WO2012132521A1 - 石炭及び/又は鉄鉱石スラリーの改質方法 - Google Patents

石炭及び/又は鉄鉱石スラリーの改質方法 Download PDF

Info

Publication number
WO2012132521A1
WO2012132521A1 PCT/JP2012/051486 JP2012051486W WO2012132521A1 WO 2012132521 A1 WO2012132521 A1 WO 2012132521A1 JP 2012051486 W JP2012051486 W JP 2012051486W WO 2012132521 A1 WO2012132521 A1 WO 2012132521A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
iron ore
water
coal
soluble polymer
Prior art date
Application number
PCT/JP2012/051486
Other languages
English (en)
French (fr)
Inventor
平尾 孝典
馨 石塚
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to CN201280010072.3A priority Critical patent/CN103392015B/zh
Priority to KR1020137023396A priority patent/KR101869330B1/ko
Publication of WO2012132521A1 publication Critical patent/WO2012132521A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present technology relates to a method for reforming coal and / or iron ore slurry, and a method for producing a raw material modified thereby.
  • Coal and / or iron ore (hereinafter also referred to as “iron ore”) is mined in a mine, and is transported by belt conveyors, freight cars, cargo ships, trucks, etc., and is used for storage and storage facilities and processing facilities inside and outside the mining site. Etc., and are stored, stored and processed. Thereafter, the iron ore and the like are transported to a facility (for example, a steel mill, a power generation / industrial heat source generating facility, a factory, or the like) that uses the iron ore and the like by a transportation means such as a belt conveyor.
  • a facility for example, a steel mill, a power generation / industrial heat source generating facility, a factory, or the like
  • Patent Document 1 a method in which a fine powder raw material or the like is formed by solid-liquid separation in which a slurry of coal or iron ore is put in and a fine powder raw material or the like in the slurry is adsorbed to a porous body.
  • the present technology provides a simpler method for reforming coal and / or iron ore and slurry thereof, and a method for producing a raw material modified thereby.
  • the present inventors have added a water-soluble polymer compound to a coal and / or iron ore slurry, which is difficult to handle due to its slurry state and difficult to easily modify, and mixed. Then, the fluidity of the slurry could be easily reduced, and the resulting modified product was stable and easy to handle.
  • the present technology relates to the following [1] to [7].
  • [1] A method for reforming coal and / or iron ore slurry, wherein a water-soluble polymer compound is added to and mixed with coal and / or iron ore slurry.
  • [2] The reforming method as described in [1] above, wherein the water-soluble polymer compound is an anionic W / O emulsion polymer.
  • [3] The modification method according to [1] or [2], wherein the inorganic metal salt is further added after the water-soluble polymer compound is added and mixed.
  • [4] The reforming method according to [3], wherein the inorganic metal salt is an aluminum salt.
  • a method for producing a modified raw material comprising adding and mixing a water-soluble polymer compound to a coal and / or iron ore slurry.
  • a method for producing a modified raw material comprising adding and mixing a water-soluble polymer compound to a coal and / or iron ore slurry.
  • an inorganic metal salt is further added after the water-soluble polymer compound is added and mixed.
  • a coal and / or iron ore slurry modifier containing a water-soluble polymer compound comprising adding and mixing a water-soluble polymer compound to a coal and / or iron ore slurry.
  • the coal and / or iron ore slurry generated in the coal and / or iron ore or the steelworks can be more easily modified into a deposit that can be easily handled. Thereby, it is possible to obtain the raw material containing coal and / or iron ore which is easy to handle.
  • Fluidity improvement test of iron ore-based slurry When water-soluble polymer compound (agent A) and inorganic metal salt (agent B) are added and stirred (1: 1, 2: 1, 3: 2, 3: 3, 5: 5 kg / m 3 ) or when added without addition (0: 0 kg / m 3 ).
  • Fluidity improvement test of coal-based slurry Results of adding water-soluble polymer compound (agent A) and stirring (1, 2, 3 kg / m 3 ) or stirring without addition (0 kg / m 3 ) Indicates.
  • This technology adds and mixes a water-soluble polymer compound to coal and / or iron ore and slurry thereof. At this time, it is preferable to add and mix the inorganic metal salt after the water-soluble polymer compound is added and mixed.
  • the coal and / or iron ore slurry to be treated is a slurry containing at least coal and / or iron ore. And what is used as iron-making raw materials, such as coke and slag, may be further contained in this.
  • coal and / or iron ore slurry on-site yard of mine; processing facilities such as pulverization; storage storage such as field loading; transport means such as belt conveyors, ships, and freight cars; use of steelworks, etc.
  • processing facilities such as pulverization
  • storage storage such as field loading
  • transport means such as belt conveyors, ships, and freight cars
  • raw materials such as coal, iron ore, coke, slag, etc.
  • a raw material such as fine coal or iron ore tends to become a slurry.
  • Examples of the size of the raw material include particles having a particle diameter (maximum major axis) of 5 mm
  • Coal and / or iron ore slurry which is the subject of this technology, has almost no water retention because it contains charcoal and iron components, so excavated soil and mud from the general construction site. It was thought that it was difficult to handle due to its different properties, but it became possible to make it easier to handle by modifying with this technology.
  • the water content of the coal and / or iron ore slurry is not particularly limited, but is preferably 10% by mass or more, more preferably 15 to 80% by mass, and further preferably 20 to 70% by mass. .
  • This moisture content can be measured according to JIS A1125.
  • water-soluble polymer compound used in the present technology examples include synthetic water-soluble polymer compounds, semi-synthetic water-soluble polymer compounds, and natural water-soluble polymer compounds. In addition, you may use these following things by 1 type or in combination of 2 or more types.
  • Examples of the synthetic water-soluble polymer compound include polyvinyl alcohol, polyvinyl pyrrolidone, poly (meth) acrylamide, poly (meth) acrylic acid or a salt thereof, polyethylene oxide, polyvinyl methyl ether; (meth) acrylic acid, (meth) acrylamide, Examples include maleic anhydride, maleic acid, maleic amide, maleic imide, itaconic acid, crotonic acid, fumaric acid and the like, or salts thereof. Examples of the salt include alkali metal salts such as sodium and potassium.
  • Examples of the semi-synthetic water-soluble polymer compound include viscose, methyl cellulose, cationized cellulose, ethyl cellulose, carboxymethyl cellulose, hydroxypropyl cellulose and other cellulose derivatives; pregelatinized starch, carboxyl starch, dialdehyde starch, cationized starch, dextrin, Examples include starch derivatives such as British gum; cationized guar gum, anionized guar gum, methyl glycol chitosan and the like.
  • Examples of the natural water-soluble polymer compound include starch, mannan, guar gum, xanthan gum, sodium alginate, locust bean gum, pectin, dextran, gelatin, ramzan gum, gellan gum and the like.
  • the water-soluble polymer compound may be any of anionic, cationic, nonionic, and amphoteric. Of these, anionic and nonionic, which are less toxic to fish, are preferred, and anionic is more preferred.
  • the synthetic water-soluble polymer compound is preferably a homopolymer or a copolymer having one or more of an anionic monomer and a nonionic monomer as constituent components.
  • anionic monomer include carboxylic acids (monomers) such as acrylic acid, methacrylic acid, maleic acid, fumaric acid and itaconic acid; styrene sulfonic acid, vinyl sulfonic acid, 3-allyloxy-2
  • examples include sulfonic acids (monomers) such as hydroxypropane sulfonic acid.
  • the nonionic group (nonionic monomer) include acrylamide (monomer) and methacrylamide (monomer).
  • acrylic acid-based and / or acrylamide-based polymers are preferable.
  • acrylic acid-based and / or acrylamide-based polymers include acrylic acid homopolymers, acrylamide homopolymers, acrylic acid / acrylamide copolymers, polyacrylamide partial hydrolysates, acrylic acid / acrylamide / 2-acrylamide. -2-Methylpropanesulfonic acid, acrylic acid / maleic acid copolymer and the like may be mentioned, and these may be used alone or in combination of two or more.
  • acrylic acid / acrylamide copolymers, acrylamide homopolymers, and polyacrylamide partial hydrolysates are preferred because of their high molecular weight.
  • the average molecular weight of the acrylamide or acrylic acid polymer is preferably 1,000,000 to 10,000,000, more preferably 5,000,000 to 9,000,000 (inherent viscosity method). Is preferred.
  • the content of acrylic acid units in producing the acrylic acid-based and / or acrylamide-based polymer is based on the total amount (100 mol%) of the monomers used. It is preferably 5 mol% or more, more preferably 20 to 100 mol%.
  • the state when using the water-soluble polymer compound is not particularly limited, and it is preferable to use it in the form of powder, liquid or emulsion.
  • a water-soluble polymer compound in the form of a W / O emulsion can be produced by a known method (for example, Japanese Patent Publication No. 52-039417, Japanese Patent Publication No. 51-41090).
  • the amount of the water-soluble polymer compound used is usually 0.1 to 15 kg, preferably 1 to 10 kg in terms of dry matter, based on 1 m 3 of the coal and / or iron ore slurry. is there. If the amount used is within this range, the coal and / or iron ore slurry can be granulated without excess or deficiency, which is economically advantageous.
  • the water-soluble polymer compound preferably has a pH of 6 to 8 when an aqueous solution (25 ° C .: concentration of the water-soluble polymer compound is 0.1 to 0.3% by mass).
  • the water-soluble polymer compound may be added and mixed as appropriate. For example, after adding the water-soluble polymer compound to the slurry, the mixture is usually mixed for about 0.5 to 60 minutes per 1 m 3 of the slurry. Just do it. Further, when the coal and / or iron ore slurry contains oil, it is preferable from the viewpoint of improving working efficiency that the water-soluble polymer compound is added and then left for 5 to 60 minutes and then mixed. By performing the mixing (stirring), the water-soluble polymer compound is dispersed in the slurry while water in the slurry is contained in the water-soluble polymer compound. Therefore, the water-soluble polymer compound crosslinks with each particle of coal and iron ore and restrains moisture.
  • the stirrer or kneading machine used for the said mixing it does not specifically limit about the stirrer or kneading machine used for the said mixing, For example, what is necessary is just to use conventionally well-known things, such as a backhoe, Yumbo, a stabilizer, a biaxial mixer.
  • the treatment temperature is not particularly limited, but it is preferable from the viewpoint of reactivity to carry out at about room temperature (5 to 35 ° C.).
  • the inorganic metal salt is added and mixed so that the aggregated modified deposit without stickiness, that is, excellent fluidity. This is suitable because it can be reduced and a modified product (raw material) can be obtained.
  • the inorganic metal salt is not particularly limited, and examples thereof include monovalent metal salts, divalent metal salts, and trivalent metal salts. Moreover, it can classify
  • the monovalent metal include alkali metals such as sodium and potassium.
  • the divalent metal include alkaline earth metals such as calcium, barium and magnesium, and divalent iron.
  • the trivalent metal include trivalent metals such as aluminum and trivalent iron. Of these, one or more selected from divalent metal salts and trivalent metal salts (excluding basic oxides) are preferred.
  • divalent metal salt examples include divalent metal chlorides such as calcium chloride, calcium sulfate, barium chloride, magnesium chloride, magnesium sulfate, and ferrous chloride, and divalent metal sulfates.
  • trivalent metal salt examples include metal oxide chlorides such as polyaluminum chloride (PAC), aluminum sulfate (sulfate band), ferric chloride, and ferric sulfate, and trivalent metal sulfate. It is done. Of these, aluminum salts are preferable, and PAC and sulfuric acid bands are particularly preferable. Thereby, the fluidity
  • the state when the inorganic metal salt is used is not particularly limited, and is preferably used in a powdery or liquid state.
  • the amount of the inorganic metal salt used is usually 0.1 to 15 kg, preferably 1 to 10 kg in terms of dry matter, based on 1 m 3 of the coal and / or iron ore slurry.
  • the mixing after the addition of the inorganic metal salt is usually performed for 1 to 60 minutes, preferably about 1 to 30 minutes after the inorganic metal salt is added to the slurry containing the water-soluble polymer compound.
  • This mixing promotes the self-supporting property of the granulated product, so that it is possible to obtain a deposit whose fluidity is more stably reduced, that is, a better-modified deposit.
  • the treatment temperature is not particularly limited, but it is preferable from the viewpoint of reactivity to carry out at about room temperature (5 to 35 ° C.).
  • the coal and / or iron ore slurry is cured for a certain period after the water-soluble polymer compound or the water-soluble polymer compound and the inorganic metal compound are added and mixed, thereby promoting drying and reducing weight. This is preferable because it can be achieved.
  • the curing period is preferably 10 to 150 hours, more preferably 48 to 120 hours from the viewpoint of work efficiency.
  • the moisture content after drying and curing of the resulting modified product is preferably 10 to 40% by mass, more preferably 15 to 30% by mass in order to reduce fluidity and reduce weight. Is preferred.
  • the reforming mechanism of this technology will be described. After adding the water-soluble polymer of the present technology (preferably in an emulsion state) to the coal and / or iron ore and the slurry thereof (in the case of a slurry containing oil, preferably after being left after the addition), mixing Upon stirring, the water-soluble polymer substance is dispersed in the coal and / or iron ore and the slurry in the presence of moisture while containing moisture-containing coal and / or iron ore and the water contained in the slurry. Although the object such as the coal and / or iron ore slurry contains a high concentration of coal or iron ore, the water-soluble polymer compound and the coal and / or iron ore are subsequently added in the presence of water.
  • the modified product can be cross-linked with stone and granulated. By granulating, moisture is restrained in the particles, and the fluidity of the slurry is suppressed.
  • the modified product is symptomatically improved by improving the plastic fluidity of the slurry.
  • Coal and / or iron ore before becoming a slurry can be modified by using the water-soluble polymer of the present technology (preferably in an emulsion state) in the presence of water. Therefore, the modified iron ore and the like are easy to handle because slurrying is suppressed even if the iron ore and the like thereafter contact with water.
  • the self-supporting property of the granulated product can be promoted by adding and stirring an inorganic metal salt. Thereby, it becomes a more stable granulated material.
  • a slurry of coal or iron ore having high fluidity can be quickly reformed and made into a state that can be piled up. Moreover, even if the modified product is exposed to rainfall or the like, it can prevent the piles piled up from collapsing without being slurried again.
  • the reformed product can have a self-supporting property that can be easily transported by a dumper or the like, and can have a size that can be easily transported by a belt conveyor or the like (for example, a diameter of about 10 mm).
  • the coal and / or iron ore slurry has high fluidity, is heavy, and is poor in drainage, so it takes time to carry out, and it cannot be piled up outdoors, and it is difficult to dry. It took a long time.
  • a method of solidifying the surface of the mountain by spraying a W / W type ethylene-vinyl acetate-lactic acid-vinyl resin emulsion on the deposit (surface) containing piled steelmaking raw materials is also employed.
  • a W / W type ethylene-vinyl acetate-lactic acid-vinyl resin emulsion on the deposit (surface) containing piled steelmaking raw materials.
  • a method of adding quick lime is also adopted.
  • Calcium oxide (quick lime) is added to the slurry, and the water is evaporated by reaction heat generated by the hydration reaction between the water in the coal or iron ore and calcium oxide, and the slurry is hardened by the hydration reaction.
  • quicklime is added to the slurry, and the water is evaporated by reaction heat generated by the hydration reaction between the water in the coal or iron ore and calcium oxide, and the slurry is hardened by the hydration reaction.
  • quicklime since a large amount of quicklime is added, the amount of processed material increases, and a processing place and a storage place are widely required, and the carrying amount increases.
  • a large amount of highly alkaline powder is used, there is a possibility that an operator may be exposed to alkali when handling it, and there is also a possibility of dust scattering of highly alkaline deposits.
  • a material that does not affect or hardly affects the recycle of iron or the like without adding cement or lime to the coal, steel stone, or slurry thereof (the water-soluble material described above).
  • Additive polymer compound and inorganic metal compound) are mixed and mixed to reduce fluidity, and it becomes possible to obtain a modified raw material (reused raw material) that can be reused. That is, it is also possible to produce coal and / or iron ore and a slurry thereof as a raw material (recycled raw material) using the polymer compound.
  • this material since this material has little influence on the human body, there is no problem of alkali exposure during stirring and mixing and transportation, and work efficiency and safety are improved.
  • the coal, steel stone, and slurry (sediment) thereof are granulated and promote drainage, so that they are more easily dried. Further, the moisture content of the modified product becomes low and light during drying, and the modified product can maintain stable granulation, so that it can be easily transported and piled up high.
  • the water-soluble polymer compound of the present technology is added to a target object in the presence of water and mixed to modify the raw material of coal and / or iron ore; coal and / or iron ore It is possible to modify the slurry. It is also possible to produce a modified coal and / or iron ore raw material by using the water-soluble polymer compound of the present technology.
  • the water-soluble polymer compound of the present technology is used to produce a modifier for coal and / or iron ore raw material; a modifier for the slurry (hereinafter, also referred to as “modifier”). Can be used. You may mix
  • This optional component can be used as an adjunct to the modifier, and may be used simultaneously or separately with the modifier.
  • Each of these agents may be in any state such as liquid, solid, powder.
  • examples of the object of the present technology include coal and / or iron ore (hereinafter also referred to as “iron ore”), hydrous iron ore, and iron ore slurry, and the like. The previous one may be used.
  • iron ore coal and / or iron ore
  • the previous one may be used.
  • reformation method of this slurry the said water-soluble polymer compound (further inorganic metal salt) is made into the said object as it is or in aqueous solution. Can be used.
  • the modifier of the present technology can be added to and mixed with coal and / or iron ore and its slurry to obtain a modified product with better properties (drainage, lightness, granulated shape, etc.).
  • iron ore or the like may be treated with the modifier of the present technology in an aqueous solution state, or the hydrous iron ore or the like may be treated with the powder of the modifier of the present technology or the like. It may be processed.
  • the “water-soluble polymer compound of the present technology and its aqueous solution, and the modifier containing the water-soluble polymer compound of the present technology” are also referred to as “the modifier of the present technology”.
  • this technique adds the modifier of this technique etc. to the coal and / or iron ore in the presence of water and mixes them, and a method for reforming the coal and / or iron ore; It is also possible to provide a manufacturing method.
  • Each condition of this reforming method; the modified raw material production method may be the same as each condition of the above-described coal and / or iron ore slurry reforming method;
  • the “in the presence of water” means that water is present in the coal and / or iron ore so that the water content is the same as the “water content of the coal and / or iron ore slurry”. That's fine.
  • the above “coal and / or iron ore slurry 1 m 3 ” may be read as “coal and / or iron ore 1 m 3 in the presence of water”.
  • the place of use of the modifier of the present technology is not particularly limited as long as it is a place where coal and / or iron ore can be added and mixed with the modifier of the present technology in the presence of water.
  • a mine site yard a processing facility such as breaking and crushing; a storage and storage site such as field loading; a conveying means such as a belt conveyor, a ship and a freight car; and a use facility such as a steel mill.
  • an apparatus capable of adding (spreading, etc.) the modifier of the present technology to the object and stirring examples thereof include an apparatus capable of adding (spreading, etc.) the modifier of the present technology to the target object and kneading.
  • transport means for example, a belt conveyor
  • a kneader to add and knead the modifier or the like of the present technology to the object being conveyed; the object (for example, humidity-controlled iron ore) is put into the ship
  • the means for conveying from the ship may be equipped with a kneader, and the modifier of the present technology may be added and kneaded to the object during loading / unloading, and then loaded on the conveying means.
  • a mixing device may be provided in a transportation means such as a ship, a freight car, or a truck, and the modifier of the present technology may be added to and mixed with the object during transportation.
  • a machine or apparatus that can stir (mix) the object during storage / storage.
  • a method in which a modifier of the present technology is continuously added and mixed by a kneader in a stage of carrying wet coal and / or iron ore from a ship to a belt conveyor by a bucket.
  • a method in which the modifier of the present technology is continuously added to iron ore or the like by a kneading machine when piling into the yard and mixed.
  • the W / O type emulsion polymer (pH of about 6 to 8) can be produced by a known method (see, for example, Japanese Patent Publication No. 52-039417 and Japanese Patent Publication No. 51-41090). It can be obtained by emulsion polymerization by adding a surfactant (including a phase inversion agent) and an aqueous monomer solution of acrylic acid / acrylamide to the oil. 3) Then, the compounding quantity shown in Table 2 was added to this, and the inorganic metal salt aqueous solution containing 10 mass% of PAC was stirred for 30 seconds.
  • a surfactant including a phase inversion agent
  • “kg / m 3 ” in the table is the amount (kg) of the inorganic metal salt aqueous solution used relative to 1 m 3 of the slurry. 4) A sample was taken out, and a table flow value (number of drop impacts: 0) was measured in accordance with JIS R-5201. 5) The table flow value after dropping impact on the table was measured.
  • Test Example 3 Test for confirming drying acceleration effect of coal slurry
  • the coal slurry of Test Example 2 (Table 2) was used as the slurry.
  • Table 2 The coal slurry of Test Example 2 (Table 2) was used as the slurry.
  • Table 4 using the same anionic W / O emulsion polymer and aqueous inorganic metal salt solution as in Test Example 1) as Experiment 11
  • the slurry was processed.
  • the slurry was left untreated and modified, then allowed to stand at room temperature (25 ° C.), and the dried state was compared.
  • Test Example 3 The results of Test Example 3 are shown in Table 5 and FIG. As in Experiments 13 and 14, it was found that the rate of decrease in the moisture content of the modified product was faster than that of the untreated slurry. That is, a drying acceleration effect was recognized by modifying the slurry by adding a chemical.
  • Test Example 4 Modification Test of Oil-Containing Iron Ore Slurry Using the iron ore slurry shown in Table 6 obtained at a steel mill, according to Test Example 1 above, after the addition amount and emulsion polymer addition shown in Table 7, The slurry was processed during the standing time until mixing. The results of Test Example 4 are shown in Table 7. As shown in Table 7, in a slurry containing a large amount of oil (n-hexane extract), the mixing time until reforming can be shortened by mixing after leaving the emulsion polymer after it is added. It should be noted that n-hexane was added to the slurry and mixed, and the oil contained in the slurry was extracted with n-hexane, and the extracted amount is shown in Table 6 as the amount of oil in the slurry.
  • the fluidity of the slurry can be reduced (improved) by adding and mixing the water-soluble polymer compound to the coal / iron ore slurry. It was confirmed that it was possible to pile up higher by reducing the fluidity. Moreover, after kneading the water-soluble polymer compound, it was confirmed that a further improved granulated product can be obtained by further kneading the inorganic metal salt. As described above, it was confirmed that if a water-soluble polymer compound is used or a water-soluble polymer compound and an inorganic metal salt are used in combination, a good granulated product can be obtained from a slurry. In addition, in the slurry containing oil, it is confirmed that the mixing time until reforming is shortened when the water-soluble polymer compound is added and mixed after being allowed to stand, compared with the case of mixing without leaving. It was done.
  • This technology can reduce the fluidity of slurry (slurry deposits, etc.) and granulate. Further, the weight can be reduced by promoting drying. Since such a more excellent modified product can be obtained, the modified product can be piled higher and the processing place can be saved in a space-saving manner. Furthermore, since the water-soluble polymer compound and inorganic metal salt to be used are almost harmless, it is easy to ensure the safety of the operator, and the workability is improved. Furthermore, when aluminum is reusable, it can be reused as a raw material for iron making, and is easy to handle even when disposed as waste.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

 より簡便に堆積物の流動性を低下させるための石炭及び/又は鉄鉱石スラリーの改質方法及びこれにより改善された原料の製造方法を提供することを課題とする。 上記課題を解決するために、石炭及び/又は鉄鉱石スラリーに、水溶性高分子化合物を添加し、混合し、石炭及び/又は鉄鉱石スラリーの改質を行った。そして、該改質により、改質された原料の製造を行った。また、前記水溶性高分子化合物は、アニオン性W/O 型エマルジョンポリマーであるのが好適である。

Description

石炭及び/又は鉄鉱石スラリーの改質方法
 本技術は、石炭及び/又は鉄鉱石スラリーの改質方法、並びにこれにより改質された原料の製造方法に関する。
 石炭及び/又は鉄鉱石(以下、「鉄鉱石等」ともいう)は、鉱山にて採掘され、ベルトコンベアや貨車、貨物船、トラック等の搬送手段で、採掘現場内外の保管貯蔵場や処理施設等に搬送され、保管・貯蔵や処理されている。その後、鉄鉱石等は、ベルトコンベア等の運搬手段にて、鉄鉱石等を使用する施設(例えば、製鉄所、発電・工業用熱源発生施設、工場等)に搬送され、利用されている。
 このような採掘現場、搬送手段、処理施設、使用施設等では、鉄鉱石等に雨が降ること;保管や清掃等のときに、鉄鉱石等に散水や放水すること;石炭及び/又は鉄鉱石を水浸させること等がある。よって、採掘現場、処理施設、使用施設(特に製鉄所等)等で、鉄鉱石等は水と接触することが多い。
 このように石炭及び/又は鉄鉱石に、水が接触し、水を含むことで、石炭及び/又は鉄鉱石のスラリーが発生することになる。このようなスラリーを、原料として再利用するか、又は廃棄物として処分する必要がある。
 ところが、これらスラリーは、流動性が高く様々な作業や処理が行いにくい。例えば、これを屋外に貯留・保管するにしても、流動性が高いので、高く山積みすることが難しく、また、搬送するのも容易ではない。
 このため、石炭や鉄鉱石のスラリーの再利用や処分を行うための改質方法が提案されている。例えば、コンクリートや土砂等でピットを設けてこの中で石炭や鉄鉱石のスラリーを天日乾燥させて脱水する方法;フィルタープレスの脱水装置を利用して脱水する方法;ピットを特定の多孔質体で形成し、その中に石炭や鉄鉱石のスラリーを入れてこのスラリー中の微粉原料等を多孔質体に吸着させる固液分離にて微粉原料等をする方法(特許文献1)が知られている。
 しかしながら、ピットを設けるには予めそれを形成するための広い場所やピット施工の作業が必要であり、しかもピット内での固化乾燥には長時間を要する。また、脱水処理装置を使用するには、その装置を設置するための設備投資と設置場所が事前に必要であり、しかもその特定の設置場所に搬送しなければならない。
 従って、より簡便に、石炭や鉄鉱石、及びそのスラリーを改質できる方法が望まれている。
特開平8-196820号公報
 本技術は、斯かる問題と実状に鑑み、より簡便な石炭及び/又は鉄鉱石、及びそのスラリーの改質方法及びこれにより改質された原料の製造方法を提供するものである。
 本発明者らは、鋭意検討を行った結果、スラリー状のため取り扱いが難しく、簡便に改質することが困難である石炭及び/又は鉄鉱石スラリーに、水溶性高分子化合物を添加し、混合すると、簡便に、このスラリーの流動性を低下させることができ、得られた改質物は安定的に取り扱いが容易であった。
 従って、本技術は、以下の〔1〕~〔7〕に係るものである。
 〔1〕 石炭及び/又は鉄鉱石スラリーに、水溶性高分子化合物を添加し、混合することを特徴とする石炭及び/又は鉄鉱石スラリーの改質方法。
 〔2〕前記水溶性高分子化合物が、アニオン性W/O型エマルジョンポリマーであることを特徴とする前記〔1〕項記載の改質方法。
 〔3〕 前記水溶性高分子化合物の添加し、混合した後に、更に無機金属塩を添加することを特徴とする前記〔1〕又は〔2〕記載の改質方法。
 〔4〕 前記無機金属塩が、アルミニウム塩である前記〔3〕記載の改質方法。
 〔5〕 石炭及び/又は鉄鉱石スラリーに、水溶性高分子化合物を添加し、混合することを特徴とする改質された原料の製造方法。
 〔6〕 前記水溶性高分子化合物の添加し、混合した後に、更に無機金属塩を添加することを特徴とする前記〔5〕項記載の製造方法。
 〔7〕 水溶性高分子化合物を含有する石炭及び/又は鉄鉱石スラリー改質剤。
 本技術によれば、より簡便に、石炭及び/又は鉄鉱石や製鉄所等で発生する石炭及び/又は鉄鉱石スラリーを、取り扱いが容易な堆積物に改質することができる。これにより、取り扱いが容易な石炭及び/又は鉄鉱石を含む原料を得ることが可能である。
鉄鉱石系スラリーの流動性改善試験:水溶性高分子化合物(A剤)及び無機金属塩(B剤)を添加して攪拌した場合(それぞれ1:1、2:1、3:2、3:3、5:5kg/m)又は無添加で攪拌した場合(0:0kg/m)の結果を示す。 石炭系スラリーの流動性改善試験:水溶性高分子化合物(A剤)を添加して攪拌した場合(1、2、3kg/m)又は無添加で攪拌した場合(0kg/m)の結果を示す。 石炭系スラリーの乾燥促進試験:水溶性高分子化合物(A剤)及び無機金属塩(B剤)を添加して攪拌した場合(5:5kg/m)又は無添加で攪拌した場合(0:0kg/m)の結果を示す。
 本技術は、石炭及び/又は鉄鉱石、及びそのスラリーに、水溶性高分子化合物を添加し、混合するものである。このとき、前記水溶性高分子化合物の添加し、混合した後に、更に無機金属塩を添加し、混合するのが、好ましい。
 処理対象である石炭及び/又は鉄鉱石スラリーとは、少なくとも石炭及び/又は鉄鉱石を含むスラリーである。そして、これには、更にコークスやスラグ等の製鉄原料として使用されるものが含まれていてもよい。
 前記石炭及び/又は鉄鉱石スラリーとして、上述のとおり、鉱山の現場ヤード;破粉砕等の処理施設;野積み等の貯蔵保管場;ベルトコンベア、船、貨車等の搬送手段;製鉄所等の使用施設等において、鉄鉱石等が水を含むことにより発生するもの等が挙げられる。
 例えば、屋外ヤードに野積みされた原料への降雨や粉塵目的の散水等にて、石炭や鉄鉱石、コークス、スラグ等の原料が流出し、排水溝に堆積したもの;原料を搬送するベルトコンベアを洗浄する水を貯留するピットや生産ラインから流出した原料を雨水等によって流れ込ませる沈殿池(ポンド)に堆積したもの;湿式集塵プラントからの回収した堆積物やヤードでの堆積物;屋外ヤードに野積みされた原料をベルトコンベアで搬送する際に粉塵防止目的で散水されて水を含んだもの;乾式集塵プラントからの回収物に水が流されてスラリー化したもの;運搬手段、処理施設、貯蔵管理場所等で管理保管の目的で散水されて水を含んだもの;船内で貯蔵保管目的で水浸させたウェット状態なもの;搬送手段等を水で洗浄し、回収したもの等が挙げられる。
 微細な石炭や鉄鉱石等の原料がスラリーとなり易いが、この原料の大きさとして、例えば粒径(最大長径)5mm以下のものが挙げられる。
 本技術の処理対象である石炭及び/又は鉄鉱石スラリーは、成分に炭成分と鉄成分が含まれることから、保水性がほとんど無いため、一般的な建設工事現場から出る掘削土や泥状土砂とは性状が異なっており、取り扱いが困難であると考えられていたが、本技術にて改質することで取り扱いを容易にすることが可能となった。
 前記石炭及び/又は鉄鉱石スラリーの含水率は、特に限定されないが、10質量%以上のものが好ましく、15~80質量%とするのがより好ましく、更に20~70質量%とするのが好ましい。この含水率は、JIS A1125にて測定することが可能である。
 本技術に用いる水溶性高分子化合物は、例えば、合成水溶性高分子化合物、半合成水溶性高分子化合物及び天然水溶性高分子化合物等が挙げられる。なお、以下のこれらのものを1種で又は2種以上組み合わせて使用してもよい。
 前記合成水溶性高分子化合物としては、ポリビニルアルコール、ポリビニルピロリドン、ポリ(メタ)アクリルアミド、ポリ(メタ)アクリル酸又はその塩、ポリエチレンオキサイド、ポリビニルメチルエーテル;(メタ)アクリル酸、(メタ)アクリルアミド、無水マレイン酸、マレイン酸、マレイン酸アミド、マレイン酸イミド、イタコン酸、クロトン酸、フマル酸等の共重合物又はその塩等が挙げられる。この塩としては、例えばナトリウム、カリウム等のアルカリ金属塩等が挙げられる。
 前記半合成水溶性高分子化合物としては、ビスコース、メチルセルロース、カチオン化セルロース、エチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルセルロース等のセルロース誘導体;アルファ化デンプン、カルボキシルデンプン、ジアルデヒドロデンプン、カチオン化デンプン、デキストリン、ブリティッシュゴム等のデンプン誘導体;カチオン化グアーガム、アニオン化グアーガム、メチルグリコールキトサン等が挙げられる。
 前記天然水溶性高分子化合物としては、デンプン、マンナン、グアーガム、キサンタンガム、アルギン酸ナトリウム、ローカストビーンガム、ペクチン、デキストラン、ゼラチン、ラムザンガム、ジェランガム等が挙げられる。
 また、前記水溶性高分子化合物は、アニオン性、カチオン性、ノニオン性、両性の何れでもよい。このうち、魚類への毒性が少ないアニオン性及びノニオン性が好ましく、更にアニオン性が好ましい。
 前記水溶性高分子化合物のうち、合成水溶性高分子化合物が好ましい。
 前記合成水溶性高分子化合物は、アニオン性モノマーとノニオン性モノマーの1種又は2種以上を構成成分とする単独重合体又は共重合体が好適である。
 前記アニオン性基(アニオン性モノマー)としては、例えば、アクリル酸、メタアクリル酸、マレイン酸、フマル酸、イタコン酸等のカルボン酸(モノマー);スチレンスルホン酸、ビニルスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸等のスルホン酸(モノマー)等が例示される。
 また、前記ノニオン性基(ノニオン性モノマー)としては、例えば、アクリルアミド(モノマー)やメタクリルアミド(モノマー)等が例示される。
 更に、前記合成水溶性高分子化合物のうち、アクリル酸系及び/又はアクリルアミド系ポリマーが好ましい。
 前記アクリル酸系及び/又はアクリルアミド系ポリマーとしては、例えば、アクリル酸単重合物、アクリルアミド単独重合物、アクリル酸/アクリルアミド共重合物、ポリアクリルアミドの部分加水分解物、アクリル酸/アクリルアミド/2-アクリルアミド-2-メチルプロパンスルホン酸、アクリル酸/マレイン酸共重合物等が挙げられ、これらを単独で又は2種以上組み合わせて使用してもよい。このうち、アクリル酸/アクリルアミド共重合物、アクリルアミド単独重合物、ポリアクリルアミドの部分加水分解物が、高分子量であるので、好ましい。
 前記アクリルアミド系又はアクリル酸系ポリマーの平均分子量は、好ましくは1,000,000~10,000,000、より好ましくは5,000,000~9,000,000(固有粘度法)とするのが好適である。
 また、アニオン性高分子の場合、前記アクリル酸系及び/又はアクリルアミド系ポリマーを生成する際のアクリル酸単位の含有量は、使用する単量体の全合計量(100モル%)に対して、好ましくは5モル%以上、より好ましくは20~100モル%とするのが好適である。
 前記水溶性高分子化合物を使用するときの状態としては、特に限定されず、粉末状、液体状又はエマルジョン状で使用するのが好適である。特に処理対象の水分を増加させずに使用できる粉末状とエマルジョン状で使用するのが好適である。更に、スラリーの改質効果と流動性増大のマッチポンプの発生を少なくすることができるエマルジョン状(好ましくは、W/O型エマルジョン状)で使用するのが好適である。W/O型エマルジョン状の水溶性高分子化合物は、公知の手法(例えば、特公昭52-039417号公報、特開昭51-41090号公報)にて製造することができる。
 前記水溶性高分子化合物の使用量は、前記石炭及び/又は鉄鉱石スラリー1mに対し、乾燥物換算で、通常0.1~15kg、好ましくは1~10kgの範囲で添加するのが好適である。この範囲内の使用量であれば、過不足なく前記石炭及び/又は鉄鉱石スラリーを造粒物化することが可能であり、経済的にも有利である。
 前記水溶性高分子化合物は、水溶液(25℃:前記水溶性高分子化合物の濃度0.1~0.3質量%)としたとき、好ましくはpH6~8となるものが好適である。
 前記水溶性高分子化合物の添加・混合は、適宜行えばよいが、一例として、前記スラリーに、前記水溶性高分子化合物を添加後、通常スラリー1mあたり0.5~60分間程度混合を行えばよい。更に、石炭及び/又は鉄鉱石スラリーが油分を含む場合には、前記水溶性高分子化合物を添加後、5~60分放置した後に混合するのが、作業効率向上の点で、好適である。
 前記混合(攪拌)を行うことにより、このスラリー中の水分を前記水溶性高分子化合物に含ませつつ、このスラリー中に前記水溶性高分子化合物を分散させる。よって、前記水溶性高分子化合物が、石炭や鉄鉱石の各粒子と架橋し、また水分を拘束する。これにより、流動性が低下した処理物(改質された原料)、すなわち改質物を得ることが可能となる。
 前記混合に使用する攪拌機又は混練機については、特に限定されないが、例えば、バックホウ、ユンボー、スタビライザー、二軸ミキサー等の従来の公知のものを使用すればよい。
 また、このとき、処理温度は特に限定されないが、常温(5~35℃)程度で行うのが、反応性の点から好適である。
 更に、前記水溶性高分子化合物を添加し、混合した後に、前記無機金属塩を、添加・混合するのが、より粘りのない団粒状の改質された堆積物、すなわち、優れて流動性が低下し、改質された物(原料)を得ることができるので、好適である。
 前記無機金属塩としては、特に限定されず、例えば、一価金属塩、二価金属塩及び三価金属塩等が挙げられる。また、例えば、金属塩化物、金属硫酸塩等に分類できる。
 前記一価金属としては、例えば、ナトリウム、カリウム等のアルカリ金属類等が挙げられる。また、前記二価金属としては、カルシウム、バリウム、マグネシウム等のアルカリ土類金属類及び二価鉄等が挙げられる。また、前記三価金属としては、アルミニウム、三価鉄等の三価金属等が挙げられる。
 このうち、二価金属塩及び三価金属塩(塩基性酸化物を除く)から選ばれる1種以上のものが好ましい。
 前記二価金属塩としては、例えば、塩化カルシウム、硫酸カルシウム、塩化バリウム、塩化マグネシウム、硫酸マグネシウム、塩化第一鉄等の二価金属塩化物や二価金属硫酸塩等が挙げられる。
 また、前記三価金属塩としては、例えば、ポリ塩化アルミニウム(PAC)、硫酸アルミニウム(硫酸バンド)、塩化第二鉄、硫酸第二鉄等の酸化金属塩化物や三価金属硫酸塩等が挙げられる。このうち、アルミニウム塩が好ましく、特にPACや硫酸バンドが好ましい。これにより、処理物の流動性が更に低減され、また屋外にて降雨に曝されても周辺に影響の少ない改質物を得ることが可能となる。
 これらは1種又は2種以上組み合わせて使用してもよい。
 前記無機金属塩を使用するときの状態としては、特に限定されず、粉末状又は液体状の状態で使用するのが好適である。
 前記無機金属塩の使用量は、前記石炭及び/又は鉄鉱石スラリー1mに対し、乾燥物換算で、通常0.1~15kg、好ましくは1~10kgの範囲で添加するのが好適である。
 前記無機金属塩の添加後の混合は、前記水溶性高分子化合物を含むスラリーに、前記無機金属塩を添加後、通常1~60分間、好ましくは1~30分間程度行う。この混合(攪拌)により、造粒物の自立性を促進するので、より安定的に流動性が低下した堆積物、すなわちより良好に改質された堆積物を得ることが可能となる。
 この際、使用する攪拌機及び混練機については、上述と同じく、従来の公知のものを使用すればよい。
 また、このとき、処理温度は特に限定されないが、常温(5~35℃)程度で行うのが、反応性の点から好適である。
 前記石炭及び/又は鉄鉱石スラリーを、前記水溶性高分子化合物又は、前記水溶性高分子化合物及び無機金属化合物を添加・混合した後に、一定期間養生することが、乾燥が促進し、軽量化が図れるので、好適である。当該養生期間としては、好ましくは10~150時間、より好ましくは48~120時間とするのが、作業効率の点から、好適である。
 そして、この状態で安定的な造粒にすることが可能であり、これにより、スラリーが改質され、前記石炭及び/又は鉄鉱石スラリーの流動性を低下させることも可能となる。そして得られた改質物の乾燥、養生後の含水率は、流動性を低下させ、また軽量化を図るため、好ましくは、10~40質量%、より好ましくは15~30質量%とするのが好適である。
 本技術の改質の機構について述べる。
 前記石炭及び/又は鉄鉱石、並びにそのスラリーに、本技術の水溶性高分子(好適にはエマルジョン状態)を添加した後に(油分を含むスラリーの場合、好適には添加後放置した後に)、混合・攪拌すると、調湿石炭及び/又は鉄鉱石並びにこのスラリーに含まれる水分を含みながら水溶性高分子物質が、水分の存在下で石炭及び/又は鉄鉱石並びにこのスラリー中に分散する。
 この前記石炭及び/又は鉄鉱石スラリー等の前記対象物には、石炭や鉄鉱石を高濃度に含有しているものの、その後、水の存在下で、水溶性高分子化合物と石炭及び/又は鉄鉱石と架橋し、造粒化が可能である。造粒することで、この粒子中に水分を拘束し、スラリーの流動性が抑制されるようになる。しかも、改質された物はスラリーの塑性流動性の改善によって症状の改質がみられるようになる。スラリーになる前の石炭及び/又は鉄鉱石でも、本技術の水溶性高分子(好適にはエマルジョン状態)を水の存在下で使用することにより、これらの改質ができる。よって、改質された鉄鉱石等は、その後水と接触してもスラリー化が抑制されるので、取り扱いが容易である。
 更に、本技術の水溶性高分子化合物の他、無機金属塩を添加攪拌することで、造粒物の自立性を促進させることができる。これにより、より安定的な造粒物となる。
 このように、流動性が高い石炭や鉄鉱石のスラリーを、速やかに改質し、山積みが可能な状態の物とすることができる。また、改質物は、降雨等に暴露されても再びスラリー化することなく、積み上げた山の崩壊も防止することができる。また、改質物は、ダンプ等で運搬し易い自立性を持つとともに、ベルトコンベア等で搬出し易い大きさ(例えば、直径10mm程度)にもできる。
 ここで、石炭及び/又は鉄鉱石スラリーは、流動性が高く、また重く、水抜けも悪いことから、搬出にも時間を要しており、しかも屋外では高く積むことができず、乾燥にも長時間要していた。
 例えば、従来は、石炭や鉄鉱石等の製鉄原料を含むスラリーを、天日にて乾燥させ、流動性を低下させた後に、積み上げ等を行っているが、屋外で行うため、天候に左右されやすく、乾燥には長期間を要する。また、降雨により積み上げた山の表面の粒子が降雨等より流出したり、前記製鉄原料を含む積み上げた山が崩れる可能性もある。
 また、山積みした製鉄原料を含む堆積物の上(表面)に、W/W型エチレン-酢酸ビニル乳酸-ビニル樹脂エマルジョンを散布し、山の表面を固化する方法も採用されている。しかしながら、石炭や鉄鉱石を山積みする前に、ある程度乾燥させていないと、高く積み上げることができず、乾燥に時間を要する。また、この樹脂エマルジョンの散布は、硬化までに数日を要するため、その間に降雨があると薬剤が雨水と共に流出してしまい効果を発揮し得ない。
 また、生石灰を添加する方法も採用されている。酸化カルシウム(生石灰)を前記スラリーに添加し、石炭や鉄鉱石中の水分と酸化カルシウムとの水和反応で発生する反応熱で水分を蒸発させると共に、水和反応によって該スラリーを硬化させる。このことで、含水率の低下と、積み上げや運搬に適した状態の改質された物を得ることが可能である。しかし、生石灰を大量に添加するため処理物の量が増大してしまい、処理場所、保管場所が広く必要であると共に運搬量が増えてしまう。また、高アルカリ性の粉末を大量に使用するため、これを取り扱うとき、作業者のアルカリ暴露の可能性があり、また高アルカリ性の堆積物の粉塵飛散の可能性もある。
 これに対し、本技術の方法によれば、前記石炭や鉄鋼石、そのスラリーに、セメントや石灰を添加せずとも、製鉄等再利用の際に影響がないかほとんどないような素材(前記水溶性高分子化合物や前記無機金属化合物)を添加し、混合することで流動性の低下し、再利用可能な改質された原料(再利用原料)を得ることが可能となる。すなわち、前記高分子化合物を用いて、石炭及び/又は鉄鉱石、そのスラリーを原料(再利用原料)に製造することも可能である。しかもこの素材は人体に影響の少ないものであることから、攪拌混合中や搬送にアルカリ暴露等の問題もなく、作業効率や安全性も向上する。
 また、前記石炭や鉄鋼石、そのスラリー(堆積物)は造粒化され、水抜けを促進するので、より乾燥しやすい状態となっている。そして、乾燥に際して改質物の含水率は低くなって軽くなり、この改質物は安定的な造粒状を維持できるため、容易に運搬することでき、また高く山積みできる。
 以上のとおり、本技術の水溶性高分子化合物は、対象物に水の存在下で添加し、混合することで、石炭及び/又は鉄鉱石の原料を改質すること;石炭及び/又は鉄鉱石スラリーを改質することが可能である。また、本技術の水溶性高分子化合物を使用することで改質された石炭及び/又は鉄鉱石の原料を製造することも可能である。
 そして、本技術の水溶性高分子化合物は、石炭及び/又は鉄鉱石原料の改質剤;このスラリーの改質剤等の改質剤(以下、「改質剤」ともいう)を製造するために使用することが可能である。該改質剤には、必要に応じて、無機金属塩、乳化剤、界面活性剤等の任意成分を配合してもよい。この任意成分は、該改質剤の補助剤として使用することが可能であり、該改質剤と同時に又は別々に使用してもよい。なお、これら各剤は、液体、固体、粉末等の何れの状態でもよい。
 ここで、本技術の対象物として、例えば、石炭及び/又は鉄鉱石(以下、「鉄鉱石等」ともいう)、含水の鉄鉱石等、及び鉄鉱石等のスラリー等が挙げられ、スラリーになる前のものでもよい。
 そして、本技術の石炭及び/又は鉄鉱石の原料の改質方法、該スラリーの改質方法において、上述の水溶性高分子化合物(更に、無機金属塩)を、そのまま又は水溶液にして前記対象物に使用することが可能である。また、上述の水溶性高分子化合物(更に、無機金属塩)を、改質剤として、対象物に使用することも可能である。例えば、本技術の改質剤は、石炭及び/又は鉄鉱石、またそのスラリーに添加・混合することで、より良好な性状(水抜け、軽さ、造粒形状等)の改質物を得ることが可能である。また、処理方法の一例として、鉄鉱石等を、水溶液状態の本技術の改質剤等で処理してもよいし、含水の鉄鉱石等を、粉体状の本技術の改質剤等で処理してもよい。
 なお、「本技術の水溶性高分子化合物及びその水溶液、並びに本技術の水溶性高分子化合物を含有する改質剤」を、「本技術の改質剤等」ともいう。
 よって、本技術は、石炭及び/又は鉄鉱石に、水の存在下で本技術の改質剤等を添加し、混合する、石炭及び/又は鉄鉱石の改質方法;改質された原料の製造方法を提供することも可能である。
 この改質方法;改質された原料の製造方法の各条件は、上述した石炭及び/又は鉄鉱石スラリー改質方法;改質された原料の製造方法の各条件と同様であればよい。
 なお、前記「水の存在下で」とは、上記「石炭及び/又は鉄鉱石スラリーの含水率」と同様の含水率になるように、石炭及び/又は鉄鉱石中に水が存在していればよい。また、上記「石炭及び/又は鉄鉱石スラリー1m」を、「水の存在下の石炭及び/又は鉄鉱石1m」に読み替えて行えば良い。
 本技術の改質剤等の使用場所は、石炭及び/又は鉄鉱石を、水の存在下で本技術の改質剤等を添加し、混合することが可能な場所であれば、特に限定されない。例えば、上述のとおり、鉱山の現場ヤード;破粉砕等の処理施設;野積み等の貯蔵保管場;ベルトコンベア、船、貨車等の搬送手段;製鉄所等の使用施設等が挙げられる。
 本技術の改質剤等の使用手段として、例えば、前記対象物に本技術の改質剤等を添加(散布等)、攪拌することが可能な装置;混練機を備えた搬送手段において、搬送されている前記対象物に本技術の改質剤等を添加(散布等)し、混練することが可能な装置等が挙げられる。
 より具体的には、搬送・山積み等のための連続改質処理システム等として、前記対象物を、ヤードへ山積みする際又は船、トラック等へ移送する際の、搬送手段(例えば、ベルトコンベア等)に混練機を備え、該混練機にて、搬送されている前記対象物に本技術の改質剤等を添加・混練すること;前記対象物(例えば、調湿鉄鉱石等)を船内に又は船内から搬送する手段に混練機を備え、搬出搬入の際に前記対象物に本技術の改質剤等を添加・混練して、搬送手段に積載すること等が挙げられる。
 また、船、貨車、トラック等の搬送手段に混合装置を設け、搬送中に本技術の改質剤等を前記対象物に添加・混合すること等も挙げられる。
 また、保管・貯蔵の際に、前記対象物を攪拌(混合)できるような機械や装置にて本技術の改質剤等を添加・混練すること等が挙げられる。
 さらに、以下に例を挙げるが、これに限定されるものではない。ベルトコンベアで搬送している流動性が高いスラリーのコンベアからの落下時に本技術の改質剤等を散布し、パイリング等にバックホウで攪拌処理する方法。トラック、船等で搬送した流動性の高いスラリーに、本技術の改質剤等を添加し、混合処理する方法。湿潤の石炭及び/又は鉄鉱石を船内からバケットでベルトコンベアへ搬出する段階における混練機によって、本技術の改質剤等を連続的に添加し、混合処理する方法。ヤードへパイリングする際の混練機によって、鉄鉱石等に、本技術の改質剤等を連続的に添加し、混合処理する方法。
 以下に、具体的な実施例等を説明するが、本技術はこれに限定されるものではない。
〔試験例1〕鉄鉱石スラリーの流動性改善確認試験
 <実験条件>
 JIS R 5201によるセメントの物理性状試験を参考に、改質した湿鉱スラリーの耐振動性を評価するため、テーブルフローの落下衝撃回数をJISが定める15回から、50回まで増やして評価した。また、0回のものも評価した。
 1)スラリー0.5Lをモルタルミキサー(容量3L)に投入した。このとき使用したスラリーは、表1に示すものを使用した。
 スラリーは、製鉄所で得たスラリー状の堆積物であり、(破砕)鉄鉱石を鉄濃度40~80質量%含むものであり、(破砕)石炭も含まれていた。
 2)これに、アクリル酸/アクリルアミド共重合物を40質量%含有のアニオン性W/O型エマルジョンポリマーを表2に示す配合量添加し、30秒攪拌した。
 ここで、表中の「kg/m」とは、スラリー1mに対するアニオン性W/O型エマルジョンポリマーのエマルジョンとしての使用量(kg)である。
 また、アクリル酸/アクリルアミド共重合物の固有粘度換算による分子量は、800万であった。また、アクリル酸/アクリルアミド共重合物のアクリル酸単量体のモル%は、35モル%であった。
 なお、W/O型エマルジョンポリマー(pH6~8程度)は、公知の手法(例えば特公昭52-039417号公報、特開昭51-41090号公報参照)にて製造でき、具体的には、鉱物油に界面活性剤(転相剤も含む)及びアクリル酸/アクリルアミドの単量体水溶液を添加し、乳化重合によって得ることが可能である。
 3)その後、これに、PACを10質量%含有の無機金属塩水溶液を、表2に示す配合量を添加し、30秒間攪拌した。
 ここで、表中の「kg/m」とは、スラリー1mに対する無機金属塩水溶液の使用量(kg)である。
 4)試料を取り出し、JIS R-5201に準拠して、テーブルフロー値(落下衝撃回数:0回)を計測した。
 5)テーブルを落下衝撃後のテーブルフロー値を計測した。
Figure JPOXMLDOC01-appb-T000001

 
 
Figure JPOXMLDOC01-appb-T000002

 
 
 試験例1の結果を、表2及び図1に示した。
 実験2-5のように、水溶性高分子化合物の添加量の増加に伴い、落下衝撃0回(n=0)のフロー値が小さくなり、スラリーの流動性が低下、すなわち改善されていくことが認められた。
 また、実験2-5は、実験1(無処理:現状処理)と比較し、フロー値は著しく改善されたことが認められた。
 実験6にて、落下衝撃50回(n=50)のときのテーブルフロー値が110mmを下回った。落下衝撃50回後のテーブルフロー値が110mm以下になると、スラリーだったものが、十分に改質されて、団粒状の形態となり、形態も安定的に維持できることが認められた。
〔試験例2〕石炭スラリーの流動性改善確認試験
 製鉄所で得た表3の石炭スラリーを使用し、各測定値は、上述の試験例1に準じて、表4に示す添加量(試験例1と同様のアニオン性W/O型エマルジョンポリマー及び無機金属塩水溶液を使用)にてスラリーの処理を行った。
Figure JPOXMLDOC01-appb-T000003

 
 
Figure JPOXMLDOC01-appb-T000004

 
 
 試験例2の結果を、表4及び図2に示した。
 実験7-12のように、水溶性高分子化合物の添加量の増加に伴い、落下衝撃0回(n=0)のフロー値が小さくなり、スラリー状の流動性が低下、すなわち改善されていくことが認められた。
 また、実験8-12は、実験7(無処理:現状処理)と比較し、フロー値は著しく改善されたことが認められた。
 実験12にて、落下衝撃0(n=0)及び50回(n=50)のときのテーブルフロー値が110mmを下回った。落下衝撃50回後のテーブルフロー値が110mm以下になると、スラリーだったものが、十分に改質されて、団粒状の形態となり、形態も安定的に維持できることが認められた。
〔試験例3〕石炭スラリーの乾燥促進効果確認試験
 スラリーは、試験例2(表2)の石炭スラリーを使用した。このとき、試験例1の<実験条件>に準じて、表4に示す添加量(試験例1と同様のアニオン性W/O型エマルジョンポリマー及び無機金属塩水溶液を使用)にて、実験11として、スラリーの処理を行った。
 スラリーを、無処理及び改質処理した後、室温(25℃)で放置し、乾燥状態を比較した。
Figure JPOXMLDOC01-appb-T000005

 
 
 試験例3の結果を、表5及び図3に示した。
 実験13及び14のように、改質された物の含水率の低下速度が、無処理のスラリーに比較し、速いことが認められた。すなわち、スラリーを薬剤添加にて改質処理することによって、乾燥促進効果が認められた。
〔試験例4〕油分含有鉄鉱石スラリーの改質試験
 製鉄所で得た表6の鉄鉱石スラリーを使用し、上述の試験例1に準じて、表7に示す添加量及びエマルジョンポリマー添加後、混合するまでの放置時間にてスラリーの処理を行った。
 試験例4の結果を表7に示す。表7に示すよう、油分(n-ヘキサン抽出物)を多量に含有するスラリーでは、エマルジョンポリマー添加後に放置した後に混合することで改質するまでの混合時間を短縮することができる。
 なお、このスラリーにn-ヘキサンを添加し、混合して、n-ヘキサンにてスラリーに含まれる油分を抽出し、この抽出量をスラリー中の油分量として表6に示した。
Figure JPOXMLDOC01-appb-T000006

 
Figure JPOXMLDOC01-appb-T000007

 
 
 以上のことから、石炭・鉄鉱石スラリーに、水溶性高分子化合物を添加し、混合することによって、スラリーの流動性を低下(改善)させることが可能となることが確認できた。流動性が低下することによって、より高く山積みすることが可能となることが確認できた。
 しかも、水溶性高分子化合物を混練した後、更に無機金属塩を混練することによって、より良好な造粒物とすることが可能であることが確認できた。
 このように、水溶性高分子化合物を使用するか、又は水溶性高分子化合物及び無機金属塩を併用すれば、スラリー状のものから、良好な造粒物とすることができることが確認できた。そして、油分を含有するスラリーでは、水溶性高分子化合物を添加し、放置させた後に混合すると、放置させずに混合する場合と比較して、改質するまでの混合時間が短くなることが確認された。
 本技術にて、スラリー(スラリー状の堆積物等)の流動性を低下させると共に造粒化できる。また乾燥促進により軽量化も可能となる。このようなより優れて改質された物を得ることができるので、この改質物をより高く山積みすることも可能であり、処理場所も省スペースで行うことができる。更に、使用する水溶性高分子化合物及び無機金属塩はほとんど無害であるので作業者の安全性を確保しやすく、しかも作業性も向上する。更に、アルミニウムが再利用可能な場合には、製鉄原料として再利用することも可能であり、また廃棄物として処分する場合でも取り扱いが容易である。

Claims (7)

  1.  石炭及び/又は鉄鉱石スラリーに、水溶性高分子化合物を添加し、混合することを特徴とする、石炭及び/又は鉄鉱石スラリーの改質方法。
  2.  前記水溶性高分子化合物が、アニオン性W/O型エマルジョンポリマーであることを特徴とする請求項1記載の改質方法。
  3.  前記水溶性高分子化合物の添加し、混合した後に、更に無機金属塩を添加することを特徴とする請求項1又は2記載の改質方法。
  4.  前記無機金属塩が、アルミニウム塩である請求項3項記載の改質方法。
  5.  石炭及び/又は鉄鉱石スラリーに、水溶性高分子化合物を添加し、混合することを特徴とする改質された原料の製造方法。
  6.  前記水溶性高分子化合物の添加し、混合した後に、更に無機金属塩を添加することを特徴とする請求項5項記載の製造方法。
  7.  水溶性高分子化合物を含有する石炭及び/又は鉄鉱石スラリー改質剤。
     
PCT/JP2012/051486 2011-03-25 2012-01-25 石炭及び/又は鉄鉱石スラリーの改質方法 WO2012132521A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280010072.3A CN103392015B (zh) 2011-03-25 2012-01-25 煤和/或铁矿石浆料的改性方法
KR1020137023396A KR101869330B1 (ko) 2011-03-25 2012-01-25 석탄 및/또는 철광석 슬러리의 개질방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-066894 2011-03-25
JP2011066894 2011-03-25
JP2011-178001 2011-08-16
JP2011178001A JP5927807B2 (ja) 2011-03-25 2011-08-16 石炭及び/又は鉄鉱石スラリーの改質方法

Publications (1)

Publication Number Publication Date
WO2012132521A1 true WO2012132521A1 (ja) 2012-10-04

Family

ID=46930289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051486 WO2012132521A1 (ja) 2011-03-25 2012-01-25 石炭及び/又は鉄鉱石スラリーの改質方法

Country Status (4)

Country Link
JP (1) JP5927807B2 (ja)
KR (1) KR101869330B1 (ja)
CN (1) CN103392015B (ja)
WO (1) WO2012132521A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021261568A1 (ja) * 2020-06-25 2021-12-30 株式会社日本触媒 粉塵飛散抑制剤

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3005063B1 (fr) * 2013-04-26 2015-04-24 Snf Sas Procede de chargement de minerai de fer en vrac traite partiellement par des superabsorbants
US11008228B1 (en) * 2017-06-05 2021-05-18 Kinetix Performance Solutions, LLC Method of preparing potable water
JP7212506B2 (ja) * 2017-12-07 2023-01-25 日鉄環境株式会社 含油スラッジの処理方法、及び廃水の処理方法
JP7299027B2 (ja) * 2018-09-05 2023-06-27 日鉄環境株式会社 製鉄原料の山積み方法
JP6969629B2 (ja) * 2020-04-09 2021-11-24 栗田工業株式会社 鉱物原料の改質方法
KR102631581B1 (ko) * 2021-11-04 2024-02-02 주식회사 쓰리아이씨 저열탄 유동성 개선제
JPWO2024004298A1 (ja) * 2022-06-30 2024-01-04

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05317899A (ja) * 1992-05-26 1993-12-03 Hitachi Kiden Kogyo Ltd 汚泥処理方法
JP2003534903A (ja) * 2000-05-31 2003-11-25 チバ スペシャルティ ケミカルズ ウォーター トリートメント リミテッド 鉱物材料の処理
JP2006212569A (ja) * 2005-02-04 2006-08-17 Nippon Steel Corp スラリーの濃縮方法
JP2006525104A (ja) * 2003-05-07 2006-11-09 チバ スペシャルティ ケミカルズ ウォーター トリートメント リミテッド 水性懸濁液の処理
JP2009537315A (ja) * 2006-05-19 2009-10-29 チバ ホールディング インコーポレーテッド 水性懸濁液の処理

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192493A (en) * 1981-05-22 1982-11-26 Kao Corp Granulation of aqueous slurry of coal powder
JPH07308700A (ja) * 1994-05-19 1995-11-28 Nippon Kayaku Co Ltd 凝集剤及び汚泥の脱水方法
AU691018B2 (en) * 1994-08-12 1998-05-07 Cytec Technology Corp. A method of stabilizing slurries
JPH08196820A (ja) 1995-01-25 1996-08-06 Nippon Steel Corp 含微粉原料スラリーの脱水処理方法
KR19980047617U (ko) * 1996-12-28 1998-09-25 김영환 전화기의 인서트 구조
JPH11169900A (ja) * 1997-12-10 1999-06-29 Taiyo Koko Co Ltd 含水ケーキの処理方法
JP4204798B2 (ja) * 2002-04-04 2009-01-07 新日本製鐵株式会社 製鉄用原料の造粒処理方法
JP4816374B2 (ja) * 2006-09-28 2011-11-16 栗田工業株式会社 高含水性汚泥の凝集方法
JP2010227745A (ja) * 2009-03-26 2010-10-14 Nippon Paper Industries Co Ltd 焼却灰の脱水方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05317899A (ja) * 1992-05-26 1993-12-03 Hitachi Kiden Kogyo Ltd 汚泥処理方法
JP2003534903A (ja) * 2000-05-31 2003-11-25 チバ スペシャルティ ケミカルズ ウォーター トリートメント リミテッド 鉱物材料の処理
JP2006525104A (ja) * 2003-05-07 2006-11-09 チバ スペシャルティ ケミカルズ ウォーター トリートメント リミテッド 水性懸濁液の処理
JP2006212569A (ja) * 2005-02-04 2006-08-17 Nippon Steel Corp スラリーの濃縮方法
JP2009537315A (ja) * 2006-05-19 2009-10-29 チバ ホールディング インコーポレーテッド 水性懸濁液の処理

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021261568A1 (ja) * 2020-06-25 2021-12-30 株式会社日本触媒 粉塵飛散抑制剤

Also Published As

Publication number Publication date
CN103392015B (zh) 2016-05-04
KR20140048847A (ko) 2014-04-24
JP5927807B2 (ja) 2016-06-01
KR101869330B1 (ko) 2018-06-20
JP2012214292A (ja) 2012-11-08
CN103392015A (zh) 2013-11-13

Similar Documents

Publication Publication Date Title
JP5927807B2 (ja) 石炭及び/又は鉄鉱石スラリーの改質方法
JP3496851B2 (ja) 残土固化処理剤および残土の固化処理方法
JP5459655B2 (ja) 尾鉱の処理方法
TWI591185B (zh) 製鐵原料的搬送方法
JP5427986B2 (ja) 無機質汚泥を含む被処理水の処理方法
JP6437679B1 (ja) 圧送用先行材
JP6287091B2 (ja) 摩擦低下被膜の形成方法、形成剤および含水粒/泥状物の処理方法
JP4506184B2 (ja) 高含水比泥土の処理方法、高含水比泥土処理剤および高含水比泥土からの粒状処理土製造方法
JP7212506B2 (ja) 含油スラッジの処理方法、及び廃水の処理方法
JP5492268B2 (ja) 改質浚渫土の製造方法
JP2007054828A (ja) 飛灰の処理方法
JP7299027B2 (ja) 製鉄原料の山積み方法
JP4034419B2 (ja) 路盤材料として再利用するための脱水ケーキの処理方法
WO2014103005A1 (ja) 含水バラ物の荷揚げ方法
JP6041509B2 (ja) 自硬性汚泥の造粒固化処理土の製造方法
JP4375586B2 (ja) 土質系無機材料の製造方法および使用方法
JP2001121193A (ja) 汚泥の再生方法
WO2023027093A1 (ja) 粘土状スラッジの処理方法
JPS5851730B2 (ja) 多孔の集塊状岩型魚礁および製造方法
JPH105722A (ja) 石粉粒状体の製造方法
JPH06504515A (ja) ごみ−、沈殿汚泥−及び特殊ごみ燃焼灰の有効化法
TW201121918A (en) The proportion for making particles of scrapped materials from the steel factory
JP2022125895A (ja) 含水土の運搬方法
JP2012121016A (ja) 泥土の固化処理方法
JP2000319929A (ja) 発生土処理方法及び装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280010072.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763367

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137023396

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12763367

Country of ref document: EP

Kind code of ref document: A1