WO2015163330A1 - アンチグレア層付き基材および物品 - Google Patents

アンチグレア層付き基材および物品 Download PDF

Info

Publication number
WO2015163330A1
WO2015163330A1 PCT/JP2015/062142 JP2015062142W WO2015163330A1 WO 2015163330 A1 WO2015163330 A1 WO 2015163330A1 JP 2015062142 W JP2015062142 W JP 2015062142W WO 2015163330 A1 WO2015163330 A1 WO 2015163330A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
antiglare layer
silica
silica particles
Prior art date
Application number
PCT/JP2015/062142
Other languages
English (en)
French (fr)
Inventor
敏 本谷
義美 大谷
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2015163330A1 publication Critical patent/WO2015163330A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to a substrate with an antiglare layer and an article using the same.
  • an image display device for example, a liquid crystal display, an organic EL display, a plasma display, etc.
  • various devices for example, a television, a personal computer, a smartphone, a mobile phone, etc.
  • indoor lighting for example, a fluorescent lamp
  • the visibility decreases due to the reflected image.
  • an anti-glare treatment is performed on the transparent base material constituting the display surface of the image display device.
  • an anti-glare treatment conventionally, a treatment for forming irregularities on the light incident surface of a transparent substrate is known.
  • the unevenness is increased in order to increase the antiglare effect (that is, the surface is roughened)
  • the resolution of the image decreases
  • the haze increases
  • the contrast of the image decreases.
  • a coating liquid containing a hydrolyzate of alkoxysilane and hollow SiO 2 fine particles is applied on a substrate by a spray method, and has a refractive index of 1.45 or less and a surface roughness of 0.04 to 0.
  • a method of manufacturing an article having an antiglare layer of .17 ⁇ m has been proposed (see Patent Document 1).
  • the antiglare layer described in Patent Document 1 is said to have an excellent antiglare effect even if the surface roughness is small because the matrix has a low refractive index.
  • An object of the present invention is to provide a base material with an antiglare layer having an antiglare layer excellent in balance between an antiglare effect, a transmittance improvement effect and mechanical strength, and an article using the same.
  • the present invention has the following aspects.
  • the antiglare layer has a refractive index of 1.25 to 1.45,
  • the arithmetic average roughness Ra of the surface of the antiglare layer is 0.05 to 0.25 ⁇ m
  • the present invention it is possible to provide a substrate with an antiglare layer provided with an antiglare layer having an excellent balance of antiglare effect, transmittance improvement effect and mechanical strength, and an article using the same.
  • FIG. 1 is a cross-sectional view schematically showing an embodiment of a substrate with an antiglare (hereinafter abbreviated as AG) layer of the present invention.
  • the substrate 10 with an AG layer of the present embodiment includes a transparent substrate 12 and an AG layer 14 formed on the transparent substrate 12.
  • the transparency in the transparent substrate 12 means that 80% or more of light in the wavelength region of 400 to 1100 nm is transmitted on average.
  • Examples of the form of the transparent substrate 12 include a plate and a film.
  • Examples of the material of the transparent substrate 12 include glass and resin.
  • Examples of the glass include soda lime glass, borosilicate glass, aluminosilicate glass, and alkali-free glass.
  • Examples of the resin include polyethylene terephthalate, polycarbonate, triacetyl cellulose, polymethyl methacrylate, and the like.
  • the glass plate may be a smooth glass plate formed by a float method, a fusion method, or the like, or may be a template glass having irregularities on the surface formed by a roll-out method or the like. Further, not only flat glass but also glass having a curved surface shape may be used.
  • the thickness of the glass plate is not particularly limited. For example, a glass plate having a thickness of 10 mm or less can be used. The thinner the thickness, the lower the light absorption, which is preferable for the purpose of improving the transmittance.
  • glass is an alkali free glass
  • SiO 2 39 to 70%
  • Al 2 O 3 3 to 25%
  • B 2 O 3 1-30%
  • MgO 0 to 10%
  • CaO 0 to 17%
  • SrO 0 to 20%
  • BaO 0 to 30%.
  • glass is aluminosilicate glass
  • what has the following composition is preferable.
  • SiO 2 62 to 68%
  • Al 2 O 3 6 to 12%
  • MgO 7-13%
  • Na 2 O 9-17%
  • K 2 O 0-7%
  • ZrO 2 0 to 8%.
  • the glass plate may be tempered in advance.
  • the strengthening treatment includes physical strengthening in which the glass plate is air-cooled after being exposed to a high temperature, or an alkali with a small atomic diameter present on the outermost surface of the glass substrate by immersing the glass plate in a molten salt containing an alkali metal.
  • Examples include chemical strengthening in which metal ions (for example, Na ions) are replaced with alkali metal ions (for example, K ions) having a large atomic diameter present in the molten salt.
  • metal ions for example, Na ions
  • alkali metal ions for example, K ions
  • the AG layer 14 is a layer that includes chain solid silica particles and has irregularities on the surface.
  • the AG layer 14 typically further includes a matrix that fills the voids between the chain solid silica particles.
  • the matrix may cover the upper side of the chain solid silica particles (that is, the side opposite to the transparent substrate 12 side) so that the chain solid silica particles are not exposed.
  • the AG layer 14 may further include particles other than the chain solid silica particles.
  • the AG layer 14 may be formed using a coating solution further containing a terpene compound.
  • the AG layer 14 may further include a chain solid silica particle, a matrix, other particles, and other components other than the terpene compound (hereinafter also referred to as “other optional components”).
  • Chain solid silica particles are solid silica particles having a chain shape.
  • solid silica particles having a plurality of spheres, ellipses, needles, plates, rods, cones, cylinders, cubes, cuboids, diamonds, stars, etc. in a chain shape The thing of the connected shape is mentioned.
  • the shape of the chain solid silica particles can be confirmed by an electron microscope. “Solid” indicates that there is no cavity inside.
  • the average aggregate particle diameter of the chain solid silica particles is preferably 5 to 300 nm, and more preferably 5 to 200 nm. If the average agglomerated particle diameter of the chain solid silica particles is not less than the lower limit of the above range, the refractive index reduction effect is excellent, and if it is not more than the upper limit, the wear resistance is excellent.
  • the chain solid silica particles can be easily obtained as a commercial product. Moreover, you may use what was manufactured by the well-known manufacturing method. Examples of commercially available products include Snowtex ST-OUP manufactured by Nissan Chemical Industries, Ltd.
  • the content of the chain solid silica particles in the AG layer 14 is preferably 50 to 80% by mass, more preferably 55 to 75% by mass, and more preferably 60 to 70% by mass with respect to the total mass of the AG layer 14. Is particularly preferred. If the content of the chain solid silica particles is not less than the lower limit of the above range, the refractive index of the AG layer 14 is lowered, and a sufficient transmittance improving effect is obtained. If the content of the chain solid silica particles is not more than the upper limit of the above range, the mechanical strength of the AG layer is excellent.
  • Examples of the matrix of the AG layer 14 include a silica matrix and a titania matrix.
  • a silica-based matrix is preferable. If the matrix is a silica-based matrix, the refractive index (that is, the reflectance) of the AG layer 14 tends to be low. In addition, chemical stability, wear resistance and the like are improved. When the transparent substrate is glass, adhesion is particularly good.
  • “Silica-based matrix” refers to a matrix mainly composed of silica. To have silica as a main component means that the proportion of silica is 90% by mass or more in the matrix (100% by mass). The silica matrix is more preferably substantially composed of silica. The phrase “consisting essentially of silica” means that it is composed only of silica excluding inevitable impurities.
  • the silica-based matrix may contain a small amount of components other than silica.
  • the components include Li, B, C, N, F, Na, Mg, Al, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, and Sr. , Y, Zr, Nb, Ru, Pd, Ag, In, Sn, Hf, Ta, W, Pt, Au, Bi and one or more ions selected from the group consisting of lanthanoid elements, and / or this group And compounds such as oxides having one or more elements selected from:
  • silica matrix examples include a fired product of a silica matrix precursor.
  • the silica-based matrix precursor will be described in detail later.
  • the layer containing the chain solid silica particles and the silica-based matrix can be formed from, for example, a coating solution containing chain solid silica particles, a silica-based matrix precursor, and a liquid medium. The method for forming the coating solution and the AG layer 14 will be described in detail later.
  • Other particles examples include metal oxide particles, metal particles, pigment-based particles, and resin particles. Other particles may have a hollow structure or a solid structure.
  • the material of the metal oxide particles Al 2 O 3 , SiO 2 , SnO 2 , TiO 2 , ZrO 2 , ZnO, CeO 2 , Sb-containing SnO X (ATO), Sn-containing In 2 O 3 (ITO), RuO 2 etc. are mentioned.
  • the material of the metal particles include metals (Ag, Ru, etc.), alloys (AgPd, RuAu, etc.) and the like.
  • pigment-based particles include inorganic pigments (titanium black, carbon black, etc.) and organic pigments.
  • the resin particle material include polystyrene and melanin resin.
  • Examples of other particle shapes include spherical, elliptical, needle-like, plate-like, rod-like, conical, cylindrical, cubic, rectangular, diamond-like, star-like, and indefinite shapes.
  • the other particles may be present in an independent state, the particles may be linked in a chain, or the particles may be aggregated.
  • the content of other particles in the AG layer 14 is preferably up to 30% by mass with respect to the total mass of the AG layer 14.
  • the average aggregate particle diameter of the other particles is preferably about the same as that of the chain solid silica particles.
  • hollow silica particles are preferable in that they are excellent in the effect of reducing the refractive index.
  • Terpene compounds The terpene compound will be described in detail later.
  • the refractive index of the AG layer 14 is 1.25 to 1.45, preferably 1.25 to 1.40.
  • the refractive index of the AG layer 14 is less than or equal to the upper limit of the above range, the reflectance on the surface of the AG layer 14 is sufficiently low, and the transmittance is improved as compared with the case of the transparent substrate 12 alone.
  • the AG layer 14 having a refractive index equal to or higher than the lower limit of the above range is dense, and has excellent mechanical strength, adhesion to the transparent substrate 12 such as a glass plate, and the like. A method for measuring the refractive index will be described later.
  • the arithmetic average roughness Ra of the surface of the AG layer 14 (that is, the surface on the AG layer 14 side of the substrate 10 with the AG layer) is 0.05 to 0.25 ⁇ m, preferably 0.07 to 0.25 ⁇ m, and 0 10 to 0.25 ⁇ m is particularly preferable.
  • Arithmetic average roughness Ra is an index indicating the average height of the irregularities on the surface. If the arithmetic average roughness Ra of the surface of the AG layer 14 is equal to or greater than the lower limit of the above range, the antiglare effect is sufficiently exhibited.
  • the arithmetic average roughness Ra of the surface of the AG layer 14 is not more than the upper limit of the above range, the mechanical strength of the AG layer 14 is excellent, and the haze of the base material 10 with the AG layer is sufficiently small.
  • the arithmetic average roughness Ra of the surface of the AG layer is a value measured according to the method described in JIS B0601: 2001.
  • the 60 ° specular gloss on the surface of the AG layer 14 is preferably 50% or less, and more preferably 45% or less.
  • the 60 ° specular gloss on the surface of the AG layer 14 is an index of the antiglare effect. When the 60 ° specular gloss is 50% or less, the antiglare effect is sufficiently exhibited.
  • the lower limit of the 60 ° specular gloss is not particularly limited in terms of the antiglare effect, but is preferably 5% or more and more preferably 10% or more in terms of the transmittance improvement effect.
  • the 60 ° specular gloss is a value measured according to the method defined in JIS Z8741: 1997.
  • the haze of the substrate 10 with an AG layer is preferably 5 to 20%, more preferably 5 to 15%. If the haze is less than or equal to the upper limit of the above range, the image contrast when the substrate 10 with an AG layer is used in a display device and the power generation efficiency when the substrate 10 with an AG layer is used in a solar cell module are good. It is. If the haze is equal to or higher than the lower limit of the above range, the antiglare effect is easily exhibited.
  • the haze is a value measured according to a method defined in JIS K7136: 2000.
  • a coating liquid (hereinafter referred to as an AG layer) containing a chain solid silica particle, a silica-based matrix precursor, and a liquid medium on the transparent base material 12. And a method of forming a coating film and baking it.
  • the coating liquid for AG layer will be described in detail later.
  • a coating method of the AG layer coating liquid As a coating method of the AG layer coating liquid, known wet coating methods (for example, spray coating method, spin coating method, dip coating method, die coating method, curtain coating method, screen coating method, ink jet method, flow coating method, gravure) Coating method, bar coating method, flexo coating method, slit coating method, roll coating method, etc.).
  • a spray method is preferable because sufficient unevenness can be easily formed.
  • the nozzle used in the spray method examples include a two-fluid nozzle and a one-fluid nozzle.
  • the particle size of the coating liquid droplets ejected from the nozzle is usually 0.1 to 100 ⁇ m, preferably 1 to 50 ⁇ m. If the particle size of the droplets is 1 ⁇ m or more, it is possible to form irregularities that sufficiently exhibit the antiglare effect in a short time. If the particle size of the droplet is 50 ⁇ m or less, it is easy to form moderate unevenness that sufficiently exhibits the antiglare effect.
  • the particle size of the droplets can be adjusted as appropriate according to the type of nozzle, spray pressure, liquid volume, and the like. For example, in a two-fluid nozzle, the higher the spray pressure, the smaller the droplet, and the larger the liquid volume, the larger the droplet.
  • the particle size of the droplet is the Sauter average particle size measured by a laser measuring device.
  • the arithmetic average roughness Ra and 60 ° specular glossiness of the surface of the AG layer can be adjusted by applying time, that is, the number of coated surfaces (number of overcoating) by a spray method under a certain application condition. For example, as the number of coated surfaces increases, the arithmetic average roughness Ra of the surface of the AG layer increases, and as a result, the 60 ° specular gloss decreases (that is, the antiglare effect increases) and the haze tends to increase. There is.
  • the transparent substrate 12 When applying the coating solution for the AG layer by spraying, it is preferable to heat the transparent substrate 12 to 30 to 90 ° C. in advance. If the temperature of the transparent substrate 12 is 30 ° C. or higher, the liquid medium evaporates quickly, so that sufficient unevenness can be easily formed. If the temperature of the transparent base material 12 is 90 degrees C or less, the adhesiveness of the transparent base material 12 and AG layer 14 will become favorable.
  • the transparent substrate 12 is a glass plate having a thickness of 5 mm or less, a heat insulating plate set in advance at a temperature equal to or higher than the temperature of the transparent substrate 12 is arranged under the transparent substrate 12 to suppress the temperature drop of the transparent substrate 12. May be.
  • firing includes heating and curing a coating film obtained by applying a coating composition.
  • the baking may be performed simultaneously with the application by heating when the AG layer coating liquid is applied on the transparent substrate 12, or by applying the coating liquid to the substrate and then heating the coating film. Also good.
  • the firing temperature is preferably 30 ° C. or higher, and may be appropriately determined according to the material of the transparent substrate 12, the material of the coating solution for the AG layer, and the like.
  • the silica matrix precursor is a silane compound (A)
  • the firing temperature is preferably 80 ° C. or higher, and more preferably 100 ° C. or higher.
  • the firing temperature is 80 ° C. or higher, the fired product is densified and durability is improved.
  • the material of the transparent substrate 12 is a resin
  • the firing temperature is equal to or lower than the heat resistant temperature of the resin.
  • the firing temperature is preferably equal to or lower than the softening point temperature of the glass.
  • the firing temperature is preferably 80 to 450 ° C.
  • the transparent substrate 12 is a glass plate that is not chemically strengthened, it can also serve as a firing step for forming the AG layer 14 and a physical strengthening step for the glass plate.
  • the glass plate is heated to near the softening temperature of the glass.
  • the firing temperature is typically set to about 600 to 700 ° C. Since the polymerization proceeds to some extent even in natural drying, it is theoretically possible to set the drying or calcination temperature to a temperature setting near room temperature if there is no restriction on time.
  • the coating liquid for AG layer contains chain solid silica particles, a silica-based matrix precursor, and a liquid medium.
  • the AG layer coating solution may further contain other particles, a terpene compound, other optional components, and the like, if necessary.
  • Chain solid silica particles The description of the chain solid silica particles is the same as described above.
  • Silica-based matrix precursor means a substance that can form a silica-based matrix by firing.
  • examples of the silica-based matrix precursor include a silane compound having a hydrolyzable group bonded to a silicon atom (hereinafter also referred to as silane compound (A)), a hydrolysis condensate (sol-gel silica) of silane compound (A), and silazane. From the viewpoint of each characteristic of the AG layer 14, one or both of the silane compound (A) and the hydrolysis condensate thereof are preferable, and the hydrolysis condensate of the silane compound (A) is more preferable.
  • silane compound (A) examples include a silane compound (A1) having a hydrocarbon group and a hydrolyzable group bonded to a silicon atom, and alkoxysilane (however, excluding the silane compound (A1)).
  • the hydrocarbon group bonded to the silicon atom may be a monovalent hydrocarbon group bonded to one silicon atom, or a divalent hydrocarbon group bonded to two silicon atoms.
  • the monovalent hydrocarbon group include an alkyl group, an alkenyl group, and an aryl group.
  • the divalent hydrocarbon group include an alkylene group, an alkenylene group, and an arylene group.
  • the hydrocarbon group is one selected from —O—, —S—, —CO— and —NR′— (wherein R ′ is a hydrogen atom or a monovalent hydrocarbon group) between carbon atoms, or You may have group which combined 2 or more.
  • the “hydrolyzable group bonded to a silicon atom” means a group that can be converted into an OH group bonded to a silicon atom by hydrolysis.
  • the hydrolyzable group include an alkoxy group, an acyloxy group, a ketoxime group, an alkenyloxy group, an amino group, an aminoxy group, an amide group, an isocyanate group, and a halogen atom.
  • an alkoxy group, an isocyanate group, and a halogen atom are preferable from the viewpoint of the balance between the stability of the silane compound (A1) and the ease of hydrolysis.
  • the alkoxy group an alkoxy group having 1 to 3 carbon atoms is preferable, and a methoxy group or an ethoxy group is more preferable.
  • the hydrolyzable groups may be the same group or different groups, and it is easy to obtain that they are the same group. This is preferable.
  • silane compound (A1) examples include a compound represented by the formula (I) described later, an alkoxysilane having an alkyl group (methyltrimethoxysilane, ethyltriethoxysilane, etc.), an alkoxysilane having a vinyl group (vinyltrimethoxysilane).
  • alkoxysilanes having an epoxy group (2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane) And 3-glycidoxypropyltriethoxysilane) and alkoxysilanes having an acryloyloxy group (such as 3-acryloyloxypropyltrimethoxysilane).
  • the silane compound (A1) is preferably a compound represented by the following formula (I) from the viewpoint of the mechanical strength of the AG layer 14.
  • Q is a divalent hydrocarbon group (-O—, —S—, —CO— and —NR′— (where R ′ is a hydrogen atom or a monovalent hydrocarbon) Or a group formed by combining two or more of them.). What was mentioned above is mentioned as a bivalent hydrocarbon.
  • Q is preferably an alkylene group having 2 to 8 carbon atoms, more preferably an alkylene group having 2 to 6 carbon atoms, from the viewpoints of mechanical strength and availability of the AG layer 14.
  • L is a hydrolyzable group.
  • the hydrolyzable group include those described above, and preferred embodiments are also the same.
  • R is a hydrogen atom or a monovalent hydrocarbon group. Examples of the monovalent hydrocarbon include those described above.
  • p is an integer of 1 to 3. p is preferably 2 or 3, particularly preferably 3, from the viewpoint that the reaction rate does not become too slow.
  • alkoxysilane examples include tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, etc.), alkoxysilane having a perfluoropolyether group ( Perfluoropolyether triethoxysilane and the like), alkoxysilanes having a perfluoroalkyl group (perfluoroethyltriethoxysilane and the like), and the like.
  • tetraalkoxysilane tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, etc.
  • alkoxysilane having a perfluoropolyether group Perfluoropolyether triethoxysilane and the like
  • alkoxysilanes having a perfluoroalkyl group
  • Hydrolysis and condensation of the silane compound (A) can be performed by a known method.
  • the silane compound (A) is tetraalkoxysilane, it is carried out using 4 times or more water of tetraalkoxysilane and acid or alkali as a catalyst.
  • the acid include inorganic acids (HNO 3 , H 2 SO 4 , HCl, etc.) and organic acids (formic acid, oxalic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, etc.).
  • the alkali include ammonia, sodium hydroxide, potassium hydroxide and the like.
  • an acid is preferable from the viewpoint of long-term storage stability of the hydrolysis condensate of the silane compound (A).
  • a catalyst that does not hinder the dispersion of fine particles such as chain solid silica particles is preferable.
  • silica type matrix precursor 1 type may be used independently and 2 or more types may be used in combination.
  • the silica-based matrix precursor includes silane compound (A1) and / or its hydrolytic condensate, tetraalkoxysilane and its It is particularly preferred that one or both of the hydrolysis condensates are included.
  • the ratio of the silane compound (A1) and the hydrolysis condensate thereof in the silica matrix precursor is preferably 5 to 30% by mass with respect to the solid content (100% by mass) in terms of SiO 2 of the silica matrix precursor.
  • the liquid medium is a dispersion medium for dispersing the chain solid silica particles.
  • the liquid medium may be a solvent that dissolves the silica-based matrix precursor.
  • Examples of the liquid medium include water, alcohols, ketones, ethers, cellosolves, esters, glycol ethers, nitrogen-containing compounds, sulfur-containing compounds, and the like.
  • Examples of alcohols include methanol, ethanol, isopropanol, butanol, diacetone alcohol and the like.
  • Examples of ketones include acetone, methyl ethyl ketone, and methyl isobutyl ketone.
  • Examples of ethers include tetrahydrofuran and 1,4-dioxane.
  • Examples of cellosolves include methyl cellosolve and ethyl cellosolve.
  • Examples of esters include methyl acetate and ethyl acetate.
  • Examples of glycol ethers include ethylene glycol monoalkyl ether.
  • nitrogen-containing compound examples include N, N-dimethylacetamide, N, N-dimethylformamide, N-methylpyrrolidone and the like.
  • sulfur-containing compound examples include dimethyl sulfoxide.
  • a liquid medium may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the liquid medium contains at least water unless the liquid medium is replaced after hydrolysis.
  • the liquid medium may be water alone or a mixed liquid of water and another liquid.
  • other liquids include alcohols, ketones, ethers, cellosolves, esters, glycol ethers, nitrogen-containing compounds, and sulfur-containing compounds.
  • alcohols are preferable, and methanol, ethanol, isopropyl alcohol, and butanol are particularly preferable.
  • the liquid medium may contain acid or alkali.
  • the acid or alkali may be added as a catalyst for the hydrolysis and condensation of the raw material (alkoxysilane, etc.) during the preparation of the silica matrix precursor solution. It may be added later.
  • Terpene compounds When the coating solution for the AG layer further contains a terpene compound, voids are formed around the chain solid silica particles, and the refractive index is lower than when no terpene compound is contained, and the transmittance improvement effect tends to increase.
  • the terpene means a hydrocarbon having a composition of (C 5 H 8 ) n (where n is an integer of 1 or more) having isoprene (C 5 H 8 ) as a structural unit.
  • the terpene compound means terpenes having a functional group derived from terpene. Terpene compounds also include those with different degrees of unsaturation.
  • terpene compounds function as a liquid medium
  • those having “a hydrocarbon having a composition of (C 5 H 8 ) n having isoprene as a structural unit” fall under the category of terpene derivatives. Shall not apply.
  • terpene compound terpene derivatives described in International Publication No. 2010/018852 can be used.
  • optional ingredients examples include surfactants for improving leveling properties, metal compounds for improving durability of the AG layer 14, ultraviolet absorbers, infrared reflection / infrared absorbers, antireflection agents, and the like. It is done.
  • the surfactant include silicone oil and acrylic.
  • a zirconium chelate compound, a titanium chelate compound, an aluminum chelate compound and the like are preferable.
  • the zirconium chelate compound include zirconium tetraacetylacetonate and zirconium tributoxy systemate.
  • the content of the chain solid silica particles in the AG layer coating solution is based on the solid content (100% by mass) in the AG layer coating solution (however, the silica-based matrix precursor is converted to SiO 2 ). 50 to 80% by mass is preferable, 55 to 75% by mass is more preferable, and 60 to 70% by mass is particularly preferable. If the content of the chain solid silica particles is not less than the lower limit of the above range, the refractive index of the AG layer 14 is lowered, and a sufficient transmittance improving effect is obtained. If the content of the chain solid silica particles is not more than the upper limit of the above range, the mechanical strength of the AG layer is excellent.
  • the content of the silica-based matrix precursor in the AG layer coating solution (in terms of SiO 2 ) is preferably 20 to 50% by mass, preferably 25 to 45%, based on the solid content (100% by mass) in the AG layer coating solution.
  • the mass% is more preferable.
  • the content of the silica-based matrix precursor is not less than the lower limit of the above range, the mechanical strength is excellent.
  • the content of the terpene compound in the coating solution for AG layer is the solid content (100% by mass) in the coating solution for AG layer (however, the silica-based matrix precursor is and in terms of SiO 2.) to, preferably 0.05 to 0.25 mass%, more preferably from 0.1 to 0.15 mass%.
  • the effect by including a terpene compound is easy to be acquired as content of a terpene compound is more than the lower limit of the said range.
  • the content of the terpene compound is not more than the upper limit of the above range, the mechanical strength is excellent.
  • the solid content concentration of the coating solution for the AG layer is preferably 1 to 8% by mass, and more preferably 2 to 5% by mass.
  • the solid content concentration of the coating solution for AG layer is the total content of all components other than the liquid medium in the coating solution for AG layer.
  • the content of the silica-based matrix precursor is in terms of SiO 2 .
  • the coating liquid for the AG layer includes, for example, a chain solid silica particle dispersion, a silica-based matrix precursor solution, an additional liquid medium, a dispersion of other particles, a terpene compound, and other optional liquids as necessary. It is prepared by mixing ingredients and the like.
  • the refractive index of the AG layer 14 is 1.25 to 1.45
  • the arithmetic average roughness Ra of the surface of the AG layer 14 is 0.05 to 0.25 ⁇ m
  • the AG layer 14 includes chain solid silica particles
  • the balance between the antiglare effect, the transmittance improvement effect, and the mechanical strength is excellent as compared with the conventional one.
  • When lowering the refractive index with solid silica particles it is necessary to increase the content as compared with the case of using hollow silica particles. Conventionally, it is known that when the content of fine particles increases, mechanical strength such as wear resistance decreases and haze tends to increase.
  • the AG layer 14 Has sufficient mechanical strength, and the haze of the substrate 10 with the AG layer is sufficiently low.
  • the use of the base material 10 with the AG layer is not particularly limited. Specific examples include transparent parts for vehicles (headlight covers, side mirrors, front transparent substrates, side transparent substrates, rear transparent substrates, instrument panel surface plates, etc.), meters, architectural windows, show windows, displays (notebooks) PC, monitor, LCD, PDP, ELD, CRT, PDA, etc.), LCD color filter, touch panel substrate, pickup lens, optical lens, eyeglass lens, camera component, video component, CCD cover substrate, optical fiber end face, projector Parts, copier parts, transparent substrates for solar cells (cover glass, etc.), mobile phone windows, backlight unit parts (light guide plates, cold cathode tubes, etc.), backlight unit parts, LCD brightness enhancement films (prisms, half Transmissive film, etc.), organic EL light emitting device parts, inorganic EL light emitting device Goods, phosphor emitting element part, an optical filter, the end face of the optical component, the illumination lamp, the cover of the luminaire, amplified laser light source,
  • the base material 10 with an AG layer is a transparent substrate for solar cells.
  • a transparent substrate (cover glass or the like) is disposed on the front surface of the solar cell to protect the solar cell.
  • light damage is caused by the reflected light reflected from the surface of the transparent substrate.
  • the sunlight transmittance of the transparent substrate affects the power generation efficiency of the solar cell module.
  • mechanical strength is required to protect the solar cell.
  • the base material 10 with an AG layer of the present invention is useful as a transparent substrate for solar cells because it has an excellent balance of antiglare effect, transmittance improvement effect and mechanical strength.
  • a functional layer such as an AFP (fingerprint removal layer) may be provided on the upper side of the AG layer 14 (the side opposite to the transparent substrate 12 side).
  • AFP fingerprint removal layer
  • You may have functional layers, such as an alkali barrier layer, a reflectance waveform adjustment layer, and an infrared shielding layer, between the transparent base material 12 and the AG layer 14.
  • the functional layer can be formed by a known method such as a coating method.
  • the article of the present invention includes the substrate with the AG layer.
  • the article of the present invention may be composed of the base material with an AG layer, or may further include a member other than the base material with an AG layer.
  • Examples of the article of the present invention include those mentioned above for the use of the substrate 10 with an AG layer, and devices including any one or more of them.
  • Examples of the device include a solar cell module, a display device, and a lighting device.
  • the solar cell module includes a solar cell and a transparent substrate (cover glass or the like) disposed on each of the front and back surfaces of the solar cell in order to protect the solar cell, and at least one of the transparent substrates (preferably a transparent substrate) Are preferably those using the above-mentioned base material with an AG layer as at least a transparent substrate on the front side.
  • the display device include a mobile phone, a smartphone, a tablet, and a car navigation.
  • the illumination device include an organic EL (electroluminescence) illumination device and an LED (light emitting diode) illumination device.
  • examples 1 to 7 described later examples 2 to 5 are examples, and examples 1, 6 and 7 are comparative examples.
  • the evaluation methods and materials used in each example are shown below.
  • ⁇ Evaluation methods (Average aggregated particle size) The average aggregate particle diameter of the fine particles (chain solid silica particles, hollow silica particles) was measured using a dynamic light scattering particle size analyzer (manufactured by Nikkiso Co., Ltd., Microtrac UPA).
  • the refractive index n of the AG layer was measured by the following method. A single layer smooth film of a layer whose refractive index is desired to be obtained is formed on the surface of a transparent substrate with a spin coater, black vinyl tape is formed on the surface of the transparent substrate opposite to the single layer film, and no bubbles are contained. Pasted like so. Thereafter, the reflectance of the single layer film was measured in the wavelength range of 300 to 780 nm with a spectrophotometer (manufactured by Otsuka Electronics Co., Ltd., instantaneous multi-photometry system MCPD-3000). In measuring the reflectance, the incident angle of light was set to 2 °.
  • the arithmetic average roughness Ra of the surface of the AG layer was measured by a method described in JIS B0601: 2001 using a surface roughness meter (manufactured by Tokyo Seimitsu Co., Ltd., “Surfcom (registered trademark) 1500DX”).
  • the reference length lr (cut-off value ⁇ c) for the roughness curve was 0.08 mm.
  • Transmissivity difference Td About each of the transparent base material before forming the AG layer and the base material with the AG layer obtained in each example, using a spectrophotometer (manufactured by JASCO Corporation, V670), light transmittance at a wavelength of 400 nm to 1100 nm ( %) And the average transmittance (%) was determined. From the result, transmittance difference Td (%) was calculated by the following equation (2). The incident angle of light was 0 ° (incident perpendicular to the transparent substrate). It shows that the transmittance
  • permeability difference Td is large. Td T1-T2 (2) However, T1 is the average transmittance (%) of the substrate with the AG layer, and T2 is the average transmittance (%) of only the transparent substrate.
  • glossiness As the glossiness of the surface of the AG layer, a 60 ° specular glossiness was measured. The 60 ° specular gloss was measured at a substantially central portion of the AG layer using a gloss meter (PG-3D type, manufactured by Nippon Denshoku Industries Co., Ltd.) according to the method defined in JIS Z8741: 1997. Further, the glossiness of the surface of the AG layer was measured in a state in which the influence of the back surface reflection of the glass plate was eliminated by applying a black tape to the back surface (that is, the surface opposite to the AG layer) of the glass plate. It shows that it is excellent in anti-glare property, so that glossiness is small.
  • Haze Haze was measured at a substantially central portion of the AG layer by a method defined in JIS K7136: 2000 (ISO 14782: 1999) using a haze meter (manufactured by Murakami Color Research Laboratory, HM150L2 type).
  • Abrasion resistance The following wear test was performed as an evaluation of wear resistance.
  • a felt with an opening diameter of 1 cm ⁇ 2 cm (manufactured by Shin-Korika Kogyo Co., Ltd., polishing puff AM-1) is attached to a rubbing tester (manufactured by Ohira Rika Kogyo Co., Ltd.), and the felt is attached to the AG layer as a base material with an AG layer under a 1 kg load
  • the felt was reciprocated 40 times in contact with the surface on the side, and reciprocated horizontally. Before and after the abrasion test, the glossiness of the surface of each AG layer was measured according to the procedure described above.
  • the gloss change ⁇ G (%) before and after the abrasion test was calculated by the following equation (3). It shows that it is excellent in abrasion resistance, so that glossiness change (DELTA) G is small.
  • ⁇ G G1-G2 (3)
  • G1 is the glossiness (%) of the surface of the AG layer before the wear test
  • G2 is the glossiness (%) of the surface of the AG layer after the wear test.
  • [Materials used] Preparation of silica-based matrix precursor solution (a-1) 75.
  • Denatured ethanol manufactured by Nippon Alcohol Sales Co., Ltd., trade name “SOLMIX (registered trademark) AP-11”.
  • SiO 2 equivalent solid content concentration 29% by mass
  • SiO 2 equivalent solid content concentration 29% by mass
  • Solution (a-1) was prepared.
  • SiO 2 in terms of solids concentration here is solid concentration when all Si of tetraethoxysilane was converted to SiO 2.
  • silica-based matrix precursor solution (a-2) Preparation of silica-based matrix precursor solution (a-2)
  • a mixed solution of 7.9 g of ion exchange water and 0.2 g of 61% by mass nitric acid was added and stirred for 5 minutes.
  • 11.6 g of 1,6-bis (trimethoxysilyl) hexane manufactured by Shin-Etsu Silicone Co., Ltd., trade name “KBM3066”, solid content concentration of SiO 2 : 37 mass%) was added, and the mixture was added at 15 ° C. in a water bath at 60 ° C.
  • a silica-based matrix precursor solution (a-2) having a solid content concentration in terms of SiO 2 of 4.3% by mass.
  • the solid content concentration in terms of SiO 2 is the solid content concentration when all Si of 1,6-bis (trimethoxysilyl) hexane is converted to SiO 2 .
  • the content of the coating solution (B) chain in solid silica particles in is 70 mass% with respect to SiO 2 in terms the solid content of the coating solution (B).
  • the average aggregate particle diameter of the chain solid silica particles in the coating liquid (B) was 70 nm.
  • Example 1 (Cleaning transparent substrates) A chemically strengthened aluminosilicate glass plate (trade name “Leoflex (registered trademark)” manufactured by Asahi Glass Co., Ltd., size: 300 mm ⁇ 300 mm, thickness 0.85 mm) was prepared as a transparent substrate. The surface of the transparent substrate was washed with sodium hydrogen carbonate water, rinsed with ion-exchanged water, and dried.
  • Leoflex registered trademark manufactured by Asahi Glass Co., Ltd., size: 300 mm ⁇ 300 mm, thickness 0.85 mm
  • the transparent substrate was preheated in a preheating furnace (manufactured by ISUZU, VTR-115). Next, with the surface temperature of the transparent substrate kept at 90 ° C., the coating liquid (A) was applied on the transparent substrate so as to have the arithmetic average roughness Ra shown in Table 1 under the following conditions. . ⁇ Spray pressure: 0.2 MPa ⁇ Nozzle moving speed: 750 mm / min, -Spray pitch: 22 mm. Then, it heat-cured for 3 minutes at 200 degreeC in air
  • Example 2 and 3 A substrate with an AG layer was obtained in the same manner as in Example 1 except that the coating solution (A) was changed to the coating solution (B) and coated so as to have the arithmetic average roughness Ra shown in Table 1.
  • Example 4 A substrate with an AG layer was obtained in the same manner as in Example 1 except that the coating solution (A) was changed to the coating solution (C) and coated so as to have the arithmetic average roughness Ra shown in Table 1.
  • Example 5 A substrate with an AG layer was obtained in the same manner as in Example 1 except that the coating solution (A) was changed to the coating solution (D) and coated so as to have an arithmetic average roughness Ra shown in Table 1.
  • Example 6 A substrate with an AG layer was obtained in the same manner as in Example 1 except that the coating solution (A) was changed to the coating solution (E) and coated so as to have an arithmetic average roughness Ra shown in Table 1.
  • Example 7 A substrate with an AG layer was obtained in the same manner as in Example 1 except that the coating solution (A) was changed to the coating solution (F) and coated so as to have an arithmetic average roughness Ra shown in Table 1.
  • the particle ratio is the ratio of silica particles (chain solid silica particles, hollow silica particles) to the solid content of SiO 2 in the coating liquid used for forming the AG layer in each example, and the silica particles relative to the total mass of the AG layer Is equal to
  • Example 1 in which the particle ratio in the AG layer is 0, the transmittance difference Td is 0.0% (same as the case of the transparent base material alone), and the transmittance improving effect was not seen. .
  • the transmittance was improved as compared with the case of the transparent substrate alone. Further, the antiglare property and the wear resistance were sufficiently good. Furthermore, although the particles were contained at a ratio of 70% by mass, the haze was smaller than that of Example 1 not containing particles.
  • Example 4 since the solid content was high and voids were easily formed during film formation, the refractive index was lower than in Examples 2 and 3, and the transmittance was improved as compared with the case of a transparent substrate alone. Further, the antiglare property and the wear resistance were sufficiently good.
  • Example 5 the refractive index was lower than those in Examples 2 to 4, and the transmittance was greatly improved as compared with the case of using a transparent substrate alone. It is thought that such a result was obtained by including a terpene derivative. Further, the antiglare property and the wear resistance were sufficiently good.
  • Example 6 in which hollow silica particles were used at a particle ratio of 30% by mass and arithmetic average roughness Ra was 0.31 ⁇ m, the refractive index was the same as in Examples 2 to 5, but the transmittance was not improved.
  • Example 7 in which hollow silica particles were used at a particle ratio of 70% by mass had lower abrasion resistance than Examples 2-5.
  • permeability improvement effect, and mechanical strength, and an article using the same can be provided, and it is used for various apparatus. It is useful as an antiglare substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

 防眩効果と透過率向上効果と機械的強度とのバランスに優れたアンチグレア層を備えるアンチグレア層付き基材、およびこれを用いた物品の提供。 透明基材12とアンチグレア層14とを備え、アンチグレア層14の屈折率が1.25~1.45であり、アンチグレア層14の表面の算術平均粗さRaが0.05~0.25μmであり、アンチグレア層14が、鎖状中実シリカ粒子を含むことを特徴とする、アンチグレア層付き基材10。

Description

アンチグレア層付き基材および物品
 本発明は、アンチグレア層付き基材およびこれを用いた物品に関する。
 各種機器(たとえば、テレビ、パーソナルコンピュータ、スマートフォン、携帯電話等)に備え付けられた画像表示装置(たとえば、液晶ディスプレイ、有機ELディスプレイ、プラズマディスプレイ等)においては、室内照明(たとえば、蛍光灯等)、太陽光等の外光が表示面に映り込むと、反射像によって視認性が低下する。
 外光の映り込みを抑制するために、画像表示装置の表示面を構成する透明基材に防眩処理(アンチグレア処理)を施すことが行われている。防眩処理としては、従来、透明基材の光の入射面に凹凸を形成する処理が知られている。しかし、この処理においては、防眩効果を高くするために凹凸を大きくする(すなわち、表面を粗くする)と、画像の解像度が低下する問題、ヘイズが大きくなり画像のコントラストが低下する等の問題がある。
 前記の問題に対し、アルコキシシランの加水分解物および中空SiO微粒子を含む塗布液をスプレー法にて基材上に塗布して、屈折率1.45以下、かつ表面粗さ0.04~0.17μmのアンチグレア層を有する物品を製造する方法が提案されている(特許文献1参照)。特許文献1に記載のアンチグレア層は、マトリックスが低屈折率のため、表面粗さが小さくても優れた防眩効果を有するとされている。
特開2009-058640号公報
 しかし、特許文献1においては、基材の透過率の向上と、充分な防眩効果とを両立させることについて考慮されていない。
 本発明者らが、特許文献1の方法において、透過率の向上効果を得るために、中空SiO微粒子の含有量を多くしてアンチグレア層の屈折率を低くすることについて検討したところ、中空SiO微粒子の含有量を多くすると、耐摩耗性等の機械的強度が低下する問題がある。また、中空SiO微粒子は、低屈折率材としては比較的高価であり、含有量の増大は、材料コストの増大を招く。
 本発明は、防眩効果と透過率向上効果と機械的強度とのバランスに優れたアンチグレア層を備えるアンチグレア層付き基材、およびこれを用いた物品を提供することを目的とする。
 本発明は、以下の態様を有する。
 [1]透明基材と、前記透明基材上に形成されたアンチグレア層とを備え、
 前記アンチグレア層の屈折率が、1.25~1.45であり、
 前記アンチグレア層の表面の算術平均粗さRaが、0.05~0.25μmであり、
 前記アンチグレア層が、鎖状中実シリカ粒子を含むことを特徴とする、アンチグレア層付き基材。
 [2]前記アンチグレア層中の前記鎖状中実シリカ粒子の含有量が、前記アンチグレア層の総質量に対し、50~80質量%である、[1]に記載のアンチグレア層付き基材。
 [3]前記鎖状中実シリカ粒子の平均凝集粒子径が、5~300nmである、[1]または[2]に記載のアンチグレア層付き基材。
 [4]前記アンチグレア層が、前記鎖状中実シリカ粒子と、シリカ系マトリクス前駆体と、液状媒体とを含む塗布液から形成された層である、[1]~[3]のいずれか一項に記載のアンチグレア層付き基材。
 [5]前記塗布液が、テルペン化合物をさらに含む、[4]に記載のアンチグレア層付き基材。
 [6][1]~[5]のいずれか一項に記載のアンチグレア層付き基材を備える物品。
 本発明によれば、防眩効果と透過率向上効果と機械的強度とのバランスに優れたアンチグレア層を備えるアンチグレア層付き基材、およびこれを用いた物品を提供できる。
本発明のアンチグレア層付き基材の一実施形態を模式的に示す断面図である。
〔アンチグレア層付き基材〕
 図1は、本発明のアンチグレア(以下、AGと略す。)層付き基材の一実施形態を模式的に示す断面図である。
 本実施形態のAG層付き基材10は、透明基材12と、透明基材12上に形成されたAG層14とを備える。
(透明基材)
 透明基材12における透明とは、400~1100nmの波長領域の光を平均して80%以上透過することを意味する。
 透明基材12の形態としては、たとえば板、フィルム等が挙げられる。
 透明基材12の材料としては、たとえばガラス、樹脂等が挙げられる。
 ガラスとしては、たとえばソーダライムガラス、ホウケイ酸ガラス、アルミノケイ酸塩ガラス、無アルカリガラス等が挙げられる。
 樹脂としては、たとえばポリエチレンテレフタレート、ポリカーボネート、トリアセチルセルロース、ポリメタクリル酸メチル等が挙げられる。
 透明基材12としては、ガラス板が好ましい。
 ガラス板は、フロート法、フュージョン法等により成形された平滑なガラス板であってもよく、ロールアウト法等で形成された表面に凹凸を有する型板ガラスであってもよい。また、平坦なガラスのみでなく曲面形状を有するガラスでもよい。
 ガラス板の厚みは、特に限定されない。たとえば、厚さ10mm以下のガラス板を使用することができる。厚さが薄いほど光の吸収を低く抑えられるため、透過率向上を目的とする用途にとって好ましい。
 ガラスがソーダライムガラスの場合、下記の組成を有するものが好ましい。
 酸化物基準の質量百分率表示で、
   SiO :65~75%、
   Al:0~10%、
   CaO  :5~15%、
   MgO  :0~15%、
   NaO :10~20%、
   KO  :0~3%、
   LiO :0~5%、
   Fe:0~3%、
   TiO :0~5%、
   CeO :0~3%、
   BaO  :0~5%、
   SrO  :0~5%、
   B :0~15%、
   ZnO  :0~5%、
   ZrO :0~5%、
   SnO :0~3%、
   SO  :0~0.5%、を含む。
 ガラスが無アルカリガラスの場合、下記の組成を有するものが好ましい。
 酸化物基準の質量百分率表示で、
   SiO :39~70%、
   Al:3~25%、
   B :1~30%、
   MgO  :0~10%、
   CaO  :0~17%、
   SrO  :0~20%、
   BaO  :0~30%、を含む。
 ガラスがアルミノケイ酸塩ガラスの場合、下記の組成を有するものが好ましい。
 酸化物基準のモル百分率表示で、
   SiO :62~68%、
   Al :6~12%、
   MgO  :7~13%、
   NaO :9~17%、
   KO  :0~7%、
   ZrO:0~8%、を含む。
 ガラス板には予め強化処理が施されていてもよい。強化処理により、ガラスの強度が向上し、たとえば強度を維持しながら板厚みを削減することが可能となる。
 強化処理としては、ガラス板を高温下に晒した後に風冷する物理強化、または、ガラス板を、アルカリ金属を含む溶融塩中に浸漬させ、ガラス基板の最表面に存在する原子径の小さなアルカリ金属イオン(たとえば、Naイオン)を、溶融塩中に存在する原子径の大きなアルカリ金属イオン(たとえば、Kイオン)と置換する化学強化が挙げられる。ガラス板に化学強化処理を施す場合は、アルミノケイ酸塩ガラスであることが特に好ましい。
(AG層)
 AG層14は、鎖状中実シリカ粒子を含み、表面に凹凸を有する層である。
 AG層14は、典型的には、鎖状中実シリカ粒子間の空隙を充填するマトリクスをさらに含む。マトリクスは、鎖状中実シリカ粒子が露出しないように、鎖状中実シリカ粒子の上側(すなわち、透明基材12側とは反対側)を覆っていてもよい。
 AG層14は、鎖状中実シリカ粒子以外の他の粒子をさらに含んでもよい。
 AG層14は、テルペン化合物をさらに含む塗布液を使用して形成してもよい。
 AG層14は、鎖状中実シリカ粒子、マトリクス、他の粒子およびテルペン化合物以外の他の成分(以下、「他の任意成分」ともいう。)をさらに含んでもよい。
 鎖状中実シリカ粒子:
 鎖状中実シリカ粒子は、鎖状の形状を有する中実シリカ粒子である。例えば、複数の球状、楕円状、針状、板状、棒状、円すい状、円柱状、立方体状、長方体状、ダイヤモンド状、星状等の形状を有する中実シリカ粒子が、鎖状に連結した形状のものが挙げられる。鎖状中実シリカ粒子の形状は、電子顕微鏡により確認できる。
 「中実」は、内部に空洞を有しないことを示す。
 鎖状中実シリカ粒子の平均凝集粒子径は、5~300nmであることが好ましく、5~200nmがより好ましい。鎖状中実シリカ粒子の平均凝集粒子径が、前記範囲の下限値以上であれば、屈折率の低減効果に優れ、上限値以下であれば、耐摩耗性に優れる。
 鎖状中実シリカ粒子は、市販品として容易に入手することができる。また、公知の製造方法により製造したものを使用してもよい。市販品としては、例えば、日産化学工業(株)製のスノーテックスST-OUP等が挙げられる。
 AG層14中の鎖状中実シリカ粒子の含有量は、AG層14の総質量に対し、50~80質量%であることが好ましく、55~75質量%がより好ましく、60~70質量%が特に好ましい。鎖状中実シリカ粒子の含有量が前記範囲の下限値以上であれば、AG層14の屈折率が低くなり、充分な透過率向上効果が得られる。鎖状中実シリカ粒子の含有量が前記範囲の上限値以下であれば、AG層の機械的強度に優れる。
 マトリクス: 
 AG層14のマトリクスとしては、シリカ系マトリクス、チタニア系マトリクス等が挙げられる。
 AG層14のマトリクスとしては、シリカ系マトリクスが好ましい。マトリクスがシリカ系マトリクスであれば、AG層14の屈折率(すなわち、反射率)が低くなりやすい。また、化学的安定性、耐摩耗性等も良好となる。透明基材がガラスの場合、特に密着性が良好である。
 「シリカ系マトリクス」とは、シリカを主成分とするマトリクスをいう。シリカを主成分とするとは、シリカの割合がマトリックス(100質量%)のうち90質量%以上であることを意味する。
 シリカ系マトリクスとしては、実質的にシリカからなるものがより好ましい。実質的にシリカからなるとは、不可避不純物を除いてシリカのみから構成されていることを意味する。
 シリカ系マトリクスは、シリカ以外の成分を少量含んでもよい。該成分としては、Li,B,C,N,F,Na,Mg,Al,P,S,K,Ca,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Ga,Sr,Y,Zr,Nb,Ru,Pd,Ag,In,Sn,Hf,Ta,W,Pt,Au,Biおよびランタノイドの元素よりなる群から選ばれる1種もしくは複数のイオン、および/またはこの群から選ばれる一種もしくは複数の元素を有する酸化物等の化合物が挙げられる。
 シリカ系マトリクスとしては、例えば、シリカ系マトリクス前駆体の焼成物が挙げられる。シリカ系マトリクス前駆体については後で詳述する。
 鎖状中実シリカ粒子およびシリカ系マトリクスを含む層は、例えば、鎖状中実シリカ粒子と、シリカ系マトリクス前駆体と、液状媒体とを含む塗布液から形成できる。該塗布液およびAG層14の形成方法については後で詳述する。
 他の粒子:
 他の粒子としては、金属酸化物粒子、金属粒子、顔料系粒子、樹脂粒子等が挙げられる。他の粒子は、中空構造でもよく中実構造であってもよい。
 金属酸化物粒子の材料としては、Al、SiO、SnO、TiO、ZrO、ZnO、CeO、Sb含有SnO(ATO)、Sn含有In(ITO)、RuO等が挙げられる。
 金属粒子の材料としては、金属(Ag、Ru等)、合金(AgPd、RuAu等)等が挙げられる。
 顔料系粒子としては、無機顔料(チタンブラック、カーボンブラック等)、有機顔料が挙げられる。
 樹脂粒子の材料としては、ポリスチレン、メラニン樹脂等が挙げられる。
 他の粒子の形状としては、球状、楕円状、針状、板状、棒状、円すい状、円柱状、立方体状、長方体状、ダイヤモンド状、星状、不定形状等が挙げられる。他の粒子は、各粒子が独立した状態で存在していてもよく、各粒子が鎖状に連結していてもよく、各粒子が凝集していてもよい。
 他の粒子は、1種を単独で用いてもよく、2種以上を併用してもよい。
 AG層14中の他の粒子の含有量は、AG層14の総質量に対し、30質量%までであることが好ましい。
 他の粒子の平均凝集粒子径は、鎖状中実シリカ粒子と同程度であることが好ましい。
 他の粒子としては、屈折率の低減効果に優れる点で、中空シリカ粒子が好ましい。
 テルペン化合物:
 テルペン化合物については後で詳述する。
 他の任意成分:
 他の任意成分については後で詳述する。
 AG層14の屈折率は、1.25~1.45であり、1.25~1.40が好ましい。AG層14の屈折率が前記範囲の上限値以下であることで、AG層14の表面での反射率が充分に低くなり、透明基材12単独の場合よりも透過率が向上する。また、屈折率が前記範囲の下限値以上のAG層14は、緻密であり、機械的強度、ガラス板等の透明基材12との密着性等に優れる。なお、屈折率の測定方法については、後述する。
 AG層14の表面(つまりAG層付き基材10のAG層14側の表面)の算術平均粗さRaは、0.05~0.25μmであり、0.07~0.25μmが好ましく、0.10~0.25μmが特に好ましい。
 算術平均粗さRaは、表面の凹凸の山谷の平均高さを示す指標である。AG層14の表面の算術平均粗さRaが前記範囲の下限値以上であれば、防眩効果が充分に発揮される。AG層14の表面の算術平均粗さRaが前記範囲の上限値以下であれば、AG層14の機械的強度が優れ、また、AG層付き基材10のヘイズも充分に小さくなる。
 AG層の表面の算術平均粗さRaは、JIS B0601:2001に記載された方法に従って測定された値である。
 AG層14の表面における60゜鏡面光沢度は、50%以下であることが好ましく、45%以下がより好ましい。AG層14の表面における60゜鏡面光沢度は、防眩効果の指標である。60゜鏡面光沢度が50%以下であれば、防眩効果が充分に発揮される。
 前記60゜鏡面光沢度の下限は、防眩効果の点では特に限定されないが、透過率向上効果の点で、5%以上が好ましく、10%以上がより好ましい。
 60゜鏡面光沢度は、JIS Z8741:1997に規定されている方法に従って測定された値である。
(ヘイズ)
 AG層付き基材10のヘイズは、5~20%が好ましく、5~15%がより好ましい。ヘイズが前記範囲の上限値以下であれば、AG層付き基材10を表示装置に用いた場合の画像のコントラストや、AG層付き基材10を太陽電池モジュールに用いた場合の発電効率が良好である。ヘイズが前記範囲の下限値以上であれば、防眩効果が発揮されやすい。
 ヘイズは、JIS K7136:2000に規定されている方法に従って測定された値である。
<AG層付き基材の製造方法>
 AG層付き基材10の製造方法としては、たとえば、透明基材12の上に、鎖状中実シリカ粒子と、シリカ系マトリクス前駆体と、液状媒体とを含む塗布液(以下、AG層用塗布液ともいう。)を塗布して塗膜を形成し、焼成する方法が挙げられる。
 AG層用塗布液については後で詳述する。
(塗布)
 AG層用塗布液の塗布方法としては、公知のウェットコート法(たとえば、スプレーコート法、スピンコート法、ディップコート法、ダイコート法、カーテンコート法、スクリーンコート法、インクジェット法、フローコート法、グラビアコート法、バーコート法、フレキソコート法、スリットコート法、ロールコート法等)等が挙げられる。
 塗布方法としては、充分な凹凸を形成しやすい点から、スプレー法が好ましい。
 スプレー法に用いるノズルとしては、2流体ノズル、1流体ノズル等が挙げられる。
 ノズルから吐出される塗布液の液滴の粒径は、通常、0.1~100μmであり、1~50μmが好ましい。液滴の粒径が1μm以上であれば、防眩効果が充分に発揮される凹凸を短時間で形成できる。液滴の粒径が50μm以下であれば、防眩効果が充分に発揮される適度な凹凸を形成しやすい。
 液滴の粒径は、ノズルの種類、スプレー圧力、液量等により適宜調整できる。たとえば、2流体ノズルでは、スプレー圧力が高くなるほど液滴は、小さくなり、また、液量が多くなるほど液滴は、大きくなる。
 液滴の粒径は、レーザ測定器によって測定されるザウター平均粒子径である。
 AG層の表面の算術平均粗さRaおよび60゜鏡面光沢度は、一定の塗布条件下では、塗布時間、すなわちスプレー法によるコート面数(重ね塗り回数)によって調整できる。例えば、コート面数が多くなるほど、AG層の表面の算術平均粗さRaが大きくなり、その結果、60゜鏡面光沢度が低下し(すなわち、防眩効果が高くなり)、ヘイズが大きくなる傾向がある。
 スプレー法にてAG層用塗布液を塗布する際には、透明基材12を、あらかじめ30~90℃に加熱することが好ましい。透明基材12の温度が30℃以上であれば、液状媒体がすばやく蒸発するため、充分な凸凹を形成しやすい。透明基材12の温度が90℃以下であれば、透明基材12とAG層14との密着性が良好となる。透明基材12が厚さ5mm以下のガラス板の場合、あらかじめ透明基材12の温度以上の温度に設定した保温板を透明基材12の下に配置し、透明基材12の温度低下を抑えてもよい。
(焼成)
 AG層用塗布液の塗布により形成された塗膜を焼成することによって、液状媒体が除去され、また、残存する加水分解性基がほぼ分解するとともに膜が緻密化して、AG層14が形成される。
 本発明において、焼成とは、塗布組成物を塗布することによって得られた塗膜を加熱して硬化処理することも含むものとする。
 焼成は、AG層用塗布液を透明基材12上に塗布する際に加熱することによって塗布と同時に行ってもよく、塗布液を基材に塗布した後、塗膜を加熱することにより行ってもよい。
 焼成温度は、30℃以上が好ましく、透明基材12の材料、AG層用塗布液の材料等に応じて適宜決定すればよい。
 シリカ系マトリクス前駆体がシラン化合物(A)である場合、焼成温度は、80℃以上が好ましく、100℃以上がより好ましい。焼成温度が80℃以上であれば、焼成物が緻密化して耐久性が向上する。
 透明基材12の材料が樹脂の場合、焼成温度は、樹脂の耐熱温度以下になる。透明基材12の材料がガラスの場合、焼成温度は、ガラスの軟化点温度以下が好ましい。
 透明基材12が化学強化ガラス板である場合、焼成温度は、80~450℃が好ましい。
 透明基材12が化学強化されていないガラス板である場合、AG層14を形成する際の焼成工程とガラス板の物理強化工程とを兼ねることもできる。物理強化工程では、ガラス板は、ガラスの軟化温度付近まで加熱される。この場合、焼成温度は、典型的には約600~700℃前後に設定される。
 自然乾燥であっても重合はある程度進むため、時間に何らの制約もないのであれば、乾燥または焼成温度を室温付近の温度設定とすることも、理論上は可能である。
(AG層用塗布液)
 AG層用塗布液は、鎖状中実シリカ粒子と、シリカ系マトリクス前駆体と、液状媒体とを含む。
 AG層用塗布液は、必要に応じて、他の粒子、テルペン化合物、他の任意成分等をさらに含んでもよい。
 鎖状中実シリカ粒子:
 鎖状中実シリカ粒子についての説明は、前記と同じである。
 シリカ系マトリックス前駆体:
 「シリカ系マトリクス前駆体」とは、焼成することによってシリカ系マトリックスを形成し得る物質を意味する。
 シリカ系マトリックス前駆体としては、ケイ素原子に結合した加水分解性基を有するシラン化合物(以下、シラン化合物(A)ともいう。)、シラン化合物(A)の加水分解縮合物(ゾルゲルシリカ)、シラザン等が挙げられ、AG層14の各特性の点から、シラン化合物(A)およびその加水分解縮合物のいずれか一方または両方が好ましく、シラン化合物(A)の加水分解縮合物がより好ましい。
 シラン化合物(A)としては、ケイ素原子に結合した炭化水素基および加水分解性基を有するシラン化合物(A1)、アルコキシシラン(ただしシラン化合物(A1)を除く。)等が挙げられる。
 シラン化合物(A1)において、ケイ素原子に結合した炭化水素基は、1つケイ素原子に結合した1価の炭化水素基であってもよく、2つのケイ素原子に結合した2価の炭化水素基であってもよい。1価の炭化水素基としては、アルキル基、アルケニル基、アリール基等が挙げられる。2価の炭化水素基としては、アルキレン基、アルケニレン基、アリーレン基等が挙げられる。
 炭化水素基は、炭素原子間に-O-、-S-、-CO-および-NR’-(ただしR’は、水素原子または1価の炭化水素基である。)から選ばれる1つまたは2つ以上を組み合わせた基を有していてもよい。
 「ケイ素原子に結合した加水分解性基」とは、加水分解によって、ケイ素原子に結合したOH基に変換し得る基を意味する。
 加水分解性基としては、アルコキシ基、アシロキシ基、ケトオキシム基、アルケニルオキシ基、アミノ基、アミノキシ基、アミド基、イソシアネート基、ハロゲン原子等が挙げられる。これらの中では、シラン化合物(A1)の安定性と加水分解のしやすさとのバランスの点から、アルコキシ基、イソシアネート基およびハロゲン原子(特に塩素原子)が好ましい。
 アルコキシ基としては、炭素数1~3のアルコキシ基が好ましく、メトキシ基またはエトキシ基がより好ましい。
 シラン化合物(A1)中に加水分解性基が複数存在する場合には、加水分解性基は、同じ基であっても異なる基であってもよく、同じ基であることが入手しやすさの点で好ましい。
 シラン化合物(A1)としては、後述する式(I)で表される化合物、アルキル基を有するアルコキシシラン(メチルトリメトキシシラン、エチルトリエトキシシラン等)、ビニル基を有するアルコキシシラン(ビニルトリメトキシシラン、ビニルトリエトキシシラン等)、エポキシ基を有するアルコキシシラン(2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等)、アクリロイルオキシ基を有するアルコキシシラン(3-アクリロイルオキシプロピルトリメトキシシラン等)等が挙げられる。
 シラン化合物(A1)としては、AG層14の機械的強度の点から、下式(I)で表される化合物が好ましい。
   R3-pSi-Q-SiL3-p ・・・(I)
 式(I)中、Qは、2価の炭化水素基(炭素原子間に-O-、-S-、-CO-および-NR’-(ただし、R’は水素原子または1価の炭化水素基である。)から選ばれる1つ、または2つ以上を組み合わせた基を有していてもよい。)である。2価の炭化水素としては、上述したものが挙げられる。
 Qとしては、AG層14の機械的強度、入手の容易さ等の点から、炭素数2~8のアルキレン基が好ましく、炭素数2~6のアルキレン基がさらに好ましい。
 式(I)中、Lは、加水分解性基である。加水分解性基としては、上述したものが挙げられ、好ましい態様も同様である。
 Rは、水素原子または1価の炭化水素基である。1価の炭化水素としては、上述したものが挙げられる。
 pは、1~3の整数である。pは、反応速度が遅くなりすぎない点から、2または3が好ましく、3が特に好ましい。
 アルコキシシラン(ただし、前記シラン化合物(A1)を除く。)としては、テトラアルコキシシラン(テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等)、パーフルオロポリエーテル基を有するアルコキシシラン(パーフルオロポリエーテルトリエトキシシラン等)、パーフルオロアルキル基を有するアルコキシシラン(パーフルオロエチルトリエトキシシラン等)等が挙げられる。
 シラン化合物(A)の加水分解および縮合は、公知の方法により行うことができる。
 たとえば、シラン化合物(A)がテトラアルコキシシランの場合、テトラアルコキシシランの4倍モル以上の水、および触媒として酸またはアルカリを用いて行う。
 酸としては、無機酸(HNO、HSO、HCl等。)、有機酸(ギ酸、シュウ酸、モノクロル酢酸、ジクロル酢酸、トリクロル酢酸等。)が挙げられる。アルカリとしては、アンモニア、水酸化ナトリウム、水酸化カリウム等が挙げられる。触媒としては、シラン化合物(A)の加水分解縮合物の長期保存性の点では、酸が好ましい。
 シラン化合物(A)の加水分解に用いる触媒としては、鎖状中実シリカ粒子等の微粒子の分散を妨げないものが好ましい。
 シリカ系マトリックス前駆体としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 シリカ系マトリックス前駆体は、AG層14の機械的強度、膜クラック防止等の各特性の点から、シラン化合物(A1)およびその加水分解縮合物のいずれか一方または両方と、テトラアルコキシシランおよびその加水分解縮合物のいずれか一方または両方とを含むことが特に好ましい。
 シリカ系マトリックス前駆体中のシラン化合物(A1)およびその加水分解縮合物の割合は、シリカ系マトリックス前駆体のSiO換算固形分(100質量%)に対し、5~30質量%が好ましい。
 液状媒体:
 液状媒体は、鎖状中実シリカ粒子を分散する分散媒である。液状媒体は、シリカ系マトリクス前駆体を溶解する溶媒であってもよい。
 液状媒体としては、たとえば、水、アルコール類、ケトン類、エーテル類、セロソルブ類、エステル類、グリコールエーテル類、含窒素化合物、含硫黄化合物等が挙げられる。
 アルコール類としては、メタノール、エタノール、イソプロパノール、ブタノール、ジアセトンアルコール等が挙げられる。
 ケトン類としては、アセトン、メチルエチルケトン、メチルイソブチルケトン等が挙げられる。
 エーテル類としては、テトラヒドロフラン、1,4-ジオキサン等が挙げられる。
 セロソルブ類としては、メチルセロソルブ、エチルセロソルブ等が挙げられる。
 エステル類としては、酢酸メチル、酢酸エチル等が挙げられる。
 グリコールエーテル類としては、エチレングリコールモノアルキルエーテル等が挙げられる。
 含窒素化合物としては、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチルピロリドン等が挙げられる。
 含硫黄化合物としては、ジメチルスルホキシド等が挙げられる。
 液状媒体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 シリカ系マトリクス前駆体におけるアルコキシシラン等の加水分解に水が必要となるため、加水分解後に液状媒体の置換を行わない限り、液状媒体には少なくとも水が含まれる。
 この場合、液状媒体は、水のみであってもよく、水と他の液体との混合液であってもよい。他の液体としては、たとえば、アルコール類、ケトン類、エーテル類、セロソルブ類、エステル類、グリコールエーテル類、含窒素化合物、含硫黄化合物等が挙げられる。他の液体のうち、シリカ系マトリックス前駆体の溶媒としては、アルコール類が好ましく、メタノール、エタノール、イソプロピルアルコール、ブタノールが特に好ましい。
 液状媒体には、酸またはアルカリが含まれてもよい。酸またはアルカリは、シリカ系マトリックス前駆体の溶液の調製の際に、原料(アルコキシシラン等)の加水分解、縮合のために触媒として添加されたものでもよく、シリカ系マトリックス前駆体の溶液の調製後に添加されたものでもよい。
 他の微粒子:
 他の微粒子についての説明は、前記と同じである。
 テルペン化合物:
 AG層用塗布液がテルペン化合物をさらに含む場合、鎖状中実シリカ粒子の周囲に空隙が形成され、テルペン化合物を含まない場合に比べて屈折率が低くなり、透過率向上効果が大きくなる傾向がある。
 テルペンとは、イソプレン(C)を構成単位とする(C(ただし、nは1以上の整数である。)の組成の炭化水素を意味する。テルペン化合物とは、テルペンから誘導される官能基を有するテルペン類を意味する。テルペン化合物は、不飽和度を異にするものも包含する。
 なお、テルペン化合物には液状媒体として機能するものもあるが、「イソプレンを構成単位とする(Cの組成の炭化水素」であるものは、テルペン誘導体に該当し、液状媒体には該当しないものとする。
 テルペン化合物としては、国際公開第2010/018852号に記載のテルペン誘導体等を用いることができる。
 他の任意成分:
 他の任意成分としては、例えば、レベリング性向上のための界面活性剤、AG層14の耐久性向上のための金属化合物、また紫外線吸収剤、赤外線反射/赤外線吸収剤、反射防止剤等が挙げられる。
 界面活性剤としては、シリコーンオイル系、アクリル系等が挙げられる。
 金属化合物としては、ジルコニウムキレート化合物、チタンキレート化合物、アルミニウムキレート化合物等が好ましい。ジルコニウムキレート化合物としては、ジルコニウムテトラアセチルアセトナート、ジルコニウムトリブトキシステアレート等が挙げられる。
 組成:
 AG層用塗布液中の鎖状中実シリカ粒子の含有量は、AG層用塗布液中の固形分(100質量%)(ただし、シリカ系マトリックス前駆体はSiO換算とする。)に対し、50~80質量%であることが好ましく、55~75質量%がより好ましく、60~70質量%が特に好ましい。鎖状中実シリカ粒子の含有量が前記範囲の下限値以上であれば、AG層14の屈折率が低くなり、充分な透過率向上効果が得られる。鎖状中実シリカ粒子の含有量が前記範囲の上限値以下であれば、AG層の機械的強度に優れる。
 AG層用塗布液中のシリカ系マトリクス前駆体の含有量(SiO換算)は、AG層用塗布液中の固形分(100質量%)に対し、20~50質量%が好ましく、25~45質量%がより好ましい。シリカ系マトリクス前駆体の含有量が前記範囲の下限値以上であると、機械的強度に優れる。
 AG層用塗布液がテルペン化合物を含有する場合、AG層用塗布液中のテルペン化合物の含有量は、AG層用塗布液中の固形分(100質量%)(ただし、シリカ系マトリックス前駆体はSiO換算とする。)に対し、0.05~0.25質量%が好ましく、0.1~0.15質量%がより好ましい。テルペン化合物の含有量が前記範囲の下限値以上であると、テルペン化合物を含むことによる効果が得られやすい。テルペン化合物の含有量が前記範囲の上限値以下であると、機械的強度に優れる。
 AG層用塗布液の固形分濃度は、1~8質量%が好ましく、2~5質量%がより好ましい。固形分濃度が前記範囲の下限値以上であれば、防眩効果が向上する。固形分濃度が前記範囲の上限値以下であれば、機械的強度が向上する。
 AG層用塗布液の固形分濃度は、AG層用塗布液中の、液状媒体以外の全成分の含有量の合計である。ただし、シリカ系マトリックス前駆体の含有量は、SiO換算である。
 AG層用塗布液は、たとえば、鎖状中実シリカ粒子分散液と、シリカ系マトリックス前駆体溶液と、必要に応じて、追加の液状媒体、他の粒子の分散液、テルペン化合物、他の任意成分等とを混合することにより調製される。
(作用効果)
 AG層付き基材10にあっては、AG層14の屈折率が1.25~1.45であり、AG層14の表面の算術平均粗さRaが0.05~0.25μmであり、AG層14が鎖状中実シリカ粒子を含むため、従来のものに比べ、防眩効果と透過率向上効果と機械的強度とのバランスに優れる。また材料の入手も容易である。
 中実シリカ粒子によって屈折率を下げる場合、中空シリカ粒子を用いる場合よりも、含有量を多くする必要がある。また、従来、微粒子の含有量が多くなると、耐摩耗性等の機械的強度が低下し、また、ヘイズが増大する傾向があることが知られている。しかし、本発明のAG層付き基材10にあっては、意外にも、微粒子として鎖状中実シリカ粒子を用いることで、その含有量が多い(例えば70質量%)場合でも、AG層14が充分な機械的強度を有し、AG層付き基材10のヘイズも充分に低くなる。
(用途)
 AG層付き基材10の用途としては、特に限定されない。具体例としては、車両用透明部品(ヘッドライトカバー、サイドミラー、フロント透明基板、サイド透明基板、リア透明基板、インスツルメントパネル表面板等。) 、メータ、建築窓、ショーウインドウ、ディスプレイ(ノート型パソコン、モニタ、LCD、PDP 、ELD、CRT、PDA等)、LCDカラーフィルタ、タッチパネル用基板、ピックアップレンズ、光学レンズ、眼鏡レンズ、カメラ部品、ビデオ部品、CCD用カバー基板、光ファイバ端面、プロジェクタ部品、複写機部品、太陽電池用透明基板(カバーガラス等。)、携帯電話窓、バックライトユニット部品(導光板、冷陰極管等。)、バックライトユニット部品、液晶輝度向上フィルム(プリズム、半透過フィルム等。)、有機EL発光素子部品、無機EL発光素子部品、蛍光体発光素子部品、光学フィルタ、光学部品の端面、照明ランプ、照明器具のカバー、増幅レーザー光源、反射防止フィルム、偏光フィルム、農業用フィルム等が挙げられる。
 AG層付き基材10は、太陽電池用透明基板であることが好ましい。
 太陽電池モジュールにおいては、太陽電池を保護するために太陽電池の前面等に透明基板(カバーガラス等)が配置される。設置場所によっては、透明基板の表面で反射した反射光により光害が生じる。また、透明基板の太陽光の透過率は、太陽電池モジュールの発電効率に影響する。また、太陽電池を保護するために機械的強度も要求される。本発明のAG層付き基材10は、防眩効果と透過率向上効果と機械的強度とのバランスに優れることから、太陽電池用透明基板として有用である。
 以上、本発明について、実施形態例を示して説明したが、本発明は、上記実施形態に限定されない。上記実施形態における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。
 たとえば、AG層14の上側(透明基板12側とは反対側)にAFP(指紋除去層)等の機能層を有してもよい。透明基材12とAG層14との間に、アルカリバリア層、反射率波形調整層、赤外線遮蔽層等の機能層を有してもよい。機能層は、コート法等の公知の方法により形成できる。
〔物品〕
 本発明の物品は、前記AG層付き基材を備える。
 本発明の物品は、前記AG層付き基材からなるものでもよく、前記AG層付き基材以外の他の部材をさらに備えるものでもよい。
 本発明の物品の例としては、前記でAG層付き基材10の用途として挙げたもの、それらのいずれか1種以上を備える装置、等が挙げられる。
 装置としては、例えば太陽電池モジュール、表示装置、照明装置等が挙げられる。
 太陽電池モジュールとしては、太陽電池と、太陽電池を保護するために太陽電池の前面および背面にそれぞれ配置された透明基板(カバーガラス等)とを備え、前記透明基板の少なくとも一方の透明基板(好ましくは少なくとも前面側の透明基板)として前記AG層付き基材を用いたものが好ましい。
 表示装置の例としては、携帯電話、スマートフォン、タブレット、カーナビゲーション等が挙げられる。
 照明装置の例としては、有機EL(エレクトロルミネッセンス)照明装置、LED(発光ダイオード)照明装置等が挙げられる。
 以下、実施例を示して本発明を詳細に説明する。ただし、本発明は、以下の記載によっては限定されない。
 後述する例1~7のうち、例2~5は、実施例であり、例1、例6、7は、比較例である。
 各例で使用した評価方法および材料を以下に示す。
〔評価方法〕
(平均凝集粒子径)
 微粒子(鎖状中実シリカ粒子、中空シリカ粒子)の平均凝集粒子径は、動的光散乱法粒度分析計(日機装社製、マイクロトラックUPA)を用いて測定した。
(AG層の屈折率)
 AG層の屈折率nは、以下の方法で測定した。
 屈折率を求めたい層の単層平滑膜をスピンコーターにて透明基材の表面に形成し、該透明基材における該単層膜と反対側の表面に黒のビニールテープを、気泡を含まないように貼り付けた。その後、分光光度計(大塚電子社製、瞬間マルチ測光システムMCPD-3000)により、波長300~780nmの範囲で前記単層膜の反射率を測定した。反射率の測定に際して、光の入射角度は、2°とした。波長300~780nmの範囲で最も低い反射率(ボトム反射率Rmin)と前記透明基材の屈折率nとから、下式(1)により屈折率nを算出した。
   Rmin=(n-n/(n+n ・・・(1)
(算術平均粗さRa)
 AG層の表面の算術平均粗さRaは、表面粗さ計(東京精密社製、「サーフコム(登録商標)1500DX」)を用い、JIS B0601:2001に記載された方法によって測定した。粗さ曲線用の基準長さlr(カットオフ値λc)は、0.08mmとした。
(透過率差Td)
 AG層を形成する前の透明基材、各例で得たAG層付き基材のそれぞれについて、分光光度計(日本分光社製、V670)を用いて、波長400nm~1100nmにおける光の透過率(%)を測定し、平均透過率(%)を求めた。その結果から、下式(2)により透過率差Td(%)を算出した。光の入射角度は、0°(透明基材に対して垂直に入射)とした。透過率差Tdが大きいほど、透過率向上効果が高いことを示す。
   Td=T1-T2 …(2)
 ただし、T1は、AG層付き基材の平均透過率(%)であり、T2は、透明基材のみの平均透過率(%)である。
(光沢度)
 AG層の表面の光沢度として、60゜鏡面光沢度を測定した。60゜鏡面光沢度は、光沢度計(日本電色工業社製、PG-3D型)を用いて、JIS Z8741:1997に規定されている方法により、AG層のほぼ中央部で測定した。また、AG層の表面の光沢度は、ガラス板における裏面(すなわち、AG層と反対側の面)に黒テープを貼り付けることにより、ガラス板の裏面反射の影響を無くした状態で測定した。光沢度が小さいほど、防眩性に優れることを示す。
(ヘイズ)
 ヘイズは、ヘイズメーター(村上色彩研究所社製、HM150L2型)を用いて、JIS K7136:2000(ISO 14782:1999)に規定されている方法により、AG層のほぼ中央部で測定した。
(耐摩耗性)
 耐摩耗性の評価として、以下の摩耗試験を行った。開口径が1cm×2cmのフェルト(新高理化工業社製、研磨用パフAM-1)をラビングテスター(大平理化工業社製)に取り付け、該フェルトを1kg荷重にてAG層付き基材のAG層側の表面に接触させて水平往復運動させ、該フェルトを40往復させた。
 摩耗試験前、摩耗試験後それぞれのAG層の表面の光沢度を前記の手順で測定し、その結果から、下式(3)により摩耗試験前後の光沢度変化ΔG(%)を算出した。光沢度変化ΔGが小さいほど、耐摩耗性に優れることを示す。
   ΔG=G1-G2 …(3)
 ただし、G1は、摩耗試験前のAG層の表面の光沢度(%)であり、G2は、摩耗試験後のAG層の表面の光沢度(%)である。
〔使用材料〕
(シリカ系マトリクス前駆体溶液(a-1)の調製)
 変性エタノール(日本アルコール販売社製、商品名「ソルミックス(登録商標)AP-11」。エタノールを主剤とした混合溶媒。以下の調製において使用する変性エタノールもこれと同様である。)の75.8gを撹拌しながら、イオン交換水の11.9gと61質量%硝酸の0.1gとの混合液を加え、5分間撹拌した。これに、テトラエトキシシラン(SiO換算固形分濃度:29質量%)の12.2gを加え、室温で30分間撹拌し、SiO換算固形分濃度が3.5質量%のシリカ系マトリクス前駆体溶液(a-1)を調製した。
 なお、ここでのSiO換算固形分濃度は、テトラエトキシシランのすべてのSiがSiOに転化したときの固形分濃度である。
(シリカ系マトリクス前駆体溶液(a-2)の調製)
 変性エタノールの80.3gを撹拌しながら、イオン交換水の7.9gと61質量%硝酸の0.2gとの混合液を加え、5分間撹拌した。次いで、1,6-ビス(トリメトキシシリル)ヘキサン(信越シリコーン社製、商品名「KBM3066」、SiO換算固形分濃度:37質量%)の11.6gを加え、ウォーターバス中60℃で15分間撹拌し、SiO換算固形分濃度が4.3質量%のシリカ系マトリクス前駆体溶液(a-2)を調製した。
 なお、ここでのSiO換算固形分濃度は、1,6-ビス(トリメトキシシリル)ヘキサンのすべてのSiがSiOに転化したときの固形分濃度である。
(塗布液(A)の調製)
 シリカ系マトリクス前駆体溶液(a-1)の77.1gを撹拌しながらシリカ系マトリクス前駆体溶液(a-2)の7.0gを加え、30分間撹拌した。次いで、変性エタノール15.9gを加え、室温で30分間撹拌し、SiO換算固形分濃度が3.0質量%の塗布液(A)を得た。
(塗布液(B)の調製)
 変性エタノールの56.5gを撹拌しながら塗布液(A)の30.0gを加え、次いで、鎖状中実シリカゾル(日産化学工業社製、「スノーテックス(登録商標)ST-OUP」)13.5gを加え、室温で30分間撹拌し、SiO換算固形分濃度が3.0質量%の塗布液(B)を得た。
 なお、ここでのSiO換算固形分濃度は、塗布液(A)のSiO換算固形分と、鎖状中実シリカゾルのSiO換算固形分(鎖状中実シリカ粒子)との合計である。
 塗布液(B)中の鎖状中実シリカ粒子の含有量は、塗布液(B)のSiO換算固形分に対して70質量%である。
 塗布液(B)中の鎖状中実シリカ粒子の平均凝集粒子径は、70nmであった。
(塗布液(C)の調製)
 変性エタノールの36.5gを撹拌しながら塗布液(A)の50.0gを加え、次いで、鎖状中実シリカゾル(日産化学工業社製、「スノーテックス(登録商標)ST-OUP」)13.5gを加え、室温で30分間撹拌し、SiO換算固形分濃度が5.0質量%の塗布液(C)を得た。
(塗布液(D)の調製)
 変性エタノールの5.5gを撹拌しながら塗布液(A)の50.0gを加え、次いで、鎖状中実シリカゾル(日産化学工業社製、「スノーテックス(登録商標)ST-OUP)」13.5g、イソブチルアルコール20.0g、ジアセトンアルコール10.0g、α-テルピネオール1.0gを加え、室温で30分間撹拌し、SiO換算固形分濃度が5.0質量%の塗布液(D)を得た。
(塗布液(E)の調製)
 変性エタノールの25.6gを撹拌しながら塗布液(A)の70.0gを加え、次いで、中空シリカゾル(日揮触媒化成社製、「スルーリア(登録商標)4110)」4.4gを加え、室温で30分間撹拌し、SiO換算固形分濃度が3.0質量%の塗布液(E)を得た。
(塗布液(F)の調製)
 変性エタノールの59.8gを撹拌しながら塗布液(A)の30.0gを加え、次いで、中空シリカゾル(日揮触媒化成社製 スルーリア(登録商標)4110)10.2gを加え、室温で30分間撹拌し、SiO換算固形分濃度が3.0質量%の塗布液(F)を得た。
〔例1〕
(透明基材の洗浄)
 透明基材として、化学強化されたアルミノシリケートガラス板(旭硝子社製、商品名「Leoflex(登録商標)」。サイズ:300mm×300mm、厚さ0.85mm。)を用意した。該透明基材の表面を炭酸水素ナトリウム水で洗浄後、イオン交換水でリンスし、乾燥させた。
(AG層付き基材の作製)
 前記透明基材を予熱炉(ISUZU社製、VTR-115)にて予熱した。次いで、透明基材の表面温度を90℃に保温した状態で、前記透明基材上に、下記の条件で、表1に示す算術平均粗さRaとなるように塗布液(A)を塗布した。
  ・スプレー圧力:0.2MPa、
  ・ノズル移動速度:750mm/分、
  ・スプレーピッチ:22mm。
 その後、大気中、200℃で3分間加熱養生し、AG層付き基材を得た。
 スプレー法による塗布には、6軸塗装用ロボット(川崎ロボティックス社製、JF-5)を用いた。また、ノズル20としては、VAUノズル(スプレーイングシステムジャパン社製)を用いた。
〔例2、3〕
 塗布液(A)を塗布液(B)に変更し、表1に示す算術平均粗さRaとなるように塗布した以外は例1と同様にしてAG層付き基材を得た。
〔例4〕
 塗布液(A)を塗布液(C)に変更し、表1に示す算術平均粗さRaとなるように塗布した以外は例1と同様にしてAG層付き基材を得た。
〔例5〕
 塗布液(A)を塗布液(D)に変更し、表1に示す算術平均粗さRaとなるように塗布した以外は例1と同様にしてAG層付き基材を得た。
〔例6〕
 塗布液(A)を塗布液(E)に変更し、表1に示す算術平均粗さRaとなるように塗布した以外は例1と同様にしてAG層付き基材を得た。
〔例7〕
 塗布液(A)を塗布液(F)に変更し、表1に示す算術平均粗さRaとなるように塗布した以外は例1と同様にしてAG層付き基材を得た。
 各例で得たAG層付き基材について、AG層中の粒子比率(質量%)、AG層の屈折率および表面の算術平均粗さRa、透過率差Td、光沢度(%)、ヘイズ(%)、耐摩耗性(光沢度変化ΔG(%))を表1に示す。
 粒子比率は、各例でAG層の形成に用いた塗布液のSiO換算固形分に対するシリカ粒子(鎖状中実シリカ粒子、中空シリカ粒子)の割合であり、AG層の総質量に対するシリカ粒子の割合に等しい。
Figure JPOXMLDOC01-appb-T000001
 上記結果に示すとおり、AG層中の粒子比率が0の例1は、透過率差Tdが0.0%(透明基材単独の場合と同じ)であり、透過率向上効果が見られなかった。
 AG層が鎖状中実シリカ粒子を含む例2~5は、透明基材単独の場合に比べて、透過率が向上した。また、防眩性および耐摩耗性も充分に良好であった。さらに、粒子を70質量%の比率で含有するにもかかわらず、粒子を含まない例1よりも、ヘイズも小さかった。
 例4は、固形分が高く成膜時に空隙を形成しやすいので、例2、例3と比較して屈折率が低く、透明基材単独の場合に比べて、透過率が向上した。また、防眩性および耐摩耗性も充分に良好であった。
 例5は、例2~4と比較して屈折率が低く、透明基材単独の場合に比べて、透過率が大幅に向上した。テルペン誘導体を含むことでこのような結果が得られたと考えられる。また、防眩性および耐摩耗性も充分に良好であった。
 中空シリカ粒子を粒子比率30質量%で用い、算術平均粗さRaを0.31μmとした例6は、屈折率は例2~5と同等であるが、透過率が向上しなかった。
 中空シリカ粒子を粒子比率70質量%で用いた例7は、例2~5よりも耐摩耗性が低かった。
 本発明によれば、防眩効果と透過率向上効果と機械的強度とのバランスに優れたアンチグレア層を備えるアンチグレア層付き基材、およびこれを用いた物品を提供でき、各種機器類に使用される防眩用基材として有用である。
 なお、2014年4月23日に出願された日本特許出願2014-089455号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
 10:アンチグレア層付き基材
 12:透明基材
 14:アンチグレア層

Claims (6)

  1.  透明基材と、前記透明基材上に形成されたアンチグレア層とを備え、
     前記アンチグレア層の屈折率が、1.25~1.45であり、
     前記アンチグレア層の表面の算術平均粗さRaが、0.05~0.25μmであり、
     前記アンチグレア層が、鎖状中実シリカ粒子を含むことを特徴とする、アンチグレア層付き基材。
  2.  前記アンチグレア層中の前記鎖状中実シリカ粒子の含有量が、前記アンチグレア層の総質量に対し、50~80質量%である、請求項1に記載のアンチグレア層付き基材。
  3.  前記鎖状中実シリカ粒子の平均凝集粒子径が、5~300nmである、請求項1または2に記載のアンチグレア層付き基材。
  4.  前記アンチグレア層が、前記鎖状中実シリカ粒子と、シリカ系マトリクス前駆体と、液状媒体とを含む塗布液から形成された層である、請求項1~3のいずれか一項に記載のアンチグレア層付き基材。
  5.  前記塗布液が、テルペン化合物をさらに含む、請求項4に記載のアンチグレア層付き基材。
  6.  請求項1~5のいずれか一項に記載のアンチグレア層付き基材を備える物品。
PCT/JP2015/062142 2014-04-23 2015-04-21 アンチグレア層付き基材および物品 WO2015163330A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014089455A JP2017106944A (ja) 2014-04-23 2014-04-23 アンチグレア層付き基材および物品
JP2014-089455 2014-04-23

Publications (1)

Publication Number Publication Date
WO2015163330A1 true WO2015163330A1 (ja) 2015-10-29

Family

ID=54332494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062142 WO2015163330A1 (ja) 2014-04-23 2015-04-21 アンチグレア層付き基材および物品

Country Status (3)

Country Link
JP (1) JP2017106944A (ja)
TW (1) TW201606356A (ja)
WO (1) WO2015163330A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190391303A1 (en) * 2016-12-12 2019-12-26 Nippon Electric Glass Co., Ltd. Transparent article
WO2021052457A1 (zh) * 2019-09-19 2021-03-25 华为技术有限公司 工件、工件的制备方法、壳体以及电子设备
WO2022138251A1 (ja) * 2020-12-24 2022-06-30 Agc株式会社 アンチグレアフィルム付き透明基体及びその製造方法
CN114873933A (zh) * 2022-06-13 2022-08-09 深圳市东方硅源科技有限公司 防眩光ag玻璃及其制备工艺

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7293662B2 (ja) * 2018-01-25 2023-06-20 日本電気硝子株式会社 表示装置のカバー部材
AR125541A1 (es) * 2021-03-19 2023-07-26 Nippon Sheet Glass Co Ltd Miembro de cubierta

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273901A (ja) * 2005-03-28 2006-10-12 Aica Kogyo Co Ltd 防眩性ハードコート剤および防眩性ハードコートフィルム
JP2009058640A (ja) * 2007-08-30 2009-03-19 Asahi Glass Co Ltd アンチグレア層を有する物品およびその製造方法
WO2009041321A1 (ja) * 2007-09-26 2009-04-02 Konica Minolta Opto, Inc. 光学フィルム、偏光板および画像表示装置
WO2013015332A1 (ja) * 2011-07-26 2013-01-31 大日本印刷株式会社 防眩性フィルム、偏光板及び画像表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273901A (ja) * 2005-03-28 2006-10-12 Aica Kogyo Co Ltd 防眩性ハードコート剤および防眩性ハードコートフィルム
JP2009058640A (ja) * 2007-08-30 2009-03-19 Asahi Glass Co Ltd アンチグレア層を有する物品およびその製造方法
WO2009041321A1 (ja) * 2007-09-26 2009-04-02 Konica Minolta Opto, Inc. 光学フィルム、偏光板および画像表示装置
WO2013015332A1 (ja) * 2011-07-26 2013-01-31 大日本印刷株式会社 防眩性フィルム、偏光板及び画像表示装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190391303A1 (en) * 2016-12-12 2019-12-26 Nippon Electric Glass Co., Ltd. Transparent article
US11555950B2 (en) * 2016-12-12 2023-01-17 Nippon Electric Glass Co., Ltd. Transparent article
WO2021052457A1 (zh) * 2019-09-19 2021-03-25 华为技术有限公司 工件、工件的制备方法、壳体以及电子设备
WO2022138251A1 (ja) * 2020-12-24 2022-06-30 Agc株式会社 アンチグレアフィルム付き透明基体及びその製造方法
CN114873933A (zh) * 2022-06-13 2022-08-09 深圳市东方硅源科技有限公司 防眩光ag玻璃及其制备工艺
CN114873933B (zh) * 2022-06-13 2024-01-16 深圳市东方硅源科技有限公司 防眩光ag玻璃及其制备工艺

Also Published As

Publication number Publication date
JP2017106944A (ja) 2017-06-15
TW201606356A (zh) 2016-02-16

Similar Documents

Publication Publication Date Title
JP2016018068A (ja) 防眩膜付き基材および物品
US10948633B2 (en) Translucent structure, method for manufacturing same, and article
US10416354B2 (en) Translucent structure
WO2015186753A1 (ja) 機能膜付き化学強化ガラス板、その製造方法および物品
WO2015041257A1 (ja) 低反射膜付き強化ガラス板およびその製造方法
WO2015163330A1 (ja) アンチグレア層付き基材および物品
JP5849970B2 (ja) 低反射膜を有する物品
JP7010324B2 (ja) 防眩膜付基体
JP6586897B2 (ja) 防眩膜付き基材、膜形成用塗布液およびその製造方法
WO2011027827A1 (ja) 基材の表面に低反射膜を有する物品
JP2016041481A (ja) 防眩性反射防止膜付き透明基材および物品
US20170291392A1 (en) Article having low reflection film
WO2015115492A1 (ja) 太陽電池用防眩機能付きガラス板
JP2015049319A (ja) 透明基材と防汚性反射防止膜とを備える物品およびその製造方法
US20200055771A1 (en) Film-attached glass substrate, article, and method for producing film-attached glass substrate
WO2015111660A1 (ja) アンチグレア層付き基材およびその製造方法
JP2013160799A (ja) 低反射膜付き物品の製造方法
JP6164120B2 (ja) 反射防止膜付き基材および物品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15782405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15782405

Country of ref document: EP

Kind code of ref document: A1