WO2012115240A1 - 原子力発電機器用鍛鋼材および原子力発電機器用溶接構造物 - Google Patents

原子力発電機器用鍛鋼材および原子力発電機器用溶接構造物 Download PDF

Info

Publication number
WO2012115240A1
WO2012115240A1 PCT/JP2012/054620 JP2012054620W WO2012115240A1 WO 2012115240 A1 WO2012115240 A1 WO 2012115240A1 JP 2012054620 W JP2012054620 W JP 2012054620W WO 2012115240 A1 WO2012115240 A1 WO 2012115240A1
Authority
WO
WIPO (PCT)
Prior art keywords
nuclear power
power generation
forged steel
content
less
Prior art date
Application number
PCT/JP2012/054620
Other languages
English (en)
French (fr)
Inventor
宏行 高岡
藤綱 宣之
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US14/001,381 priority Critical patent/US9297056B2/en
Priority to CA2825956A priority patent/CA2825956C/en
Priority to KR1020137022043A priority patent/KR101534424B1/ko
Priority to EP12749031.6A priority patent/EP2679696B1/en
Priority to ES12749031T priority patent/ES2720182T3/es
Publication of WO2012115240A1 publication Critical patent/WO2012115240A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C13/00Pressure vessels; Containment vessels; Containment in general
    • G21C13/08Vessels characterised by the material; Selection of materials for pressure vessels
    • G21C13/087Metallic vessels
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/47Molded joint
    • Y10T403/477Fusion bond, e.g., weld, etc.

Definitions

  • the present invention is configured by welding using a forged steel material for nuclear power generation equipment used as a member constituting equipment such as a pressure vessel and a steam generator of a nuclear power generation facility, and a plurality of forged steel materials for nuclear power generation equipment.
  • the present invention relates to a welded structure for nuclear power generation equipment.
  • a long-time stress relief annealing is usually performed for the purpose of stress removal after welding, but after this stress relief annealing,
  • large forged steel materials for nuclear power generation equipment are required to have excellent strength and toughness.
  • Patent Document 1 As described above, large forged steel materials for nuclear power generation equipment are required to have excellent strength, toughness and hydrogen cracking resistance. However, as a steel material having excellent strength and toughness, Patent Document 1 has long been known. The technologies described in (4) to (4) have already been proposed. However, the nuclear power plant at that time was before the increase in size, and the required strength and toughness were not so high as compared with the current increase in size.
  • Patent Document 5 proposes a method for improving hydrogen cracking resistance by utilizing the method as a method for refining molten steel. Although it is possible to improve hydrogen cracking resistance by this method, it is difficult to completely prevent hydrogen cracking by this method. In addition, this method naturally has an increase in inclusions, so that the hydrogen cracking resistance is improved, but the toughness is lowered.
  • the present invention was made as a solution to the above-mentioned conventional problems, and even after stress-relieving annealing after welding, forged steel materials for nuclear power generation equipment having excellent strength, toughness, and hydrogen cracking resistance, and a plurality of these It is an object of the present invention to provide a welded structure for nuclear power generation equipment constructed by welding using a forged steel for nuclear power generation equipment.
  • the invention according to claim 1 is, in mass%, C: 0.15 to 0.24%, Si: 0.15 to 0.30%, Mn: 1.0 to 1.6%, P: 0.015 % Or less (excluding 0%), S: 0.0015% or less (not including 0%), Cu: 0.10% or less (including 0%), Ni: 0.70 to 1.10%, Cr: 0.05 to 0.30%, Mo: 0.40 to 0.60%, V: 0.05% or less (including 0%), Al: 0.015 to 0.030%, O: 0 .0030% or less (excluding 0%), N: 0.0050 to 0.0150%, the balance is made of iron and inevitable impurities, and the crystal grain size of the metal structure is 4.5 according to ASTM grain size number.
  • the invention according to claim 3 is the large forged steel for nuclear power generation according to claim 1 or 2, wherein the average equivalent circle diameter of cementite present in the metal structure is 0.5 ⁇ m or less.
  • the invention according to claim 4 further includes, in mass%, Nb: 0.005 to 0.050%, Ti: 0.005 to 0.030%, B: 0.0005 to 0.0050%, Ca: 0
  • Nb 0.005 to 0.050%
  • Ti 0.005 to 0.030%
  • B 0.0005 to 0.0050%
  • Ca 0
  • the invention according to claim 5 is constituted by welding a plurality of forged steel materials for nuclear power generation using the forged steel materials for nuclear power generation according to any one of claims 1 to 4. It is a welded structure for power generation equipment.
  • the forged steel material for nuclear power generation equipment and the welded structure for nuclear power generation equipment of the present invention are excellent in strength, toughness and hydrogen cracking resistance even after stress relief annealing after welding.
  • welded structures for nuclear power generation equipment that are assembled using large forged steel as a base material are usually subjected to long-term stress relief annealing for the purpose of stress removal after welding.
  • the steel material is excellent in its strength and toughness as the forged steel material itself, the strength, toughness, and further hydrogen cracking resistance after stress relief annealing has not been particularly studied, and the present inventors have After stress-relieving annealing, we conducted intensive research from various angles in order to develop forged steel materials for nuclear power generation equipment and welded structures for nuclear power generation equipment having excellent strength, toughness, and resistance to hydrogen cracking.
  • the present inventors have found that a forged steel material for nuclear power generation equipment and a welded structure for nuclear power generation equipment can be obtained, and the present invention has been completed.
  • the component composition of the forged steel material and the crystal grain size of the metal structure are defined as essential requirements.
  • the component composition will be described in detail.
  • the content of each element (chemical component) is simply described as%, but all indicate mass%.
  • Component composition 0.15-0.24% C is an essential element for ensuring strength. If the C content is lower than 0.15%, the required strength cannot be ensured. On the other hand, when the content of C exceeds 0.24%, an increase in hard structures such as martensite is caused, resulting in a deterioration in toughness. Therefore, the C content is 0.15 to 0.24%.
  • the preferable lower limit of the C content is 0.17%, the preferable upper limit is 0.22%, and the more preferable upper limit is 0.20%.
  • Si 0.15-0.30% Si, like C, has the effect of improving strength. Although a slight amount may be used from the viewpoint of strength improvement, in the present invention, the lower limit of the Si content is 0.15%. On the other hand, when it is added excessively, it causes an excessive increase in strength and an increase in hard structures such as martensite, leading to deterioration of toughness. Therefore, the upper limit of the Si content is set to 0.30%. Moreover, a preferable upper limit is 0.27% and a more preferable upper limit is 0.25%.
  • Mn 1.0 to 1.6% Mn is an element effective for improving strength and toughness. If its content is less than 1.0%, its action is too small. On the other hand, if added excessively, the strength is excessively increased, the hard structure such as martensite is increased, and the grain boundary carbides are coarsened, resulting in deterioration of strength and toughness. Therefore, the Mn content is 1.0 to 1.6%. The preferable lower limit of the Mn content is 1.2%, and the preferable upper limit is 1.5%.
  • P 0.015% or less (excluding 0%)
  • P is an impurity element that is inevitably mixed in, and is an element that adversely affects toughness. Therefore, its content is preferably as small as possible. From such a viewpoint, the P content needs to be suppressed to 0.015% or less, and preferably 0.010% or less. However, it is difficult to make P in steel 0% industrially.
  • S 0.0015% or less (excluding 0%) Since S is an element that forms MnS and lowers the hydrogen cracking resistance, its content is preferably as small as possible. From such a viewpoint, the S content needs to be suppressed to 0.0015% or less, preferably 0.0013% or less, and more preferably 0.0012% or less. However, it is difficult to industrially make S in steel 0%.
  • Cu 0.10% or less (including 0%) Since Cu is an element effective for improving strength and toughness, it is added as necessary. However, excessive addition causes an excessive increase in strength and an increase in hard structures such as martensite, and causes deterioration in strength and toughness. Therefore, the upper limit of the Cu content is 0.10%, preferably 0.05%.
  • Ni 0.70 to 1.10%
  • Ni is an element effective for improving strength and toughness. If its content is less than 0.70%, its action becomes too small. Conversely, if it is added excessively, it causes an excessive increase in strength and adversely affects toughness. Therefore, the Ni content is set to 0.70 to 1.10%.
  • the preferable lower limit of the Ni content is 0.80%, the preferable upper limit is 1.05%, and the more preferable upper limit is 1.00%.
  • Cr 0.05-0.30% Cr has an effect of improving strength and toughness. If its content is less than 0.05%, its action becomes too small. On the contrary, if it is added excessively, it causes coarsening of grain boundary carbides, which adversely affects strength and toughness. Therefore, the Cr content is 0.05 to 0.30%. A preferable lower limit of the Cr content is 0.10%, a preferable upper limit is 0.27%, and a more preferable upper limit is 025%.
  • Mo 0.40 to 0.60%
  • Mo has an effect of improving strength and toughness. In order to exhibit the effect effectively, it is necessary to contain 0.40% or more. A preferred lower limit is 0.45%, and a more preferred lower limit is 0.50%. On the other hand, excessive addition causes coarsening of grain boundary carbides and adversely affects toughness. Therefore, the upper limit of the Mo content is 0.60%. A preferable upper limit is 0.55%.
  • V 0.05% or less (including 0%)
  • V is an element effective for improving strength and toughness, and is added as necessary. However, if added excessively, the oxide becomes coarse and adversely affects the toughness, so the upper limit of the V content is 0.05%. A preferable upper limit is 0.03%.
  • Al 0.015 to 0.030%
  • Al is an element useful for reducing the amount of oxygen as a deoxidizing element. In order to exhibit the effect effectively, it is necessary to contain 0.015% or more. However, if the content is excessive, the oxide is coarsened, which adversely affects toughness. Therefore, the content needs to be suppressed to 0.030% or less.
  • O 0.0030% or less (excluding 0%)
  • O is an element that reduces the toughness by forming an oxide, and it is desirable to reduce it as much as possible except that it is inevitably mixed. Therefore, the O content is 0.0030% or less, preferably 0.0020% or less, more preferably 0.0015% or less.
  • N 0.0050 to 0.0150%
  • N forms a carbonitride with Al or Nb, Ti, V added as needed, and has the effect
  • it is necessary to contain 0.0050% or more.
  • the upper limit is made 0.0150%.
  • the above are the elements contained in the present invention, and the balance is iron and inevitable impurities.
  • As an inevitable impurity mixing of elements such as Sn, As, and Pb brought in depending on the situation of raw materials, materials, manufacturing equipment, etc. is allowed. Further, it is also effective to positively contain the following elements, and the characteristics of the forged steel material are further improved by the kind of the contained element (chemical component).
  • Nb 0.005 to 0.050% Nb exhibits the effect of improving the hardenability and improving the strength. However, when it is contained in a large amount, the generation of carbides is increased and the toughness is deteriorated. In addition, in order to exhibit these effects effectively, it is necessary to contain 0.005% or more.
  • Ti 0.005 to 0.030% Ti exerts an effect of finely dispersing TiN in steel to prevent coarsening of austenite grains during heating. In order to exhibit the effect effectively, it is necessary to contain 0.005% or more. However, if the Ti content is excessive, weldability is impaired, so when Ti is contained, the content is made 0.030% or less.
  • B 0.0005 to 0.0050% B exhibits the effect
  • the content is made 0.0050% or less, preferably 0.0040% or less, more preferably 0.0020% or less.
  • Ca 0.0005 to 0.0050% Ca is an element that contributes to improving toughness by controlling the form of sulfide. However, even if it exceeds 0.0050% and it contains excessively, toughness will fall on the contrary. In addition, in order to exhibit these effects effectively, it is necessary to contain 0.0005% or more.
  • the forged steel material of the present invention needs to have a crystal grain size of the metal structure in the range of 4.5 to 7.0 in terms of ASTM grain size number.
  • the metal structure is mainly a bainite structure.
  • the pseudopolygonal in the transformed bainite structure is obtained.
  • the structure ratio of ferrite and granular bainite can be reduced regardless of the cooling rate. As a result, the strength and toughness can be made excellent even after stress relief annealing.
  • Mass ratio of Al and N By satisfying the conditions of the component composition and the crystal grain size of the metal structure described above, it is possible to provide a forged steel material for nuclear power generation equipment that is excellent in strength, toughness, and hydrogen cracking resistance even after stress relief annealing after welding. However, when the mass ratio of Al to N (Al / N) satisfies the following requirements, the particle size of the metal structure is increased, and toughness and hydrogen cracking resistance can be further improved.
  • cementite refinement In addition to controlling the crystal grain size of the metal structure, the balance between strength and toughness can be further improved by refining the cementite present in the metal structure.
  • the average equivalent circular diameter of cementite is preferably 0.5 ⁇ m or less.
  • the forged steel material of the present invention can be manufactured by a normal forging method (heating at 1000 to 1300 ° C., any amount of processing strain) using steel satisfying the above component composition, but the heating temperature during quenching is 880. It is necessary to set it to °C or more and less than 1000 °C.
  • the cooling rate at the time of quenching may be a normal condition of about 10 ° C./min or more, and the tempering temperature may be a normal condition of about 650 ° C. Further, the stress relief annealing process may be performed under normal conditions of around 600 ° C.
  • the reason why the heating temperature at the time of quenching is 880 ° C. or more is that the crystal grain size of the metal structure is 4.5 or more in terms of the grain size number according to ASTM.
  • the reason why the heating temperature at the time of quenching is less than 1000 ° C. is to suppress the crystal grain size of the metal structure to 7.0 or less in terms of the grain size number according to ASTM.
  • the tempering time is generally more than 10 hours and usually about 15 hours or less, but by shortening it to 5 hours or more and 10 hours or less, the strength and toughness can be improved.
  • Table 5 and Table 6 show other test results for examining the influence of the tempering time. The process until obtaining the forged steel is the same as the above experiment.
  • the cementite particle size can be quantified as follows. Using a sample collected for crystal grain measurement, the surface was polished again, then subjected to nital corrosion, and the structure was observed by SEM. In addition, the field of view was taken in the range of 4000 ⁇ , 1 field of view 30 ⁇ 30 ⁇ m, and white cementite was copied from the tissue photograph into a transparent form, and the average size of the cementite was measured with an image analyzer (Image-Pro-Plus). The average equivalent circle diameter was quantified.
  • Standard size test pieces of ASTM SA-370 were taken from the surface of each plate (forged steel) at a depth of t / 4 (t: plate thickness) at right angles to the rolling direction, and a tensile test of JIS Z 2241 was conducted. Then, the yield strength (YS) and the tensile strength (TS) in the rolling direction of the test piece were obtained by measurement.
  • TS tensile strength
  • test piece was taken from the position of the depth t / 4 (t: plate thickness) from the surface of each plate (forged steel). (Collected so that the axis of the test piece passes through the position of t / 4) After sampling, the test piece is processed into a dumbbell shape having a length of 150 mm and a distance between marked lines of 10 mm, and the central portion is processed to a diameter of 4 mm. At the same time, the gripping portions at both ends were processed into a diameter of 8 mm and a screw was provided over a length of 15 mm.
  • Evaluation of hydrogen cracking resistance was carried out by a comparative test method for hydrogen cracking susceptibility of forging steel using this test piece.
  • each test piece 1 was set in a test apparatus 2 and immersed in an aqueous solution of 0.5 Mol / 1H 2 SO 4 +0.01 Mol / 1 KSCN. In that state, cathode electrolysis was performed at a current density of 0.5 A / dm 2 while adding hydrogen.
  • An SSRT low strain rate test
  • the S value obtained for each specimen was evaluated according to the following criteria. Those evaluated as ⁇ or ⁇ ⁇ ⁇ were evaluated as forged steel materials excellent in hydrogen cracking resistance. The evaluation results are shown in Table 3 and Table 4. A: S value is less than 30 ... The hydrogen cracking resistance is extremely excellent. ⁇ : S value of 30 to 40: Excellent hydrogen cracking resistance. ⁇ : S value is 40 to 50: Hydrogen cracking resistance is slightly inferior. X: S value is 50 or more .... Hydrogen cracking resistance is inferior.
  • Examples 1 to 24 are examples of the invention that satisfy the requirements of the present invention, and the component composition of the forged steel material and the crystal grain size of the metal structure are appropriate. As a result, it was possible to obtain a test result that the strength, toughness and hydrogen cracking resistance were all excellent.
  • No. Reference numerals 31 to 62 are comparative examples that do not satisfy the requirements of the present invention in at least one of the component composition of the forged steel material and the crystal grain size of the metal structure. As a result, the evaluation criteria were not satisfied with at least one item of strength, toughness, and hydrogen cracking resistance.
  • the forged steel material for nuclear power generation equipment of the present invention is useful as a member constituting equipment such as a pressure vessel and a steam generator in a nuclear power generation facility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 本発明の原子力発電機器用鍛鋼材は、所定の化学成分組成を満足すると共に、金属組織の結晶粒度がASTMによる粒度番号で4.5~7.0である。また、AlとNの質量比(Al/N)が、1.93以上のときはNの含有量が0.0100質量%以上、1.93未満のときはAlの含有量が0.022質量%以上であることが好ましい。このような原子力発電機器用鍛鋼材は、溶接施工した後の応力除去焼鈍後においても、強度、靭性、耐水素割れ性に優れる。

Description

原子力発電機器用鍛鋼材および原子力発電機器用溶接構造物
 本発明は、原子力発電用施設の圧力容器や蒸気発生器等の機器を構成する部材として用いられる原子力発電機器用鍛鋼材、およびそれら複数の原子力発電機器用鍛鋼材を用いて溶接して構成されている原子力発電機器用溶接構造物に関するものである。
 大型の鍛鋼材は、優れた強度、靭性を有するため、原子力発電プラントの圧力容器や蒸気発生器等の機器類の組み立て用部材として好適な部材とされ、従来から原子力発電機器用部材として多く用いられてきた。また、近年、地球環境の保護、特に地球温暖化防止という背景があり、COを排出しないという特長を有する原子力発電は、益々増加する傾向がある。更には、エネルギー需要の増加の度合いも近年は従来に増して顕著で、原子力発電プラントの圧力容器や蒸気発生器等の機器類は更に大型化する傾向がある。
 このように、原子力発電プラントの圧力容器や蒸気発生器等の機器類は年々大型化しているため、原子力発電プラントの圧力容器や蒸気発生器等の機器類に用いる大型鍛鋼材にも、強度および靭性により一層優れること、また、併せて耐水素割れ性にも優れることが求められつつある。
 また、大型鍛鋼材を母材として組み立てられる原子力発電機器用溶接構造物においては、通常、溶接施工後に応力除去を目的とした長時間の応力除去焼鈍が施されるが、この応力除去焼鈍後においても、原子力発電機器用の大型鍛鋼材には、強度、靭性に優れることが求められる。
 このように、原子力発電機器用の大型鍛鋼材には、強度、靭性、更には耐水素割れ性に優れることが求められるが、このように強度や靭性に優れた鋼材として、古くから特許文献1~4記載の技術が既に提案されている。しかしながら、当時の原子力発電プラントは大型化が進む前のものであり、求められる強度や靭性は、大型化が進んだ現在と比較すると、それほど高いものではなかった。
 一方、耐水素割れ性については、鋼の精錬技術、鋼の成分組織の両方の面から対策が検討されている。精錬技術の面からは、溶鋼の精錬時における水素量の上限値を規定し、その上限値を超えた際には脱水素処理を施すということが実操業において既に実施されている。しかしながら、この脱水素処理は、処理時間および処理費用の点から水素量の低減に限界があるといわれている。従って、一般的には1~数ppmレベルでの製造管理が実施されているのが現状であるが、水素割れはより微量の水素により発生するため、1~数ppmレベルでの現状の製造管理では、水素割れを完全に防止することはできなかった。
 鋼の成分組織の面からは、鋼中のSの含有量を増加させることにより、MnS系介在物を鋼中に積極的に導入して、そのMnS系介在物を拡散性水素のトラップサイトとして活用することで、耐水素割れ性を向上させる方法が、溶鋼の精錬方法として特許文献5により提案されている。確かにこの方法によって、耐水素割れ性を向上させることはできるものの、この方法によっても水素割れを完全に防止することは困難であった。また、この方法では、当然のことではあるが介在物が増加するため、耐水素割れ性が向上する反面、靭性が低下してしまうという問題も兼ね備えていた。
日本国特開昭55-100964号公報 日本国特開昭63-53243号公報 日本国特開昭63-69944号公報 日本国特開昭64-8255号公報 日本国特開2003-268438号公報
 本発明は、上記従来の問題を解決せんとしてなされたもので、溶接施工した後の応力除去焼鈍後においても、強度、靭性、耐水素割れ性に優れる原子力発電機器用鍛鋼材、およびそれら複数の原子力発電機器用鍛鋼材を用いて溶接して構成された原子力発電機器用溶接構造物を提供することを課題とするものである。
 請求項1記載の発明は、質量%で、C:0.15~0.24%、Si:0.15~0.30%、Mn:1.0~1.6%、P:0.015%以下(0%を含まない)、S:0.0015%以下(0%を含まない)、Cu:0.10%以下(0%を含む)、Ni:0.70~1.10%、Cr:0.05~0.30%、Mo:0.40~0.60%、V:0.05%以下(0%を含む)、Al:0.015~0.030%、O:0.0030%以下(0%を含まない)、N:0.0050~0.0150%を含有し、残部が鉄および不可避的不純物からなり、金属組織の結晶粒度がASTMによる粒度番号で4.5~7.0であることを特徴とする原子力発電機器用鍛鋼材ある。
 請求項2記載の発明は、AlとNの質量比(Al/N)が、1.93以上のときはNの含有量が0.0100質量%以上、1.93未満のときはAlの含有量が0.022質量%以上である請求項1記載の原子力発電機器用鍛鋼材である。
 請求項3記載の発明は、金属組織中に存在するセメンタイトの平均円相当径が0.5μm以下である請求項1または2に記載の原子力発電用大型鍛鋼材である。 
 請求項4記載の発明は、更に、質量%で、Nb:0.005~0.050%、Ti:0.005~0.030%、B:0.0005~0.0050%、Ca:0.0005~0.0050%よりなる群から選ばれる1種以上を含有する請求項1乃至3のいずれかに記載の原子力発電機器用鍛鋼材である。
 請求項5記載の発明は、請求項1乃至4のいずれかに記載の原子力発電用鍛鋼材を用いて、複数の原子力発電用鍛鋼材相互を溶接して構成されていることを特徴とする原子力発電機器用溶接構造物である。
 本発明の原子力発電機器用鍛鋼材および原子力発電機器用溶接構造物は、溶接施工した後の応力除去焼鈍後においても、強度、靭性、耐水素割れ性に優れている。
実施例の耐水素割れ性の評価でSSRT(低歪み速度試験)を行っている状態を示す正面図である。
 大型鍛鋼材を母材として組み立てられる原子力発電機器用溶接構造物においては、通常、溶接施工後に応力除去を目的とした長時間の応力除去焼鈍が施されるが、従来からの原子力発電機器用鍛鋼材は、その鍛鋼材自体としてはそれなりに強度、靭性に優れているものの、応力除去焼鈍後の強度、靭性、更には耐水素割れ性については特に検討されておらず、本発明者らは、応力除去焼鈍後についても、優れた強度、靭性、耐水素割れ性を有する原子力発電機器用鍛鋼材および原子力発電機器用溶接構造物を開発するために様々な角度から鋭意研究を行った。
 従来は鋼中のSの含有量を増加させることにより、MnS系介在物を鋼中に積極的に導入して、そのMnS系介在物を拡散性水素のトラップサイトとして活用することで、鍛鋼材の耐水素割れ性を向上させていたが、耐水素割れ性はそれでも十分でなかった。本発明者らは、この従来の鍛鋼材より優れた耐水素割れ性を有する鍛鋼材を見出すために検討を行った。その結果、逆に、鋼中のSの含有量を低減することで、鍛鋼材の耐水素割れ性を向上できることを見出した。なぜ、耐水素割れ性を向上できるかは現時点では解明できていないが、生成するMnS系介在物の量が減少し、MnS系介在物とマトリックス界面に生じる応力集中を低減できるためと考えられる。
 更に、金属組織の結晶粒度を通常より大きくして、擬ポリゴナル・フェライト、グラニュラ・ベイナイトの生成を抑制することで、応力除去焼鈍後においても、優れた強度、靭性、耐水素割れ性を兼ね備えた原子力発電機器用鍛鋼材および原子力発電機器用溶接構造物とすることができることを見出し、本発明の完成に至った。
 また併せて、AlN析出物の量を制御することで、更に優れた靭性、耐水素割れ性を得ることができることも見出した。また更に、金属組織中に存在するセメンタイトを微細化することで靭性を一層改善できることも見出した。
 以下、本発明を実施形態に基づき詳細に説明する。
 前記したように、本発明では、鍛鋼材の成分組成と、金属組織の結晶粒度を、必須要件として規定するが、まず、成分組成について詳細に説明する。以下、各元素(化学成分)の含有率については単に%と記載するが、全て質量%を示す。
(成分組成)
C:0.15~0.24% 
 Cは、強度を確保するための必須元素である。Cの含有量が0.15%より低いと、必要な強度を確保できなくなる。一方で、Cの含有量が0.24%を超えると、マルテンサイト等の硬質組織の増加をもたらし、その結果、靭性劣化を招くことになる。従って、Cの含有量は0.15~0.24%とする。Cの含有量の好ましい下限は0.17%、好ましい上限は0.22%、より好ましい上限は0.20%である。
Si:0.15~0.30%
 Siは、Cと同様に強度を向上させる作用を有する。強度向上の点からは微量であっても良いが、本発明ではSiの含有量の下限は0.15%とする。一方、過剰に添加されると、強度の過大な上昇、マルテンサイト等の硬質組織の増加をもたらし、靭性の劣化を招く。そのため、Siの含有量の上限は0.30%とする。また、好ましい上限は0.27%、より好ましい上限は0.25%である。
Mn:1.0~1.6%
 Mnは、強度および靭性の向上に有効な元素である。その含有量が1.0%未満ではその作用が過小となる。逆に、過剰に添加すると、強度の過大な上昇、マルテンサイト等の硬質組織の増加をもたらすほか、粒界炭化物の粗大化を招き、強度および靭性の劣化の原因となる。従って、Mnの含有量は1.0~1.6%とする。Mnの含有量の好ましい下限は1.2%、好ましい上限は1.5%である。 
P:0.015%以下(0%を含まない) 
 Pは、不可避的に混入してくる不純物元素であり、靭性に悪影響を及ぼす元素であるので、その含有量はできるだけ少ないことが好ましい。このような観点から、Pの含有量は0.015%以下に抑制する必要があり、好ましくは0.010%以下とする。しかし、工業的に鋼中のPを0%にすることは困難である。 
S:0.0015%以下(0%を含まない) 
 Sは、MnSを形成して耐水素割れ性を低下させる元素であるので、その含有量はできるだけ少ないことが好ましい。このような観点から、Sの含有量は0.0015%以下に抑制する必要があり、好ましくは0.0013%以下、より好ましくは0.0012%以下とする。しかし、工業的に鋼中のSを0%にすることは困難である。
Cu:0.10%以下(0%を含む)
 Cuは、強度および靭性の向上に有効な元素であるため、必要により添加される。但し、過剰の添加は、強度の過大な上昇、マルテンサイト等の硬質組織の増加をもたらし、強度および靭性の劣化の原因となる。従って、Cuの含有量の上限は0.10%、好ましくは0.05%とする。
Ni:0.70~1.10%
 Niは、強度および靭性の向上に有効な元素である。その含有量が0.70%未満ではその作用が過小となり、逆に、過剰に添加すると、強度の過大な上昇を招き、靭性に悪影響を及ぼす。そのため、Niの含有量は0.70~1.10%とする。Niの含有量の好ましい下限は0.80%、好ましい上限は1.05%、より好ましい上限は1.00%である。
Cr:0.05~0.30%
 Crは、強度および靭性を向上させる作用を有する。その含有量が0.05%未満ではその作用が過小となり、逆に、過剰に添加すると、粒界炭化物の粗大化を招き、強度、靭性に悪影響を及ぼす。そのため、Crの含有量は0.05~0.30%とする。Crの含有量の好ましい下限は0.10%、好ましい上限は0.27%、より好ましい上限は025%である。
Mo:0.40~0.60%
 Moは、強度および靭性を向上させる作用を有する。その作用を有効に発揮させるためには、0.40%以上含有させる必要がある。好ましい下限は0.45%、より好ましい下限は0.50%である。一方、過剰に添加すると、粒界炭化物の粗大化を招き、靭性に悪影響を及ぼす。そのため、Moの含有量の上限は0.60%とする。好ましい上限は0.55%である。
V:0.05%以下(0%を含む) 
 Vは、強度および靭性の向上に有効な元素であるため、必要により添加される。しかしながら、過剰に添加すると酸化物の粗大化を招き、靭性に悪影響を及ぼすため、Vの含有量の上限は0.05%とする。好ましい上限は0.03%である。
Al:0.015~0.030%
 Alは、脱酸元素として酸素量低減に有用な元素である。その作用を有効に発揮させるためには、0.015%以上含有させる必要がある。しかし、その含有量が過剰になると酸化物の粗大化を招き、かえって靭性に悪影響を及ぼすので、含有量を0.030%以下に抑える必要がある。
O:0.0030%以下(0%を含まない)
 Oは、酸化物を形成させて靭性を低下させる元素であり、不可避的に混入する以外はできるだけ少なくすることが望ましい。従って、Oの含有量は0.0030%以下、好ましくは0.0020%以下、より好ましくは0.0015%以下とする。
N:0.0050~0.0150%
 Nは、Al或いは必要により添加されるNb、Ti、Vと共に炭窒化物を形成し、靭性を向上させる作用を有する。その作用を有効に発揮させるためには、0.0050%以上含有させる必要がある。しかし、その含有量が過剰になると、固溶Nとして歪時効をもたらし、靭性に悪影響を及ぼすため、その上限を0.0150%とする。
 以上が本発明で規定する含有元素であって、残部は鉄および不可避的不純物である。不可避的不純物としては、原料、資材、製造設備等の状況によって持ち込まれるSn、As、Pb等の元素の混入が許容される。また、更に以下に示す元素を積極的に含有させることも有効であり、含有される元素(化学成分)の種類によって鍛鋼材の特性が更に改善される。
Nb:0.005~0.050%
 Nbは、焼入れ性を向上させて強度を向上させる作用を発揮する。しかしながら、多量に含有させると炭化物の生成が多くなり靭性が劣化するため、含有させる場合は、0.050%以下、好ましくは0.040%以下とする。尚、これらの作用を有効に発揮させるためには、0.005%以上含有させる必要がある。
Ti:0.005~0.030%
 Tiは、鋼中にTiNを微細分散させて加熱中のオーステナイト粒の粗大化を防止する作用を発揮する。その作用を有効に発揮させるためには、0.005%以上含有させる必要がある。しかしながら、Tiの含有量が過剰になると溶接性が損なわれるので、含有させる場合は0.030%以下とする。
B:0.0005~0.0050%
 Bは、焼入れ性を向上させて強度を向上させる作用を発揮する。しかしながら、多量に含有させると粗大な組織を形成させて靭性が劣化するため、含有させる場合は、0.0050%以下、好ましくは0.0040%以下、より好ましくは0.0020%以下とする。尚、これらの作用を有効に発揮させるためには、0.0005%以上含有させる必要がある。
Ca:0.0005~0.0050%
 Caは、硫化物の形態を制御して靭性の向上に寄与する元素である。しかし、0.0050%を超えて過剰に含有させても靭性がかえって低下する。尚、これらの作用を有効に発揮させるためには、0.0005%以上含有させる必要がある。
(金属組織の結晶粒度)
 以上の化学成分組成を満足した上で、本発明の鍛鋼材は、金属組織の結晶粒度をASTMによる粒度番号で4.5~7.0の範囲とする必要がある。本発明の鍛鋼材は、金属組織は主としてベイナイト組織となるが、金属組織の結晶粒度をASTMによる粒度番号で4.5~7.0の範囲とすることにより、変態後のベイナイト組織における擬ポリゴナル・フェライト、グラニュラ・ベイナイトの組織割合を、冷却速度に関係なく低下させることができる。その結果、応力除去焼鈍後においても、強度、靭性を優れたものとすることができる。
(AlとNの質量比)
 前記した成分組成および金属組織の結晶粒度の条件を満足することで、溶接施工した後の応力除去焼鈍後においても、強度、靭性、耐水素割れ性に優れる原子力発電機器用鍛鋼材とすることができるが、更に、AlとNの質量比(Al/N)が、以下の要件を満足させることで、金属組織の整粒度が高くなり、靭性および耐水素割れ性を更に高めることができる。
 すなわち、(Al/N)≧1.93のときは、Nの含有量を0.0100質量%以上とし、(Al/N)<1.93のときは、Alの含有量を0.022質量%以上とする。
(セメンタイト微細化)
 また、前記金属組織の結晶粒度の制御に加えて、金属組織中に存在するセメンタイトを微細化することで一層強度・靭性バランスを向上させることができる。具体的には、セメンタイトの平均円相当径を0.5μm以下とすることが好ましい。
<製造要件>
 本発明の鍛鋼材は、前記成分組成を満足する鋼を用い、通常の鍛造方法(1000~1300℃加熱、加工歪量は任意)で製造することができるが、焼入れ時の加熱温度を、880℃以上、1000℃未満とすることが必要である。焼入れ時の冷却速度は、10℃/分程度以上の通常の条件とすれば良く、焼戻し温度も650℃前後の通常の条件で行えば良い。また、応力除去焼鈍処理も600℃前後の通常の条件で行えば良い。
 焼入れ時の加熱温度を880℃以上とする理由は、金属組織の結晶粒度をASTMによる粒度番号で4.5以上とするためである。一方、焼入れ時の加熱温度を1000℃未満とする理由は、金属組織の結晶粒度をASTMによる粒度番号で7.0以下に抑えるためである。
 また、前記した微細なセメンタイトを得るためには、焼戻し時間を従来に比して短くすることが必要である。従来は、むしろ焼戻し時間が長いほど転位密度(強度)が低下するため靭性が向上すると考えられてきたのが一般的であるが、本発明者らの検討によれば、焼戻し時間を逆に短縮すると、強度は高くなるものの、セメンタイト微細化による靭性改善効果の方が顕著に現れ、結果として強度・靭性バランスが向上するものと考えられる。
 焼戻し時間は、通常10時間超、15時間以下程度で行われるのが一般的であるが、これを5時間以上、10時間以下に短縮することにより、強度・靭性が向上できる。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。
 本発明の実施例では、まず、表1および表2に示す各成分組成の鋼(20トン)を溶解し、1200℃で加熱後、15%の加工歪を与えて板材(鍛鋼材)とした。焼入れ、焼戻しの条件は、表3および表4に示すとおりである。尚、各試験サンプルの焼戻し時間は、No.11~24が12時間、それ以外のNo.1~10、31~62が10.5時間である。また、各試験サンプルは、いずれも、加熱温度:607℃、保持時間:48時間の条件で応力除去焼鈍を施した。
 また、焼戻し時間の影響を調べた別の試験結果を表5および表6に示す。鍛鋼材を得るまでの工程は上記実験と同様である。
(結晶粒度の測定)
 各板材(鍛鋼材)の表面から深さt/4(t:板厚)の位置から、圧延方向に直角に20mm角の試験片を採取した後に表面を研磨し、JIS G 0551に記載の結晶粒定量化方法で、結晶粒度を測定した。
(セメンタイト粒径の測定)
 セメンタイト粒径は、以下のようにして定量化することができる。結晶粒測定用に採取しておいたサンプルを用いて、再度表面研磨したあとナイタール腐食を行い、SEMにより組織観察を行った。また、撮影は4000倍、1視野30×30μmの範囲で視野撮影し、組織写真から白く見えるセメンタイトを透明フォルムに写し取り、セメンタイトサイズの平均サイズを画像解析装置(Image-Pro-Plus)にて平均円相当径として定量化した。
(降伏強度および引張り強度の評価)
 各板材(鍛鋼材)の表面から深さt/4(t:板厚)の位置から、圧延方向に直角にASTM SA-370の標準サイズ試験片を採取し、JIS Z 2241の引張り試験を実施して、試験片の圧延方向の降伏強度(YS)、および引張り強度(TS)を測定により求めた。本実施例では、TSが550MPa以上という条件を満たすものを、強度に優れる鍛鋼材であると評価した。測定結果を表3および表4に示す。
(靭性の評価)
 各板材(鍛鋼材)の表面から深さt/4(t:板厚)の位置から、シャルピー衝撃試験片(JIS Z 2201の4号試験片)を3本ずつ採取(試験片の軸心が前記t/4の位置を通るように採取)してシャルピー衝撃試験を行い、吸収エネルギーを測定してそれらの平均値を求め、100Jが得られる温度(vE100)を各鍛鋼材の靭性とした。本実施例では、TSが650MPa以上の鍛鋼材ではvE100が-5℃以下であるものを、TSが650MPa未満の鍛鋼材ではvE100が-20℃以下であるものを、夫々靭性に優れる鍛鋼材であると評価した。測定結果を表3および表4に示す。
(耐水素割れ性の評価)
 各板材(鍛鋼材)の表面から深さt/4(t:板厚)の位置から、丸棒形の試験片を採取した。(試験片の軸心が前記t/4の位置を通るように採取)採取後、試験片を、長さ150mm、標線間距離10mmのダンベル状に加工し、中央部分を直径4mmに加工すると共に、両端のつかみ具部分を直径8mmに加工して長さ15mmにわたってネジを設けた。
 耐水素割れ性の評価は、この試験片を用いて、鍛造用鋼の水素割れ感受性の比較試験法により実施した。
 まず、図1に示すように、各試験片1を、試験装置2にセットして、0.5Mol/1HSO+0.01Mol/1KSCN水溶液3に浸漬した。その状態で、水素を添加しつつ、電流密度0.5A/dmにて陰極電解を行った。以上の準備を完了した試験片1に、長軸方向の引張り負荷を与えてその応力S1(伸び)を測定するSSRT(低歪み速度試験)を実施した。このときの試験装置2のクロスヘッドの引張り速度は2×10-3mmとした。
 一方、水溶液3への浸漬を省略した状態、すなわち大気中で、前記した条件と同条件でSSRT(低歪み速度試験)を実施して、同様に破断応力S2を測定した。 
 これらの測定で得られた測定値を下記式に代入して水素割れ感受性S値を算出した。 
  S値=(1-S2/S1)×100 
 各試験片毎に得られたS値を下記基準に従って評価した。評価が◎或いは○であるものを、耐水素割れ性に優れる鍛鋼材であると評価した。評価結果を表3および表4に示す。
 ◎:S値が30未満・・・・耐水素割れ性が極めて優れている。 
 ○:S値が30~40・・・耐水素割れ性が優れている。 
 △:S値が40~50・・・耐水素割れ性がやや劣る。
 ×:S値が50以上・・・・耐水素割れ性が劣る。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 No.1~24は、本発明の要件を満足する発明例であり、鍛鋼材の成分組成および金属組織の結晶粒度は適切である。その結果、強度、靭性、耐水素割れ性が全て優れるという試験結果を得ることができた。
 これに対し、No.31~62は、鍛鋼材の成分組成、金属組織の結晶粒度の少なくとも何れかで、本発明の要件を満足しない比較例である。その結果、強度、靭性、耐水素割れ性の少なくとも1項目で、評価基準を満足しなかった。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 また、焼戻し時間の影響を調べた表5および表6に示す別の試験結果によると、従来並みの10時間超の焼戻しを行った例(A1,B1)に比較して、焼戻し時間を短縮した例(A2~A4,B2~B4)は、いずれも強度・靭性バランスが向上していることが分かる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2011年2月24日出願の日本特許出願(特願2011-038074)、2012年1月31日出願の日本特許出願(特願2012-018488)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の原子力発電機器用鍛鋼材は、原子力発電用施設の圧力容器や蒸気発生器等の機器を構成する部材として有用である。
1…試験片
2…試験装置
3…0.5Mol/1HSO+0.01Mol/1KSCN水溶液

Claims (5)

  1.  質量%で、C:0.15~0.24%、Si:0.15~0.30%、Mn:1.0~1.6%、P:0.015%以下(0%を含まない)、S:0.0015%以下(0%を含まない)、Cu:0.10%以下(0%を含む)、Ni:0.70~1.10%、Cr:0.05~0.30%、Mo:0.40~0.60%、V:0.05%以下(0%を含む)、Al:0.015~0.030%、O:0.0030%以下(0%を含まない)、N:0.0050~0.0150%を含有し、残部が鉄および不可避的不純物からなり、金属組織の結晶粒度がASTMによる粒度番号で4.5~7.0であることを特徴とする原子力発電機器用鍛鋼材。
  2.  AlとNの質量比(Al/N)が、1.93以上のときはNの含有量が0.0100質量%以上、1.93未満のときはAlの含有量が0.022質量%以上である請求項1記載の原子力発電機器用鍛鋼材。
  3.  金属組織中に存在するセメンタイトの平均円相当径が0.5μm以下である請求項1または2に記載の原子力発電用大型鍛鋼材。
  4.  更に、質量%で、Nb:0.005~0.050%、Ti:0.005~0.030%、B:0.0005~0.0050%、Ca:0.0005~0.0050%よりなる群から選ばれる1種以上を含有する請求項1乃至3のいずれかに記載の原子力発電機器用鍛鋼材。
  5.  請求項1乃至4のいずれかに記載の原子力発電用鍛鋼材を用いて、複数の原子力発電用鍛鋼材相互を溶接して構成されていることを特徴とする原子力発電機器用溶接構造物。
     
PCT/JP2012/054620 2011-02-24 2012-02-24 原子力発電機器用鍛鋼材および原子力発電機器用溶接構造物 WO2012115240A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/001,381 US9297056B2 (en) 2011-02-24 2012-02-24 Forged steel and welded structure for components for nuclear power plants
CA2825956A CA2825956C (en) 2011-02-24 2012-02-24 Forged steel and welded structure for components for nuclear power plants
KR1020137022043A KR101534424B1 (ko) 2011-02-24 2012-02-24 원자력 발전 기기용 단강재 및 원자력 발전 기기용 용접 구조물
EP12749031.6A EP2679696B1 (en) 2011-02-24 2012-02-24 Forged steel and welded structure for components for nuclear power plants.
ES12749031T ES2720182T3 (es) 2011-02-24 2012-02-24 Acero forjado y estructura soldada para componentes de plantas de energía nuclear

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-038074 2011-02-24
JP2011038074 2011-02-24
JP2012-018488 2012-01-31
JP2012018488A JP2012188747A (ja) 2011-02-24 2012-01-31 原子力発電機器用鍛鋼材および原子力発電機器用溶接構造物

Publications (1)

Publication Number Publication Date
WO2012115240A1 true WO2012115240A1 (ja) 2012-08-30

Family

ID=46721012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054620 WO2012115240A1 (ja) 2011-02-24 2012-02-24 原子力発電機器用鍛鋼材および原子力発電機器用溶接構造物

Country Status (7)

Country Link
US (1) US9297056B2 (ja)
EP (1) EP2679696B1 (ja)
JP (1) JP2012188747A (ja)
KR (1) KR101534424B1 (ja)
CA (1) CA2825956C (ja)
ES (1) ES2720182T3 (ja)
WO (1) WO2012115240A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105506508A (zh) * 2014-09-26 2016-04-20 鞍钢股份有限公司 一种三代核电安注箱基板用钢及其制造方法
JP2017128761A (ja) * 2016-01-19 2017-07-27 株式会社神戸製鋼所 高強度鍛鋼及び大型鍛造部品
CN108660382A (zh) * 2017-03-29 2018-10-16 鞍钢股份有限公司 一种抗辐照性能优良的核电站钢衬里用钢及其制造方法
CN108950387B (zh) * 2018-07-03 2019-12-13 鞍钢股份有限公司 具有优良高温性能厚规格核电安注箱用钢及其制造方法
CN109234624A (zh) * 2018-10-08 2019-01-18 鞍钢股份有限公司 一种特宽特厚核电常规岛设备用钢及其制造方法
JP2020186453A (ja) * 2019-05-16 2020-11-19 三菱重工業株式会社 炭素鋼、放射性物質収納容器、遮蔽性能の解析方法及び遮蔽構造の設計方法
JP7273298B2 (ja) * 2019-07-02 2023-05-15 日本製鉄株式会社 低温靱性に優れる圧力容器用鋼板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353243A (ja) * 1986-08-22 1988-03-07 Mitsubishi Heavy Ind Ltd 原子力圧力容器用高強度鍛鋼
JPS6369944A (ja) * 1986-09-09 1988-03-30 Mitsubishi Heavy Ind Ltd 鍛鋼
JP2000319749A (ja) * 1999-05-06 2000-11-21 Kobe Steel Ltd NiCrMoV鋼及び該NiCrMoV鋼を用いてなる鋳鍛鋼部材
JP2001226736A (ja) * 2000-02-09 2001-08-21 Sumitomo Metal Ind Ltd 高強度低合金耐熱鋼

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100964A (en) 1979-01-29 1980-08-01 Japan Steel Works Ltd:The Low-alloy steel for pressure vessel
JPS648255A (en) 1987-06-29 1989-01-12 Mitsubishi Heavy Ind Ltd Steel for pressure vessel
KR100346307B1 (ko) 1999-12-15 2002-07-26 두산중공업 주식회사 알루미늄과 질소 첨가 고인성 원자로용 저합금강
JP3439197B2 (ja) 2001-03-06 2003-08-25 三菱重工業株式会社 低合金耐熱鋼及びその熱処理方法並びにタービンロータ
JP3838496B2 (ja) 2002-03-08 2006-10-25 株式会社神戸製鋼所 溶鋼の精錬方法
JP4523875B2 (ja) 2005-06-06 2010-08-11 三菱重工業株式会社 溶接構造用部材およびその製造方法、溶接構造体およびその製造方法、歯車用リムならびに歯車およびその製造方法
JP4309946B2 (ja) * 2007-03-05 2009-08-05 新日本製鐵株式会社 脆性き裂伝播停止特性に優れた厚手高強度鋼板およびその製造方法
JP5125601B2 (ja) 2008-02-26 2013-01-23 Jfeスチール株式会社 自動車構造部材用高張力溶接鋼管およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353243A (ja) * 1986-08-22 1988-03-07 Mitsubishi Heavy Ind Ltd 原子力圧力容器用高強度鍛鋼
JPS6369944A (ja) * 1986-09-09 1988-03-30 Mitsubishi Heavy Ind Ltd 鍛鋼
JP2000319749A (ja) * 1999-05-06 2000-11-21 Kobe Steel Ltd NiCrMoV鋼及び該NiCrMoV鋼を用いてなる鋳鍛鋼部材
JP2001226736A (ja) * 2000-02-09 2001-08-21 Sumitomo Metal Ind Ltd 高強度低合金耐熱鋼

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2679696A4 *

Also Published As

Publication number Publication date
ES2720182T3 (es) 2019-07-18
JP2012188747A (ja) 2012-10-04
EP2679696A4 (en) 2018-01-03
KR101534424B1 (ko) 2015-07-06
KR20130106442A (ko) 2013-09-27
EP2679696B1 (en) 2019-04-03
CA2825956C (en) 2016-11-22
US20130330119A1 (en) 2013-12-12
US9297056B2 (en) 2016-03-29
CA2825956A1 (en) 2012-08-30
EP2679696A1 (en) 2014-01-01

Similar Documents

Publication Publication Date Title
KR101312211B1 (ko) Ni 첨가 강판 및 그 제조 방법
US8216400B2 (en) High-strength steel plate and producing method therefor
WO2012115240A1 (ja) 原子力発電機器用鍛鋼材および原子力発電機器用溶接構造物
US11208703B2 (en) Nickel-containing steel for low temperature service and low-temperature tank
US20170058376A1 (en) Rolled material for high strength spring, and wire for high strength spring
JP6027302B2 (ja) 高強度焼戻し省略ばね用鋼
JP5846080B2 (ja) 耐遅れ破壊特性に優れた高強度鋼材
JP5958667B1 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
WO2016194272A1 (ja) 高強度冷延鋼板、高強度めっき鋼板及びこれらの製造方法
JP4311740B2 (ja) 大入熱溶接継手靭性に優れた厚鋼板
JP6893212B2 (ja) 高強度鋼線
JP5182642B2 (ja) 耐遅れ破壊特性および溶接性に優れる高強度厚鋼板およびその製造方法
WO2018104984A1 (ja) 高Mn鋼板およびその製造方法
KR20150002848A (ko) 코일링성과 내수소취성이 우수한 고강도 스프링용 강선 및 그의 제조 방법
JP6683297B1 (ja) 高強度鋼板及びその製造方法
JP5543814B2 (ja) 熱処理用鋼板及び鋼部材の製造方法
KR20170013340A (ko) 강선용 선재 및 강선
JP5151693B2 (ja) 高張力鋼の製造方法
JP4924047B2 (ja) 表面残留応力の絶対値が150N/mm2以下の耐疲労亀裂伝播特性に優れた鋼材の製造方法
JP3251648B2 (ja) 析出硬化型マルテンサイト系ステンレス鋼及びその製造方法
JP2019151920A (ja) 高Mn鋼およびその製造方法
JP5545251B2 (ja) 鋼矢板
WO2019168172A1 (ja) 高Mn鋼およびその製造方法
JP5458923B2 (ja) 耐脆性破壊特性に優れた溶接継手
WO2018158908A1 (ja) ゴルフクラブ用シャフト及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749031

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2825956

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20137022043

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14001381

Country of ref document: US

Ref document number: 2012749031

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE