WO2013042254A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2013042254A1
WO2013042254A1 PCT/JP2011/071683 JP2011071683W WO2013042254A1 WO 2013042254 A1 WO2013042254 A1 WO 2013042254A1 JP 2011071683 W JP2011071683 W JP 2011071683W WO 2013042254 A1 WO2013042254 A1 WO 2013042254A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
belt
reinforcing layer
pneumatic tire
circumferential
Prior art date
Application number
PCT/JP2011/071683
Other languages
English (en)
French (fr)
Inventor
英俊 岡部
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to KR1020137006833A priority Critical patent/KR101285338B1/ko
Priority to PCT/JP2011/071683 priority patent/WO2013042254A1/ja
Priority to JP2011542379A priority patent/JP5029787B1/ja
Priority to CN201180073605.8A priority patent/CN103842190B/zh
Priority to US14/346,697 priority patent/US9174498B2/en
Priority to DE112011105654.0T priority patent/DE112011105654B4/de
Publication of WO2013042254A1 publication Critical patent/WO2013042254A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/24Wear-indicating arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/04Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
    • B60C11/042Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag further characterised by the groove cross-section
    • B60C11/047Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag further characterised by the groove cross-section the groove bottom comprising stone trapping protection elements, e.g. ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/01Shape of the shoulders between tread and sidewall, e.g. rounded, stepped or cantilevered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0007Reinforcements made of metallic elements, e.g. cords, yarns, filaments or fibres made from metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/28Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers characterised by the belt or breaker dimensions or curvature relative to carcass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/02Replaceable treads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/01Shape of the shoulders between tread and sidewall, e.g. rounded, stepped or cantilevered
    • B60C2011/013Shape of the shoulders between tread and sidewall, e.g. rounded, stepped or cantilevered provided with a recessed portion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T152/00Resilient tires and wheels
    • Y10T152/10Tires, resilient
    • Y10T152/10027Tires, resilient with wear indicating feature

Definitions

  • the present invention relates to a pneumatic tire, and more particularly, to a pneumatic tire that can appropriately determine the retreading time of the tire.
  • Recent pneumatic tires are provided with a circumferential reinforcing layer in the belt layer in order to suppress the tire diameter growth.
  • a technique described in Patent Document 1 is known.
  • shoulder wear tends to occur. If this shoulder wear proceeds greatly, the shoulder wear cannot be removed by buffing, and the tire cannot be renewed. This is because the end of the belt layer is exposed when the buffing is greatly performed to remove the shoulder wear.
  • an object of the present invention is to provide a pneumatic tire that can appropriately determine the retreading time of the tire.
  • a pneumatic tire according to the present invention includes a belt layer formed by laminating a pair of cross belts and a circumferential reinforcing layer, and includes a plurality of circumferential main grooves and the circumferential main grooves.
  • the circumferential direction which is a pneumatic tire having a plurality of land portions divided into a tread portion, the mark having a buttress portion for judging the tire regeneration time, and the outermost side in the tire width direction
  • the main groove is called the outermost circumferential main groove, and the profile of the land portion from the outermost circumferential main groove to the tire ground contact edge passes through the groove bottom of the outermost circumferential main groove in a sectional view in the tire meridian direction.
  • the outermost circumferential main groove is located on the outer side in the tire width direction with respect to the circumferential reinforcing layer and the outermost circumferential direction is drawn when the curve L parallel to is taken and the intersection A between the curve L and the profile of the buttress portion is taken.
  • the belt layer is on the inner side in the tire radial direction from the curve L.
  • a plurality of the marks are arranged stepwise in the tire radial direction.
  • the mark is a concave portion or a convex portion extending in the tire circumferential direction along the buttress portion.
  • the belt layer includes a high-angle belt, a pair of cross belts arranged on the tire radial direction outside of the high-angle belt, and a tire radial outside of the pair of cross belts. And a circumferential reinforcing layer disposed between the pair of cross belts and inside the pair of cross belts in the tire radial direction or inside the tire radial direction of the high angle belt. preferable.
  • the belt cover has a belt angle of 10 [deg] or more and 45 [deg] or less in absolute value.
  • the belt cord constituting the circumferential reinforcing layer is a steel wire, and the circumferential reinforcing layer has an end number of 17 [/ 50 mm] or more and 30 [/ 50 mm] or less.
  • the elongation at the time of a tensile load of 100 N to 300 N at the time of a belt cord member constituting the circumferential reinforcing layer is 1.0 [%] or more and 2.5 [%] or less.
  • the elongation of the belt cord constituting the circumferential reinforcing layer at the time of a tensile load of 500 N to 1000 N is 0.5 [%] or more and 2.0 [%] or less.
  • the circumferential reinforcing layer is disposed on the inner side in the tire width direction from the left and right edge portions of the narrow cross belt of the pair of cross belts.
  • the width W of the cross belt and the distance S from the edge portion of the circumferential reinforcing layer to the edge portion of the narrow cross belt are preferably in the range of 0.03 ⁇ S / W.
  • the circumferential reinforcing layer is disposed on the inner side in the tire width direction from the left and right edge portions of the narrow cross belt of the pair of cross belts, and
  • the width W of the narrow cross belt and the width Ws of the circumferential reinforcing layer are in the range of 0.60 ⁇ Ws / W.
  • the width Ws of the circumferential reinforcing layer is in the range of 0.65 ⁇ Ws / TDW ⁇ 0.80 with respect to the tire development width TDW.
  • the pneumatic tire according to the present invention is applied to a tire having a flatness ratio of 70 [%] or less.
  • the pneumatic tire according to the present invention has an advantage that the tire regeneration timing can be appropriately determined by optimizing the position of the mark for determining the regeneration timing.
  • FIG. 1 is a sectional view in the tire meridian direction showing a pneumatic tire according to an embodiment of the present invention.
  • FIG. 2 is an explanatory view showing a carcass layer and a belt layer of the pneumatic tire shown in FIG.
  • FIG. 3 is an explanatory view showing the belt layer shown in FIG.
  • FIG. 4 is an explanatory view showing a modified example of the pneumatic tire shown in FIG. 1.
  • FIG. 5 is an explanatory view showing a modified example of the pneumatic tire shown in FIG. 1.
  • FIG. 6 is an explanatory view showing a modified example of the pneumatic tire shown in FIG. 1.
  • FIG. 7 is an explanatory view showing a modified example of the pneumatic tire shown in FIG. 1.
  • FIG. 8 is a table showing the results of the performance test of the pneumatic tire according to the embodiment of the present invention.
  • FIG. 1 is a sectional view in the tire meridian direction showing a pneumatic tire 1 according to an embodiment of the present invention.
  • FIG. 1 shows a heavy-duty radial tire mounted on a truck, a bus, etc. for long-distance transportation.
  • the pneumatic tire 1 includes a pair of bead cores 11, 11, a pair of bead fillers 12, 12, a carcass layer 13, a belt layer 14, a tread rubber 15, and a pair of sidewall rubbers 16, 16. (See FIG. 1).
  • the pair of bead cores 11 and 11 has an annular structure and constitutes the core of the left and right bead portions.
  • the pair of bead fillers 12 and 12 includes a lower filler 121 and an upper filler 122, which are disposed on the tire radial direction outer periphery of the pair of bead cores 11 and 11, respectively, to reinforce the bead portion.
  • the carcass layer 13 has a single-layer structure and is bridged in a toroidal shape between the left and right bead cores 11 and 11 to constitute a tire skeleton. Further, both end portions of the carcass layer 13 are wound and locked outward in the tire width direction so as to wrap the bead core 11 and the bead filler 12.
  • the belt layer 14 includes a plurality of stacked belt plies 141 to 145, and is disposed on the outer periphery of the carcass layer 13 in the tire radial direction.
  • the tread rubber 15 is disposed on the outer circumference in the tire radial direction of the carcass layer 13 and the belt layer 14 to constitute a tread portion of the tire.
  • the pair of side wall rubbers 16 and 16 are respectively arranged on the outer side in the tire width direction of the carcass layer 13 to constitute left and right side wall portions.
  • the pneumatic tire 1 includes a plurality of circumferential main grooves 21 to 23 extending in the tire circumferential direction and a plurality of land portions 31 to 34 defined by the circumferential main grooves 21 to 23. (See FIG. 1).
  • the pneumatic tire 1 may have a block pattern or a rib pattern (not shown).
  • the circumferential main grooves 21 to 23 may be straight grooves or zigzag grooves.
  • the circumferential main groove means a circumferential groove having a groove width of 5 [mm] or more.
  • the pneumatic tire 1 has a bilaterally symmetrical structure with the tire equatorial plane CL as the center.
  • FIG. 2 is an explanatory view showing the carcass layer 13 and the belt layer 14 of the pneumatic tire 1 shown in FIG. This figure shows one side region of the tread portion with the tire equatorial plane CL as a boundary.
  • FIG. 3 is an explanatory view showing the belt layer 14 shown in FIG. The figure shows a laminated structure of the belt layer 14.
  • the carcass layer 13 is formed by rolling a plurality of carcass cords made of steel or an organic fiber material (for example, nylon, polyester, rayon, etc.) with a coat rubber and having an absolute value of 85 [deg] or more and 95 [deg]. ]
  • the following carcass angle (the inclination angle of the fiber direction of the carcass cord with respect to the tire circumferential direction).
  • the belt layer 14 is formed by laminating a high-angle belt 141, a pair of cross belts 142 and 143, a belt cover 144, and a circumferential reinforcing layer 145, and is arranged around the outer periphery of the carcass layer 13. (See FIG. 2).
  • the high-angle belt 141 is formed by coating a plurality of belt cords made of steel or organic fiber material with a coat rubber and rolling the belt, and an absolute value of a belt angle of 40 [deg] or more and 60 [deg] or less (tire circumferential direction) The inclination angle of the belt cord in the fiber direction). Further, the high-angle belt 141 is laminated and disposed on the outer side in the tire radial direction of the carcass layer 13.
  • the pair of cross belts 142 and 143 is formed by rolling a plurality of belt cords made of steel or organic fiber material with a coating rubber, and has a belt angle of 10 [deg] or more and 30 [deg] or less in absolute value.
  • the pair of cross belts 142 and 143 have belt angles with different signs from each other, and are laminated so that the fiber directions of the belt cords cross each other (cross-ply structure).
  • the cross belt 142 located on the inner side in the tire radial direction is called an inner diameter side cross belt
  • the cross belt 143 located on the outer side in the tire radial direction is called an outer diameter side cross belt.
  • three or more cross belts may be laminated (not shown).
  • the pair of cross belts 142 and 143 are disposed so as to be stacked on the outer side in the tire radial direction of the high-angle belt 141.
  • the belt cover 144 is formed by rolling a plurality of belt cords made of steel or organic fiber material with a coating rubber, and has a belt angle of 10 [deg] or more and 45 [deg] or less in absolute value. Further, the belt cover 144 is disposed so as to be laminated on the outer side in the tire radial direction of the cross belts 142 and 143. In this embodiment, the belt cover 144 has the same belt angle as the outer diameter side crossing belt 143 and is disposed in the outermost layer of the belt layer 14.
  • the circumferential reinforcing layer 145 is configured by winding a rubber-coated steel belt cord in a spiral manner while inclining within a range of ⁇ 5 [deg] with respect to the tire circumferential direction. Further, the circumferential reinforcing layer 145 is disposed between the pair of cross belts 142 and 143. Further, the circumferential reinforcing layer 145 is disposed on the inner side in the tire width direction with respect to the left and right edge portions of the pair of cross belts 142 and 143. Specifically, one or more wires are spirally wound around the outer circumference of the inner diameter side crossing belt 142 to form the circumferential reinforcing layer 145. The circumferential reinforcing layer 145 reinforces the rigidity in the tire circumferential direction, so that the durability performance of the tire is improved.
  • the belt layer 14 may have an edge cover (not shown).
  • the edge cover is formed by rolling a plurality of belt cords made of steel or organic fiber material with a coating rubber, and has an absolute value of a belt angle of 0 [deg] or more and 5 [deg] or less.
  • the edge covers are respectively disposed on the outer sides in the tire radial direction of the left and right edge portions of the outer diameter side cross belt 143 (or the inner diameter side cross belt 142). When these edge covers exhibit a tagging effect, the difference in diameter growth between the tread center region and the shoulder region is alleviated, and the uneven wear resistance performance of the tire is improved.
  • the belt cord which comprises the circumferential direction reinforcement layer 145 is a steel wire, and the circumferential direction reinforcement layer 145 has the number of ends of 17 [piece / 50mm] or more and 30 [piece / 50mm] or less. It is preferable. Moreover, it is preferable that the outer diameter of a belt cord exists in the range of 1.2 [mm] or more and 2.2 [mm] or less. Note that, in a configuration including a plurality of cords in which belt cords are wound together, the outer diameter of the belt cord is measured as the diameter of a circumscribed circle of the belt cord.
  • the elongation from a tensile load of 100 N to 300 N is 1.0 [%]. It is preferable that it is 2.5 [%] or less.
  • the belt cord of the circumferential reinforcing layer 145 is tired (in a state where the belt cord is taken out from the product tire), the elongation at a tensile load of 500 N to 1000 N is 0.5 [%] or more and 2.0 [%] or less. Preferably there is.
  • Such a belt cord (high elongation steel wire) has a higher elongation rate than a normal steel wire at the time of a low load, and has a characteristic capable of withstanding the load. Therefore, in the case of (a), the durability of the circumferential reinforcing layer 145 at the time of manufacture can be improved, and in the case of (b), the durability of the circumferential reinforcing layer 145 at the time of using the tire can be improved. This is preferable.
  • the elongation of the belt cord is measured according to JIS G3510.
  • the circumferential reinforcing layer 145 is configured by winding a single steel wire in a spiral shape.
  • the present invention is not limited to this, and the circumferential reinforcing layer 145 may be formed by spirally winding a plurality of wires while running parallel to each other (multiple winding structure).
  • the number of wires is preferably 5 or less.
  • the winding width per unit when multiple windings of five wires are 12 [mm] or less. Accordingly, a plurality of wires (2 or more and 5 or less) can be appropriately wound while being inclined within a range of ⁇ 5 [deg] with respect to the tire circumferential direction.
  • shoulder wear in a tire having a circumferential reinforcing layer in a belt layer, particularly a low flat tire having a flatness ratio of 70% or less having a circumferential main groove on the outer side in the tire width direction from the circumferential reinforcing layer, shoulder wear (particularly, , Step wear) tends to occur. If this shoulder wear proceeds greatly, the shoulder wear cannot be removed by buffing, and the tire cannot be renewed. This is because the end of the belt layer is exposed when the buffing is greatly performed to remove the shoulder wear.
  • the pneumatic tire 1 has the following configuration so that the user can properly determine the rehabilitation time of the tire.
  • the pneumatic tire 1 is provided with a mark M on the buttress portion for judging the tire regeneration time (see FIG. 2).
  • This mark M is, for example, an end of a button (for example, a shallow groove, a decoration groove, etc.) formed on the surface of the buttress portion on the inner side in the tire radial direction, and an opening end of the lug groove of the shoulder land portion 34 to the buttress portion. It can be displayed by a concave portion or a convex portion extending in the tire circumferential direction along the groove bottom or buttress portion.
  • the buttress portion is a connection portion between the profile of the tread portion and the profile of the sidewall portion, and constitutes the side wall surface on the outer side in the tire width direction of the shoulder land portion.
  • the circumferential main groove 23 located on the outermost side in the tire width direction is referred to as the outermost circumferential main groove.
  • a curve L parallel to the profile of the shoulder land portion 23 from the outermost circumferential main groove 23 to the tire ground contact end T is drawn through the groove bottom of the outermost circumferential main groove 23. Further, an intersection A between the curve L and the profile of the buttress portion is taken.
  • the outermost circumferential main groove 23 is outside the circumferential reinforcing layer 145 in the tire width direction. Further, the groove bottom gauge t of the outermost circumferential main groove 23 and the distance D in the tire radial direction from the intersection A to the mark M are ⁇ 1.0 ⁇ D / t ⁇ 1.0 with the outer side in the tire radial direction being positive. Have the relationship.
  • the groove bottom gauge t refers to the length of a perpendicular line extending from the groove bottom of the outermost circumferential main groove 23 to the belt cord surface of the outermost layer of the belt layer 14 (in the configuration of FIG. 2, the belt cover 144). In a general heavy duty pneumatic tire, the groove bottom gauge t is set to 4 [mm] or more and 8 [mm] or less.
  • the tire ground contact edge T and the distance D are measured as the tire is mounted on the specified rim to apply the specified internal pressure and the load is not applied.
  • the groove bottom gauge t is measured in a no-load state in which a tire is mounted on a specified rim and filled with a specified internal pressure.
  • the following measuring method is used. First, a single tire is applied to a virtual line of a tire profile measured by a laser profiler and fixed with tape or the like. And it measures with a caliper etc. about the gauge t which is a measuring object.
  • the laser profiler used here is a tire profile measuring device (manufactured by Matsuo Co., Ltd.).
  • the stipulated rim is an “applicable rim” defined in JATMA, a “Design Rim” defined in TRA, or a “Measuring Rim” defined in ETRTO.
  • the specified internal pressure refers to the “maximum air pressure” specified by JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” specified by TRA, or “INFLATION PRESSURES” specified by ETRTO.
  • the specified load means the “maximum load capacity” specified in JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” specified in TRA, or “LOAD CAPACITY” specified in ETRTO.
  • the specified internal pressure is air pressure 180 [kPa]
  • the specified load is 88 [%] of the maximum load capacity.
  • the pneumatic tire 1 has a shallow groove-like button 41 extending in the tire radial direction on the surface of the buttress portion. Further, the end portion of the button 41 on the outer side in the tire radial direction opens in the tread surface of the shoulder land portion 34, and the end portion on the inner side in the tire radial direction terminates on the inner side in the tire radial direction from the intersection A. And the edge part of the tire radial direction inner side of the button 41 comprises the mark M for judging the renovation time of a tire.
  • shoulder wear occurs at the outer edge portion of the shoulder land portion 34 in the tire width direction as wear progresses.
  • the mark M Before the shoulder wear reaches the mark M, it is determined that the tire can be rehabilitated.
  • the shoulder wear exceeds the mark M, it is determined that the tire cannot be rehabilitated.
  • the end portion (mark M) in the tire radial direction of the button 41 has disappeared due to shoulder wear.
  • the shoulder wear reaches the mark M, the recommended rehabilitation time is reached. Therefore, by adjusting the position of the mark M, it is possible to appropriately determine the tire regeneration time.
  • the groove bottom gauge t of the outermost circumferential main groove 23 and the distance D in the tire radial direction from the intersection A to the mark M have a relationship of ⁇ 1.0 ⁇ D / t ⁇ 1.0, The position of the mark M is optimized. Thereby, the retreading time of a tire can be judged appropriately.
  • the groove bottom gauge t and the distance D are preferably set to a relationship of ⁇ 1.0 ⁇ D / t ⁇ 0, with the outer side in the tire radial direction being positive, and ⁇ 0.5 It is more preferable to set the relationship ⁇ D / t ⁇ ⁇ 0.1 (see FIG. 2).
  • ⁇ 1.0 ⁇ D / t further ⁇ 0.5 ⁇ D / t
  • the belt layer 14 is on the inner side in the tire radial direction than the curve L (see FIG. 2).
  • the end portion C of the outer diameter side crossing belt 143 is located closest to the curve L, and is disposed on the inner side in the tire radial direction than the curve L.
  • the position of the mark M is preferably defined so that the distance between the belt layer 14 and the belt layer 14 (the end C of the outer diameter side crossing belt 143 in FIG. 2) is 3 mm or more. This distance is the thickness of the rubber material (belt on the belt) from the belt layer 14 to the buffing surface when the shoulder wear reaches the mark M and the buffing process is performed. This prevents the belt layer from being exposed to the buffing surface by the buffing treatment.
  • [Modification] 4 to 7 are explanatory views showing modifications of the pneumatic tire 1 shown in FIG. These drawings show variations of the mark M.
  • the same components as those described in FIGS. 1 to 3 are denoted by the same reference numerals, and the description thereof is omitted.
  • the pneumatic tire 1 has a shallow groove-shaped button 41 extending in the tire radial direction on the surface of the buttress portion, and the end portion of the button 41 in the tire radial direction functions as a mark M. is doing.
  • the pneumatic tire 1 has a thin rib-like convex portion 42 extending in the tire circumferential direction along the buttress portion, and this convex portion 42 functions as the mark M. is doing.
  • the pneumatic tire 1 has a narrow groove-like concave portion 43 extending in the tire circumferential direction along the buttress portion, and the concave portion 43 functions as the mark M.
  • these recessed part 43 and the convex part 42 are arrange
  • the groove bottom gauge t of the outermost circumferential main groove 23 and the distance D in the tire radial direction from the intersection A to the mark M have a relationship of ⁇ 0.1 ⁇ D / t ⁇ 0.
  • the mark M may be configured by the concave portion 43 or the convex portion 42 formed in the buttress portion.
  • the outermost circumferential main groove 23 has a protrusion 231 for preventing stone biting at the groove bottom.
  • Measured as The curve L passes through the maximum groove depth position of the outermost circumferential direction main groove 23 and becomes a curve parallel to the profile of the shoulder land portion 23 from the outermost circumferential direction main groove 23 to the tire ground contact end T.
  • the pneumatic tire 1 has a pair of marks M and M ′ in the buttress portion.
  • One mark M is formed of a thin rib-like convex portion 42 extending in the tire circumferential direction along the buttress portion, and is arranged on the inner side in the tire radial direction from the intersection A between the curve L and the profile of the buttress portion.
  • the groove bottom gauge t of the outermost circumferential main groove and the distance D in the tire radial direction from the intersection A to the mark M have a relationship of ⁇ 0.1 ⁇ D / t ⁇ 0, with the outer side in the tire radial direction being positive. Have.
  • the other mark M ′ is formed of a narrow groove-like recess 43 extending in the tire circumferential direction along the buttress portion, and is disposed on the outer side in the tire radial direction from the intersection A. Further, the groove bottom gauge t and the distance D ′ in the tire radial direction from the intersection A to the mark M ′ have a relationship of 0 ⁇ D ′ / t ⁇ 1.0, with the outer side in the tire radial direction being positive. .
  • the recommended renewal time of the tire can be indicated stepwise, or between these marks M and M ′. Can be shown as the recommended rehabilitation period. Therefore, the recommended rehabilitation time can be displayed more appropriately.
  • the marks M and M ′ can be arbitrarily arranged within the range of ⁇ 1.0 ⁇ D / t ⁇ 1.0 and ⁇ 1.0 ⁇ D ′ / t ⁇ 1.0.
  • the circumferential reinforcing layer 145 is disposed on the inner side in the tire width direction from the left and right edge portions of the narrower cross belt 143 of the pair of cross belts 142 and 143. Further, the width W of the narrow cross belt 143 and the distance S from the edge portion of the circumferential reinforcing layer 145 to the edge portion of the narrow cross belt 143 are in the range of 0.03 ⁇ S / W. Is preferred. This also applies to the configuration (not shown) in which the circumferential reinforcing layer 145 has a divided structure.
  • the outer diameter side cross belt 143 has a narrow structure, and the circumferential reinforcing layer 145 is disposed on the inner side in the tire width direction from the left and right edge portions of the outer diameter side cross belt 143. .
  • the outer diameter side crossing belt 143 and the circumferential reinforcing layer 145 are arranged symmetrically about the tire equatorial plane CL.
  • the positional relationship S / W between the edge portion of the outer diameter side cross belt 143 and the edge portion of the circumferential reinforcing layer 145 is optimized within the above range. ing.
  • the positional relationship S / W between the edge portions of the cross belts 142 and 143 and the edge portion of the circumferential reinforcing layer 145 is optimized, and distortion generated in the peripheral rubber material of the circumferential reinforcing layer 145 can be reduced.
  • the width W and the distance S are measured as a distance in the tire width direction in a cross-sectional view in the tire meridian direction.
  • the upper limit value of S / W is not particularly limited, but is limited by the relationship between the width Ws of the circumferential reinforcing layer 145 and the width W of the narrow cross belt 143.
  • the width Ws of the circumferential reinforcing layer 145 is set to 0.60 ⁇ Ws / W.
  • the width Ws of the circumferential reinforcing layer 145 is the sum of the widths of the respective divided portions when the circumferential reinforcing layer 145 has a divided structure (not shown).
  • the pneumatic tire 1 includes the belt layer 14 formed by laminating the pair of cross belts 142 and 143 and the circumferential reinforcing layer 145 (see FIGS. 1 to 3).
  • the pneumatic tire 1 includes a plurality of circumferential main grooves 21 to 23 and a plurality of land portions 31 to 34 defined by the circumferential main grooves 21 to 23 in the tread portion.
  • the pneumatic tire 1 includes a mark M for determining the tire regeneration time in the buttress portion.
  • the outermost circumferential main groove 23 is on the outer side in the tire width direction than the circumferential reinforcing layer 145.
  • the groove bottom gauge t of the outermost circumferential main groove 23 and the distance D in the tire radial direction from the predetermined intersection A to the mark M are ⁇ 1.0 ⁇ D / t ⁇ 1 with the outer side in the tire radial direction being positive. .0 relationship.
  • Such a configuration has an advantage that the rehabilitation timing of the tire can be appropriately determined by optimizing the position of the mark M for determining the rehabilitation timing.
  • the belt layer 14 is located on the inner side in the tire radial direction from the curve L (see FIG. 2). Thereby, there is an advantage that the situation where the belt layer is exposed can be suppressed when the tire is buffed with the mark M as a criterion.
  • the mark M is a concave portion or a convex portion extending in the tire circumferential direction along the buttress portion (see FIG. 2).
  • the disappearance of the mark M can be clearly recognized as compared with a configuration in which the mark M is formed of a button or lug groove formed in the buttress portion. This has an advantage that the user can more appropriately determine the recommended rehabilitation time.
  • a plurality of belt plies include a high angle belt 141, a pair of cross belts 142 and 143 disposed on the outer side in the tire radial direction of the high angle belt 141, and a pair of cross belts 142 and 143. Between the belt cover 144 arranged on the outer side in the tire radial direction and the pair of cross belts 142, 143, on the inner side in the tire radial direction of the pair of cross belts 142, 143, or on the inner side in the tire radial direction of the high-angle belt 141. And a circumferential reinforcing layer 145 (see FIGS. 2 and 3).
  • the belt cover 144 has a belt angle of 10 [deg] or more and 45 [deg] or less in absolute value.
  • the belt cord which comprises the circumferential direction reinforcement layer 145 is a steel wire, and the circumferential direction reinforcement layer 145 has the number of ends of 17 [piece / 50mm] or more and 30 [piece / 50mm] or less. .
  • the elongation at the time of a tensile load of 100 N to 300 N at the time of the belt cord member constituting the circumferential reinforcing layer 145 is 1.0 [%] or more and 2.5 [%] or less.
  • the elongation of the belt cord constituting the circumferential reinforcing layer 145 at the time of the tensile load of 500 N to 1000 N is 0.5 [%] or more and 2.0 [%] or less.
  • the circumferential reinforcing layer 145 is disposed on the inner side in the tire width direction from the left and right edge portions of the narrow cross belt 143 of the pair of cross belts 142 and 143 (see FIG. 3). ). Further, the width W of the narrow cross belt 143 and the distance S from the edge portion of the circumferential reinforcing layer 145 to the edge portion of the narrow cross belt 143 are in the range of 0.03 ⁇ S / W.
  • the width W of the narrow cross belt 143 and the width Ws of the circumferential reinforcing layer 145 have a relationship of 0.60 ⁇ Ws / W (see FIG. 3).
  • the width Ws of the circumferential reinforcing layer 145 is in the range of 0.65 ⁇ Ws / TDW ⁇ 0.80 with respect to the tire development width TDW (not shown).
  • the width Ws of the circumferential reinforcing layer 145 is optimized, and the belt cord fatigue breakage at the end of the circumferential reinforcing layer 145 is suppressed. is there.
  • 0.65 ⁇ Ws / TDW there is an advantage that the ground contact shape of the tire is optimized and the uneven wear resistance performance of the tire is improved.
  • the flatness HW is 40 [%] ⁇ HW ⁇ 70 [%] in a state where the tire is assembled on the normal rim and the normal internal pressure and the normal load are applied to the tire. It is preferable to be within the range.
  • the pneumatic tire 1 is preferably used as a heavy duty pneumatic tire for trucks and buses as in this embodiment. In a tire having such a flatness ratio HW, particularly a heavy-duty pneumatic tire for trucks and buses, the ground contact shape tends to be a drum shape, and the occurrence of uneven wear is remarkable. Therefore, the recommended rehabilitation time can be more appropriately displayed by applying the configuration of the pneumatic tire 1 to a tire having the flatness ratio HW.
  • FIG. 8 is a table showing the results of the performance test of the pneumatic tire according to the embodiment of the present invention.
  • a pneumatic tire with a tire size of 445 / 50R22.5 is assembled in the TRA-designed “Design Rim”, and the pneumatic tire 1 has a TRA-defined “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” air pressure, And the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” is given.
  • a 6 ⁇ 4 tractor and trailer which is a test vehicle, travels with pneumatic tires and extracts 100 tires worn to the mark M for each specification. Then, these tires are buffed, and the stand tires are visually observed to evaluate the possibility of rehabilitation. Further, the remaining amount of the primary life is evaluated by calculating an average value of the main groove depth in the circumferential direction / the remaining groove amount (excluding the wear indicator). If this evaluation is 30 or less, it can be said that the mark M is functioning properly.
  • the pneumatic tires 1 of Examples 1 to 7 have the configuration shown in FIG. 4 and are provided with convex portions 42 to be marks M on the right and left buttress portions of the tire.
  • the pneumatic tire 1 of Example 4 has the configuration shown in FIG. 6 and includes a pair of marks M and M ′.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

 この空気入りタイヤ1は、一対の交差ベルト142、143と周方向補強層145とを積層して成るベルト層14を備える。また、空気入りタイヤ1は、複数の周方向主溝21~23と、これらの周方向主溝21~23に区画されて成る複数の陸部31~34とをトレッド部に備える。また、空気入りタイヤ1は、タイヤの更生時期を判断するためのマークMをバットレス部に備える。また、最外周方向主溝23が、周方向補強層145よりもタイヤ幅方向外側にある。また、最外周方向主溝23の溝底ゲージtと、所定の交点Aからマークまでのタイヤ径方向の距離Dとが、タイヤ径方向外側を正として-1.0≦D/t≦1.0の関係を有する。

Description

空気入りタイヤ
 この発明は、空気入りタイヤに関し、さらに詳しくは、タイヤの更生時期を適正に判断できる空気入りタイヤに関する。
 近年の空気入りタイヤは、タイヤの径成長を抑制するために、ベルト層に周方向補強層を備えている。かかる構成を採用する従来の空気入りタイヤとして、特許文献1に記載される技術が知られている。
特開2010-208505号公報
 ところで、トラック、バスなどに装着される重荷重用ラジアルタイヤは、トレッド部の残溝が寿命に達すると、トレッド面を切削してバフ研磨し、残されたタイヤ本体(台タイヤ)に新しいゴム材料を貼り付けることにより、更生タイヤとして再使用されている。
 ここで、ベルト層に周方向補強層を有するタイヤでは、ショルダー摩耗(特に、ステップ摩耗)が生じ易い傾向にある。このショルダー摩耗が大きく進行すると、バフ研磨によりショルダー摩耗を除去することができず、タイヤを更生できない。これは、ショルダー摩耗を除去するために大きくバフ研磨すると、ベルト層の端部が露出するためである。
 一方で、タイヤを更生できるか否かは、バフ研磨後に判明することも多い。すると、バフ研磨工程が無駄となり、ユーザー(主として、バフ研磨を行うタイヤディーラー)に不利益が生じるため、好ましくない。
 そこで、この発明は、上記に鑑みてなされたものであって、タイヤの更生時期を適正に判断できる空気入りタイヤを提供することを目的とする。
 上記目的を達成するため、この発明にかかる空気入りタイヤは、一対の交差ベルトと周方向補強層とを積層して成るベルト層を備えると共に、複数の周方向主溝と前記周方向主溝に区画されて成る複数の陸部とをトレッド部に備える空気入りタイヤであって、タイヤの更生時期を判断するためのマークをバットレス部に備え、且つ、タイヤ幅方向の最も外側にある前記周方向主溝を最外周方向主溝と呼ぶと共に、タイヤ子午線方向の断面視にて、前記最外周方向主溝の溝底を通り、前記最外周方向主溝からタイヤ接地端までの前記陸部のプロファイルに平行な曲線Lを引き、曲線Lとバットレス部のプロファイルとの交点Aをとるときに、前記最外周方向主溝が、前記周方向補強層よりもタイヤ幅方向外側にあり、前記最外周方向主溝の溝底ゲージtと、交点Aから前記マークまでのタイヤ径方向の距離Dとが、タイヤ径方向外側を正として-1.0≦D/t≦1.0の関係を有することを特徴とする。
 また、この発明にかかる空気入りタイヤは、前記ベルト層が、曲線Lよりもタイヤ径方向内側にあることが好ましい。
 また、この発明にかかる空気入りタイヤは、複数の前記マークが、タイヤ径方向に段階的に配置されることが好ましい。
 また、この発明にかかる空気入りタイヤは、前記マークが、前記バットレス部に沿ってタイヤ周方向に延在する凹部あるいは凸部であることが好ましい。
 また、この発明にかかる空気入りタイヤは、前記ベルト層が、高角度ベルトと、前記高角度ベルトのタイヤ径方向外側に配置される一対の交差ベルトと、前記一対の交差ベルトのタイヤ径方向外側に配置されるベルトカバーと、前記一対の交差ベルトの間、前記一対の交差ベルトのタイヤ径方向内側あるいは前記高角度ベルトのタイヤ径方向内側に配置される前記周方向補強層とから成ることが好ましい。
 また、この発明にかかる空気入りタイヤは、前記ベルトカバーが、絶対値で10[deg]以上45[deg]以下のベルト角度を有することが好ましい。
 また、この発明にかかる空気入りタイヤは、前記周方向補強層を構成するベルトコードがスチールワイヤであり、前記周方向補強層が17[本/50mm]以上30[本/50mm]以下のエンド数を有する。
 また、この発明にかかる空気入りタイヤは、周方向補強層を構成するベルトコードの部材時における引張り荷重100Nから300N時の伸びが1.0[%]以上2.5[%]以下である。
 また、この発明にかかる空気入りタイヤは、周方向補強層を構成するベルトコードのタイヤ時における引張り荷重500Nから1000N時の伸びが0.5[%]以上2.0[%]以下である。
 また、この発明にかかる空気入りタイヤは、前記周方向補強層が、前記一対の交差ベルトのうち幅狭な交差ベルトの左右のエッジ部よりもタイヤ幅方向内側に配置されると共に、前記幅狭な交差ベルトの幅Wと、前記周方向補強層のエッジ部から前記幅狭な交差ベルトのエッジ部までの距離Sとが、0.03≦S/Wの範囲にあることが好ましい。
 また、この発明にかかる空気入りタイヤは、前記周方向補強層が、前記一対の交差ベルトのうち幅狭な交差ベルトの左右のエッジ部よりもタイヤ幅方向内側に配置され、且つ、
 前記幅狭な交差ベルトの幅Wと前記周方向補強層の幅Wsとが、0.60≦Ws/Wの範囲内にある。
 また、この発明にかかる空気入りタイヤは、前記周方向補強層の幅Wsが、タイヤ展開幅TDWに対して、0.65≦Ws/TDW≦0.80の範囲内にある。
 また、この発明にかかる空気入りタイヤは、偏平率70[%]以下のタイヤに適用される。
 この発明にかかる空気入りタイヤでは、更生時期を判断するためのマークの位置が適正化されることにより、タイヤの更生時期を適正に判断できる利点がある。
図1は、この発明の実施の形態にかかる空気入りタイヤを示すタイヤ子午線方向の断面図である。 図2は、図1に記載した空気入りタイヤのカーカス層およびベルト層を示す説明図である。 図3は、図2に記載したベルト層を示す説明図である。 図4は、図1に記載した空気入りタイヤの変形例を示す説明図である。 図5は、図1に記載した空気入りタイヤの変形例を示す説明図である。 図6は、図1に記載した空気入りタイヤの変形例を示す説明図である。 図7は、図1に記載した空気入りタイヤの変形例を示す説明図である。 図8は、この発明の実施の形態にかかる空気入りタイヤの性能試験の結果を示す表である。
 以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、この実施の形態の構成要素には、発明の同一性を維持しつつ置換可能かつ置換自明なものが含まれる。また、この実施の形態に記載された複数の変形例は、当業者自明の範囲内にて任意に組み合わせが可能である。
[空気入りタイヤ]
 図1は、この発明の実施の形態にかかる空気入りタイヤ1を示すタイヤ子午線方向の断面図である。同図は、空気入りタイヤ1の一例として、長距離輸送用のトラック、バスなどに装着される重荷重用ラジアルタイヤを示している。
 この空気入りタイヤ1は、一対のビードコア11、11と、一対のビードフィラー12、12と、カーカス層13と、ベルト層14と、トレッドゴム15と、一対のサイドウォールゴム16、16とを備える(図1参照)。一対のビードコア11、11は、環状構造を有し、左右のビード部のコアを構成する。一対のビードフィラー12、12は、ローアーフィラー121およびアッパーフィラー122から成り、一対のビードコア11、11のタイヤ径方向外周にそれぞれ配置されてビード部を補強する。カーカス層13は、単層構造を有し、左右のビードコア11、11間にトロイダル状に架け渡されてタイヤの骨格を構成する。また、カーカス層13の両端部は、ビードコア11およびビードフィラー12を包み込むようにタイヤ幅方向外側に巻き返されて係止される。ベルト層14は、積層された複数のベルトプライ141~145から成り、カーカス層13のタイヤ径方向外周に配置される。トレッドゴム15は、カーカス層13およびベルト層14のタイヤ径方向外周に配置されてタイヤのトレッド部を構成する。一対のサイドウォールゴム16、16は、カーカス層13のタイヤ幅方向外側にそれぞれ配置されて左右のサイドウォール部を構成する。
 また、空気入りタイヤ1は、タイヤ周方向に延在する複数の周方向主溝21~23と、これらの周方向主溝21~23に区画されて成る複数の陸部31~34とをトレッド部に備える(図1参照)。なお、空気入りタイヤ1は、ブロックパターンを有しても良いし、リブパターンを有しても良い(図示省略)。また、周方向主溝21~23は、ストレート溝であっても良いし、ジグザグ溝であっても良い。また、周方向主溝とは、5[mm]以上の溝幅を有する周方向溝をいう。
 なお、この実施の形態では、空気入りタイヤ1がタイヤ赤道面CLを中心とした左右対称な構造を有している。
 図2は、図1に記載した空気入りタイヤ1のカーカス層13およびベルト層14を示す説明図である。同図は、タイヤ赤道面CLを境界としたトレッド部の片側領域を示している。また、図3は、図2に記載したベルト層14を示す説明図である。同図は、ベルト層14の積層構造を示している。
 カーカス層13は、スチールあるいは有機繊維材(例えば、ナイロン、ポリエステル、レーヨンなど)から成る複数のカーカスコードをコートゴムで被覆して圧延加工して構成され、絶対値で85[deg]以上95[deg]以下のカーカス角度(タイヤ周方向に対するカーカスコードの繊維方向の傾斜角)を有する。
 ベルト層14は、高角度ベルト141と、一対の交差ベルト142、143と、ベルトカバー144と、周方向補強層145とを積層して成り、カーカス層13の外周に掛け廻されて配置される(図2参照)。
 高角度ベルト141は、スチールあるいは有機繊維材から成る複数のベルトコードをコートゴムで被覆して圧延加工して構成され、絶対値で40[deg]以上60[deg]以下のベルト角度(タイヤ周方向に対するベルトコードの繊維方向の傾斜角)を有する。また、高角度ベルト141は、カーカス層13のタイヤ径方向外側に積層されて配置される。
 一対の交差ベルト142、143は、スチールあるいは有機繊維材から成る複数のベルトコードをコートゴムで被覆して圧延加工して構成され、絶対値で10[deg]以上30[deg]以下のベルト角度を有する。また、一対の交差ベルト142、143は、相互に異符号のベルト角度を有し、ベルトコードの繊維方向を相互に交差させて積層される(クロスプライ構造)。ここでは、タイヤ径方向内側に位置する交差ベルト142を内径側交差ベルトと呼び、タイヤ径方向外側に位置する交差ベルト143を外径側交差ベルトと呼ぶ。なお、3枚以上の交差ベルトが積層されて配置されても良い(図示省略)。また、一対の交差ベルト142、143は、高角度ベルト141のタイヤ径方向外側に積層されて配置される。
 ベルトカバー144は、スチールあるいは有機繊維材から成る複数のベルトコードをコートゴムで被覆して圧延加工して構成され、絶対値で10[deg]以上45[deg]以下のベルト角度を有する。また、ベルトカバー144は、交差ベルト142、143のタイヤ径方向外側に積層されて配置される。なお、この実施の形態では、ベルトカバー144が、外径側交差ベルト143と同一のベルト角度を有し、また、ベルト層14の最外層に配置されている。
 周方向補強層145は、ゴムコーティングされたスチール製のベルトコードをタイヤ周方向に対して±5[deg]の範囲内で傾斜させつつ螺旋状に巻き廻わして構成される。また、周方向補強層145は、一対の交差ベルト142、143の間に挟み込まれて配置される。また、周方向補強層145は、一対の交差ベルト142、143の左右のエッジ部よりもタイヤ幅方向内側に配置される。具体的には、1本あるいは複数本のワイヤが内径側交差ベルト142の外周に螺旋状に巻き廻されて、周方向補強層145が形成される。この周方向補強層145がタイヤ周方向の剛性を補強することにより、タイヤの耐久性能が向上する。
 なお、この空気入りタイヤ1では、ベルト層14が、エッジカバーを有しても良い(図示省略)。一般に、エッジカバーは、スチールあるいは有機繊維材から成る複数のベルトコードをコートゴムで被覆して圧延加工して構成され、絶対値で0[deg]以上5[deg]以下のベルト角度を有する。また、エッジカバーは、外径側交差ベルト143(あるいは内径側交差ベルト142)の左右のエッジ部のタイヤ径方向外側にそれぞれ配置される。これらのエッジカバーがタガ効果を発揮することにより、トレッドセンター領域とショルダー領域との径成長差が緩和されて、タイヤの耐偏摩耗性能が向上する。
 また、この空気入りタイヤ1では、周方向補強層145を構成するベルトコードがスチールワイヤであり、周方向補強層145が17[本/50mm]以上30[本/50mm]以下のエンド数を有することが好ましい。また、ベルトコードの外径が、1.2[mm]以上2.2[mm]以下の範囲内にあることが好ましい。なお、ベルトコードが縒り合わされた複数本のコードから成る構成では、ベルトコードの外径がベルトコードの外接円の直径として測定される。
 また、この空気入りタイヤ1では、(a)周方向補強層145を構成するベルトコードの部材時(グリーンタイヤ成形前の材料時)における引張り荷重100Nから300N時の伸びが1.0[%]以上2.5[%]以下であることが好ましい。また、(b)周方向補強層145のベルトコードのタイヤ時(製品タイヤから取り出された状態)における引張り荷重500Nから1000N時の伸びが0.5[%]以上2.0[%]以下であることが好ましい。かかるベルトコード(ハイエロンゲーションスチールワイヤ)は、通常のスチールワイヤよりも低荷重負荷時の伸び率がよく、負荷に耐えうる特性を有する。したがって、上記(a)の場合には、製造時における周方向補強層145の耐久性を向上でき、上記(b)の場合には、タイヤ使用時における周方向補強層145の耐久性を向上できる点で好ましい。なお、ベルトコードの伸びは、JIS G3510に準拠して測定される。
 また、この空気入りタイヤ1では、周方向補強層145が、1本のスチールワイヤを螺旋状に巻き廻して構成されている。しかし、これに限らず、周方向補強層145が、複数本のワイヤを相互に併走させつつ螺旋状に巻き廻わして構成されても良い(多重巻き構造)。このとき、ワイヤの本数が、5本以下であることが好ましい。また、5本のワイヤを多重巻きしたときの単位あたりの巻き付け幅が、12[mm]以下であることが好ましい。これにより、複数本(2本以上5本以下)のワイヤをタイヤ周方向に対して±5[deg]の範囲内で傾斜させつつ適正に巻き付け得る。
[更生時期判断用マーク]
 トラック、バスなどに装着される重荷重用ラジアルタイヤは、トレッド部の残溝が寿命に達すると、トレッド面を切削してバフ研磨し、残されたタイヤ本体(台タイヤ)に新しいゴム材料を貼り付けることにより、更生タイヤとして再使用されている。
 ここで、ベルト層に周方向補強層を有するタイヤ、特に、周方向補強層よりもタイヤ幅方向外側に周方向主溝を有する偏平率70[%]以下の低偏平タイヤでは、ショルダー摩耗(特に、ステップ摩耗)が生じ易い傾向にある。このショルダー摩耗が大きく進行すると、バフ研磨によりショルダー摩耗を除去することができず、タイヤを更生できない。これは、ショルダー摩耗を除去するために大きくバフ研磨すると、ベルト層の端部が露出するためである。
 一方で、タイヤを更生可能か否かは、バフ研磨後に判明することも多い。すると、バフ研磨工程が無駄となり、ユーザー(主として、バフ研磨を行うタイヤディーラー)に不利益が生じるため、好ましくない。
 そこで、この空気入りタイヤ1は、ユーザーがタイヤの更生時期を適正に判断できるように、以下の構成を有している。
 まず、空気入りタイヤ1が、タイヤの更生時期を判断するためのマークMをバットレス部に備える(図2参照)。このマークMは、例えば、バットレス部の表面に形成されたボタン(例えば、浅溝、飾り溝など)のタイヤ径方向内側の端部、ショルダー陸部34のラグ溝のバットレス部への開口端の溝底、バットレス部に沿ってタイヤ周方向に延在する凹部あるいは凸部などにより表示され得る。
 なお、バットレス部とは、トレッド部のプロファイルと、サイドウォール部のプロファイルとの接続部であり、ショルダー陸部のタイヤ幅方向外側の側壁面を構成する。
 また、タイヤ幅方向の最も外側にある周方向主溝23を最外周方向主溝と呼ぶ。また、タイヤ子午線方向の断面視にて、最外周方向主溝23の溝底を通り、最外周方向主溝23からタイヤ接地端Tまでのショルダー陸部23のプロファイルに平行な曲線Lを引く。また、曲線Lとバットレス部のプロファイルとの交点Aをとる。
 このとき、最外周方向主溝23が、周方向補強層145よりもタイヤ幅方向外側にある。また、最外周方向主溝23の溝底ゲージtと、交点AからマークMまでのタイヤ径方向の距離Dとが、タイヤ径方向外側を正として-1.0≦D/t≦1.0の関係を有する。
 なお、溝底ゲージtとは、最外周方向主溝23の溝底からベルト層14の最外層(図2の構成では、ベルトカバー144)のベルトコード面に下ろした垂線の長さをいう。一般的な重荷重用空気入りタイヤでは、溝底ゲージtが4[mm]以上8[mm]以下に設定されている。
 また、タイヤ接地端Tおよび距離Dは、タイヤを規定リムに装着して規定内圧を付与すると共に無負荷状態として測定される。
 また、溝底ゲージtは、タイヤを規定リムに装着して規定内圧を充填した無負荷状態にて測定される。このとき、例えば、以下の測定方法が用いられる。まず、レーザープロファイラによって計測されたタイヤプロファイルの仮想線にタイヤ単体を当てはめてテープ等で固定する。そして、測定対象であるゲージtについてノギスなどで測定する。なお、ここで使用したレーザープロファイラとは、タイヤプロファイル測定装置(株式会社マツオ製)である。
 ここで、規定リムとは、JATMAに規定される「適用リム」、TRAに規定される「Design Rim」、あるいはETRTOに規定される「Measuring Rim」をいう。また、規定内圧とは、JATMAに規定される「最高空気圧」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「INFLATION PRESSURES」をいう。また、規定荷重とは、JATMAに規定される「最大負荷能力」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「LOAD CAPACITY」をいう。ただし、JATMAにおいて、乗用車用タイヤの場合には、規定内圧が空気圧180[kPa]であり、規定荷重が最大負荷能力の88[%]である。
 例えば、図2の構成では、空気入りタイヤ1が、タイヤ径方向に延在する浅溝状のボタン41をバットレス部の表面に有している。また、このボタン41のタイヤ径方向外側の端部が、ショルダー陸部34の踏面に開口し、タイヤ径方向内側の端部が、交点Aよりもタイヤ径方向内側にて終端している。そして、ボタン41のタイヤ径方向内側の端部が、タイヤの更生時期を判断するためのマークMを構成している。
 この空気入りタイヤ1では、摩耗の進行とともに、ショルダー陸部34のタイヤ幅方向外側のエッジ部に、ショルダー摩耗が発生する。そして、このショルダー摩耗がマークMに到達する前は、タイヤが更生可能と判断され、ショルダー摩耗がマークMを越えると、タイヤが更生不能と判断される。例えば、図2の構成では、ボタン41のタイヤ径方向内側の端部(マークM)がショルダー摩耗により消滅したか否かを基準として、タイヤが更生可能か否かが判断される。具体的には、ショルダー摩耗がマークMに到達したときに、推奨更生時期となる。したがって、マークMの位置が適正化されることにより、タイヤの更生時期を適正に判断できる。
 特に、最外周方向主溝23の溝底ゲージtと、交点AからマークMまでのタイヤ径方向の距離Dとが、-1.0≦D/t≦1.0の関係を有することにより、マークMの位置が適正化される。これにより、タイヤの更生時期を適正に判断できる。
 なお、この空気入りタイヤ1では、溝底ゲージtと距離Dとが、タイヤ径方向外側を正として-1.0≦D/t<0の関係に設定されることが好ましく、-0.5≦D/t≦-0.1の関係に設定されることがより好ましい(図2参照)。このように、マークMが交点Aよりもタイヤ径方向内側に配置されることにより、タイヤの更生時期を遅らせて、タイヤの一次寿命を延長できる。また、-1.0≦D/t(さらに、-0.5≦D/t)とすることにより、タイヤが更生可能か否かを精度良く判断できる。
 また、この空気入りタイヤ1では、ベルト層14が、曲線Lよりもタイヤ径方向内側にあることが好ましい(図2参照)。例えば、図2の構成では、外径側交差ベルト143の端部Cが、曲線Lに対して最も近い位置にあり、また、曲線Lよりもタイヤ径方向内側に配置されている。
 このとき、タイヤ子午線方向の断面視にて、マークM(図2では、ボタン41のタイヤ径方向外側の端部)を通り曲線Lに平行な曲線(図示省略)を引いたときに、この曲線とベルト層14(図2では、外径側交差ベルト143の端部C)との距離が3[mm]以上となるように、マークMの位置が規定されることが好ましい。この距離は、ショルダー摩耗がマークMに到達してバフ研磨処理が行われたときに、ベルト層14からバフ研磨面までのゴム材料の厚さ(ベルト上ゲージ)となる。これにより、バフ研磨処理によるベルト層のバフ研磨面への露出が防止される。
[変形例]
 図4~図7は、図1に記載した空気入りタイヤ1の変形例を示す説明図である。これらの図は、マークMのバリエーションを示している。これらの図において、図1~図3に記載した構成要素と同一の構成要素には、同一の符号を付し、その説明を省略する。
 図2の構成では、空気入りタイヤ1が、タイヤ径方向に延在する浅溝状のボタン41をバットレス部の表面に有し、このボタン41のタイヤ径方向内側の端部がマークMとして機能している。
 これに対して、図4の変形例では、空気入りタイヤ1が、バットレス部に沿ってタイヤ周方向に延在する細リブ状の凸部42を有し、この凸部42がマークMとして機能している。同様に、図5の変形例では、空気入りタイヤ1が、バットレス部に沿ってタイヤ周方向に延在する細溝状の凹部43を有し、この凹部43がマークMとして機能している。また、これらの凹部43および凸部42が、曲線Lとバットレス部のプロファイルとの交点Aよりもタイヤ径方向内側に配置されている。したがって、最外周方向主溝23の溝底ゲージtと、交点AからマークMまでのタイヤ径方向の距離Dとが、-0.1≦D/t<0の関係を有している。このように、マークMが、バットレス部に形成された凹部43あるいは凸部42から構成されても良い。
 なお、図4および図5の変形例では、最外周方向主溝23が、石噛み防止用の凸部231を溝底に有している。かかる構成では、溝底ゲージtが、最外周方向主溝23の最大溝深さ位置からベルト層14の最外層(図4の構成では、ベルトカバー144)のベルトコード面に下ろした垂線の長さとして測定される。また、曲線Lが、最外周方向主溝23の最大溝深さ位置を通り、最外周方向主溝23からタイヤ接地端Tまでのショルダー陸部23のプロファイルに平行な曲線となる。
 また、図6の変形例では、空気入りタイヤ1が、一対のマークM、M’をバットレス部に有している。一方のマークMは、バットレス部に沿ってタイヤ周方向に延在する細リブ状の凸部42から成り、曲線Lとバットレス部のプロファイルとの交点Aよりもタイヤ径方向内側に配置されている。また、最外周方向主溝の溝底ゲージtと、交点AからマークMまでのタイヤ径方向の距離Dとが、タイヤ径方向外側を正として-0.1≦D/t<0の関係を有している。他方のマークM’は、バットレス部に沿ってタイヤ周方向に延在する細溝状の凹部43から成り、交点Aよりもタイヤ径方向外側に配置されている。また、溝底ゲージtと、交点AからマークM’までのタイヤ径方向の距離D’とが、タイヤ径方向外側を正として0<D’/t≦1.0の関係を有している。
 このように、一対のマークM、M’がタイヤ径方向に段階的に配置される構成では、タイヤの推奨更生時期を段階的に示すことができ、あるいは、これらのマークM、M’の間にある区間を推奨更生時期として示すことができる。したがって、推奨更生時期をより適正に表示できる。
 なお、これらのマークM、M’は、-1.0≦D/t≦1.0かつ-1.0≦D’/t≦1.0の範囲内で、任意に配置できる。
[付加的事項]
 また、図3の構成では、周方向補強層145が、一対の交差ベルト142、143のうち幅狭な交差ベルト143の左右のエッジ部よりもタイヤ幅方向内側に配置されている。また、幅狭な交差ベルト143の幅Wと、周方向補強層145のエッジ部から幅狭な交差ベルト143のエッジ部までの距離Sとが、0.03≦S/Wの範囲にあることが好ましい。この点は、周方向補強層145が分割構造を有する構成(図示省略)においても、同様である。
 例えば、図3の構成では、外径側交差ベルト143が幅狭構造を有し、周方向補強層145が外径側交差ベルト143の左右のエッジ部よりもタイヤ幅方向内側に配置されている。また、外径側交差ベルト143と周方向補強層145とがタイヤ赤道面CLを中心として左右対称に配置されている。また、タイヤ赤道面CLを境界とする一方の領域にて、外径側交差ベルト143のエッジ部と周方向補強層145のエッジ部との位置関係S/Wが上記の範囲内に適正化されている。
 かかる構成では、交差ベルト142、143のエッジ部と周方向補強層145のエッジ部との位置関係S/Wが適正化されて、周方向補強層145の周辺ゴム材料に生ずる歪みを低減できる。
 なお、幅Wおよび距離Sは、タイヤ子午線方向の断面視におけるタイヤ幅方向の距離として測定される。また、S/Wの上限値は、特に限定はないが、周方向補強層145の幅Wsと、幅狭な交差ベルト143の幅Wとの関係で制約を受ける。
 また、周方向補強層145の幅Wsは、0.60≦Ws/Wに設定される。なお、周方向補強層145の幅Wsは、周方向補強層145が分割構造を有する場合(図示省略)には、各分割部の幅の総和となる。
[効果]
 以上説明したように、この空気入りタイヤ1は、一対の交差ベルト142、143と周方向補強層145とを積層して成るベルト層14を備える(図1~図3参照)。また、空気入りタイヤ1は、複数の周方向主溝21~23と、これらの周方向主溝21~23に区画されて成る複数の陸部31~34とをトレッド部に備える。また、空気入りタイヤ1は、タイヤの更生時期を判断するためのマークMをバットレス部に備える。また、最外周方向主溝23が、周方向補強層145よりもタイヤ幅方向外側にある。また、最外周方向主溝23の溝底ゲージtと、所定の交点AからマークMまでのタイヤ径方向の距離Dとが、タイヤ径方向外側を正として-1.0≦D/t≦1.0の関係を有する。
 かかる構成では、更生時期を判断するためのマークMの位置が適正化されることにより、タイヤの更生時期を適正に判断できる利点がある。
 また、この空気入りタイヤ1では、ベルト層14が、曲線Lよりもタイヤ径方向内側にある(図2参照)。これにより、マークMを判断基準としてタイヤをバフ研磨したときに、ベルト層が露出する事態を抑制できる利点がある。
 また、この空気入りタイヤ1では、複数のマークM、M’が、タイヤ径方向に段階的に配置される(図6参照)。これにより、推奨更生時期をより適正に表示できる利点がある。
 また、この発明にかかる空気入りタイヤ1では、マークMが、バットレス部に沿ってタイヤ周方向に延在する凹部あるいは凸部である(図2参照)。かかる構成では、マークMがバットレス部に形成されたボタンあるいはラグ溝から成る構成と比較して、マークMの消滅を明確に視認できる。これにより、ユーザーが推奨更生時期をより適正に判断できる利点がある。
 また、この空気入りタイヤ1では、複数のベルトプライが、高角度ベルト141と、高角度ベルト141のタイヤ径方向外側に配置される一対の交差ベルト142、143と、一対の交差ベルト142、143のタイヤ径方向外側に配置されるベルトカバー144と、一対の交差ベルト142、143の間、一対の交差ベルト142、143のタイヤ径方向内側あるいは高角度ベルト141のタイヤ径方向内側に配置される周方向補強層145とから成る(図2および図3参照)。
 また、この空気入りタイヤ1では、ベルトカバー144が、絶対値で10[deg]以上45[deg]以下のベルト角度を有する。これにより、トレッド部が適正に保護される利点がある。
 また、この空気入りタイヤ1では、周方向補強層145を構成するベルトコードがスチールワイヤであり、周方向補強層145が17[本/50mm]以上30[本/50mm]以下のエンド数を有する。
 また、この空気入りタイヤ1では、周方向補強層145を構成するベルトコードの部材時における引張り荷重100Nから300N時の伸びが1.0[%]以上2.5[%]以下である。
 また、この空気入りタイヤ1では、周方向補強層145を構成するベルトコードのタイヤ時における引張り荷重500Nから1000N時の伸びが0.5[%]以上2.0[%]以下である。
 また、この空気入りタイヤ1では、周方向補強層145が、一対の交差ベルト142、143のうち幅狭な交差ベルト143の左右のエッジ部よりもタイヤ幅方向内側に配置される(図3参照)。また、幅狭な交差ベルト143の幅Wと、周方向補強層145のエッジ部から幅狭な交差ベルト143のエッジ部までの距離Sとが、0.03≦S/Wの範囲にある。これにより、交差ベルト142、143のエッジ部と周方向補強層145のエッジ部との位置関係S/Wが適正化されて、周方向補強層145の周辺ゴム材料に生ずる歪みを低減できる利点がある。
 また、この空気入りタイヤ1では、幅狭な交差ベルト143の幅Wと周方向補強層145の幅Wsが、0.60≦Ws/Wの関係を有する(図3参照)。
 また、この空気入りタイヤ1では、周方向補強層145の幅Wsが、タイヤ展開幅TDW(図示省略)に対して、0.65≦Ws/TDW≦0.80の範囲内にある。かかる構成では、Ws/TDW≦0.80であることにより、周方向補強層145の幅Wsが適正化されて、周方向補強層145の端部におけるベルトコードの疲労破断が抑制される利点がある。また、0.65≦Ws/TDWであることにより、タイヤの接地形状が適正化されて、タイヤの耐偏摩耗性能が向上する利点がある。
[適用例]
 また、この空気入りタイヤ1では、タイヤが正規リムにリム組みされると共にタイヤに正規内圧および正規荷重が付与された状態にて、偏平率HWが40[%]≦HW≦70[%]の範囲内にあることが好ましい。さらに、空気入りタイヤ1は、本実施形態のように、トラック・バス用等の重荷重用空気入りタイヤとして用いることが好ましい。かかる偏平率HWを有するタイヤ、特にトラック・バス用等の重荷重用空気入りタイヤでは、特に接地形状が鼓形状となり易く、偏摩耗の発生が顕著である。したがって、かかる偏平率HWを有するタイヤに対してこの空気入りタイヤ1の構成が適用されることにより、推奨更生時期をより適正に表示できる。
 図8は、この発明の実施の形態にかかる空気入りタイヤの性能試験の結果を示す表である。
 この性能試験では、推奨更生時期を示すマークMを相互に異なる位置に有する複数の空気入りタイヤについて、マークMが適正に発揮されているか否かについての評価が行われた(図8参照)。
 具体的には、タイヤサイズ445/50R22.5の空気入りタイヤがTRA規定の「Design Rim」に組み付けられ、この空気入りタイヤ1にTRA規定の「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の空気圧、および「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値が付与される。また、試験車両である6×4トラクター&トレーラが、空気入りタイヤを装着して走行し、マークMまで摩耗したタイヤを各仕様について100本ずつ抽出する。そして、これらのタイヤについてバフ研磨処理し、台タイヤを目視して更生の可否を評価する。また、一次寿命の残量については、全周方向主溝深さ/残溝量(ただし、ウェアインジケータは除く)の平均値を計算して評価する。この評価が30以下であれば、マークMが適正に機能しているといえる。
 実施例1~7の空気入りタイヤ1は、図4に記載した構成を有し、マークMとなる凸部42をタイヤ左右のバットレス部に備えている。また、実施例4の空気入りタイヤ1は、図6に記載した構成を有し、一対のマークM、M’を備えている。
 試験結果に示すように、実施例1~8の空気入りタイヤ1では、マークM、M’が適正に機能していることが分かる。
 1 空気入りタイヤ、11 ビードコア、12 ビードフィラー、121 ローアーフィラー、122 アッパーフィラー、13 カーカス層、14 ベルト層、141 高角度ベルト、142 内径側交差ベルト、143 外径側交差ベルト、144 ベルトカバー、145 周方向補強層、15 トレッドゴム、16 サイドウォールゴム、21~23 周方向主溝、231 凸部、31~34 陸部、41 ボタン、42 凸部、43 凹部、M マーク

Claims (13)

  1.  一対の交差ベルトと周方向補強層とを積層して成るベルト層を備えると共に、複数の周方向主溝と前記周方向主溝に区画されて成る複数の陸部とをトレッド部に備える空気入りタイヤであって、
     タイヤの更生時期を判断するためのマークをバットレス部に備え、且つ、
     タイヤ幅方向の最も外側にある前記周方向主溝を最外周方向主溝と呼ぶと共に、タイヤ子午線方向の断面視にて、前記最外周方向主溝の溝底を通り、前記最外周方向主溝からタイヤ接地端までの前記陸部のプロファイルに平行な曲線Lを引き、曲線Lとバットレス部のプロファイルとの交点Aをとるときに、
     前記最外周方向主溝が、前記周方向補強層よりもタイヤ幅方向外側にあり、
     前記最外周方向主溝の溝底ゲージtと、交点Aから前記マークまでのタイヤ径方向の距離Dとが、タイヤ径方向外側を正として-1.0≦D/t≦1.0の関係を有することを特徴とする空気入りタイヤ。
  2.  前記ベルト層が、曲線Lよりもタイヤ径方向内側にある請求項1または2に記載の空気入りタイヤ。
  3.  複数の前記マークが、タイヤ径方向に段階的に配置される請求項1または2に記載の空気入りタイヤ。
  4.  前記マークが、前記バットレス部に沿ってタイヤ周方向に延在する凹部あるいは凸部である請求項1~3のいずれか一つに記載の空気入りタイヤ。
  5.  前記ベルト層が、高角度ベルトと、前記高角度ベルトのタイヤ径方向外側に配置される一対の交差ベルトと、前記一対の交差ベルトのタイヤ径方向外側に配置されるベルトカバーと、前記一対の交差ベルトの間、前記一対の交差ベルトのタイヤ径方向内側あるいは前記高角度ベルトのタイヤ径方向内側に配置される前記周方向補強層とから成る請求項1~4のいずれか一つに記載の空気入りタイヤ。
  6.  前記ベルトカバーが、絶対値で10[deg]以上45[deg]以下のベルト角度を有する請求項5に記載の空気入りタイヤ。
  7.  前記周方向補強層を構成するベルトコードがスチールワイヤであり、前記周方向補強層が17[本/50mm]以上30[本/50mm]以下のエンド数を有する請求項1~6のいずれか一つに記載の空気入りタイヤ。
  8.  前記周方向補強層を構成するベルトコードの部材時における引張り荷重100Nから300N時の伸びが1.0[%]以上2.5[%]以下である請求項1~7のいずれか一つに記載の空気入りタイヤ。
  9.  前記周方向補強層を構成するベルトコードのタイヤ時における引張り荷重500Nから1000N時の伸びが0.5[%]以上2.0[%]以下である請求項1~8のいずれか一つに記載の空気入りタイヤ。
  10.  前記周方向補強層が、前記一対の交差ベルトのうち幅狭な交差ベルトの左右のエッジ部よりもタイヤ幅方向内側に配置されると共に、前記幅狭な交差ベルトの幅Wと、前記周方向補強層のエッジ部から前記幅狭な交差ベルトのエッジ部までの距離Sとが、0.03≦S/Wの範囲にある請求項1~9のいずれか一つに記載の空気入りタイヤ。
  11.  前記周方向補強層が、前記一対の交差ベルトのうち幅狭な交差ベルトの左右のエッジ部よりもタイヤ幅方向内側に配置され、且つ、
     前記幅狭な交差ベルトの幅Wと前記周方向補強層の幅Wsとが、0.60≦Ws/Wの範囲内にある請求項1~10のいずれか一つに記載の空気入りタイヤ。
  12.  前記周方向補強層の幅Wsが、タイヤ展開幅TDWに対して、0.65≦Ws/TDW≦0.80の範囲内にある請求項1~11のいずれか一つに記載の空気入りタイヤ。
  13.  偏平率70[%]以下のタイヤに適用される請求項1~12のいずれか一つに記載の空気入りタイヤ。
PCT/JP2011/071683 2011-09-22 2011-09-22 空気入りタイヤ WO2013042254A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020137006833A KR101285338B1 (ko) 2011-09-22 2011-09-22 공기입 타이어
PCT/JP2011/071683 WO2013042254A1 (ja) 2011-09-22 2011-09-22 空気入りタイヤ
JP2011542379A JP5029787B1 (ja) 2011-09-22 2011-09-22 空気入りタイヤ
CN201180073605.8A CN103842190B (zh) 2011-09-22 2011-09-22 充气轮胎
US14/346,697 US9174498B2 (en) 2011-09-22 2011-09-22 Pneumatic tire
DE112011105654.0T DE112011105654B4 (de) 2011-09-22 2011-09-22 Luftreifen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/071683 WO2013042254A1 (ja) 2011-09-22 2011-09-22 空気入りタイヤ

Publications (1)

Publication Number Publication Date
WO2013042254A1 true WO2013042254A1 (ja) 2013-03-28

Family

ID=47016581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071683 WO2013042254A1 (ja) 2011-09-22 2011-09-22 空気入りタイヤ

Country Status (6)

Country Link
US (1) US9174498B2 (ja)
JP (1) JP5029787B1 (ja)
KR (1) KR101285338B1 (ja)
CN (1) CN103842190B (ja)
DE (1) DE112011105654B4 (ja)
WO (1) WO2013042254A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017071278A (ja) * 2015-10-06 2017-04-13 横浜ゴム株式会社 空気入りタイヤ
US10239353B2 (en) 2012-12-28 2019-03-26 The Yokohama Rubber Co., Ltd. Pneumatic tire
US10272723B2 (en) 2012-12-28 2019-04-30 The Yokohama Rubber Co., Ltd. Pneumatic tire
US10821779B2 (en) 2012-10-10 2020-11-03 The Yokohama Rubber Co., Ltd. Pneumatic tire

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112013002477B4 (de) * 2012-07-13 2023-05-17 The Yokohama Rubber Co., Ltd. Luftreifen
FR2998216B1 (fr) * 2012-11-19 2015-01-16 Michelin & Cie Indicateur d'usure pour pneu genie civil
KR101711817B1 (ko) * 2012-12-28 2017-03-13 요코하마 고무 가부시키가이샤 공기입 타이어
CN104884272B (zh) * 2012-12-28 2017-04-12 横滨橡胶株式会社 充气轮胎
CN104870209B (zh) * 2012-12-28 2017-02-22 横滨橡胶株式会社 充气轮胎
US9950570B2 (en) * 2012-12-28 2018-04-24 The Yokohama Rubber Co., Ltd. Pneumatic tire
JP5525073B1 (ja) * 2013-02-06 2014-06-18 株式会社ブリヂストン 重荷重用タイヤ
JP6393690B2 (ja) * 2013-10-29 2018-09-19 株式会社ブリヂストン タイヤ
JP6367139B2 (ja) * 2015-02-27 2018-08-01 東洋ゴム工業株式会社 空気入りタイヤ
JP2021054396A (ja) * 2019-09-30 2021-04-08 住友ゴム工業株式会社 タイヤ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919403U (ja) * 1982-07-30 1984-02-06 横浜ゴム株式会社 バフインジケ−タを有するタイヤ
JPH02310107A (ja) * 1989-05-24 1990-12-25 Toyo Tire & Rubber Co Ltd 研削許容限界マークを備えた空気入りラジアルタイヤ
JP2004066851A (ja) * 2002-08-01 2004-03-04 Bridgestone Corp 空気入りタイヤ
JP2007106152A (ja) * 2005-10-11 2007-04-26 Yokohama Rubber Co Ltd:The 空気入りタイヤ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4480671A (en) * 1982-04-26 1984-11-06 Michelin Recherche Et Technique S.A. Tread and heavy duty tire
JPS5919403A (ja) 1982-07-26 1984-01-31 Nec Corp 偏波変換器
JPH0615282B2 (ja) * 1987-11-25 1994-03-02 株式会社ブリヂストン 重荷重用空気入りラジアルタイヤ
FR2728510A1 (fr) * 1994-12-23 1996-06-28 Michelin & Cie Pneumatique de rapport de forme h/s inferieur ou egal a 0,6
FR2740733A1 (fr) 1995-11-08 1997-05-09 Michelin & Cie Pneumatique "poids-lourds" radial avec armature de sommet ayant une nappe multipartite
US7341082B2 (en) * 2004-12-28 2008-03-11 The Goodyear Tire & Rubber Company Shoulder ribs for pneumatic tires
JP4359262B2 (ja) * 2005-05-13 2009-11-04 住友ゴム工業株式会社 空気入りタイヤ
ES2400264T3 (es) * 2006-08-28 2013-04-08 Bridgestone Corporation Neumático
US7980281B2 (en) * 2006-10-02 2011-07-19 Toyo Tire & Rubber Co., Ltd. Pneumatic tire with tread having protruding stripe in groove bottom and tire mold for making the tire
DE602007011184D1 (de) * 2006-10-31 2011-01-27 Kumho Tire Co Inc Radialluftreifen mit Wasserleitrippe
US20100032072A1 (en) * 2006-11-30 2010-02-11 The Yokohama Rubber Co., Ltd. Method of producing pneumatic tire
JP4479772B2 (ja) * 2007-09-20 2010-06-09 横浜ゴム株式会社 空気入りタイヤ
JP2010208505A (ja) 2009-03-10 2010-09-24 Bridgestone Corp タイヤ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919403U (ja) * 1982-07-30 1984-02-06 横浜ゴム株式会社 バフインジケ−タを有するタイヤ
JPH02310107A (ja) * 1989-05-24 1990-12-25 Toyo Tire & Rubber Co Ltd 研削許容限界マークを備えた空気入りラジアルタイヤ
JP2004066851A (ja) * 2002-08-01 2004-03-04 Bridgestone Corp 空気入りタイヤ
JP2007106152A (ja) * 2005-10-11 2007-04-26 Yokohama Rubber Co Ltd:The 空気入りタイヤ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10821779B2 (en) 2012-10-10 2020-11-03 The Yokohama Rubber Co., Ltd. Pneumatic tire
US11794524B2 (en) 2012-10-10 2023-10-24 The Yokohama Rubber Co., Ltd. Pneumatic tire
US10239353B2 (en) 2012-12-28 2019-03-26 The Yokohama Rubber Co., Ltd. Pneumatic tire
US10272723B2 (en) 2012-12-28 2019-04-30 The Yokohama Rubber Co., Ltd. Pneumatic tire
JP2017071278A (ja) * 2015-10-06 2017-04-13 横浜ゴム株式会社 空気入りタイヤ
WO2017061491A1 (ja) * 2015-10-06 2017-04-13 横浜ゴム株式会社 空気入りタイヤ

Also Published As

Publication number Publication date
DE112011105654B4 (de) 2018-07-19
CN103842190A (zh) 2014-06-04
CN103842190B (zh) 2015-06-24
US9174498B2 (en) 2015-11-03
JPWO2013042254A1 (ja) 2015-03-26
DE112011105654T5 (de) 2014-08-21
KR101285338B1 (ko) 2013-07-11
JP5029787B1 (ja) 2012-09-19
KR20130042025A (ko) 2013-04-25
US20140326375A1 (en) 2014-11-06

Similar Documents

Publication Publication Date Title
JP5029787B1 (ja) 空気入りタイヤ
JP4984013B1 (ja) 空気入りタイヤ
JP6111134B2 (ja) 空気入りタイヤ
JP6299219B2 (ja) 空気入りタイヤ
JP5024485B1 (ja) 空気入りタイヤ
JP4918948B1 (ja) 空気入りタイヤ
JP6304261B2 (ja) 空気入りタイヤ
JP5041104B1 (ja) 空気入りタイヤ
JP5974897B2 (ja) 空気入りタイヤ
JP6032242B2 (ja) 更生タイヤ
US9987883B2 (en) Pneumatic tire
WO2014103070A1 (ja) 空気入りタイヤ
WO2017169214A1 (ja) 空気入りタイヤ
JP6052227B2 (ja) 更生タイヤ
JP6269306B2 (ja) 更生タイヤ
US20150328930A1 (en) Pneumatic Tire
JP6369183B2 (ja) 更生タイヤ
JP4577005B2 (ja) 小型トラック用空気入りタイヤ
US11097575B2 (en) Pneumatic tire
JP2016159852A (ja) 空気入りタイヤ
JP2023075662A (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2011542379

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137006833

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872754

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112011105654

Country of ref document: DE

Ref document number: 1120111056540

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 14346697

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11872754

Country of ref document: EP

Kind code of ref document: A1