WO2013051620A1 - 低反射膜付き物品の製造方法 - Google Patents

低反射膜付き物品の製造方法 Download PDF

Info

Publication number
WO2013051620A1
WO2013051620A1 PCT/JP2012/075680 JP2012075680W WO2013051620A1 WO 2013051620 A1 WO2013051620 A1 WO 2013051620A1 JP 2012075680 W JP2012075680 W JP 2012075680W WO 2013051620 A1 WO2013051620 A1 WO 2013051620A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflection film
low reflection
coating
substrate
roll
Prior art date
Application number
PCT/JP2012/075680
Other languages
English (en)
French (fr)
Inventor
義美 大谷
敏 本谷
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201280048487.XA priority Critical patent/CN103842098A/zh
Priority to KR1020147008766A priority patent/KR20140088862A/ko
Publication of WO2013051620A1 publication Critical patent/WO2013051620A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/28Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/42Gloss-reducing agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/69Particle size larger than 1000 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2252/00Sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/42Coatings comprising at least one inhomogeneous layer consisting of particles only
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • C03C2217/732Anti-reflective coatings with specific characteristics made of a single layer

Definitions

  • the present invention relates to a method of manufacturing an article having a low reflection film on a substrate.
  • Articles having an antireflection function for the purpose of reducing external light reflection and improving light transmittance have been put into practical use.
  • a method for imparting an antireflection function a method of forming a low reflection film on a substrate by a wet coating method (spin coating method, spray coating method, roll coating method, etc.) is known.
  • the spin coating method is a method of applying a coating composition for forming a low reflection film on a substrate by centrifugal force by dropping the coating composition for forming a low reflection film on the substrate and rotating the substrate.
  • the spray coating method is a method of applying a coating composition for forming a low reflection film on a substrate by spraying the coating composition for forming a low reflection film from a spray head onto the substrate conveyed in a predetermined direction.
  • a coating composition for forming a low reflection film is applied onto a substrate by transferring the coating composition for forming a low reflection film on the surface of the coating roll onto the substrate conveyed in a predetermined direction. Is the method.
  • the spin coating method has the following problems. -When a base material becomes large, it will become difficult to rotate a base material. -The low reflective film tends to be thick at the periphery of the substrate, and the film thickness uniformity of the low reflective film is inferior. -Since the excess coating composition for forming a low reflection film is blown off from the substrate by centrifugal force, the amount of the coating composition for forming a low reflection film required is increased.
  • the spray coating method has the following problems. -Since it is necessary to reciprocate the spray head in the width direction of the base material, in order to form a low reflection film uniformly on a wide base material, a large number of spray heads are arranged along the transport direction of the base material. Or, it is necessary to slow down the conveying speed of the substrate. -Since there are many coating compositions for forming a low reflection film that do not adhere to the substrate and scatter in the atmosphere, the amount of coating composition for forming a low reflection film that is required increases.
  • a roll coating method is an example of a wet coating method that can handle a wide range of substrates, can relatively fasten the conveyance speed of the substrate, and requires a relatively small amount of the coating composition for forming a low reflection film. .
  • the roll coating method has the following problems. ⁇ Adjustment of the gap between the substrate and the coating roll is difficult, and the film thickness uniformity of the low reflective film is poor. When the viscosity of the coating composition for forming a low reflection film is low, it is difficult to form a low reflection film having an arbitrary film thickness that can be optically designed. That is, the film thickness controllability is poor.
  • the following method has been proposed as a roll coating method capable of forming a metal oxide film having a uniform film thickness.
  • the concentration of the metal compound in the coating composition (as oxide) is 0.1 to 10% by mass
  • the viscosity of the coating composition is 0.1 to 100 mPa ⁇ s
  • the rotation speed of the coating roll is 2 to 55 m / min
  • the substrate transport speed is 1 to 30 m / min
  • the rotation speed of the coating roll is higher than the substrate transport speed (see Patent Document 1).
  • the present invention can deal with a wide range of substrates, can relatively fast the conveyance speed of the substrate, requires a relatively small amount of coating composition, relatively short drying or baking time and application time, A method for producing an article with a low-reflection film that can form a low-reflection film having a uniform film thickness and is easy to form a low-reflection film having an arbitrary film thickness that can be optically designed (that is, excellent in film thickness controllability) provide.
  • the method for producing an article with a low reflection film of the present invention is a method for producing an article having a low reflection film on a substrate, and the method comprises a reverse roll coater on the substrate conveyed in a predetermined direction.
  • the coating composition is applied by a coating roll to form the low reflection film, and the dispersion medium (a) and fine particles (b) dispersed in the dispersion medium (a) are formed as the coating composition.
  • the rotational speed of the coating roll when applying the composition that is, the peripheral speed.
  • “rotational speed” means the peripheral speed) is made slower than the transport speed of the substrate.
  • the coating composition preferably further contains a terpene derivative (d) dissolved or dispersed in the dispersion medium (a).
  • the amount of the terpene derivative (d) is preferably 0.01 to 2 parts by mass with respect to 1 part by mass of the solid content of the coating composition.
  • the solid content concentration of the coating composition is preferably 1 to 9% by mass.
  • the mass ratio of the fine particles (b) to the binder (c) is preferably 10/90 to 95/5.
  • the conveying speed of the substrate is preferably 3 to 20 m / min.
  • the rotation speed of the coating roll is preferably 0.28 times or more and 0.98 times or less the conveyance speed of the base material.
  • the surface hardness (JIS-A standard) of the coating roll is preferably 10 to 70. It is preferable that the base material is a template glass having a satin pattern on at least one surface.
  • the substrate conveyance speed can be relatively fast, the amount of the coating composition required is relatively small, and drying Or, the baking time and the coating time are relatively short, a low reflection film having a uniform film thickness can be formed, and it is easy to form a low reflection film having an arbitrary film thickness that can be optically designed, that is, excellent in film thickness controllability. .
  • FIG. 1 is a cross-sectional view showing an example of an article with a low reflection film obtained by the production method of the present invention.
  • the article 1 with a low reflection film has a base material 2 and a low reflection film 3 formed on the surface of the base material 2.
  • Examples of the material for the substrate 2 include glass, metal, resin, silicon, wood, paper, and the like.
  • Examples of the glass include soda lime glass, borosilicate glass, aluminosilicate glass, alkali-free glass, and mixed alkali glass.
  • Examples of the resin include polyethylene terephthalate, polycarbonate, triacetyl cellulose, polymethyl methacrylate, and the like.
  • a satin-patterned template glass having an uneven surface is preferable.
  • the soda lime glass ie, high transparency
  • blue plate glass used for ordinary window glass or the like
  • Transmission glass commonly called white plate glass
  • the white plate glass is expressed in terms of mass percentage based on oxide, SiO 2 : 65 to 75%, Al 2 O 3 : 0 to 10%, CaO: 5 to 15%, MgO: 0 to 15%, Na 2 O: 10 ⁇ 20%, K 2 O: 0 to 3%, Li 2 O: 0 to 5%, Fe 2 O 3 : 0 to 3%, TiO 2 : 0 to 5%, CeO 2 : 0 to 3%, BaO: 0 to 5%, SrO: 0 to 5%, B 2 O 3 : 0 to 15%, ZnO: 0 to 5%, ZrO 2 : 0 to 5%, SnO 2 : 0 to 3%, SO 3 : 0 to It is preferable to have a composition of 0.5%.
  • the base material 2 is non-alkali glass, it is expressed in terms of mass percentage on the basis of oxide, SiO 2 : 39 to 70%, Al 2 O 3 : 3 to 25%, B 2 O 3 : 1 to 30% MgO: 0 to 10%, CaO: 0 to 17%, SrO: 0 to 20%, BaO: 0 to 30%.
  • the base material 2 is a mixed alkali glass, it is expressed in terms of mass percentage on the basis of oxide, SiO 2 : 50 to 75%, Al 2 O 3 : 0 to 15%, MgO + CaO + SrO + BaO + ZnO: 6 to 24%, Na It is preferable to have a composition of 2 O + K 2 O: 6 to 24%.
  • the substrate 2 may have a functional layer 5 on the surface of the substrate body 4.
  • the functional layer 5 include an undercoat layer, an adhesion improving layer, and a protective layer.
  • the undercoat layer functions as an alkali barrier layer or a wide band low refractive index layer.
  • the undercoat layer is preferably a layer formed by applying an undercoat coating composition containing a hydrolyzate of alkoxysilane (sol-gel silica, that is, a silica precursor by a sol-gel method) on a substrate.
  • sol-gel silica that is, a silica precursor by a sol-gel method
  • the undercoat layer may be baked in advance or may remain wet.
  • the application temperature (that is, the substrate temperature during application) is preferably room temperature to 80 ° C., and the firing temperature of the applied coating film is 30 to 700 ° C. is preferable.
  • the thickness of the undercoat layer is preferably 10 to 500 nm.
  • the low-reflection film 3 is a single-layer film containing a binder (c) or a fired product thereof and fine particles (b), which is formed by applying a coating composition coating solution described later once. preferable.
  • the binder is a hydrolyzate of alkoxysilane
  • the low reflection film 3 is a film in which the fine particles (b) are dispersed in a matrix made of a calcined product of the alkoxysilane hydrolyzate (SiO 2 ).
  • the binder is resin
  • the low reflection film 3 is a film in which fine particles (b) are dispersed in a matrix made of resin.
  • the film thickness of the low reflection film 3 is preferably 50 to 300 nm, more preferably 80 to 200 nm. If the film thickness of the low reflection film 3 is 50 nm or more, light interference occurs and antireflection performance is exhibited. If the film thickness of the low reflective film 3 is 300 nm or less, the film can be formed without generating cracks.
  • the film thickness of the low reflection film 3 is measured by a reflection spectral film thickness meter.
  • the reflectance of the low reflective film 3 is the lowest value (so-called bottom reflectance) in the wavelength range of 300 to 1200 nm, preferably 2.6% or less, and more preferably 1.0%.
  • a coating liquid of a coating composition which will be described later, is applied onto a substrate 2 conveyed in a predetermined direction by a coating roll of a reverse roll coater,
  • the low reflection film 3 is formed by baking or drying and curing as necessary.
  • FIG. 3 is a schematic diagram illustrating an example of a reverse roll coater.
  • the reverse roll coater 10 is disposed with a predetermined gap above the conveyor belt 12 such that the rotation axis direction is orthogonal to the traveling direction of the conveyor belt 12 and a conveyor belt 12 that conveys the substrate 2 in a predetermined direction.
  • a coating roll 14 that rotates in a direction opposite to the direction of travel of the conveyor belt 12; and is disposed downstream of the coating roll 14 in the direction of travel of the transport belt 12, and with a predetermined indentation thickness with respect to the coating roll 14
  • a doctor roll 16 also referred to as a metalling roll
  • a backup roll that is disposed below the coating roll 14 via the conveyor belt 12 so as to be in contact with the conveyor belt 12 and rotates in the same direction as the traveling direction of the conveyor belt 12
  • a first doctor blade 22 arranged to contact the surface of the upper half of the doctor roll 16 so as to be formed between the first roll 16 and the surface of the coating roll 14 not transferred to the substrate 2.
  • a second doctor blade 24 disposed so as to contact the surface of the coating roll 14 is provided.
  • a plurality of conveyance rolls may be arranged in the conveyance direction of the base material 2 so that the rotation axis direction is orthogonal to the traveling direction of the conveyance belt 12.
  • the coating composition 20 is applied on the surface of the substrate 2 as described below, and a coating film is formed.
  • the coating composition 20 is supplied to the surface of the doctor roll 16 from above the doctor roll 16.
  • a predetermined amount of the coating composition 20 adheres to the surface of the doctor roll 16 and moves between the doctor roll 16 and the first doctor blade 22 toward the coating roll 14 as the doctor roll 16 rotates.
  • the coating composition 20 that could not pass between the doctor roll 16 and the first doctor blade 22 is separated from the doctor roll 16. It collects between the first doctor blade 22 and a liquid reservoir is formed.
  • the coating composition 20 adhered to the surface of the doctor roll 16 and moved to the coating roll 14 side moves to the surface of the coating roll 14 while maintaining a predetermined amount between the coating roll 14 and the doctor roll 16. To do. At this time, since the transfer of the coating composition 20 is regulated by the doctor roll 16, the coating composition 20 that could not pass between the coating roll 14 and the doctor roll 16 is between the coating roll 14 and the doctor roll 16. And a liquid reservoir is formed. The coating composition 20 transferred to the surface of the coating roll 14 moves to the side of the conveyor belt 12 as the coating roll 14 rotates.
  • the coating composition 20 adhered to the surface of the coating roll 14 and moved toward the conveying belt 12 has a predetermined amount based on the gap between the conveying belt 12 and the coating roll 14 and the thickness of the substrate 2. It moves to the surface of the material 2 and a coating film is formed. At this time, the coating composition 20 that has not moved to the surface of the base material 2 moves to the second doctor blade 24 side with the rotation of the coating roll 14 while adhering to the surface of the coating roll 14. The second doctor blade 24 scrapes the surface of the coating roll 14.
  • the doctor roll 16 Since the first doctor blade 22 and the second doctor blade 24 are provided in each of the doctor roll 16 and the coating roll 14, the doctor roll 16 does not move from the surface of the doctor roll 16 to the surface of the coating roll 14.
  • the coating roll 14 As the coating roll 14, a rubber lining roll lined with rubber is usually used.
  • the surface hardness (JIS-A standard) of the coating roll 14 is preferably 10 to 70, more preferably 20 to 50. If the hardness is 10 or more, it is easy to control the film thickness of the coating film of the coating composition 20 applied on the substrate 2. If the hardness is 70 or less, even if a template glass is used as the substrate 2, the surface of the coating roll 14 can follow the irregularities on the surface of the template glass, and the coating film thickness of the coating composition 20 can be reduced. Easy to make uniform.
  • the rotational speed (that is, the peripheral speed) of the coating roll 14 is made slower than the conveying speed of the substrate 2.
  • the rotation speed of the coating roll 14 is preferably 0.28 times or more of the transport speed of the base material 2 and 0.98 times or less of the transport speed of the base material 2 from the viewpoint of further excellent film thickness controllability. More preferably, it is 0.35 times or more of the transport speed of the base material 2 and 0.90 times or less of the transport speed of the base material 2.
  • the rotation speed of the coating roll 14 is made faster than the conveyance speed of the base material 2, but in the present invention, a specific coating composition described later is used.
  • a specific coating composition described later is used.
  • doctor roll As the doctor roll 16, a metal roll whose surface is made of metal or a rubber lining roll lined with rubber is usually used.
  • the doctor roll 16 preferably has a plurality of grooves formed on the surface from the viewpoint of easily holding the coating composition 20 on the surface of the doctor roll 16. From the viewpoint of making the film thickness uniform, it is more preferable that a lattice-like groove is formed on the surface.
  • the indentation thickness of the doctor roll 16 with respect to the coating roll 14 (this indentation thickness is the coating roll with respect to the tangent in the state where the coating roll 14 and the doctor roll 16 are not pushed by the doctor roll 16 when the coating roll 14 and the doctor roll 16 are disposed.
  • the doctor roll is pushed in by a rubber lining on the surface of the roller), and is preferably 0.1 to 1.0 mm, more preferably 0.3 to 0.9 mm. If the indentation thickness is within this range, it is easy to make the film thickness of the coating composition 20 applied onto the substrate 2 uniform, and the coating film of the coating composition 20 applied onto the substrate 2. Easy to control the film thickness.
  • the gap between the conveyor belt 12 and the coating roll 14 is appropriately adjusted according to the thickness of the base material 2, the film thickness of the coating composition 20 applied on the base material 2, and the like.
  • the conveying speed of the substrate 2 is preferably 3 to 20 m / min, and more preferably 5 to 15 m / min. If the conveyance speed of the base material 2 is 3 m / min or more, the productivity is improved. If the conveyance speed of the base material 2 is 20 m / min or less, it is easy to control the film thickness of the coating film of the coating composition 20 applied on the base material 2.
  • the coating temperature (this coating temperature refers to the temperature of the substrate when applied to the substrate surface) is preferably room temperature to 80 ° C., more preferably room temperature to 60 ° C.
  • the drying or baking temperature of the coating film of the coating composition is preferably 30 ° C. or higher, and may be appropriately determined according to the material of the substrate 2, the fine particles (b) or the binder (c).
  • the drying or firing temperature is 30 ° C. or higher and the heat resistant temperature of the resin or lower, but this temperature is sufficient. An antireflection effect is obtained.
  • the firing temperature is preferably 30 ° C.
  • the baking process of the low reflective film 3 and the physical strengthening process of glass can be combined.
  • the glass is heated to near the softening temperature.
  • the firing temperature is set in the range of about 600 ° C. to about 700 ° C.
  • the firing temperature is usually preferably equal to or lower than the heat distortion temperature of the substrate 2.
  • the lower limit of the firing temperature is determined according to the formulation of the coating composition 20. Since the polymerization proceeds to some extent even in natural drying, it is theoretically possible to set the drying or calcination temperature to a temperature setting near room temperature if there is no restriction on time.
  • the coating composition 20 includes a dispersion medium (a), fine particles (b) dispersed in the dispersion medium (a), and a binder (c) dissolved or dispersed in the dispersion medium (a).
  • the terpene derivative (d) dissolved or dispersed in the dispersion medium (a) may be contained, and other additives may be further contained as necessary.
  • the coating composition 20 includes, for example, mixing a fine particle (b) dispersion, a binder (c) solution, and an additional dispersion medium (a), a terpene derivative (d), and other additives as necessary. It is prepared by.
  • the viscosity of the coating composition 20 as the coating solution is 1.0 to 10.0 mPa ⁇ s, and preferably 2.0 to 5.0 mPa ⁇ s. If the viscosity of the coating composition 20 is 1.0 mPa ⁇ s or more, it is easy to control the film thickness of the coating film of the coating composition 20 applied on the substrate 2. If the viscosity of the coating composition 20 is 10.0 mPa ⁇ s or less, the drying or baking time and the coating time are shortened. The viscosity of the coating composition 20 is measured with a B-type viscometer.
  • the solid content concentration of the coating composition 20 is preferably 1 to 9% by mass, and more preferably 2 to 6% by mass. If the solid content concentration is 1% by mass or more, the film thickness of the coating film of the coating composition 20 can be reduced, and the film thickness of the finally obtained low reflection film 3 can be made uniform. If solid content concentration is 9 mass% or less, it will be easy to make uniform the film thickness of the coating film of the coating composition 20 apply
  • the solid content of the coating composition 20 means the sum of the fine particles (b) and the binder (c) (however, in the case where the binder (c) is a hydrolyzate of alkoxysilane, the SiO 2 equivalent solid content concentration).
  • the amount of the terpene derivative (d) is preferably 0.01 to 2 parts by mass, more preferably 0.03 to 1 part by mass with respect to 1 part by mass of the solid content of the coating composition 20.
  • the amount of the terpene derivative (d) is 0.01 parts by mass or more, the antireflection effect is sufficiently higher than that when the terpene derivative (d) is not added.
  • the terpene derivative (d) is 2 parts by mass or less, the strength of the low reflection film 3 is good.
  • the mass ratio of the fine particles (b) to the binder (c) is preferably 10/90 to 95/5, more preferably 70/30 to 90/10.
  • fine particles (b) / binder (c) is 95/5 or less, the adhesion between the low reflective film 3 and the substrate 2 is sufficiently high.
  • the fine particle (b) / binder (c) is 10/90 or more, the antireflection effect is sufficiently high.
  • Dispersion medium (a) examples include water, alcohols (methanol, ethanol, isopropanol, butanol, diacetone alcohol, etc.), ketones (acetone, methyl ethyl ketone, methyl isobutyl).
  • Ketones ethers (tetrahydrofuran, 1,4-dioxane, etc.), cellosolves (methyl cellosolve, ethyl cellosolve, etc.), esters (methyl acetate, ethyl acetate, etc.), glycol ethers (ethylene glycol monoalkyl ether, etc.) And nitrogen-containing compounds (N, N-dimethylacetamide, N, N-dimethylformamide, N-methylpyrrolidone and the like), sulfur-containing compounds (dimethylsulfoxide and the like) and the like.
  • the dispersion medium (a) is preferably selected as appropriate according to the substrate 2 or the binder (c).
  • an alcohol-based dispersion medium containing a solvent for example, a nitrogen-containing compound capable of dissolving the polycarbonate is preferable.
  • an alcohol-based dispersion medium containing a solvent capable of dissolving polyethylene terephthalate such as dichloromethane
  • the binder (c) is polyester, acrylic resin, silicone resin or the like is used as the binder (c), and as the dispersion medium (a) when the binder (c) is polyester, ethyl acetate or the like is used. Is preferred.
  • Fine particles (b) examples include at least one selected from the group consisting of metal oxide fine particles, metal fine particles, pigment-based fine particles, and resin fine particles.
  • the material of the metal oxide fine particles Al 2 O 3 , SiO 2 , SnO 2 , TiO 2 , ZrO 2 , ZnO, CeO 2 , Sb-containing SnO X (ATO), Sn-containing In 2 O 3 (ITO), and Suitable materials include at least one selected from the group consisting of RuO 2 .
  • SiO 2 is suitable as a material for the low reflection film 3 because it has a low refractive index, and is particularly preferable.
  • the metal fine particle material include metals such as Ag and Ru, alloys such as AgPd and RuAu, and the like.
  • the pigment-based fine particles include inorganic pigments such as titanium black and carbon black, and organic pigments.
  • the resin fine particle material include polystyrene and melanin resin.
  • Examples of the shape of the fine particles (b) include a spherical shape, an elliptical shape, a needle shape, a plate shape, a rod shape, a conical shape, a cylindrical shape, a cubic shape, a rectangular shape, a diamond shape, a star shape, and an indefinite shape.
  • the fine particles (b) may be hollow, perforated, or communicating holes.
  • the fine particles (b) may be present in a state where each fine particle is independent, each fine particle may be linked in a chain shape, or each fine particle may be aggregated.
  • the fine particles (b) those having the above-mentioned shapes may be mixed.
  • the fine particles (b) may be used alone or in combination of two or more.
  • the average aggregate particle diameter of the fine particles (b) is preferably 1 to 1000 nm, more preferably 3 to 500 nm, and even more preferably 5 to 300 nm. When the average aggregate particle diameter of the fine particles (b) is 1 nm or more, the antireflection effect is sufficiently high. If the average aggregate particle diameter of the fine particles (b) is 1000 nm or less, the haze of the low reflective film 3 can be kept low.
  • the average aggregate particle diameter of the fine particles (b) is an average aggregate particle diameter of the fine particles (b) in the dispersion medium (a), and is measured by a dynamic light scattering method. In the case of monodispersed fine particles (b) in which no aggregation is observed, the average aggregate particle size is equal to the average primary particle size.
  • the low reflection film 3 in the present invention exhibits an antireflection effect by the voids selectively formed around the fine particles (b), and therefore the material of the fine particles (b) is not necessarily of a low refractive index (for example, SiO 2 2 ) need not be used. Therefore, it is possible to form the low reflection film 3 having both the various characteristics of the fine particles (b) and the antireflection effect. For example, when the material of the fine particles (b) is SiO 2 , the refractive index of the low reflective film 3 can be further lowered, so that the low reflective film 3 having a sufficiently low reflectance can be formed.
  • the low reflection film 3 having both conductivity and / or infrared shielding property and antireflection effect can be formed.
  • the material of the fine particles (b) is CeO 2 or ZnO
  • the low reflection film 3 having both the ultraviolet absorption and the antireflection effect can be formed.
  • the material of the fine particles (b) is TiO 2 having a high refractive index
  • the low reflection film 3 can be formed with a single layer coating which has not been considered in the past. Therefore, the hydrophilic and antibacterial properties of TiO 2
  • the low reflection film 3 having both properties and an antireflection effect can be formed.
  • the material of the fine particles (b) is an organic pigment or an inorganic pigment
  • a colored low reflection film 3 can be formed, and a colored filter having an antireflection function can be manufactured.
  • binder (c) examples include a hydrolyzate of alkoxysilane (sol-gel silica, that is, a silica precursor by a sol-gel method), a resin (for example, a thermoplastic resin, a thermosetting resin, or an ultraviolet curable resin). .
  • the binder (c) is preferably selected as appropriate according to the substrate 2. As the binder (c) when the substrate 2 is glass, a hydrolyzate of alkoxysilane is preferable.
  • alkoxysilane examples include tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, etc.), alkoxysilane having a perfluoropolyether group (perfluoropolyether triethoxysilane, etc.), perfluoroalkyl.
  • Group-containing alkoxysilane perfluoroethyltriethoxysilane, etc.
  • vinyl group-containing alkoxysilane vinyltrimethoxysilane, vinyltriethoxysilane, etc.
  • epoxy group-containing alkoxysilane (2- (3,4-epoxycyclohexyl), etc.
  • hydrolysis of the alkoxysilane is performed using water or an acid or alkali as a catalyst at least 4 times mol of alkoxysilane.
  • the acid include inorganic acids (HNO 3 , H 2 SO 4 , HCl, etc.) and organic acids (formic acid, oxalic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, etc.).
  • the alkali include ammonia, sodium hydroxide, potassium hydroxide and the like.
  • the catalyst is preferably an acid from the viewpoint of long-term storage, and the catalyst is preferably one that does not hinder the dispersion of the fine particles (b).
  • the terpene means a hydrocarbon having a composition of (C 5 H 8 ) n (where n is an integer of 1 or more) having isoprene (C 5 H 8 ) as a structural unit.
  • the terpene derivative means terpenes having a functional group derived from terpene.
  • the terpene derivative (d) includes those having different degrees of unsaturation.
  • the terpene derivative (d) is preferably a terpene derivative having a hydroxyl group and / or a carbonyl group in the molecule from the viewpoint of the antireflection effect of the low reflective film 3, and the hydroxyl group, aldehyde group (—CHO), keto group in the molecule.
  • a terpene derivative having at least one functional group selected from the group consisting of (—C ( ⁇ O) —), an ester bond (—C ( ⁇ O) O—), and a carboxy group (—COOH) is more preferable. More preferred are terpene derivatives having in the molecule at least one functional group selected from the group consisting of a hydroxyl group, an aldehyde group and a keto group.
  • terpene derivative (d) examples include terpene alcohols (for example, ⁇ -terpineol, terpinene 4-ol, L-menthol, ( ⁇ ) citronellol, myrtenol, nerol, borneol, farnesol, phytol, etc.), terpene aldehyde (for example, citral) , ⁇ -cyclocitral, perilaldehyde, etc.), terpene ketone (eg, ( ⁇ ) camphor, ⁇ -ionone, etc.), terpene carboxylic acid (eg, citronellic acid, abietic acid, etc.), terpene ester (eg, terpinyl acetate) , Menthyl acetate, etc.).
  • terpene alcohol is preferable.
  • a terpene derivative (d) may be used individually by 1 type, and may use 2 or more types together.
  • additives examples include surfactants for improving leveling properties, and metal compounds for improving durability of the low reflective film 3.
  • surfactant include silicone oil and acrylic.
  • a zirconium chelate compound, a titanium chelate compound, an aluminum chelate compound and the like are preferable.
  • the zirconium chelate compound include zirconium tetraacetylacetonate and zirconium tributoxy systemate.
  • the viscosity of the coating composition is 10 mPa ⁇ s or less, which is a relatively low viscosity, so the drying or baking time and coating time are compared. Short.
  • the rotation speed of the coating roll of the reverse roll coater is made slower than the conveyance speed of the substrate. Therefore, even if the viscosity of the coating composition is relatively low, it is possible to form a low reflection film having a uniform film thickness, and it is easy to form a low reflection film having an arbitrary film thickness that can be optically designed. . That is, the film thickness controllability is excellent.
  • the coating composition described above includes the dispersion medium (a), the fine particles (b), and the binder (c) as described above, a low reflection having an antireflection effect by the reverse roll coater method.
  • Films can be formed at low cost and at relatively low temperatures. That is, when the low reflection film is formed by the reverse roll coating method unique to the present invention using the coating composition described above, voids are selectively formed around the fine particles (b) in the low reflection film. Improves the antireflection effect. For example, when the film thickness is thick and non-uniform, the terpene is not volatilized uniformly during firing, and voids are not formed as intended.
  • the terpene volatilizes efficiently and smoothly during firing, the portion where the terpene was present remains as a void, and the volume of the void increases, so the antireflection effect is increased.
  • the article with a low reflection film described above has a high antireflection effect because it has a high antireflection effect, can be produced at low cost, and has a coating film that can be formed even at a relatively low temperature.
  • the base material that can be used when manufacturing the article is not so limited, and can be manufactured at a relatively low cost.
  • Examples 1 to 4 are examples, and examples 5 and 6 are comparative examples.
  • the average primary particle diameter of the fine particles was calculated by converting from the specific surface area measured by the BET method and the volume of the spherical particles assuming that the spherical particles were uniformly dispersed in the carrier.
  • the average aggregate particle size of the fine particles was measured using a dynamic light scattering particle size analyzer (manufactured by Nikkiso Co., Ltd., Microtrac UPA).
  • viscosity The viscosity of the coating composition was measured using a B-type viscometer (manufactured by Toki Sangyo Co., Ltd., MODEL BL) after adjusting the liquid temperature to 25 ° C. in a thermostatic bath.
  • the film thickness of the low-reflection film is measured with a spectral reflectance film thickness meter (manufactured by Otsuka Electronics Co., Ltd., FE3000), and measured with a curve obtained from the dispersion formula of nk Couchy by the least square method. It was measured by fitting the reflected curve. Moreover, the film thickness of the low reflection film was measured at four locations, and the average value and the difference (variation) between the maximum value and the minimum value were determined.
  • the reflectance is the bottom reflectance in the wavelength range of 300 to 1200 nm (that is, the lowest value in the wavelength range of 300 to 1200 nm).
  • a spectrophotometer manufactured by JASCO Corporation, V670
  • a spectrophotometer Otsuka Electronics Co., Ltd., instantaneous multi-photometry system MCPD-3000
  • Linear SiO 2 fine particle dispersion (b-1)) Product name: “Snowtex OUP” manufactured by Nissan Chemical Industries, Ltd., solid content concentration in terms of SiO 2 : 15.5% by mass, average primary particle size: 10 to 20 nm, average aggregated particle size: 40 to 100 nm.
  • Coating compositions (B) and (C) were prepared in the same manner as the coating composition (A) except that the formulation shown in Table 1 was changed. The composition and viscosity are shown in Table 1.
  • Template glass made by Asahi Glass Co., Ltd., trade name: “Solite” (template glass with a low iron content and high permeability soda lime glass (white plate glass), with a satin pattern on the surface), size : 100 mm x 100 mm, thickness: 3.2 mm), polishing and washing the textured surface of the template glass with an aqueous cerium oxide dispersion, rinsing the cerium oxide with water, rinsing with ion-exchanged water, and drying I let you.
  • Solite template glass with a low iron content and high permeability soda lime glass (white plate glass), with a satin pattern on the surface), size : 100 mm x 100 mm, thickness: 3.2 mm
  • polishing and washing the textured surface of the template glass with an aqueous cerium oxide dispersion, rinsing the cerium oxide with water, rinsing with ion-exchanged water, and drying I let you.
  • the above template glass is preheated in a preheating furnace (VTR-115, manufactured by ISUZU), and the reverse roll coater is applied to the satin pattern surface on the template glass in a state where the glass surface temperature of the template glass is kept at 30 ° C.
  • the coating composition (A) was applied with a coating roll (manufactured by Sanwa Seiki Co., Ltd.). The application conditions were as follows. Substrate transport speed: 13.8 m / min, Rotating speed of coating roll: 9.0 m / min Doctor roll rotation speed: 9.0 m / min, Gap between coating roll and conveyor belt: 2.9 mm, Indentation thickness between coating roll and doctor roll: 0.6 mm.
  • the coating roll a rubber lining roll lined with a rubber (ethylene propylene diene rubber) having a surface hardness (JIS-A standard) of 30 was used.
  • a metal roll having lattice-like grooves formed on the surface thereof was used. Thereafter, it was baked in the atmosphere at 500 ° C. for 30 minutes to obtain an article on which a low reflective film was formed. The article was evaluated. The results are shown in Table 2.
  • Example 2 An article on which a low reflection film was formed was obtained in the same manner as in Example 1 except that the coating composition and application conditions were changed to the coating composition and application conditions shown in Table 2. The article was evaluated. The results are shown in Table 2.
  • Example 6 A template glass kept at 30 ° C. by a preheating furnace is set on a stand in a booth where a spray coating robot (manufactured by Kawasaki Robotics Co., Ltd., JE005F) is installed, and a paint composition ( X) was applied. Thereafter, it was baked in the atmosphere at 500 ° C. for 30 minutes to obtain an article on which a low reflective film was formed. The article was evaluated. The results are shown in Table 2.
  • a spray coating robot manufactured by Kawasaki Robotics Co., Ltd., JE005F
  • Example 1 it can be seen that the low reflection film having the target film thickness is formed, the film thickness variation of the low reflection film is small, and the uniformity is good. Moreover, although the conveyance speed was changed in Example 2 and Example 3 and the rotation speed was also changed, a uniform film was obtained in the same manner. Also, a uniform film was obtained in the same manner as in Example 4 in which the ratio of the fine particles to the binder was changed. In Example 5, since the rotation speed of the coating roll was made faster than the conveying speed of the substrate, a low reflection film having a target film thickness could not be obtained. In Example 6, since the low reflection film was formed by the spray coating method, the variation in the film thickness of the low reflection film became large.
  • An article with a low reflection film obtained by the production method of the present invention is an article having an antireflection function for the purpose of reducing external light reflection or improving light transmittance, for example, a cover glass of a solar cell, a display (LCD, PDP, organic EL, CRT, SED, etc.), their front plates, vehicle (car, train, aircraft, etc.) window glass, residential window glass, touch panel cover glass, etc.
  • a cover glass of a solar cell for example, a cover glass of a solar cell, a display (LCD, PDP, organic EL, CRT, SED, etc.), their front plates, vehicle (car, train, aircraft, etc.) window glass, residential window glass, touch panel cover glass, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Surface Treatment Of Glass (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

幅の広い基材に対応でき、基材の搬送速度を比較的速くでき、必要とされる塗料組成物の量が比較的少なく、乾燥または焼成時間や塗布時間が比較的短く、均一な膜厚を有する低反射膜を形成でき、かつ光学設計可能な任意の膜厚を有する低反射膜を形成しやすい膜厚制御性に優れる低反射膜付き物品の製造方法を提供する。 所定方向に搬送される基材(2)上に、リバースロールコータ(10)のコーティングロール(14)によって塗料組成物(20)を塗布し低反射膜を形成する際、コーティングロール(14)の回転速度を、基材(2)の搬送速度よりも遅くするとともに、塗料組成物(20)として、分散媒(a)と、分散媒(a)中に分散した微粒子(b)と、分散媒(a)中に溶解または分散したバインダ(c)とを含み、かつ粘度が1~10mPa・sのものを用いる。

Description

低反射膜付き物品の製造方法
 本発明は、低反射膜を基材上に有する物品を製造する方法に関する。
 外光反射の低減や光透過率の向上を目的とした反射防止機能を有する物品が実用化されている。反射防止機能の付与方法としては、ウェットコート法(スピンコート法、スプレーコート法、ロールコート法等)によって基材上に低反射膜を形成する方法が知られている。
 スピンコート法は、基材上に低反射膜形成用塗料組成物を滴下し、基材を回転させることによって、遠心力で基材上に低反射膜形成用塗料組成物を塗布する方法である。
 スプレーコート法は、所定方向に搬送される基材上に、スプレーヘッドから低反射膜形成用塗料組成物を吹き付けることによって、基材上に低反射膜形成用塗料組成物を塗布する方法である。
 ロールコート法は、所定方向に搬送される基材上に、コーティングロールの表面の低反射膜形成用塗料組成物を移行させることによって、基材上に低反射膜形成用塗料組成物を塗布する方法である。
 しかし、スピンコート法には、下記の問題がある。
 ・基材が大きくなると、基材を回転させることが困難となる。
 ・低反射膜が基材の周縁において厚くなりやすく、低反射膜の膜厚の均一性に劣る。
 ・余分な低反射膜形成用塗料組成物を遠心力で基材から吹き飛ばすため、必要とされる低反射膜形成用塗料組成物の量が多くなる。
 また、スプレーコート法には、下記の問題がある。
 ・スプレーヘッドを基材の幅方向に往復させる必要があるため、幅の広い基材上に均一に低反射膜を形成するためには、基材の搬送方向に沿ってスプレーヘッドを多数配置する、または基材の搬送速度を遅くする必要がある。
 ・基材上に付着せずに大気中に飛散する低反射膜形成用塗料組成物が多いため、必要とされる低反射膜形成用塗料組成物の量が多くなる。
 幅の広い基材に対応でき、基材の搬送速度を比較的速くでき、必要とされる低反射膜形成用塗料組成物の量が比較的少ないウェットコート法としては、ロールコート法が挙げられる。
 しかし、ロールコート法には、下記の問題がある。
 ・基材とコーティングロールとのギャップの調整が難しく、低反射膜の膜厚の均一性に劣る。
 ・低反射膜形成用塗料組成物の粘度が低い場合、光学設計可能な任意の膜厚を有する低反射膜を形成することが難しい。すなわち、膜厚制御性に劣る。
 ・光学設計可能な任意の膜厚を有する低反射膜を形成するために、低反射膜形成用塗料組成物の粘度を高くしたり、重ね塗りをしたりすると、乾燥または焼成時間や塗布時間が長くなる。
 均一な膜厚を有する金属酸化物膜を形成できるロールコート法として、下記の方法が提案されている。
 所定方向に搬送される基材上に、リバースロールコータのコーティングロールによって金属化合物と有機溶媒とを含む塗料組成物を塗布し、焼成することによって、金属酸化物膜を形成する方法であって、前記塗料組成物の金属化合物の濃度(酸化物換算)が0.1~10質量%であり、前記塗料組成物の粘度が0.1~100mPa・sであり、コーティングロールの回転速度が2~55m/分であり、基材の搬送速度が1~30m/分であり、コーティングロールの回転速度が基材の搬送速度よりも速くされた方法(特許文献1参照)。
 しかし、該方法では、塗料組成物の粘度を低くした場合、光学設計可能な任意の膜厚を有する低反射膜を形成することが難しい、すなわち膜厚制御性に劣るという問題がある。
日本特開平07-068219号公報
 本発明は、幅の広い基材に対応でき、基材の搬送速度を比較的速くでき、必要とされる塗料組成物の量が比較的少なく、乾燥または焼成時間や塗布時間が比較的短く、均一な膜厚を有する低反射膜を形成でき、かつ光学設計可能な任意の膜厚を有する低反射膜を形成しやすい(すなわち、膜厚制御性に優れる)低反射膜付き物品の製造方法を提供する。
 本発明の低反射膜付き物品の製造方法は、低反射膜を基材上に有する物品を製造する方法であって、当該方法は、所定方向に搬送される前記基材上に、リバースロールコータのコーティングロールによって塗料組成物を塗布して前記低反射膜を形成する工程を有し、前記塗料組成物として、分散媒(a)と、前記分散媒(a)中に分散した微粒子(b)と、前記分散媒(a)中に溶解または分散したバインダ(c)とを含み、かつ粘度が1.0~10.0mPa・sの塗布液を用い、かつ前記工程において基材上に前記塗料組成物を塗布する際の前記コーティングロールの回転速度(すなわち、周速度。本明細書において「回転速度」は、周速度を意味する。)を、前記基材の搬送速度よりも遅くすることを特徴とする。
 前記塗料組成物は、前記分散媒(a)中に溶解または分散したテルペン誘導体(d)をさらに含むことが好ましい。
 前記テルペン誘導体(d)の量は、前記塗料組成物の固形分1質量部に対して、0.01~2質量部であることが好ましい。
 前記塗料組成物の固形分濃度は、1~9質量%であることが好ましい。
 前記微粒子(b)と前記バインダ(c)との質量比(微粒子(b)/バインダ(c))は、10/90~95/5であることが好ましい。
 前記基材の搬送速度は、3~20m/分であることが好ましい。
 前記コーティングロールの回転速度は、前記基材の搬送速度の0.28倍以上であって0.98倍以下であることが好ましい。
 前記コーティングロールの表面の硬度(JIS-A規格)は、10~70であることが好ましい。
 前記基材は、少なくとも一方の表面に梨地模様の凹凸が形成された型板ガラスであることが好ましい。
 上記した数値範囲を示す「~」とは、その前後に記載された数値を下限値および上限値として含む意味で使用され、特段の定めがない限り、以下本明細書において「~」は、同様の意味をもって使用される。
 本発明の低反射膜付き物品の製造方法によれば、幅の広い基材に対応でき、基材の搬送速度を比較的速くでき、必要とされる塗料組成物の量が比較的少なく、乾燥または焼成時間や塗布時間が比較的短く、均一な膜厚を有する低反射膜を形成でき、かつ光学設計可能な任意の膜厚を有する低反射膜を形成しやすい、すなわち膜厚制御性に優れる。
本発明における低反射膜付き物品の一例を示す断面図である。 本発明における低反射膜付き物品の他の例を示す断面図である。 リバースロールコータの一例を示す概略図である。
<低反射膜付き物品>
 図1は、本発明の製造方法で得られる低反射膜付き物品の一例を示す断面図である。低反射膜付き物品1は、基材2と、基材2の表面に形成された低反射膜3とを有する。
(基材)
 基材2の材料としては、ガラス、金属、樹脂、シリコン、木材、紙等が挙げられる。ガラスとしては、ソーダライムガラス、ホウケイ酸ガラス、アルミノケイ酸塩ガラス、無アルカリガラス、混合アルカリ系ガラス等が挙げられる。樹脂としては、ポリエチレンテレフタレート、ポリカーボネート、トリアセチルセルロース、ポリメタクリル酸メチル等が挙げられる。
 基材2の形状としては特に制限はないが、一般的には板、フィルム等が挙げられる。
 太陽電池のカバーガラス用の基材2としては、表面に凹凸をつけた梨地模様の型板ガラスが好ましい。前記ガラスとしては、更には型板ガラスの材料としては、通常の窓ガラス等に用いられるソーダライムガラス(通称、青板ガラス)よりも鉄の成分比が少なく、透明度が高いソーダライムガラス(即ち、高透過ガラス、通称、白板ガラス)が好ましい。白板ガラスは、酸化物基準の質量百分率表示で、SiO2:65~75%、Al23:0~10%、CaO:5~15%、MgO:0~15%、Na2O:10~20%、K2O:0~3%、Li2O:0~5%、Fe23:0~3%、TiO2:0~5%、CeO2:0~3%、BaO:0~5%、SrO:0~5%、B23:0~15%、ZnO:0~5%、ZrO2:0~5%、SnO2:0~3%、SO3:0~0.5%、という組成を有することが好ましい。また、基材2が無アルカリガラスの場合には、酸化物基準の質量百分率表示で、SiO2:39~70%、Al23:3~25%、B2:1~30%、MgO:0~10%、CaO:0~17%、SrO:0~20%、BaO:0~30%、という組成を有することが好ましい。また、基材2が混合アルカリ系ガラスの場合には、酸化物基準の質量百分率表示で、SiO2:50~75%、Al23:0~15%、MgO+CaO+SrO+BaO+ZnO:6~24%、Na2O+K2O:6~24%、という組成を有することが好ましい。
 基材2は、図2に示すように、基材本体4の表面に機能層5を有するものであってもよい。
 機能層5としては、アンダーコート層、密着改善層、保護層等が挙げられる。
 アンダーコート層は、アルカリバリア層やワイドバンドの低屈折率層としての機能を有する。アンダーコート層としては、アルコキシシランの加水分解物(ゾルゲルシリカ、すなわちゾルゲル法によるシリカ前駆体)を含むアンダーコート用塗料組成物を基材上に塗布することによって形成される層が好ましい。アンダーコート層の上に後述する低反射膜用の塗料組成物を塗布する場合、アンダーコート層は、あらかじめ焼成されていてもよく、ウェットな状態のままでもよい。アンダーコート層の上に低反射膜用の塗料組成物を塗布する場合、塗付温度(すなわち塗布する際の基材温度)は、室温~80℃が好ましく、塗布された塗膜の焼成温度は30~700℃が好ましい。アンダーコート層の膜厚は、10~500nmが好ましい。
(低反射膜)
 低反射膜3は、後述する塗料組成物の塗布液を1回塗布することによって形成される、バインダ(c)またはその焼成物と、微粒子(b)とを含む単層の膜であることが好ましい。バインダがアルコキシシランの加水分解物の場合、低反射膜3は、アルコキシシランの加水分解物の焼成物(SiO)からなるマトリックス中に微粒子(b)が分散した膜となる。バインダが樹脂の場合、低反射膜3は、樹脂からなるマトリックス中に微粒子(b)が分散した膜となる。
 低反射膜3の膜厚は、50~300nmが好ましく、80~200nmがより好ましい。低反射膜3の膜厚が50nm以上であれば、光の干渉が起こり、反射防止性能が発現する。低反射膜3の膜厚が300nm以下であれば、クラックが発生せずに成膜できる。
 低反射膜3の膜厚は、反射分光膜厚計により測定される。
 低反射膜3の反射率は、波長300~1200nmの範囲内における最も低い値(いわゆるボトム反射率)で、2.6%以下が好ましく、1.0%がより好ましい。
<低反射膜付き物品の製造方法>
 本発明の低反射膜付き物品の製造方法は、所定方向に搬送される基材2上に、リバースロールコータのコーティングロールによって後述する塗料組成物の塗布液を塗布し、形成された塗膜を必要に応じて焼成または乾燥し、硬化させることによって、低反射膜3を形成する方法である。
(リバースロールコータ)
 図3は、リバースロールコータの一例を示す概略図である。
 リバースロールコータ10は、所定方向に基材2を搬送する搬送ベルト12と;回転軸方向が搬送ベルト12の進行方向に直交するように、搬送ベルト12の上方に所定のギャップを設けて配置された、搬送ベルト12の進行方向とは反対方向に回転するコーティングロール14と;コーティングロール14よりも搬送ベルト12の進行方向の下流側に配置され、コーティングロール14に対して所定の押込み厚にて接するドクターロール16(メタリングロールともいう)と;搬送ベルト12に接するように、搬送ベルト12を介してコーティングロール14の下方に配置され、搬送ベルト12の進行方向と同じ方向に回転するバックアップロール18と;ドクターロール16の表面に供給された塗料組成物20を溜める液溜めがドクターロール16との間で形成されるように、ドクターロール16の上側半分の表面に接するように配置された第1のドクターブレード22と;基材2に移行しなかったコーティングロール14の表面の塗料組成物20を掻き取るために、コーティングロール14の表面に接するように配置された第2のドクターブレード24とを具備する。
 なお、搬送ベルト12の代わりに、回転軸方向が搬送ベルト12の進行方向に直交するように、複数の搬送ロールを基材2の搬送方向に整列させて配置してもよい。
(塗布方法)
 リバースロールコータ10においては、下記のようにして基材2の表面上に塗料組成物20が塗布され、塗膜が形成される。
 ドクターロール16の上方からドクターロール16の表面に塗料組成物20が供給される。ドクターロール16の表面に付着し、ドクターロール16と第1のドクターブレード22との間で所定量の塗料組成物20は、ドクターロール16の回転に伴ってコーティングロール14の側へと移動する。この際、塗料組成物20の移動が第1のドクターブレード22によって規制されるため、ドクターロール16と第1のドクターブレード22との間を通過できなかった塗料組成物20が、ドクターロール16と第1のドクターブレード22との間に溜まり、液溜めが形成される。
 ドクターロール16の表面に付着し、コーティングロール14の側へと移動した塗料組成物20は、コーティングロール14とドクターロール16との間で所定量を維持しつつ、コーティングロール14の表面へと移行する。この際、塗料組成物20の移行がドクターロール16によって規制されるため、コーティングロール14とドクターロール16との間を通過できなかった塗料組成物20が、コーティングロール14とドクターロール16との間に溜まり、液溜めが形成される。コーティングロール14の表面に移行した塗料組成物20は、コーティングロール14の回転に伴って搬送ベルト12の側へと移動する。
 コーティングロール14の表面に付着し、搬送ベルト12の側へと移動した塗料組成物20は、搬送ベルト12とコーティングロール14とのギャップおよび基材2の厚さに応じて、所定の量が基材2の表面へと移行し、塗膜が形成される。この際、基材2の表面へと移行しなかった塗料組成物20は、コーティングロール14の表面に付着したまま、コーティングロール14の回転に伴って第2のドクターブレード24の側へと移動し、第2のドクターブレード24によってコーティングロール14の表面から掻き取られる。
 ドクターロール16およびコーティングロール14のそれぞれに第1のドクターブレード22および第2のドクターブレード24を設けているため、ドクターロール16の表面からコーティングロール14の表面へと移行せずにドクターロール16の表面に筋状に残った塗料組成物20の筋およびコーティングロール14の表面から基材2の表面へと移行せずにコーティングロール14の表面に筋状に残った塗料組成物20の筋を、第1のドクターブレード22および第2のドクターブレード24によって消すことができ、その結果、基材2上に塗布される塗料組成物20の塗膜の膜厚を均一にできる。
(コーティングロール)
 コーティングロール14としては、通常、ゴムがライニングされたゴムライニングロールが用いられる。
 コーティングロール14の表面の硬度(JIS-A規格)は、10~70が好ましく、20~50がより好ましい。硬度が10以上であれば、基材2上に塗布される塗料組成物20の塗膜の膜厚を制御しやすい。硬度が70以下であれば、基材2として型板ガラスを用いた場合であっても、コーティングロール14の表面が型板ガラスの表面の凹凸に追随でき、塗料組成物20の塗膜の膜厚を均一にしやすい。
(コーティングロールの回転速度)
 基材上に前記塗料組成物を塗布する際、コーティングロール14の回転速度(すなわち、周速度)は、基材2の搬送速度よりも遅くする。コーティングロール14の回転速度を基材2の搬送速度よりも遅くすることによって、光学設計可能な任意の膜厚を有する低反射膜を形成しやすい(すなわち、膜厚制御性に優れる)。コーティングロール14の回転速度は、膜厚制御性にさらに優れる点から、基材2の搬送速度の0.28倍以上であって基材2の搬送速度の0.98倍以下であることが好ましく、基材2の搬送速度の0.35倍以上であって基材2の搬送速度の0.90倍以下であることがより好ましい。
 なお、特許文献1においては、膜厚を均一にするために、コーティングロール14の回転速度を基材2の搬送速度よりも速くしているが、本発明においては、後述する特定の塗料組成物20を用いることによって、コーティングロール14の回転速度を基材2の搬送速度よりも遅くしても、基材2上に塗布される塗料組成物20の塗膜の膜厚を均一にできる。
(ドクターロール)
 ドクターロール16としては、通常、表面が金属製のメタルロール、もしくはゴムがライニングされたゴムライニングロールが用いられる。
 ドクターロール16としては、ドクターロール16の表面に塗料組成物20を保持しやすい点から、複数の溝が表面に形成されているものが好ましく、基材2上に塗布される塗料組成物20の膜厚を均一にしやすい点から、格子状の溝が表面に形成されているものがより好ましい。
(押込み厚)
 コーティングロール14に対するドクターロール16の押込み厚は(この押込み厚とは、コーティングロール14とドクターロール16とが配置された際、コーティングロール14がドクターロール16により押込まれない状態における接線に対する、コーティングロールの表面のゴムライニングによりドクターロールが押込まれた状態の押込み量をいう)、0.1~1.0mmが好ましく、0.3~0.9mmがより好ましい。押込み厚が該範囲内であれば、基材2上に塗布される塗料組成物20の塗膜の膜厚を均一にしやすく、また、基材2上に塗布される塗料組成物20の塗膜の膜厚を制御しやすい。
(ギャップ)
 搬送ベルト12とコーティングロール14とのギャップは、基材2の厚さ、基材2上に塗布される塗料組成物20の膜厚等に応じて適宜調整される。
(基材の搬送速度)
 基材2の搬送速度は、3~20m/分が好ましく、5~15m/分がより好ましい。基材2の搬送速度が3m/分以上であれば、生産性が向上する。基材2の搬送速度が20m/分以下であれば、基材2上に塗布される塗料組成物20の塗膜の膜厚を制御しやすい。
(温度)
 塗付温度(この塗付温度とは、基材面への塗布時の基材の温度をいう)は、室温~80℃が好ましく、室温~60℃がより好ましい。
 塗料組成物の塗膜の乾燥または焼成温度は、30℃以上が好ましく、基材2、微粒子(b)またはバインダ(c)の材料に応じて適宜決定すればよい。たとえば、基材2、微粒子(b)またはバインダ(c)の材料が共に樹脂の場合、乾燥または焼成温度は、30℃以上、樹脂の耐熱温度以下となるが、該温度であっても充分な反射防止効果が得られる。基材2がガラスの場合、焼成温度は、30℃以上、750℃以下が好ましい。基材2がガラスの場合には、低反射膜3の焼成工程とガラスの物理強化工程を兼ねることもできる。物理強化工程では、ガラスは軟化温度付近まで加熱される。この場合、焼成温度は、約600℃~約700℃の範囲に設定される。焼成温度は、通常、基材2の熱変形温度以下とするのが好ましい。焼成温度の下限値は、塗料組成物20の配合に応じて決定される。自然乾燥であっても重合はある程度進むため、時間に何らの制約もないのであれば、乾燥または焼成温度を室温付近の温度設定とすることも、理論上は可能である。
(塗料組成物)
 塗料組成物20は、分散媒(a)と、分散媒(a)中に分散した微粒子(b)と、分散媒(a)中に溶解または分散したバインダ(c)とを含み、必要に応じて分散媒(a)中に溶解または分散したテルペン誘導体(d)を含み、必要に応じてさらに他の添加剤を含んでもよい。塗料組成物20は、たとえば、微粒子(b)分散液と、バインダ(c)溶液と、必要に応じて追加の分散媒(a)、テルペン誘導体(d)、他の添加剤とを混合することにより調製される。
 塗布液である塗料組成物20の粘度は、1.0~10.0mPa・sであり、2.0~5.0mPa・sが好ましい。塗料組成物20の粘度が1.0mPa・s以上であれば、基材2上に塗布される塗料組成物20の塗膜の膜厚を制御しやすい。塗料組成物20の粘度が10.0mPa・s以下であれば、乾燥または焼成時間や塗布時間が短くなる。
 塗料組成物20の粘度は、B型粘度計により測定される。
 塗料組成物20の固形分濃度は、1~9質量%が好ましく、2~6質量%がより好ましい。固形分濃度が1質量%以上であれば、塗料組成物20の塗膜の膜厚を薄くでき、最終的に得られる低反射膜3の膜厚を均一にしやすい。固形分濃度が9質量%以下であれば、基材2上に塗布される塗料組成物20の塗膜の膜厚を均一にしやすい。
 塗料組成物20の固形分とは、微粒子(b)およびバインダ(c)(ただし、バインダ(c)がアルコキシシランの加水分解物の場合、SiO換算固形分濃度)の合計を意味する。
 テルペン誘導体(d)の量は、塗料組成物20の固形分1質量部に対して、0.01~2質量部が好ましく、0.03~1質量部がより好ましい。テルペン誘導体(d)の量が0.01質量部以上であれば、反射防止効果がテルペン誘導体(d)を添加しない場合と比べて充分に高くなる。テルペン誘導体(d)が2質量部以下であれば、低反射膜3の強度が良好となる。
 微粒子(b)とバインダ(c)との質量比(微粒子(b)/バインダ(c))は、10/90~95/5が好ましく、70/30~90/10がより好ましい。微粒子(b)/バインダ(c)が95/5以下であれば、低反射膜3と基材2との密着性が充分に高くなる。微粒子(b)/バインダ(c)が10/90以上であれば、反射防止効果が充分に高くなる。
(分散媒(a))
 分散媒(a)(ただし、後述のテルペン誘導体(d)を除く。)としては、水、アルコール類(メタノール、エタノール、イソプロパノール、ブタノール、ジアセトンアルコール等)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン等)、エーテル類(テトラヒドロフラン、1,4-ジオキサン等)、セロソルブ類(メチルセロソルブ、エチルセロソルブ等)、エステル類(酢酸メチル、酢酸エチル等)、グリコールエーテル類(エチレングリコールモノアルキルエーテル等)、含窒素化合物(N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチルピロリドン等)、含硫黄化合物(ジメチルスルホキシド等)等が挙げられる。
 バインダ(c)がアルコキシシランの加水分解物の場合の分散媒(a)は、アルコキシシランの加水分解に水が必要となるため、水を含む必要がある。
 分散媒(a)は、基材2またはバインダ(c)に応じて適宜選択することが好ましい。
 基材2がポリカーボネートの場合の分散媒(a)としては、ポリカーボネートを溶解できる溶媒(たとえば、含窒素化合物等)を含むアルコール系分散媒が好ましい。
 基材2がポリエチレンテレフタレートの場合の分散媒(a)としては、ポリエチレンテレフタレートを溶解できる溶媒(たとえば、ジクロロメタン等)を含むアルコール系分散媒が好ましい。
 基材2がトリアセチルセルロースの場合、バインダ(c)としてはポリエステル、アクリル系樹脂、シリコーン系樹脂等が用いられ、バインダ(c)がポリエステルの場合の分散媒(a)としては、酢酸エチル等が好ましい。
(微粒子(b))
 微粒子(b)としては、金属酸化物微粒子、金属微粒子、顔料系微粒子、および樹脂微粒子からなる群から選択される少なくとも1種が好適な材料として挙げられる。
 金属酸化物微粒子の材料としては、Al、SiO、SnO、TiO、ZrO、ZnO、CeO、Sb含有SnO(ATO)、Sn含有In(ITO)、およびRuOからなる群から選択される少なくとも1種が好適な材料として挙げられる。中でも、SiOは、低屈折率である点から、低反射膜3の材料として好適であり、特に好ましい。
 金属微粒子の材料としては、Ag、Ru等の金属、AgPd、RuAu等の合金、等が挙げられる。
 顔料系微粒子としては、チタンブラック、カーボンブラック等の無機顔料、有機顔料が挙げられる。
 樹脂微粒子の材料としては、ポリスチレン、メラニン樹脂等が挙げられる。
 微粒子(b)の形状としては、球状、楕円状、針状、板状、棒状、円すい状、円柱状、立方体状、長方体状、ダイヤモンド状、星状、または不定形状等が挙げられる。また、微粒子(b)は、中空状、穴あき状、または連通孔状であってもよい。また、微粒子(b)は、各微粒子が独立した状態で存在していてもよく、各微粒子が鎖状に連結していてもよく、各微粒子が凝集していてもよい。微粒子(b)としては、上記した形状のものが混在していてもよい。
 微粒子(b)は、1種を単独で用いてもよく、2種以上を併用してもよい。
 微粒子(b)の平均凝集粒子径は、1~1000nmが好ましく、3~500nmがより好ましく、5~300nmがさらに好ましい。微粒子(b)の平均凝集粒子径が1nm以上であれば、反射防止効果が充分に高くなる。微粒子(b)の平均凝集粒子径が1000nm以下であれば、低反射膜3のヘイズが低く抑えられる。
 微粒子(b)の平均凝集粒子径は、分散媒(a)中における微粒子(b)の平均凝集粒子径であり、動的光散乱法で測定される。なお、凝集がみられない単分散の微粒子(b)の場合には、平均凝集粒子径は平均一次粒子径と等しい。
 本発明における低反射膜3は、微粒子(b)の周囲に選択的に形成された空隙によって反射防止効果を発現しているため、微粒子(b)の材料として必ずしも低屈折率のもの(たとえばSiO)を用いる必要がない。そのため、微粒子(b)の有する様々な特性と反射防止効果とを併せ持つ低反射膜3を形成できる。たとえば、微粒子(b)の材料がSiOの場合、低反射膜3の屈折率をより低くできるため、反射率が充分に低い低反射膜3を形成できる。また、微粒子(b)の材料がATOの場合、導電性および/または赤外線遮蔽性と反射防止効果とを併せ持つ低反射膜3を形成できる。また、微粒子(b)の材料がCeOまたはZnOの場合、紫外線吸収性と反射防止効果とを併せ持つ低反射膜3を形成できる。また、微粒子(b)の材料が高屈折率のTiOの場合であっても、従来では考えられなかった1層コートで低反射膜3を形成でき、そのため、TiOの有する親水性、抗菌性等と反射防止効果とを併せ持つ低反射膜3を形成できる。また、微粒子(b)の材料が有機顔料または無機顔料の場合、着色した低反射膜3を形成でき、また、反射防止機能を有する着色フィルタ等を製造できる。
(バインダ(c))
 バインダ(c)としては、アルコキシシランの加水分解物(ゾルゲルシリカ、すなわちゾルゲル法によるシリカ前駆体)、樹脂(たとえば、熱可塑性樹脂、熱硬化性樹脂、または紫外線硬化性樹脂等)等が挙げられる。
 バインダ(c)は、基材2に応じて適宜選択することが好ましい。
 基材2がガラスである場合のバインダ(c)としては、アルコキシシランの加水分解物が好ましい。
 アルコキシシランとしては、テトラアルコキシシラン(テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等)、パーフルオロポリエーテル基を有するアルコキシシラン(パーフルオロポリエーテルトリエトキシシラン等)、パーフルオロアルキル基を有するアルコキシシラン(パーフルオロエチルトリエトキシシラン等)、ビニル基を有するアルコキシシラン(ビニルトリメトキシシラン、ビニルトリエトキシシラン等)、エポキシ基を有するアルコキシシラン(2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等)、アクリロイルオキシ基を有するアルコキシシラン(3-アクリロイルオキシプロピルトリメトキシシラン等)等が挙げられる。
 アルコキシシランの加水分解は、テトラアルコキシシランの場合、アルコキシシランの4倍モル以上の水および触媒として酸またはアルカリを用いて行う。酸としては、無機酸(HNO、HSO、HCl等)、有機酸(ギ酸、しゅう酸、モノクロル酢酸、ジクロルム酢酸、トリクロル酢酸等)が挙げられる。アルカリとしては、アンモニア、水酸化ナトリウム、水酸化カリウム等が挙げられる。触媒としては、長期保存性の点から、酸が好ましく、また、触媒としては、微粒子(b)の分散を妨げないものが好ましい。
(テルペン誘導体(d))
 テルペンとは、イソプレン(C)を構成単位とする(C(ただし、nは1以上の整数である。)の組成の炭化水素を意味する。テルペン誘導体とは、テルペンから誘導される官能基を有するテルペン類を意味する。テルペン誘導体(d)は、不飽和度を異にするものも包含する。
 テルペン誘導体(d)としては、低反射膜3の反射防止効果の点から、分子中に水酸基および/またはカルボニル基を有するテルペン誘導体が好ましく、分子中に水酸基、アルデヒド基(-CHO)、ケト基(-C(=O)-)、エステル結合(-C(=O)O-)、およびカルボキシ基(-COOH)からなる群から選ばれる官能基の少なくとも1種以上を有するテルペン誘導体がより好ましく、分子中に水酸基、アルデヒド基およびケト基からなる群から選ばれる官能基の少なくとも1種以上を有するテルペン誘導体がさらに好ましい。
 テルペン誘導体(d)としては、テルペンアルコール(たとえば、α-テルピネオール、テルピネン4-オール、L-メントール、(±)シトロネロール、ミルテノール、ネロール、ボルネオール、ファルネソール、フィトール等)、テルペンアルデヒド(たとえば、シトラール、β-シクロシトラール、ペリラアルデヒド等)、テルペンケトン(たとえば、(±)しょうのう、β-ヨノン等)、テルペンカルボン酸(たとえば、シトロネル酸、アビエチン酸等)、テルペンエステル(たとえば、酢酸テルピニル、酢酸メンチル等)等が挙げられる。特に、テルペンアルコールが好ましい。
 テルペン誘導体(d)は、1種を単独で用いてもよく、2種以上を併用してもよい。
(他の添加剤)
 他の添加剤としては、レベリング性向上のための界面活性剤、低反射膜3の耐久性向上のための金属化合物等が挙げられる。
 界面活性剤としては、シリコーンオイル系、アクリル系等が挙げられる。
 金属化合物としては、ジルコニウムキレート化合物、チタンキレート化合物、アルミニウムキレート化合物等が好ましい。ジルコニウムキレート化合物としては、ジルコニウムテトラアセチルアセトナート、ジルコニウムトリブトキシステアレート等が挙げられる。
(作用効果)
 以上説明した本発明の低反射膜付き物品の製造方法にあっては、リバースロールコータのコーティングロールによって上記したように塗料組成物を塗布しているため、幅の広い基材に対応でき、基材の搬送速度を比較的速くできるため、必要とされる塗料組成物の量が比較的少ない。
 また、以上説明した本発明の低反射膜付き物品の製造方法にあっては、塗料組成物の粘度が10mPa・s以下と、比較的低粘度であるため、乾燥または焼成時間や塗布時間が比較的短い。
 また、以上説明した本発明の低反射膜付き物品の製造方法にあっては、特定の塗料組成物を用い、かつリバースロールコータのコーティングロールの回転速度を、基材の搬送速度よりも遅くしているため、塗料組成物の粘度が比較的低粘度であっても、均一な膜厚を有する低反射膜を形成でき、かつ光学設計可能な任意の膜厚を有する低反射膜を形成しやすい。すなわち、膜厚制御性に優れる。
 また、以上説明した塗料組成物にあっては、上記した様な分散媒(a)と微粒子(b)とバインダ(c)とを含むため、リバースロールコータ法により、反射防止効果を有する低反射膜を低コストで、かつ比較的低温であっても形成できる。
 すなわち、上述した塗料組成物を用いて本発明特有なリバースロールコート法によって低反射膜を形成すると、低反射膜中の微粒子(b)の周囲に選択的に空隙が形成されるため、該空隙によって反射防止効果が向上する。
 たとえば、膜厚が厚く不均一では、焼成の際にテルペンの揮発が均一に行われず、空隙が目的通り出来あがらない。一方、膜厚が薄く均一であれば、焼成の際にテルペンが効率良くスムーズに揮発し、テルペンが存在した箇所が空隙として残り、空隙部の容積が増えることから、反射防止効果は大きくなる。
 また、以上説明した低反射膜付き物品にあっては、反射防止効果が高く、低コストで製造でき、かつ比較的低温であっても形成できる塗膜を有するため、高い反射防止効果を有する。更に、当該物品を製造する際に用いることができる基材があまり限定されず、かつ比較的低コストで製造できる。
 以下、実施例により本発明をさらに詳しく説明する。
 例1~4は実施例であり、例5、6は比較例である。
(微粒子の平均一次粒子径)
 微粒子の平均一次粒子径は、球形粒子が担体に均一に分散されていると仮定してBET法により測定した比表面積と球形粒子の体積から換算して求めた。
(微粒子の平均凝集粒子径)
 微粒子の平均凝集粒子径は、動的光散乱法粒度分析計(日機装社製、マイクロトラックUPA)を用いて測定した。
(粘度)
 塗料組成物の粘度は、B型粘度計(東機産業株式会社製、MODEL BL)を用い、恒温槽にて液温を25℃に調整した後に測定した。 
(膜厚)
 低反射膜の膜厚は、反射分光膜厚計(大塚電子株式会社製、FE3000)を用いて分光反射率を測定し、最小二乗法によりn-k Cauchyの分散式から得られたカーブと実測した反射カーブをフィッティングさせることで測定した。また、低反射膜の膜厚を4箇所で測定し、平均値、および最大値と最小値との差(バラツキ)を求めた。
(透過率)
 低反射膜付き物品の透過率は、分光光度計(日本分光社製、V670)を用いて、波長400nm~1100nmにおける光の透過率を測定することで求めた。
 下式(1)に基づいて透過率差を求めた。
   透過率差=低反射膜付き物品の透過率-基材のみの透過率 ・・・(1)。
(反射率)
 低反射膜とは反対側の基材の表面に、黒のビニールテープを、気泡を含まないように貼り付けた後、基材の中央部の100mm×100mmの低反射膜の反射率を測定した。なお、反射率は、波長300~1200nmの範囲におけるボトム反射率(すなわち、波長300~1200nmの範囲内における最も低い値)である。ボトム反射率を示す波長が380nm以下または780nm以上の場合は、分光光度計(日本分光社製、V670)を用いた。また、ボトム反射率を示す波長が380~780nmの場合は、分光光度計(大塚電子社製、瞬間マルチ測光システムMCPD-3000)を用いた。
(耐摩耗性)
 フェルト(新高理化工業社製、研磨用パフAM-1)をラビングテスター(大平理化工業社製)に取り付け、該フェルトを1kg荷重にて低反射膜の表面で水平往復運動させ、フェルトを40往復させた後の低反射膜付き物品の透過率を、前記透過率の測定方法と同様に測定した。
 下式(2)に基づいて透過率変化を求めた。
   透過率変化=耐摩耗性試験前の低反射膜付き物品の透過率-耐摩耗性試験後の低反射膜付き物品の透過率 ・・・(2)。
(外観)
 低反射膜付き物品の低反射膜の外観を目視にて観察し、下記の基準にて評価した。
   ○:膜中にムラ、スジがなく均一である。
   △:若干ムラ、スジが確認できる。
   ×:ムラ、スジが多数確認できる。
(バインダ溶液(c-1)の調製)
 変性エタノール(日本アルコール販売社製、ソルミックスAP-11、エタノールを主剤とした混合溶媒、以下同様)の77.6gを撹拌しながら、これにイオン交換水の11.9gと61質量%硝酸の0.1gとの混合液を加え、5分間撹拌した。これに、テトラエトキシシラン(SiO換算固形分濃度:29質量%)の10.4gを加え、室温で30分間撹拌し、SiO換算固形分濃度が3.0質量%のバインダ溶液(c-1)を調製した。
 なお、SiO換算固形分濃度は、テトラエトキシシランのすべてのSiがSiOに転化したときの固形分濃度である。
(バインダ溶液(c-2)の調製)
 変性エタノール(日本アルコール販売社製、ソルミックスAP-11、エタノールを主剤とした混合溶媒、以下同様)の80.4gを撹拌しながら、これにイオン交換水の11.9gと61質量%硝酸の0.1gとの混合液を加え、5分間撹拌した。これに、テトラエトキシシラン(SiO換算固形分濃度:29質量%)の7.6gを加え、室温で30分間撹拌し、SiO換算固形分濃度が2.2質量%のバインダ溶液(c-2)を調製した。
(鎖状SiO微粒子分散液(b-1))
 日産化学工業社製、商品名:「スノーテックス OUP」、SiO換算固形分濃度:15.5質量%、平均一次粒子径:10~20nm、平均凝集粒子径:40~100nm。
(塗料組成物(A)の調製)
 変性エタノールの24.5gを撹拌しながら、これに、イソブチルアルコールの24.0g、バインダ溶液(c-1)の20.0g、鎖状SiO微粒子分散液(b-1)の15.5gを加え、ジアセトンアルコール(以下、DAAと記す。)の15.0g、テルペン誘導体(d)であるα-テルピネオールの1.0gを加え、固形分濃度が3.0質量%の塗料組成物(A)を調製した。組成、粘度を表1に示す。
(塗料組成物(B)、(C)の調製)
 表1に示す配合に変更した以外は、塗料組成物(A)と同様にして塗料組成物(B)および(C)を調製した。組成、粘度を表1に示す。
Figure JPOXMLDOC01-appb-T000001
〔例1〕
 基材として型板ガラス(旭硝子社製、商品名:「Solite」(低鉄分の高透過度のソーダライムガラス(白板ガラス)であって、表面に梨地模様の凹凸が形成された型板ガラス)、サイズ:100mm×100mm、厚さ:3.2mm)を用意し、酸化セリウム水分散液で型板ガラスの梨地模様面を研磨洗浄し、水で酸化セリウムを洗い流した後、イオン交換水でリンスし、乾燥させた。
 上記型板ガラスを予熱炉(ISUZU社製、VTR-115)にて予熱し、上記型板ガラスのガラス表面温度が30℃に保温された状態にて、型板ガラス上の梨地模様面に、リバースロールコータ(三和精機社製)のコーティングロールによって塗料組成物(A)を塗布した。塗布条件は、以下の通りとした。
   基材の搬送速度:13.8m/分、
   コーティングロールの回転速度:9.0m/分、
   ドクターロールの回転速度:9.0m/分、
   コーティングロールと搬送ベルトとのギャップ:2.9mm、
   コーティングロールとドクターロールとの押込み厚:0.6mm。
 コーティングロールとしては、表面の硬度(JIS-A規格)が30のゴム(エチレンプロピレンジエンゴム)がライニングされたゴムライニングロールを用いた。ドクターロールとしては、格子状の溝が表面に形成されたメタルロールを用いた。
 その後、大気中、500℃で30分間焼成し、低反射膜が形成された物品を得た。該物品を評価した。結果を表2に示す。
〔例2~5〕
 塗料組成物、塗布条件を表2に示す塗料組成物、塗布条件に変更した以外は、例1と同様にして低反射膜が形成された物品を得た。該物品を評価した。結果を表2に示す。
〔例6〕
 スプレーコーティングロボット(カワサキロボティクス社製、JE005F)の設置されているブース内の架台に予熱炉によって30℃に保温された型板ガラスをセットし、型板ガラス上に、スプレーコート法にて塗料組成物(X)を塗布した。その後、大気中、500℃で30分間焼成し、低反射膜が形成された物品を得た。該物品を評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 例1は、目標とする膜厚を有する低反射膜が形成され、低反射膜の膜厚のバラツキが小さく、均一性が良好であることがわかる。また、例2、例3において搬送速度を変更し、対する回転速度も変更させたが同様に均一な膜が得られた。また、例4において微粒子とバインダ比率を変更させた膜も同様に均一な膜が得られた。
 例5は、コーティングロールの回転速度を、基材の搬送速度よりも速くしたため、目標とする膜厚を有する低反射膜が得られなかった。
 例6は、スプレーコート法にて低反射膜を形成したため、低反射膜の膜厚のバラツキが大きくなった。
 本発明の製造方法で得られた低反射膜付き物品は、外光反射の低減や光透過率の向上を目的とした反射防止機能を有する物品、たとえば、太陽電池のカバーガラス、ディスプレイ(LCD、PDP、有機EL、CRT、SED等)、それらの前面板、乗り物(自動車、電車、航空機等)用窓ガラス、住宅用窓ガラス、タッチパネルのカバーガラス等として有用である。
 なお、2011年10月3日に出願された日本特許出願2011-219241号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
 1 低反射膜付き物品
 2 基材
 3 低反射膜
 4 基材本体
 5 機能層
 10 リバースロールコータ
 12 搬送ベルト
 14 コーティングロール
 16 ドクターロール
 18 バックアップロール
 20 塗料組成物
 22 第1のドクターブレード
 24 第2のドクターブレード

Claims (9)

  1.  低反射膜を基材上に有する物品を製造する方法であって、
     当該方法は、所定方向に搬送される前記基材上に、リバースロールコータのコーティングロールによって塗料組成物を塗布して前記低反射膜を形成する工程を有し、
     前記塗料組成物として、分散媒(a)と、前記分散媒(a)中に分散した微粒子(b)と、前記分散媒(a)中に溶解または分散したバインダ(c)とを含み、かつ粘度が1.0~10.0mPa・sの塗布液を用い、
     前記工程において基材上に前記塗料組成物を塗布する際の前記コーティングロールの回転速度を、前記基材の搬送速度よりも遅くすることを特徴とする、低反射膜付き物品の製造方法。
  2.  前記塗料組成物が、前記分散媒(a)中に溶解または分散したテルペン誘導体(d)をさらに含む、請求項1に記載の低反射膜付き物品の製造方法。
  3.  前記テルペン誘導体(d)の量が、前記塗料組成物の固形分1質量部に対して、0.01~2質量部である、請求項2に記載の低反射膜付き物品の製造方法。
  4.  前記塗料組成物の固形分濃度が、1~9質量%である、請求項1~3のいずれか一項に記載の低反射膜付き物品の製造方法。
  5.  前記微粒子(b)と前記バインダ(c)との質量比(微粒子(b)/バインダ(c))が、10/90~95/5である、請求項1~4のいずれか一項に記載の低反射膜付き物品の製造方法。
  6.  前記基材の搬送速度が、3~20m/分である、請求項1~5のいずれか一項に記載の低反射膜付き物品の製造方法。
  7.  前記コーティングロールの回転速度が、前記基材の搬送速度の0.28倍以上であって0.98倍以下である、請求項1~6のいずれか一項に記載の低反射膜付き物品の製造方法。
  8.  前記コーティングロールの表面の硬度(JIS-A規格)が、10~70である、請求項1~7のいずれか一項に記載の低反射膜付き物品の製造方法。
  9.  前記基材が、少なくとも一方の表面に梨地模様が形成された型板ガラスである、請求項1~8のいずれか一項に記載の低反射膜付き物品の製造方法。
PCT/JP2012/075680 2011-10-03 2012-10-03 低反射膜付き物品の製造方法 WO2013051620A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280048487.XA CN103842098A (zh) 2011-10-03 2012-10-03 带低反射膜的物品的制造方法
KR1020147008766A KR20140088862A (ko) 2011-10-03 2012-10-03 저반사막구비 물품의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-219241 2011-10-03
JP2011219241 2011-10-03

Publications (1)

Publication Number Publication Date
WO2013051620A1 true WO2013051620A1 (ja) 2013-04-11

Family

ID=48043774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075680 WO2013051620A1 (ja) 2011-10-03 2012-10-03 低反射膜付き物品の製造方法

Country Status (4)

Country Link
JP (1) JPWO2013051620A1 (ja)
KR (1) KR20140088862A (ja)
CN (1) CN103842098A (ja)
WO (1) WO2013051620A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046260A1 (ja) * 2013-09-30 2015-04-02 旭硝子株式会社 多孔質膜付き基板の製造方法
JP2016109333A (ja) * 2014-12-04 2016-06-20 日本電気硝子株式会社 調理器用トッププレート及びその製造方法
WO2017150132A1 (ja) * 2016-02-29 2017-09-08 富士フイルム株式会社 積層体の製造方法、反射防止膜付ガラス及び太陽電池モジュール
KR20190076599A (ko) * 2017-12-22 2019-07-02 주식회사 엘지화학 저반사 실리카 코팅층을 포함하는 광학 부재의 제조방법 및 이를 이용하여 제조된 광학 부재
KR20190076598A (ko) * 2017-12-22 2019-07-02 주식회사 엘지화학 메조포러스 실리카 코팅층을 포함하는 광학 부재의 제조방법 및 이를 이용하여 제조된 광학 부재
KR20190076596A (ko) * 2017-12-22 2019-07-02 주식회사 엘지화학 저굴절 실리카 코팅층을 포함하는 광학 부재의 제조방법 및 이를 이용하여 제조된 광학 부재
CN110280439A (zh) * 2019-07-29 2019-09-27 广东省新材料研究所 涂布辊、其应用及制备方法
CN114744068A (zh) * 2022-03-30 2022-07-12 天津南玻节能玻璃有限公司 一种光伏建筑一体化组件及其制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6436306B2 (ja) * 2014-08-25 2018-12-12 パナソニックIpマネジメント株式会社 塗膜物の製造装置、及びこれを用いた塗膜物の製造方法
CN104829142B (zh) * 2015-05-14 2017-03-01 海南中航特玻科技有限公司 Ar镀膜辊涂机皮带接头自动躲避装置
CN106540868B (zh) * 2016-12-12 2022-11-22 江西中材太阳能新材料有限公司 自动植砂设备及自动植砂***
CN107265877A (zh) * 2017-08-03 2017-10-20 李郑松 一种抗酸碱玻璃涂层的制备方法
KR101890902B1 (ko) * 2017-08-24 2018-08-22 (주)경진테크 적외선 차단 강화유리 제조방법
GB2567238B (en) * 2017-10-09 2020-01-08 Surrey Nanosystems Ltd Paint with low light reflectivity

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09294959A (ja) * 1996-03-07 1997-11-18 Sekisui Chem Co Ltd 積層体の製造方法
JP2004200599A (ja) * 2002-12-20 2004-07-15 Tokai Rubber Ind Ltd プラズマディスプレイ用透明電磁波シールドフィルムの製法およびそれにより得られたプラズマディスプレイ用透明電磁波シールドフィルム
JP2005037510A (ja) * 2003-07-17 2005-02-10 Fuji Photo Film Co Ltd 平版印刷版、その製造方法、および平版印刷版製造装置
JP2006128649A (ja) * 2004-09-30 2006-05-18 Nitta Ind Corp 電磁干渉抑制体およびその製造方法
JP2007260591A (ja) * 2006-03-29 2007-10-11 Toray Ind Inc 塗布方法、塗布装置および樹脂シートの製造方法
JP2009268966A (ja) * 2008-05-07 2009-11-19 Jfe Steel Corp ロールコーターを用いた塗布方法
WO2010018852A1 (ja) * 2008-08-13 2010-02-18 旭硝子株式会社 塗料組成物および塗膜が形成された物品
WO2011027827A1 (ja) * 2009-09-07 2011-03-10 旭硝子株式会社 基材の表面に低反射膜を有する物品

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768219A (ja) * 1993-09-01 1995-03-14 Central Glass Co Ltd 薄膜の形成法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09294959A (ja) * 1996-03-07 1997-11-18 Sekisui Chem Co Ltd 積層体の製造方法
JP2004200599A (ja) * 2002-12-20 2004-07-15 Tokai Rubber Ind Ltd プラズマディスプレイ用透明電磁波シールドフィルムの製法およびそれにより得られたプラズマディスプレイ用透明電磁波シールドフィルム
JP2005037510A (ja) * 2003-07-17 2005-02-10 Fuji Photo Film Co Ltd 平版印刷版、その製造方法、および平版印刷版製造装置
JP2006128649A (ja) * 2004-09-30 2006-05-18 Nitta Ind Corp 電磁干渉抑制体およびその製造方法
JP2007260591A (ja) * 2006-03-29 2007-10-11 Toray Ind Inc 塗布方法、塗布装置および樹脂シートの製造方法
JP2009268966A (ja) * 2008-05-07 2009-11-19 Jfe Steel Corp ロールコーターを用いた塗布方法
WO2010018852A1 (ja) * 2008-08-13 2010-02-18 旭硝子株式会社 塗料組成物および塗膜が形成された物品
WO2011027827A1 (ja) * 2009-09-07 2011-03-10 旭硝子株式会社 基材の表面に低反射膜を有する物品

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046260A1 (ja) * 2013-09-30 2015-04-02 旭硝子株式会社 多孔質膜付き基板の製造方法
JP2016109333A (ja) * 2014-12-04 2016-06-20 日本電気硝子株式会社 調理器用トッププレート及びその製造方法
WO2017150132A1 (ja) * 2016-02-29 2017-09-08 富士フイルム株式会社 積層体の製造方法、反射防止膜付ガラス及び太陽電池モジュール
KR20190076599A (ko) * 2017-12-22 2019-07-02 주식회사 엘지화학 저반사 실리카 코팅층을 포함하는 광학 부재의 제조방법 및 이를 이용하여 제조된 광학 부재
KR20190076598A (ko) * 2017-12-22 2019-07-02 주식회사 엘지화학 메조포러스 실리카 코팅층을 포함하는 광학 부재의 제조방법 및 이를 이용하여 제조된 광학 부재
KR20190076596A (ko) * 2017-12-22 2019-07-02 주식회사 엘지화학 저굴절 실리카 코팅층을 포함하는 광학 부재의 제조방법 및 이를 이용하여 제조된 광학 부재
KR102267504B1 (ko) 2017-12-22 2021-06-21 주식회사 엘지화학 메조포러스 실리카 코팅층을 포함하는 광학 부재의 제조방법 및 이를 이용하여 제조된 광학 부재
KR102267506B1 (ko) 2017-12-22 2021-06-21 주식회사 엘지화학 저굴절 실리카 코팅층을 포함하는 광학 부재의 제조방법 및 이를 이용하여 제조된 광학 부재
KR102267503B1 (ko) 2017-12-22 2021-06-21 주식회사 엘지화학 저반사 실리카 코팅층을 포함하는 광학 부재의 제조방법 및 이를 이용하여 제조된 광학 부재
CN110280439A (zh) * 2019-07-29 2019-09-27 广东省新材料研究所 涂布辊、其应用及制备方法
CN114744068A (zh) * 2022-03-30 2022-07-12 天津南玻节能玻璃有限公司 一种光伏建筑一体化组件及其制备方法
CN114744068B (zh) * 2022-03-30 2024-03-19 天津南玻节能玻璃有限公司 一种光伏建筑一体化组件及其制备方法

Also Published As

Publication number Publication date
CN103842098A (zh) 2014-06-04
KR20140088862A (ko) 2014-07-11
JPWO2013051620A1 (ja) 2015-03-30

Similar Documents

Publication Publication Date Title
WO2013051620A1 (ja) 低反射膜付き物品の製造方法
JP7201370B2 (ja) 膜付き曲げ基材およびその製造方法、ならびに画像表示装置
JP6458804B2 (ja) 透光性構造体
WO2011027827A1 (ja) 基材の表面に低反射膜を有する物品
JP5979151B2 (ja) 低反射膜付き物品の製造方法
US10802318B2 (en) Transparent substrate with antifouling film and capacitance in-cell touch panel-type liquid crystal display device
WO2017038868A1 (ja) 透光性構造体、その製造方法および物品
WO2015186753A1 (ja) 機能膜付き化学強化ガラス板、その製造方法および物品
WO2015041257A1 (ja) 低反射膜付き強化ガラス板およびその製造方法
WO2010018852A1 (ja) 塗料組成物および塗膜が形成された物品
JP4893539B2 (ja) アンチグレア層を有する物品およびその製造方法
TW201606357A (zh) 附防眩膜之基材及物品
CN108841213B (zh) 用于在基材上喷涂溶胶-凝胶薄膜的方法和配方
WO2014061606A1 (ja) 防汚性反射防止膜、物品およびその製造方法
JP2015049319A (ja) 透明基材と防汚性反射防止膜とを備える物品およびその製造方法
WO2015163330A1 (ja) アンチグレア層付き基材および物品
JP2013160799A (ja) 低反射膜付き物品の製造方法
WO2018199120A1 (ja) 膜付きガラス基板、物品、および膜付きガラス基板の製造方法
WO2017126230A1 (ja) 不透視膜付き透明基材
JP6164120B2 (ja) 反射防止膜付き基材および物品
CN115398282A (zh) 带防眩膜的基材和带防眩膜的基材的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838488

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013537537

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12014500695

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 20147008766

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12838488

Country of ref document: EP

Kind code of ref document: A1