WO2013104200A1 - 用ald设备生长氮化镓薄膜的方法 - Google Patents

用ald设备生长氮化镓薄膜的方法 Download PDF

Info

Publication number
WO2013104200A1
WO2013104200A1 PCT/CN2012/082199 CN2012082199W WO2013104200A1 WO 2013104200 A1 WO2013104200 A1 WO 2013104200A1 CN 2012082199 W CN2012082199 W CN 2012082199W WO 2013104200 A1 WO2013104200 A1 WO 2013104200A1
Authority
WO
WIPO (PCT)
Prior art keywords
gallium
silicon carbide
nitrogen
source gas
layer deposition
Prior art date
Application number
PCT/CN2012/082199
Other languages
English (en)
French (fr)
Inventor
饶志鹏
万军
夏洋
陈波
李超波
石莎莉
李勇滔
李楠
Original Assignee
中国科学院微电子研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院微电子研究所 filed Critical 中国科学院微电子研究所
Publication of WO2013104200A1 publication Critical patent/WO2013104200A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45534Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride

Definitions

  • This invention relates to the preparation of gallium nitride materials, and more particularly to a method of growing gallium nitride thin films using ALD devices. Background technique
  • GaN materials have a wide direct band gap, high thermal conductivity and breakdown electric field, low dielectric constant, strong radiation resistance, and good chemical stability (nearly corroded by any acid), in optoelectronics, high temperature and high power devices. And the application of high frequency microwave devices has broad prospects. In the LED industry, a fully structured GaN material with matching crystal constants directly affects the performance of the LED.
  • MOCVD is the mainstream technology for the preparation of GaN and its related multilayer structure films, with low price and fast growth.
  • MOCVD is the mainstream technology for the preparation of GaN and its related multilayer structure films, with low price and fast growth.
  • its growth temperature is too high, generally higher than 900. C, this tends to cause the produced GaN film to have less nitrogen and carbon contamination.
  • plasma assisted methods is a better method at low temperatures, but the results produced by PECVD are not ideal. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a GaN film which can be grown, and the GaN film which is grown has a high nitrogen content, and the preparation method is simple, and the doped film has a complete structure and an increased nitrogen content.
  • the present invention provides a method for growing a gallium nitride film by using an ALD device, comprising:
  • Step 10 The silicon carbide village is treated with a standard solution and hydrofluoric acid to treat the surface and placed in the reaction chamber of the atomic layer deposition apparatus;
  • Step 20 introducing a gallium source gas into the reaction chamber of the atomic layer deposition apparatus, wherein the gallium source gas is used as a first reaction precursor source for chemical adsorption on a surface of the silicon carbide substrate, and the gallium atom in the gallium source gas Adsorbed on the silicon carbide substrate;
  • Step 30 the gallium atom adsorbed on the silicon carbide substrate and the second reaction precursor after ionization react with the aid of hydrogen until the gallium atom on the bottom surface of the silicon carbide substrate is completely consumed; By repeating steps 20 and 30, a gallium nitride film can be formed on the surface of the carbonized substrate.
  • the gallium source gas is gallium chloride; the gallium chloride is chemically adsorbed by reacting with a substrate surface.
  • the ionized second precursor is a carrier gas nitrogen gas
  • the nitrogen ion ionized nitrogen molecules form hydrogen nitrogen ions with hydrogen, and react with chlorine atoms in the gallium chloride to remove gallium chloride.
  • Other functional groups than others are replaced by nitrogen atoms.
  • a cleaning gas cleaning chamber is introduced into the atomic layer deposition apparatus reaction chamber.
  • the cleaning gas is nitrogen.
  • the method for growing a gallium nitride film by using the ALD device provided by the invention has the advantages of high conversion rate, low energy consumption, and a single layer circulation growth by atomic layer deposition, thereby achieving uniform nitrogen doping in the whole structure, and After doping, the content of nitrogen is high and the film structure is intact.
  • FIG. 1 is a schematic view showing formation of a Si—H bond on a surface of a silicon carbide according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing a generation reaction of a gallium chloride and a silicon carbide substrate surface in the embodiment of the present invention, wherein gallium atoms are adsorbed on a silicon carbide substrate;
  • FIG. 4 is a gas passage into the atomic layer deposition reaction chamber in the embodiment of the present invention; Schematic diagram of nitrogen gas plasma discharge ionization;
  • Fig. 5 is a schematic view showing the formation of a gallium nitride structure having a hydrogen atom on the surface of a silicon carbide substrate after nitrogen ionization in the embodiment of the present invention. detailed description
  • a method for growing a gallium nitride film by using an ALD device includes:
  • Step 102 open the atomic layer deposition equipment, adjust the working parameters to achieve the working environment required for the experiment; first pass the nitrogen atom cleaning chamber to the reaction chamber of the atomic layer deposition equipment, and then deposit the reaction chamber to the atomic layer
  • the gallium source gas is introduced into the middle, as shown in FIG. 2; the hydrogen atoms of the gallium nitride and the silicon carbide substrate surface react, and the gallium atoms are adsorbed on the bottom surface of the silicon carbide substrate, as shown in FIG.
  • Step 103 First, a reaction chamber of the atomic layer deposition apparatus is introduced into the nitrogen cleaning chamber, and then hydrogen gas is introduced into the reaction chamber of the atomic layer deposition apparatus, and the rate of hydrogen gas is 2 sccm-10 sccm, and the plasma discharge is performed, and the plasma discharge power is 1W-100W, nitrogen molecules after nitrogen ionization form hydrogen nitrogen ions with hydrogen, and react with chlorine atoms in gallium chloride (as shown in Figure 4), so that other functional groups other than gallium in gallium chloride are replaced by nitrogen atoms.
  • the bottom surface of the silicon carbide substrate forms a gallium nitride structure having hydrogen atoms (as shown in FIG. 5).
  • Step 104 after the end of the reaction period from step 102 to step 103, the bottom surface of the silicon carbide substrate is all hydrogen atoms. At this time, steps 102 to 103 are repeated, and the gallium nitride film can be grown layer by layer.
  • the method for growing a gallium nitride film by using the ALD device provided by the invention has the advantages of high conversion rate, low energy consumption, and a single layer circulation growth by atomic layer deposition, thereby achieving uniform nitrogen doping in the whole structure, and After doping, the content of nitrogen is high and the film structure is intact.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

公开一种用ALD设备生长氮化镓薄膜的方法,包括步骤10、将碳化硅衬通过标准液和氢氟酸处理处理表面并放置于原子层沉积设备反应腔中;步骤20、向所述原子层沉积设备反应腔中通入镓源气体,所述镓源气体作为第一反应前驱体源在碳化硅衬底表面进行化学吸附,所述镓源气体中的镓原子吸附在所述碳化硅衬底上;步骤30、吸附在碳化硅衬底上的镓原子与电离后的第二反应前驱体在氢气的辅助下发生反应,直到所述碳化硅衬底表面的镓原子完全消耗;重复步骤20、30,即可在所述碳化硅衬底表面形成氮化镓薄膜。本发明提供的方法能够实现均匀的在整个结构中掺氮,且掺杂后氮元素含量高,薄膜结构完整。

Description

用 ALD设备生长氮化镓薄膜的方法
技术领域
本发明涉及氮化镓材料的制备,具体涉及一种用 ALD设备生长氮化镓 薄膜的方法。 背景技术
GaN材料的研究与应用是目前半导体研究的前沿和热点, 是研制微电 子器件、 光电子器件的新型半导体材料, 是 LED产业发展的基础。 GaN 材料具有宽的直接带隙, 高的热导率和击穿电场, 介电常数小, 抗辐射能 力强, 且化学稳定性好 (几乎不被任何酸腐蚀) , 在光电子、 高温大功率 器件和高频微波器件应用方面有着广阔的前景。 在 LED产业中, 具有完整 结构的 GaN材料及具有匹配的晶体常数直接影响到 LED的性能。
目前, GaN的外延生长工艺一般有以下几种: MOCVD, MBE, LEO 和 PECVD等。 MOCVD是制备 GaN及其相关多层结构薄膜的主流技术, 具有价格较低、生长速度快等特点。但是其生长温度过高,一般高于 900。C, 这容易造成制备出的 GaN薄膜少氮和存在碳污染。 在低温条件下, 使用等 离子体辅助的方式是一种较好的办法, 但是通过 PECVD方法制作出的结 果并不理想。 发明内容
本发明所要解决的技术问题是提供一种能够实现对 GaN薄膜的生长, 且生长出的 GaN薄膜含有较高的氮含量, 且制备方法筒单, 掺杂后的薄膜 结构完整, 氮含量提升,性能显著增加的用 ALD设备生长氮化镓薄膜的方 法。
为解决上述技术问题,本发明提供了一种用 ALD设备生长氮化镓薄膜 的方法, 包括:
步骤 10、将碳化硅村通过标准液和氢氟酸处理处理表面并放置于原子 层沉积设备反应腔中;
步骤 20、 向所述原子层沉积设备反应腔中通入镓源气体, 所述镓源气 体作为第一反应前驱体源在碳化硅村底表面进行化学吸附, 所述镓源气体 中的镓原子吸附在所述碳化硅村底上;
步骤 30、吸附在碳化硅村底上的镓原子与电离后的第二反应前驱体在 氢气的辅助下发生反应, 直到所述碳化硅村底表面的镓原子完全消耗; 重复步骤 20、 30, 即可在所述碳化村底表面形成氮化镓薄膜。
进一步地, 所述镓源气体是氯化镓; 所述氯化镓通过和村底表面反应 而进行化学吸附。
进一步地, 所述电离后的第二前驱体是载气氮气, 所述氮气电离后的 氮气分子与氢气形成氮氢离子, 和氯化镓中的氯原子发生反应, 使得氯化 镓中除镓以外的其他官能团被氮原子取代。
进一步地, 在所述步骤 20和步骤 30之前分别包括向原子层沉积设备 反应腔通入清洗气体清洗腔室。
进一步地, 所述清洗气体为氮气。
本发明提供的用 ALD设备生长氮化镓薄膜的方法,操作筒单,转化率 高, 能耗小, 利用原子层沉积单层循环生长的特点, 能够实现均匀的在整 个结构中掺氮, 且掺杂后氮元素含量高, 薄膜结构完整。 附图说明
图 1为本发明实施例中碳化硅表面形成 Si-H键的示意图;
图 2为本发明实施例中氯化镓和碳化硅村底表面发生 代反应, 镓原 子吸附在碳化硅村底上的示意图; 图 4为本发明 施例中向原子层沉积反应腔通入 气 Γ并进行氮气等 离子体放电电离的示意图;
图 5为本发明实施例中氮气电离后, 碳化硅村底表面形成具有氢原子 的镓氮结构的示意图。 具体实施方式
参见图 1 ,本发明实施例提供的一种用 ALD设备生长氮化镓薄膜的方 法包括:
步骤 101、 通过标准液和氢氟酸处理碳化硅村底表面, 在碳化硅村底 表面形成硅氢键, 如图 1所示, 其中, 标准液是指: 1号液, 浓硫酸:双氧 水 =4: 1 ; 2号液, 氨水:纯净水:双氧水 =1 :5: 1 ; 3号液, 盐酸:双氧水:纯净水 = 1 : 1 :6; 将进行氢化处理后的碳化硅村底放置于原子层沉积设备反应腔中; 步骤 102、 开启原子层沉积设备, 调整工作参数, 达到实验所需工作 环境; 先向原子层沉积设备反应腔通入氮气清洗腔室, 然后向原子层沉积 反应腔中通入镓源气体, 如图 2所示; 氮化镓和碳化硅村底表面的氢原子 发生反应, 镓原子吸附在碳化硅村底表面, 如图 3所示; 步骤 103、 先向原子层沉积设备反应腔通入氮气清洗腔室, 然后向原 子层沉积设备反应腔中通入氢气, 氢气的速率为 2sccm-10sccm, 并进行氮 气等离子放电, 等离子体放电功率为 1W-100W, 氮气电离后的氮气分子与 氢气形成氮氢离子, 和氯化镓中的氯原子发生反应 (如图 4所示) , 使得 氯化镓中除镓以外的其他官能团被氮原子取代, 碳化硅村底表面形成具有 氢原子的镓氮结构 (如图 5所示) 。
步骤 104, 步骤 102至步骤 103这一反应周期结束后, 碳化硅村底表 面全为氢原子, 此时重复步骤 102至步骤 103 , 可以逐层生长氮化镓薄膜。
本发明提供的用 ALD设备生长氮化镓薄膜的方法,操作筒单,转化率 高, 能耗小, 利用原子层沉积单层循环生长的特点, 能够实现均匀的在整 个结构中掺氮, 且掺杂后氮元素含量高, 薄膜结构完整。 而非限制, 尽管参照实例对本发明进行了详细说明, 本领域的普通技术人 员应当理解, 可以对本发明的技术方案进行修改或者等同替换, 而不脱离 本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims

权 利 要 求 书
1、 一种用 ALD设备生长氮化镓薄膜的方法, 其特征在于, 包括: 步骤 10、将碳化硅村通过标准液和氢氟酸处理处理表面并放置于原子 层沉积设备反应腔中;
步骤 20、 向所述原子层沉积设备反应腔中通入镓源气体, 所述镓源气 体作为第一反应前驱体源在碳化硅村底表面进行化学吸附, 所述镓源气体 中的镓原子吸附在所述碳化硅村底上;
步骤 30、吸附在碳化硅村底上的镓原子与电离后的第二反应前驱体在 氢气的辅助下发生反应, 直到所述碳化硅村底表面的镓原子完全消耗; 重复步骤 20、 30, 即可在所述碳化村底表面形成氮化镓薄膜。
2、 根据权利要求 1所述的方法, 其特征在于:
所述镓源气体是氯化镓; 所述氯化镓通过和村底表面反应而进行化学 吸附。
3、 根据权利要求 1所述的方法, 其特征在于:
所述电离后的第二前驱体是载气氮气, 所述氮气电离后的氮气分子与 氢气形成氮氢离子, 和氯化镓中的氯原子发生反应, 使得氯化镓中除镓以 外的其他官能团被氮原子取代。
4、 根据权利要求 1所述的方法, 其特征在于, 在所述步骤 20和步骤 30之前分别包括:
向原子层沉积设备反应腔通入清洗气体清洗腔室。
5、 根据权利要求 1所述的方法, 其特征在于:
所述清洗气体为氮气。
PCT/CN2012/082199 2012-01-11 2012-09-27 用ald设备生长氮化镓薄膜的方法 WO2013104200A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210007703.8 2012-01-11
CN201210007703.8A CN103205729B (zh) 2012-01-11 2012-01-11 用ald设备生长氮化镓薄膜的方法

Publications (1)

Publication Number Publication Date
WO2013104200A1 true WO2013104200A1 (zh) 2013-07-18

Family

ID=48753131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082199 WO2013104200A1 (zh) 2012-01-11 2012-09-27 用ald设备生长氮化镓薄膜的方法

Country Status (2)

Country Link
CN (1) CN103205729B (zh)
WO (1) WO2013104200A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106449907B (zh) * 2016-11-18 2019-04-12 电子科技大学 一种p型指数掺杂结构GaN光电阴极材料的生长方法
CN112221524B (zh) * 2020-09-16 2023-01-13 西安近代化学研究所 一种负载型大比表面积氮化镓催化剂的制备方法
CN112985330A (zh) * 2021-02-07 2021-06-18 西安交通大学 一种用于在线仪器校准的晶圆级膜厚标准片的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090050929A1 (en) * 2007-08-24 2009-02-26 Miin-Jang Chen Semiconductor substrate with nitride-based buffer layer for epitaxy of semiconductor opto-electronic device and fabrication thereof
CN101418435A (zh) * 2007-10-26 2009-04-29 林新智 在工件的轮廓上形成保护层的方法
CN101651174A (zh) * 2008-08-12 2010-02-17 昆山中辰硅晶有限公司 供半导体光电元件磊晶用的半导体基板及其制造方法
US20110236654A1 (en) * 2010-03-26 2011-09-29 Wen-Kuang Hsu Method of surface treatment and surface treated article provied by the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102127756A (zh) * 2011-02-21 2011-07-20 东华大学 一种脉冲调制射频等离子体增强原子层沉积装置及方法
CN102296278A (zh) * 2011-09-26 2011-12-28 中国科学院微电子研究所 一种氮化铝薄膜的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090050929A1 (en) * 2007-08-24 2009-02-26 Miin-Jang Chen Semiconductor substrate with nitride-based buffer layer for epitaxy of semiconductor opto-electronic device and fabrication thereof
CN101418435A (zh) * 2007-10-26 2009-04-29 林新智 在工件的轮廓上形成保护层的方法
CN101651174A (zh) * 2008-08-12 2010-02-17 昆山中辰硅晶有限公司 供半导体光电元件磊晶用的半导体基板及其制造方法
US20110236654A1 (en) * 2010-03-26 2011-09-29 Wen-Kuang Hsu Method of surface treatment and surface treated article provied by the same

Also Published As

Publication number Publication date
CN103205729B (zh) 2015-07-29
CN103205729A (zh) 2013-07-17

Similar Documents

Publication Publication Date Title
JP7383669B2 (ja) 二次元材料を製造する方法
CN107275192B (zh) 基于低成本单晶金刚石制备高性能金刚石半导体的方法
CN101492835A (zh) 由绝缘衬底上超薄六方相碳化硅膜外延石墨烯的方法
CN104867818B (zh) 一种减少碳化硅外延材料缺陷的方法
WO2013102360A1 (zh) 基于金属膜辅助退火和Cl2反应的石墨烯制备方法
CN203474963U (zh) 一种用于生产碳化硅外延片的化学气相沉积设备
KR101321424B1 (ko) 반도체 소자의 표면 처리 및 박막 성장 방법, 그리고 이를 구현하는 표면 처리 및 박막 성장 장치
KR20130095119A (ko) 대기압 플라스마 발생 장치
CN103556219B (zh) 一种碳化硅外延生长装置
WO2013104200A1 (zh) 用ald设备生长氮化镓薄膜的方法
CN104328390B (zh) 一种GaN/金刚石膜复合片的制备方法
Zhang et al. Subnanometer-thick 2D GaN film with a large bandgap synthesized by plasma enhanced chemical vapor deposition
CN103603048A (zh) 一种用于生产碳化硅外延片的化学气相沉积设备
JP6786939B2 (ja) 炭化珪素半導体基板および炭化珪素半導体基板の製造方法
CN101979707B (zh) 一种用于原子层沉积制备石墨烯薄膜的碳化学吸附方法
CN102296278A (zh) 一种氮化铝薄膜的制备方法
TWI739799B (zh) 二維材料製造方法
KR20200054655A (ko) 그래핀 패턴의 합성 방법 및 이를 이용한 전광 모듈레이터의 제조 방법
TW201503401A (zh) 太陽能電池的製造方法
JP2004107766A (ja) 触媒化学気相成長方法および触媒化学気相成長装置
CN103866266B (zh) 一种制备低表面粗糙度氧化锌薄膜的方法
Morikawa et al. Heteroepitaxial growth of 3C–SiC film on Si (100) substrate by plasma chemical vapor deposition using monomethylsilane
CN109518278B (zh) 一种富氮气氛增强氮化硼薄膜p型导电掺杂的方法
JP2006036613A (ja) ケイ素基板上に立方晶炭化ケイ素結晶膜を形成する方法
CN103107068A (zh) 基于SiC与氯气反应的Ni膜退火侧栅石墨烯晶体管制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865068

Country of ref document: EP

Kind code of ref document: A1