WO2013150887A1 - 豆乳発酵物及びその製造方法 - Google Patents

豆乳発酵物及びその製造方法 Download PDF

Info

Publication number
WO2013150887A1
WO2013150887A1 PCT/JP2013/057668 JP2013057668W WO2013150887A1 WO 2013150887 A1 WO2013150887 A1 WO 2013150887A1 JP 2013057668 W JP2013057668 W JP 2013057668W WO 2013150887 A1 WO2013150887 A1 WO 2013150887A1
Authority
WO
WIPO (PCT)
Prior art keywords
fermented
soymilk
lactobacillus brevis
production method
fermentation
Prior art date
Application number
PCT/JP2013/057668
Other languages
English (en)
French (fr)
Inventor
紀彦 土本
保一 中北
浩之 原島
Original Assignee
サッポロホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012086401A external-priority patent/JP5732003B2/ja
Priority claimed from JP2013019492A external-priority patent/JP5719390B2/ja
Application filed by サッポロホールディングス株式会社 filed Critical サッポロホールディングス株式会社
Priority to CA2869292A priority Critical patent/CA2869292C/en
Priority to US14/390,475 priority patent/US10299490B2/en
Priority to SG11201406339QA priority patent/SG11201406339QA/en
Priority to MYPI2014002844A priority patent/MY185111A/en
Publication of WO2013150887A1 publication Critical patent/WO2013150887A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C11/00Milk substitutes, e.g. coffee whitener compositions
    • A23C11/02Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins
    • A23C11/10Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins containing or not lactose but no other milk components as source of fats, carbohydrates or proteins
    • A23C11/103Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins containing or not lactose but no other milk components as source of fats, carbohydrates or proteins containing only proteins from pulses, oilseeds or nuts, e.g. nut milk
    • A23C11/106Addition of, or treatment with, microorganisms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L11/00Pulses, i.e. fruits of leguminous plants, for production of food; Products from legumes; Preparation or treatment thereof
    • A23L11/60Drinks from legumes, e.g. lupine drinks
    • A23L11/65Soy drinks
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2400/00Lactic or propionic acid bacteria
    • A23V2400/11Lactobacillus
    • A23V2400/121Brevis

Definitions

  • the present invention relates to a fermented soymilk and a method for producing the same.
  • the present invention also relates to a soymilk fermented beverage and a method for producing the same.
  • Soymilk produced by processing soybeans is known as a health food because it contains abundant nutritional components derived from soybeans in addition to low calories and cholesterol.
  • Patent Document 1 contains pectin or carboxymethylcellulose sodium as a stabilizer, and its pH is adjusted to 4.5 to 5.2.
  • An acidic soy milk beverage with reduced bitterness and astringency is disclosed.
  • Patent Document 2 discloses an acidic soymilk drink containing fibrous insoluble cellulose having an average diameter of 0.01 to 1 ⁇ m.
  • Patent Document 3 discloses a yogurt made by mixing lactic acid bacteria with soy milk.
  • Lactobacillus delbruecki subspecies bulgaricus and Streptococcus thermophilus are lactic acid bacteria commonly used for lactic acid fermentation of milk. These lactic acid bacteria are also used for fermentation of soy milk. However, the fermented soymilk fermented with these lactic acid bacteria has a problem that the flavor is not preferable because it has a strong soymilk odor and lacks freshness.
  • fermented soymilk beverages may be separated into two or more layers due to aggregation of proteins, etc. during storage.
  • separation may not be sufficiently suppressed even when various additives as described in Patent Documents 1 and 2 are added.
  • Another object of the present invention is to provide a fermented soymilk beverage in which aggregation is suppressed and stability is improved, and a method for producing the same.
  • the present invention includes an enzyme treatment step of hydrolyzing soy milk with a peptide-bonded hydrolase to obtain a fermentation substrate, a fermentation step of fermenting the fermentation substrate with lactic acid bacteria belonging to Lactobacillus brevis to obtain a fermented product, A method for producing a fermented soymilk product is provided.
  • the present inventors have used a lactic acid bacterium belonging to Lactobacillus brevis, which has not been conventionally used for fermentation of soy milk, as a fermenting bacterium, soy milk odor of the fermented soy milk is sufficiently reduced, and the soy milk fermentation has a refreshing flavor. It was found that a product was obtained. Since the production method of the present invention includes a fermentation process using lactic acid bacteria belonging to Lactobacillus brevis, a savory soymilk fermented product with a sufficiently reduced soymilk odor can be obtained.
  • lactic acid bacteria belonging to Lactobacillus brevis have a problem that the fermentation rate is extremely slow when soymilk is used as a substrate. For this reason, it takes a long time to produce a fermented soymilk, and there are problems such as high production costs and a high risk of contamination, making industrial use difficult.
  • the present inventors have found that the fermentation rate can be improved by using soybean milk hydrolyzed with a peptide bond hydrolase in advance as a fermentation substrate. Therefore, since the manufacturing method of the present invention includes the above-described steps, the manufacturing method is good and can be used industrially.
  • the above production method may further include an enzyme deactivation step for deactivating the peptide bond hydrolase in the fermentation substrate.
  • an enzyme deactivation step for deactivating the peptide bond hydrolase in the fermentation substrate.
  • the peptide bond hydrolase can be at least one enzyme selected from the group consisting of peptidases and proteases.
  • the enzyme may contain an exo-type peptidase or an exo-type protease.
  • the amount of free amino acid contained in the fermentation substrate may be 6000 mass ppm or less based on the total amount of the fermentation substrate.
  • the amount of the free amino acid is within the above range, a fermented soymilk fermented product having a sufficiently reduced bitterness can be obtained.
  • the lactic acid bacteria are Lactobacillus brevis SBC8803 (Accession number: FERM BP-10632), Lactobacillus brevis SBC8027 (Accession number: FERM BP-10630), Lactobacillus brevis SBC8044 (Accession number: FERM BP-10631), Lactobacillus brevis JCM1. , Lactobacillus brevis JCM1065, and Lactobacillus brevis JCM1170. Among these, Lactobacillus brevis SBC8803 is preferable. By using these lactic acid bacteria as fermentation bacteria, the soymilk odor can be further reduced, and a more refreshing and flavorful soymilk fermented product can be obtained.
  • Lactobacillus brevis SBC8803 is the National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center on June 28, 2006 (1st, 1st East, Tsukuba City, Ibaraki, Japan, Central 6 (postal code 305-8666)) Strain with the deposit number of FERM BP-10632. In the present specification, this strain is also referred to as “SBL88 strain”.
  • Lactobacillus brevis SBC8027 is a patent biological deposit center on June 28, 2006, National Institute of Advanced Industrial Science and Technology (Aichi 1-chome, Tsukuba-shi, Ibaraki, Japan, Chuo No. 6 (zip code 305-8666)) The strain with the accession number FERM BP-10630, deposited in Japan, and Lactobacillus brevis SBC8044, on June 28, 2006, National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center (East 1, Tsukuba City, Ibaraki Prefecture, Japan) It is a strain with a deposit number of FERM BP-1063 deposited at Chome No. 1 Central No. 6 (zip code 305-8666).
  • the present invention also provides a fermented soymilk product obtained by the above production method.
  • Lactobacillus brevis is a type of lactic acid bacterium that has been used for fermented foods for a long time, and its safety to living bodies is well established. Since the safety to living bodies is high, the fermented soybean milk can be taken continuously for a long period of time.
  • the present invention further provides a food or drink containing the fermented soymilk obtained by the above production method.
  • a food or drink containing the fermented soymilk obtained by the above production method.
  • the soymilk fermented product may be a soymilk fermented beverage.
  • an addition step of adding a protein aggregation inhibitor to the fermented product may be further provided.
  • the present inventors may not sufficiently suppress separation into two or more layers during storage, etc., even if a protein aggregation inhibitor is simply added, but after the fermentation step It has been found that by adding a protein aggregation inhibitor at a predetermined timing, aggregation can be suppressed and a soymilk fermented beverage with improved stability can be produced. That is, by providing the addition step, it is possible to obtain a fermented soymilk beverage in which aggregation is suppressed and stability is improved.
  • a soymilk fermented beverage having a refreshing flavor with a soymilk odor sufficiently reduced can be obtained.
  • the said manufacturing method is equipped with the enzyme treatment process, the fermentation rate is improving, thereby manufacturing efficiency is good and can be utilized industrially.
  • the protein aggregation inhibitor may be at least one selected from soybean polysaccharide, pectin, carboxymethylcellulose, and sodium alginate. Thereby, aggregation of a water-insoluble component can be suppressed more.
  • the protein aggregation inhibitor may be a mixture of soybean polysaccharide and pectin. Thereby, aggregation of a water-insoluble component can be suppressed further.
  • the above production method may further include a homogenization step of homogenizing the workpiece at least once after the enzyme treatment step. Thereby, aggregation can be suppressed more and the soymilk fermented drink which stability improved more can be obtained.
  • the homogenization step may be performed at least once after the fermentation step. Thereby, aggregation can further be suppressed and the soymilk fermented drink which stability improved further can be obtained.
  • the present invention also provides a fermented soymilk drink obtained by the above production method.
  • the soymilk fermented beverage has a favorable appearance without being separated into two or more layers during storage and the like because aggregation is suppressed and stability is improved.
  • Lactobacillus brevis is a kind of lactic acid bacterium that has been used for fermented foods for a long time, and its safety to the living body is well established. Since the safety to the living body is high, the fermented soymilk drink can be taken continuously for a long time.
  • the present invention further provides a fermented soymilk beverage in which the average particle size of the water-insoluble component is 1.3 ⁇ m or less.
  • the above-mentioned fermented soymilk beverage has an average particle size of the water-insoluble component in a predetermined range, so that aggregation is suppressed and stability is improved, and separation into two or more layers during storage can be suppressed.
  • average particle size of water-insoluble component means that a soymilk fermented beverage is suspended in a dispersion (0.2 w / v% sulfite solution) so as to be 2 to 3 v / v%, and the particle size distribution. It means the average particle size calculated by the following formula (1) from the particle size distribution measured with a measuring device (for example, LS130 320, manufactured by Beckman Coulter, Inc.).
  • is a value calculated by the following equation (2).
  • x j and q j are defined as follows.
  • n is 116.
  • a dispersion (0.2 w / v% sulfurous acid) of the soymilk fermented beverage is 2 to 3 v / v%.
  • the average particle size Xa calculated by the following formula (3) from the particle size distribution suspended in the solution) and measured in the PIDS (polarized light scattering intensity difference measurement) usage mode.
  • sigma Xc is the sum of the median sizes of each channel
  • nc / sigma nc is the inventory rate (%) of particles in each channel.
  • the number of channels is 116.
  • the fermented soymilk beverage may contain a protein aggregation inhibitor.
  • the protein aggregation inhibitor may be at least one selected from soybean polysaccharide, pectin, carboxymethylcellulose, and sodium alginate. Thereby, it becomes a soymilk fermented beverage in which aggregation of the water-insoluble component is further suppressed.
  • the protein aggregation inhibitor may be a mixture of soybean polysaccharide and pectin. Thereby, it becomes a soymilk fermented drink in which aggregation of the water-insoluble component is further suppressed.
  • the above-mentioned fermented soymilk beverage may be obtained by fermenting soymilk with lactic acid bacteria belonging to Lactobacillus brevis.
  • the lactic acid bacteria include Lactobacillus brevis SBC8803 (Accession number: FERM BP-10632), Lactobacillus brevis SBC8027 (Accession number: FERM BP-10630), Lactobacillus brevis SBC8044 (Accession number: FERM BP-10631), and Lactobacillus brevis. It may be at least one selected from JCM1061, Lactobacillus brevis JCM1065, and Lactobacillus brevis JCM1170. Among these, Lactobacillus brevis SBC8803 is preferable.
  • Lactic acid bacteria belonging to Lactobacillus brevis have not been conventionally used for fermentation of soy milk.
  • a soymilk fermented beverage having a refreshing flavor with a soymilk odor sufficiently reduced can be provided.
  • a fermented soymilk beverage in which aggregation is suppressed and stability is improved, and a method for producing the same.
  • “soy milk” means a milky beverage obtained by eluting proteins and other components from soybeans with hot water or the like and removing the fiber.
  • the “soy milk” preferably has a soybean solid content of 8% by mass or more.
  • Soy milk includes, for example, raw soy milk, unadjusted soy milk, and the like.
  • the method for producing a fermented soymilk product according to the present invention includes at least an enzyme treatment step and a fermentation step. Moreover, you may further provide the enzyme deactivation process. Hereinafter, each step will be described.
  • the enzyme treatment step is a step of hydrolyzing soy milk with a peptide bond hydrolase. By increasing the amount of free amino acids in the fermentation substrate by carrying out this step, it is possible to improve the fermentation rate by lactic acid bacteria belonging to Lactobacillus brevis.
  • the peptide bond hydrolase is an enzyme that hydrolyzes a peptide bond (—C ( ⁇ O) —NH—).
  • Peptide bond hydrolases include peptidases that hydrolyze peptides and proteases that hydrolyze proteins.
  • peptide refers to a polymer in which amino acids of less than 100 residues are linked by peptide bonds.
  • protein refers to a polymer in which amino acids of 100 residues or more are linked by peptide bonds.
  • peptide bond hydrolase for example, at least one enzyme selected from the group consisting of peptidases and proteases can be used.
  • Peptidases and proteases are exo-type peptidases and proteases having the activity of cleaving amino acid residues by 1 to 2 residues at the end of the peptide or protein sequence, and endo-types having the activity of cleaving the peptide or protein sequence. It can be classified into peptidases and proteases.
  • the peptide bond hydrolase used in the enzyme treatment step may include exo-type peptidase activity or exo-type protease activity.
  • a commercially available product can also be used as the peptide bond hydrolase.
  • Proteax manufactured by Amano Enzyme Co., Ltd., a mixed product of end type and exo type, strong exo type activity
  • Sumiteam ACP-G manufactured by Shin Nippon Chemical Industry Co., Ltd., exo type only
  • protease M “ Amano "SD manufactured by Amano Enzyme Co., Ltd., a mixture of end type and exo type, with strong exo type activity
  • Sumiteam FLAP manufactured by Shin Nippon Chemical Industry Co., Ltd., exo type only
  • the enzyme treatment step may be performed such that the amount of free amino acid contained in the obtained fermentation substrate is 6000 mass ppm or less based on the total amount. Thereby, the bitterness of fermented soymilk can be reduced or eliminated.
  • the amount of free amino acids is more preferably 5800 ppm by mass or less, and further preferably 5500 ppm by mass or less.
  • it is 1000 mass ppm or more.
  • the “free amino acid amount” can be determined by, for example, collecting a sample of soy milk, centrifuging, treating the supernatant with 0.02N hydrochloric acid, and then analyzing an amino acid analyzer (for example, L-8800, manufactured by Hitachi High-Technologies Corporation). ) To determine the content of each amino acid.
  • an amino acid analyzer for example, L-8800, manufactured by Hitachi High-Technologies Corporation.
  • the amount of peptide bond hydrolase added may be appropriately determined depending on the type of peptide bond hydrolase used. For example, when using Proteax, it can be 0.01 U to 0.7 U per gram of soy milk, and when using Sumiteam ACP-G, it can be 0.01 U to 0.5 U per gram of soy milk. it can.
  • the treatment time and treatment temperature of soy milk with peptide bond hydrolase may be appropriately determined depending on the type and amount of peptide bond hydrolase used, but for example, it should be 1 to 3 hours at 40 to 50 ° C. Can do.
  • the amount of peptide bond hydrolase added and the treatment time and treatment temperature of soymilk with peptide bond hydrolase may be adjusted so that the amount of free amino acids is within the above-mentioned range.
  • the enzyme deactivation step is a step of deactivating the peptide bond hydrolase in the fermentation substrate. This step can be performed after the enzyme treatment step and before the fermentation step, if necessary. By carrying out this step, hydrolysis by the peptide bond hydrolase in the fermentation step can be suppressed, so that the bitterness of the fermented soymilk beverage can be further reduced.
  • the method for inactivating the enzyme may be appropriately determined according to the type of peptide bond hydrolase used. For example, a method of inactivating by adjusting pH, a method of inactivating by heating, a method of inactivating by adding an organic solvent (for example, ethanol), and a method of inactivating by adjusting the salt concentration. it can. Among them, the method of heating and deactivating is preferable because the operation is easy.
  • the heating temperature and heating time for heating may be appropriately determined according to the type of peptide bond hydrolase used, but may be, for example, 60 to 100 ° C. for 30 to 120 minutes.
  • the residual ratio of the peptide bond hydrolase (the ratio of the activity after the deactivation treatment to the added activity) may be 10% or less. Moreover, it is good also as 5% or less, 2.5% or less, or 0% (complete deactivation).
  • the fermentation process is a process of fermenting a fermentation substrate with lactic acid bacteria belonging to Lactobacillus brevis.
  • the lactic acid bacteria are added to the fermentation substrate obtained through the enzyme treatment process, and lactic acid fermentation is performed with the lactic acid bacteria to obtain a fermented product.
  • An additive other than the lactic acid bacteria may be further added to the fermentation substrate.
  • additives include sugar (sucrose, maltose, fructose, glucose, stachyose, raffinose, etc.), plant extract (eg, malt extract), flavor (eg, yogurt flavor), sweetener (eg, trehalose, aspartame, sucralose). , Acesulfame potassium, etc.).
  • sugar sucrose, maltose, fructose, glucose, stachyose, raffinose, etc.
  • plant extract eg, malt extract
  • flavor eg, yogurt flavor
  • sweetener eg, trehalose, aspartame, sucralose
  • Acesulfame potassium etc.
  • Lactobacillus brevis As a lactic acid bacterium belonging to Lactobacillus brevis, the soymilk odor can be further reduced and a more refreshing and flavorful soymilk fermented product can be obtained. Therefore, SBL88 strain, Lactobacillus brevis SBC8027, Lactobacillus brevis SBC8044, It may be Lactobacillus brevis JCM1061, Lactobacillus brevis JCM1065, or Lactobacillus brevis JCM1170. Among these, Lactobacillus brevis SBC8803 is preferable. Lactic acid bacteria belonging to Lactobacillus brevis can be used singly or in combination of two or more.
  • Lactobacillus brevis JCM1061, Lactobacillus brevis JCM1065, Lactobacillus brevis JCM1170 etc. can also be purchased from well-known cell banks, such as RIKEN bioresource center and JCRB.
  • the conditions such as the amount of lactic acid bacteria used in the fermentation process and the fermentation temperature are not particularly limited, and optimal conditions may be set according to the type of lactic acid bacteria used.
  • the lactic acid bacterium may be added to 1 ⁇ 10 6 to 1 ⁇ 10 7 cfu / mL and allowed to stand at 25 to 38 ° C.
  • the fermentation time should be shorter from the viewpoint of reducing production costs and contamination risk. Since the manufacturing method of this invention is equipped with the said enzyme treatment process, it can shorten fermentation time. Therefore, as fermentation time in a fermentation process, it can be set as 24 hours or less, for example. The fermentation time may be 22 hours or less, or 20 hours or less.
  • the fermented soymilk obtained by the above production method is rich in nutritional components derived from soybeans, has a sufficiently reduced soymilk odor, and has a refreshing flavor. Therefore, the fermented soybean milk can be used as it is as a food or drink, or can be used as a food or drink material.
  • the food and drink of the present invention may be the fermented soymilk itself or a food or drink containing the fermented soymilk.
  • Examples of the food and drink that are the fermented soymilk itself include fermented soymilk, yogurt, cheese, and the like.
  • emulsified seasonings margarine, dressing, mayonnaise, etc.
  • seasonings etc.
  • confectionery ice cream, candy, caramel, chocolate, etc.
  • beverages non-alcoholic beverages, alcoholic beverages, etc.
  • the fermented soymilk may be a fermented soymilk beverage. That is, the method for producing a fermented soymilk described above can also be implemented as a method for producing a fermented soymilk beverage. Furthermore, in the method for producing a fermented soymilk beverage according to the present invention, in addition to the enzyme treatment step, enzyme deactivation step and fermentation step described above, the raw material preparation step, the addition step, the pH adjustment step, the homogenization step or the preparation step You may have. Hereinafter, each step will be described.
  • a raw material preparation process is a process of adding an additive to the soymilk used as a raw material. What is necessary is just to perform a raw material preparation process as needed.
  • additives include sugar (sucrose, maltose, fructose, glucose, stachyose, raffinose, etc.), plant extract (eg, malt extract), flavor (eg, yogurt flavor), sweetener (eg, trehalose, aspartame, sucralose, acesulfame potassium) Etc.), acidulants (malic acid, citric acid, succinic acid, phosphoric acid, acetic acid), pigments, seasonings (amino acids, etc.), gelling agents (gellan gum, sodium alginate, carrageenan, agar), salts (sodium chloride, chloride) Potassium, magnesium chloride). These additives may be added singly or in combination of two or more.
  • the addition amount of the additive may be appropriately set according to the type of additive. Usually, the total amount of additives is 0 to 10% by mass with respect to the total amount of soy milk and additives.
  • the raw material preparation step may be performed before the fermentation step, and can be performed, for example, before the enzyme treatment step, after the enzyme treatment step, and before the fermentation step.
  • sterilization may be performed.
  • heating is performed until 85 ° C is reached (85 ° C reaching temperature)
  • plate type such as UHT (ultra high temperature instantaneous sterilization)
  • tube type direct steam sterilizer, heat exchanger and retort sterilizer.
  • the addition step is a step of adding a protein aggregation inhibitor to the fermented product obtained in the fermentation step.
  • the addition step it is possible to obtain a fermented soymilk beverage in which aggregation is suppressed and stability is improved.
  • aggregation cannot be suppressed and a soymilk fermented drink which has sufficient stability cannot be obtained.
  • by performing an addition process after a fermentation process aggregation can be suppressed and the soymilk fermented drink which stability improved can be obtained.
  • the timing for performing the addition step is not particularly limited as long as it is after the fermentation step.
  • the second homogenization step described later the manufacturing process can be simplified, and therefore the addition step may be performed after the fermentation step and before the second homogenization step.
  • Any protein aggregation inhibitor may be used as long as it suppresses protein aggregation. More specifically, protein aggregation is suppressed under acidic conditions, and emulsion breakage caused by protein aggregation is suppressed. What is necessary is just to stabilize.
  • a water-insoluble component may be kept in a dispersed state by imparting a viscosity or forming a three-dimensional network.
  • the protein aggregation inhibitor include stabilizers used as food additives, thickening stabilizers, and thickeners.
  • Examples of the stabilizer, the thickening stabilizer and the thickening agent include soybean polysaccharide, pectin, carrageenan, sodium carboxymethylcellulose, xanthan gum, guar gum, sodium alginate, locust bean gum and the like.
  • Stabilizers, thickeners and thickeners may be soy polysaccharides, pectin, sodium carboxymethylcellulose and sodium alginate. By using these, in addition to improvement in stability, aggregation of water-insoluble components can be further suppressed.
  • soybean polysaccharide and pectin are more effective, and a mixture of soybean polysaccharide and pectin is more effective. These may be used alone or in combination of two or more.
  • SM600 manufactured by Saneigen FFI, a mixture of soybean polysaccharide and pectin
  • trehalose a mixture of soybean polysaccharide and pectin
  • glycerin a mixture of soybean polysaccharide and pectin
  • phospholipid a mixture of soybean polysaccharide and pectin
  • SM600 manufactured by Saneigen FFI, a mixture of soybean polysaccharide and pectin
  • trehalose glycerin
  • phospholipid phospholipid
  • the amount of protein aggregation inhibitor added may be appropriately set according to the type of protein aggregation inhibitor used. For example, when a food stabilizer, thickener or thickener is used as the protein aggregation inhibitor, the content of the protein aggregation inhibitor is 0.1 to 5.0 mass based on the total amount of the fermented product. %, Or 0.5 to 3.0% by mass.
  • the homogenization step is a step of homogenizing the workpiece.
  • the homogenization step may be performed as necessary, but by performing at least once, a soymilk fermented beverage with more suppressed aggregation and improved stability can be obtained.
  • the homogenization process is, for example, a process of homogenizing the object to be processed (fermentation substrate) after the enzyme treatment process and before the fermentation process (first homogenization process), and homogenizing the object to be processed (fermented substance) after the fermentation process.
  • This is a process (second homogenization process).
  • at least the second homogenization step is more effective.
  • the second homogenization step may be performed after the addition step and the pH adjustment step. Thereby, mixing of a protein aggregation inhibitor and a pH adjuster, and a fermented material can be performed simultaneously.
  • an emulsifier such as a homogenizer (for example, H-20 type, manufactured by Sanwa Kikai Co., Ltd.), a homomixer (for example, High Emulder, manufactured by Izumi Food Machinery Co., Ltd.) or the like. This can be done by stirring and mixing the workpiece.
  • the homogenization conditions may be appropriately set according to the apparatus to be used. For example, when using a homogenizer (for example, H-20 type, manufactured by Sanwa Kikai Co., Ltd.), the treatment may be performed at a pressure of 10 to 20 MPa. Good.
  • a pH adjustment process is a process of adjusting pH by adding a pH adjuster to the fermented material obtained at the fermentation process.
  • the fermented product obtained in the fermentation process has a pH of about 5.0.
  • a pH adjustment step may be performed as necessary.
  • an acid or alkali that can be added to foods can be used.
  • acids such as phosphoric acid, hydrochloric acid, citric acid, malic acid, tartaric acid, acetic acid, and succinic acid
  • alkalis such as sodium hydroxide, potassium hydroxide, sodium bicarbonate, and sodium carbonate.
  • the blending process is a process of blending food additives and foods into the soymilk fermented beverage.
  • the fermented soymilk beverage obtained through the enzyme treatment step, the fermentation step, the addition step, and the like can be used as it is as a food or drink, but may be subjected to a preparation step as necessary.
  • Food additives and foods include sweeteners such as aspartame, sucralose, and acesulfame potassium, fragrances, preservatives, fragrances, emulsifiers, acidulants, gelling agents, processed starch, salts, water, and other media such as sugar, starch, Examples include foods, fruit juices, vegetable juices and the like mainly composed of dextrin, lipids, milk materials, milk and the like.
  • the amount of food additive added may be appropriately set according to the type of food additive. Usually, the total amount of food additives is 0.001 to 20.0 mass% with respect to the total amount of soy milk and additives.
  • the average particle size of the water-insoluble component is 1.3 ⁇ m or less.
  • the average particle size of the water-insoluble component is preferably 1.2 ⁇ m or less, more preferably 1.0 ⁇ m or less, and even more preferably 0.8 ⁇ m or less.
  • the average particle size of the water-insoluble component is defined as described above.
  • the water-insoluble component means a component measured by the particle size distribution measurement, for example, fat globule (soy milk oil) and protein aggregate.
  • the fermented soymilk beverage may contain a protein aggregation inhibitor.
  • a protein aggregation inhibitor those mentioned above can be used.
  • the content of the protein aggregation inhibitor is preferably 0.1 to 5.0% by mass, more preferably 0.5 to 3.0% by mass, based on the total amount of the fermented soymilk beverage. More preferably, it is 0 to 2.0% by mass.
  • the fermented soymilk beverage is preferably obtained by fermenting soymilk with lactic acid bacteria belonging to Lactobacillus brevis.
  • lactic acid bacteria belonging to Lactobacillus brevis those mentioned above can be used.
  • the fermented soymilk beverage may further contain additives that can be added to foods such as sweeteners, flavors, preservatives, acidulants, pigments, seasonings, gelling agents, and salts.
  • the fermented soymilk beverage of the present invention can be obtained, for example, by the above-described method for producing a fermented soymilk beverage according to the present invention.
  • the amount of free amino acids contained in the fermentation substrate was measured by the method shown below. First, a measurement sample was collected, centrifuged, and the supernatant was treated with 0.02N hydrochloric acid. Using this, an amino acid analyzer (L-8800, manufactured by Hitachi High-Technologies Corporation) was used to quantify the content of each amino acid. From the quantitative value, the content (mass ppm) of all free amino acids based on the total amount of the fermentation substrate was calculated. The results are shown in Table 1.
  • the soymilk fermented product (Examples 1 to 4) obtained by the production method of the present invention had a sufficiently reduced soymilk odor (Table 1).
  • Comparative Example 1 using the SBL88 strain but not subjected to the enzyme treatment the reduction in odor of soy milk was not sufficient, and the fermentation rate was very slow (that is, the rate of pH decrease was slow, cfu increase rate is slow).
  • SBC 8882 and SBC 8972 which are lactic acid bacteria widely used for lactic acid fermentation of milk, the soymilk odor remained strong and was not a preferred flavor (Comparative Examples 2 to 5). In these lactic acid bacteria, the soymilk odor became stronger by the enzyme treatment (Comparative Examples 2 and 3, and Comparative Examples 4 and 5).
  • homogenization was performed using a homogenizer (H-20, Sanwa Kikai Co., Ltd.) at a pressure of 15 MPa (first homogenization step). Thereafter, enzyme deactivation treatment was performed at 90 ° C. for 10 minutes (enzyme deactivation step).
  • a homogenizer H-20, Sanwa Kikai Co., Ltd.
  • enzyme deactivation treatment was performed at 90 ° C. for 10 minutes (enzyme deactivation step).
  • SM600 manufactured by San-Ei Gen FFI Co., Ltd.
  • phosphoric acid was added to adjust the pH to 4.2 ⁇ 0.1 (pH adjusting step).
  • Comparative Example 2-1 A fermented soymilk beverage of Comparative Example 2-1 was obtained in the same manner as in Example 2-1, except that the protein aggregation inhibitor was added after the enzyme treatment step and before the first homogenization step.
  • Comparative Example 2-2 A fermented soymilk beverage of Comparative Example 2-2 was obtained in the same manner as in Example 2-1, except that the protein aggregation inhibitor was added simultaneously with the raw material preparation step.
  • Example 2-1 The average particle size and stability of the fermented soymilk beverages of Example 2-1 and Comparative Examples 2-1 and 2-2 were evaluated.
  • the soymilk fermented beverage was suspended in water, and the average particle size of the water-insoluble component was measured using a particle size distribution analyzer (LS130 320, manufactured by Beckman Coulter, Inc.).
  • the fermented soymilk beverage was centrifuged at 1,510 ⁇ g for 5 minutes with a centrifuge (05PR-22, manufactured by Hitachi Koki Co., Ltd.), and the appearance was visually determined.
  • the centrifugation conditions correspond to the case where the fermented soymilk beverage is left for 180 days.
  • the fermented soymilk beverage of Example 2-1 to which a protein aggregation inhibitor was added after the fermentation step had an average particle size of the water-insoluble component of 0.643 ⁇ m, and was stable with no change in appearance even after centrifugation.
  • the soymilk fermented beverages of Comparative Examples 2-1 and 2-2 to which the protein aggregation inhibitor was added before the fermentation process had average particle sizes of the water-insoluble components of 1.322 ⁇ m and 4.208 ⁇ m, respectively, and were centrifuged. Separated into two layers.
  • the stability of the fermented soymilk beverage varied depending on the timing of addition of the protein aggregation inhibitor.
  • aggregation is suppressed and stability is improved.
  • Example 2-2 A fermented soymilk beverage of Example 2-2 was obtained in the same manner as in Example 2-1, except that the second homogenization step was not performed.
  • Example 2-3 A fermented soymilk beverage of Example 2-3 was obtained in the same manner as in Example 2-1, except that the first homogenization step was not performed.
  • Example 2-4 A fermented soymilk beverage of Example 2-4 was obtained in the same manner as in Example 2-1, except that the first homogenization step and the second homogenization step were not performed.
  • the average particle size and smoothness of the fermented soymilk beverages of Examples 2-1 to 2-4 were evaluated.
  • Average particle size The average particle size was measured by the same method as in [Preparation and Evaluation of Soymilk Fermented Beverage (1)].
  • the fermented soymilk beverage of Example 2-1 was excellent in smoothness.
  • the fermented soymilk beverages of Examples 2-2 to 2-4 were also smooth with no difference from the fermented soymilk beverage of Example 2-1.
  • the average particle size of the water-insoluble component became smaller (results of Examples 2-1 to 2-3 with respect to Example 2-4) ).
  • the fermented soymilk beverages of Examples 2-1 and 2-3 that have undergone the second homogenization step have a water-insoluble component than the fermented soymilk beverage of Example 2-2 that has not undergone the first homogenization step.
  • the average particle size became smaller.
  • the average particle size has a correlation with the stability, so that the aggregation of the soymilk fermented beverage is further suppressed by performing the homogenization step at least once. , Stability is improved more.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Botany (AREA)
  • Microbiology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mycology (AREA)
  • Agronomy & Crop Science (AREA)
  • Beans For Foods Or Fodder (AREA)
  • Dairy Products (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 本発明は、ペプチド結合加水分解酵素により豆乳を加水分解して発酵基質を得る酵素処理工程と、発酵基質をラクトバチラス・ブレビス(Lactobacillus brevis)に属する乳酸菌で発酵させて発酵物を得る発酵工程と、を備える、豆乳発酵物の製造方法を提供する。

Description

豆乳発酵物及びその製造方法
 本発明は、豆乳発酵物及びその製造方法に関する。本発明はまた、豆乳発酵飲料及びその製造方法にも関する。
 大豆を加工して製造される豆乳は、低カロリー、低コレステロールであることに加え、大豆に由来する栄養成分を豊富に含んでおり、健康食品として知られている。
 各種添加剤を含む豆乳が知られており、例えば、特許文献1には、安定剤としてペクチンまたはカルボキシメチルセルロースナトリウムを含有し、そのpHが4.5~5.2に調整されたことを特徴とする苦味および渋味の抑制された酸性豆乳飲料が開示されている。また、特許文献2には、平均直径0.01~1μmの繊維状の不溶性セルロースを含む酸性豆乳飲料が開示されている。
 また、豆乳を加工した食品、例えば、豆乳を乳酸菌で発酵させた豆乳発酵物等が知られている。特許文献3には、豆乳に乳酸菌を混ぜて作るヨーグルトが開示されている。
特開2004-261139号公報 特開2007-68410号公報 特開2002-262771号公報
 ラクトバチラス・デルブリュッキー亜種ブルガリクス(Lactobacillus delbrueckii subspecies bulgaricus)及びストレプトコッカス・サーモフィルス(Streptococcus thermophilus)は、牛乳の乳酸発酵に汎用されている乳酸菌である。また、これらの乳酸菌は、豆乳の発酵にも利用されている。しかしながら、これらの乳酸菌により発酵した豆乳発酵物は、豆乳臭が強いうえ、爽やかさに欠けるなど風味が好ましいものではないという問題があった。
 また、豆乳発酵飲料は保存時等にタンパク質等の凝集により二層以上に分離する場合がある。これに対し、特許文献1及び2に記載されるような各種添加剤を添加しても分離を充分に抑制できない場合があるという問題があった。
 そこで、本発明は、豆乳臭が充分に低減された風味のよい豆乳発酵物の製造方法を提供することを目的とする。本発明はまた、豆乳臭が充分に低減された風味のよい豆乳発酵物及びそれを含む飲食品の提供も目的とする。
 さらに、本発明は、凝集が抑制され、安定性が向上した豆乳発酵飲料及びその製造方法を提供することも目的とする。
 本発明は、ペプチド結合加水分解酵素により豆乳を加水分解して発酵基質を得る酵素処理工程と、発酵基質をラクトバチラス・ブレビス(Lactobacillus brevis)に属する乳酸菌で発酵させて発酵物を得る発酵工程と、を備える、豆乳発酵物の製造方法を提供する。
 本発明者らは、従来豆乳の発酵には利用されていなかったラクトバチラス・ブレビスに属する乳酸菌を発酵菌として用いることにより、豆乳発酵物の豆乳臭が充分に低減され、かつ爽やかな風味の豆乳発酵物が得られることを見出した。本発明の製造方法は、ラクトバチラス・ブレビスに属する乳酸菌による発酵工程を備えているため、豆乳臭が充分に低減された風味のよい豆乳発酵物を得ることができる。
 一方、ラクトバチラス・ブレビスに属する乳酸菌は豆乳を基質とした場合の発酵速度が極めて遅いという問題点があった。このため、豆乳発酵物の製造に長時間を要し、製造コストが高くつく、コンタミネーションのリスクが高くなる等の問題があり、工業的な利用が困難であった。これに対し、本発明者らは、予めペプチド結合加水分解酵素で加水分解した豆乳を発酵基質とすることにより、発酵速度を向上できることを見出した。したがって、本発明の製造方法は、上記各工程を備えているため、製造効率が良く、工業的に利用可能なものである。
 上記製造方法においては、発酵基質中のペプチド結合加水分解酵素を失活させる酵素失活工程を更に備えていてもよい。酵素失活工程を実施することにより、発酵工程におけるペプチド結合加水分解酵素による加水分解を抑えることができるため、豆乳発酵物の苦味をより低減できる。
 ペプチド結合加水分解酵素は、ペプチダーゼ及びプロテアーゼからなる群より選択される少なくとも1種の酵素とすることができる。また、上記酵素は、エキソ型のペプチダーゼ、又はエキソ型のプロテアーゼを含んでいてもよい。これにより、より一層豆乳臭が低減され、かつより一層風味の良い豆乳発酵物を得ることができる。
 発酵基質に含まれる遊離アミノ酸の量は、発酵基質全量を基準として、6000質量ppm以下であってもよい。遊離アミノ酸の量が上記範囲内にあると、苦味が充分に低減された味覚のよい豆乳発酵物を得ることができる。
 上記乳酸菌は、ラクトバチラス・ブレビスSBC8803(受託番号:FERM BP-10632)、ラクトバチラス・ブレビスSBC8027(受託番号:FERM BP-10630)、ラクトバチラス・ブレビスSBC8044(受託番号:FERM BP-10631)、ラクトバチラス・ブレビスJCM1061、ラクトバチラス・ブレビスJCM1065、及びラクトバチラス・ブレビスJCM1170から選択される少なくとも1種としてもよい。これらの中でも、ラクトバチラス・ブレビスSBC8803が好ましい。これらの乳酸菌を発酵菌として用いることにより、より一層豆乳臭が低減され、かつより一層爽やかさのある風味の良い豆乳発酵物を得ることができる。
 なお、ラクトバチラス・ブレビスSBC8803は、2006年6月28日に独立行政法人産業技術総合研究所 特許生物寄託センター(日本国茨城県つくば市東1丁目1番地1 中央第6(郵便番号305-8566))に寄託された、受託番号がFERM BP-10632の菌株である。本明細書において、この菌株を「SBL88株」とも称する。
 また、ラクトバチラス・ブレビスSBC8027は、2006年6月28日に独立行政法人産業技術総合研究所 特許生物寄託センター(日本国茨城県つくば市東1丁目1番地1 中央第6(郵便番号305-8566))に寄託された、受託番号がFERM BP-10630の菌株であり、ラクトバチラス・ブレビスSBC8044は、2006年6月28日に独立行政法人産業技術総合研究所 特許生物寄託センター(日本国茨城県つくば市東1丁目1番地1 中央第6(郵便番号305-8566))に寄託された、受託番号がFERM BP-10631の菌株である。
 本発明はまた、上記製造方法により得られる豆乳発酵物を提供する。ラクトバチラス・ブレビスは、古くから発酵食品に利用されている乳酸菌の一種であり、生体への安全性が充分に確立されている。生体への安全性が高いことから、上記豆乳発酵物は、長期間継続的に摂取することも可能である。
 本発明はさらに、上記製造方法により得られる豆乳発酵物を含む飲食品を提供する。当該飲食品の摂取により、豆乳に豊富に含まれる大豆由来の栄養成分を効率良く摂取することが可能である。また、上記豆乳発酵物は、豆乳臭が充分に低減され、かつ良好な風味を有するため、豆乳の臭いが苦手な人でも容易に摂取することができる。
 上記製造方法において、豆乳発酵物は豆乳発酵飲料であってもよい。豆乳発酵物が豆乳発酵飲料である場合、発酵物にタンパク質凝集抑制剤を添加する添加工程を更に備えていてもよい。
 本発明者らは、豆乳発酵飲料の製造に際し、単にタンパク質凝集抑制剤を添加しても、保存時等に二層以上に分離することを充分に抑制できない場合がある一方で、発酵工程後という所定のタイミングでタンパク質凝集抑制剤を添加することで、凝集が抑制され、安定性が向上した豆乳発酵飲料を製造できることを見出した。すなわち、添加工程を備えることにより、凝集が抑制され、安定性が向上した豆乳発酵飲料を得ることができる。
 また、上記製造方法では、ラクトバチラス・ブレビスに属する乳酸菌を発酵菌として用いているため、豆乳臭が充分に低減され、かつ爽やかな風味を有する豆乳発酵飲料を得ることができる。また、上記製造方法は、酵素処理工程を備えているため、発酵速度が向上しており、これにより製造効率がよく、かつ工業的に利用可能である。
 タンパク質凝集抑制剤は、大豆多糖類、ペクチン、カルボキシメチルセルロース及びアルギン酸ナトリウムから選択される少なくとも1種としてもよい。これにより、非水溶性成分の凝集をより抑制することができる。また、タンパク質凝集抑制剤は、大豆多糖類とペクチンの混合物としてもよい。これにより、非水溶性成分の凝集をより一層抑制することができる。
 上記製造方法においては、酵素処理工程の後、少なくとも1回被処理物を均質化する均質化工程を更に備えていてもよい。これにより、凝集がより抑制され、安定性がより向上した豆乳発酵飲料を得ることができる。
 また、均質化工程は、少なくとも1回、発酵工程の後に行ってもよい。これにより、凝集がさらに抑制され、安定性がさらに向上した豆乳発酵飲料を得ることができる。
 本発明はまた、上記製造方法により得られる豆乳発酵飲料を提供する。当該豆乳発酵飲料は、凝集が抑制され、安定性が向上しているため、保存時等に二層以上に分離することがなく、好ましい外観を有する。また、ラクトバチラス・ブレビスは、古くから発酵食品に利用されている乳酸菌の一種であり、生体への安全性が充分に確立されている。生体への安全性が高いことから、上記豆乳発酵飲料は、長期間継続的に摂取することも可能である。
 本発明はさらに、非水溶性成分の平均粒径が1.3μm以下である豆乳発酵飲料を提供する。
 上記豆乳発酵飲料は、非水溶性成分の平均粒径が所定の範囲にあることにより、凝集が抑制され、安定性が向上しており、保存時に二層以上に分離することを抑制できる。
 本明細書において、「非水溶性成分の平均粒径」とは、豆乳発酵飲料を2~3v/v%になるように分散液(0.2w/v%亜硫酸溶液)に懸濁し、粒度分布測定装置(例えば、LS130 320、ベックマン・コールター社製)にて測定した粒度分布から、下記式(1)により計算される平均粒径を意味する。
Figure JPOXMLDOC01-appb-M000001
 ここで、μは下記式(2)で計算される値である。
Figure JPOXMLDOC01-appb-M000002
 式(2)において、x及びqは、次のように定義される。まず、測定対象となる粒子径範囲(最大粒子径:x、最小粒子径:xn+1)を対数スケール上でn個に等分割し、それぞれの粒子径区間を[x、xj+1](j=1,2,・・・・,n)とする。また、各粒子径区間[x、xj+1]に含まれる相対粒子量(差分%)をq(j=1,2,・・・・,n)とする(全区間の合計が100%)。なお、本明細書において、nは116である。
 より具体的には、例えば、粒度分布測定装置(LS130 320、ベックマン・コールター社製)を用いる場合、豆乳発酵飲料を2~3v/v%になるように分散液(0.2w/v%亜硫酸溶液)に懸濁し、PIDS(偏光散乱強度差測定)使用モードで測定した粒度分布から、下記式(3)により計算される平均粒径Xaを意味する。
Figure JPOXMLDOC01-appb-M000003
 式(3)において、シグマXcは、各チャンネルの中位サイズの総和であり、nc/シグマncは、各チャネルにおける粒子の在庫率(%)である。なお、チャンネル数は116個である。
 上記豆乳発酵飲料は、タンパク質凝集抑制剤を含有するものであってもよい。タンパク質凝集抑制剤は、大豆多糖類、ペクチン、カルボキシメチルセルロース及びアルギン酸ナトリウムから選択される少なくとも1種であってもよい。これにより、非水溶性成分の凝集がより抑制された豆乳発酵飲料となる。また、タンパク質凝集抑制剤は、大豆多糖類とペクチンの混合物であってもよい。これにより、非水溶性成分の凝集がより一層抑制された豆乳発酵飲料となる。
 上記豆乳発酵飲料は、ラクトバチラス・ブレビス(Lactobacillus brevis)に属する乳酸菌で豆乳を発酵させたものであってもよい。当該乳酸菌としては、ラクトバチラス・ブレビスSBC8803(受託番号:FERM BP-10632)、ラクトバチラス・ブレビスSBC8027(受託番号:FERM BP-10630)、ラクトバチラス・ブレビスSBC8044(受託番号:FERM BP-10631)、ラクトバチラス・ブレビスJCM1061、ラクトバチラス・ブレビスJCM1065、及びラクトバチラス・ブレビスJCM1170から選択される少なくとも1種としてもよい。これらの中でも、ラクトバチラス・ブレビスSBC8803が好ましい。
 ラクトバチラス・ブレビスに属する乳酸菌は、従来豆乳の発酵には利用されていなかった。しかしながら、ラクトバチラス・ブレビスに属する乳酸菌を発酵菌として用いることにより、豆乳臭が充分に低減され、かつ爽やかな風味を有する豆乳発酵飲料を提供することができる。
 本発明によれば、豆乳臭が充分に低減された風味のよい豆乳発酵物の製造方法、及びこの製造方法により得られる豆乳発酵物が提供される。また、当該豆乳発酵物を含む飲食品が提供される。
 本発明によればまた、凝集が抑制され、安定性が向上した豆乳発酵飲料及びその製造方法が提供される。
 以下、本発明を実施するための形態についてより具体的に説明するが、本発明はこれらに限定されるものではない。
 本明細書において、「豆乳」とは、大豆から熱水等により蛋白質その他の成分を溶出させ、繊維質を除去して得られる乳状の飲料を意味する。「豆乳」としては、大豆固形分の含有量が8質量%以上であるものが好ましい。「豆乳」には、例えば、原豆乳、無調整豆乳等が含まれる。
〔豆乳発酵物の製造方法〕
 本発明に係る豆乳発酵物の製造方法は、酵素処理工程と、発酵工程と、を少なくとも備える。また、酵素失活工程を更に備えていてもよい。以下、各工程について説明する。
〔酵素処理工程〕
 酵素処理工程は、ペプチド結合加水分解酵素により豆乳を加水分解する工程である。本工程の実施によって、発酵基質中の遊離アミノ酸量を増加させることにより、ラクトバチラス・ブレビスに属する乳酸菌による発酵速度を向上させることが可能となる。
 ペプチド結合加水分解酵素は、ペプチド結合(-C(=O)-NH-)を加水分解する酵素である。ペプチド結合加水分解酵素は、ペプチドを加水分解するペプチダーゼ、及びタンパク質を加水分解するプロテアーゼを含む。ここで、「ペプチド」とは、100残基未満のアミノ酸がペプチド結合により連結したポリマーをいうものとする。同様に、「タンパク質」とは、100残基以上のアミノ酸がペプチド結合により連結したポリマーをいうものとする。
 ペプチド結合加水分解酵素としては、例えば、ペプチダーゼ及びプロテアーゼからなる群より選択される少なくとも1種の酵素を使用することができる。
 ペプチダーゼ及びプロテアーゼは、ペプチド又はタンパク質の配列末端からアミノ酸残基を1~2残基ずつ切断する活性を有するエキソ型のペプチダーゼ及びプロテアーゼ、並びにペプチド又はタンパク質の配列内部を切断する活性を有するエンド型のペプチダーゼ及びプロテアーゼに分類することができる。
 酵素処理工程において使用されるペプチド結合加水分解酵素としては、エキソ型のペプチダーゼ活性、又はエキソ型のプロテアーゼ活性を含むものであってもよい。これにより、得られる豆乳発酵物における豆乳臭の低減、及び風味の向上効果がより一層奏される。また、エンド型の活性よりもエキソ型の活性の方が高いものの方が上記効果をより奏しやすく、エンド型の活性を含まないものの方が上記効果を更により奏しやすい。
 ペプチド結合加水分解酵素としては、市販品を用いることもできる。例えば、プロテアックス(天野エンザイム株式会社製、エンド型とエキソ型の混合品で、エキソ型の活性が強い)、スミチームACP-G(新日本化学工業株式会社製、エキソ型のみ)、プロテアーゼM「アマノ」SD(天野エンザイム株式会社製、エンド型とエキソ型の混合品で、エキソ型の活性が強い)、スミチームFLAP(新日本化学工業株式会社製、エキソ型のみ)等を挙げることができる。
 上記酵素処理工程は、得られる発酵基質に含まれる遊離アミノ酸量が、全量を基準として、6000質量ppm以下となるように実施してもよい。これにより、豆乳発酵物の苦味を低減又は消失させることができる。この場合の遊離アミノ酸量は、5800質量ppm以下であることがより好ましく、5500質量ppm以下であることが更に好ましい。遊離アミノ酸量の下限には特に制限はないが、通常1000質量ppm以上である。
 なお、「遊離アミノ酸量」は、例えば、豆乳サンプルを採取し、遠心分離後、その上清を0.02Nの塩酸で処理し、アミノ酸分析装置(例えば、L-8800、株式会社日立ハイテクノロジーズ製)で各アミノ酸の含有量を定量することにより、測定することができる。
 ペプチド結合加水分解酵素の添加量は、使用するペプチド結合加水分解酵素の種類によって適宜決定すればよい。例えば、プロテアックスを使用する場合、豆乳1gあたり、0.01U~0.7Uとすることができ、スミチームACP-Gを使用する場合、豆乳1gあたり、0.01U~0.5Uとすることができる。
 ペプチド結合加水分解酵素による豆乳の処理時間及び処理温度は、使用するペプチド結合加水分解酵素の種類及び添加量等により適宜決定すればよいが、例えば、40~50℃で1~3時間とすることができる。
 ペプチド結合加水分解酵素の添加量、並びにペプチド結合加水分解酵素による豆乳の処理時間及び処理温度は、遊離アミノ酸量が上述の範囲内となるように調節してもよい。
〔酵素失活工程〕
 酵素失活工程は、発酵基質中のペプチド結合加水分解酵素を失活させる工程である。本工程は、必要に応じて酵素処理工程後かつ発酵工程前に行うことができる。本工程の実施により、発酵工程におけるペプチド結合加水分解酵素による加水分解を抑えることができるため、豆乳発酵飲料の苦味をより低減できる。
 酵素を失活させる方法は、使用するペプチド結合加水分解酵素の種類に応じて適宜決定すればよい。例えば、pHを調整して失活させる方法、加熱して失活させる方法、有機溶媒(例えば、エタノール)を添加して失活させる方法、塩濃度を調整して失活させる方法を挙げることができる。中でも、操作が容易であることから、加熱して失活させる方法が好ましい。
 加熱する場合の加熱温度及び加熱時間は、使用するペプチド結合加水分解酵素の種類に応じて適宜決定すればよいが、例えば、60℃~100℃で、30分間~120分間としてもよい。
 酵素失活工程では、ペプチド結合加水分解酵素の活性を充分に低減できればよく、必ずしも完全に失活させる必要はない。一方、豆乳発酵飲料の苦味をより低減する観点からは、ペプチド結合加水分解酵素の残存率(添加した活性に対する失活処理後の活性の割合)を、10%以下としてもよい。また、5%以下、2.5%以下、又は0%(完全失活)としてもよい。
〔発酵工程〕
 発酵工程は、発酵基質をラクトバチラス・ブレビスに属する乳酸菌で発酵する工程である。発酵工程では、上記酵素処理工程を経て得られる発酵基質に上記乳酸菌を添加し、上記乳酸菌により乳酸発酵して発酵物を得る。
 発酵基質には、上記乳酸菌以外の添加物を更に添加してもよい。このような添加物としては、例えば、糖(スクロース、マルトース、フルクトース、グルコース、スタキオース、ラフィノース等)、植物エキス(例えばモルトエキス)、香料(例えばヨーグルトフレーバー)、甘味料(例えばトレハロース、アスパルテーム、スクラロース、アセスルファムカリウム等)が挙げられる。酵素失活工程を行う場合、これらの添加物は、酵素失活工程の前に添加してもよい。酵素失活工程を加熱処理により行う場合、添加物の滅菌を同時に行えるという利点がある。
 ラクトバチラス・ブレビスに属する乳酸菌としては、より一層豆乳臭が低減され、かつより一層爽やかさのある風味の良い豆乳発酵物を得ることができるため、SBL88株、ラクトバチラス・ブレビスSBC8027、ラクトバチラス・ブレビスSBC8044、ラクトバチラス・ブレビスJCM1061、ラクトバチラス・ブレビスJCM1065、又はラクトバチラス・ブレビスJCM1170であってよい。これらの中でも、ラクトバチラス・ブレビスSBC8803が好ましい。ラクトバチラス・ブレビスに属する乳酸菌は、1種を単独で、又は2種以上を混合して使用することができる。
 なお、ラクトバチラス・ブレビスJCM1061、ラクトバチラス・ブレビスJCM1065、ラクトバチラス・ブレビスJCM1170等は、理研バイオリソースセンター、JCRB等の公知の細胞バンクから購入することもできる。
 発酵工程における上記乳酸菌の使用量、発酵温度等の条件としては特に制限はなく、使用する乳酸菌の種類に応じて最適な条件を設定すればよい。例えば、乳酸菌としてSBL88株を使用する場合、乳酸菌を1×10~1×10cfu/mLになるように添加し、25~38℃で静置すればよい。
 発酵時間は、製造コストの低減及びコンタミネーションリスクの低減という観点から、短い方がよい。本発明の製造方法は、上記酵素処理工程を備えているため、発酵時間を短縮することができる。したがって、発酵工程における発酵時間としては、例えば、24時間以下とすることができる。発酵時間は、22時間以下であってもよく、20時間以下であってもよい。
〔豆乳発酵物〕
 上記製造方法により得られる豆乳発酵物は、大豆に由来する栄養成分が豊富に含まれるうえ、豆乳臭が充分に低減され、かつ爽やかな風味のよいものである。したがって、上記豆乳発酵物は、そのまま飲食品として使用することもでき、また、飲食品素材として使用することもできる。
〔飲食品〕
 本発明の飲食品は、上記豆乳発酵物そのものであってもよく、上記豆乳発酵物を含む飲食品であってもよい。上記豆乳発酵物そのものである飲食品としては、例えば、発酵豆乳、ヨーグルト、チーズ等が挙げられる。また、上記豆乳発酵物を含む飲食品としては、例えば、乳化調味料(マーガリン、ドレッシング、マヨネーズ等)、調味料(ソース、ケチャップ等)、菓子類(アイスクリーム、キャンディー、キャラメル、チョコレート等)、飲料(非アルコール飲料、アルコール飲料等)等が挙げられる。
〔豆乳発酵飲料の製造方法〕
 上述した豆乳発酵物の製造方法において、豆乳発酵物は豆乳発酵飲料であってもよい。すなわち、上述した豆乳発酵物の製造方法は、豆乳発酵飲料の製造方法としても実施できる。さらに、本発明に係る豆乳発酵飲料の製造方法では、上述した酵素処理工程、酵素失活工程及び発酵工程に加えて、原料調製工程、添加工程、pH調整工程、均質化工程又は調合工程を更に備えていてもよい。以下、各工程について説明する。
〔原料調製工程〕
 原料調製工程は、原料となる豆乳に添加物を添加する工程である。原料調製工程は、必要に応じて行えばよい。添加物としては、例えば、糖(スクロース、マルトース、フルクトース、グルコース、スタキオース、ラフィノース等)、植物エキス(例えばモルトエキス)、香料(例えばヨーグルトフレーバー)、甘味料(例えばトレハロース、アスパルテーム、スクラロース、アセスルファムカリウム等)、酸味料(リンゴ酸、クエン酸、コハク酸、リン酸、酢酸)、色素、調味料(アミノ酸等)、ゲル化剤(ジェランガム、アルギン酸ナトリウム、カラギナン、寒天)、塩類(塩化ナトリウム、塩化カリウム、塩化マグネシウム)が挙げられる。これらの添加物は、1種単独で、又は2種以上を組み合わせて添加してもよい。
 添加物の添加量は、添加物の種類に応じて適宜設定すればよい。通常、添加物の総量は、豆乳と添加物との合計量に対して、0~10質量%である。
 原料調製工程は、発酵工程前に行えばよく、例えば、酵素処理工程前、酵素処理工程後かつ発酵工程前に行うことができる。添加物を添加した後、殺菌を行ってもよい。殺菌は、例えば、85℃に達するまで加熱すること(85℃達温)、UHT(超高温瞬間殺菌)等のプレート式、チューブ式、直接蒸気式殺菌機、熱交換機及びレトルト殺菌機で加熱すること等により行うことができる。
〔添加工程〕
 添加工程は、発酵工程で得られた発酵物にタンパク質凝集抑制剤を添加する工程である。添加工程を備えることにより、凝集が抑制され、安定性が向上した豆乳発酵飲料を得ることができる。なお、添加工程を発酵工程前に行っても、凝集を抑制することはできず充分な安定性を有する豆乳発酵飲料を得ることはできない。一方、添加工程を発酵工程後に行うことによって、凝集が抑制され、安定性が向上した豆乳発酵飲料を得ることができる。添加工程を行うタイミングは、発酵工程後であれば特に制限されない。後述する第二均質化工程を備える場合は、製造工程を簡略化できるため、発酵工程後かつ第二均質化工程前に添加工程を行ってもよい。
 タンパク質凝集抑制剤としては、タンパク質の凝集を抑制するものであればよく、より具体的には、酸性条件下でタンパク質の凝集を抑制し、タンパク質の凝集によって生じる乳化破壊を抑制し、乳化状態を安定化させるものであればよい。タンパク質凝集抑制剤としては、例えば、粘度を付与したり、3次元ネットワークを形成したりすることにより、非水溶性成分を分散状態に保つことができるものであってもよい。タンパク質凝集抑制剤としては、例えば、食品添加物として使用される安定剤、増粘安定剤及び増粘剤が挙げられる。
 安定剤、増粘安定剤及び増粘剤としては、例えば、大豆多糖類、ペクチン、カラギナン、カルボキシメチルセルロースナトリウム、キサンタンガム、グァーガム、アルギン酸ナトリウム、ローカストビーンガム等が挙げられる。安定剤、増粘安定剤及び増粘剤としては、大豆多糖類、ペクチン、カルボキシメチルセルロースナトリウム及びアルギン酸ナトリウムとしてもよい。これらを用いることにより、安定性の向上に加えて、非水溶性成分の凝集をより抑制できる。中でも、大豆多糖類及びペクチンがより効果が高く、大豆多糖類とペクチンの混合物が更に効果が高い。これらは、1種単独で、又は2種以上を組み合わせてもよい。
 タンパク質凝集抑制剤として、市販されている安定剤、増粘安定剤及び増粘剤を用いてもよい。このような市販品の例としては、SM600(三栄源エフエフアイ社製、大豆多糖類とペクチンの混合物)、トレハロース、グリセリン、リン脂質等が挙げられる。
 タンパク質凝集抑制剤の添加量は、使用するタンパク質凝集抑制剤の種類に応じて適宜設定すればよい。例えば、タンパク質凝集抑制剤として食品用の安定剤、増粘剤又は増粘安定剤を使用する場合、タンパク質凝集抑制剤の含有量が、発酵物全量に対して、0.1~5.0質量%、若しくは0.5~3.0質量%となるように添加すればよい。
〔均質化工程〕
 均質化工程は、被処理物を均質化する工程である。均質化工程は、必要に応じて行えばよいが、少なくとも1回行うことで、凝集がより抑制され、安定性がより向上した豆乳発酵飲料を得ることができる。
 均質化工程は、例えば、酵素処理工程後かつ発酵工程前に被処理物(発酵基質)を均質化する工程(第一均質化工程)、発酵工程後に被処理物(発酵物)を均質化する工程(第二均質化工程)である。このうち、少なくとも第二均質化工程を備えていると、より効果が高い。また、第一均質化工程及び第二均質化工程の双方を備えていてもよい。
 第二均質化工程は、添加工程及びpH調整工程後に行ってもよい。これにより、タンパク質凝集抑制剤及びpH調整剤と発酵物の混合を同時に行うことができる。
 被処理物の均質化は、例えば、ホモジナイザ(例えば、H-20型、三和機械株式会社製)、ホモミキサー(例えば、ハイエマルダー、株式会社イズミフードマシナリ製)等の乳化装置を使用して被処理物を攪拌・混合することにより行うことができる。均質化の条件は、使用する装置に応じて適宜設定すればよく、例えば、ホモジナイザ(例えば、H-20型、三和機械株式会社製)を使用する場合、10~20MPaの圧力で処理すればよい。
〔pH調整工程〕
 pH調整工程は、発酵工程で得られた発酵物にpH調整剤を添加してpHを調整する工程である。通常、発酵工程で得られる発酵物は、pH5.0程度である。最終生成物である豆乳発酵飲料のpHに応じて(例えば、pH3.9)、必要に応じてpH調整工程を行えばよい。
 pH調整剤としては、食品に添加できる酸又はアルカリを用いることができる。具体的には、例えば、リン酸、塩酸、クエン酸、リンゴ酸、酒石酸、酢酸、コハク酸等の酸、並びに水酸化ナトリウム、水酸化カリウム、炭酸水素ナトリウム、炭酸ナトリウム等のアルカリが挙げられる。
〔調合工程〕
 調合工程は、豆乳発酵飲料に食品添加物及び食品を調合する工程である。酵素処理工程、発酵工程及び添加工程等を経て得られた豆乳発酵飲料は、そのまま飲食品として使用することもできるが、必要に応じて調合工程を行ってもよい。
 食品添加物及び食品としては、アスパルテーム、スクラロース、アセスルファムカリウム等の甘味料、香料、保存料、香料、乳化剤、酸味料、ゲル化剤、加工澱粉、塩類、水、等の媒体、糖、澱粉、デキストリン、脂質、乳原料、乳等を主要原料とする食品、果汁、野菜汁等が挙げられる。
 食品添加物の添加量は、食品添加物の種類に応じて適宜設定すればよい。通常、食品添加物の総量は、豆乳と添加物との合計量に対して、0.001~20.0質量%である。
〔豆乳発酵飲料〕
 本発明の一実施形態に係る豆乳発酵飲料は、非水溶性成分の平均粒径が1.3μm以下である。非水溶性成分の平均粒径がこの範囲であると、凝集が抑制され、安定性が向上した豆乳発酵飲料となる。非水溶性成分の平均粒径は、1.2μm以下であることが好ましく、1.0μm以下であることがより好ましく、0.8μm以下であることが更に好ましい。非水溶性成分の平均粒径の下限に特に制限はないが、通常、0.1μm以上である。
 非水溶性成分の平均粒径は、上述のとおりに定義される。非水溶性成分は、上記粒度分布測定により測定される成分を意味しており、例えば、脂肪球(豆乳の油分)及びタンパク質の凝集物である。
 上記豆乳発酵飲料は、タンパク質凝集抑制剤を含有していてもよい。タンパク質凝集抑制剤は、上述したものを使用することができる。
 タンパク質凝集抑制剤の含有量は、豆乳発酵飲料全量に対して、0.1~5.0質量%であることが好ましく、0.5~3.0質量%であることがより好ましく、1.0~2.0質量%であることが更に好ましい。
 上記豆乳発酵飲料は、ラクトバチラス・ブレビスに属する乳酸菌で豆乳を発酵させたものであることが好ましい。ラクトバチラス・ブレビスに属する乳酸菌としては、上述したものを使用することができる。
 上記豆乳発酵飲料は、更に甘味料、香料、保存料、酸味料、色素、調味料、ゲル化剤、塩類等の食品に添加可能な添加剤を含有していてもよい。
 本発明の豆乳発酵飲料は、例えば、上述した本発明に係る豆乳発酵飲料の製造方法により得ることができる。
 以下、実施例に基づいて本発明をより詳細に説明する。ただし、本発明は以下の実施例に限定されるものではない。
〔豆乳発酵物の調製及び評価(1)〕
 豆乳(おいしい無調整豆乳、キッコーマン株式会社製)を原料として、下記表1に示した条件で豆乳発酵物を調製した。
<材料>
乳酸菌
 SBL88:ラクトバチラス・ブレビスSBC8803
 SBC8982:ラクトバチラス・デルブリュッキー亜種ブルガリクスSBC8982
 SBC8972:ストレプトコッカス・サーモフィルスSBC8972
ペプチダーゼ
 スミチームACP-G(新日本化学工業社製)
プロテアーゼ
 プロテアックス(天野エンザイム社製)
<酵素処理工程>
 豆乳にプロテアーゼ又はペプチダーゼ(両方添加する場合は両方)を添加し、45℃で2時間酵素処理を行った。
<酵素失活工程>
 酵素処理終了後、砂糖及び果糖ブドウ糖液糖をそれぞれ2%(w/w)となるように添加し、80℃で60分間加熱処理を行った。
<発酵工程>
 加熱処理後、発酵温度まで冷却し、発酵基質を得た。この発酵基質に乳酸菌を3×10cfu/gとなるように添加した。表1に示した発酵時間の間、静置培養を行った。発酵終了後、速やかに冷却して評価を行った。
<豆乳発酵物の官能評価>
 得られた豆乳発酵物について、10名のパネルにより官能評価を行った。官能評価は、豆乳臭さについて、下記評価基準に従って評点を付け、10名のパネルが付けた評点の平均値を求めた。また、各パネルには風味等について自由にコメントしてもらった。結果を表1に示す。
-評点-
1:豆乳臭さを感じない
2:豆乳臭さが僅かに香る
3:豆乳臭さがやや香る
4:豆乳臭さが強く香る
5:豆乳臭さが非常に香る
<遊離アミノ酸量の測定>
 発酵基質に含まれる遊離アミノ酸量を以下に示す方法により測定した。まず、測定サンプルを採取し、遠心分離後、その上清を0.02Nの塩酸で処理した。これをアミノ酸分析装置(L-8800、株式会社日立ハイテクノロジーズ製)を用いて、各アミノ酸の含有量を定量した。定量値から、発酵基質全量を基準とした全遊離アミノ酸の含有量(質量ppm)を算出した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000004
 本発明の製造方法により得られた豆乳発酵物(実施例1~4)は、豆乳臭さが充分に低減されていた(表1)。また、「爽やかな感じ」というフリーコメントが多かった。一方、SBL88株を使用しているが酵素処理を経ていない比較例1では、豆乳臭さの低減は充分なものではなく、また発酵速度が非常に遅かった(すなわち、pHの低下速度が遅く、cfuの増加速度が遅い)。
 牛乳の乳酸発酵に汎用されている乳酸菌であるSBC8982及びSBC8972では、豆乳臭さが強く残っており、好ましい風味ではなかった(比較例2~5)。また、これらの乳酸菌では、酵素処理により逆に豆乳臭さが強くなった(比較例2及び3、並びに比較例4及び5)。
〔豆乳発酵物の調製及び評価(2)〕
 下記表2に示した条件で〔豆乳発酵物の調製及び評価(1)〕と同様にして豆乳発酵物を調製及び評価した。代表的なフリーコメントと併せて、結果を表2に示す。
Figure JPOXMLDOC01-appb-T000005
 酵素処理時間を増加させた参考例2及び3、並びに酵素添加量を増加させた参考例4では、発酵基質に含まれる遊離アミノ酸量が増加した(実施例3及び参考例1~4)。遊離アミノ酸量が6000質量ppmを超える参考例2~4では、豆乳臭さは低減されているものの、「後味に苦味が残る」等のフリーコメントが多かった。特に遊離アミノ酸量が15000質量ppm超となった参考例4の豆乳発酵物は、豆乳臭さは充分に低減されているものの(豆乳臭さ(10名平均値)は1.58であった)、苦味が非常に強く、一部のパネルから「飲用に供することが困難」とのコメントが寄せられた(表2)。
〔豆乳発酵飲料の調製及び評価(1)〕
[実施例2-1]
 豆乳(おいしい無調整豆乳、キッコーマン株式会社製)93.66質量%に砂糖2質量%、異性化糖2質量%、アルギニン0.15質量%を添加して混合し、85℃達温で殺菌した(原料調製工程)。
 殺菌後、45℃まで冷却し、プロテアックス(天野エンザイム株式会社製)、スミチームACP-G(新日本化学工業株式会社製)を各々0.01質量%添加して混合し、45℃に2時間保持した(酵素処理工程)。
 酵素処理終了後、ホモジナイザ(H-20型、三和機械株式会社)を用い15MPaの圧力で均質化した(第一均質化工程)。その後、90℃で10分間、酵素失活処理を行った(酵素失活工程)。
 加熱処理後、30℃温度まで冷却し、発酵基質を得た。この発酵基質にSBL88乳酸菌(ラクトバチラス・ブレビスSBC8803)を3×10cfu/gとなるように添加し30℃で15時間発酵させた(発酵工程)。
 発酵終了後、発酵物98.33質量%に対し、タンパク質凝集抑制剤としてSM600(三栄源エフエフアイ株式会社製)を1.67質量%添加して混合した(添加工程)。さらに、リン酸を添加しpHを4.2±0.1に調整した(pH調整工程)。
 その後、ホモジナイザ(H-20型、三和機械株式会社製)を使用し、15MPaの圧力で均質化し、85℃で殺菌し、速やかに冷却した(第二均質化工程)。
 第二均質化工程を経て得られた発酵物30.0質量%に、水59.0質量%、糖10.8質量%、香料0.2質量%を添加して混合し、60℃に加温後、高圧ホモジナイザを使用し、15MPaの圧力で均質化した。85℃達温で殺菌後、速やかに冷却し、実施例2-1の豆乳発酵飲料を得た(調合工程)。
[比較例2-1]
 タンパク質凝集抑制剤の添加を、酵素処理工程後かつ第一均質化工程前に行ったこと以外は実施例2-1と同様にして、比較例2-1の豆乳発酵飲料を得た。
[比較例2-2]
 タンパク質凝集抑制剤の添加を、原料調製工程と同時に行ったこと以外は実施例2-1と同様にして、比較例2-2の豆乳発酵飲料を得た。
 実施例2-1及び比較例2-1~2-2の豆乳発酵飲料について、平均粒径と安定性を評価した。
(平均粒径)
 豆乳発酵飲料を水に懸濁し、粒度分布測定装置(LS130 320、ベックマン・コールター社製)を用い、非水溶性成分の平均粒径を測定した。
(安定性)
 豆乳発酵飲料を遠心分離機(05PR-22、日立工機株式会社製)にて、1,510×gで5分間遠心分離した後、外観を目視で判定した。上記遠心分離の条件は、豆乳発酵飲料を180日間静置した場合に相当する。
 結果を下記表3に示す。
Figure JPOXMLDOC01-appb-T000006
 タンパク質凝集抑制剤を発酵工程後に添加した実施例2-1の豆乳発酵飲料は、非水溶性成分の平均粒径が0.643μmであり、遠心分離した後も外観に変化はなく安定であった。一方、タンパク質凝集抑制剤を発酵工程前に添加した比較例2-1及び2-2の豆乳発酵飲料は、非水溶性成分の平均粒径がそれぞれ1.322μm及び4.208μmであり、遠心分離により二層に分離した。
 表3から明らかなように、タンパク質凝集抑制剤の添加タイミングによって、豆乳発酵飲料の安定性が異なっていた。発酵工程後にタンパク質凝集抑制剤を添加することによって、凝集が抑制され、安定性が向上する。また、豆乳発酵飲料中の非水溶性成分の平均粒径と安定性には相関関係があった。
〔豆乳発酵飲料の調製及び評価(2)〕
[実施例2-2]
 第二均質化工程を行わなかったこと以外は実施例2-1と同様にして、実施例2-2の豆乳発酵飲料を得た。
[実施例2-3]
 第一均質化工程を行わなかったこと以外は実施例2-1と同様にして、実施例2-3の豆乳発酵飲料を得た。
[実施例2-4]
 第一均質化工程及び第二均質化工程を行わなかったこと以外は実施例2-1と同様にして、実施例2-4の豆乳発酵飲料を得た。
 実施例2-1~2-4の豆乳発酵飲料について、平均粒径となめらかさを評価した。
(平均粒径)
 〔豆乳発酵飲料の調製及び評価(1)〕と同様の方法により、平均粒径を測定した。
(なめらかさ)
 訓練されたパネル5名により官能検査により評価した。評価基準は、四段階とし、実施例2-1の豆乳発酵飲料と比べ、なめらかさに差が無い場合は「差なし」、僅かにざらつきを感じ、僅かになめらかさが劣る場合は、「僅かにざらつく」、ややざらつき、ややなめらかさが劣る場合は「ややざらつく」。ざらつきが強く、明らかになめらかさが劣る場合は「ざらつく」と評価した。
 結果を下記表4に示す。
Figure JPOXMLDOC01-appb-T000007
 実施例2-1の豆乳発酵飲料は、なめらかさに優れるものであった。また、実施例2-2~2-4の豆乳発酵飲料も、実施例2-1の豆乳発酵飲料と差がないなめらかさであった。
 第一均質化工程及び第二均質化工程を少なくとも1回行うことにより、非水溶性成分の平均粒径がより小さくなった(実施例2-4に対する実施例2-1~2-3の結果)。また、第二均質化工程を行った実施例2-1及び2-3の豆乳発酵飲料は、第一均質化工程を行っていない実施例2-2の豆乳発酵飲料よりも非水溶性成分の平均粒径がより小さくなった。〔豆乳発酵飲料の調製及び評価(1)〕の結果のとおり、平均粒径は安定性と相関関係があるため、少なくとも1回均質化工程を行うことにより、豆乳発酵飲料の凝集がより抑制され、安定性がより向上する。

Claims (22)

  1.  ペプチド結合加水分解酵素により豆乳を加水分解して発酵基質を得る酵素処理工程と、
     前記発酵基質をラクトバチラス・ブレビス(Lactobacillus brevis)に属する乳酸菌で発酵させて発酵物を得る発酵工程と、を備える、豆乳発酵物の製造方法。
  2.  前記発酵基質中の前記ペプチド結合加水分解酵素を失活させる酵素失活工程を更に備える、請求項1に記載の製造方法。
  3.  前記ペプチド結合加水分解酵素が、ペプチダーゼ及びプロテアーゼからなる群より選択される少なくとも1種の酵素である、請求項1又は2に記載の製造方法。
  4.  前記ペプチド結合加水分解酵素が、エキソ型のペプチダーゼ、又はエキソ型のプロテアーゼを含む、請求項1~3のいずれか一項に記載の製造方法。
  5.  前記発酵基質に含まれる遊離アミノ酸の量が、全量を基準として、6000質量ppm以下である、請求項1~4のいずれか一項に記載の製造方法。
  6.  前記乳酸菌が、ラクトバチラス・ブレビスSBC8803(受託番号:FERM BP-10632)、ラクトバチラス・ブレビスSBC8027(受託番号:FERM BP-10630)、ラクトバチラス・ブレビスSBC8044(受託番号:FERM BP-10631)、ラクトバチラス・ブレビスJCM1061、ラクトバチラス・ブレビスJCM1065、及びラクトバチラス・ブレビスJCM1170から選択される少なくとも1種である、請求項1~5のいずれか一項に記載の製造方法。
  7.  前記乳酸菌が、ラクトバチラス・ブレビスSBC8803である、請求項1~6のいずれか一項に記載の製造方法。
  8.  前記豆乳発酵物が、豆乳発酵飲料である、請求項1~7のいずれか一項に記載の製造方法。
  9.  前記発酵物にタンパク質凝集抑制剤を添加する添加工程を更に備える、請求項8に記載の製造方法。
  10.  前記タンパク質凝集抑制剤が、大豆多糖類、ペクチン、カルボキシメチルセルロース及びアルギン酸ナトリウムから選択される少なくとも1種である、請求項9に記載の製造方法。
  11.  前記タンパク質凝集抑制剤が、大豆多糖類とペクチンの混合物である、請求項9又は10に記載の製造方法。
  12.  前記酵素処理工程の後、少なくとも1回被処理物を均質化する均質化工程を更に備える、請求項9~11のいずれか一項に記載の製造方法。
  13.  前記均質化工程が、少なくとも1回、前記発酵工程の後に行われる、請求項12に記載の製造方法。
  14.  請求項1~7のいずれか一項に記載の製造方法により得られる豆乳発酵物。
  15.  請求項1~7のいずれか一項に記載の製造方法により得られる豆乳発酵物を含む飲食品。
  16.  請求項8~13のいずれか一項に記載の製造方法により得られる豆乳発酵飲料。
  17.  非水溶性成分の平均粒径が1.3μm以下である豆乳発酵飲料。
  18.  タンパク質凝集抑制剤を含有する、請求項17に記載の豆乳発酵飲料。
  19.  前記タンパク質凝集抑制剤が、大豆多糖類、ペクチン、カルボキシメチルセルロース及びアルギン酸ナトリウムから選択される少なくとも1種である、請求項18に記載の豆乳発酵飲料。
  20.  前記タンパク質凝集抑制剤が、大豆多糖類とペクチンの混合物である、請求項18又は19に記載の豆乳発酵飲料。
  21.  ラクトバチラス・ブレビス(Lactobacillus brevis)に属する乳酸菌で豆乳を発酵させたものである、請求項17~20のいずれか一項に記載の豆乳発酵飲料。
  22.  前記乳酸菌が、ラクトバチラス・ブレビスSBC8803(受託番号:FERM BP-10632)、ラクトバチラス・ブレビスSBC8027(受託番号:FERM BP-10630)、ラクトバチラス・ブレビスSBC8044(受託番号:FERM BP-10631)、ラクトバチラス・ブレビスJCM1061、ラクトバチラス・ブレビスJCM1065、及びラクトバチラス・ブレビスJCM1170から選択される少なくとも1種である、請求項21に記載の豆乳発酵飲料。
PCT/JP2013/057668 2012-04-05 2013-03-18 豆乳発酵物及びその製造方法 WO2013150887A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2869292A CA2869292C (en) 2012-04-05 2013-03-18 Soy milk fermentation product and method for producing same
US14/390,475 US10299490B2 (en) 2012-04-05 2013-03-18 Soy milk fermentation product and method for producing same
SG11201406339QA SG11201406339QA (en) 2012-04-05 2013-03-18 Soy milk fermentation product and method for producing same
MYPI2014002844A MY185111A (en) 2012-04-05 2013-03-18 Soy milk fermentation product and method for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-086401 2012-04-05
JP2012086401A JP5732003B2 (ja) 2012-04-05 2012-04-05 豆乳発酵物及びその製造方法
JP2013-019492 2013-02-04
JP2013019492A JP5719390B2 (ja) 2013-02-04 2013-02-04 豆乳発酵飲料及びその製造方法

Publications (1)

Publication Number Publication Date
WO2013150887A1 true WO2013150887A1 (ja) 2013-10-10

Family

ID=49300381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057668 WO2013150887A1 (ja) 2012-04-05 2013-03-18 豆乳発酵物及びその製造方法

Country Status (5)

Country Link
US (1) US10299490B2 (ja)
CA (2) CA2869292C (ja)
MY (1) MY185111A (ja)
SG (1) SG11201406339QA (ja)
WO (1) WO2013150887A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119343A1 (ja) * 2013-02-04 2014-08-07 サッポロホ-ルディングス株式会社 固体状豆乳発酵物及びその製造方法
CN104799273A (zh) * 2014-01-27 2015-07-29 中粮营养健康研究院有限公司 一种大豆肽颗粒的制备方法、大豆肽颗粒及其饮品
CN104824170A (zh) * 2015-05-29 2015-08-12 陈立成 一种酶解大豆蛋白发酵酸乳的生产方法
JP2015181395A (ja) * 2014-03-24 2015-10-22 ポッカサッポロフード&ビバレッジ株式会社 発酵豆乳入り飲料、及び発酵豆乳入り飲料の酸味抑制、かつ経時安定性維持方法
WO2016121923A1 (ja) * 2015-01-29 2016-08-04 株式会社明治 筋肉合成促進剤
WO2016152590A1 (ja) * 2015-03-25 2016-09-29 フジッコ株式会社 豆乳発酵物の製法およびそれにより得られた豆乳発酵物
US10299490B2 (en) 2012-04-05 2019-05-28 Sapporo Holdings Limited Soy milk fermentation product and method for producing same
JP2019115374A (ja) * 2019-05-07 2019-07-18 ポッカサッポロフード&ビバレッジ株式会社 経時安定性が良好な発酵豆乳入り飲料の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110575085B (zh) * 2018-06-11 2021-09-03 佛山市顺德区美的电热电器制造有限公司 用于制备酸豆乳的装置及方法
JP7268797B2 (ja) * 2020-03-26 2023-05-08 不二製油株式会社 植物ベース発酵乳の製造法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS481188B1 (ja) * 1969-06-25 1973-01-16
JPH057458A (ja) * 1991-07-02 1993-01-19 San Ei Chem Ind Ltd 酸性蛋白食品
JP2003284520A (ja) * 2002-03-28 2003-10-07 Fuji Oil Co Ltd 発酵豆乳およびその製造法
JP2004016215A (ja) * 2002-06-12 2004-01-22 Riken Health Kk 豆乳の処理方法
WO2009131052A1 (ja) * 2008-04-21 2009-10-29 不二製油株式会社 脱脂豆乳ペプチドの製造方法
JP2012036158A (ja) * 2010-08-11 2012-02-23 Sapporo Breweries Ltd 中性脂肪低減剤

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1154139A (en) 1967-04-12 1969-06-04 Ajinomoto Kk Process for Preparing a Sour Milk Beverage or Yoghurt.
US3585047A (en) 1968-10-30 1971-06-15 Us Agriculture Enzymatic improvement of soybean flavor and stability
GB1438315A (ja) 1972-12-04 1976-06-03
JP2510435B2 (ja) 1991-06-20 1996-06-26 雪印乳業株式会社 酸性乳飲料およびその製造方法
US5342641A (en) 1991-07-02 1994-08-30 Fuji Oil Co., Ltd. Food additive comprising water-soluble hemicellulose
JP4046389B2 (ja) 1997-09-04 2008-02-13 株式会社ヤクルト本社 ビフィドバクテリウム・ブレーベ及びこれを用いた発酵豆乳
JP3313104B2 (ja) 1999-10-27 2002-08-12 カルピス株式会社 乳含有酸性飲料の製造方法
JP2002262771A (ja) 2001-07-02 2002-09-17 Toshiko Kurono 豆乳ヨーグルト
US20030194468A1 (en) 2002-04-12 2003-10-16 Amy Konkoly Dairy beverage and method of preparation thereof
DE60323096D1 (de) 2002-07-01 2008-10-02 Kagome Labio Co Ltd Verfahren zur herstellung von getränken und von einem festen fermentierten nahrungsmittel aus bohnen als rohstoff
JP4344143B2 (ja) 2003-01-10 2009-10-14 キリンホールディングス株式会社 風味の良いgaba高含有乳酸菌発酵飲食品及び調味食品の製造法
JP2004261139A (ja) 2003-03-04 2004-09-24 Yakult Honsha Co Ltd 酸性豆乳飲料およびその製造方法
CA2519148A1 (en) 2003-04-01 2004-10-28 Archer-Daniels-Midland Company Soya fiber particulates and methods of preparation
JP4569630B2 (ja) 2005-06-17 2010-10-27 不二製油株式会社 クリームチーズ様食品及びその製造法
AU2006270824B2 (en) 2005-07-21 2010-09-02 Kabushiki Kaisha Yakult Honsha Novel bacterium belonging to the genus bifidobacterium and utilization of the same
JP2007068410A (ja) 2005-09-02 2007-03-22 Sanei Gen Ffi Inc 酸性豆乳飲料
US20090280217A1 (en) 2005-12-06 2009-11-12 Mitsuru Katase Method for Production of Soybean Peptide Mixture
CN100581369C (zh) 2006-08-31 2010-01-20 林伟锋 含大豆的发酵乳制品的生产方法
JP2008220301A (ja) 2007-03-14 2008-09-25 Tsubakiya:Kk 低アレルゲン豆乳
US20090007642A1 (en) 2007-07-05 2009-01-08 Baxter International Inc. Dialysis fluid measurement method and apparatus using conductive contacts
US20100272859A1 (en) 2007-08-28 2010-10-28 Pepsico, Inc. Delivery and controlled release of encapsulated water-insoluble flavorants
EP2219465B1 (en) 2007-11-23 2016-04-13 Unilever N.V. Fermented soy-based beverage
CA2711532C (en) * 2008-01-15 2014-04-08 Sapporo Breweries Limited Agent for prevention of alcoholic hepatopathy
JP5820622B2 (ja) 2011-06-02 2015-11-24 サッポロビール株式会社 豆乳発酵物及びその製造方法
CA2869292C (en) 2012-04-05 2018-07-10 Sapporo Holdings Limited Soy milk fermentation product and method for producing same
CN102687752B (zh) 2012-06-29 2013-09-11 天宁香料(江苏)有限公司 大豆褐色乳酸菌饮料的制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS481188B1 (ja) * 1969-06-25 1973-01-16
JPH057458A (ja) * 1991-07-02 1993-01-19 San Ei Chem Ind Ltd 酸性蛋白食品
JP2003284520A (ja) * 2002-03-28 2003-10-07 Fuji Oil Co Ltd 発酵豆乳およびその製造法
JP2004016215A (ja) * 2002-06-12 2004-01-22 Riken Health Kk 豆乳の処理方法
WO2009131052A1 (ja) * 2008-04-21 2009-10-29 不二製油株式会社 脱脂豆乳ペプチドの製造方法
JP2012036158A (ja) * 2010-08-11 2012-02-23 Sapporo Breweries Ltd 中性脂肪低減剤

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10299490B2 (en) 2012-04-05 2019-05-28 Sapporo Holdings Limited Soy milk fermentation product and method for producing same
US10231467B2 (en) 2013-02-04 2019-03-19 Sapporo Holdings Limited Solid fermented soy milk product and process for manufacturing same
WO2014119343A1 (ja) * 2013-02-04 2014-08-07 サッポロホ-ルディングス株式会社 固体状豆乳発酵物及びその製造方法
CN104799273A (zh) * 2014-01-27 2015-07-29 中粮营养健康研究院有限公司 一种大豆肽颗粒的制备方法、大豆肽颗粒及其饮品
JP2015181395A (ja) * 2014-03-24 2015-10-22 ポッカサッポロフード&ビバレッジ株式会社 発酵豆乳入り飲料、及び発酵豆乳入り飲料の酸味抑制、かつ経時安定性維持方法
CN107427058A (zh) * 2015-01-29 2017-12-01 株式会社明治 肌肉合成促进剂
WO2016121923A1 (ja) * 2015-01-29 2016-08-04 株式会社明治 筋肉合成促進剤
JPWO2016121923A1 (ja) * 2015-01-29 2017-11-09 株式会社明治 筋肉合成促進剤
JP2016178911A (ja) * 2015-03-25 2016-10-13 フジッコ株式会社 豆乳発酵物の製法およびそれにより得られた豆乳発酵物
WO2016152590A1 (ja) * 2015-03-25 2016-09-29 フジッコ株式会社 豆乳発酵物の製法およびそれにより得られた豆乳発酵物
CN104824170B (zh) * 2015-05-29 2018-03-20 陈立成 一种酶解大豆蛋白发酵酸乳的生产方法
CN104824170A (zh) * 2015-05-29 2015-08-12 陈立成 一种酶解大豆蛋白发酵酸乳的生产方法
JP2019115374A (ja) * 2019-05-07 2019-07-18 ポッカサッポロフード&ビバレッジ株式会社 経時安定性が良好な発酵豆乳入り飲料の製造方法

Also Published As

Publication number Publication date
US20150164098A1 (en) 2015-06-18
CA2869292C (en) 2018-07-10
US10299490B2 (en) 2019-05-28
MY185111A (en) 2021-04-30
SG11201406339QA (en) 2014-11-27
CA2950367A1 (en) 2013-10-10
CA2869292A1 (en) 2013-10-10

Similar Documents

Publication Publication Date Title
WO2013150887A1 (ja) 豆乳発酵物及びその製造方法
AU2010278088B2 (en) Carbonated drink comprising soybean flour or soybean milk
JP5719390B2 (ja) 豆乳発酵飲料及びその製造方法
JP2011135832A (ja) 乳酸発酵大豆食品の製造方法
WO2007116772A1 (ja) 豆粉乳の製造方法とその応用
TWI757448B (zh) 含有乳酸菌粉末與高甜度甜味料之飲料、該飲料之製造方法、改善該飲料之風味之方法、及該飲料用風味改善劑
JP4804951B2 (ja) 酸性飲食品の製造方法
JPWO2007052806A1 (ja) Gaba含有発酵物の製造方法
JP2004261139A (ja) 酸性豆乳飲料およびその製造方法
JP6751175B2 (ja) 経時安定性が良好な発酵豆乳入り飲料の製造方法
JP5622879B2 (ja) 豆乳発酵飲料及びその製造方法
JP6181557B2 (ja) 液状発酵乳の製造方法
CN105613740B (zh) 一种含葛根的褐色乳酸菌饮品及其生产方法
JP2004121135A (ja) 米液化物及びその製造方法
JP2008029279A (ja) オカラ成分含有飲料
JP4410074B2 (ja) 酸性ゲル状食品
KR20160066464A (ko) 아로니아 요구르트 제조 방법, 및 그 제조 방법에 의해 제조된 아로니아 요구르트
JP5732003B2 (ja) 豆乳発酵物及びその製造方法
JP3991225B2 (ja) 大豆発酵食品およびその製造法
EP3042566B1 (en) Vegetable yoghurt-like products and methods for producing these
JP6587377B2 (ja) 発酵豆乳入り飲料、及び発酵豆乳入り飲料の酸味抑制、かつ経時安定性維持方法
CN113892591A (zh) 一种果味发酵豆乳饮料及其制备方法
JP3834733B2 (ja) 香料および香味改善剤の製造法およびこれらを含有する飲食品
JP4061510B2 (ja) 大豆発酵食品およびその製造法
TW201906537A (zh) 含有微生物菌體之非碳酸液態飲食品、及提高飲食品中微生物菌體粉末之沉澱物或凝聚物之分散性之方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772498

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2869292

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14390475

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13772498

Country of ref document: EP

Kind code of ref document: A1