CN103205729B - 用ald设备生长氮化镓薄膜的方法 - Google Patents

用ald设备生长氮化镓薄膜的方法 Download PDF

Info

Publication number
CN103205729B
CN103205729B CN201210007703.8A CN201210007703A CN103205729B CN 103205729 B CN103205729 B CN 103205729B CN 201210007703 A CN201210007703 A CN 201210007703A CN 103205729 B CN103205729 B CN 103205729B
Authority
CN
China
Prior art keywords
gallium
silicon carbide
nitrogen
substrate surface
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210007703.8A
Other languages
English (en)
Other versions
CN103205729A (zh
Inventor
饶志鹏
万军
夏洋
陈波
李超波
石莎莉
李勇滔
李楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN201210007703.8A priority Critical patent/CN103205729B/zh
Priority to PCT/CN2012/082199 priority patent/WO2013104200A1/zh
Publication of CN103205729A publication Critical patent/CN103205729A/zh
Application granted granted Critical
Publication of CN103205729B publication Critical patent/CN103205729B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45534Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明公开用ALD设备生长氮化镓薄膜的方法,包括步骤10、将碳化硅衬通过标准液和氢氟酸处理表面并放置于原子层沉积设备反应腔中;步骤20、向所述原子层沉积设备反应腔中通入镓源气体,所述镓源气体作为第一反应前驱体源在碳化硅衬底表面进行化学吸附,所述镓源气体中的镓原子吸附在所述碳化硅衬底上;步骤30、吸附在碳化硅衬底上的镓原子与电离后的第二反应前驱体在氢气的辅助下发生反应,直到所述碳化硅衬底表面的镓原子完全消耗;重复步骤20、30,即可在所述碳化硅衬底表面形成氮化镓薄膜。本发明提供的方法能够实现均匀的在整个结构中掺氮,且掺杂后氮元素含量高,薄膜结构完整。

Description

用ALD设备生长氮化镓薄膜的方法
技术领域
本发明涉及氮化镓材料的制备,具体涉及一种用ALD设备生长氮化镓薄膜的方法。
背景技术
GaN材料的研究与应用是目前半导体研究的前沿和热点,是研制微电子器件、光电子器件的新型半导体材料,是LED产业发展的基础。GaN材料具有宽的直接带隙,高的热导率和击穿电场,介电常数小,抗辐射能力强,且化学稳定性好(几乎不被任何酸腐蚀),在光电子、高温大功率器件和高频微波器件应用方面有着广阔的前景。在LED产业中,具有完整结构的GaN材料及具有匹配的晶体常数直接影响到LED的性能。
目前,GaN的外延生长工艺一般有以下几种:MOCVD,MBE,LEO和PECVD等。MOCVD是制备GaN及其相关多层结构薄膜的主流技术,具有价格较低、生长速度快等特点。但是其生长温度过高,一般高于900℃,这容易造成制备出的GaN薄膜少氮和存在碳污染。在低温条件下,使用等离子体辅助的方式是一种较好的办法,但是通过PECVD方法制作出的结果并不理想。
发明内容
本发明所要解决的技术问题是提供一种能够实现对GaN薄膜的生长,且生长出的GaN薄膜含有较高的氮含量,且制备方法简单,掺杂后的薄膜结构完整,氮含量提升,性能显著增加的用ALD设备生长氮化镓薄膜的方法。
为解决上述技术问题,本发明提供了一种用ALD设备生长氮化镓薄膜的方法,包括:
步骤10、将碳化硅衬通过标准液和氢氟酸处理处理表面并放置于原子层沉积设备反应腔中;
步骤20、向所述原子层沉积设备反应腔中通入镓源气体,所述镓源气体作为第一反应前驱体源在碳化硅衬底表面进行化学吸附,所述镓源气体中的镓原子吸附在所述碳化硅衬底上;
步骤30、吸附在碳化硅衬底上的镓原子与电离后的第二反应前驱体在氢气的辅助下发生反应,直到所述碳化硅衬底表面的镓原子完全消耗;
重复步骤20、30,即可在所述碳化衬底表面形成氮化镓薄膜。
进一步地,所述镓源气体是氯化镓;所述氯化镓通过和衬底表面反应而进行化学吸附。
进一步地,所述电离后的第二前驱体是载气氮气,所述氮气电离后的氮气分子与氢气形成氮氢离子,和氯化镓中的氯原子发生反应,使得氯化镓中除镓以外的其他官能团被氮原子取代。
进一步地,在所述步骤20和步骤30之前分别包括向原子层沉积设备反应腔通入清洗气体清洗腔室。
进一步地,所述清洗气体为氮气。
本发明提供的用ALD设备生长氮化镓薄膜的方法,操作简单,转化率高,能耗小,利用原子层沉积单层循环生长的特点,能够实现均匀的在整个结构中掺氮,且掺杂后氮元素含量高,薄膜结构完整。
附图说明
图1为本发明实施例中碳化硅表面形成Si-H键的示意图;
图2为本发明实施例中氯化镓和碳化硅衬底表面发生卤代反应,镓原子吸附在碳化硅衬底上的示意图;
图3为本发明实施例中碳化硅衬底表面被镓原子吸附后的示意图;
图4为本发明实施例中向原子层沉积反应腔通入氢气,并进行氮气等离子体放电电离的示意图;
图5为本发明实施例中氮气电离后,碳化硅衬底表面形成具有氢原子的镓氮结构的示意图。
具体实施方式
参见图1,本发明实施例提供的一种用ALD设备生长氮化镓薄膜的方法包括:
步骤101、通过标准液和氢氟酸处理碳化硅衬底表面,在碳化硅衬底表面形成硅氢键,如图1所示,其中,标准液是指:1号液,浓硫酸∶双氧水=4∶1;2号液,氨水∶纯净水∶双氧水=1∶5∶1;3号液,盐酸∶双氧水∶纯净水=1∶1∶6;将进行氢化处理后的碳化硅衬底放置于原子层沉积设备反应腔中;
步骤102、开启原子层沉积设备,调整工作参数,达到实验所需工作环境;先向原子层沉积设备反应腔通入氮气清洗腔室,然后向原子层沉积反应腔中通入镓源气体,如图2所示;氮化镓和碳化硅衬底表面的氢原子发生反应,镓原子吸附在碳化硅衬底表面,如图3所示;
步骤103、先向原子层沉积设备反应腔通入氮气清洗腔室,然后向原子层沉积设备反应腔中通入氢气,氢气的速率为2sccm-10sccm,并进行氮气等离子放电,等离子体放电功率为1W-100W,氮气电离后的氮气分子与氢气形成氮氢离子,和氯化镓中的氯原子发生反应(如图4所示),使得氯化镓中除镓以外的其他官能团被氮原子取代,碳化硅衬底表面形成具有氢原子的镓氮结构(如图5所示)。
步骤104,步骤102至步骤103这一反应周期结束后,碳化硅衬底表面全为氢原子,此时重复步骤102至步骤103,可以逐层生长氮化镓薄膜。
本发明提供的用ALD设备生长氮化镓薄膜的方法,操作简单,转化率高,能耗小,利用原子层沉积单层循环生长的特点,能够实现均匀的在整个结构中掺氮,且掺杂后氮元素含量高,薄膜结构完整。
最后所应说明的是,以上具体实施方式仅用以说明本发明的技术方案而非限制,尽管参照实例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (4)

1.一种用ALD设备生长氮化镓薄膜的方法,其特征在于,包括:
步骤10、将碳化硅衬通过标准液和氢氟酸处理表面并放置于原子层沉积设备反应腔中;
步骤20、向所述原子层沉积设备反应腔中通入镓源气体,所述镓源气体作为第一反应前驱体源在碳化硅衬底表面进行化学吸附,所述镓源气体中的镓原子吸附在所述碳化硅衬底上;
步骤30、吸附在碳化硅衬底上的镓原子与电离后的第二反应前驱体在氢气的辅助下发生反应,直到所述碳化硅衬底表面的镓原子完全消耗;重复步骤20、30,即可在所述碳化硅衬底表面形成氮化镓薄膜;
所述第二反应前驱体是载气氮气,并进行氮气等离子放电,等离子体放电功率为1W-100W,反应腔中通入氢气的速率为2sccm-10sccm,氮气电离后的氮气分子与氢气形成氮氢离子,和氯化镓中的氯原子发生反应,使得氯化镓中除镓以外的其他官能团被氮原子取代。
2.根据权利要求1所述的方法,其特征在于:所述镓源气体是氯化镓;所述氯化镓通过和衬底表面反应而进行化学吸附。
3.根据权利要求1所述的方法,其特征在于,在所述步骤20和步骤30之前分别包括:
向原子层沉积设备反应腔通入清洗气体清洗腔室。
4.根据权利要求3所述的方法,其特征在于:
所述清洗气体为氮气。
CN201210007703.8A 2012-01-11 2012-01-11 用ald设备生长氮化镓薄膜的方法 Active CN103205729B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201210007703.8A CN103205729B (zh) 2012-01-11 2012-01-11 用ald设备生长氮化镓薄膜的方法
PCT/CN2012/082199 WO2013104200A1 (zh) 2012-01-11 2012-09-27 用ald设备生长氮化镓薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210007703.8A CN103205729B (zh) 2012-01-11 2012-01-11 用ald设备生长氮化镓薄膜的方法

Publications (2)

Publication Number Publication Date
CN103205729A CN103205729A (zh) 2013-07-17
CN103205729B true CN103205729B (zh) 2015-07-29

Family

ID=48753131

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210007703.8A Active CN103205729B (zh) 2012-01-11 2012-01-11 用ald设备生长氮化镓薄膜的方法

Country Status (2)

Country Link
CN (1) CN103205729B (zh)
WO (1) WO2013104200A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106449907B (zh) * 2016-11-18 2019-04-12 电子科技大学 一种p型指数掺杂结构GaN光电阴极材料的生长方法
CN112221524B (zh) * 2020-09-16 2023-01-13 西安近代化学研究所 一种负载型大比表面积氮化镓催化剂的制备方法
CN112985330A (zh) * 2021-02-07 2021-06-18 西安交通大学 一种用于在线仪器校准的晶圆级膜厚标准片的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101418435A (zh) * 2007-10-26 2009-04-29 林新智 在工件的轮廓上形成保护层的方法
CN102127756A (zh) * 2011-02-21 2011-07-20 东华大学 一种脉冲调制射频等离子体增强原子层沉积装置及方法
CN102296278A (zh) * 2011-09-26 2011-12-28 中国科学院微电子研究所 一种氮化铝薄膜的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200910424A (en) * 2007-08-24 2009-03-01 Sino American Silicon Prod Inc Semiconductor substrate for epitaxy of semiconductor optoelectronic device and fabrication thereof
CN101651174B (zh) * 2008-08-12 2013-01-23 昆山中辰硅晶有限公司 供半导体光电元件外延用的半导体基板及其制造方法
US20110236654A1 (en) * 2010-03-26 2011-09-29 Wen-Kuang Hsu Method of surface treatment and surface treated article provied by the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101418435A (zh) * 2007-10-26 2009-04-29 林新智 在工件的轮廓上形成保护层的方法
CN102127756A (zh) * 2011-02-21 2011-07-20 东华大学 一种脉冲调制射频等离子体增强原子层沉积装置及方法
CN102296278A (zh) * 2011-09-26 2011-12-28 中国科学院微电子研究所 一种氮化铝薄膜的制备方法

Also Published As

Publication number Publication date
CN103205729A (zh) 2013-07-17
WO2013104200A1 (zh) 2013-07-18

Similar Documents

Publication Publication Date Title
CN102304700B (zh) 一种掺氮氧化锌薄膜的制备方法
JP6177295B2 (ja) h−BN上におけるグラフェンナノリボンの製造方法
CN103466609B (zh) 一种双层石墨烯薄膜的制备方法
CN107492482A (zh) 一种提高碳化硅外延层载流子寿命的方法
CN103072978A (zh) 一种制备双层石墨烯的化学气相沉积方法
CN102583331B (zh) 基于Ni膜辅助退火和Cl2反应的大面积石墨烯制备方法
CN107032331B (zh) 一种基于绝缘基底的石墨烯制备方法
CN104087909A (zh) 一种立方碳化硅薄膜的制备方法
US20170051400A1 (en) Method for manufacturing a doped metal chalcogenide thin film, and same thin film
CN103205729B (zh) 用ald设备生长氮化镓薄膜的方法
KR20130095119A (ko) 대기압 플라스마 발생 장치
JP2008305831A (ja) 熱電変換材料
CN103556219B (zh) 一种碳化硅外延生长装置
CN105129785B (zh) 一种绝缘体上石墨烯的制备方法
CN102304701A (zh) 一种碳化硅薄膜的制备方法
CN107316805A (zh) 碳化硅外延晶片的制造方法、碳化硅半导体装置的制造方法及碳化硅外延晶片的制造装置
CN109913857A (zh) 一种掺杂结构金刚石薄膜及其制备方法
CN109423695B (zh) 掺杂源供应管路及化学气相沉积***
CN101979707B (zh) 一种用于原子层沉积制备石墨烯薄膜的碳化学吸附方法
CN103866277B (zh) 一种原子层沉积制备双受主共掺氧化锌薄膜的方法
KR101382649B1 (ko) 절연성 탄화규소 단결정 박막에서의 그래핀 성장
CN103484831A (zh) 在含镓氮化物上生长石墨烯薄膜的方法
CN103774230A (zh) 一种无氨化制备氮化镓纳米线的方法
CN102101669A (zh) 一种以四氟化硅为原料生产高纯碳化硅和氟化氢的方法
KR102383833B1 (ko) 탄화규소 에피 웨이퍼 및 이의 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant