700 ° C.
  • the heat treatment time is, for example, about 30 minutes.
  • the atmosphere of the heat treatment is preferably an inert gas atmosphere, for example, an Ar atmosphere. Silicon carbide substrate 100 is prepared as described above.
  • a mask 401 having an opening that partially exposes the n region 123 is formed on the epitaxial substrate 100.
  • the opening is formed corresponding to the position of trench TR (FIG. 1).
  • a silicon oxide film formed by thermal oxidation can be used as the mask 401.
  • n region 123, p type body layer 122, and part of n ⁇ layer 121 are removed by etching.
  • etching method for example, reactive ion etching (RIE), particularly inductively coupled plasma (ICP) RIE can be used.
  • ICP-RIE using SF 6 or a mixed gas of SF 6 and O 2 as a reaction gas can be used.
  • the epitaxial substrate 100 is etched using the mask 401. Specifically, thermal etching is performed on the epitaxial substrate 100 on the inner surface SV of the recess TQ.
  • the thermal etching can be performed, for example, by heating the epitaxial substrate 100 in an atmosphere containing a reactive gas having at least one kind of halogen atom.
  • the at least one or more types of halogen atom includes at least one of a chlorine (Cl) atom and a fluorine (F) atom.
  • This atmosphere is, for example, Cl 2 , BCL 3 , SF 6 , or CF 4 .
  • thermal etching is performed using a mixed gas of chlorine gas and oxygen gas as a reaction gas and a heat treatment temperature of, for example, 700 ° C. or more and 1000 ° C. or less.
  • the reaction gas may contain a carrier gas in addition to the chlorine gas and the oxygen gas.
  • the carrier gas for example, nitrogen (N 2 ) gas, argon gas, helium gas or the like can be used.
  • the SiC etching rate is, for example, about 70 ⁇ m / hour.
  • the mask 401 made of silicon oxide has a very high selectivity with respect to SiC, so that it is not substantially etched during the etching of SiC.
  • trench TR is formed in silicon carbide substrate 100 by the thermal etching described above.
  • epitaxial substrate 100 is etched so as to be side-etched from the opening of mask 401 as indicated by arrow SE. Further, during this thermal etching, a special surface is self-formed on the side wall surface SW of the trench TR, particularly on the portion made of the p-type body layer 122.
  • a first insulating film 201 that directly covers each of the side wall surface SW and the bottom surface BT is formed.
  • the first insulating film 201 has a portion directly located on the bottom surface BT and a portion directly located on the side wall surface SW.
  • the formation of the first insulating film 201 can be performed by thermal oxidation of the bottom surface BT of the trench TR and the side wall surface SW.
  • a silicon film 302 is formed on the first insulating film 201.
  • the formation of the silicon film 302 can be performed by, for example, a chemical vapor deposition (CVD) method.
  • CVD chemical vapor deposition
  • a resist layer 402 is formed on the silicon film 302 so as to fill the trench TR with the first insulating film 201 and the silicon film 302 interposed therebetween.
  • the resist layer 402 can be formed by applying a resist solution.
  • a part of the resist layer 402 and the silicon film 302 is etched. This etching can be performed without using an etching mask. That is, it can be performed by so-called etch back.
  • the resist layer 402 and the silicon film 302 remain on the bottom surface BT so as to fill only a part of the trench TR by the above etching.
  • the silicon film 302 has a second bottom portion 302B located on the first bottom portion 201B and a second side wall portion 302S located on the first side wall portion 201S.
  • the second side wall portion 302S has one end E1 connected to the second bottom portion 302B and the other end E2 located on the second region 201b and away from the third region 201c.
  • the resist layer 402 is removed (FIG. 14).
  • the exposed portion of the first insulating film 201 that is not covered by the silicon film 302 is removed by etching (FIG. 15).
  • the trench TR provided with the first insulating film 201 and the silicon film 302 is thermally oxidized.
  • the silicon film 302 and the exposed portion of the sidewall surface SW of the trench TR are thermally oxidized.
  • Silicon film 302 is thermally oxidized at, for example, 800 ° C. or more and 1150 ° C. or less.
  • the second insulating film 202 is formed from the silicon film 302 (FIG. 16).
  • the first and second insulating films 201 and 202 constitute the gate insulating film 200.
  • the silicon film 302 is thermally oxidized at, for example, 950 ° C. or more and 1100 ° C. or less.
  • the silicon film 302 is oxidized at a temperature lower than 950 ° C.
  • stress relaxation due to the viscous flow of the silicon dioxide film formed by oxidizing the silicon film 302 does not work, so silicon near the grain boundary moves to the surface side, It is considered that crystal grains grow on the surface of the silicon film 302 to generate protrusions. Therefore, by oxidizing the silicon film 302 at 950 ° C. or higher, the formation of the protrusions can be suppressed, so that the surface roughness of the second insulating film 202 can be effectively suppressed.
  • the silicon film 302 is oxidized at a temperature higher than 1100 ° C.
  • the first insulating film 201 made of silicon dioxide and the silicon film 302 cause a chemical reaction to form silicon oxide, so that the shape of the second insulating film 202 is changed. It becomes difficult to maintain. Therefore, the shape of the second insulating film 202 can be effectively maintained by suppressing the increase in the vapor pressure of silicon oxide by oxidizing the silicon film 302 at 1100 ° C. or lower.
  • the second sidewall 202S is heated at a sufficient temperature, thereby reducing the angle AG (FIG. 5).
  • the heating temperature is preferably 1300 ° C. or higher and 1400 ° C. or lower.
  • a gate electrode 230 is formed on the trench TR with the gate insulating film 200 interposed therebetween.
  • the formation method of the gate electrode 230 can be performed by, for example, film formation of a conductor or doped polysilicon and CMP (Chemical Mechanical Polishing).
  • interlayer insulating film 203 is formed on gate electrode 230 and gate insulating film 200 so as to cover the exposed surface of gate electrode 230. Etching is performed so that openings are formed in the interlayer insulating film 203 and the gate insulating film 200. By this opening, each of n region 123 and contact region 124 is exposed on the upper surface of the mesa structure.
  • source electrode 221 in contact with each of n region 123 and contact region 124 is formed on the upper surface of the mesa structure.
  • a source wiring 222, a drain electrode 211, and a protective electrode 212 are formed. Thereby, the MOSFET 501 is obtained.
  • the second insulating film 202 that constitutes the gate insulating film 200 together with the first insulating film 201 is formed on the first bottom 201B of the first insulating film 201.
  • the first insulating film 201 is also provided on the first sidewall portion 201S.
  • gate insulating film 200 has a greater thickness not only on bottom surface BT of trench TR but also on side wall surface SW that forms corner portion CR together with bottom surface BT in the vicinity of bottom surface BT. Therefore, the gate electrode capacitance can be further reduced as compared with the case where the gate insulating film 200 is thickened only on the bottom surface BT of the trench.
  • the second side wall portion 202S of the second insulating film 202 is provided at a place where such a leakage current is most likely to flow. Thereby, a leak current can be suppressed.
  • the channel surface CH (FIG. 3) is a special surface, the above temperature rise becomes remarkable due to the high mobility of the channel surface CH. Therefore, it is particularly important to suppress the leakage current.
  • the impurity concentration of the p-type body layer 122 is often lowered as compared with the depth position DP (FIG. 5).
  • the drain voltage is large, the short channel effect tends to occur.
  • the influence of such a short channel effect can be reduced. It can also improve the short-circuit tolerance.
  • the other end E2 of the second side wall portion 202S is located on the second region 201b away from the third region 201c. Accordingly, the second side wall 202S is further extended as compared with the case where the second side wall 202S is provided only on the first region 201a. Further, the second side wall portion 202S is provided apart from the boundary between the second region 201b and the third region 201c, which has a large influence on the channel characteristics. Therefore, the gate electrode capacitance can be more effectively reduced while suppressing the influence on the channel characteristics.
  • the second semiconductor layer 122 preferably has a depth position DP (FIG. 5) where the impurity concentration reaches a peak, and the other end E2 of the second side wall 202S is preferably located deeper than the depth position DP. . Accordingly, the second side wall 202S is further extended as compared with the case where the second side wall 202S is provided only on the first region 201a. Further, the second side wall portion 202S is provided apart from the depth position DP that has a great influence on the channel characteristics. Therefore, it is possible to more effectively reduce the gate electrode capacitance while further suppressing the influence on the channel characteristics.
  • the other end E2 of the second side wall portion 202S has an inclination angle AG of less than 70 degrees with respect to the first side wall portion 201S. Thereby, the change in the thickness of the gate insulating film 200 at the other end E2 is alleviated.
  • first and second insulating films 201 and 202 have first and second carbon atom concentrations, respectively, and the second carbon atom concentration is smaller than the first carbon atom concentration. Accordingly, the second insulating film 202 has high dielectric breakdown resistance due to a low carbon atom concentration. Therefore, silicon carbide semiconductor device 501 has a large breakdown voltage. Since first insulating film 201 is formed by thermally oxidizing bottom surface BT and sidewall surface SW of trench TR made of silicon carbide, it contains a large amount of carbon derived from silicon carbide. On the other hand, the second insulating film 202 is formed by oxidizing the silicon film 302. Therefore, the carbon atom concentration of the second insulating film 202 is lower than the carbon atom concentration of the first insulating film 201.
  • the first carbon atom concentration is preferably greater than 1 ⁇ 10 15 cm ⁇ 3 and the second carbon atom concentration is preferably less than 1 ⁇ 10 15 cm ⁇ 3 .
  • the carbon atom concentration of the second insulating film 202 is sufficiently lowered. Therefore, the breakdown voltage of silicon carbide semiconductor device 501 can be further increased.
  • the second insulating film 202 is preferably made of at least one of silicon oxide, silicon nitride, and phosphosilicate glass. Thereby, the breakdown voltage of silicon carbide semiconductor device 501 can be further increased.
  • the second insulating film 202 is preferably a thermal oxide film that contains silicon and does not contain carbon. Thereby, the breakdown voltage of silicon carbide semiconductor device 501 can be further increased.
  • the step of forming the second insulating film 202 by oxidizing the silicon film 302 is preferably performed at 800 ° C. or higher and 1150 ° C. or lower.
  • oxidizing the silicon film 302 at 800 ° C. or higher surface roughness of the silicon film 302 can be suppressed.
  • oxidizing the silicon film at 1150 ° C. or lower it is possible to suppress an increase in the vapor pressure of the second insulating film 202 made of silicon oxide formed by oxidizing the silicon film 302. As a result, the shape of the second insulating film 202 can be maintained.
  • the step of forming the second insulating film 202 is a step of heating the second side wall portion 202S so that the angle AG of the other end E2 of the second side wall portion 202S with respect to the first side wall portion 201S becomes small. It is preferable to include. Thereby, the change in the thickness of the gate insulating film 200 at the other end E2 is alleviated.
  • This step is preferably performed at 1300 ° C. or higher and 1400 ° C. or lower. Thereby, the angle AG of the other end E2 can be made sufficiently small without using an excessively high temperature.
  • the second insulating film 202 may be formed by a deposition method, for example, a CVD method. May be formed directly.
  • the “first conductivity type” is n-type and the “second conductivity type” is p-type, but these conductivity types may be interchanged. In this case, the donor and acceptor in the above description are also replaced.
  • the “first conductivity type” is preferably n-type.
  • the silicon carbide semiconductor device is not limited to a MOSFET, and may be, for example, a trench type IGBT (Insulated Gate Bipolar Transistor).
  • the other end E2 of second side wall portion 202S of second insulating film 202 is connected to first region 201a and second region E2. It is located on the boundary of the region 201b.
  • “located on the boundary” means that an error is allowed within a range in which each of the gate electrode capacitance and the channel characteristic is maintained at substantially the same level. Specifically, an error of about ⁇ 0.1 ⁇ m is allowed.
  • the etch back process FOG.
  • the second side wall portion 202S is extended to the maximum extent within a range that does not cover the second region 201b constituting the channel surface. Therefore, the gate electrode capacitance can be effectively reduced within a range that hardly affects the channel characteristics.
  • the other end E2 of second side wall portion 202S of second insulating film 202 is separated from second region 201b and is second. 1 region 201a.
  • the other end E2 is separated from the second region 201b by more than 0.1 ⁇ m.
  • the etch back process (FIG. 13) in the first embodiment is further advanced, and the other end E2 of the second side wall portion 302S of the silicon film 302 is formed by What is necessary is just to position on the 1st area
  • the second side wall 202S is extended within a range that does not approach the second region 201b constituting the channel surface. Therefore, the gate electrode capacitance can be reduced within a range that does not affect the channel characteristics.
  • sidewall surface SW (FIG. 1) of trench TR preferably has a predetermined crystal plane (also referred to as a special plane), particularly on p-type body layer 122.
  • a sidewall surface SW includes a surface S1 (first surface) having a surface orientation ⁇ 0-33-8 ⁇ as shown in FIG.
  • the plane S1 preferably has a plane orientation (0-33-8).
  • the side wall surface SW microscopically includes the surface S1, and the side wall surface SW further microscopically includes a surface S2 (second surface) having a surface orientation ⁇ 0-11-1 ⁇ .
  • “microscopic” means that the dimensions are as detailed as at least a dimension of about twice the atomic spacing.
  • TEM Transmission Electron Microscope
  • the plane S2 preferably has a plane orientation (0-11-1).
  • the surface S1 and the surface S2 of the sidewall surface SW constitute a composite surface SR having a surface orientation ⁇ 0-11-2 ⁇ . That is, the composite surface SR is configured by periodically repeating the surfaces S1 and S2. Such a periodic structure can be observed by, for example, TEM or AFM (Atomic Force Microscopy).
  • the composite surface SR has an off angle of 62 ° macroscopically with respect to the ⁇ 000-1 ⁇ plane.
  • “macroscopic” means ignoring a fine structure having a dimension on the order of atomic spacing. As such a macroscopic off-angle measurement, for example, a general method using X-ray diffraction can be used.
  • composite surface SR has a plane orientation (0-11-2). In this case, the composite surface SR has an off angle of 62 ° macroscopically with respect to the (000-1) plane.
  • the channel direction CD which is the direction in which carriers flow on the channel surface, is along the direction in which the above-described periodic repetition is performed.
  • Si atoms are atoms of the A layer (solid line in the figure), B layer atoms (broken line in the figure) located below, C layer atoms (dotted line in the figure) located below, and B layer atoms (not shown) located below this It is provided repeatedly. That is, a periodic laminated structure such as ABCBABCBABCB... Is provided with four layers ABCB as one period.
  • the atoms in each of the four layers ABCB constituting one cycle described above are (0-11-2) It is not arranged to be completely along the plane.
  • the (0-11-2) plane is shown so as to pass through the position of the atoms in the B layer. You can see that it is shifted. For this reason, even if the macroscopic plane orientation of the surface of the silicon carbide single crystal, that is, the plane orientation when ignoring the atomic level structure is limited to (0-11-2), the surface is microscopic. Can take various structures.
  • a surface S1 having a surface orientation (0-33-8) and a surface S2 connected to the surface S1 and having a surface orientation different from the surface orientation of the surface S1 are alternately provided. It is configured by being.
  • the length of each of the surface S1 and the surface S2 is twice the atomic spacing of Si atoms (or C atoms).
  • the surface obtained by averaging the surfaces S1 and S2 corresponds to the (0-11-2) surface (FIG. 23).
  • the single crystal structure periodically includes a structure (part of the surface S1) equivalent to a cubic crystal when viewed partially.
  • a surface S1 having a surface orientation (001) in a structure equivalent to the above-described cubic crystal and a surface S2 connected to the surface S1 and having a surface orientation different from the surface orientation of the surface S1 are alternated. It is comprised by being provided in.
  • polytypes other than 4H may constitute the surface according to S2).
  • the polytype may be 6H or 15R, for example.
  • the horizontal axis indicates the angle D1 formed by the macroscopic surface orientation of the side wall surface SW having the channel surface and the (000-1) plane
  • the vertical axis indicates the mobility MB.
  • the plot group CM corresponds to the case where the side wall surface SW is finished as a special surface by thermal etching
  • the plot group MC corresponds to the case where such thermal etching is not performed.
  • the mobility MB in the plot group MC was maximized when the macroscopic surface orientation of the channel surface was (0-33-8). This is because, when thermal etching is not performed, that is, when the microscopic structure of the channel surface is not particularly controlled, the macroscopic plane orientation is set to (0-33-8). This is probably because the ratio of the formation of the visual plane orientation (0-33-8), that is, the plane orientation (0-33-8) considering the atomic level, stochastically increased.
  • the mobility MB in the plot group CM was maximized when the macroscopic surface orientation of the channel surface was (0-11-2) (arrow EX).
  • the reason for this is that, as shown in FIGS. 24 and 25, a large number of surfaces S1 having a plane orientation (0-33-8) are regularly and densely arranged via the surface S2, so that the surface of the channel surface is fine. This is probably because the proportion of the visual plane orientation (0-33-8) has increased.
  • the mobility MB has an orientation dependency on the composite surface SR.
  • the horizontal axis indicates the angle D2 between the channel direction and the ⁇ 0-11-2> direction
  • the vertical axis indicates the mobility MB (arbitrary unit) of the channel surface.
  • a broken line is added to make the graph easier to see.
  • the angle D2 of the channel direction CD is preferably 0 ° or more and 60 ° or less, and more preferably substantially 0 °. all right.
  • the sidewall surface SW may further include a surface S3 (third surface) in addition to the composite surface SR. More specifically, the sidewall surface SW may include a composite surface SQ configured by periodically repeating the surface S3 and the composite surface SR.
  • the off angle of the side wall surface SW with respect to the ⁇ 000-1 ⁇ plane deviates from 62 ° which is the ideal off angle of the composite surface SR. This deviation is preferably small and preferably within a range of ⁇ 10 °.
  • a surface included in such an angle range for example, there is a surface whose macroscopic plane orientation is a ⁇ 0-33-8 ⁇ plane.
  • the off angle of the side wall surface SW with respect to the (000-1) plane deviates from 62 °, which is the ideal off angle of the composite surface SR.
  • This deviation is preferably small and preferably within a range of ⁇ 10 °.
  • a surface included in such an angle range for example, there is a surface whose macroscopic plane orientation is a (0-33-8) plane.
  • Such a periodic structure can be observed by, for example, TEM or AFM.
  • MOSFETs according to Examples and Comparative Examples were prepared.
  • a MOSFET having the structure shown in FIG. 20 was prepared as a MOSFET according to the example.
  • the gate insulating film 200 of the MOSFET according to the embodiment includes a first insulating film 201 and a second insulating film 202 provided on a part of the first insulating film 201.
  • the MOSFET according to the embodiment has a structure in which the gate insulating film 200 facing the side wall surface SW of the trench TR is thickened.
  • the other end E2 of the second sidewall portion 202S of the second insulating film 202 is located on the first region 201a away from the second region 201b.
  • the distance from the bottom of the first insulating film 201 along the normal direction of the bottom surface BT of the trench TR to the other end E2 of the second sidewall 202S of the second insulating film 202 was 0.67 ⁇ m.
  • the thickness of the second insulating film 202 was 200 nm.
  • the angle AG (see FIG. 5) of the other end E2 of the second insulating film 202 was 67 ° at the channel portion, and was about 62 ° on the slope average.
  • the first insulating film 201 and the second insulating film 202 are oxidized by oxidizing the first insulating film 301 and the silicon film 302 at 1100 ° C. for 95 minutes and then oxidizing at 1350 ° C.
  • a gate insulating film 200 made of was formed. Thereafter, silicon carbide substrate 100 on which gate insulating film 200 including first insulating film 201 and second insulating film 202 was formed was heat-treated in a NO atmosphere at a temperature of 1350 ° C. for 28 minutes. Thereafter, silicon carbide substrate 100 on which gate insulating film 200 including first insulating film 201 and second insulating film 202 was formed was heat-treated in an Ar atmosphere at a temperature of 1350 ° C. for 40 minutes.
  • the gate insulating film 200 of the MOSFET according to the comparative example is formed only from the first insulating film 201 and does not have the second insulating film 202.
  • the MOSFET according to the comparative example has a structure in which the gate insulating film 200 facing the side wall surface SW of the trench TR is not thickened.
  • the gate insulating film 200 was formed by oxidizing the silicon carbide substrate 100 at 1100 ° C. for 95 minutes and then oxidizing at 1350 ° C. for 6 minutes. Thereafter, silicon carbide substrate 100 on which gate insulating film 200 was formed was heat-treated in a NO atmosphere at a temperature of 1350 ° C. for 7 minutes. Thereafter, silicon carbide substrate 100 on which gate insulating film 200 was formed was heat-treated in an Ar atmosphere at a temperature of 1350 ° C. for 10 minutes.
  • the capacitance C gd between the gate electrode 230 and the drain electrode 211 and the voltage V DS between the drain electrode 211 and the source electrode 221 will be described.
  • the capacitance of the MOSFET according to the example is indicated by a solid line 101
  • the capacitance of the MOSFET according to the comparative example is indicated by a broken line 102.
  • the capacitance C gd of the MOSFET according to the example is the capacitance of the MOSFET according to the comparative example.
  • the capacity was smaller than C gd .
  • the capacitance C gd of the MOSFET according to the example when the voltage V DS between the drain electrode 211 and the source electrode 221 is 600 V is 32 pF, and the capacitance C gd of the MOSFET according to the comparative example is 27 pF.
  • the gate electrode 230 is formed by increasing the thickness of the gate insulating film 200 facing the side wall surface SW of the trench TR (in other words, forming the second insulating film 202 on the first insulating film 201). It was confirmed that the capacitance C gd between the drain electrode 211 and the drain electrode 211 can be effectively reduced.
  • 100 epitaxial substrate (silicon carbide substrate), 110 single crystal substrate, 121 n ⁇ layer (first semiconductor layer), 122 p-type body layer (second semiconductor layer), 123 n region (third semiconductor layer), 124 contact region, 200 gate insulating film, 201 first insulating film, 202 second insulating film, 201B first bottom, 201S first side wall, 201a to 201c first to third regions, 202B and 302B 2nd bottom part, 202S, 302S 2nd side wall part, 203 interlayer insulation film, 211 drain electrode, 212 protective electrode, 221 source electrode, 222 source wiring, 230 gate electrode, 302 silicon film, 401 mask, 402 resist layer, 501 to 503 MOSFET (silicon carbide semiconductor device), AG inclination angle, BT bottom surface, CH channel surface, CR corner portion, DP depth Position, E1 one end, E2 other end, SW side wall surface, SW1 to SW3 first to third side surfaces, TR trench.
  • MOSFET silicon carbide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

 トレンチ(TR)は、第1~第3の半導体層(121~123)のそれぞれからなる第1~第3の側面(SW1~SW3)を有する。第1の絶縁膜(201)が有する第1の側壁部(201S)は、第1~第3の側面(SW1~SW3)のそれぞれの上に位置する第1~第3の領域(201a~201c)を有する。第2の絶縁膜(202)は、第1の側壁部(201S)上に位置する第2の側壁部(202S)を有する。第2の側壁部(202S)は、第2の絶縁膜の第2の底部(202B)につながった一方端(E1)と、第1および第2の領域(201a,201b)のいずれかの上に位置し第3の領域(201c)から離れた他方端(E2)とを有する。これにより、ゲート電極容量を小さくすることができる。

Description

炭化珪素半導体装置およびその製造方法
 この発明は、炭化珪素半導体装置およびその製造方法に関するものであり、特に、トレンチを有する炭化珪素半導体装置およびその製造方法に関するものである。
 特開平7-326755号公報(特許文献1)は、炭化珪素基板を用いたトレンチゲート型MOSFET(Metal Oxide Semiconductor Field Effect Transistor)を開示している。この公報によれば、トレンチの側面でのゲート熱酸化膜の厚さに比べ、トレンチの底面でのゲート熱酸化膜の厚さの方が大きくなっている。
特開平7-326755号公報
 ゲート電極を有する半導体装置において、より小さなゲート電極容量が望まれている。たとえばMISFET(Metal insulator Semiconductor Field Effect Transistor)においては、帰還容量としての、ゲート電極とドレイン電極との間の静電容量をより小さくすることが望まれている。上記公報に記載の技術によれば、ゲート絶縁膜(ゲート熱酸化膜)の底面での厚さが大きくされることでゲート電極容量をある程度小さくすることができるものの、さらに小さなゲート電極容量が望まれる。
 本発明は、上記のような課題を解決するために成されたものであり、この発明の目的は、小さなゲート電極容量を有する炭化珪素半導体装置およびその製造方法を提供することである。
 本発明の炭化珪素半導体装置は、炭化珪素基板と、ゲート絶縁膜と、ゲート絶縁膜と、ゲート電極とを有する。炭化珪素基板は、第1の導電型を有する第1の半導体層と、第1の半導体層上に設けられ第2の導電型を有する第2の半導体層と、第2の半導体層上に設けられ第2の半導体層によって第1の半導体層と分離され第1の導電型を有する第3の半導体層とを含む。炭化珪素基板にはトレンチが設けられている。トレンチは、第1の半導体層からなる底面と、第1~第3の半導体層のそれぞれからなる第1~第3の側面を有する側壁面とを含む。ゲート絶縁膜はトレンチ上に設けられている。ゲート絶縁膜は、側壁面および底面の各々を直接覆う第1の絶縁膜と、第1の絶縁膜上に設けられた第2の絶縁膜とを有する。第1の絶縁膜は、底面上に位置する第1の底部と、側壁面上に位置する第1の側壁部とを有する。第1の側壁部は、第1~第3の側面のそれぞれの上に位置する第1~第3の領域を有する。第2の絶縁膜は、第1の底部上に位置する第2の底部と、第1の側壁部上に位置する第2の側壁部とを有する。第2の側壁部は、第2の底部につながった一方端と、第1および第2の領域のいずれかの上に位置し第3の領域から離れた他方端とを有する。ゲート電極はゲート絶縁膜を介してトレンチ上に設けられている。
 本発明の炭化珪素半導体装置の製造方法は、以下の工程を有する。
 第1の導電型を有する第1の半導体層と、第1の半導体層上に設けられ第2の導電型を有する第2の半導体層と、第2の半導体層上に設けられ第2の半導体層によって第1の半導体層と分離され第1の導電型を有する第3の半導体層とを含む炭化珪素基板が準備される。
 炭化珪素基板にトレンチが形成される。トレンチは、第1の半導体層からなる底面と、第1~第3の半導体層のそれぞれからなる第1~第3の側面を有する側壁面とを含む。
 側壁面および底面の各々を直接覆う第1の絶縁膜が形成される。第1の絶縁膜は、底面上に位置する第1の底部と、側壁面上に位置する第1の側壁部とを有する。第1の側壁部は、第1~第3の側面のそれぞれの上に位置する第1~第3の領域とを有する。
 第1の絶縁膜上にシリコン膜が形成される。シリコン膜は、第1の底部上に位置する第2の底部と、第1の側壁部上に位置する第2の側壁部とを有する。第2の側壁部は、第2の底部につながった一方端と、第1および第2の領域のいずれかの上に位置し第3の領域から離れた他方端とを有する。
 シリコン膜を酸化することによって第2の絶縁膜が形成される。第1および第2の絶縁膜はゲート絶縁膜を構成する。
 ゲート絶縁膜を介してトレンチ上にゲート電極が形成される。
 本発明によれば、ゲート電極容量を小さくすることができる。
本発明の実施の形態1における炭化珪素半導体装置の構成を概略的に示す部分断面図である。 図1の炭化珪素半導体装置が有する炭化珪素基板の形状を概略的に示す斜視図である。 図2の構成をより詳しく示した図であり、図を見やすくするために第2の導電型の領域にハッチングを付した図である。 図1の拡大図であり、特に第1の絶縁膜の構成要素について説明する図である。 図1の拡大図であり、特にゲート絶縁膜の寸法について説明する図である。 図1の炭化珪素半導体装置の製造方法の第1工程を概略的に示す部分断面図である。 図1の炭化珪素半導体装置の製造方法の第2工程を概略的に示す部分断面図である。 図1の炭化珪素半導体装置の製造方法の第3工程を概略的に示す部分断面図である。 図1の炭化珪素半導体装置の製造方法の第4工程を概略的に示す部分断面図である。 図1の炭化珪素半導体装置の製造方法の第5工程を概略的に示す部分断面図である。 図1の炭化珪素半導体装置の製造方法の第6工程を概略的に示す部分断面図である。 図1の炭化珪素半導体装置の製造方法の第7工程を概略的に示す部分断面図である。 図1の炭化珪素半導体装置の製造方法の第8工程を概略的に示す部分断面図である。 図1の炭化珪素半導体装置の製造方法の第9工程を概略的に示す部分断面図である。 図1の炭化珪素半導体装置の製造方法の第10工程を概略的に示す部分断面図である。 図1の炭化珪素半導体装置の製造方法の第11工程を概略的に示す部分断面図である。 図1の炭化珪素半導体装置の製造方法の第12工程を概略的に示す部分断面図である。 図1の炭化珪素半導体装置の製造方法の第13工程を概略的に示す部分断面図である。 本発明の実施の形態2における炭化珪素半導体装置の構成を概略的に示す部分断面図である。 本発明の実施の形態3における炭化珪素半導体装置の構成を概略的に示す部分断面図である。 炭化珪素半導体装置が有する炭化珪素基板の表面の微細構造を概略的に示す部分断面図である。 ポリタイプ4Hの六方晶における(000-1)面の結晶構造を示す図である。 図22の線XXIII-XXIIIに沿う(11-20)面の結晶構造を示す図である。 図21の複合面の表面近傍における結晶構造を(11-20)面内において示す図である。 図21の複合面を(01-10)面から見た図である。 巨視的に見たチャネル面および(000-1)面の間の角度と、チャネル移動度との関係の一例を、熱エッチングが行われた場合と行われなかった場合との各々について示すグラフ図である。 チャネル方向および<0-11-2>方向の間の角度と、チャネル移動度との関係の一例を示すグラフ図である。 図21の変形例を示す図である。 ゲート電極およびドレイン電極間の静電容量Cgdと、ドレイン電極およびソース電極間の電圧VDSとの関係を示す図である。
 はじめに、実施の形態の概要について、以下の(i)~(xiii)に記す。
 (i) 炭化珪素半導体装置501~503は、炭化珪素基板100と、ゲート絶縁膜200と、ゲート電極230とを有する。炭化珪素基板100は、第1の導電型を有する第1の半導体層121と、第1の半導体層121上に設けられ第2の導電型を有する第2の半導体層122と、第2の半導体層122上に設けられ第2の半導体層122によって第1の半導体層121と分離され第1の導電型を有する第3の半導体層123とを含む。炭化珪素基板100にはトレンチTRが設けられている。トレンチTRは、第1の半導体層121からなる底面BTと、第1~第3の半導体層121~123のそれぞれからなる第1~第3の側面SW1~SW3を有する側壁面SWとを含む。ゲート絶縁膜200はトレンチTR上に設けられている。ゲート絶縁膜200は、側壁面SWおよび底面BTの各々を直接覆う第1の絶縁膜201と、第1の絶縁膜201上に設けられた第2の絶縁膜202とを有する。第1の絶縁膜201は、底面BT上に位置する第1の底部201Bと、側壁面SW上に位置する第1の側壁部201Sとを有する。第1の側壁部201Sは、第1~第3の側面SW1~SW3のそれぞれの上に位置する第1~第3の領域201a~201cを有する。第2の絶縁膜202は、第1の底部201B上に位置する第2の底部202Bと、第1の側壁部201S上に位置する第2の側壁部202Sとを有する。第2の側壁部202Sは、第2の底部202Bにつながった一方端E1と、第1および第2の領域201a,201bのいずれかの上に位置し第3の領域201cから離れた他方端E2とを有する。ゲート電極230はゲート絶縁膜200を介してトレンチTR上に設けられている。
 この炭化珪素半導体装置501~503によれば、第1の絶縁膜201とともにゲート絶縁膜200を構成する第2の絶縁膜202は、第1の絶縁膜201の第1の底部201B上だけでなく、第1の絶縁膜201の第1の側壁部201S上にも設けられる。これによりゲート絶縁膜200は、トレンチTRの底面BT上だけでなく、底面BT近傍で底面BTとともに角部CRを構成する側壁面SW上でも、より大きな厚さを有する。よって、トレンチの底面BT上でのみゲート絶縁膜200が厚くされる場合に比して、ゲート電極容量をより小さくすることができる。
 (ii) 上記(i)において、第2の側壁部202Sの他方端E2は、第1の領域201aおよび第2の領域201bの境界上に位置してもよい。
 これにより、第2の側壁部202Sは、チャネル面を構成する第2の領域201b上にかぶさらない範囲内で最大限、延ばされる。よってチャネル特性に影響をほとんど与えない範囲内で、ゲート電極容量を効果的に低減することができる。
 (iii) 上記(i)において、第2の側壁部202Sの他方端E2は、第2の領域201bから離れて第1の領域201a上に位置してもよい。
 これにより、第2の側壁部202Sは、チャネル面を構成する第2の領域201bに接近しない範囲内で延ばされる。よって、チャネル特性に影響を与えない範囲内で、ゲート電極容量を低減することができる。
 (iv) 上記(i)において、第2の側壁部202Sの他方端E2は、第3の領域201cから離れて第2の領域201b上に位置してもよい。
 これにより、第2の側壁部202Sが第1の領域201a上にのみ設けられる場合に比して、第2の側壁部202Sがより延ばされる。また、第2の側壁部202Sが、チャネル特性に与える影響の大きい、第2の領域201bと第3の領域201cの境界から離れて設けられる。よって、チャネル特性への影響を抑えつつ、ゲート電極容量をより効果的に低減することができる。
 (v) 上記(iv)において、第2の半導体層122は不純物濃度がピークとなる深さ位置DPを有し、第2の側壁部202Sの他方端E2は深さ位置DPよりも深くに位置してもよい。
 これにより、第2の側壁部202Sが第1の領域201a上にのみ設けられる場合に比して、第2の側壁部202Sがより延ばされる。また、第2の側壁部202Sが、チャネル特性に与える影響の大きい深さ位置DPから離れて設けられる。よって、チャネル特性への影響をより抑えつつ、ゲート電極容量をより効果的に低減することができる。
 (vi) 上記(i)~(v)において、第2の側壁部202Sの他方端E2は、第1の側壁部201Sに対して70度未満の傾斜角度AGを有してもよい。
 これにより、他方端E2でのゲート絶縁膜200の厚さの変化が緩和される。
 (vii) 上記(i)~(vi)において、第1および第2の絶縁膜201,202のそれぞれは第1および第2の炭素原子濃度を有し、第2の炭素原子濃度は第1の炭素原子濃度よりも小さくてもよい。
 これにより、第2の絶縁膜202は低い炭素原子濃度によって、高い絶縁破壊耐性を有する。よって炭化珪素半導体装置501~503は大きい耐圧を有する。
 (viii) 上記(vii)において、第1の炭素原子濃度は1×1015cm-3より大きく、第2の炭素原子濃度は1×1015cm-3より小さくてもよい。
 これにより、第2の絶縁膜202の炭素原子濃度が十分に低くされる。よって炭化珪素半導体装置501~503の耐圧をより大きくすることができる。
 (ix) 上記(i)~(xiii)において、第2の絶縁膜202は、酸化珪素、窒化珪素、およびリン珪酸ガラスの少なくともいずれかから作られていてもよい。
 これにより炭化珪素半導体装置501~503の耐圧をより大きくすることができる。
 (x) 上記(i)~(ix)において、第2の絶縁膜202は、シリコンを含み炭素を含まない膜の熱酸化膜であってもよい。
 これにより炭化珪素半導体装置501~503の耐圧をより大きくすることができる。
 (xi) 炭化珪素半導体装置501~503の製造方法は、以下の工程を有する。
 第1の導電型を有する第1の半導体層121と、第1の半導体層121上に設けられ第2の導電型を有する第2の半導体層122と、第2の半導体層122上に設けられ第2の半導体層122によって第1の半導体層121と分離され第1の導電型を有する第3の半導体層123とを含む炭化珪素基板100が準備される。
 炭化珪素基板100にトレンチTRが形成される。トレンチTRは、第1の半導体層121からなる底面BTと、第1~第3の半導体層121~123のそれぞれからなる第1~第3の側面SW1~SW3を有する側壁面SWとを含む。
 側壁面SWおよび底面BTの各々を直接覆う第1の絶縁膜201が形成される。第1の絶縁膜201は、底面BT上に位置する第1の底部201Bと、側壁面SW上に位置する第1の側壁部201Sとを有する。第1の側壁部201Sは、第1~第3の側面SW1~SW3のそれぞれの上に位置する第1~第3の領域201a~201cとを有する。
 第1の絶縁膜201上にシリコン膜302が形成される。シリコン膜302は、第1の底部201B上に位置する第2の底部302Bと、第1の側壁部201S上に位置する第2の側壁部302Sとを有する。第2の側壁部302Sは、第2の底部302Bにつながった一方端E1と、第1および第2の領域201a,201bのいずれかの上に位置し第3の領域201cから離れた他方端E2とを有する。
 シリコン膜302を酸化することによって第2の絶縁膜202が形成される。第1および第2の絶縁膜201,202はゲート絶縁膜200を構成する。
 ゲート絶縁膜200を介してトレンチTR上にゲート電極230が形成される。
 上記の製造方法によれば、第1の絶縁膜201とともにゲート絶縁膜200を構成する第2の絶縁膜202は、第1の絶縁膜201の第1の底部201B上だけでなく、第1の絶縁膜201の第1の側壁部201S上にも設けられる。これによりゲート絶縁膜200は、トレンチの底面BT上だけでなく、底面BT近傍で底面BTとともに角部CRを構成する側壁面SW面上でも、より大きな厚さを有する。よって、トレンチの底面BT上でのみゲート絶縁膜200が厚くされる場合に比して、ゲート電極容量をより小さくすることができる。
 (xii) 上記(xi)において、シリコン膜302を酸化することによって第2の絶縁膜202を形成する工程は、800℃以上1150℃以下で行われてもよい。
 シリコン膜302を800℃以上で酸化することにより、シリコン膜302の表面荒れを抑制することができる。またシリコン膜を1150℃以下で酸化することにより、シリコン膜302が酸化されて形成された二酸化珪素からなる第2の絶縁膜202の蒸気圧が上昇することを抑制することができる。結果として、第2の絶縁膜202の形状を維持することができる。
 (xiii) 上記(xi)において、第2の絶縁膜202を形成する工程は、第1の側壁部201Sに対する、第2の側壁部202Sの他方端E2の角度AGが小さくなるように、第2の側壁部202Sを加熱する工程を含んでもよい。
 これにより、他方端E2でのゲート絶縁膜200の厚さの変化が緩和される。
 (xiv) 上記(xiii)において、第2の側壁部202Sを加熱する工程は1300℃以上1400℃以下で行なわれてもよい。
 これにより、他方端E2の角度AGを、過度に高い温度を用いることなく、十分に小さくすることができる。
 次に、本願発明の実施の形態のより詳細な説明として、以下に実施の形態1~3と、その補足事項とについて説明する。なお本明細書中の結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示している。また結晶学上の指数が負であることは、通常、”-”(バー)を数字の上に付すことによって表現されるが、本明細書中では数字の前に負の符号を付している。
 (実施の形態1)
 図1に示すように、本実施の形態の縦型MOSFET501(炭化珪素半導体装置)は、エピタキシャル基板100(炭化珪素基板)と、ゲート絶縁膜200と、ゲート電極230と、層間絶縁膜203と、ソース電極221と、ドレイン電極211と、ソース配線222と、保護電極212とを有する。
 エピタキシャル基板100は、炭化珪素から作られており、単結晶基板110およびその上に設けられたエピタキシャル層を有する。単結晶基板110はn型(第1の導電型)を有する。単結晶基板110の一方主面(図1における上面)の面方位(hklm)は、好ましくは負のmを有し、より好ましくはおおよそ(000-1)面である。エピタキシャル層は、n-層121(第1の半導体層)と、p型ボディ層122(第2の半導体層)と、n領域123(第3の半導体層)と、コンタクト領域124とを有する。エピタキシャル基板100の炭化珪素は、好ましくは六方晶の結晶構造を有し、より好ましくはポリタイプ4Hを有する。n-層121は、ドナーが添加されていることでn型を有する。n-層121へのドナーの添加は好ましくは、イオン注入によってではなく、n-層121のエピタキシャル成長時の不純物添加によって行われていることが好ましい。n-層121のドナー濃度は、単結晶基板110のドナー濃度よりも低いことが好ましい。n-層121のドナー濃度は、好ましくは1×1015cm-3以上5×1016cm-3以下であり、たとえば8×1015cm-3である。p型ボディ層122は、n-層121上に設けられており、アクセプタが添加されていることでp型(第2の導電型)を有する。p型ボディ層122のアクセプタ濃度は、たとえば1×1018cm-3である。n領域123はn型を有する。n領域123は、p型ボディ層122上に設けられており、p型ボディ層122によってn-層121と分離されている。コンタクト領域124はp型を有する。コンタクト領域124は、p型ボディ層122につながるようにp型ボディ層122の一部の上に形成されている。
 さらに図2および図3を参照して、エピタキシャル基板100にはトレンチTRが設けられている。トレンチTRは、n領域123およびp型ボディ層122を貫通してn-層121に至る側壁面SWと、n-層121からなる底面BTとを有する。側壁面SWはp型ボディ層122上においてチャネル面CH(図3)を含む。底面BTは、エピタキシャル基板100の主面とほぼ平行な平坦面である。エピタキシャル基板100がトレンチTRを有するということは、単結晶基板110の上面上においてエピタキシャル層が部分的に除去されていることに対応している。本実施の形態においては、単結晶基板110の上面上において多数のメサ構造が形成されている。具体的には、メサ構造は上面および底部が六角形状となっており、その側壁は単結晶基板110の上面に対して傾斜している。これによりトレンチTRは開口側に向かって拡がっている。好ましくは側壁面SWは、特にp型ボディ層122上において、所定の結晶面(特殊面とも称する)を有する。特殊面の詳細については後述する。
 さらに図4を参照して、側壁面SWは、n-層121、p型ボディ層122およびn領域123のそれぞれからなる第1~第3の側面SW1~SW3を有する。
 ゲート絶縁膜200はトレンチTR上に設けられている。ゲート絶縁膜200はトレンチTR内においてエピタキシャル基板100とゲート電極230とを隔てている。ゲート絶縁膜200は、側壁面SWおよび底面BTの各々を直接覆う第1の絶縁膜201と、第1の絶縁膜201上に設けられた第2の絶縁膜202とを有する。第1および第2の絶縁膜201,202のそれぞれは第1および第2の炭素原子濃度を有する。第2の炭素原子濃度は第1の炭素原子濃度よりも小さくてもよい。第1の炭素原子濃度は1×1015cm-3より大きくてもよい。第2の炭素原子濃度は、1×1015cm-3より小さくてもよく、実質的に濃度がゼロであってもよい。
 第1の絶縁膜201は、底面BT上に位置する第1の底部201Bと、側壁面SW上に位置する第1の側壁部201Sとを有する。第1の側壁部201Sは、第1~第3の側面SW1~SW3のそれぞれの上に位置する第1~第3の領域201a~201cを有する。第1の絶縁膜201は、酸化膜であることが好ましく、エピタキシャル基板100のトレンチTRの表面を熱酸化することによって得られたものあることがより好ましい。
 さらに図5を参照して、第2の絶縁膜202は、第1の絶縁膜201を介して、底面BTと側壁面SWとがなす角部CR(図1)上に位置する部分を有する。具体的には、第2の絶縁膜202は、第1の底部201B上に位置する第2の底部202Bと、第1の側壁部201S上に位置する第2の側壁部202Sとを有する。第2の側壁部202Sは、第2の底部202Bにつながった一方端E1と、第1および第2の領域201a,201b(図4)のいずれかの上に位置し第3の領域から離れた他方端E2とを有する。本実施の形態においては、他方端E2は、第3の領域201cから離れて第2の領域201b上に位置している。他方端E2は、第1の側壁部201Sに対して傾斜角度AG(図5)を有する。傾斜角度AGは、他方端E2の表面の先端部分と、第1の側壁部201Sの表面のうち他方端E2が接する部分とがなす角度のことである。傾斜角度AGは70度未満であることが好ましい。第2の半導体層122は不純物濃度がピークとなる深さ位置DP(図5)を有してもよく、この場合、他方端E2は深さ位置DPよりも深くに位置することが好ましい。第2の絶縁膜202は、酸化珪素、窒化珪素、およびリン珪酸ガラスの少なくともいずれかから作られていてもよい。第2の絶縁膜202は、シリコンを含み炭素を含まない膜の熱酸化膜であってもよく、たとえばSiO2から作られている。
 ゲート絶縁膜200は、トレンチTRの底面BT上において第1および第2の絶縁膜201,202を有する部分を含み、この部分は厚さd0を有する。またゲート絶縁膜200は、トレンチTRの側壁面SW上において第1の絶縁膜201を有しかつ第2の絶縁膜202を有しない部分、すなわち第1の絶縁膜201のみからなる部分を有し、この部分は厚さd1を有する。またゲート絶縁膜200は、トレンチTRの側壁面SWの第1の側面SW1上において第1および第2の絶縁膜201,202を有する部分を含み、この部分は厚さd2を有する。好ましくはd2>d1×1.5が満たされる。好ましくはd2<d1×5が満たされる。好ましくはd0>d1が満たされる。好ましくはd0≧d2が満たされる。
 ゲート電極230はトレンチTR内に設けられている。具体的にはゲート電極230はゲート絶縁膜200を介してトレンチTR上に設けられている。ゲート電極230は第1の絶縁膜201の第2の領域201bに接している。ゲート電極230の上面は、ゲート絶縁膜200のうちn領域123の上面上に位置する部分の上面とほぼ同じ高さになっている。層間絶縁膜203は、ゲート絶縁膜200のうちn領域123の上面上にまで延在する部分とゲート電極230とを覆うように設けられている。
 ソース電極221は、層間絶縁膜203を貫通してn領域123およびコンタクト領域124の各々に接している。ソース配線222はソース電極221に接するようにソース電極221および層間絶縁膜203上に設けられている。ドレイン電極211は、エピタキシャル基板100の、トレンチTRが設けられた面と反対の面の上に設けられている。保護電極212はドレイン電極211を被覆している。
 次にMOSFET501(図1)の製造方法について説明する。
 図6に示すように、単結晶基板110上にn-層121がエピタキシャル成長により形成される。このエピタキシャル成長は、たとえば原料ガスとしてシラン(SiH4)とプロパン(C38)との混合ガスを用い、キャリアガスとしてたとえば水素ガス(H2)を用いたCVD(Chemical Vapor Deposition)法により行うことができる。また、このときドナーとしてたとえば窒素(N)やリン(P)を導入することが好ましい。次に、n-層121上のp型ボディ層122と、p型ボディ層122上のn領域123とが形成される。具体的には、n-層121の上面にイオン注入が行われる。p型ボディ層122を形成するためのイオン注入においては、たとえばアルミニウム(Al)などのアクセプタがイオン注入される。またn領域123を形成するためのイオン注入においては、たとえばリン(P)などのドナーがイオン注入される。これにより、n-層121と、p型ボディ層122と、n領域123とを有するエピタキシャル基板100が形成される。なおイオン注入に代わり、不純物の添加をともなうにエピタキシャル成長が用いられてもよい。次に、イオン注入によってコンタクト領域124が形成される。次に、イオン注入により添加された不純物を活性化するための活性化熱処理が行われる。この熱処理の温度は、好ましくは1500℃以上1900℃以下であり、たとえば1700℃程度である。熱処理の時間は、たとえば30分程度である。熱処理の雰囲気は、好ましくは不活性ガス雰囲気であり、たとえばAr雰囲気である。以上のように炭化珪素基板100が準備される。
 図7に示すように、エピタキシャル基板100上に、n領域123を部分的に露出する開口部を有するマスク401が形成される。開口部はトレンチTR(図1)の位置に対応して形成される。マスク401としては、たとえば、熱酸化によって形成されたシリコン酸化膜を用いることができる。
 図8に示すように、マスク401の開口部において、n領域123と、p型ボディ層122と、n-層121の一部とがエッチングにより除去される。エッチングの方法としては、たとえば反応性イオンエッチング(RIE)、特に誘導結合プラズマ(ICP)RIEを用いることができる。具体的には、たとえば反応ガスとしてSF6またはSF6とO2との混合ガスを用いたICP-RIEを用いることができる。このようなエッチングにより、トレンチTR(図1)が形成されるべき領域に、側壁が単結晶基板110の主表面に対してほぼ垂直な内面SVを有する凹部TQを形成することができる。
 次に、マスク401を用いてエピタキシャル基板100がエッチングされる。具体的には、エピタキシャル基板100に対して、凹部TQの内面SVにおいて熱エッチングが行われる。熱エッチングは、たとえば、少なくとも1種類以上のハロゲン原子を有する反応性ガスを含む雰囲気中で、エピタキシャル基板100を加熱することによって行い得る。少なくとも1種類以上のハロゲン原子は、塩素(Cl)原子およびフッ素(F)原子の少なくともいずれかを含む。この雰囲気は、たとえば、Cl2、BCL3、SF6、またはCF4である。たとえば、塩素ガスと酸素ガスとの混合ガスを反応ガスとして用い、熱処理温度を、たとえば700℃以上1000℃以下として、熱エッチングが行われる。なお、反応ガスは、塩素ガスと酸素ガスとに加えてキャリアガスを含んでいてもよい。キャリアガスとしては、たとえば窒素(N2)ガス、アルゴンガス、ヘリウムガスなどを用いることができる。そして、上述のように熱処理温度を700℃以上1000℃以下とした場合、SiCのエッチング速度はたとえば約70μm/時になる。また、この場合に、酸化珪素から作られたマスク401は、SiCに対する選択比が極めて大きいので、SiCのエッチング中に実質的にエッチングされない。
 図9に示すように、上記の熱エッチングにより炭化珪素基板100にトレンチTRが形成される。トレンチTRの形成の際、エピタキシャル基板100は、矢印SEで示すようにマスク401の開口部からサイドエッチングされるようにエッチングされる。またこの熱エッチングの際、トレンチTRの側壁面SW上、特にそのp型ボディ層122からなる部分の上に、特殊面が自己形成される。
 図10に示すように、側壁面SWおよび底面BTの各々を直接覆う第1の絶縁膜201が形成される。言い換えれば、第1の絶縁膜201は、底面BT上に直接位置する部分と、側壁面SW上に直接位置する部分とを有する。第1の絶縁膜201の形成は、トレンチTRの底面BTおよび側壁面SWの熱酸化によって行ない得る。
 図11に示すように、第1の絶縁膜201上にシリコン膜302が形成される。シリコン膜302の形成は、たとえば化学気相成長(CVD)法により行ない得る。
 図12に示すように、第1の絶縁膜201およびシリコン膜302を介してトレンチTRを埋めるように、シリコン膜302上にレジスト層402が形成される。レジスト層402の形成はレジスト液の塗布によって行ない得る。次にレジスト層402およびシリコン膜302の一部がエッチングされる。このエッチングは、エッチングマスクを用いることなく行なわれ得る。すなわち、いわゆるエッチバックによって行なわれ得る。
 図13に示すように、上記のエッチングにより、トレンチTRの一部のみを埋めるように底面BT上にレジスト層402およびシリコン膜302が残存する。シリコン膜302は、第1の底部201B上に位置する第2の底部302Bと、第1の側壁部201S上に位置する第2の側壁部302Sとを有する。第2の側壁部302Sは、第2の底部302Bにつながった一方端E1と、第2の領域201b上に位置し第3の領域201cから離れた他方端E2とを有する。次にレジスト層402が除去される(図14)。次に、第1の絶縁膜201のうちシリコン膜302によって覆われておらず露出した部分がエッチングにより除去される(図15)。
 次に、第1の絶縁膜201およびシリコン膜302が設けられたトレンチTRが熱酸化される。これにより、シリコン膜302と、トレンチTRの側壁面SWのうち露出された部分とが熱酸化される。シリコン膜302は、たとえば800℃以上1150℃以下で熱酸化される。この熱酸化によりシリコン膜302から第2の絶縁膜202が形成される(図16)。第1および第2の絶縁膜201,202はゲート絶縁膜200を構成する。
 好ましくは、シリコン膜302は、たとえば950℃以上1100℃以下で熱酸化される。シリコン膜302を950℃より低い温度で酸化した場合、シリコン膜302が酸化されて形成された二酸化珪素膜の粘性流動による応力緩和が働かないため、粒界付近のシリコンが表面側に移動し、シリコン膜302の表面で結晶粒が成長して突起を生成すると考えられる。そこで、シリコン膜302を950℃以上で酸化することにより、上記突起の生成を抑制することができるので、第2の絶縁膜202の表面荒れを効果的に抑制することができる。一方、シリコン膜302を1100℃より高い温度で酸化すると、二酸化珪素からなる第1の絶縁膜201とシリコン膜302とが化学反応を起こし酸化珪素を形成するため第2の絶縁膜202の形状を維持することが困難となる。そこで、シリコン膜302を1100℃以下で酸化することにより、酸化珪素の蒸気圧の上昇を抑制することで、第2の絶縁膜202の形状を効果的に維持することができる。
 図17に示すように、第2の絶縁膜202を形成する際に、第2の側壁部202Sが十分な温度で加熱されることで、角度AG(図5)が小さくされる。この加熱の温度は、1300℃以上1400℃以下が好ましい。この加熱を酸化雰囲気中で行なうことで、第1の絶縁膜201の膜厚をより厚くし得る。
 図18に示すように、トレンチTR上にゲート絶縁膜200を介してゲート電極230が形成される。ゲート電極230の形成方法は、たとえば、導体またはドープトポリシリコンの成膜とCMP(Chemical Mechanical Polishing)とによって行い得る。
 再び図1を参照して、ゲート電極230の露出面を覆うようにゲート電極230およびゲート絶縁膜200上に層間絶縁膜203が形成される。層間絶縁膜203およびゲート絶縁膜200に開口部が形成されるようにエッチングが行われる。この開口部により、メサ構造の上面においてn領域123およびコンタクト領域124の各々が露出される。次に、メサ構造の上面においてn領域123およびコンタクト領域124の各々に接するソース電極221が形成される。ソース配線222、ドレイン電極211および保護電極212が形成される。これにより、MOSFET501が得られる。
 本実施の形態によれば、図5に示すように、第1の絶縁膜201とともにゲート絶縁膜200を構成する第2の絶縁膜202は、第1の絶縁膜201の第1の底部201B上だけでなく、第1の絶縁膜201の第1の側壁部201S上にも設けられる。これによりゲート絶縁膜200は、トレンチTRの底面BT上だけでなく、底面BT近傍で底面BTとともに角部CRを構成する側壁面SW上でも、より大きな厚さを有する。よって、トレンチの底面BT上でのみゲート絶縁膜200が厚くされる場合に比して、ゲート電極容量をより小さくすることができる。
 またMOSFET501に接続されている負荷が短絡した際に、チャネル面CHに大電流が流れることでゲート絶縁膜200の温度が上昇する。この結果、ゲート絶縁膜200の絶縁性が低下することで、リーク電流が流れる。このリーク電流は、チャネル電流が集中し、かつゲート絶縁膜200に対して比較的高い電圧が印加される箇所である、第1および第2の領域201a,201b(図4)の境界近傍において特に問題となる。本実施の形態によれば、このようなリーク電流が最も流れやすい箇所に、第2の絶縁膜202の第2の側壁部202Sが設けられている。これによりリーク電流を抑制することができる。チャネル面CH(図3)が特殊面の場合、チャネル面CHの高い移動度に起因して上記の温度上昇が顕著となるので、リーク電流を抑制することは特に重要である。
 また上記境界近傍では、p型ボディ層122の不純物濃度が、深さ位置DP(図5)に比して低くされることが多い。この場合に、ドレイン電圧が大きいと短チャンネル効果が起きやすくなる。本実施の形態によれば、このような短チャンネル効果の影響を軽減することができる。またそれにより短絡耐量を改善することができる。
 d2>d1×1.5が満たされるようにd2が大きくされる場合、上述した効果をより十分に得られる。また過度にd2が大きくされると、角部CR(図1)近傍での電流の拡がりが阻害されることでオン抵抗が大きくなってしまうので、d2<d1×5が満たされることが好ましい。
 また図4に示すように、第2の側壁部202Sの他方端E2は、第3の領域201cから離れて第2の領域201b上に位置している。これにより、第2の側壁部202Sが第1の領域201a上にのみ設けられる場合に比して、第2の側壁部202Sがより延ばされる。また、第2の側壁部202Sが、チャネル特性に与える影響の大きい、第2の領域201bと第3の領域201cの境界から離れて設けられる。よって、チャネル特性への影響を抑えつつ、ゲート電極容量をより効果的に低減することができる。
 また第2の半導体層122は不純物濃度がピークとなる深さ位置DP(図5)を有し、第2の側壁部202Sの他方端E2は深さ位置DPよりも深くに位置することが好ましい。これにより、第2の側壁部202Sが第1の領域201a上にのみ設けられる場合に比して、第2の側壁部202Sがより延ばされる。また、第2の側壁部202Sが、チャネル特性に与える影響の大きい深さ位置DPから離れて設けられる。よって、チャネル特性への影響をより抑えつつ、ゲート電極容量をより効果的に低減することができる。
 第2の側壁部202Sの他方端E2は、第1の側壁部201Sに対して70度未満の傾斜角度AGを有することが好ましい。これにより、他方端E2でのゲート絶縁膜200の厚さの変化が緩和される。
 第1および第2の絶縁膜201,202のそれぞれは第1および第2の炭素原子濃度を有し、第2の炭素原子濃度は第1の炭素原子濃度よりも小さいことが好ましい。これにより、第2の絶縁膜202は低い炭素原子濃度によって、高い絶縁破壊耐性を有する。よって炭化珪素半導体装置501は大きい耐圧を有する。なお、第1の絶縁膜201は、炭化珪素からなるトレンチTRの底面BTおよび側壁面SWを熱酸化することにより形成されるため、炭化珪素に由来する炭素を多く含む。一方、第2の絶縁膜202は、シリコン膜302を酸化することにより形成される。そのため、第2の絶縁膜202の炭素原子濃度は、第1の絶縁膜201の炭素原子濃度よりも小さくなる。
 第1の炭素原子濃度は1×1015cm-3より大きく、第2の炭素原子濃度は1×1015cm-3より小さいことが好ましい。これにより、第2の絶縁膜202の炭素原子濃度が十分に低くされる。よって炭化珪素半導体装置501の耐圧をより大きくすることができる。
 第2の絶縁膜202は、酸化珪素、窒化珪素、およびリン珪酸ガラスの少なくともいずれかから作られていることが好ましい。これにより炭化珪素半導体装置501の耐圧をより大きくすることができる。
 第2の絶縁膜202は、シリコンを含み炭素を含まない膜の熱酸化膜であることが好ましい。これにより炭化珪素半導体装置501の耐圧をより大きくすることができる。
 シリコン膜302を酸化することによって第2の絶縁膜202を形成する工程は、800℃以上1150℃以下で行われることが好ましい。シリコン膜302を800℃以上で酸化することにより、シリコン膜302の表面荒れを抑制することができる。またシリコン膜を1150℃以下で酸化することにより、シリコン膜302が酸化されて形成された酸化珪素からなる第2の絶縁膜202の蒸気圧が上昇することを抑制することができる。結果として、第2の絶縁膜202の形状を維持することができる。
 第2の絶縁膜202を形成する工程は、第1の側壁部201Sに対する、第2の側壁部202Sの他方端E2の角度AGが小さくなるように、第2の側壁部202Sを加熱する工程を含むことが好ましい。これにより、他方端E2でのゲート絶縁膜200の厚さの変化が緩和される。この工程は1300℃以上1400℃以下で行なわれることが好ましい。これにより、他方端E2の角度AGを、過度に高い温度を用いることなく、十分に小さくすることができる。
 なお本実施の形態においては第2の絶縁膜202の形成方法として、シリコン膜の熱酸化を用いる方法について説明したが、第2の絶縁膜202は堆積法によって形成されてもよく、たとえばCVD法によって直接形成されてもよい。また「第1の導電型」がn型であり「第2の導電型」がp型であるが、これらの導電型が入れ替えられもよい。この場合、上記説明におけるドナーおよびアクセプタも入れ替えられる。なお、より高いチャネル移動度を得るためには、「第1の導電型」がn型であることが好ましい。また炭化珪素半導体装置は、MOSFETに限定されるものではなく、たとえばトレンチ型IGBT(Insulated Gate Bipolar Transistor)であってもよい。
 (実施の形態2)
 図19に示すように、本実施の形態のMOSFET502(炭化珪素半導体装置)においては、第2の絶縁膜202の第2の側壁部202Sの他方端E2は、第1の領域201aおよび第2の領域201bの境界上に位置している。ここでの「境界上に位置し」とは、ゲート電極容量およびチャネル特性の各々が実質的に同程度に保持される範囲内で、誤差を許容するものである。具体的には±0.1μm程度の誤差は許容される。このような第2の側壁部202Sを得るためには、たとえば、実施の形態1におけるエッチバック工程(図13)をより進行させ、シリコン膜302の第2の側壁部302Sの他方端E2を、上記境界の近傍に合わせればよい。なお上記以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。
 本実施の形態によれば、第2の側壁部202Sは、チャネル面を構成する第2の領域201b上にかぶさらない範囲内で最大限、延ばされる。よってチャネル特性に影響をほとんど与えない範囲内で、ゲート電極容量を効果的に低減することができる。
 (実施の形態3)
 図20に示すように、本実施の形態のMOSFET503(炭化珪素半導体装置)においては、第2の絶縁膜202の第2の側壁部202Sの他方端E2は、第2の領域201bから離れて第1の領域201a上に位置している。好ましくは、他方端E2は第2の領域201bから0.1μmよりも大きく離される。このような第2の側壁部202Sを得るためには、たとえば、実施の形態1におけるエッチバック工程(図13)をより進行させ、シリコン膜302の第2の側壁部302Sの他方端E2を、第2の領域201bから離して第1の領域201a上に位置させればよい。なお上記以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。
 本実施の形態によれば、第2の側壁部202Sは、チャネル面を構成する第2の領域201bに接近しない範囲内で延ばされる。よって、チャネル特性に影響を与えない範囲内で、ゲート電極容量を低減することができる。
 (特殊面を有する表面)
 上述したように、トレンチTRの側壁面SW(図1)は好ましくは、特にp型ボディ層122上において、所定の結晶面(特殊面とも称する)を有する。このような側壁面SWは、図21に示すように、面方位{0-33-8}を有する面S1(第1の面)を含む。面S1は好ましくは面方位(0-33-8)を有する。
 より好ましくは、側壁面SWは面S1を微視的に含み、側壁面SWはさらに、面方位{0-11-1}を有する面S2(第2の面)を微視的に含む。ここで「微視的」とは、原子間隔の2倍程度の寸法を少なくとも考慮する程度に詳細に、ということを意味する。このように微視的な構造の観察方法としては、たとえばTEM(Transmission Electron Microscope)を用いることができる。面S2は好ましくは面方位(0-11-1)を有する。
 好ましくは、側壁面SWの面S1および面S2は、面方位{0-11-2}を有する複合面SRを構成している。すなわち複合面SRは、面S1およびS2が周期的に繰り返されることによって構成されている。このような周期的構造は、たとえば、TEMまたはAFM(Atomic Force Microscopy)により観察し得る。この場合、複合面SRは{000-1}面に対して巨視的に62°のオフ角を有する。ここで「巨視的」とは、原子間隔程度の寸法を有する微細構造を無視することを意味する。このように巨視的なオフ角の測定としては、たとえば、一般的なX線回折を用いた方法を用い得る。好ましくは複合面SRは面方位(0-11-2)を有する。この場合、複合面SRは(000-1)面に対して巨視的に62°のオフ角を有する。
 好ましくは、チャネル面上においてキャリアが流れる方向であるチャネル方向CDは、上述した周期的繰り返しが行われる方向に沿っている。
 次に、複合面SRの詳細な構造について説明する。
 一般に、ポリタイプ4Hの炭化珪素単結晶を(000-1)面から見ると、図22に示すように、Si原子(またはC原子)は、A層の原子(図中の実線)と、この下に位置するB層の原子(図中の破線)と、この下に位置するC層の原子(図中の一点鎖線)と、この下に位置するB層の原子(図示せず)とが繰り返し設けられている。つまり4つの層ABCBを1周期としてABCBABCBABCB・・・のような周期的な積層構造が設けられている。
 図23に示すように、(11-20)面(図22の線XXIII-XXIIIの断面)において、上述した1周期を構成する4つの層ABCBの各層の原子は、(0-11-2)面に完全に沿うようには配列されていない。図23においてはB層の原子の位置を通るように(0-11-2)面が示されており、この場合、A層およびC層の各々の原子は(0-11-2)面からずれていることがわかる。このため、炭化珪素単結晶の表面の巨視的な面方位、すなわち原子レベルの構造を無視した場合の面方位が(0-11-2)に限定されたとしても、この表面は、微視的には様々な構造をとり得る。
 図24に示すように、複合面SRは、面方位(0-33-8)を有する面S1と、面S1につながりかつ面S1の面方位と異なる面方位を有する面S2とが交互に設けられることによって構成されている。面S1および面S2の各々の長さは、Si原子(またはC原子)の原子間隔の2倍である。なお面S1および面S2が平均化された面は、(0-11-2)面(図23)に対応する。
 図25に示すように、複合面SRを(01-10)面から見て単結晶構造は、部分的に見て立方晶と等価な構造(面S1の部分)を周期的に含んでいる。具体的には複合面SRは、上述した立方晶と等価な構造における面方位(001)を有する面S1と、面S1につながりかつ面S1の面方位と異なる面方位を有する面S2とが交互に設けられることによって構成されている。このように、立方晶と等価な構造における面方位(001)を有する面(図25においては面S1)と、この面につながりかつこの面方位と異なる面方位を有する面(図25においては面S2)とによって表面を構成することは4H以外のポリタイプにおいても可能である。ポリタイプは、たとえば6Hまたは15Rであってもよい。
 次に図26を参照して、側壁面SWの結晶面と、チャネル面の移動度MBとの関係について説明する。図26のグラフにおいて、横軸は、チャネル面を有する側壁面SWの巨視的な面方位と(000-1)面とのなす角度D1を示し、縦軸は移動度MBを示す。プロット群CMは側壁面SWが熱エッチングによる特殊面として仕上げられた場合に対応し、プロット群MCはそのような熱エッチングがなされない場合に対応する。
 プロット群MCにおける移動度MBは、チャネル面の表面の巨視的な面方位が(0-33-8)のときに最大となった。この理由は、熱エッチングが行われない場合、すなわち、チャネル表面の微視的な構造が特に制御されない場合においては、巨視的な面方位が(0-33-8)とされることによって、微視的な面方位(0-33-8)、つまり原子レベルまで考慮した場合の面方位(0-33-8)が形成される割合が確率的に高くなったためと考えられる。
 一方、プロット群CMにおける移動度MBは、チャネル面の表面の巨視的な面方位が(0-11-2)のとき(矢印EX)に最大となった。この理由は、図24および図25に示すように、面方位(0-33-8)を有する多数の面S1が面S2を介して規則正しく稠密に配置されることで、チャネル面の表面において微視的な面方位(0-33-8)が占める割合が高くなったためと考えられる。
 なお移動度MBは複合面SR上において方位依存性を有する。図27に示すグラフにおいて、横軸はチャネル方向と<0-11-2>方向との間の角度D2を示し、縦軸はチャネル面の移動度MB(任意単位)を示す。破線はグラフを見やすくするために補助的に付してある。このグラフから、チャネル移動度MBを大きくするには、チャネル方向CD(図21)が有する角度D2は、0°以上60°以下であることが好ましく、ほぼ0°であることがより好ましいことがわかった。
 図28に示すように、側壁面SWは複合面SRに加えてさらに面S3(第3の面)を含んでもよい。より具体的には、面S3および複合面SRが周期的に繰り返されることによって構成された複合面SQを側壁面SWが含んでもよい。この場合、側壁面SWの{000-1}面に対するオフ角は、理想的な複合面SRのオフ角である62°からずれる。このずれは小さいことが好ましく、±10°の範囲内であることが好ましい。このような角度範囲に含まれる表面としては、たとえば、巨視的な面方位が{0-33-8}面となる表面がある。より好ましくは、側壁面SWの(000-1)面に対するオフ角は、理想的な複合面SRのオフ角である62°からずれる。このずれは小さいことが好ましく、±10°の範囲内であることが好ましい。このような角度範囲に含まれる表面としては、たとえば、巨視的な面方位が(0-33-8)面となる表面がある。
 このような周期的構造は、たとえば、TEMまたはAFMにより観察し得る。
 まず、実施例および比較例に係るMOSFETを準備した。実施例に係るMOSFETとして、上記図20に記載の構造を有するMOSFETを準備した。具体的には、実施例に係るMOSFETのゲート絶縁膜200は、第1の絶縁膜201と、第1の絶縁膜201の一部上に設けられた第2の絶縁膜202とを含んでいる。言い換えれば、実施例に係るMOSFETは、トレンチTRの側壁面SWに対向するゲート絶縁膜200を厚膜化した構造を有している。第2の絶縁膜202の第2の側壁部202Sの他方端E2は、第2の領域201bから離れて第1の領域201a上に位置している。トレンチTRの底面BTの法線方向に沿った第1の絶縁膜201の底部から第2の絶縁膜202の第2の側壁部202Sの他方端E2までの距離は0.67μmであった。第2の絶縁膜202の厚みは200nmであった。第2の絶縁膜202の他方端E2の角度AG(図5参照)は、チャネル部分で67°であり、斜面平均で62°程度であった。実施例に係るMOSFETは、第1の絶縁膜301およびシリコン膜302を1100℃で95分間酸化した後、1350℃で3分間酸化することにより、第1の絶縁膜201および第2の絶縁膜202からなるゲート絶縁膜200を形成した。その後、第1の絶縁膜201および第2の絶縁膜202を含むゲート絶縁膜200が形成された炭化珪素基板100をNO雰囲気中1350℃の温度で28分間熱処理した。その後、第1の絶縁膜201および第2の絶縁膜202を含むゲート絶縁膜200が形成された炭化珪素基板100をAr雰囲気中1350℃の温度で40分間熱処理した。
 比較例に係るMOSFETのゲート絶縁膜200は、第1の絶縁膜201のみから形成されており、第2の絶縁膜202を有していない。言い換えれば、比較例に係るMOSFETは、トレンチTRの側壁面SWに対向するゲート絶縁膜200を厚膜化していない構造を有している。比較例に係るMOSFETは、炭化珪素基板100を1100℃で95分間酸化した後、1350℃で6分間酸化することによりゲート絶縁膜200を形成した。その後、ゲート絶縁膜200が形成された炭化珪素基板100をNO雰囲気中1350℃の温度で7分間熱処理した。その後、ゲート絶縁膜200が形成された炭化珪素基板100をAr雰囲気中1350℃の温度で10分間熱処理した。
 図29を参照して、ゲート電極230およびドレイン電極211間の静電容量Cgdと、ドレイン電極211およびソース電極221間の電圧VDSとの関係について説明する。図29において、実施例に係るMOSFETの静電容量を実線101で示し、比較例に係るMOSFETの静電容量を破線102で示している。
 図29を参照して、ドレイン電極211およびソース電極221間の電圧VDSが0V以上600V以下の全範囲において、実施例に係るMOSFETの静電容量Cgdは、比較例に係るMOSFETの静電容量Cgdよりも小さくなった。ドレイン電極211およびソース電極221間の電圧VDSが600Vにおける実施例に係るMOSFETの静電容量Cgdは32pFであり、比較例に係るMOSFETの静電容量Cgdは27pFであった。以上のように、トレンチTRの側壁面SWに対向するゲート絶縁膜200を厚膜化(言い換えれば、第1の絶縁膜201上に第2の絶縁膜202を形成)することによって、ゲート電極230およびドレイン電極211間の静電容量Cgdを効果的に低減可能であることが確認された。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
100 エピタキシャル基板(炭化珪素基板)、110 単結晶基板、121 n-層(第1の半導体層)、122 p型ボディ層(第2の半導体層)、123 n領域(第3の半導体層)、124 コンタクト領域、200 ゲート絶縁膜、201 第1の絶縁膜、202 第2の絶縁膜、201B 第1の底部、201S 第1の側壁部、201a~201c 第1~第3の領域、202B,302B 第2の底部、202S,302S 第2の側壁部、203 層間絶縁膜、211 ドレイン電極、212 保護電極、221 ソース電極、222 ソース配線、230 ゲート電極、302 シリコン膜、401 マスク、402 レジスト層、501~503 MOSFET(炭化珪素半導体装置)、AG 傾斜角度、BT 底面、CH チャネル面、CR 角部、DP 深さ位置、E1 一方端、E2 他方端、SW 側壁面、SW1~SW3 第1~第3の側面、TR トレンチ。

Claims (14)

  1.  炭化珪素半導体装置であって、
     第1の導電型を有する第1の半導体層と、前記第1の半導体層上に設けられ第2の導電型を有する第2の半導体層と、前記第2の半導体層上に設けられ前記第2の半導体層によって前記第1の半導体層と分離され前記第1の導電型を有する第3の半導体層とを含む炭化珪素基板を備え、前記炭化珪素基板にはトレンチが設けられており、前記トレンチは、前記第1の半導体層からなる底面と、前記第1~第3の半導体層のそれぞれからなる第1~第3の側面を有する側壁面とを含み、前記炭化珪素半導体装置はさらに
     前記トレンチ上に設けられたゲート絶縁膜を備え、前記ゲート絶縁膜は、前記側壁面および前記底面の各々を直接覆う第1の絶縁膜と、前記第1の絶縁膜上に設けられた第2の絶縁膜とを有し、前記第1の絶縁膜は、前記底面上に位置する第1の底部と、前記側壁面上に位置する第1の側壁部とを有し、前記第1の側壁部は前記第1~第3の側面のそれぞれの上に位置する第1~第3の領域を有し、前記第2の絶縁膜は、前記第1の底部上に位置する第2の底部と、前記第1の側壁部上に位置する第2の側壁部とを有し、前記第2の側壁部は、前記第2の底部につながった一方端と、前記第1および第2の領域のいずれかの上に位置し前記第3の領域から離れた他方端とを有し、前記炭化珪素半導体装置はさらに
     前記ゲート絶縁膜を介して前記トレンチ上に設けられたゲート電極を備える、炭化珪素半導体装置。
  2.  前記第2の側壁部の前記他方端は、前記第1の領域および前記第2の領域の境界上に位置する、請求項1に記載の炭化珪素半導体装置。
  3.  前記第2の側壁部の前記他方端は、前記第2の領域から離れて前記第1の領域上に位置する、請求項1に記載の炭化珪素半導体装置。
  4.  前記第2の側壁部の前記他方端は、前記第3の領域から離れて前記第2の領域上に位置する、請求項1に記載の炭化珪素半導体装置。
  5.  前記第2の半導体層は不純物濃度がピークとなる深さ位置を有し、前記第2の側壁部の前記他方端は前記深さ位置よりも深くに位置する、請求項4に記載の炭化珪素半導体装置。
  6.  前記第2の側壁部の前記他方端は前記第1の側壁部に対して70度未満の傾斜角度を有する、請求項1~請求項5のいずれか1項に記載の炭化珪素半導体装置。
  7.  前記第1および第2の絶縁膜のそれぞれは第1および第2の炭素原子濃度を有し、前記第2の炭素原子濃度は前記第1の炭素原子濃度よりも小さい、請求項1~請求項6のいずれか1項に記載の炭化珪素半導体装置。
  8.  前記第1の炭素原子濃度は1×1015cm-3より大きく、前記第2の炭素原子濃度は1×1015cm-3より小さい、請求項7に記載の炭化珪素半導体装置。
  9.  前記第2の絶縁膜は、酸化珪素、窒化珪素、およびリン珪酸ガラスの少なくともいずれかから作られている、請求項1~請求項8のいずれか1項に記載の炭化珪素半導体装置。
  10.  前記第2の絶縁膜は、シリコンを含み炭素を含まない膜の熱酸化膜である、請求項1~請求項9のいずれか1項に記載の炭化珪素半導体装置。
  11.  第1の導電型を有する第1の半導体層と、前記第1の半導体層上に設けられ第2の導電型を有する第2の半導体層と、前記第2の半導体層上に設けられ前記第2の半導体層によって前記第1の半導体層と分離され前記第1の導電型を有する第3の半導体層とを含む炭化珪素基板を準備する工程と、
     前記炭化珪素基板にトレンチを形成する工程とを備え、前記トレンチは、前記第1の半導体層からなる底面と、前記第1~第3の半導体層のそれぞれからなる第1~第3の側面を有する側壁面とを含み、さらに
     前記側壁面および前記底面の各々を直接覆う第1の絶縁膜を形成する工程とを備え、前記第1の絶縁膜は、前記底面上に位置する第1の底部と、前記側壁面上に位置する第1の側壁部とを有し、前記第1の側壁部は、前記第1~第3の側面のそれぞれの上に位置する第1~第3の領域とを有し、さらに
     前記第1の絶縁膜上にシリコン膜を形成する工程を備え、前記シリコン膜は、前記第1の底部上に位置する第2の底部と、前記第1の側壁部上に位置する第2の側壁部とを有し、前記第2の側壁部は、前記第2の底部につながった一方端と、前記第1および第2の領域のいずれかの上に位置し前記第3の領域から離れた他方端とを有し、さらに
     前記シリコン膜を酸化することによって第2の絶縁膜を形成する工程を備え、前記第1および第2の絶縁膜はゲート絶縁膜を構成し、さらに
     前記ゲート絶縁膜を介して前記トレンチ上にゲート電極を形成する工程を備える、炭化珪素半導体装置の製造方法。
  12.  前記シリコン膜を酸化することによって前記第2の絶縁膜を形成する工程は、800℃以上1150℃以下で行われる、請求項11に記載の炭化珪素半導体装置の製造方法。
  13.  前記第2の絶縁膜を形成する工程は、前記第1の側壁部に対する、前記第2の側壁部の前記他方端の角度が小さくなるように、前記第2の側壁部を加熱する工程を含む、請求項11に記載の炭化珪素半導体装置の製造方法。
  14.  前記第2の側壁部を加熱する工程は1300℃以上1400℃以下で行なわれる、請求項13に記載の炭化珪素半導体装置の製造方法。
PCT/JP2014/052542 2013-03-19 2014-02-04 炭化珪素半導体装置およびその製造方法 WO2014148130A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014528779A JP6265122B2 (ja) 2013-03-19 2014-02-04 炭化珪素半導体装置およびその製造方法
US14/768,713 US9666681B2 (en) 2013-03-19 2014-02-04 Silicon carbide semiconductor device and method for manufacturing same
DE112014001539.3T DE112014001539T5 (de) 2013-03-19 2014-02-04 Siliziumkarbid-Halbleitervorrichtung und Verfahren zu deren Herstellung
CN201480008899.XA CN105074933B (zh) 2013-03-19 2014-02-04 碳化硅半导体器件及其制造方法
US15/497,544 US9984879B2 (en) 2013-03-19 2017-04-26 Silicon carbide semiconductor device and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-056480 2013-03-19
JP2013056480 2013-03-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/768,713 A-371-Of-International US9666681B2 (en) 2013-03-19 2014-02-04 Silicon carbide semiconductor device and method for manufacturing same
US15/497,544 Division US9984879B2 (en) 2013-03-19 2017-04-26 Silicon carbide semiconductor device and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2014148130A1 true WO2014148130A1 (ja) 2014-09-25

Family

ID=51579825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052542 WO2014148130A1 (ja) 2013-03-19 2014-02-04 炭化珪素半導体装置およびその製造方法

Country Status (5)

Country Link
US (2) US9666681B2 (ja)
JP (2) JP6265122B2 (ja)
CN (1) CN105074933B (ja)
DE (1) DE112014001539T5 (ja)
WO (1) WO2014148130A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020077727A (ja) * 2018-11-07 2020-05-21 三菱電機株式会社 半導体装置
JPWO2019142722A1 (ja) * 2018-01-17 2021-01-07 ローム株式会社 半導体装置およびその製造方法
WO2021024916A1 (ja) * 2019-08-06 2021-02-11 住友電気工業株式会社 炭化珪素半導体装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6428900B1 (ja) * 2017-11-29 2018-11-28 富士電機株式会社 ダイオード素子およびダイオード素子の製造方法
JP2022144699A (ja) * 2021-03-19 2022-10-03 富士電機株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109010A (ja) * 2006-10-27 2008-05-08 Toshiba Corp 半導体装置及び半導体装置の製造方法
JP2009224365A (ja) * 2008-03-13 2009-10-01 Rohm Co Ltd 半導体装置およびその製造方法
WO2012098861A1 (ja) * 2011-01-17 2012-07-26 パナソニック株式会社 半導体装置およびその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3471473B2 (ja) 1994-04-06 2003-12-02 株式会社デンソー 半導体装置及びその製造方法
DE69534888T2 (de) 1994-04-06 2006-11-02 Denso Corp., Kariya Herstellungsverfahren für Halbleiterbauelement mit Graben
JP2007201343A (ja) * 2006-01-30 2007-08-09 Central Res Inst Of Electric Power Ind 炭化珪素半導体素子の製造方法
JP5283147B2 (ja) * 2006-12-08 2013-09-04 国立大学法人東北大学 半導体装置および半導体装置の製造方法
JP5385567B2 (ja) * 2007-09-03 2014-01-08 ローム株式会社 半導体装置および半導体装置の製造方法
JP2010238738A (ja) * 2009-03-30 2010-10-21 Toshiba Corp 半導体装置および半導体装置の製造方法
JP5246302B2 (ja) * 2010-09-08 2013-07-24 株式会社デンソー 半導体装置
JP5637916B2 (ja) * 2011-03-31 2014-12-10 トヨタ自動車株式会社 半導体装置及びその製造方法
JP5638558B2 (ja) * 2012-03-26 2014-12-10 株式会社東芝 半導体装置及びその製造方法
JP5811973B2 (ja) * 2012-09-12 2015-11-11 住友電気工業株式会社 炭化珪素半導体装置の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109010A (ja) * 2006-10-27 2008-05-08 Toshiba Corp 半導体装置及び半導体装置の製造方法
JP2009224365A (ja) * 2008-03-13 2009-10-01 Rohm Co Ltd 半導体装置およびその製造方法
WO2012098861A1 (ja) * 2011-01-17 2012-07-26 パナソニック株式会社 半導体装置およびその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019142722A1 (ja) * 2018-01-17 2021-01-07 ローム株式会社 半導体装置およびその製造方法
JP7241704B2 (ja) 2018-01-17 2023-03-17 ローム株式会社 半導体装置およびその製造方法
JP7512348B2 (ja) 2018-01-17 2024-07-08 ローム株式会社 半導体装置およびその製造方法
JP2020077727A (ja) * 2018-11-07 2020-05-21 三菱電機株式会社 半導体装置
JP7061954B2 (ja) 2018-11-07 2022-05-02 三菱電機株式会社 半導体装置
WO2021024916A1 (ja) * 2019-08-06 2021-02-11 住友電気工業株式会社 炭化珪素半導体装置

Also Published As

Publication number Publication date
JP6443531B2 (ja) 2018-12-26
JP2018088527A (ja) 2018-06-07
DE112014001539T5 (de) 2015-12-03
CN105074933A (zh) 2015-11-18
JP6265122B2 (ja) 2018-01-24
US9666681B2 (en) 2017-05-30
CN105074933B (zh) 2018-01-23
JPWO2014148130A1 (ja) 2017-02-16
US20160005826A1 (en) 2016-01-07
US9984879B2 (en) 2018-05-29
US20170229305A1 (en) 2017-08-10

Similar Documents

Publication Publication Date Title
JP6443531B2 (ja) 炭化珪素半導体装置
JP6131689B2 (ja) 炭化珪素半導体装置の製造方法
WO2014141754A1 (ja) 炭化珪素半導体装置
JP2014241368A (ja) 炭化珪素半導体装置
JP6357869B2 (ja) 炭化珪素半導体装置の製造方法
JP2015026726A (ja) 炭化珪素半導体装置およびその製造方法
US9543412B2 (en) Method for manufacturing silicon carbide semiconductor device
JP6135383B2 (ja) 炭化珪素半導体装置
JP6056292B2 (ja) 炭化珪素半導体装置の製造方法
JP2014007310A (ja) 炭化珪素半導体装置の製造方法および炭化珪素半導体装置
US9679986B2 (en) Silicon carbide semiconductor device
WO2014171211A1 (ja) 炭化珪素半導体装置の製造方法
JP2014038896A (ja) 炭化珪素半導体装置
JP2015082632A (ja) 炭化珪素半導体装置およびその製造方法
JP2013243180A (ja) 炭化珪素半導体装置およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480008899.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014528779

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14768839

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14768713

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014001539

Country of ref document: DE

Ref document number: 1120140015393

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14768839

Country of ref document: EP

Kind code of ref document: A1