WO2014054453A1 - 異常検出装置及び異常検出方法 - Google Patents

異常検出装置及び異常検出方法 Download PDF

Info

Publication number
WO2014054453A1
WO2014054453A1 PCT/JP2013/075652 JP2013075652W WO2014054453A1 WO 2014054453 A1 WO2014054453 A1 WO 2014054453A1 JP 2013075652 W JP2013075652 W JP 2013075652W WO 2014054453 A1 WO2014054453 A1 WO 2014054453A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
value
waste gate
abnormality detection
engine
Prior art date
Application number
PCT/JP2013/075652
Other languages
English (en)
French (fr)
Inventor
平 中野
Original Assignee
日野自動車 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日野自動車 株式会社 filed Critical 日野自動車 株式会社
Priority to CN201380051592.3A priority Critical patent/CN104685184B/zh
Priority to US14/432,275 priority patent/US9829414B2/en
Priority to EP13844183.7A priority patent/EP2905446A4/en
Publication of WO2014054453A1 publication Critical patent/WO2014054453A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/14Testing gas-turbine engines or jet-propulsion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/16Other safety measures for, or other control of, pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/86Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the technology of the present disclosure relates to an abnormality detection device and an abnormality detection method for a waste gate valve.
  • a turbocharger including a turbine, a waste gate passage that bypasses the turbine, and a waste gate valve disposed in the waste gate passage.
  • the waste gate valve opens the waste gate passage when the pressure of the exhaust gas exceeds a predetermined value, and suppresses the exhaust gas flowing into the turbine.
  • a technique for detecting an abnormality of the waste gate valve for example, a technique for determining whether or not the detected value of the boost pressure exceeds a limit value and indicating that the detected value exceeds the limit value is known. (For example, refer to Patent Document 1).
  • an abnormality detection apparatus includes a waste gate valve, an acquisition unit, a calculation unit, and a determination unit.
  • the acquisition unit acquires engine rotation speed, boost pressure, and intake air temperature.
  • the calculation unit calculates a calculated value of the mass flow rate of the working gas of the engine using the rotation speed, the boost pressure, and the intake air temperature.
  • the determination unit determines that the waste gate valve is abnormal when the calculated value is not a normal value.
  • an abnormality detection method includes acquiring an engine rotation speed, a boost pressure, and an intake air temperature.
  • the method includes calculating a calculated value of the mass flow rate of the working gas using the rotation speed, the boost pressure, and the intake air temperature.
  • the method comprises determining that the waste gate is abnormal when the calculated value is not a normal value.
  • the mass flow rate of the working gas is calculated using the boost pressure, the intake air temperature, and the engine rotational speed, and abnormality of the waste gate valve is determined based on the calculated value. That is, when detecting the abnormality of the waste gate valve, the intake temperature is taken into consideration in addition to the boost pressure, so that the abnormality of the waste gate valve is detected under a condition corresponding to the atmospheric temperature. As a result, an abnormality of the waste gate valve is detected with high accuracy.
  • the determination unit uses data having the normal value defined according to the operating state of the engine, and the waste gate valve is abnormal when the calculated value is not the normal value according to the operating state. It is judged that.
  • the abnormality of the waste gate valve is detected under a standard according to the operating state of the engine. As a result, an abnormality of the waste gate valve is detected with high accuracy.
  • the acquisition unit acquires information indicating a control state for the waste gate valve
  • the determination unit uses the data having the normal value defined for each control state according to the operation state, When the calculated value is not the normal value according to the operating state, it is determined that the waste gate valve is abnormal.
  • the abnormality is detected according to the control state of the waste gate valve, that is, the open / close state, the abnormality of the waste gate valve is detected with higher accuracy.
  • the acquisition unit acquires the rotation speed, the boost pressure, and the intake air temperature when a predetermined period has elapsed since the opening / closing of the waste gate valve is switched.
  • the mass flow rate of the working gas is affected by the rotation of the turbine during the period when the turbine is rotating by inertia. Within this period, the calculated value of the working gas tends to increase. Therefore, if an abnormality is detected under the same conditions as other periods when the waste gate valve is open within a predetermined time after the waste gate valve is switched from the closed state to the open state, the waste gate valve is abnormal. It becomes easy to be judged. According to the above configuration, the abnormality detection is interrupted within a predetermined time after switching between opening and closing. In other words, since the abnormality is determined in a state where the rotation of the turbine is more stable than immediately after the opening / closing of the waste gate valve is switched, the abnormality of the waste gate valve is detected with higher accuracy.
  • (A) is a graph which shows an example of transition of the calculation value of a working gas amount and a reference value before and after a waste gate valve was switched from a closed state to an open state
  • (b) is a graph which shows the open / closed state of a waste gate valve.
  • a cylinder block 11 of a diesel engine 10 (hereinafter simply referred to as an engine 10) is formed with four cylinders 12 arranged in a row, and each cylinder 12 includes an injector 13. Fuel is injected. Connected to the cylinder block 11 are an intake manifold 14 for supplying intake air as working gas to each cylinder 12 and an exhaust manifold 15 into which exhaust gas from each cylinder 12 flows.
  • An air cleaner (not shown) is attached to the upstream end of the intake passage 16 connected to the intake manifold 14.
  • a compressor 18 of a turbocharger 17 is attached to the intake passage 16.
  • An intercooler 19 for cooling the intake air compressed by the compressor 18 is attached to a portion of the intake passage 16 on the downstream side of the compressor 18.
  • an exhaust passage 20 is connected to the exhaust manifold 15.
  • a turbine 21 connected to the compressor 18 described above is attached to the exhaust passage 20.
  • the exhaust manifold 15 and the exhaust passage 20 are connected to a waste gate passage 22 (hereinafter referred to as a W / G (Waste Gate) passage 22) that bypasses the turbine 21.
  • a waste gate valve 23 (hereinafter referred to as a W / G valve 23) for opening and closing the W / G passage 22 is attached to the W / G passage 22.
  • the opening / closing of the W / G valve 23 is controlled by a waste gate valve control unit 24 (hereinafter referred to as a W / G valve control unit 24).
  • the W / G valve control unit 24 switches between opening and closing the W / G valve 23 according to the rotational speed NE of the engine 10 and the fuel injection amount Qf.
  • the W / G valve 23 When the W / G valve 23 is closed, the exhaust gas in the exhaust manifold 15 flows into the turbine 21.
  • the W / G valve 23 is open, the exhaust gas in the exhaust manifold 15 bypasses the turbine 21 and flows into the exhaust passage 20.
  • a boost pressure sensor 25 is attached to the downstream side of the compressor 18 in the intake passage 16.
  • the boost pressure sensor 25 detects the boost pressure Pb that is the pressure of the working gas that is compressed by the compressor 18 and flows in the intake passage 16 at a predetermined control cycle.
  • An intake air temperature sensor 26 is attached to the intake manifold 14.
  • the intake air temperature sensor 26 detects an intake air temperature Tin, which is the temperature of the working gas immediately before flowing into the cylinder 12, at a predetermined control cycle.
  • the engine 10 is provided with a rotation speed sensor 27 that detects the rotation speed NE of the engine 10.
  • the rotational speed sensor 27 detects the rotational speed of the crankshaft 28 and detects the rotational speed NE of the engine 10 at a predetermined control cycle.
  • the abnormality detection device 30 for detecting the abnormality of the W / G valve 23 described above will be described with reference to FIGS.
  • the electrical configuration of the abnormality detection device 30 will be described with reference to FIG.
  • the abnormality detection device 30 includes a CPU, a ROM, a RAM, and the like, and includes a control unit 31 that performs various calculations and settings, and a storage unit 32 that stores various control programs and various data. And.
  • the control unit 31 executes an abnormality detection process for detecting an abnormality of the W / G valve 23 based on various control programs and various data stored in the storage unit 32.
  • the abnormality detection device 30 includes a detection signal indicating the boost pressure Pb from the boost pressure sensor 25, a detection signal indicating the intake air temperature Tin from the intake air temperature sensor 26, a detection signal indicating the rotational speed NE of the engine 10 from the rotational speed sensor 27, and the like. Are input at a predetermined control cycle.
  • a control signal indicating the open / closed state (control state) of the W / G valve 23 is input to the abnormality detection device 30 at a predetermined control cycle from the W / G valve control unit 24 that controls the opening / closing of the W / G valve 23. Is done.
  • a signal indicating the fuel injection amount Qf is input to the abnormality detection device 30 at a predetermined control cycle from the fuel injection control unit 45 that controls the fuel injection amount Qf that is the amount of fuel injected from the injector 13.
  • the control part 31 as an acquisition part acquires these various information.
  • the open / close flag setting unit 33 of the control unit 31 sets an open / close flag F1 indicating the open / close state of the waste gate valve.
  • the open / close flag setting unit 33 sets the open / close flag F ⁇ b> 1 to “0” when the control signal input from the W / G valve control unit 24 is a signal indicating the open state of the W / G valve 23.
  • the open / close flag setting unit 33 sets the open / close flag F ⁇ b> 1 to “1” when the control signal input from the W / G valve control unit 24 is a signal indicating the closed state of the W / G valve 23.
  • the time measuring unit 34 of the control unit 31 measures the elapsed time after the opening / closing of the W / G valve 23 is switched.
  • the timer unit 34 sets the count value C of a counter (not shown) to the initial value Ci and counts down the count value C at a predetermined cycle.
  • the control unit 31 continues the abnormality detection process of the W / G valve 23 when the count value C becomes “0”.
  • the transition period is a period until the rotation of the turbine 21 shifts to the rotation according to the opened / closed state of the W / G valve 23 after the switching. Exists.
  • the initial value Ci is a value for determining whether or not such a transition period has elapsed.
  • the working gas amount calculation unit 35 of the control unit 31 calculates a working gas amount that is a mass flow rate of the working gas (intake air in the present embodiment) supplied to the cylinder 12.
  • the working gas amount calculation unit 35 functions as a calculation unit that calculates the calculation value Gc.
  • the reference value calculation unit 36 of the control unit 31 calculates a reference value Gs which is an ideal working gas amount according to the operating state of the engine 10 including opening / closing of the W / G valve 23.
  • the reference value calculation unit 36 calculates a reference value Gs for the working gas amount based on the rotational speed NE of the engine 10, the fuel injection amount Qf, and the reference data 40 stored in the storage unit 32.
  • the reference data 40 is data created based on the results of an experiment performed on the engine 10 in advance, and is data having a reference value Gs defined according to the rotational speed NE of the engine 10 and the fuel injection amount Qf. It is.
  • the reference value calculation unit 36 calculates a reference value Gs by selecting a value corresponding to the rotational speed NE of the engine 10 and the fuel injection amount Qf from the reference data 40.
  • the threshold value setting unit 37 of the control unit 31 sets a threshold value Gt for a determination value Gj that is an absolute value obtained by subtracting the reference value Gs from the calculated value Gc of the working gas amount.
  • the threshold setting unit 37 sets the threshold Gt based on the opening / closing flag F1, the rotational speed NE of the engine 10, the fuel injection amount Qf, and the first threshold data 41 and the second threshold data 42 stored in the storage unit 32. .
  • the first threshold value data 41 has a threshold value Gt when the W / G valve 23 is controlled to be closed, and the threshold value Gt is defined according to the rotational speed NE and the fuel injection amount Qf.
  • the second threshold data 42 has a threshold Gt when the W / G valve 23 is controlled to be in the open state, and the threshold Gt is defined according to the rotational speed NE and the fuel injection amount Qf.
  • the threshold value Gt of each data 41 and 42 is a value defined based on the results of experiments and simulations performed on the engine 10 in advance, and is a thermal effect on the W / G valve 23 and the W / G passage 22. Is a value that takes into account.
  • the threshold setting unit 37 selects the first threshold data 41 or the second threshold data 42 according to the value of the open / close flag F1, and sets the threshold Gt according to the rotational speed NE and the fuel injection amount Qf from the selected threshold data. By selecting, the threshold value Gt is set.
  • the determination unit 38 of the control unit 31 determines whether or not an abnormality has occurred in the W / G valve 23.
  • the determination unit 38 calculates the above-described determination value Gj, and determines whether or not the determination value Gj is greater than or equal to the threshold value Gt.
  • the determination unit 38 determines that an abnormality has occurred in the W / G valve 23 when the determination value Gj exceeds the threshold value Gt. That is, the determination of whether or not the determination value Gj exceeds the threshold value Gt corresponds to the determination of whether or not the calculation value Gc is a normal value (reference value GS).
  • the open / close flag F1 0
  • the determination unit 38 determines that the W / G valve 23 is in the first abnormal state that is fixed in the open state.
  • the determination unit 38 determines that the W / G valve 23 is in the second abnormal state that is fixed in the closed state. On the other hand, the determination unit 38 determines that the W / G valve 23 is operating normally when the determination value Gj is equal to or less than the threshold value Gt.
  • the failure flag setting unit 39 of the control unit 31 sets the failure flag F2 according to the determination result.
  • the failure flag setting unit 39 sets the failure flag F2 to “0” when it is determined that the W / G valve 23 is in a normal state.
  • the failure flag setting unit 39 sets the failure flag F2 to “1” when it is determined that the W / G valve 23 is in the first abnormal state.
  • the failure flag setting unit 39 sets the failure flag F2 to “2” when it is determined that the W / G valve 23 is in the second abnormal state.
  • the control unit 31 When the failure flag F2 is set to “1”, the control unit 31 outputs a control signal indicating the first abnormal state to the alarm device 46.
  • the alarm device 46 to which the control signal is input notifies the driver that the W / G valve 23 is in the first abnormal state by turning on the alarm lamp 46a indicating that the control signal is in the first abnormal state.
  • the control unit 31 outputs a control signal indicating that the alarm device 46 is in the second abnormal state.
  • the alarm device 46 to which the control signal is input notifies the driver that the W / G valve 23 is in the second abnormal state by turning on the alarm lamp 46b indicating that it is in the second abnormal state.
  • the control unit 31 outputs an output limiting signal indicating that the fuel injection amount Qf is limited to the fuel injection control unit 45.
  • the fuel injection control unit 45 to which the output restriction signal is input reduces the fuel injection amount Qf calculated according to the operating state of the engine 10 at a predetermined rate, and fuel corresponding to the reduced fuel injection amount Qf is supplied.
  • the injector 13 is controlled so as to be injected into the cylinder 12.
  • the failure flag F2 is set to “0” by an operator who has performed maintenance after the maintenance based on the abnormality of the W / G valve 23 is completed. Further, the lighting of the alarm lamps 46a and 46b in the alarm device 46 and the output limitation of the fuel injection control unit 45 are also released by the operator.
  • the control unit 31 sets and counts down the count value C by the time measuring unit 34 as a process different from the following abnormality detection process.
  • the control unit 31 determines whether or not the failure flag F2 is “0” in the first step S11, that is, the W / G valve 23 operates normally. Judge whether or not.
  • the failure flag F2 is “1” (step S11: NO), that is, when an abnormality of the W / G valve 23 has already been detected, the control unit 31 ends the abnormality detection process as it is.
  • step S12 it is repeatedly determined whether or not the count value C of the timing unit 34 is “0”. That is, in step S12, the control unit 31 determines whether or not the time corresponding to the transient period has elapsed since the control signal from the W / G valve control unit 24 changed.
  • step S12 When the count value C of the timekeeping unit 34 is “0” (step S12: YES), the control unit 31 in the next step S13, the fuel injection amount Qf, the boost pressure Pb, the rotational speed NE of the engine 10, and the intake air Various information of temperature Tin is acquired. That is, the control unit (acquisition unit) 31 acquires the rotational speed NE, the boost pressure Pb, and the intake air temperature Tin when a predetermined period has elapsed since the opening / closing of the W / G valve 23 is switched.
  • the control unit 31 calculates the calculated value Gc of the working gas amount based on the boost pressure Pb, the rotation speed NE, and the intake air temperature Tin acquired in step S13. Further, the control unit 31 calculates the reference value Gs of the working gas amount based on the fuel injection amount Qf, the rotational speed NE acquired in step S13, and the reference data 40 stored in the storage unit 32.
  • step S15 the control unit 31 determines whether or not the open / close flag F1 is “0”. That is, in step S15, the control unit 31 determines whether or not the W / G valve 23 is controlled to be closed.
  • step S16 the control unit 31 selects the first threshold data 41 as the threshold data for setting the threshold Gt.
  • the control unit 31 selects a value corresponding to the fuel injection amount Qf and the rotational speed NE acquired in step S13 from the first threshold data 41, and sets the selected value as the threshold Gt.
  • the control unit 31 determines whether or not the determination value Gj, which is the difference between the calculated value Gc and the reference value Gs, exceeds the threshold value Gt set in step S16.
  • step S17 YES
  • the control unit 31 determines in the next step S18 that the W / G valve 23 is fixed to the first abnormal state,
  • the failure flag F2 is set to “1”.
  • the control unit 31 outputs an output limiting signal indicating that the fuel injection amount Qf is limited to the fuel injection control unit 45. And the control part 31 outputs the control signal which shows that the W / G valve
  • the fuel injection control unit 45 to which the output restriction signal is input limits the fuel injection amount Qf, and the alarm device 46 to which the control signal is input indicates that the W / G valve 23 is in the first abnormal state due to the lighting of the alarm lamp 46a. Notify the driver that there is.
  • step S17 NO
  • the control unit 31 determines that the W / G valve 23 is operating normally in the next step S20, and fails.
  • the flag F2 is set to “0”, and the series of processing ends.
  • step S21 the control unit 31 uses the second threshold data 42 as threshold data for setting the threshold Gt. select.
  • the control unit 31 selects a value corresponding to the fuel injection amount Qf and the rotational speed NE acquired in step S13 from the second threshold data 42, and sets the selected value as the threshold Gt.
  • the control unit 31 determines whether or not the determination value Gj exceeds the threshold value Gt set in step S21.
  • step S22 YES
  • the control unit 31 determines in the next step S23 that the W / G valve 23 is fixed in the closed state, and the second abnormal state.
  • the failure flag F2 is set to “2”.
  • the control unit 31 proceeds to step S19 and outputs an output limiting signal indicating that the fuel injection amount Qf is limited to the fuel injection control unit 45. Then, the control unit 31 outputs a control signal indicating that the W / G valve 23 is in the second abnormal state to the alarm device 46 and ends the series of processes. Accordingly, the fuel injection control unit 45 to which the output restriction signal is input limits the fuel injection amount Qf, and the alarm device 46 to which the control signal is input causes the W / G valve 23 to be second when the alarm lamp 46b is turned on. Notify the driver that there is an abnormal condition.
  • step S22 NO
  • the control unit 31 proceeds to step S20, sets the failure flag F2 to “0”, and ends the series of processes.
  • the operation of the above-described abnormality detection device 30 will be described. Since the density of the intake air changes according to the surrounding environment such as the atmospheric pressure and the atmospheric temperature, the mass flow rate is different even at the same volume flow rate. Therefore, even if the intake air with the same volume flow rate is compressed under the compressor 18 with the same rotational speed, the boost pressure Pb that is the pressure after compression and the intake air temperature Tin that is the temperature after compression differ depending on the surrounding environment. .
  • the working gas amount is calculated based on the boost pressure Pb, the intake air temperature Tin, and the rotational speed NE of the engine 10, and the abnormality of the W / G valve 23 is detected based on the calculated value Gc. Detected. That is, in detecting the abnormality of the W / G valve 23, the abnormality of the W / G valve 23 is detected under the condition in which the intake air temperature Tin, that is, the atmospheric temperature is added to the boost pressure Pb. As a result, the abnormality of the W / G valve 23 is detected with higher accuracy than when the abnormality of the W / G valve 23 is detected only by the boost pressure Pb.
  • the W / G passage 22 and the W / G valve 23 itself cause thermal expansion.
  • the gap between the G passage 22 and the W / G valve 23 changes.
  • the amount of exhaust gas leakage in the W / G passage 22 changes due to such a change in the gap.
  • the W / G valve 23 is in an open state, if the cross-sectional area of the W / G passage 22 changes due to thermal expansion of the W / G passage 22, the flow rate of exhaust gas in the W / G passage 22 also changes.
  • the first threshold data 41 or the second threshold data 42 is selected according to the open / closed state of the W / G valve 23, and the threshold Gt defined in the selected threshold data is Set as threshold.
  • the first threshold value data 41 and the second threshold value data 42 define a threshold value Gt according to the rotational speed NE and the fuel injection amount Qf.
  • the W / G according to the operating state of the engine 10.
  • a threshold value Gt that takes into account thermal expansion of the valve 23 and the W / G passage 22 is defined.
  • the threshold value Gt is set in consideration of the open / closed state of the W / G valve 23, the thermal influence on the W / G valve 23, and the thermal influence on the W / G passage 22. As a result, the abnormality of the W / G valve 23 is detected with higher accuracy.
  • the W / G valve 23 is switched from the closed state to the open state at time t1. Since the period T from the time t1 to the time t2 is a transient period in which the turbine 21 rotates with inertia, the calculated value Gc of the working gas gradually decreases during this period T. Therefore, in the period T, the determination value Gj is likely to be larger than the time after the time t2, and the W / G valve 23 is easily determined to be in an abnormal state.
  • the W / G valve 23 is switched from the open state to the closed state.
  • the period immediately after the switching is a transitional period in which the rotational speed of the turbine 21 that has been in a stopped state gradually increases. Therefore, the calculated value Gc of the working gas amount gradually increases during this period. Therefore, even during this period, the determination value Gj tends to increase, and the W / G valve 23 is easily determined to be in an abnormal state.
  • the count value C of the time measuring unit 34 changes from the initial value Ci to “0”, that is, until the transient period elapses.
  • the abnormality detection of the W / G valve 23 is interrupted without acquiring various information. As a result, erroneous detection of abnormality due to the transient period is avoided.
  • the abnormality detection device 30 described above outputs an output restriction signal for limiting the fuel injection amount Qf to the fuel injection control unit 45 when an abnormality of the W / G valve 23 is detected. Therefore, unburned fuel contained in the exhaust gas is reduced in the first abnormal state, and overrun of the turbine 21 is avoided in the second abnormal state. That is, by limiting the fuel injection amount Qf, problems due to the abnormality of the W / G valve 23 are avoided.
  • the air hose constituting the intake passage 16 when the air hose constituting the intake passage 16 is cracked, it may be determined that the first abnormal state is present even if the W / G valve 23 is not fixed in the open state.
  • an abnormality is distinguished between the first abnormal state in which the W / G valve 23 is fixed in the open state and the second abnormal state in which the W / G valve 23 is fixed in the closed state. A state is detected. Therefore, by distinguishing the abnormal state of the W / G valve 23, it is easy to elucidate the cause that caused the abnormal state when it is determined that the W / G valve 23 is normal even though it is normal. Become.
  • the abnormality detection device 30 and the abnormality detection method of the above embodiment have the advantages listed below.
  • (1) The abnormality of the W / G valve 23 is detected with high accuracy by detecting the abnormality of the W / G valve 23 under the condition in which the intake air temperature Tin is added to the boost pressure Pb. .
  • the threshold value Gt is set in consideration of the open / closed state of the W / G valve 23, the thermal influence on the W / G valve 23, and the thermal influence on the W / G passage 22, the W / G valve 23 anomalies are detected with even higher accuracy.
  • the abnormal state is distinguished from the first abnormal state and the second abnormal state, when it is determined that the W / G valve 23 is normal, the abnormal state is It is easy to clarify the cause.
  • the abnormality detection device 30 may not output an output restriction signal to the fuel injection control unit 45 when an abnormality of the W / G valve 23 is detected. That is, the fuel injection amount Qf may not be limited even after the abnormality of the W / G valve 23 is detected.
  • the abnormality detection device 30 may detect an abnormality in the W / G valve 23 even during the transition period.
  • the threshold value is set based on the third threshold data in the transition period by storing the third threshold data in which the threshold value in the transition period is defined in the storage unit 32.
  • the threshold value Gt may be a constant value regardless of the open / closed state of the W / G valve 23.
  • the threshold Gt defined in the first threshold data 41 may be a value corresponding to the operating state of the engine 10, and may have a tendency to decrease as the fuel injection amount Qf decreases, for example. Further, the threshold value Gt defined in the first threshold value data 41 may be a constant value regardless of the operating state of the engine 10. Similarly, the second threshold data 42 may be a value corresponding to the operating state of the engine 10 or a constant value regardless of the operating state of the engine 10.
  • the storage unit 32 stores data defining a working gas amount range corresponding to the fuel injection amount Qf and the rotational speed NE and a range in which the W / G valve 23 is determined to be abnormal. Then, an abnormality may be detected based on the data and the calculated value Gc of the working gas amount. That is, the abnormality detection device 30 may detect an abnormality of the W / G valve 23 with the calculated value Gc of the working gas amount without calculating the determination value Gj.
  • the abnormality of the W / G valve 23 may be detected without distinguishing between the first abnormal state and the second abnormal state. Further, when detecting an abnormality of the W / G valve 23, only the first abnormal state may be detected, or only the second abnormal state may be detected.
  • the engine 10 may be provided with an EGR passage that recirculates a part of the exhaust gas to the intake passage 16. That is, the working gas may be a mixture of intake air and exhaust gas. At this time, it is preferable that the working gas is calculated in consideration of the pressure in the EGR passage, the EGR amount, and the like.
  • the abnormality detection device 30 may be a single electronic control unit or may be composed of a plurality of electronic control units. Further, the abnormality detection device 30, the fuel injection control unit 45, and the W / G valve control unit 24 may be one electronic control unit, or may be configured by a plurality of electronic control units.
  • the engine on which the abnormality detection device 30 is mounted may be a gasoline engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

 異常検出装置は、ウェイストゲートバルブ(23)と制御部(31)と作動ガス量演算部(35)と判断部(38)とを備える。前記制御部(31)は、エンジン(10)の回転速度(NE)と、ブースト圧(Pb)と、吸気温度(Tin)とを取得する。前記作動ガス量演算部(35)は、前記回転速度(NE)と、前記ブースト圧(Pb)と、前記吸気温度(Tin)とを用いて前記エンジン(10)の作動ガスの質量流量の演算値(Gc)を演算する。前記判断部(38)は、前記演算値(Gc)が基準値(Gs)でないときに前記ウェイストゲートバルブ(38)が異常であると判断する。

Description

異常検出装置及び異常検出方法
 本開示の技術は、ウェイストゲートバルブの異常検出装置及び異常検出方法に関する。
 従来から、タービンと、タービンを迂回するウェイストゲート通路と、ウェイストゲート通路に配設されるウェイストゲートバルブとを備えたターボチャージャーが知られている。ウェイストゲートバルブは、排気ガスの圧力が所定値を超えたときにウェイストゲート通路を開放して、タービンに流入する排気ガスを抑制する。
 ウェイストゲートバルブの異常を検出する技術には、例えば、ブースト圧の検出値が限度値を超えたか否かを判断し、検出値が限度値を超えたときに異常であることを示す技術が知られている(例えば、特許文献1参照)。
特開平7-293302号公報
 しかしながら、ターボチャージャーの回転数が等しい運転状態であっても、ブースト圧の検出値が異なることが少なくない。そのため、ウェイストゲートバルブの異常検出の精度を高める点において、上述した技術には、依然として改善の余地がある。
 本開示の技術は、ウェイストゲートバルブの異常を高い精度の下で検出することが可能な異常検出装置及び異常検出方法を提供することを目的とする。
 上記目的を達成するため、本発明の一態様にかかる異常検出装置は、ウェイストゲートバルブと取得部と演算部と判断部とを備える。前記取得部は、エンジンの回転速度と、ブースト圧と、吸気温度とを取得する。前記演算部は、前記回転速度と、前記ブースト圧と、前記吸気温度とを用いて前記エンジンの作動ガスの質量流量の演算値を演算する。前記判断部は、前記演算値が正常値でないときに前記ウェイストゲートバルブが異常であると判断する。
 上記目的を達成するため、本発明の更なる態様にかかる異常検出方法は、エンジンの回転速度と、ブースト圧と、吸気温度とを取得することを備える。前記方法は、前記回転速度と、前記ブースト圧と、前記吸気温度とを用いて作動ガスの質量流量の演算値を演算することを備える。前記方法は、前記演算値が正常値でないときにウェイストゲートが異常であると判断することを備える。
 これらの構成によれば、ブースト圧、吸気温度、エンジンの回転速度を用いて作動ガスの質量流量を演算し、その演算値に基づいてウェイストゲートバルブの異常が判断される。すなわち、ウェイストゲートバルブの異常を検出するうえでブースト圧に加えて吸気温度が考慮されることで、大気温度に応じた条件の下でウェイストゲートバルブの異常が検出される。その結果、ウェイストゲートバルブの異常が高い精度の下で検出される。
 好ましくは、前記判断部は、前記エンジンの運転状態に応じて規定された前記正常値を有するデータを用い、前記演算値が前記運転状態に応じた前記正常値でないときに前記ウェイストゲートバルブが異常であると判断する。
 この構成によれば、ウェイストゲートバルブの異常は、エンジンの運転状態に応じた基準の下で検出される。その結果、ウェイストゲートバルブの異常が高い精度の下で検出される。
 好ましくは、前記取得部は、前記ウェイストゲートバルブに対する制御状態を示す情報を取得し、前記判断部は、前記運転状態に応じて前記制御状態ごとに規定された前記正常値を有するデータを用い、前記演算値が前記運転状態に応じた前記正常値でないときに前記ウェイストゲートバルブが異常であると判断する。
 この構成によれば、ウェイストゲートバルブの制御状態、すなわち開閉状態に応じて異常が検出されることから、ウェイストゲートバルブの異常がさらに高い精度の下で検出される。
 好ましくは、前記取得部は、前記ウェイストゲートバルブの開閉が切り替えられてから所定期間が経過したときに、前記回転速度と前記ブースト圧と前記吸気温度とを取得する。
 例えば、ウェイストゲートバルブが閉状態から開状態に切り替えられたとしてもタービンが慣性で回転している期間は作動ガスの質量流量が該タービンの回転の影響を受けたものとなる。当該期間内においては作動ガスの演算値が大きくなりやすい。そのため、ウェイストゲートバルブが閉状態から開状態に切り替えられてから所定時間内にウェイストゲートバルブが開状態にある他の期間と同様の条件の下で異常が検出される場合、ウェイストゲートバルブが異常と判断されやすくなる。上記構成によれば、開閉が切り替えられてから所定時間内は異常検出が中断される。すなわち、ウェイストゲートバルブの開閉が切り替えられた直後に比べてタービンの回転が安定した状態で異常が判断されるため、ウェイストゲートバルブの異常がさらに高い精度の下で検出される。
本発明の一実施形態にかかる異常検出装置の概略構成を該異常検出装置が搭載されるエンジンの概略構成とともに示す図。 異常検出処理の処理手順を示すフローチャート。 (a)はウェイストゲートバルブが閉状態から開状態へ切り替えられた前後における作動ガス量の演算値及び基準値の推移の一例を示すグラフ、(b)はウェイストゲートバルブの開閉状態を示すグラフ。
 以下、図1~図3を参照して、異常検出装置及び異常検出方法の一実施形態について説明する。まず、図1を参照して異常検出装置が搭載されるディーゼルエンジンの全体構成について説明する。
 図1に示されるように、ディーゼルエンジン10(以下、単にエンジン10という。)のシリンダーブロック11には、一列に並んだ4つのシリンダー12が形成されており、各シリンダー12には、インジェクタ13から燃料が噴射される。シリンダーブロック11には、各シリンダー12に作動ガスである吸入空気を供給するためのインテークマニホールド14と、各シリンダー12からの排気ガスが流入するエキゾーストマニホールド15とが接続されている。
 インテークマニホールド14に接続される吸気通路16の上流端には、図示されないエアクリーナーが取り付けられている。吸気通路16には、ターボチャージャー17のコンプレッサー18が取り付けられている。吸気通路16におけるコンプレッサー18の下流側の部位には、該コンプレッサー18によって圧縮された吸入空気を冷却するインタークーラー19が取り付けられている。
 一方、エキゾーストマニホールド15には、排気通路20が接続されている。排気通路20には、上述したコンプレッサー18に連結されるタービン21が取り付けられている。また、エキゾーストマニホールド15と排気通路20とには、タービン21を迂回するウェイストゲート通路22(以下、W/G(Waste Gate)通路22という。)が接続されている。
 W/G通路22には、該W/G通路22を開閉するウェイストゲートバルブ23(以下、W/Gバルブ23という。)が取り付けられている。W/Gバルブ23の開閉は、ウェイストゲートバルブ制御部24(以下、W/Gバルブ制御部24という。)によって制御される。W/Gバルブ制御部24は、エンジン10の回転速度NEと燃料噴射量Qfとに応じてW/Gバルブ23の開閉を切り替える。W/Gバルブ23が閉状態のとき、エキゾーストマニホールド15内の排気ガスは、タービン21に流入する。一方、W/Gバルブ23が開状態のとき、エキゾーストマニホールド15内の排気ガスは、タービン21を迂回して排気通路20に流入する。
 一方、エンジン10には、該エンジン10の運転状態に関する情報を取得する各種センサーが取り付けられている。例えば、吸気通路16におけるコンプレッサー18よりも下流側の部位にはブースト圧センサー25が取り付けられている。ブースト圧センサー25は、コンプレッサー18により圧縮されて吸気通路16内を流れる作動ガスの圧力であるブースト圧Pbを所定の制御周期で検出する。また、インテークマニホールド14には、吸気温度センサー26が取り付けられている。吸気温度センサー26は、シリンダー12に流入する直前の作動ガスの温度である吸気温度Tinを所定の制御周期で検出する。また、エンジン10には、該エンジン10の回転速度NEを検出する回転速度センサー27が備えられている。回転速度センサー27は、クランクシャフト28の回転速度を検出してエンジン10の回転速度NEを所定の制御周期で検出する。
 次に、図1~図3を参照して上述したW/Gバルブ23の異常を検出する異常検出装置30について説明する。まず、図1を参照して異常検出装置30の電気的な構成について説明する。
 図1に示されるように、異常検出装置30は、CPU、ROM、RAM等で構成されており、各種演算や設定を行なう制御部31と、各種制御プログラムや各種データが格納される記憶部32とを備えている。制御部31は、記憶部32に格納された各種制御プログラムや各種データに基づいて、W/Gバルブ23の異常を検出する異常検出処理を実行する。
 異常検出装置30には、ブースト圧センサー25からブースト圧Pbを示す検出信号、吸気温度センサー26から吸気温度Tinを示す検出信号、回転速度センサー27からエンジン10の回転速度NEを示す検出信号、これらが所定の制御周期で入力される。また、異常検出装置30には、W/Gバルブ23の開閉を制御するW/Gバルブ制御部24からW/Gバルブ23の開閉状態(制御状態)を示す制御信号が所定の制御周期で入力される。また、異常検出装置30には、インジェクタ13から噴射される燃料の量である燃料噴射量Qfを制御する燃料噴射制御部45から燃料噴射量Qfを示す信号が所定の制御周期で入力される。取得部としての制御部31は、これらの各種情報を取得する。
 制御部31の開閉フラグ設定部33は、ウェイストゲートバルブの開閉状態を示す開閉フラグF1を設定する。開閉フラグ設定部33は、W/Gバルブ制御部24から入力される制御信号がW/Gバルブ23の開状態を示す信号であるとき、開閉フラグF1を「0」に設定する。また、開閉フラグ設定部33は、W/Gバルブ制御部24から入力される制御信号がW/Gバルブ23の閉状態を示す信号であるとき、開閉フラグF1を「1」に設定する。
 制御部31の計時部34は、W/Gバルブ23の開閉が切り替えられてからの経過時間を計時する。計時部34は、W/Gバルブ制御部24からの制御信号が切り替わると、図示されないカウンターのカウント値Cを初期値Ciに設定するとともにカウント値Cを所定の周期でカウントダウンする。制御部31は、カウント値Cが「0」になったときにW/Gバルブ23の異常検出処理を続行する。なお、W/Gバルブ23の開閉が切り替えられると、その切り替え直後には、タービン21の回転が切替後のW/Gバルブ23の開閉状態に応じた回転に移行するまでの期間である過渡期間が存在する。初期値Ciは、こうした過渡期間が経過したか否かを判断するための値である。
 制御部31の作動ガス量演算部35は、シリンダー12に供給される作動ガス(本実施形態では吸入空気)の質量流量である作動ガス量を演算する。作動ガス量演算部35は、状態方程式P×V=Gc×R×Tに対して以下に示す値を代入することで作動ガス量の演算値Gcを演算する。作動ガス量演算部35は演算値Gcを演算する演算部として機能する。
 P:ブースト圧センサー25の検出値であるブースト圧Pb
 V:エンジン10の回転速度NEとエンジン10の排気量Dとの乗算値
 T:吸気温度センサー26の検出値である吸気温度Tin
 R:気体定数
 制御部31の基準値演算部36は、W/Gバルブ23の開閉を含むエンジン10の運転状態に応じた理想の作動ガス量である基準値Gsを演算する。基準値演算部36は、エンジン10の回転速度NE、燃料噴射量Qf、及び記憶部32に格納された基準データ40に基づいて、作動ガス量の基準値Gsを演算する。
 基準データ40は、エンジン10に対して予め行った実験結果に基づいて作成されたデータであって、エンジン10の回転速度NEと燃料噴射量Qfとに応じた規定された基準値Gsを有するデータである。基準値演算部36は、エンジン10の回転速度NEと燃料噴射量Qfとに応じた値を基準データ40から選択することによって基準値Gsを演算する。
 制御部31の閾値設定部37は、作動ガス量の演算値Gcから基準値Gsを減算した値の絶対値である判断値Gjに対する閾値Gtを設定する。閾値設定部37は、開閉フラグF1、エンジン10の回転速度NE、燃料噴射量Qf、及び、記憶部32に格納された第1閾値データ41及び第2閾値データ42に基づいて閾値Gtを設定する。第1閾値データ41は、W/Gバルブ23が閉状態に制御されているときの閾値Gtを有しており、閾値Gtは回転速度NEと燃料噴射量Qfとに応じて規定されている。第2閾値データ42は、W/Gバルブ23が開状態に制御されているときの閾値Gtを有しており、閾値Gtは回転速度NEと燃料噴射量Qfとに応じて規定されている。
 各データ41,42の閾値Gtは、エンジン10に対して予め行った実験やシミュレーションの結果に基づいて規定された値であって、W/Gバルブ23及びW/G通路22に対する熱的な影響が考慮された値である。閾値設定部37は、開閉フラグF1の値に応じて第1閾値データ41あるいは第2閾値データ42を選択し、その選択した閾値データから回転速度NEと燃料噴射量Qfとに応じた閾値Gtを選択することにより、閾値Gtを設定する。
 制御部31の判断部38は、W/Gバルブ23に異常が生じているか否かを判断する。判断部38は、上述した判断値Gjを演算し、該判断値Gjが閾値Gt以上であるか否かを判断する。判断部38は、上記判断値Gjが閾値Gtを超えているときにW/Gバルブ23に異常が生じていると判断する。すなわち、判断値Gjが閾値Gtを超えているか否かの判断が、演算値Gcが正常値(基準値GS)か否かの判断に相当する。判断部38は、開閉フラグF1=0であるとき、W/Gバルブ23が開状態に固定された第1異常状態と判断する。また、判断部38は、開閉フラグF1=1であるとき、W/Gバルブ23が閉状態に固定された第2異常状態と判断する。一方、判断部38は、上記判断値Gjが閾値Gt以下であるとき、W/Gバルブ23が正常に作動していると判断する。
 制御部31の故障フラグ設定部39は、判断部38によってW/Gバルブ23の状態が判断されると、その判断結果に応じて故障フラグF2を設定する。故障フラグ設定部39は、W/Gバルブ23が正常な状態にあると判断されると故障フラグF2を「0」に設定する。故障フラグ設定部39は、W/Gバルブ23が第1異常状態にあると判断されると故障フラグF2を「1」に設定する。故障フラグ設定部39は、W/Gバルブ23が第2異常状態にあると判断されると故障フラグF2を「2」に設定する。
 制御部31は、故障フラグF2が「1」に設定されると、警報装置46に対して第1異常状態であることを示す制御信号を出力する。該制御信号が入力された警報装置46は、第1異常状態であること示す警報ランプ46aを点灯させることでW/Gバルブ23が第1異常状態にあることをドライバーに通知する。
 また、制御部31は、故障フラグF2が「2」に設定されると、警報装置46に対して第2異常状態であることを示す制御信号を出力する。該制御信号が入力された警報装置46は、第2異常状態であること示す警報ランプ46bを点灯させることでW/Gバルブ23が第2異常状態にあることをドライバーに通知する。
 また、制御部31は、故障フラグF2が「1」あるいは「2」に設定されると、燃料噴射制御部45に対して、燃料噴射量Qfを制限することを示す出力制限信号を出力する。出力制限信号が入力された燃料噴射制御部45は、エンジン10の運転状態に応じて算出される燃料噴射量Qfを所定の割合で減量し、その減量した燃料噴射量Qfの分だけの燃料がシリンダー12に噴射されるようにインジェクタ13を制御する。
 なお、故障フラグF2は、W/Gバルブ23の異常に基づくメンテナンスが終了したあとにメンテナンスを行った作業者によって「0」に設定される。また、警報装置46における警報ランプ46a,46bの点灯、及び燃料噴射制御部45の出力制限も上記作業者によって解除される。
 次に、図2を参照して異常検出装置30が実行する異常検出処理の処理手順について説明する。この異常検出処理は、繰り返し実行される。なお、制御部31は、下記異常検出処理とは別の処理として、計時部34によるカウント値Cの設定及びカウントダウンを行う。
 図2に示されるように、異常検出処理が開始されると、制御部31は、最初のステップS11で故障フラグF2が「0」であるか否か、すなわちW/Gバルブ23が正常に作動しているか否かを判断する。故障フラグF2が「1」であるとき(ステップS11:NO)、すなわちW/Gバルブ23の異常が既に検出されているとき、制御部31は、そのまま異常検出処理を終了する。
 一方、故障フラグF2が「0」であるとき(ステップS11:YES)、次のステップS12で、計時部34のカウント値Cが「0」であるか否かを繰り返し判断する。すなわち、制御部31は、ステップS12で、W/Gバルブ制御部24からの制御信号が変化してから過渡期間の分だけの時間が経過しているか否かを判断する。
 計時部34のカウント値Cが「0」であるとき(ステップS12:YES)、制御部31は、次のステップS13で、燃料噴射量Qf、ブースト圧Pb、エンジン10の回転速度NE、及び吸気温度Tinの各種情報を取得する。すなわち、制御部(取得部)31は、W/Gバルブ23の開閉が切り替えられてから所定期間が経過したときに、回転速度NEとブースト圧Pbと吸気温度Tinとを取得する。
 次のステップS14で、制御部31は、ステップS13で取得したブースト圧Pb、回転速度NE、及び吸気温度Tinに基づいて、作動ガス量の演算値Gcを演算する。また、制御部31は、ステップS13で取得した燃料噴射量Qf、回転速度NE、記憶部32に格納された基準データ40に基づいて作動ガス量の基準値Gsを演算する。
 次のステップS15で、制御部31は、開閉フラグF1が「0」であるか否かを判断する。すなわち、ステップS15で制御部31は、W/Gバルブ23が閉状態に制御されているか否かを判断する。
 開閉フラグF1が「0」であったとき(ステップS15:YES)、次のステップS16で、制御部31は、閾値Gtを設定するための閾値データとして第1閾値データ41を選択する。また、制御部31は、ステップS13で取得した燃料噴射量Qfと回転速度NEとに応じた値を第1閾値データ41から選択し、その選択した値を閾値Gtとして設定する。そして、制御部31は、次のステップS17で、演算値Gcと基準値Gsとの差である判断値GjがステップS16で設定した閾値Gtを超えているか否かを判断する。
 判断値Gjが閾値Gtを超えていた場合(ステップS17:YES)、制御部31は、次のステップS18で、W/Gバルブ23が開状態に固定されている第1異常状態と判断し、故障フラグF2を「1」に設定する。
 次のステップS19で、制御部31は、燃料噴射制御部45に対して燃料噴射量Qfを制限することを示す出力制限信号を出力する。そして、制御部31は、W/Gバルブ23が第1異常状態にあることを示す制御信号を警報装置46に出力して一連の処理を終了する。出力制限信号が入力された燃料噴射制御部45は燃料噴射量Qfを制限し、また、制御信号が入力された警報装置46は警報ランプ46aの点灯によりW/Gバルブ23が第1異常状態であることをドライバーに通知する。
 反対に、判断値Gjが閾値Gt以下であった場合(ステップS17:NO)、制御部31は、次のステップS20で、W/Gバルブ23が正常に作動しているものと判断し、故障フラグF2を「0」に設定して一連の処理を終了する。
 一方、ステップS15で開閉フラグF1が「1」であったとき(ステップS15:NO)、次のステップS21において、制御部31は、閾値Gtを設定するための閾値データとして第2閾値データ42を選択する。また、制御部31は、ステップS13で取得した燃料噴射量Qfと回転速度NEとに応じた値を第2閾値データ42から選択し、その選択した値を閾値Gtとして設定する。そして、制御部31は、次のステップS22にて、判断値GjがステップS21で設定した閾値Gtを超えているか否かを判断する。
 判断値Gjが閾値Gtを超えていた場合(ステップS22:YES)、制御部31は、次のステップS23で、W/Gバルブ23が閉状態に固定されている第2異常状態と判断し、故障フラグF2を「2」に設定する。
 故障フラグF2が「2」に設定されると、制御部31は、ステップS19に移行して、燃料噴射制御部45に対して燃料噴射量Qfを制限することを示す出力制限信号を出力する。そして、制御部31は、W/Gバルブ23が第2異常状態にあることを示す制御信号を警報装置46に出力して一連の処理を終了する。これにより、出力制限信号が入力された燃料噴射制御部45は燃料噴射量Qfを制限し、また、制御信号が入力された警報装置46は警報ランプ46bの点灯によりW/Gバルブ23が第2異常状態であることをドライバーに通知する。
 反対に、判断値Gjが閾値Gt以下であった場合(ステップS22:NO)、制御部31は、ステップS20に移行し、故障フラグF2を「0」に設定して一連の処理を終了する。
 次に、図3を参照して、上述した異常検出装置30の作用について説明する。
 吸入空気は、大気圧や大気温度といった周辺環境に応じて密度が変化することから、同じ体積流量であっても質量流量が異なる。そのため、同じ体積流量の吸入空気が同じ回転数のコンプレッサー18の下で圧縮されたとしても、圧縮後の圧力であるブースト圧Pbや圧縮後の温度である吸気温度Tinが周辺環境に応じて異なる。
 この点、上述した異常検出装置30では、ブースト圧Pb、吸気温度Tin、エンジン10の回転速度NEに基づいて作動ガス量を演算し、その演算値Gcに基づいてW/Gバルブ23の異常が検出される。すなわち、W/Gバルブ23の異常を検出するうえでブースト圧Pbに加えて吸気温度Tin、すなわち大気温度が加味された条件の下でW/Gバルブ23の異常が検出される。その結果、ブースト圧PbのみでW/Gバルブ23の異常が検出される場合に比べて、W/Gバルブ23の異常が高い精度の下で検出される。
 また、例えば、W/Gバルブ23が閉状態のときに燃料噴射量Qfが多くなって排気ガスの温度が上昇すると、W/G通路22やW/Gバルブ23そのものの熱膨張によって、W/G通路22とW/Gバルブ23との間の隙間が変化する。こうした隙間の変化によってW/G通路22における排気ガスの漏出量が変化する。同様にW/Gバルブ23が開状態のときにも、W/G通路22の熱膨張によってW/G通路22の流路断面積が変化すると、該W/G通路22における排気ガスの流通量も変化する。
 この点、上述した異常検出装置30では、W/Gバルブ23の開閉状態に応じて第1閾値データ41あるいは第2閾値データ42が選択され、その選択された閾値データに規定された閾値Gtが閾値として設定される。そして、第1閾値データ41及び第2閾値データ42には、回転速度NEと燃料噴射量Qfとに応じた閾値Gtが規定されており、言い換えれば、エンジン10の運転状態に応じたW/Gバルブ23及びW/G通路22の熱膨張が考慮された閾値Gtが規定されている。すなわち、異常検出装置30では、W/Gバルブ23の開閉状態、W/Gバルブ23に対する熱的な影響及びW/G通路22に対する熱的な影響が考慮された閾値Gtが設定される。その結果、W/Gバルブ23の異常がさらに高い精度の下で検出される。
 また、図3に示されるように、時間の経過にともなって回転速度NEと燃料噴射量Qfとが増加すると、時刻t1においてW/Gバルブ23が閉状態から開状態へと切り替えられる。そして、時刻t1から時刻t2までの期間Tはタービン21が慣性で回転している過渡期間であるため、この期間Tにおいては作動ガスの演算値Gcが緩やかに下降する。そのため、期間Tでは、時刻t2以降の時刻よりも判断値Gjが大きくなりやすく、W/Gバルブ23が異常状態と判断されやすくなる。
 同様に、時間の経過にともなって回転速度NEと燃料噴射量Qfとが減少すると、W/Gバルブ23が開状態から閉状態へ切り替えられる。そして、その切り替え直後の期間は、停止状態にあったタービン21の回転数が徐々に高くなる過渡期間であるため、当該期間においては作動ガス量の演算値Gcが緩やかに上昇する。そのため、この期間においても判断値Gjが大きくなりやすくW/Gバルブ23が異常状態と判断されやすくなる。
 この点、上述した異常検出装置30では、W/Gバルブ23の開閉が切り替えられると、計時部34のカウント値Cが初期値Ciから「0」に変化するまで、すなわち過渡期間が経過するまで、各種情報を取得せずにW/Gバルブ23の異常検出を中断している。その結果、上記過渡期間に起因する異常の誤検出が回避される。
 また、W/Gバルブ23が開状態に固定された第1異常状態では、十分なブースト圧が得られずに燃料噴射量Qfに対して酸素が不足しやすいため、排気ガスに含まれる未燃燃料が多くなって燃費の悪化が懸念される。また、W/Gバルブ23が閉状態に固定された第2異常状態では、エキゾーストマニホールド15内の排気圧力や排気温度が過度に高められることで、タービン21がオーバーランしてしまう。
 この点、上述した異常検出装置30では、W/Gバルブ23の異常が検出されると、燃料噴射制御部45に対して燃料噴射量Qfを制限する出力制限信号を出力する。そのため、第1異常状態では排気ガスに含まれる未燃燃料が低減され、第2異常状態ではタービン21のオーバーランが回避される。すなわち、燃料噴射量Qfを制限することによって、W/Gバルブ23の異常に起因した不具合が回避される。
 また、例えば、吸気通路16を構成するエアホースに亀裂が生じている場合には、W/Gバルブ23が開状態に固定されていなくとも、第1異常状態と判断される可能性がある。この点、上述した異常検出装置30では、W/Gバルブ23が開状態に固定された第1異常状態と、W/Gバルブ23が閉状態に固定された第2異常状態とを区別して異常状態を検出している。そのため、W/Gバルブ23の異常状態が区別されることで、W/Gバルブ23が正常であるにも関わらず異常状態と判断されたときに、その異常状態を引き起こした原因が解明されやすくなる。
 以上説明したように、上記実施形態の異常検出装置30及び異常検出方法は、以下に列挙する利点を有する。
 (1)ブースト圧Pbに加えて吸気温度Tinが加味された条件の下でW/Gバルブ23の異常が検出されることで、W/Gバルブ23の異常が高い精度の下で検出される。
 (2)W/Gバルブ23の開閉状態、W/Gバルブ23に対する熱的な影響及びW/G通路22に対する熱的な影響が考慮された閾値Gtが設定されることから、W/Gバルブ23の異常がさらに高い精度の下で検出される。
 (3)過渡期間が経過するまでW/Gバルブ23の異常検出が中断されることから、過渡期間に起因する異常の誤検出が回避される。
 (4)燃料噴射量Qfを制限することによって、W/Gバルブ23の異常に起因した不具合が回避される。
 (5)異常状態が第1異常状態と第2異常状態とに区別されていることから、W/Gバルブ23が正常であるにも関わらず異常状態と判断されたときに、その異常状態を引き起こした原因が解明されやすくなる。
 なお、上記実施形態は、以下のように適宜変更して実施することもできる。
 異常検出装置30は、W/Gバルブ23の異常が検出されたときに、燃料噴射制御部45に対して出力制限信号を出力しなくてもよい。すなわち、W/Gバルブ23の異常が検出されたあとも燃料噴射量Qfが制限されなくともよい。
 異常検出装置30は、過渡期間においてもW/Gバルブ23の異常を検出してもよい。こうした構成においては、過渡期間における閾値が規定された第3閾値データを記憶部32に格納することで、過渡期間では第3閾値データに基づいて閾値が設定されることが好ましい。
 閾値Gtは、W/Gバルブ23の開閉状態に関わらず一定の値であってもよい。
 第1閾値データ41に規定される閾値Gtは、エンジン10の運転状態に応じた値であればよく、例えば、燃料噴射量Qfが少なくなるほど小さくなる傾向を有していてもよい。また、第1閾値データ41に規定される閾値Gtは、エンジン10の運転状態に関わらず一定の値であってもよい。なお、第2閾値データ42も同様にエンジン10の運転状態に応じた値であってもエンジン10の運転状態に関わらず一定の値であってもよい。
 異常検出装置30では、燃料噴射量Qfと回転速度NEとに応じた作動ガス量の範囲であって、W/Gバルブ23が異常と判断される範囲が規定されたデータが記憶部32に格納され、当該データと作動ガス量の演算値Gcとに基づいて異常が検出されてもよい。すなわち、異常検出装置30は、判断値Gjを演算しなくとも作動ガス量の演算値GcでW/Gバルブ23の異常を検出してもよい。
 W/Gバルブ23の異常は、第1異常状態と第2異常状態とに区別されることなく検出されてもよい。また、W/Gバルブ23の異常を検出する際に、第1異常状態のみが検出されてもよいし、第2異常状態のみが検出されてもよい。
 エンジン10には、排気ガスの一部を吸気通路16に還流させるEGR通路が設けられていてもよい。すなわち、作動ガスは、吸入空気と排気ガスとが混合されたものであってもよい。この際、EGR通路内の圧力やEGR量等を加味したうえで作動ガスが演算されることが好ましい。
 異常検出装置30は、1つの電子制御ユニットであってもよいし、複数の電子制御ユニットで構成されていてもよい。また、異常検出装置30、燃料噴射制御部45、及びW/Gバルブ制御部24が1つの電子制御ユニットであってもよいし、複数の電子制御ユニットで構成されていてもよい。
 異常検出装置30が搭載されるエンジンは、ガソリンエンジンであってもよい。

Claims (7)

  1.  ウェイストゲートバルブと、
     エンジンの回転速度と、ブースト圧と、吸気温度とを取得する取得部と、
     前記回転速度と、前記ブースト圧と、前記吸気温度とを用いて前記エンジンの作動ガスの質量流量の演算値を演算する演算部と、
     前記演算値が正常値でないときに前記ウェイストゲートバルブが異常であると判断する判断部と、
     を備える異常検出装置。
  2.  前記判断部は、前記エンジンの運転状態に応じて規定された前記正常値を有するデータを用い、前記演算値が前記運転状態に応じた前記正常値でないときに前記ウェイストゲートバルブが異常であると判断する
     請求項1に記載の異常検出装置。
  3.  前記取得部は、前記ウェイストゲートバルブに対する制御状態を示す情報を取得し、
     前記判断部は、前記運転状態に応じて前記制御状態ごとに規定された前記正常値を有するデータを用い、前記演算値が前記運転状態に応じた前記正常値でないときに前記ウェイストゲートバルブが異常であると判断する
     請求項2に記載の異常検出装置。
  4.  前記判断部は、基準データを用いて前記演算値が前記正常値か否かを判断しており、
     前記基準データは、前記エンジンの運転状態に応じて規定された前記正常値を有している
     請求項1に記載の異常検出装置。
  5.  前記取得部は、前記ウェイストゲートバルブに対する制御状態を示す情報を取得し、
     前記判断部は、閾値データを用いて前記演算値が前記正常値か否かを判断しており、
     前記閾値データは、前記運転状態に応じて前記制御状態ごとに規定された閾値を有している、
     請求項4に記載の異常検出装置。
  6.  前記取得部は、前記ウェイストゲートバルブの開閉が切り替えられてから所定期間が経過したときに、前記回転速度と前記ブースト圧と前記吸気温度とを取得する
     請求項1~5のいずれか一項に記載の異常検出装置。
  7.  エンジンの回転速度と、ブースト圧と、吸気温度とを取得することと、
     前記回転速度と、前記ブースト圧と、前記吸気温度とを用いて作動ガスの質量流量の演算値を演算することと、
     前記演算値が正常値でないときにウェイストゲートが異常であると判断することと、を備える
     異常検出方法。
PCT/JP2013/075652 2012-10-05 2013-09-24 異常検出装置及び異常検出方法 WO2014054453A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380051592.3A CN104685184B (zh) 2012-10-05 2013-09-24 异常检测装置以及异常检测方法
US14/432,275 US9829414B2 (en) 2012-10-05 2013-09-24 Fault detection device and fault detection method
EP13844183.7A EP2905446A4 (en) 2012-10-05 2013-09-24 ANOMALY DETECTION DEVICE AND ANOMALY DETECTION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012223100A JP6062202B2 (ja) 2012-10-05 2012-10-05 異常検出装置及び異常検出方法
JP2012-223100 2012-10-05

Publications (1)

Publication Number Publication Date
WO2014054453A1 true WO2014054453A1 (ja) 2014-04-10

Family

ID=50434782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075652 WO2014054453A1 (ja) 2012-10-05 2013-09-24 異常検出装置及び異常検出方法

Country Status (5)

Country Link
US (1) US9829414B2 (ja)
EP (1) EP2905446A4 (ja)
JP (1) JP6062202B2 (ja)
CN (1) CN104685184B (ja)
WO (1) WO2014054453A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5888422B2 (ja) * 2012-08-23 2016-03-22 トヨタ自動車株式会社 ウェイストゲートバルブの制御装置
CN109990844A (zh) * 2019-04-24 2019-07-09 东莞润如智能科技有限公司 一种智能安全监测平台
US10385794B2 (en) 2015-09-24 2019-08-20 Ai Alpine Us Bidco Inc. Method and engine controller for diagnosing waste gate valve malfunction and related power generation system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6326910B2 (ja) * 2014-03-28 2018-05-23 マツダ株式会社 ターボ過給器付きエンジンの制御装置
JP6070666B2 (ja) * 2014-09-30 2017-02-01 トヨタ自動車株式会社 過給システム
JP6070667B2 (ja) 2014-09-30 2017-02-01 トヨタ自動車株式会社 過給システム
CN106121844A (zh) * 2016-08-31 2016-11-16 潍柴动力股份有限公司 一种放气阀卡滞故障的检测方法、装置和汽车
KR101856368B1 (ko) 2016-10-18 2018-05-09 현대자동차주식회사 전기식 웨이스트 게이트 액추에이터의 파워 스테이지 고장 진단 방법
US20180334953A1 (en) * 2017-05-16 2018-11-22 Borgwarner Inc. Linear Actuator Cable Linkage
JP7172855B2 (ja) * 2019-05-27 2022-11-16 トヨタ自動車株式会社 ハイブリッド車両およびその異常診断方法
CN110631835B (zh) * 2019-09-25 2021-07-09 潍坊内燃机质量检验中心有限公司 增压压力可信性检测方法及设备
CN110954219B (zh) * 2019-11-15 2021-08-24 芜湖伊莱特电气有限公司 一种配电柜异常检测装置
CN110848024B (zh) * 2019-12-23 2021-01-19 潍柴动力股份有限公司 一种发动机增压***故障监测方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187928A (ja) * 1984-10-05 1986-05-06 Toyota Motor Corp 過給機付内燃機関の燃料制御方法
JPS62147026A (ja) * 1985-12-21 1987-07-01 Toyota Motor Corp 内燃機関の過給圧制御装置
JPH01318728A (ja) * 1988-06-16 1989-12-25 Mazda Motor Corp 過給機付エンジンの燃料供給装置
JPH07508331A (ja) * 1993-03-30 1995-09-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 過給により作動される内燃機関用の保護装置
JPH07293302A (ja) 1994-04-20 1995-11-07 Caterpillar Inc ウェストゲート故障検知装置とその作動方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988008486A1 (en) * 1987-04-20 1988-11-03 Allied-Signal Inc. Closed loop turbocharger control system with transient wastegate control
DE10207469A1 (de) 2002-02-21 2003-09-18 Audi Ag Verfahren und Vorrichtung zur Funktionskontrolle eines Bypasselements einer Ladedruckregelung eines Turbomotors
DE102004036064A1 (de) 2004-07-24 2006-03-16 Volkswagen Ag Diagnoseverfahren zur Erkennung von Fehlern bei der Ladedruckregelung eines Abgasturboladers eines Verbrennungsmotors
US20100192546A1 (en) * 2009-02-03 2010-08-05 John Philip Nohl Method and Apparatus for Controlling Regeneration of a Particulate Filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187928A (ja) * 1984-10-05 1986-05-06 Toyota Motor Corp 過給機付内燃機関の燃料制御方法
JPS62147026A (ja) * 1985-12-21 1987-07-01 Toyota Motor Corp 内燃機関の過給圧制御装置
JPH01318728A (ja) * 1988-06-16 1989-12-25 Mazda Motor Corp 過給機付エンジンの燃料供給装置
JPH07508331A (ja) * 1993-03-30 1995-09-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 過給により作動される内燃機関用の保護装置
JPH07293302A (ja) 1994-04-20 1995-11-07 Caterpillar Inc ウェストゲート故障検知装置とその作動方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2905446A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5888422B2 (ja) * 2012-08-23 2016-03-22 トヨタ自動車株式会社 ウェイストゲートバルブの制御装置
US10385794B2 (en) 2015-09-24 2019-08-20 Ai Alpine Us Bidco Inc. Method and engine controller for diagnosing waste gate valve malfunction and related power generation system
US10883435B2 (en) 2015-09-24 2021-01-05 Ai Alpine Us Bidco Inc Method and engine controller for diagnosing waste gate valve malfunction and related power generation system
CN109990844A (zh) * 2019-04-24 2019-07-09 东莞润如智能科技有限公司 一种智能安全监测平台

Also Published As

Publication number Publication date
JP2014074386A (ja) 2014-04-24
CN104685184A (zh) 2015-06-03
US9829414B2 (en) 2017-11-28
EP2905446A1 (en) 2015-08-12
JP6062202B2 (ja) 2017-01-18
CN104685184B (zh) 2017-08-08
EP2905446A4 (en) 2016-07-27
US20150253221A1 (en) 2015-09-10

Similar Documents

Publication Publication Date Title
JP6062202B2 (ja) 異常検出装置及び異常検出方法
US8413497B2 (en) Abnormality diagnostic device of internal combustion engine with turbocharger
EP3179087B1 (en) Error determination unit
JP2007291960A (ja) 遠心式圧縮機を備える内燃機関の制御装置
JP6395116B2 (ja) エンジンの失火判定装置
US9840978B2 (en) Control device for internal combustion engine
JP2006342720A (ja) 上流側吸気圧センサの異常診断装置
JP2010196659A (ja) 内燃機関、内燃機関の制御装置
JP2017172433A (ja) エンジンの失火判定装置
JP6701786B2 (ja) 故障診断方法及び故障診断装置
US10267245B2 (en) Supercharging system
US9429089B2 (en) Control device of engine
JP5267728B2 (ja) 内燃機関の制御装置
JP6070666B2 (ja) 過給システム
JP5654514B2 (ja) エンジンの吸入空気量測定装置
JP2012132423A (ja) 内燃機関の制御装置
JP5500088B2 (ja) 内燃機関の制御装置
JP6498537B2 (ja) 内燃機関の制御装置
JP2011214411A (ja) 内燃機関の燃料噴射制御装置
KR101745106B1 (ko) 시동 꺼짐 방지 장치 및 방법
JP2012087754A (ja) 内燃機関の制御装置
JP2013104298A (ja) 内燃機関の制御装置
JP2013036334A (ja) 過給機付きディーゼルエンジンの制御装置
JP2011127545A (ja) 内燃機関の制御装置
JP2017008823A (ja) 液化石油ガスの燃料成分比率推定装置及びそれを備えたエンジンシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844183

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14432275

Country of ref document: US

Ref document number: 2013844183

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE