JP2013243180A - 炭化珪素半導体装置およびその製造方法 - Google Patents

炭化珪素半導体装置およびその製造方法 Download PDF

Info

Publication number
JP2013243180A
JP2013243180A JP2012113941A JP2012113941A JP2013243180A JP 2013243180 A JP2013243180 A JP 2013243180A JP 2012113941 A JP2012113941 A JP 2012113941A JP 2012113941 A JP2012113941 A JP 2012113941A JP 2013243180 A JP2013243180 A JP 2013243180A
Authority
JP
Japan
Prior art keywords
layer
silicon carbide
trench
impurity
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012113941A
Other languages
English (en)
Inventor
Keiji Wada
圭司 和田
Takeyoshi Masuda
健良 増田
Toru Hiyoshi
透 日吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012113941A priority Critical patent/JP2013243180A/ja
Priority to PCT/JP2013/060610 priority patent/WO2013172125A1/ja
Priority to US13/863,091 priority patent/US20130306987A1/en
Publication of JP2013243180A publication Critical patent/JP2013243180A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Recrystallisation Techniques (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

【課題】耐圧を向上させるための電界緩和構造を容易に形成する。
【解決手段】第1の層121は第1の導電型を有する。第2の層122は、第1の層121上に設けられており、第2の導電型を有する。第3の層123は、第2の層122上に設けられており、第2の層122によって第1の層121と分離されており、第1の導電型を有する。トレンチTRは、第3の層123および第2の層122を貫通して第1の層121に至っている。第1の層121は、ゲート電極202との間にゲート絶縁膜201を挟む緩和領域121Rを含む。緩和領域121Rには、第1の導電型を付与する第1の不純物が添加されている。また緩和領域121Rには、第2の導電型を付与する第2の不純物が第1の不純物の濃度に比して低い濃度で添加されている。
【選択図】図4

Description

この発明は、炭化珪素半導体装置およびその製造方法に関するものであり、特に、トレンチを有する炭化珪素基板を含む炭化珪素半導体装置およびその製造方法に関するものである。
トレンチゲート絶縁膜を有する炭化珪素半導体装置において、耐圧破壊を引き起こしやすい主な要因は、ゲート絶縁膜の絶縁破壊現象であると考えられている。たとえば特開2009−117593号公報(特許文献1)に開示されているように、炭化珪素を適用したトレンチ型MOSFET(Metal Oxide Semiconductor Field Effect Transistor)において、トレンチのコーナー部におけるゲート絶縁膜の電界による破壊が課題として認識されている。
上記公報に記載の技術によれば、電界緩和のために、トレンチよりも深いp+型ディープ層が設けられる。その目的で、p+型ディープ層を設けるためのトレンチが形成され、次にこのトレンチ内を埋め込むエピタキシャル成長が行われる。他の技術としては、たとえば特開2008−270681号公報(特許文献2)によれば、イオン注入によってトレンチの底部にp+領域が設けられる。
特開2009−117593号公報 特開2008−270681号公報
特開2009−117593号公報に示された技術によれば、p+型ディープ層のためのトレンチ形成工程と、このトレンチを埋め込む工程とが必要である。すなわち、工程上負担の大きい、微細加工およびエピタキシャル成長が必要である。
特開2008−270681号公報に示された技術によれば、p+領域の形成のためのイオン注入をトレンチの底部に選択的に行う必要がある。このp+領域は製造ばらつきに起因してトレンチにおいて、チャネルを形成するp領域とつながってしまうことがあり得る。この場合、チャネル構造が大きく変化するので、半導体装置の特性が大きく乱される。トレンチの微細化がより進められた場合、この問題はより顕著となる。
本発明は、上記のような課題を解決するために成されたものであり、この発明の目的は、容易に形成することができる電界緩和構造を有する炭化珪素半導体装置およびその製造方法を提供することである。
本発明の炭化珪素半導体装置は、炭化珪素基板と、ゲート電極と、ゲート絶縁膜とを有する。炭化珪素基板は第1〜第3の層を有する。第1の層は第1の導電型を有する。第2の層は、第1の層上に設けられており、第2の導電型を有する。第3の層は、第2の層上に設けられており、第2の層によって第1の層と分離されており、第1の導電型を有する。炭化珪素基板にはトレンチが設けられている。トレンチは、第3の層および第2の層を貫通して第1の層に至っている。ゲート電極はトレンチに埋め込まれている。ゲート絶縁膜はトレンチ内において炭化珪素基板とゲート電極とを隔てている。第1の層は、ゲート電極との間にゲート絶縁膜を挟む緩和領域を含む。緩和領域には、第1の導電型を付与する第1の不純物が添加されている。また緩和領域には、第2の導電型を付与する第2の不純物が第1の不純物の濃度に比して低い濃度で添加されている。
上記の炭化珪素半導体装置によれば、第1の層におけるトレンチ近傍に、電界を緩和するための緩和領域が形成される。この緩和領域は第1の導電型であって第2の導電型ではない。仮に緩和領域が第2の導電型であるとすると、この緩和領域が第2の層につながった場合、第2の導電型を有する領域としての第2の層が拡張されてしまうので、第2の領域上に形成されるチャネルの特性が大きく乱される。しかしながら上記炭化珪素半導体装置においては緩和領域が第1の導電型を有するので、緩和領域が第2の層につながっていても、緩和領域はチャネル特性に大きな影響を及ぼさない。よって緩和領域が形成される位置について高い精度を必要としないので、緩和領域を容易に形成することができる。
好ましくは、緩和領域は1×1014cm-3以上の第2の不純物の濃度を有する。これによりゲート絶縁膜に加わる電界をより緩和し得る。
好ましくは、緩和領域の少なくとも一部において、第1の不純物の濃度から第2の不純物の濃度を差し引いた値は第1の不純物の濃度の10%以下である。これによりゲート絶縁膜に加わる電界をより緩和し得る。
好ましくは、緩和領域は200nm以上の厚さを有する。これによりゲート絶縁膜に加わる電界をより緩和し得る。
好ましくは、トレンチは開口側に向かってテーパ状に拡がっている。これによりトレンチ内へイオンを容易に注入することができる。よってトレンチ上への緩和領域の形成を、イオン注入を用いて容易に行うことができる。
本発明の炭化珪素半導体装置の製造方法は、次の工程を有する。第1の導電型を有する第1の層と、第1の層上に設けられ第2の導電型を有する第2の層と、第2の層上に設けられ第2の層によって第1の層と分離され第1の導電型を有する第3の層とを含む炭化珪素基板が形成される。第1の層には、第1の層が第1の導電型を有するように第1の不純物が添加されている。第3の層および第2の層を貫通して第1の層に至り、第1の層上に底部を有するトレンチが形成される。トレンチの底部上から第1の層内へ第2の導電型を付与するための第2の不純物を注入することにより、底部上に緩和領域が形成される。緩和領域の形成は、緩和領域において第2の不純物の濃度が第1の不純物の濃度よりも小さくなるように行われる。炭化珪素基板のトレンチの内面を被覆するゲート絶縁膜が形成される。ゲート絶縁膜上にゲート電極が形成される。
上記の製造方法によれば、第1の層におけるトレンチ近傍に、電界を緩和するための緩和領域が形成される。この緩和領域は第1の導電型であって第2の導電型ではない。仮に緩和領域が第2の導電型であるとすると、この緩和領域が製造ばらつきに起因して第2の層につながった場合、第2の導電型を有する領域としての第2の層が拡張されてしまうので、第2の領域上に形成されるチャネルの特性が大きく乱される。しかしながら上記炭化珪素半導体装置においては緩和領域が第1の導電型を有するので、緩和領域が第2の層につながっていても、緩和領域はチャネル特性に大きな影響を及ぼさない。よって緩和領域が形成される位置について高い精度を必要としないので、緩和領域を容易に形成することができる。
好ましくは、緩和領域の形成は、トレンチの内面の全体に第2の不純物を注入することにより行われる。これによりトレンチの内面の一部を選択的に覆うマスクを形成する必要がない。よって製造方法がより簡略化される。
上記のように本発明によれば、電界緩和構造を容易に形成することができる。
本発明の一実施の形態における炭化珪素半導体装置の構成を概略的に示す部分断面図である。 図1の炭化珪素基板の形状を概略的に示す斜視図である。 図2の斜視図におけるp型の面にハッチングを付した図である。 図1の拡大図である。 図4の矢印Z1に沿うアクセプタ濃度プロファイルの一例を示す図である。 図4の矢印Z1に沿う実効不純物濃度プロファイルの一例を示す図である。 図4の矢印Z2に沿う実効不純物濃度プロファイルの一例を示す図である。 比較例における、図4の矢印Z1に沿う位置での電界強度を示す図である。 実施例における、図4の矢印Z1に沿う位置での電界強度を示す図である。 図1の炭化珪素半導体装置の製造方法の第1工程を概略的に示す部分断面図である。 図1の炭化珪素半導体装置の製造方法の第2工程を概略的に示す部分断面図である。 図1の炭化珪素半導体装置の製造方法の第3工程を概略的に示す部分断面図である。 図1の炭化珪素半導体装置の製造方法の4第工程を概略的に示す部分断面図である。 図1の炭化珪素半導体装置の製造方法の5第工程を概略的に示す部分断面図である。 図1の炭化珪素半導体装置の製造方法の第6工程を概略的に示す部分断面図である。 図1の炭化珪素半導体装置の製造方法の第7工程を概略的に示す部分断面図である。 図1の炭化珪素半導体装置の製造方法の第8工程を概略的に示す部分断面図である。 図1の炭化珪素半導体装置の製造方法の第9工程を概略的に示す部分断面図である。 図1の炭化珪素半導体装置の製造方法の第10工程を概略的に示す部分断面図である。 図1の炭化珪素半導体装置の製造方法の第11工程を概略的に示す部分断面図である。 炭化珪素半導体装置が有する炭化珪素基板の表面の微細構造を概略的に示す部分断面図である。 ポリタイプ4Hの六方晶における(000−1)面の結晶構造を示す図である。 図22の線XXIII−XXIIIに沿う(11−20)面の結晶構造を示す図である。 図18の複合面の表面近傍における結晶構造を(11−20)面内において示す図である。 図18の複合面を(01−10)面から見た図である。 巨視的に見たチャネル面および(000−1)面の間の角度と、チャネル移動度との関係の一例を、熱エッチングが行われた場合と行われなかった場合との各々について示すグラフ図である。 チャネル方向および<0−11−2>方向の間の角度と、チャネル移動度との関係の一例を示すグラフ図である。 図21の変形例を示す図である。
以下、本発明の実施の形態について図に基づいて説明する。なお、以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。また、本明細書中の結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示している。また結晶学上の指数が負であることは、通常、”−”(バー)を数字の上に付すことによって表現されるが、本明細書中では数字の前に負の符号を付している。
図1に示すように、本実施の形態の縦型MOSFET500(炭化珪素半導体装置)は、エピタキシャル基板100(炭化珪素基板)と、ゲート酸化膜201(ゲート絶縁膜)と、ゲート電極202と、層間絶縁膜203と、ソース電極221と、ドレイン電極211と、ソース配線222と、保護電極212とを有する。
エピタキシャル基板100は、単結晶基板110と、その上に設けられたエピタキシャル層とを有する。エピタキシャル層は、n-層121(第1の層)と、p型ボディ層122(第2の層)と、n領域123(第3の層)と、コンタクト領域124とを有する。エピタキシャル基板100は炭化珪素から作られている。この炭化珪素は、好ましくは六方晶の結晶構造を有し、より好ましくはポリタイプ4Hを有する。
単結晶基板110はn型(第1の導電型)を有する。単結晶基板110の一方主面(図1における上面)の面方位は、好ましくは、おおよそ(000−1)面である。
-層121には、n型(第1の導電型)を有するように、n型を付与する不純物であるドナー(第1の不純物)が添加されている。n-層121へのドナーの添加は、好ましくは、イオン注入によってではなく、n-層121のエピタキシャル成長時に行われる。n-層121のドナー濃度は、単結晶基板110のドナー濃度よりも低いことが好ましい。n-層121のドナー濃度は、好ましくは1×1015cm-3以上5×1016cm-3以下であり、たとえば8×1015cm-3である。n-層121は緩和領域121Rを有する。緩和領域121Rの詳細についは後述する。
p型ボディ層122は、n-層121上に設けられており、p型(第2の導電型)を有する。p型ボディ層122のアクセプタ濃度は、たとえば1×1018cm-3である。
n領域123はn型(第1の導電型)を有する。n領域123は、p型ボディ層122上に設けられており、p型ボディ層122によってn-層121と分離されている。コンタクト領域124はp型を有する。コンタクト領域124は、p型ボディ層122につながるようにp型ボディ層122の一部の上に形成されている。
さらに図2および図3を参照して、エピタキシャル基板100は、n領域123およびp型ボディ層122を貫通してn-層121に至るトレンチTRを有する。トレンチTRは表面SWを有する側壁を有する。また本実施の形態においてはトレンチTRはさらに、平坦な底部を有する。表面SWはp型ボディ層122上においてチャネル面を含む。好ましくは表面SWは所定の結晶面(特殊面とも称する)を有する。特殊面の詳細については後述する。
エピタキシャル基板100がトレンチTRを有するということは、単結晶基板110の上面上においてエピタキシャル層が部分的に除去されていることに対応している。本実施の形態においては、単結晶基板110の上面上において多数のメサ構造が形成されている。具体的には、メサ構造は上面および底面が六角形状となっており、その側壁は単結晶基板110の上面に対して傾斜している。これによりトレンチTRは開口側に向かってテーパ状に拡がっている。
ゲート酸化膜201(図1)はトレンチTRを被覆している。具体的にはトレンチTRの表面SW上および底部上にゲート酸化膜201が設けられている。このゲート酸化膜201はn領域123の上面上にまで延在している。ゲート電極202は、トレンチTRに埋め込まれている。ゲート酸化膜201はトレンチTR内においてエピタキシャル基板100とゲート電極202とを隔てている。ゲート電極202はゲート酸化膜201を介してp型ボディ層122の表面SWに対向している。ゲート電極202の上面は、ゲート酸化膜201のうちn領域123の上面上に位置する部分の上面とほぼ同じ高さになっている。ゲート酸化膜201のうちn領域123の上面上にまで延在する部分とゲート電極202とを覆うように、層間絶縁膜203が設けられている。
図4に示すように、n-層121に含まれる緩和領域121Rは、ゲート電極202との間にゲート酸化膜201を挟んでいる。緩和領域121Rは本実施の形態においては、n-層121にトレンチTRの内面全体に沿って設けられている。よって緩和領域121Rは、トレンチTRの底部上に設けられれおり、特にこの底部の角部に設けられている。緩和領域121Rには、n-層121における緩和領域121R以外の部分と同様に、ドナーが添加されている。また緩和領域121Rには、p型(第2の導電型)を付与する不純物であるアクセプタ(第2の不純物)が、ドナーの濃度に比して低い濃度で添加されている。これにより緩和領域121Rにおいて、添加されたドナーの一部がアクセプタによって相殺されている。
緩和領域121Rは1×1014cm-3以上のアクセプタの濃度を有することが好ましい。好ましくは、緩和領域121Rの少なくとも一部において、ドナー(第1の不純物)の濃度からアクセプタ(第2の不純物)の濃度を差し引いた値、すなわち実効不純物濃度は、ドナーの濃度の10%以下である。好ましくは、緩和領域121Rは200nm以上の厚さを有する。
さらに図5〜図7を参照して、エピタキシャル基板100における不純物の濃度の例について詳しく説明する。
図5は、トレンチTRの角部におけるゲート酸化膜201とn-層121との境界に位置する点O1から深さ方向(図4における矢印Z1)におけるアクセプタ濃度Npのプロファイルの一例を示す図である。この場合、1×1014cm-3以上のアクセプタの濃度を有する緩和領域121R(図4)が、ゲート酸化膜201とn-層121との境界から厚さDmで形成されている。好ましくは厚さDmは200nm以上である。好ましくは、点O1におけるアクセプタ濃度NIは1×1014cm-3以上である。好ましくは、緩和領域121Rにおける最大のアクセプタ濃度NKは、緩和領域121Rにおけるドナー濃度の90%以上である。
図6は、矢印Z1(図4)に沿う実効不純物濃度NEのプロファイルの一例を示す図である。図5のようなアクセプタ濃度Npのプロファイルが設けられる結果、緩和領域121Rにおける実効不純物濃度NEは、n-層121における緩和領域121R以外の部分に比して小さくされている。矢印DS(図6)に示す、緩和領域121Rにおける実効不純物濃度NEの落ち込み部分を横軸方向に積分した値は、緩和領域121Rの形成のために注入されるアクセプタのドース量に対応している。
図7は、トレンチTRから離れた位置における、厚さ方向(図4の矢印Z2)に沿う、実効不純物濃度NEのプロファイルである。このプロファイルに示すように、n-層121の実効不純物濃度に比してp型ボディ層122およびn領域123の実効不純物濃度ははるかに高い。よって緩和領域121Rの形成のためのアクセプタの注入(図5)の際に本実施の形態のように、n-層121だけでなくp型ボディ層122およびn領域123にもアクセプタが注入されても、この注入はp型ボディ層122およびn領域123には大きな影響を及ぼさない。
次にMOSFET500がオフ状態にある場合における、ゲート酸化膜201中の電界強度のシミュレーション結果の一例について説明する。図8は、緩和領域121Rが設けられない場合(比較例)における、矢印Z1(図4)に沿う位置での電界強度Eのシミュレーション結果の一例を示す図である。ゲート酸化膜201中での電界強度Eの最大値は7.8MV/cmであった。図9は、緩和領域121Rが設けられた場合(実施例)における、矢印Z1(図4)に沿う位置での電界強度Eのシミュレーション結果の一例を示す図である。ゲート酸化膜201中での電界強度Eの最大値は6.4MV/cmであった。よって緩和領域121Rを設けたことで、電界強度Eの最大値が7.8MV/cmから6.4MV/cmへと低減され得ることがわかった。
なおこのシミュレーションにおいては、図6および図7示す不純物プロファイルを用いた。またトレンチTRの深さは1.8μmとした。またドレイン電圧は600Vとした。
次にMOSFET500(図1)の製造方法について説明する。
図10に示すように、単結晶基板110上にn-層121がエピタキシャル成長されることで、エピタキシャル基板が形成される。このエピタキシャル成長は、たとえば原料ガスとしてシラン(SiH4)とプロパン(C38)との混合ガスを用い、キャリアガスとしてたとえば水素ガス(H2)を用いたCVD(Chemical Vapor Deposition)法により行うことができる。また、このとき導電型がn型の不純物としてたとえば窒素(N)やリン(P)を導入することが好ましい。
図11に示すように、n-層121上のp型ボディ層122と、p型ボディ層122上のn領域123と、コンタクト領域124とが形成される。具体的には、n-層121の上面にイオン注入が行われる。p型ボディ層122およびコンタクト領域124を形成するためのイオン注入においては、たとえばアルミニウム(Al)などの、p型を付与するための不純物がイオン注入される。またn領域123を形成するためのイオン注入においては、たとえばリン(P)などの、n型を付与するための不純物がイオン注入される。なおイオン注入の代わり、不純物の添加をともなうにエピタキシャル成長が用いられてもよい。
図12に示すように、n領域123およびコンタクト領域124からなる面上に、開口部を有するマスク層247が形成される。マスク層247として、たとえばシリコン酸化膜などの絶縁膜を用いることができる。開口部はトレンチTR(図1)の位置に対応して形成される。
図13に示すように、マスク層247の開口部において、n領域123と、p型ボディ層122と、n-層121の一部とがエッチングにより除去される。エッチングの方法としては、たとえば反応性イオンエッチング(RIE)、特に誘導結合プラズマ(ICP)RIEを用いることができる。具体的には、たとえば反応ガスとしてSF6またはSF6とO2との混合ガスを用いたICP−RIEを用いることができる。このようなエッチングにより、トレンチTR(図1)が形成されるべき領域に、側壁が単結晶基板110の主表面に対してほぼ垂直な内面SVを有する凹部TQを形成することができる。
次に、エピタキシャル基板100に対して、凹部TQの内面SVにおいて、熱エッチングが行われる。熱エッチングは、たとえば、少なくとも1種類以上のハロゲン原子を有する反応性ガスを含む雰囲気中で、エピタキシャル基板100を加熱することによって行い得る。少なくとも1種類以上のハロゲン原子は、塩素(Cl)原子およびフッ素(F)原子の少なくともいずれかを含む。この雰囲気は、たとえば、Cl2、BCL3、SF6、またはCF4である。たとえば、塩素ガスと酸素ガスとの混合ガスを反応ガスとして用い、熱処理温度を、たとえば700℃以上1000℃以下として、熱エッチングが行われる。
図14に示すように、熱エッチングによりトレンチTRが形成される。この際、トレンチTRの側壁として、n-層121、p型ボディ層122およびn領域123の各々からなる部分を有する表面SWが形成される。表面SW上においては特殊面が自己形成される。
なお、反応ガスは、上述した塩素ガスと酸素ガスとに加えて、キャリアガスを含んでいてもよい。キャリアガスとしては、たとえば窒素(N2)ガス、アルゴンガス、ヘリウムガスなどを用いることができる。そして、上述のように熱処理温度を700℃以上1000℃以下とした場合、SiCのエッチング速度はたとえば約70μm/時になる。また、この場合に、酸化珪素から作られたマスク層247は、SiCに対する選択比が極めて大きいので、SiCのエッチング中に実質的にエッチングされない。次にマスク層247がエッチングなど任意の方法により除去される(図15)。
図16に示すように、イオンビームIBによるイオン注入によって、トレンチTRの底部上からn-層121内へアクセプタを注入することにより、トレンチTRの底部上に緩和領域121Rが形成される。アクセプタの注入は、緩和領域121Rにおいてアクセプタの濃度がドナーの濃度よりも小さくなるように行われる。
この工程において、p型ボディ層122、n領域123およびコンタクト領域124の一部または全部にもアクセプタが注入されてもよい。p型ボディ層122、n領域123およびコンタクト領域124はn-層121に比して実効不純物濃度がはるかに高いので、本工程によるアクセプタ注入の影響をほとんど受けない。よってこの工程においては、高精度のイオン注入マスクを特に必要とせず、図示しているようにマスクを設けずに行うことも可能である。この場合、トレンチTRの内面の全体にアクセプタが注入される。
好ましくは、注入されるアクセプタのドース量は1×1011cm-2以上である。このイオン注入は多段階に渡って行われてもよく、たとえば、270keVで7×1010cm-2、180keVで7×1010cm-2、100keVで5×1010cm-2、50keVで3×1010cm-2の4つの工程が行われてもよい。次に、イオン注入により注入された不純物を活性化するための活性化アニールが行われる。
図17に示すように、エピタキシャル基板100のトレンチTRの内面を被覆するゲート酸化膜201が形成される。ゲート酸化膜201は、たとえば、炭化珪素からなるエピタキシャル層を熱酸化することにより得られる。
図18に示すように、トレンチTRの内部の領域をゲート酸化膜201を介して埋めるように、ゲート酸化膜201上にゲート電極202が形成される。ゲート電極202の形成方法は、たとえば、導体の成膜とCMP(Chemical Mechanical Polishing)とによって行い得る。
図19に示すように、ゲート電極202の露出面を覆うようにゲート電極202およびゲート酸化膜201上に層間絶縁膜203が形成される。
図20を参照して、層間絶縁膜203およびゲート酸化膜201に開口部が形成されるようにエッチングが行われる。この開口部により、メサ構造の上面においてn領域123およびコンタクト領域124の各々が露出される。次に、メサ構造の上面においてn領域123およびコンタクト領域124の各々に接するソース電極221が形成される。
再び図1を参照して、ソース配線222、ドレイン電極211および保護電極212が形成される。これにより、MOSFET500が得られる。
本実施の形態によれば、n-層121におけるトレンチTR近傍に緩和領域121R(図4)が形成される。緩和領域121Rはn型であってp型ではない。仮に緩和領域がp型であるとすると、この緩和領域がp型ボディ層122につながった場合、p型を有する領域としてのp型ボディ層122が拡張されてしまうので、p型ボディ層122上に形成されるチャネルの特性が大きく乱される。しかしながら本実施の形態においては緩和領域121Rがn型を有するので、図4に示すように緩和領域121Rがp型ボディ層122につながっていても、緩和領域121Rはチャネル特性に大きな影響を及ぼさない。よって緩和領域121Rが形成される位置について高い精度を必要としないので、緩和領域121Rを容易に形成することができる。
緩和領域121Rが1×1014cm-3以上のアクセプタの濃度Np(図5)を有する場合、ゲート酸化膜201に加わる電界をより緩和し得る。
緩和領域121Rの少なくとも一部において実効不純物濃度NE(図6)がドナーの濃度の10%以下である場合、ゲート酸化膜201に加わる電界をより緩和し得る。
緩和領域121Rが200nm以上の厚さを有する場合(図6)、ゲート酸化膜201に加わる電界をより緩和し得る。
トレンチTRが開口側に向かってテーパ状に拡がっている場合(図4)、トレンチTR内へイオンビームIB(図16)を容易に入射させることができる。よってトレンチTR上への緩和領域121Rの形成を容易に行うことができる。
緩和領域121Rの形成が、トレンチTRの内面の全体にアクセプタを注入することにより行われる場合(図16)、トレンチTRの内面の一部を選択的に覆うマスクを形成する必要がない。よって製造方法がより簡略化される。
なお本実施の形態のトレンチTRは平坦な底部を有するが、トレンチの形状はこれに限定されるものではなく、底部が凹部であってもよい。たとえばトレンチの形状はV字状であってもよい。
また本実施の形態においては第1の導電型がn型であり第2の導電型がp型であるが、これらの導電型が入れ替えられもよい。この場合、上記説明におけるドナーおよびアクセプタも入れ替えられる。なお、より高いチャネル移動度を得るためには、第1導電型がn型であることが好ましい。
また炭化珪素半導体装置はMOSFET以外のMISFET(Metal Insulator Semiconductor Field Effect Transistor)であってもよい。また炭化珪素半導体装置は、MISFETに限定されるものではなく、トレンチゲート構造を有するものであればよく、たとえばトレンチ型IGBT(Insulated Gate Bipolar Transistor)であってもよい。
(特殊面を有する表面)
チャネル面をなす、p型ボディ層122の表面SW(図4)は、好ましくは、特殊面を有する表面である。そのような表面SWは、図21に示すように、面方位{0−33−8}を有する面S1(第1の面)を含む。面S1は好ましくは面方位(0−33−8)を有する。
より好ましくは、表面SWは面S1を微視的に含み、表面SWはさらに、面方位{0−11−1}を有する面S2(第2の面)を微視的に含む。ここで「微視的」とは、原子間隔の2倍程度の寸法を少なくとも考慮する程度に詳細に、ということを意味する。このように微視的な構造の観察方法としては、たとえばTEM(Transmission Electron Microscope)を用いることができる。面S2は好ましくは面方位(0−11−1)を有する。
好ましくは、表面SWの面S1および面S2は、面方位{0−11−2}を有する複合面SRを構成している。すなわち複合面SRは、面S1およびS2が周期的に繰り返されることによって構成されている。このような周期的構造は、たとえば、TEMまたはAFM(Atomic Force Microscopy)により観察し得る。この場合、複合面SRは{000−1}面に対して巨視的に62°のオフ角を有する。ここで「巨視的」とは、原子間隔程度の寸法を有する微細構造を無視することを意味する。このように巨視的なオフ角の測定としては、たとえば、一般的なX線回折を用いた方法を用い得る。好ましくは複合面SRは面方位(0−11−2)を有する。この場合、複合面SRは(000−1)面に対して巨視的に62°のオフ角を有する。
好ましくは、チャネル面上においてキャリアが流れる方向であるチャネル方向CDは、上述した周期的繰り返しが行われる方向に沿っている。
次に、複合面SRの詳細な構造について説明する。
一般に、ポリタイプ4Hの炭化珪素単結晶を(000−1)面から見ると、図22に示すように、Si原子(またはC原子)は、A層の原子(図中の実線)と、この下に位置するB層の原子(図中の破線)と、この下に位置するC層の原子(図中の一点鎖線)と、この下に位置するB層の原子(図示せず)とが繰り返し設けられている。つまり4つの層ABCBを1周期としてABCBABCBABCB・・・のような周期的な積層構造が設けられている。
図23に示すように、(11−20)面(図22の線XXIII−XXIIIの断面)において、上述した1周期を構成する4つの層ABCBの各層の原子は、(0−11−2)面に完全に沿うようには配列されていない。図23においてはB層の原子の位置を通るように(0−11−2)面が示されており、この場合、A層およびB層の各々の原子は(0−11−2)面からずれていることがわかる。このため、炭化珪素単結晶の表面の巨視的な面方位、すなわち原子レベルの構造を無視した場合の面方位が(0−11−2)に限定されたとしても、この表面は、微視的には様々な構造をとり得る。
図24に示すように、複合面SRは、面方位(0−33−8)を有する面S1と、面S1につながりかつ面S1の面方位と異なる面方位を有する面S2とが交互に設けられることによって構成されている。面S1および面S2の各々の長さは、Si原子(またはC原子)の原子間隔の2倍である。なお面S1および面S2が平均化された面は、(0−11−2)面(図23)に対応する。
図25に示すように、複合面SRを(01−10)面から見て単結晶構造は、部分的に見て立方晶と等価な構造(面S1の部分)を周期的に含んでいる。具体的には複合面SRは、上述した立方晶と等価な構造における面方位(001)を有する面S1と、面S1につながりかつ面S1の面方位と異なる面方位を有する面S2とが交互に設けられることによって構成されている。このように、立方晶と等価な構造における面方位(001)を有する面(図22においては面S1)と、この面につながりかつこの面方位と異なる面方位を有する面(図22においては面S2)とによって表面を構成することは4H以外のポリタイプにおいても可能である。ポリタイプは、たとえば6Hまたは15Rであってもよい。
次に図26を参照して、表面SWの結晶面と、チャネル面の移動度MBとの関係について説明する。図26のグラフにおいて、横軸は、チャネル面を有する表面SWの巨視的な面方位と(000−1)面とのなす角度D1を示し、縦軸は移動度MBを示す。プロット群CMは表面SWが熱エッチングによる特殊面として仕上げられた場合に対応し、プロット群MCはそのような熱エッチングがなされない場合に対応する。
プロット群MCにおける移動度MBは、チャネル面の表面の巨視的な面方位が(0−33−8)のときに最大となった。この理由は、熱エッチングが行われない場合、すなわち、チャネル表面の微視的な構造が特に制御されない場合においては、巨視的な面方位が(0−33−8)とされることによって、微視的な面方位(0−33−8)、つまり原子レベルまで考慮した場合の面方位(0−33−8)が形成される割合が確率的に高くなったためと考えられる。
一方、プロット群CMにおける移動度MBは、チャネル面の表面の巨視的な面方位が(0−11−2)のとき(矢印EX)に最大となった。この理由は、図24および図25に示すように、面方位(0−33−8)を有する多数の面S1が面S2を介して規則正しく稠密に配置されることで、チャネル面の表面において微視的な面方位(0−33−8)が占める割合が高くなったためと考えられる。
なお移動度MBは複合面SR上において方位依存性を有する。図27に示すグラフにおいて、横軸はチャネル方向と<0−11−2>方向との間の角度D2を示し、縦軸はチャネル面の移動度MB(任意単位)を示す。破線はグラフを見やすくするために補助的に付してある。このグラフから、チャネル移動度MBを大きくするには、チャネル方向CD(図21)が有する角度D2は、0°以上60°以下であることが好ましく、ほぼ0°であることがより好ましいことがわかった。
図28に示すように、表面SWは複合面SRに加えてさらに面S3(第3の面)を含んでもよい。より具体的には、面S3および複合面SRが周期的に繰り返されることによって構成された複合面SQを表面SWが含んでもよい。この場合、表面SWの{000−1}面に対するオフ角は、理想的な複合面SRのオフ角である62°からずれる。このずれは小さいことが好ましく、±10°の範囲内であることが好ましい。このような角度範囲に含まれる表面としては、たとえば、巨視的な面方位が{0−33−8}面となる表面がある。より好ましくは、表面SWの(000−1)面に対するオフ角は、理想的な複合面SRのオフ角である62°からずれる。このずれは小さいことが好ましく、±10°の範囲内であることが好ましい。このような角度範囲に含まれる表面としては、たとえば、巨視的な面方位が(0−33−8)面となる表面がある。
このような周期的構造は、たとえば、TEMまたはAFMにより観察し得る。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
100 エピタキシャル基板(炭化珪素基板)、110 単結晶基板、121 n-層(第1の層)、121R 緩和領域、122 p型ボディ層(第2の層)、123 n領域(第3の層)、124 コンタクト領域、201 ゲート酸化膜(ゲート絶縁膜)、202 ゲート電極、203 層間絶縁膜、211 ドレイン電極、212 保護電極、221 ソース電極、222 ソース配線、247 マスク層、500 MOSFET(炭化珪素半導体装置)。

Claims (7)

  1. 炭化珪素半導体装置であって、
    第1の導電型を有する第1の層と、前記第1の層上に設けられ第2の導電型を有する第2の層と、前記第2の層上に設けられ前記第2の層によって前記第1の層と分離され前記第1の導電型を有する第3の層とを含む炭化珪素基板を備え、前記炭化珪素基板には、前記第3の層および前記第2の層を貫通して前記第1の層に至り、前記第1の層上に底部を有するトレンチが設けられており、前記炭化珪素半導体装置はさらに
    前記トレンチに埋め込まれたゲート電極と、
    前記トレンチ内において前記炭化珪素基板と前記ゲート電極とを隔てるゲート絶縁膜とを備え、前記第1の層は、前記ゲート電極との間に前記ゲート絶縁膜を挟む緩和領域を含み、前記緩和領域には、前記第1の導電型を付与する第1の不純物が添加されており、かつ前記第2の導電型を付与する第2の不純物が前記第1の不純物の濃度に比して低い濃度で添加されている、炭化珪素半導体装置。
  2. 前記緩和領域は1×1014cm-3以上の前記第2の不純物の濃度を有する、請求項1に記載の炭化珪素半導体装置。
  3. 前記緩和領域の少なくとも一部において、前記第1の不純物の濃度から前記第2の不純物の濃度を差し引いた値は前記第1の不純物の濃度の10%以下である、請求項1または2に記載の炭化珪素半導体装置。
  4. 前記緩和領域は200nm以上の厚さを有する、請求項1〜3のいずれか1項に記載の炭化珪素半導体装置。
  5. 前記トレンチは開口側に向かってテーパ状に拡がっている、請求項1〜4のいずれか1項に記載の炭化珪素半導体装置。
  6. 炭化珪素半導体装置の製造方法であって、
    第1の導電型を有する第1の層と、前記第1の層上に設けられ第2の導電型を有する第2の層と、前記第2の層上に設けられ前記第2の層によって前記第1の層と分離され前記第1の導電型を有する第3の層とを含む炭化珪素基板を形成する工程を備え、前記第1の層には前記第1の層が前記第1の導電型を有するように第1の不純物が添加されており、前記製造方法はさらに
    前記第3の層および前記第2の層を貫通して前記第1の層に至り、前記第1の層上に底部を有するトレンチを形成する工程と、
    前記トレンチの前記底部上から前記第1の層内へ前記第2の導電型を付与するための第2の不純物を注入することにより前記底部上に緩和領域を形成する工程とを備え、前記緩和領域を形成する工程は、前記緩和領域において前記第2の不純物の濃度が前記第1の不純物の濃度よりも小さくなるように行われ、前記製造方法はさらに
    前記炭化珪素基板の前記トレンチの内面を被覆するゲート絶縁膜を形成する工程と、
    前記ゲート絶縁膜上にゲート電極を形成する工程とを備える、炭化珪素半導体装置の製造方法。
  7. 前記緩和領域を形成する工程は、前記トレンチの前記内面の全体に前記第2の不純物を注入することにより行われる、請求項6に記載の炭化珪素半導体装置の製造方法。
JP2012113941A 2012-05-18 2012-05-18 炭化珪素半導体装置およびその製造方法 Withdrawn JP2013243180A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012113941A JP2013243180A (ja) 2012-05-18 2012-05-18 炭化珪素半導体装置およびその製造方法
PCT/JP2013/060610 WO2013172125A1 (ja) 2012-05-18 2013-04-08 炭化珪素半導体装置およびその製造方法
US13/863,091 US20130306987A1 (en) 2012-05-18 2013-04-15 Silicon carbide semiconductor device and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012113941A JP2013243180A (ja) 2012-05-18 2012-05-18 炭化珪素半導体装置およびその製造方法

Publications (1)

Publication Number Publication Date
JP2013243180A true JP2013243180A (ja) 2013-12-05

Family

ID=49580588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012113941A Withdrawn JP2013243180A (ja) 2012-05-18 2012-05-18 炭化珪素半導体装置およびその製造方法

Country Status (3)

Country Link
US (1) US20130306987A1 (ja)
JP (1) JP2013243180A (ja)
WO (1) WO2013172125A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015156429A (ja) * 2014-02-20 2015-08-27 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506421A (en) * 1992-11-24 1996-04-09 Cree Research, Inc. Power MOSFET in silicon carbide
US6580123B2 (en) * 2000-04-04 2003-06-17 International Rectifier Corporation Low voltage power MOSFET device and process for its manufacture
JP2007087985A (ja) * 2005-09-20 2007-04-05 Sanyo Electric Co Ltd 絶縁ゲート型半導体装置およびその製造方法
JP5569162B2 (ja) * 2010-06-10 2014-08-13 富士電機株式会社 半導体装置および半導体装置の製造方法
JP2012038771A (ja) * 2010-08-03 2012-02-23 Sumitomo Electric Ind Ltd 半導体装置およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015156429A (ja) * 2014-02-20 2015-08-27 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法

Also Published As

Publication number Publication date
WO2013172125A1 (ja) 2013-11-21
US20130306987A1 (en) 2013-11-21

Similar Documents

Publication Publication Date Title
JP6111673B2 (ja) 炭化珪素半導体装置
JP6064614B2 (ja) 炭化珪素半導体装置およびその製造方法
JP6171678B2 (ja) 炭化珪素半導体装置およびその製造方法
WO2014199748A1 (ja) 炭化珪素半導体装置
WO2014141754A1 (ja) 炭化珪素半導体装置
JP2018088527A (ja) 炭化珪素半導体装置
JP6098417B2 (ja) 炭化珪素半導体装置およびその製造方法
JP6135383B2 (ja) 炭化珪素半導体装置
JP5811973B2 (ja) 炭化珪素半導体装置の製造方法
JP6056292B2 (ja) 炭化珪素半導体装置の製造方法
WO2013172124A1 (ja) 炭化珪素半導体装置
JP2014056882A (ja) 炭化珪素半導体装置およびその製造方法
WO2014002589A1 (ja) 炭化珪素半導体装置の製造方法および炭化珪素半導体装置
US9679986B2 (en) Silicon carbide semiconductor device
JP6098474B2 (ja) 炭化珪素半導体装置およびその製造方法
US9793365B2 (en) Method for manufacturing silicon carbide semiconductor device having trench
WO2013172125A1 (ja) 炭化珪素半導体装置およびその製造方法

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20140821