WO2012090739A1 - 水素発生装置および水素発生装置を備える内燃機関 - Google Patents

水素発生装置および水素発生装置を備える内燃機関 Download PDF

Info

Publication number
WO2012090739A1
WO2012090739A1 PCT/JP2011/079239 JP2011079239W WO2012090739A1 WO 2012090739 A1 WO2012090739 A1 WO 2012090739A1 JP 2011079239 W JP2011079239 W JP 2011079239W WO 2012090739 A1 WO2012090739 A1 WO 2012090739A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
compound
decomposer
supplied
temperature
Prior art date
Application number
PCT/JP2011/079239
Other languages
English (en)
French (fr)
Inventor
宮川 浩
小池 誠
小島 進
知士郎 杉本
里欧 清水
中村 徳彦
Original Assignee
株式会社豊田中央研究所
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田中央研究所, トヨタ自動車株式会社 filed Critical 株式会社豊田中央研究所
Priority to EP11853920.4A priority Critical patent/EP2660193A4/en
Priority to JP2012550836A priority patent/JP5830035B2/ja
Priority to CN201180059002.2A priority patent/CN103249668B/zh
Publication of WO2012090739A1 publication Critical patent/WO2012090739A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0668Treating or cleaning means; Fuel filters
    • F02D19/0671Means to generate or modify a fuel, e.g. reformers, electrolytic cells or membranes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/047Decomposition of ammonia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • F02D19/0644Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions the gaseous fuel being hydrogen, ammonia or carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0686Injectors
    • F02D19/0692Arrangement of multiple injectors per combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/16Other apparatus for heating fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/20Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a hydrogen generator and an internal combustion engine including the hydrogen generator.
  • an apparatus for supplying hydrogen an apparatus for generating hydrogen using ammonia as a raw material is known in addition to an apparatus for reforming natural gas or the like or an apparatus for storing hydrogen in a hydrogen cylinder.
  • hydrogen can be generated by storing ammonia in a tank and decomposing it at a high temperature.
  • Japanese Patent Application Laid-Open No. 5-332152 discloses an ammonia combustion engine that obtains driving force by burning ammonia gas, and that includes an ammonia decomposition reactor that decomposes ammonia using exhaust gas in a combustion chamber. ing.
  • the heat exchange pipe in the ammonia decomposition reactor is heated by the exhaust gas from the combustion chamber. It is disclosed that ammonia gas led to a heat exchange pipe is decomposed into hydrogen and nitrogen by an endothermic reaction that absorbs the heat of exhaust gas.
  • a decomposition catalyst containing catalyst particles that promote the decomposition of ammonia can be disposed.
  • a decomposition catalyst By disposing a decomposition catalyst, decomposition of ammonia can be promoted, and for example, a temperature for decomposing ammonia can be lowered.
  • the ammonia decomposition reaction is an endothermic reaction, it is necessary to supply heat to the decomposition catalyst in order to continue the decomposition of ammonia by the decomposition catalyst.
  • the heat of exhaust gas discharged from the combustion chamber is utilized to decompose the ammonia gas into hydrogen and nitrogen.
  • the temperature of the exhaust gas is low, sufficient heat cannot be supplied to the cracking catalyst and hydrogen cannot be generated appropriately. There is.
  • an auxiliary heater for heating a heat exchange pipe for decomposing ammonia is disposed.
  • the heat exchange pipe is heated by the auxiliary heater.
  • the decomposition catalyst is heated to a temperature at which the ammonia decomposition reaction is caused by the auxiliary heater, or heat for continuing the decomposition of ammonia is supplied by the auxiliary heater, large electric power is required. There is a problem that a large power source is required to supply a large amount of power to the auxiliary heater.
  • a hydrogen storage device is arranged in the hydrogen generator.
  • the hydrogen generator becomes large or complicated.
  • the hydrogen occluded in the hydrogen occlusion device is consumed, there is a problem that hydrogen cannot be supplied.
  • An object of the present invention is to provide a hydrogen generator excellent in performance for supplying heat to decompose a raw material to a catalyst and an internal combustion engine equipped with the hydrogen generator.
  • the hydrogen generator of the present invention includes a decomposer that decomposes a compound containing a hydrogen atom and a nitrogen atom to generate hydrogen, a compound supply device that supplies the compound to the decomposer, and an oxygen supply that supplies oxygen to the decomposer Device.
  • the cracker includes a catalyst having catalyst particles that promote decomposition of the compound and catalyst particles that promote oxidation of the compound. The compound and oxygen are supplied to the cracker, the compound is oxidized to generate heat of oxidation, and the compound is decomposed using the generated heat of oxidation.
  • the decomposer constitutes a first decomposer, and further includes a second decomposer including a catalyst having catalyst particles that promote the decomposition of the compound.
  • the catalyst and the catalyst of the second decomposer are formed so as to exchange heat with each other, and the compound supply device supplies the compound to the first decomposer and the second decomposer, and the first decomposer It is preferable that the flow rate of the compound to be supplied to the reactor and the flow rate of the compound to be supplied to the second decomposer to be adjusted.
  • a catalyst temperature detector for detecting the temperature of the catalyst of the second decomposer is provided, and when the temperature of the catalyst of the second decomposer is lower than a predetermined temperature, the second decomposer It is preferable to decrease the flow rate of the compound supplied to the first and increase the flow rate of the compound supplied to the first decomposer.
  • the oxygen supply device preferably supplies oxygen to the decomposer so that the molar ratio of oxygen to the compound supplied by the compound supply device is 0 or more and 0.3 or less.
  • a catalyst temperature detector for detecting the temperature of the catalyst and a control device for controlling at least one of the compound supply device and the oxygen supply device are provided.
  • the flow rate can be adjusted, the oxygen supply device is formed so that the flow rate of oxygen supplied to the decomposer can be adjusted, and the control device determines in advance the temperature of the catalyst detected by the catalyst temperature detector. It is preferable to adjust at least one of the flow rate of the compound and the flow rate of oxygen supplied to the catalyst so as to be within the range of the determined temperature.
  • control device detects the temperature of the catalyst with a catalyst temperature detector, and reduces the flow rate ratio of oxygen to the compound when the detected temperature of the catalyst is higher than a predetermined temperature. Is preferred.
  • control device detects the temperature of the catalyst with a catalyst temperature detector, and increases the flow rate ratio of oxygen to the compound when the detected temperature of the catalyst is lower than a predetermined temperature. Is preferred.
  • a mixer is provided in the flow path upstream of the catalyst, and the mixer includes a gas containing oxygen supplied from an oxygen supply device and the compound supplied from the compound supply device. It is preferable that it is formed so as to promote mixing with the contained gas.
  • An internal combustion engine of the present invention comprises the above-described hydrogen generator, a combustion chamber in which fuel is combusted, an engine body including an engine intake passage connected to the combustion chamber, and a hydrogen supplier connected to the hydrogen generator.
  • the oxygen supply device supplies air in the engine intake passage to the decomposer.
  • the hydrogen supplier supplies the hydrogen generated by the hydrogen generator to the combustion chamber as fuel.
  • the compound supply device includes a tank that stores the liquid compound and an evaporator that heats and vaporizes the liquid compound, and at least a part of the gaseous compound generated in the evaporator
  • fuel is supplied to the combustion chamber as fuel without passing through the cracker.
  • the engine body is formed to be cooled with cooling water
  • the hydrogen generator includes a cooler that is disposed downstream of the cracker and cools the gas flowing out of the cracker,
  • the cooler is preferably formed so that the gas flowing out of the decomposer is cooled by the cooling water of the engine body.
  • the hydrogen supplier is formed so as to be capable of adjusting the amount of hydrogen supplied to the combustion chamber, and detects the engine rotation speed, It is preferable to increase the amount of hydrogen supplied to the combustion chamber as the engine speed increases.
  • the hydrogen generator includes a control device that controls at least one of the compound supply device and the oxygen supply device, and the compound supply device is formed so that the flow rate of the compound supplied to the cracker can be adjusted.
  • the oxygen supply device is formed so that the flow rate of oxygen supplied to the cracker can be adjusted, and the control device supplies the cracker based on the amount of hydrogen supplied to the combustion chamber by the hydrogen supply device. It is preferable to adjust at least one of the flow rate of oxygen and the flow rate of the compound.
  • the load detection device for detecting the load of the internal combustion engine is provided, and the hydrogen supplier is formed so as to be capable of adjusting the amount of hydrogen supplied to the combustion chamber, and detects the load of the internal combustion engine. It is preferable to increase the amount of hydrogen supplied to the combustion chamber as the load on the combustion chamber decreases.
  • the hydrogen generator includes a control device that controls at least one of the compound supply device and the oxygen supply device, and the compound supply device is formed so that the flow rate of the compound supplied to the cracker can be adjusted.
  • the oxygen supply device is formed so that the flow rate of oxygen supplied to the cracker can be adjusted, and the control device supplies the cracker based on the amount of hydrogen supplied to the combustion chamber by the hydrogen supply device. It is preferable to adjust at least one of the flow rate of oxygen and the flow rate of the compound.
  • the hydrogen generator includes a heater for heating the catalyst, and when the internal combustion engine is started, the catalyst is heated by the heater, and after the temperature of the catalyst becomes higher than a predetermined temperature, It is preferable to start supplying oxygen and the compound to the catalyst.
  • the compound supply device is formed so that the flow rate of the compound supplied to the decomposer can be adjusted
  • the oxygen supply device is formed so that the flow rate of oxygen supplied to the decomposer can be adjusted
  • the engine temperature detector for detecting the temperature of the engine body is provided, the compound supply device is formed so that the flow rate of the compound supplied to the decomposer can be adjusted, and the oxygen supply device is provided in the decomposer.
  • the flow rate of supplied oxygen is adjustable, and the hydrogen generator has a molar ratio of oxygen to the compound of 0.15 or higher when the temperature of the engine body is lower than a predetermined temperature.
  • the operation state detection device for detecting the operation state of the internal combustion engine is provided, the compound supply device is formed so as to be capable of adjusting the flow rate of the compound supplied to the decomposer, and the hydrogen generation device is the internal combustion engine It is preferable to change the flow rate ratio of the compound supplied from the evaporator to the decomposer with respect to the compound supplied from the evaporator to the combustion chamber without passing through the decomposer.
  • the operating state detection device includes an engine temperature detector that detects the temperature of the engine body, detects the temperature of the engine body, and the lower the temperature of the engine body, the lower the temperature of the engine body, without passing through the decomposer. It is preferable to increase the flow ratio of the compound supplied to the decomposer with respect to the compound supplied.
  • the present invention it is possible to provide a hydrogen generator excellent in performance for supplying heat to decompose the raw material to the catalyst and an internal combustion engine equipped with the hydrogen generator.
  • FIG. 1 is a schematic diagram of a hydrogen generator in Embodiment 1.
  • FIG. 4 is a graph showing the relationship between the temperature of the electric heater of the hydrogen generator and the temperature of the catalyst in the first embodiment. It is a graph of the temperature of the electric heater of the hydrogen generator in Embodiment 1, and the hydrogen concentration contained in the gas flowing out from the decomposer.
  • 3 is a graph showing the relationship between the molar ratio of gas flowing into the cracker of the hydrogen generator in Embodiment 1 and the concentration of hydrogen contained in the gas flowing out of the cracker.
  • 4 is a graph showing the relationship between the molar ratio of gas flowing into the cracker of the hydrogen generator in Embodiment 1 and the ammonia concentration contained in the gas flowing out of the cracker.
  • FIG. 3 is a graph showing the relationship between the molar ratio of gas flowing into the cracker of the hydrogen generator in Embodiment 1 and the temperature of the catalyst.
  • 3 is a flowchart of operation control of the hydrogen generator in Embodiment 1.
  • 3 is a schematic diagram of a hydrogen generator in Embodiment 2.
  • FIG. 6 is a flowchart of operation control of the hydrogen generator in Embodiment 2.
  • FIG. 6 is a schematic diagram of a first internal combustion engine in a third embodiment.
  • FIG. 7 is a schematic diagram of an electronic control unit of an internal combustion engine in a third embodiment.
  • 10 is a flowchart of operation control of the internal combustion engine in the third embodiment.
  • FIG. 7 is a schematic diagram of a second internal combustion engine in a third embodiment.
  • FIG. 10 is a schematic diagram of a third internal combustion engine in the third embodiment.
  • FIG. 10 is a schematic diagram of a fourth internal combustion engine in the third embodiment.
  • FIG. 10 is a schematic diagram of
  • Embodiment 1 With reference to FIG. 1 to FIG. 7, the hydrogen generator in Embodiment 1 will be described.
  • the hydrogen generator in this embodiment uses a compound containing a nitrogen atom and a hydrogen atom as a raw material.
  • liquid ammonia is used as a raw material.
  • the hydrogen generator generates gaseous ammonia by supplying heat to liquid ammonia and vaporizing it. Furthermore, hydrogen is produced
  • FIG. 1 is a schematic diagram of a hydrogen generator in the present embodiment.
  • the hydrogen generator in the present embodiment includes a decomposer 51a for decomposing ammonia.
  • the decomposer 51a in the present embodiment includes a catalyst 60a.
  • the catalyst 60a includes catalyst particles that promote the decomposition of ammonia and catalyst particles that promote the oxidation of ammonia.
  • the catalyst 60a in the present embodiment functions as a decomposition catalyst for decomposing ammonia and further functions as an oxidation catalyst for oxidizing ammonia. That is, the cracker 51a in the present embodiment includes a cracking catalyst and an oxidation catalyst.
  • the cracker 51a includes a catalyst 60a in which a cracking catalyst and an oxidation catalyst are integrally formed.
  • the catalyst 60a in the present embodiment is formed in a honeycomb structure.
  • the catalyst 60a in the present embodiment has a plurality of flow paths formed along the direction in which the fluid flows.
  • the catalyst 60a includes a base material on which a plurality of flow paths are formed.
  • the substrate is made of, for example, cordierite or metal.
  • a coat layer is formed on the surface of each channel of the substrate.
  • a particulate carrier for supporting catalyst particles is disposed in the coat layer.
  • catalyst particles for oxidizing ammonia and catalyst particles for decomposing ammonia are supported on a support.
  • the carrier is made of, for example, aluminum oxide.
  • the metal of the catalyst particles for oxidizing ammonia include noble metals such as platinum and base metals such as iron. In the present embodiment, platinum is employed.
  • the catalyst particles for oxidizing ammonia are not limited to this form, and can be formed from any metal that promotes oxidation of ammonia.
  • the catalyst particles for decomposing ammonia include noble metals such as platinum, rhodium and ruthenium, and base metals such as nickel and cobalt. In the present embodiment, rhodium and ruthenium are employed.
  • the catalyst particles for decomposing ammonia are not limited to this form, and can be formed from any metal that promotes the decomposition of ammonia.
  • the decomposer 51a includes a container 75.
  • the catalyst 60 a is disposed inside the container 75.
  • the container 75 can be formed of stainless steel, for example.
  • the container 75 is connected to an inflow pipe 71 through which air and raw material ammonia flow.
  • the container 75 is connected to an outflow pipe 70 through which a gas containing generated hydrogen flows out.
  • the hydrogen generator in the present embodiment includes a compound supply device for supplying ammonia as a raw material to the cracker 51a.
  • the compound supply apparatus includes a tank 64 for storing ammonia.
  • the tank 64 is pressurized inside and stores liquid ammonia 49.
  • the compound supply apparatus in the present embodiment includes a pump 65 for supplying liquid ammonia 49.
  • the pump 65 is connected to a liquid ammonia supply pipe 68.
  • the compound supply device includes an evaporator 66 connected to a liquid ammonia supply pipe 68.
  • the evaporator 66 is formed so that liquid ammonia can be heated.
  • the evaporator 66 can vaporize liquid ammonia.
  • the evaporator 66 in the present embodiment is provided with an electric heater and is formed so that heat is supplied from the outside.
  • An ammonia supply pipe 61 that supplies gaseous ammonia is connected to the outlet of the evaporator 66.
  • the ammonia supply pipe 61 is connected to the inflow pipe 71.
  • the hydrogen generator in the present embodiment includes an oxygen supply device that supplies oxygen to the decomposer 51a.
  • the oxygen supply device in the present embodiment supplies air as a gas containing oxygen to the decomposer 51a.
  • the oxygen supply device in the present embodiment includes an air pump 76.
  • the air pump 76 in the present embodiment supplies outside air to the decomposer 51a.
  • the oxygen supply device includes an air supply pipe 62 connected to an air pump 76.
  • the air supply pipe 62 is connected to the inflow pipe 71 so as to supply air to the inflow pipe 71.
  • the oxygen supply device in the present embodiment is formed so as to supply air to the decomposer, but is not limited to this form, and the oxygen supply device is configured to be able to supply a gas containing oxygen to the decomposer. I do not mind.
  • a mixer 69 for mixing the gas flowing into the catalyst 60a is disposed in the inflow pipe 71.
  • the mixer 69 is formed so as to sufficiently mix gaseous ammonia and air.
  • a spiral mixer is disposed in the present embodiment.
  • the mixer 69 is disposed downstream of the position where the air supply pipe 62 is connected to the inflow pipe 71.
  • a flow rate adjustment valve 72a for adjusting the flow rate of gaseous ammonia supplied to the catalyst 60a is arranged in the middle of the ammonia supply pipe 61.
  • a flow rate adjusting valve 73a for adjusting the flow rate of air supplied to the catalyst 60a is disposed in the air supply pipe 62.
  • the cooler 85 is connected to the outflow pipe 70.
  • the cooler 85 is formed so as to cool the high-temperature gas flowing out from the decomposer 51a.
  • the refrigerant flows into the cooler 85 through the inflow pipe 87.
  • the refrigerant that has exchanged heat with the cooler 85 is discharged from the outflow pipe 88.
  • the gas flowing out of the hydrogen generator contains hydrogen. When the gas flowing out of the hydrogen generator is in a high temperature state and comes into contact with a gas containing oxygen, hydrogen may burn. Alternatively, an apparatus to which hydrogen is supplied from a hydrogen generator may be thermally damaged. For this reason, the hydrogen generator of this Embodiment connects the cooler 85 to the decomposer 51a, and cools the gas flowing out from the decomposer 51a.
  • the hydrogen generator in the present embodiment includes an electronic control unit 31 as a control device.
  • the electronic control unit 31 in the present embodiment includes a digital computer.
  • Each device included in the hydrogen generator is controlled by an electronic control unit 31.
  • the pump 65 for supplying ammonia and the air pump 76 are controlled by the electronic control unit 31.
  • the flow rate adjusting valves 72a and 73a are controlled by the electronic control unit 31.
  • a temperature sensor 74a is disposed downstream of the catalyst 60a as a catalyst temperature detector for detecting the temperature of the catalyst 60a.
  • a temperature signal detected by the temperature sensor 74 a is input to the electronic control unit 31.
  • the temperature sensor 74a is not limited to this form, and may be formed so that the temperature of the catalyst 60a can be detected.
  • the temperature sensor 74a may be disposed inside the catalyst 60a.
  • the hydrogen generator in the present embodiment includes an electric heater 63 as a heater for heating the catalyst 60a.
  • the electric heater 63 is formed so as to heat the catalyst 60a.
  • a power source 77 is connected to the electric heater 63.
  • the power supply 77 in the present embodiment is controlled by the electronic control unit 31.
  • a heat insulating member 67 is disposed around the decomposer 51a.
  • the heat insulating member 67 can be formed of, for example, glass wool.
  • the heater for heating the catalyst 60a in the present embodiment includes the electric heater 63, but is not limited to this form, and the heater may be formed so as to heat the catalyst 60a.
  • an electric heating catalyst EHC: Electrically-Heated-Catalyst
  • EHC Electrically-Heated-Catalyst
  • a gas flowing into the catalyst 60a may be disposed upstream of the catalyst 60a in the container 75 of the decomposer 51a.
  • the temperature of the catalyst 60a is raised by the electric heater 63 at the time of startup.
  • Electric heater 63 in the present embodiment heats catalyst 60a to an activation temperature or higher.
  • the catalyst 60a is heated by the electric heater 63 until the temperature of the catalyst 60a becomes approximately 200 ° C. or higher.
  • the supply of ammonia is started when the temperature of the catalyst 60a becomes equal to or higher than a predetermined temperature. For example, when the catalyst 60a becomes higher than the activation temperature, the supply of ammonia is started.
  • the electronic control unit 31 drives a heater that heats the evaporator 66.
  • the electronic control unit 31 drives the pump 65 to open the flow rate adjustment valve 72a.
  • Liquid ammonia 49 is supplied to the evaporator 66 as indicated by an arrow 100. In the evaporator 66, the liquid ammonia 49 changes to a gas.
  • the ammonia that has become gas passes through the ammonia supply pipe 61 and is supplied to the inflow pipe 71 as indicated by an arrow 101.
  • the electronic control unit 31 drives the air pump 76.
  • the electronic control unit 31 opens the flow rate adjustment valve 73a.
  • the air is supplied to the inflow pipe 71 through the air supply pipe 62.
  • the mixture of air and ammonia flows into the mixer 69 and is mixed.
  • the mixture of air and ammonia flows into the catalyst 60a.
  • air is supplied to the catalyst 60a in addition to ammonia.
  • the ammonia decomposition reaction occurs at a predetermined temperature or higher.
  • the decomposition reaction of ammonia is an endothermic reaction.
  • the hydrogen generator of the present embodiment can oxidize a part of ammonia in catalyst 60a and decompose ammonia using the heat of oxidation.
  • the cracked gas flowing out from the catalyst 60a contains water vapor in addition to hydrogen and nitrogen.
  • the generated cracked gas flows out through the outflow pipe 70 as indicated by an arrow 103.
  • the hot gas flowing out of the decomposer 51 a is cooled by the cooler 85.
  • the compound supply device in the present embodiment can adjust the flow rate of ammonia supplied to the catalyst 60a by adjusting the opening degree of the flow rate adjustment valve 72a.
  • the oxygen supply device in the present embodiment can adjust the flow rate of air supplied to the catalyst 60a, that is, the flow rate of oxygen by adjusting the opening of the flow rate adjustment valve 73a.
  • the hydrogen generator in the present embodiment includes a flow ratio adjusting device that adjusts the ratio of the air flow rate (oxygen flow rate) to the ammonia flow rate supplied to the catalyst 60a.
  • the flow rate adjusting device can adjust the flow rate ratio (molar ratio) of oxygen to the gaseous ammonia supplied to the catalyst 60a.
  • FIG. 2 is a graph showing the relationship between the temperature of the electric heater that heats the catalyst and the temperature of the catalyst in the hydrogen generator of the present embodiment.
  • FIG. 2 is a graph when hydrogen is generated by fixing the molar ratio of oxygen to ammonia in the gas supplied to the decomposer 51a.
  • the temperature of the electric heater is gradually increased, the temperature of the electric heater is approximately 200 ° C., and the temperature of the catalyst is rapidly increased. That is, when the temperature of the electric heater is approximately 200 ° C., the catalyst particles that promote the oxidation reaction contained in the catalyst 60a are activated. It can be seen that heat of oxidation is generated by the oxidation of ammonia.
  • FIG. 3 shows a graph for explaining the relationship between the temperature of the electric heater that heats the catalyst and the hydrogen concentration contained in the gas flowing out of the decomposer in the hydrogen generator of the present embodiment.
  • FIG. 3 is a graph when hydrogen is generated with the molar ratio of oxygen to ammonia in the gas supplied to the decomposer 51a fixed as in FIG.
  • the temperature of the electric heater is less than about 200 ° C., it can be seen that hydrogen is not generated.
  • hydrogen is generated when the temperature of the electric heater reaches approximately 200 ° C. 2 and 3
  • the test was performed even when the flow rate of the air supplied to the decomposer was zero. However, even when the temperature of the electric heater was increased to 200 ° C., the generation of hydrogen was observed. Was not.
  • the hydrogen generator in the present embodiment can lower the temperature at which the catalyst should be heated by the heater in order to cause a decomposition reaction at the time of startup or the like.
  • FIG. 4 shows a graph for explaining the relationship between the molar ratio of oxygen to ammonia in the gas supplied to the cracker of the present embodiment and the hydrogen concentration of the gas flowing out of the cracker.
  • the space velocity is changed from the velocity V1 to the velocity V4, and the test is performed a plurality of times. It can be seen that when the molar ratio of oxygen to ammonia is gradually increased from near zero, the hydrogen concentration of the generated gas increases. The hydrogen concentration becomes maximum at the molar ratio Rmax. In a region larger than the molar ratio Rmax, the hydrogen concentration decreases as the molar ratio increases.
  • FIG. 5 shows a graph for explaining the relationship between the molar ratio of oxygen to the gaseous ammonia supplied to the cracker of the present embodiment and the ammonia concentration of the gas flowing out of the cracker.
  • the vertical axis represents the ammonia concentration that flows out without being decomposed in the cracker. It can be seen that as the molar ratio of oxygen to ammonia increases, the concentration of ammonia flowing out of the cracker decreases. It can be seen that the ammonia concentration of the gas flowing out of the cracker becomes zero when the molar ratio of oxygen to ammonia is approximately 0.2. That is, it can be seen that substantially all of the ammonia supplied to the cracker is consumed.
  • the graphs of FIGS. 4 and 5 show that the hydrogen concentration and ammonia concentration of the generated gas are almost the same even when the space velocity of the gas flowing into the catalyst is changed.
  • the hydrogen generator in the present embodiment can generate hydrogen at a higher concentration even when the space velocity is higher than the hydrogen generator in the prior art. For this reason, the cracker can be made smaller than the hydrogen generator in the prior art. Alternatively, the amount of catalytic metal used to produce the catalyst can be reduced.
  • FIG. 6 shows a graph of the temperature of the catalyst when the molar ratio of oxygen to ammonia in the gas supplied to the cracker is changed in the hydrogen generator of the present embodiment. It can be seen that when the molar ratio of oxygen to ammonia is increased, that is, when the oxygen content is increased, the temperature of the catalyst 60a increases. For example, if the ratio of air contained in the gas flowing into the catalyst 60a is increased, more oxidation reaction occurs and the temperature of the catalyst 60a increases. Thus, it can be seen that the temperature of the catalyst can be adjusted by changing the molar ratio of oxygen to ammonia.
  • the catalyst when the temperature of the catalyst becomes high, the catalyst may deteriorate. For example, when the temperature of the catalyst becomes high, sintering in which catalyst particles aggregate may occur. Or when the base material which carries a catalyst particle is formed with the metal, the thermal damage of a base material may arise. For this reason, it is preferable that the temperature of a catalyst is about 1000 degrees C or less, for example.
  • the catalyst temperature is less than 1000 ° C. when the molar ratio of oxygen to ammonia is approximately 0.3. Therefore, the hydrogen generator is preferably controlled so that the molar ratio of oxygen to ammonia is about 0 or more and about 0.3 or less.
  • the hydrogen generator in this embodiment can generate heat of oxidation by adjusting the molar ratio of oxygen to ammonia, and can decompose ammonia by the heat of oxidation of ammonia.
  • the electric heater 63 is energized to heat the catalyst 60a. After the temperature of the catalyst 60a is increased to a temperature at which a predetermined activity can be obtained, the energization of the electric heater 63 is stopped.
  • the hydrogen generator in the present embodiment can decompose ammonia without supplying heat from the outside to the catalyst 60a during the operation period in which ammonia is decomposed.
  • FIG. 7 shows a flowchart for explaining the operation control of the hydrogen generator in the present embodiment.
  • the operation control shown in FIG. 7 can be repeatedly performed at predetermined time intervals, for example.
  • the hydrogen generator in the present embodiment detects the temperature of the catalyst in the cracker and adjusts the molar ratio of oxygen to ammonia in the gas supplied to the catalyst so that the temperature of the catalyst falls within a predetermined temperature range. To do. In the present embodiment, the flow rate of ammonia and the flow rate of air are adjusted.
  • step 201 the temperature of the catalyst 60a is detected.
  • the temperature of the catalyst 60a can be detected by a temperature sensor 74a disposed downstream of the catalyst 60a.
  • step 202 it is determined whether or not the temperature of the catalyst 60a is higher than a predetermined temperature determination value on the high temperature side. That is, it is determined whether or not the temperature deviates from a predetermined temperature range.
  • a predetermined temperature determination value on the high temperature side of the catalyst 60a for example, a temperature at which the deterioration of the catalyst 60a significantly proceeds can be employed.
  • step 202 when the temperature of the catalyst 60a is higher than a predetermined temperature determination value on the high temperature side, the routine proceeds to step 203.
  • control is performed to reduce the flow ratio of air to ammonia.
  • the flow rate of air to ammonia is reduced without changing the space velocity of the gas supplied to the catalyst.
  • control is performed to increase the opening degree of flow rate adjusting valve 72a for adjusting the flow rate of ammonia while reducing the opening degree of flow rate adjusting valve 73a for adjusting the flow rate of air.
  • the molar ratio of oxygen to ammonia can be reduced, and the temperature of catalyst 60a can be lowered.
  • this control is terminated. Alternatively, this control may be terminated when the flow rate ratio changes to a predetermined value.
  • Step 202 when the temperature of the catalyst 60a is equal to or lower than a predetermined high temperature side temperature judgment value, the process proceeds to Step 204.
  • step 204 it is determined whether or not the temperature of the catalyst 60a is lower than a predetermined low-temperature temperature determination value. That is, it is determined whether or not the temperature of the catalyst 60a deviates from a predetermined temperature range.
  • the temperature determination value on the low temperature side of the catalyst 60a for example, the activation temperature of the catalyst 60a can be adopted.
  • step 204 when the temperature of the catalyst 60a is lower than a predetermined low-temperature temperature determination value, the process proceeds to step 205.
  • step 205 control is performed to increase the flow ratio of air to ammonia.
  • the flow rate of air to ammonia is increased without changing the spatial flow rate of gas in the catalyst.
  • control is performed to increase the opening degree of flow rate adjustment valve 73a that adjusts the flow rate of air while decreasing the opening degree of flow rate adjustment valve 72a that adjusts the flow rate of ammonia.
  • the molar ratio of oxygen to ammonia can be increased, and the temperature of catalyst 60a can be raised.
  • step 205 when the temperature of the catalyst 60a rises to a predetermined temperature, this control is terminated. Alternatively, this control may be terminated when the flow rate ratio changes to a predetermined value.
  • the total flow rate of the gas supplied to the catalyst 60a is changed without changing the total flow rate of the gas supplied to the catalyst 60a, but is not limited to this mode. May be changed. For example, when the catalyst temperature exceeds the temperature determination value on the high temperature side, the flow rate of ammonia supplied to the catalyst may not be changed, and the flow rate of air may be zero.
  • the temperature determination value on the low temperature side is determined after determining the temperature determination value on the high temperature side of the catalyst temperature.
  • the present invention is not limited to this mode, and the temperature determination value on the low temperature side is determined. After that, the temperature determination value on the high temperature side may be determined. Alternatively, the temperature determination value on the high temperature side and the temperature determination value on the low temperature side may be determined at the same time. Furthermore, both the temperature determination value on the high temperature side and the temperature determination value on the low temperature side of the catalyst temperature are determined, but the present invention is not limited to this mode, and either one may be adopted.
  • the hydrogen generator in the present embodiment can be controlled using the temperature of the catalyst 60a in order to control the molar ratio of oxygen to ammonia supplied to the catalyst 60a to a desired value.
  • the temperature of catalyst 60a corresponds to the molar ratio of oxygen to ammonia supplied to catalyst 60a.
  • the molar ratio of oxygen to ammonia supplied to the catalyst 60a can be estimated by detecting the temperature of the catalyst 60a. That is, the flow rate ratio of air to ammonia supplied to the catalyst 60a can be estimated.
  • the temperature of the catalyst 60a can be controlled to be higher.
  • the flow rate of air and the flow rate of ammonia can be controlled so that the molar ratio of oxygen to ammonia becomes the temperature of the catalyst corresponding to the target value.
  • the hydrogen generator in the present embodiment can employ the target value of the catalyst temperature instead of the target value of the molar ratio of oxygen to ammonia.
  • the compound containing a hydrogen atom and a nitrogen atom in the present embodiment that is, a raw material for generating hydrogen has been described taking ammonia as an example, but is not limited to this form, and the raw material contains a hydrogen atom and a nitrogen atom, Any compound that decomposes to produce hydrogen can be employed.
  • the raw material can include hydrazine (N 2 H 4 ).
  • the compound supply device in the present embodiment is formed so as to supply a liquid raw material, but is not limited to this form, and may be formed so as to supply a gaseous raw material.
  • the catalyst for decomposing and oxidizing the gas as the raw material is not limited to the honeycomb structure, and a catalyst having an arbitrary structure can be adopted.
  • the catalyst may include a pellet catalyst having a small spherical carrier carrying catalyst particles.
  • a catalyst in which a decomposition catalyst and an oxidation catalyst are integrally formed is employed.
  • the present invention is not limited to this form, and catalyst particles that promote the decomposition of the compound and the oxidation of the compound are promoted.
  • the catalyst having the catalyst particles to be formed may be composed of a decomposition catalyst and an oxidation catalyst.
  • a honeycomb structure oxidation catalyst may be disposed on the upstream side and a honeycomb structure decomposition catalyst may be disposed on the downstream side in the exhaust gas flow direction.
  • a temperature of the catalyst when the temperature of the catalyst is to be detected, for example, the temperature of the decomposition catalyst can be detected.
  • Embodiment 2 With reference to FIG. 8 and FIG. 9, the hydrogen generator in Embodiment 2 is demonstrated.
  • the hydrogen generator according to the present embodiment includes a cracker including catalyst particles that promote decomposition in addition to a catalyst particle that promotes oxidation and a catalyst particle that promotes decomposition.
  • FIG. 8 shows a schematic diagram of the hydrogen generator in the present embodiment.
  • the hydrogen generator in the present embodiment includes a decomposer 51b as a second decomposer in addition to a decomposer 51a as a first decomposer.
  • the first decomposer is the same as the decomposer 51a in the first embodiment.
  • the decomposer 51b includes a catalyst 60b.
  • the catalyst 60b in the present embodiment is formed in a honeycomb structure.
  • the catalyst 60b in the present embodiment includes catalyst particles that promote decomposition.
  • the catalyst 60b in the present embodiment does not carry catalyst particles for promoting oxidation, but is not limited to this form, and catalyst particles that promote oxidation may be carried.
  • the air supply pipe 62 is connected to the inflow pipe 71 of the decomposer 51a.
  • the oxygen supply device in the present embodiment is configured so as to supply oxygen to the catalyst 60a of the cracker 51a but not to supply oxygen to the catalyst 60b of the cracker 51b.
  • the hydrogen generator in the present embodiment is formed so that the catalyst 60a and the catalyst 60b exchange heat.
  • the container 75 of the decomposer 51a and the container 75 of the decomposer 51b are arranged in contact with each other.
  • the configuration in which the catalyst 60a and the catalyst 60b exchange heat with each other is not limited to this form.
  • a heat exchanger may be disposed between the decomposer 51a and the decomposer 51b.
  • the heat exchanger includes, for example, a first fin disposed inside the catalyst 60a and a second fin disposed inside the catalyst 60b, and the first fin and the second fin are members capable of transferring heat. What is connected mutually can be illustrated.
  • a temperature sensor 74b is disposed downstream of the catalyst 60b as a catalyst temperature detector for detecting the temperature of the catalyst 60b.
  • the compound supply device in the present embodiment is formed so that ammonia as a compound can be supplied to the catalysts 60a and 60b.
  • an ammonia supply pipe 61 connected to the evaporator 66 is branched.
  • the branched ammonia supply pipe 61 is connected to the inflow pipe 71 of the cracker 51a and the inflow pipe 71 of the cracker 51b.
  • a flow rate adjustment valve 72b for adjusting the flow rate of gaseous ammonia supplied to the catalyst 60b is disposed in the middle of the ammonia supply pipe 61 toward the cracker 51b.
  • the compound supply device in the present embodiment is formed such that the flow rate of ammonia supplied to the respective catalysts 60a and 60b can be adjusted by adjusting the opening degree of the flow rate adjustment valves 72a and 72b. Alternatively, the flow rate ratio between ammonia supplied to the catalyst 60a of the cracker 51a and ammonia supplied to the catalyst 60b of the cracker 51b can be changed.
  • An outflow pipe 70 is connected to the container 75 of the decomposer 51b.
  • the outflow pipe 70 connected to the container 75 of the decomposer 51a and the outflow pipe 70 connected to the container 75 of the decomposer 51b merge with each other and are connected to the cooler 85.
  • the hydrogen generator in this embodiment includes an electronic control unit 31.
  • the outputs of the temperature sensors 74 a and 74 b are input to the electronic control unit 31. Further, the respective flow rate adjustment valves 72 a, 72 b, 73 a are controlled by the electronic control unit 31.
  • the hydrogen generator of this embodiment can decompose ammonia while oxidizing ammonia in the decomposer 51a as the first decomposer.
  • ammonia can be decomposed in the decomposer 51b as the second decomposer.
  • the heat of oxidation generated by the catalyst 60a of the cracker 51a is transmitted to the catalyst 60b of the cracker 51b.
  • the catalyst 60b of the cracker 51b can also decompose ammonia using the heat of oxidation generated in the catalyst 60a.
  • the hydrogen generator in the present embodiment is formed such that the flow rate of ammonia supplied to the decomposer 51a as the first decomposer and the flow rate of ammonia supplied to the decomposer 51b as the second decomposer can be changed. Yes.
  • the ammonia flow rate supplied to the first cracker and the ammonia flow rate supplied to the second cracker are optimized in accordance with the operating state such as the amount of hydrogen required for the hydrogen generator and the temperature of the catalyst. be able to. Hydrogen can be appropriately generated according to the operating state.
  • FIG. 9 shows a flowchart of operation control of the hydrogen generator in the present embodiment.
  • control is performed so that the temperature of the catalyst 60b of the cracker 51b as the second cracker falls within a predetermined temperature range.
  • the control shown in FIG. 9 can be performed repeatedly at predetermined time intervals, for example.
  • step 211 the temperature of the catalyst in the second decomposer is detected.
  • electronic control unit 31 detects the temperature of catalyst 60b of decomposer 51b by temperature sensor 74b.
  • step 212 it is determined whether or not the temperature of the catalyst 60b of the cracker 51b is lower than a predetermined low-temperature temperature determination value.
  • a predetermined low-temperature temperature determination value for example, a temperature at which the catalyst 60b of the cracker 51b is activated can be employed.
  • step 212 when the temperature of the catalyst 60b of the cracker 51b as the second cracker is lower than the temperature determination value on the low temperature side, the process proceeds to step 213.
  • step 213 the flow rate ratio of the ammonia supplied to the decomposer 51a to the ammonia supplied to the decomposer 51b is increased.
  • control is performed to decrease the flow rate of ammonia supplied to the decomposer 51b while increasing the flow rate of ammonia supplied to the decomposer 51a.
  • control is performed to increase the opening degree of flow rate adjustment valve 72a communicating with decomposer 51a while decreasing the opening degree of flow rate adjustment valve 72b communicating with decomposer 51b. I do.
  • the flow rate of ammonia supplied to the catalyst 60b without heat generation and increase the flow rate of ammonia supplied to the catalyst 60a with heat generation.
  • a large amount of ammonia can be supplied to the decomposer 51a in which ammonia is oxidized.
  • the temperature of the catalyst 60b can be increased. It can suppress that the temperature of the catalyst 60b of the cracker 51b falls too much, and the decomposition
  • the flow rate of air supplied to the decomposer 51a may be increased. By increasing the flow rate of the air supplied to the decomposer 51a, the temperature drop of the catalyst 60a can be suppressed. Alternatively, the temperature of the catalyst 60a can be raised. As a result, the temperature of the catalyst 60b can be quickly raised.
  • Step 213 can be ended when, for example, the temperature of the catalyst 60b of the second cracker becomes equal to or higher than a predetermined temperature. Alternatively, the process may be ended by changing the flow rate to a predetermined ratio. When the temperature rise of the decomposer 51b in step 213 is finished, this control is finished.
  • step 212 when the temperature of the catalyst 60b of the decomposer 51b is equal to or higher than the temperature determination value on the low temperature side, the process proceeds to step 214.
  • step 214 it is determined whether or not the temperature of the catalyst 60b of the cracker 51b is higher than a predetermined temperature determination value on the high temperature side.
  • a predetermined temperature determination value on the high temperature side for example, the temperature of the catalyst 60b when the temperature of the catalyst 60a that generates oxidation heat becomes a temperature that causes deterioration can be employed.
  • this control is terminated.
  • the temperature of the catalyst 60b of the cracker 51b is higher than a predetermined temperature determination value on the high temperature side, the process proceeds to step 215.
  • control is performed to reduce the flow rate ratio of ammonia supplied to the decomposer 51a to ammonia supplied to the decomposer 51b.
  • control is performed to increase the flow rate of ammonia supplied to the decomposer 51b while decreasing the flow rate of ammonia supplied to the decomposer 51a.
  • control is performed to reduce the opening degree of flow rate adjustment valve 72a communicating with decomposer 51a, while increasing the opening degree of flow rate adjustment valve 72b communicating with decomposer 51b. I do.
  • the temperature of the catalyst 60a can be lowered.
  • the flow rate of air supplied to the decomposer 51a may be reduced.
  • the temperature of the catalyst 60a can be quickly lowered. Since the flow rate of ammonia supplied to the catalyst 60b in which the decomposition reaction occurs without causing the oxidation reaction of ammonia, the temperature of the catalyst 60b can be lowered. It can suppress that the temperature of the catalyst 60a of the cracker 51a rises too much, and the catalyst 60a deteriorates.
  • Step 215 can be ended when, for example, the temperature of the catalyst 60b of the second cracker becomes equal to or lower than a predetermined temperature. Alternatively, this control may be terminated when the flow rate ratio changes to a predetermined value.
  • the flow rate of ammonia supplied to the catalyst in which the oxidation reaction occurs and the catalyst in which the oxidation reaction does not occur can be adjusted based on the temperature of the catalyst.
  • the temperature of the catalyst of the second cracker is detected, but the present invention is not limited to this, and the temperature of the catalyst of the first cracker may be detected.
  • the determination of the temperature determination value on the high temperature side is performed after the determination of the temperature determination value on the low temperature side.
  • the present invention is not limited to this embodiment, and either one may be performed first. .
  • the determination of the temperature determination value on the low temperature side and the determination of the temperature determination value on the high temperature side may be performed simultaneously. Or you may perform control which employ
  • Embodiment 3 With reference to FIGS. 10 to 16, an internal combustion engine including the hydrogen generator in Embodiment 3 will be described. In the present embodiment, an internal combustion engine disposed in a vehicle will be described as an example.
  • FIG. 10 is a schematic diagram of the internal combustion engine in the present embodiment.
  • the internal combustion engine in the present embodiment is a spark ignition type.
  • the internal combustion engine includes an engine body 1.
  • the engine body 1 includes a cylinder block 2 and a cylinder head 4.
  • a piston 3 is disposed inside the cylinder block 2.
  • a combustion chamber 5 is formed by the crown surface of the piston 3 and the cylinder head 4.
  • the combustion chamber 5 is formed for each cylinder.
  • the combustion chamber 5 is connected to an engine intake passage and an engine exhaust passage.
  • An intake port 7 and an exhaust port 9 are formed in the cylinder head 4.
  • the intake valve 6 is disposed at the end of the intake port 7 and is configured to be able to open and close the engine intake passage communicating with the combustion chamber 5.
  • the exhaust valve 8 is disposed at the end of the exhaust port 9 and is configured to be able to open and close the engine exhaust passage communicating with the combustion chamber 5.
  • An ignition plug 10 as an ignition device is fixed to the cylinder head 4.
  • the spark plug 10 is formed to ignite fuel in the combustion chamber 5.
  • the spark plug 10 in the present embodiment is a plasma jet spark plug.
  • the intake port 7 of each cylinder is connected to a surge tank 14 via a corresponding intake branch pipe 13.
  • the surge tank 14 is connected to the air cleaner 12 via the intake duct 15.
  • An air flow meter 16 that detects the amount of intake air is disposed in the intake duct 15.
  • a throttle valve 18 driven by a step motor 17 is disposed inside the intake duct 15.
  • the internal combustion engine in the present embodiment includes an exhaust purification device that purifies exhaust gas.
  • the exhaust purification device includes a catalytic converter 21.
  • the exhaust port 9 of each cylinder is connected to an exhaust manifold 19.
  • the exhaust manifold 19 is connected to the catalytic converter 21.
  • Catalytic converter 21 in the present embodiment includes an oxidation catalyst 20.
  • the catalytic converter 21 is connected to the exhaust pipe 22.
  • the exhaust purification apparatus in the present embodiment includes an oxidation catalyst
  • the present invention is not limited to this form, and any apparatus that purifies exhaust gas can be arranged.
  • the exhaust purification device may also include a catalyst for purifying a three-way catalyst and NO X.
  • the internal combustion engine in the present embodiment includes a hydrogen generator.
  • the configuration of the hydrogen generator in the present embodiment is the same as that of the hydrogen generator in the first embodiment (see FIG. 1).
  • the hydrogen generator includes a cracker 51a including a catalyst 60a.
  • the inflow pipe 71 of the decomposer 51 a is connected to the air supply pipe 62.
  • the air supply pipe 62 is connected to the engine intake passage upstream of the throttle valve 18.
  • hydrogen or the like is injected from the fuel injection valve 86 when the pressure on the downstream side of the throttle valve becomes lower than the pressure on the upstream side.
  • the outflow pipe 70 of the decomposer 51 a is connected to the cooler 85.
  • the engine cooling water for cooling the engine main body 1 flows into the cooler 85 in the present embodiment.
  • the cooler 85 is formed so as to exchange heat between the gas flowing out of the decomposer 51 a and the cooling water of the engine body 1.
  • the gas flowing out of the decomposer 51a is cooled by the engine cooling water. With this configuration, the gas flowing out from the decomposer 51a can be cooled using the engine cooling water of the engine body.
  • the evaporator 66 in the present embodiment includes a heating unit 66a.
  • the heating part 66a in the present embodiment is formed to be heated by an electric heater.
  • the heating unit 66a is not limited to this form, and any heating unit 66a may be used so long as it vaporizes liquid ammonia.
  • the heating unit 66a may be formed so as to vaporize liquid ammonia by heat exchange with the exhaust gas flowing through the exhaust purification device.
  • the internal combustion engine in the present embodiment includes a hydrogen supply machine that supplies hydrogen generated by the hydrogen generator to the combustion chamber as fuel.
  • the hydrogen supply machine in the present embodiment includes a fuel injection valve 86 that injects hydrogen toward the inside of the engine intake passage.
  • the fuel injection valve 86 is connected to the cooler 85 via the supply pipe 90. Hydrogen generated by the cracker 51 a is supplied to the fuel injection valve 86 through the outflow pipe 70, the cooler 85, and the supply pipe 90 as indicated by an arrow 103. By opening the fuel injection valve 86, a gas containing hydrogen is released into the engine intake passage.
  • FIG. 11 shows a schematic diagram of the electronic control unit of the internal combustion engine in the present embodiment.
  • the control device for an internal combustion engine in the present embodiment includes an electronic control unit 31.
  • the electronic control unit 31 in the present embodiment includes a digital computer.
  • the electronic control unit 31 includes a RAM (random access memory) 33, a ROM (read only memory) 34, a CPU (microprocessor) 35, an input port 36 and an output port 37 which are connected to each other via a bidirectional bus 32. .
  • RAM random access memory
  • ROM read only memory
  • CPU microprocessor
  • the air flow meter 16 generates an output voltage proportional to the amount of intake air taken into the combustion chamber 5.
  • This output voltage is input to the input port 36 via the corresponding AD converter 38.
  • a load sensor 41 is connected to the accelerator pedal 40.
  • the load sensor 41 generates an output voltage proportional to the depression amount of the accelerator pedal 40.
  • This output voltage is input to the input port 36 via the corresponding AD converter 38.
  • the crank angle sensor 42 generates an output pulse every time the crankshaft rotates, for example, 30 °, and this output pulse is input to the input port 36.
  • the engine speed can be detected from the output of the crank angle sensor 42.
  • the engine body 1 of the internal combustion engine is cooled by engine cooling water.
  • the internal combustion engine includes an engine coolant temperature sensor 43 as an engine temperature detector that detects the temperature of the engine body 1.
  • the engine coolant temperature sensor 43 is formed so as to detect the temperature of the engine coolant.
  • the output of the engine coolant temperature sensor 43 is input to the input port 36 via the corresponding AD converter 38.
  • a signal from a temperature sensor or the like included in the hydrogen generator is input to the electronic control unit 31.
  • the output port 37 of the electronic control unit 31 is connected to the fuel injection valve 86 and the spark plug 10 via the corresponding drive circuit 39.
  • the electronic control unit 31 in the present embodiment is formed to perform fuel injection control.
  • the output port 37 is connected to a step motor 17 that drives the throttle valve 18 via a corresponding drive circuit 39.
  • the electronic control unit 31 is connected to a flow rate adjustment valve, a pump, and the like included in the hydrogen generator.
  • the electronic control unit 31 controls equipment included in the hydrogen generator.
  • control device for the internal combustion engine is not limited to this form, and any control device may be used as long as the internal combustion engine can be controlled.
  • control device includes an electronic control unit that controls the hydrogen generator and an electronic control unit that controls the engine body, and the plurality of electronic control units are connected by a communication method such as CAN (Controller-Area-Network) communication. They may be connected to each other.
  • CAN Controller-Area-Network
  • hydrogen generated by decomposer 51 a of the hydrogen generator and gaseous ammonia that has not been decomposed by hydrogen generator are sucked by fuel injection valve 86. It is injected into the branch pipe 13. The sucked air, hydrogen and ammonia mixture is supplied to the combustion chamber 5 through the intake port 7.
  • fuel is burned in the combustion chamber 5 to generate exhaust gas.
  • Exhaust gas generated in the combustion chamber 5 flows out from the combustion chamber 5 to the exhaust port 9.
  • the exhaust gas that has flowed out to the exhaust port 9 flows into the catalytic converter 21.
  • the oxidation catalyst 20 of the catalytic converter 21 unburned fuel or the like contained in the exhaust gas is oxidized.
  • the exhaust gas purified by the catalytic converter 21 is discharged through the exhaust pipe 22.
  • the internal combustion engine in the present embodiment can perform combustion in combustion chamber 5 using at least one of ammonia and hydrogen as fuel.
  • the internal combustion engine in the present embodiment includes an operating state detection device that detects the operating state of the internal combustion engine. As an operation state of the internal combustion engine, for example, the engine speed, the load of the internal combustion engine, and the like can be exemplified.
  • the internal combustion engine in the present embodiment detects the operating state and performs control to change the amount of ammonia and the amount of hydrogen supplied to the combustion chamber 5 in accordance with the operating state of the internal combustion engine.
  • the internal combustion engine in the present embodiment includes a rotation speed detection device that detects the engine rotation speed.
  • the internal combustion engine in the present embodiment includes a load detection device that detects the load of the internal combustion engine.
  • the amount of ammonia and the amount of hydrogen supplied to the combustion chamber 5 can be selected based on, for example, the engine speed and the load on the internal combustion engine.
  • a map of ammonia supply amount and a map of hydrogen supply amount that use the engine speed and the load of the internal combustion engine as a function can be created in advance, and these maps can be stored in the ROM 34 of the electronic control unit 31.
  • the engine speed is detected by the output of the crank angle sensor 42 or the like.
  • the load is detected from the output of the load sensor 41 or the like. Based on the detected operating state such as engine speed or load, the amount of ammonia and the amount of hydrogen supplied to the combustion chamber can be selected using a map stored in the electronic control unit 31.
  • the amount of air supplied to the combustion chamber 5 can be adjusted by controlling the opening degree of the throttle valve 18.
  • the amount of the mixture of ammonia and hydrogen flowing into the combustion chamber 5 can be adjusted by controlling the injection time or the injection flow rate of the fuel injection valve 86.
  • the hydrogen generator can adjust the ratio between the amount of hydrogen and the amount of ammonia contained in the air-fuel mixture supplied to the fuel injection valve 86.
  • the ratio of the amount of hydrogen supplied to the combustion chamber 5 and the amount of ammonia can be changed by adjusting the air flow rate and the ammonia flow rate supplied to the decomposer 51a of the hydrogen generator. 4 and 5, in the hydrogen generator of the present embodiment, the hydrogen concentration and ammonia concentration flowing out from decomposer 51a are changed by changing the flow ratio of air to ammonia supplied to decomposer 51a. Can be changed. For example, when the molar ratio of oxygen to ammonia is in the range of 0 to Rmax, increasing the molar ratio of oxygen to ammonia increases the concentration of hydrogen flowing out of the decomposer 51a while decreasing the ammonia concentration. be able to.
  • the total flow rate of the gas flowing out from the decomposer 51a can be adjusted by controlling the air flow rate and the ammonia flow rate supplied to the decomposer 51a.
  • the amount of air-fuel mixture injected from the fuel injection valve 86 per unit time corresponds to the flow rate of gas flowing out from the decomposer 51a.
  • the ammonia flow rate and the air flow rate supplied to the cracker 51a can be adjusted based on the amount of the air-fuel mixture injected from the fuel injection valve 86 per unit time.
  • ammonia has combustion characteristics such as a slow combustion speed and poor ignitability.
  • hydrogen functions as a combustion aid that promotes combustion of fuel in the combustion chamber 5.
  • the combustibility of ammonia is poor in the combustion chamber 5, it is preferable to increase the ratio of hydrogen contained in the fuel.
  • the ratio of hydrogen to ammonia in the fuel supplied to the combustion chamber it is preferable to increase the ratio of hydrogen to ammonia in the fuel supplied to the combustion chamber.
  • FIG. 12 shows a flowchart of the operation control of the internal combustion engine in the present embodiment.
  • step 221 the operating state of the internal combustion engine is detected.
  • step 222 the amount of hydrogen and the amount of ammonia to be supplied to the combustion chamber are selected based on the detected operating state of the internal combustion engine. For example, the amount of hydrogen and the amount of ammonia can be selected based on a map stored in advance in the electronic control unit.
  • step 223 the hydrogen generator is controlled based on the amount of hydrogen and the amount of ammonia supplied to the combustion chamber.
  • the amount of hydrogen and the amount of ammonia supplied to the combustion chamber correspond to the amount of hydrogen and the amount of ammonia flowing out from the cracker of the hydrogen generator.
  • the ratio of the air flow rate and ammonia flow rate supplied to the decomposer of the hydrogen generator is adjusted. By performing this control, it is possible to adjust the amount of hydrogen and ammonia supplied to the fuel chamber, and to generate an appropriate amount of hydrogen in the hydrogen generator.
  • both the amount of ammonia and the amount of hydrogen supplied to the combustion chamber are controlled.
  • the present invention is not limited to this mode, and either one of the amounts may be controlled.
  • the higher the engine speed the more hydrogen can be supplied to the combustion chamber.
  • the control which enlarges the ratio of hydrogen with respect to ammonia of the fuel supplied to a combustion chamber can be performed, so that the rotation speed of an internal combustion engine is high.
  • the higher the rotational speed of the internal combustion engine the higher the flow rate ratio of the air to the gas ammonia supplied to the cracker can be controlled. By performing this control, stable combustion can be performed in the combustion chamber even when the rotational speed of the internal combustion engine increases.
  • the temperature of the engine body 1 can be exemplified as the operating state of the internal combustion engine.
  • the temperature of the engine cooling water can be detected as the temperature of the engine body 1.
  • the temperature of the engine body 1 may be low. Since ammonia has poor ignitability, it is preferable to supply fuel with a high hydrogen to ammonia ratio to the combustion chamber 5 when the temperature of the engine body 1 is low.
  • the internal combustion engine in the present embodiment performs control to increase the amount of hydrogen relative to the amount of ammonia supplied to the combustion chamber 5 when the temperature of the engine body 1 is lower than a predetermined temperature determination value.
  • Control can be performed so that the ratio of hydrogen to ammonia in the gas flowing out of the hydrogen generator is equal to or higher than a predetermined ratio.
  • the flow rate ratio of air to ammonia supplied to the cracker 51a can be controlled to be equal to or higher than a predetermined ratio.
  • the engine body 1 when the internal combustion engine is started after being stopped for a long time, the engine body 1 is at a low temperature.
  • the heater 60 (see FIG. 1) disposed around the cracker 51a is used to remove the catalyst 60a until the temperature of the catalyst 60a becomes equal to or higher than a predetermined temperature. Heat.
  • the temperature of the catalyst 60a becomes equal to or higher than the activation temperature, ammonia and air are supplied to the catalyst 60a.
  • control is performed so that the flow rate ratio of air to ammonia supplied to the cracker 51a when the internal combustion engine is started is equal to or higher than a predetermined ratio.
  • the temperature of the engine main body 1 can be detected, and the temperature of the engine main body 1 can be increased and the flow rate ratio of air to ammonia supplied to the decomposer 51a can be gradually reduced.
  • the molar ratio of oxygen to ammonia can be set to 0.15 or more. That is, the molar ratio of air to ammonia can be 0.7 or more.
  • the concentration of ammonia contained in the gas flowing out from the decomposer can be made almost 0%. More preferably, the molar ratio of oxygen to ammonia can be 0.2 or more. Almost all of the fuel contained in the gas flowing out of the cracker can be converted to hydrogen. As a result, stable combustion can be performed in the combustion chamber 5.
  • the operation state of the internal combustion engine is not limited to the engine speed, the load of the internal combustion engine, the temperature of the engine body, and the like, and any operation state can be adopted.
  • the hydrogen generator in the first embodiment is attached to the intake passage of the internal combustion engine.
  • the molar ratio of oxygen to ammonia supplied to the cracker can be controlled using the temperature of the catalyst. That is, when the cracker is controlled according to the amount of hydrogen and the amount of ammonia required for the hydrogen generator, the temperature sensor 74a of the cracker 51a detects the temperature of the catalyst 60a, and based on the detected temperature of the catalyst 60a. The flow rate of ammonia and the flow rate of air supplied to the decomposer 51a can be adjusted.
  • control is performed so that the temperature of the catalyst 60a falls within a predetermined range.
  • the temperature range of the catalyst 60a for example, the temperature at which the catalyst 60a is activated can be exemplified as the temperature determination value on the low temperature side, and the heat resistant temperature of the catalyst 60a can be illustrated as the temperature determination value on the high temperature side.
  • FIG. 13 shows a schematic diagram of the second internal combustion engine in the present embodiment.
  • the second internal combustion engine in the present embodiment is formed so that a part of gaseous ammonia generated in the evaporator 66 is supplied to the combustion chamber 5 without passing through the decomposer 51a.
  • the second internal combustion engine in the present embodiment includes an ammonia injection valve 83 that injects gaseous ammonia toward the engine intake passage.
  • the ammonia injection valve 83 is connected to the evaporator 66 of the hydrogen generator via a supply pipe 89. A part of the ammonia generated by the evaporator 66 is supplied to the ammonia injection valve 83 through the supply pipe 89 as indicated by an arrow 106. A part of the ammonia vaporized in the evaporator 66 is injected from the ammonia injection valve 83 into the intake branch pipe 13.
  • the output port 37 of the electronic control unit 31 is connected to the ammonia injection valve 83 via a corresponding drive circuit 39.
  • the ammonia injection valve 83 is controlled by the electronic control unit 31.
  • the fuel can be combusted in the combustion chamber 5 using at least one of ammonia and hydrogen as fuel.
  • the amount of hydrogen that is injected from the fuel injection valve 86 and supplied to the combustion chamber 5 by adjusting the air flow rate and ammonia flow rate supplied to the decomposer 51a of the hydrogen generator. And the amount of ammonia can be adjusted. Furthermore, the amount of ammonia supplied to the combustion chamber 5 can be adjusted by controlling the ammonia injection valve 83.
  • the amount of ammonia and the amount of hydrogen supplied to the combustion chamber 5 can be determined based on the operating state of the internal combustion engine.
  • the electronic control unit 31 controls the hydrogen generator, the fuel injection valve 86 and the ammonia injection valve 83 based on the amount of ammonia and the amount of hydrogen supplied to the combustion chamber 5.
  • part of the gaseous ammonia generated in the evaporator 66 is supplied to the combustion chamber 5 without passing through the decomposer 51a.
  • the amount of hydrogen supplied to the combustion chamber 5 may be reduced or the amount of hydrogen may be reduced to zero.
  • the amount of ammonia supplied from the evaporator 66 to the decomposer 51a can be reduced, and the amount of ammonia supplied to the ammonia injection valve 83 can be increased.
  • the decomposer 51a can be stopped. That is, the decomposer 51a can be driven when hydrogen is required.
  • the load is detected as the operating state of the internal combustion engine, and the smaller the load of the internal combustion engine, the higher the ammonia flow rate supplied from the evaporator 66 to the decomposer 51a, so that more hydrogen can be generated in the hydrogen generator. .
  • a lot of hydrogen can be supplied to the combustion chamber.
  • the flow rate of ammonia supplied to the decomposer 51a can be increased.
  • the flow rate of air supplied to the decomposer 51a can be determined based on the amount of hydrogen and the amount of ammonia required for the hydrogen generator.
  • control it is preferable to perform control to reduce the amount of ammonia injected from the ammonia injection valve 83 as the load on the internal combustion engine is smaller.
  • control can be performed when the engine speed is detected as the operating state of the internal combustion engine. For example, as the engine speed increases, control is performed to increase the amount of ammonia supplied from the evaporator 66 to the decomposer 51a, while the amount of ammonia supplied from the evaporator 66 to the engine intake passage via the ammonia injection valve 83 is controlled. Control to decrease can be performed. The amount of hydrogen generated in the cracker 51a can be increased. The higher the engine speed, the more hydrogen can be supplied to the combustion chamber.
  • the lower the temperature of the engine body 1 the smaller the amount of ammonia injected from the evaporator 66 into the engine intake passage through the ammonia injection valve 83.
  • the amount of hydrogen generated in the cracker 51a can be increased. The lower the temperature of the engine body, the more hydrogen can be supplied to the combustion chamber.
  • the amount of ammonia supplied from the ammonia injection valve 83 may be zero.
  • the internal combustion engine is cold started or when the temperature of the engine body 1 is lower than a predetermined temperature, all of the ammonia vaporized in the evaporator 66 can be supplied to the decomposer 51a.
  • FIG. 14 shows a schematic diagram of a third internal combustion engine in the present embodiment.
  • the hydrogen generator includes a cracker 51a, and the catalyst 60a of the cracker 51a is formed so as to exchange heat with the exhaust purification device.
  • heat generated in the oxidation catalyst 20 of the catalytic converter 21 is formed to be transmitted to the catalyst 60a of the cracker 51a.
  • catalytic converter 21 and decomposer 51a are arranged so as to contact each other.
  • the heat generated by the oxidation catalyst 20 is transferred to the catalyst 60a when the catalytic converter 21 and the cracker 51a come into contact with each other.
  • the heat of any equipment contained in the purification device can be transferred to the cracker catalyst.
  • the catalytic converter may include a three-way catalyst.
  • the exhaust gas flowing through the engine exhaust passage may be formed so as to pass through the inside of the heat exchanger disposed inside the catalyst 60a.
  • a heat exchanger may be disposed between the oxidation catalyst 20 and the catalyst 60a.
  • the heat exchanger includes, for example, a first fin disposed inside the oxidation catalyst 20 and a second fin disposed inside the catalyst 60a, and the first fin and the second fin can transfer heat. Examples that are connected to each other can be exemplified.
  • a bypass pipe 91 that bypasses the cracker 51a is connected in the middle of a flow path for supplying ammonia to the cracker 51a.
  • the bypass pipe 91 is connected to the outlet of the evaporator 66.
  • a flow rate adjusting valve 92 that adjusts the flow rate of gaseous ammonia is disposed in the middle of the bypass pipe 91.
  • the flow rate adjustment valve 92 is controlled by the electronic control unit 31.
  • the bypass pipe 91 is connected in the middle of the supply pipe 90 that connects the cooler 85 and the fuel injection valve 86.
  • a part of the ammonia vaporized by the evaporator 66 can be supplied to the supply pipe 90 through the bypass pipe 91 as indicated by an arrow 104.
  • Gaseous ammonia generated by the evaporator 66 can be supplied to the engine intake passage without passing through the decomposer 51a.
  • the flow rate ratio of the compound supplied to the decomposer 51a to the compound supplied to the combustion chamber 5 without passing through the decomposer 51a can be changed. For example, by decreasing the opening degree of the flow rate adjustment valve 72a and increasing the opening degree of the flow rate adjustment valve 92, the amount of ammonia supplied to the decomposer 51a is reduced and also supplied directly to the fuel injection valve 86. The amount of ammonia can be increased.
  • heat generated in the oxidation catalyst 20 of the catalytic converter 21 can be transmitted to the catalyst 60a of the cracker 51a, and energy efficiency is improved.
  • Heat for decomposing ammonia in the decomposer 51a can be supplied from the exhaust purification device. As a result, the amount of ammonia consumed for increasing the temperature of the catalyst 60a can be reduced.
  • the temperature of the catalytic converter 21 when the temperature of the catalytic converter 21 is low, such as during a cold start of the internal combustion engine, ammonia can be oxidized in the decomposer 51a, and the temperature of the catalytic converter 21 can be raised by the oxidation heat of the catalyst 60a.
  • the temperature of the catalytic converter 21 at the time of cold start, after the temperature of the catalyst 60a is raised above the activation temperature by the electric heater 63, an oxidation reaction of ammonia is caused. Heat generated in the catalyst 60 a can be transferred to the oxidation catalyst 20 of the catalytic converter 21. For this reason, the oxidation catalyst 20 can be heated to the activation temperature or higher in a short time. For this reason, when the catalytic converter 21 is low temperature, the property of the exhaust gas discharged
  • control can be performed so that the temperature of the catalyst 60a of the cracker 51a of the hydrogen generator is within a predetermined temperature range.
  • the temperature range of the catalyst 60a is preferably determined so that both the catalyst 60a and the oxidation catalyst 20 are at or above the activation temperature. Further, the temperature range of the catalyst 60a is preferably determined so as to be lower than the allowable heat resistance temperature of the catalyst 60a and the oxidation catalyst 20.
  • control can be performed to increase the flow rate ratio of air to ammonia supplied to the catalyst 60a.
  • the temperature of the catalyst 60a is higher than a predetermined temperature determination value on the high temperature side, it is possible to perform control to reduce the flow ratio of air to ammonia supplied to the catalyst 60a.
  • FIG. 15 shows a schematic diagram of a fourth internal combustion engine in the present embodiment.
  • the fourth internal combustion engine in the present embodiment includes a decomposer 51b as a second decomposer in addition to a decomposer 51a as a first decomposer.
  • the catalyst 60a of the cracker 51a includes catalyst particles that promote the decomposition of ammonia and catalyst particles that promote the oxidation of ammonia.
  • the air supply pipe 62 for supplying air to the decomposer 51a is formed so as to take in air from the engine intake passage.
  • An outlet pipe 70 is connected to the outlet of the decomposer 51a.
  • the outflow pipe 70 is connected to the cooler 85.
  • a supply pipe 90 is connected to the cooler 85.
  • the supply pipe 90 is connected to the fuel injection valve 86.
  • the catalyst 60b of the cracker 51b includes catalyst particles that promote the decomposition of ammonia. While the gaseous ammonia is supplied to the decomposer 51b via the flow rate adjusting valve 72b, it is formed so that air is not supplied.
  • the decomposer 51b is formed so as to cause an ammonia decomposition reaction without causing an ammonia oxidation reaction.
  • the catalyst 60b of the cracker 51b is formed so as to exchange heat with the oxidation catalyst 20 of the catalytic converter 21.
  • the decomposer 51b and the catalytic converter 21 are in contact with each other.
  • the catalyst 60a when the temperature of the catalytic converter 21 is low, such as when the internal combustion engine is started, ammonia is not supplied to the decomposer 51b but ammonia is supplied to the decomposer 51a. To do. For example, at the cold start, the catalyst 60a is heated to the activation temperature by the electric heater 63. When the catalyst 60a reaches the activation temperature, an oxidation reaction occurs and ammonia can be decomposed. For this reason, even when the catalytic converter 21 is at a low temperature, the catalyst 60a can decompose ammonia.
  • the temperature of the catalyst 60b of the cracker 51b As the temperature of the oxidation catalyst 20 of the catalytic converter 21 rises, the temperature of the catalyst 60b of the cracker 51b also rises. When the temperature of the catalyst 60b becomes equal to or higher than a predetermined temperature, ammonia is supplied to the decomposer 51b. The heat of the oxidation catalyst 20 is transmitted to the catalyst 60b of the cracker 51b, and ammonia can be decomposed in the cracker 51b. For example, when the temperature of the catalyst 60b rises to the activation temperature or higher, the flow rate adjustment valve 72b is opened to supply ammonia to the cracker 51b. Ammonia can be decomposed in the catalyst 60b. In this case, it is possible to control to reduce the flow rate of ammonia supplied to the decomposer 51a.
  • the ammonia flow rate supplied to the first cracker and the ammonia flow rate supplied to the second cracker can be changed according to the operating state of the internal combustion engine. For this reason, the internal combustion engine excellent in energy efficiency can be provided. Further, since the ammonia can be decomposed using the heat of the exhaust purification device, the amount of ammonia consumed for heating the decomposition catalyst can be reduced.
  • FIG. 16 shows a schematic diagram of the fifth internal combustion engine in the present embodiment.
  • a hydrogen generator similar to the hydrogen generator in Embodiment 2 is attached to the internal combustion engine.
  • the fifth internal combustion engine includes a decomposer 51a as a first decomposer and a decomposer 51b as a second decomposer.
  • the decomposer 51a includes catalyst particles that promote the decomposition of ammonia and catalyst particles that promote the oxidation of ammonia.
  • the cracker 51b includes catalyst particles that promote the decomposition of ammonia.
  • the catalyst 60b of the cracker 51b is formed so as to exchange heat with the oxidation catalyst 20 of the catalytic converter 21.
  • the decomposer 51 b is in contact with the catalytic converter 21.
  • the catalyst 60b of the cracker 51b is formed so as to exchange heat with the catalyst 60a of the cracker 51a.
  • the decomposer 51a and the decomposer 51b are arranged so as to contact each other.
  • Ammonia generated in the evaporator 66 is injected from the ammonia injection valve 83 through the supply pipe 89.
  • Hydrogen generated in the crackers 51 a and 51 b is injected from the fuel injection valve 86.
  • it is the same as that of the 4th internal combustion engine in this Embodiment.
  • the catalyst 60b of the decomposer 51b that does not have a function of generating heat includes the catalyst 60a of the decomposer 51a in addition to the heat generated in the oxidation catalyst 20 of the catalytic converter 21. It is possible to supply heat generated in For example, when starting up the internal combustion engine, the catalyst 60b of the cracker 51b can be heated to the activation temperature or higher in a short time by causing the oxidation of ammonia in the catalyst 60a of the cracker 51a.
  • the temperature of the catalyst 60b of the decomposer 51b to which no air is supplied can be detected.
  • the temperature of the catalyst 60b is lower than a predetermined low temperature determination value, the ammonia supplied to the catalyst 60b having no oxidation function is increased while the ammonia flow rate supplied to the catalyst 60a having the oxidation function is increased. Control to decrease the flow rate can be performed. As a result, the temperature of the catalyst 60b of the cracker 51b can be raised.
  • the flow rate of ammonia supplied to the catalyst 60a having an oxidation function is decreased, and the catalyst 60b is supplied to the catalyst 60b having no oxidation function. Control to increase the ammonia flow rate can be performed.
  • each injection valve can supply fuel to the combustion chamber. It does not matter as long as it is formed.
  • each injection valve may be arranged to inject fuel directly into the combustion chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

 水素発生装置は、水素原子および窒素原子を含む化合物を分解して水素を生成する分解器と、分解器に化合物を供給する化合物供給装置と、分解器に酸素を供給する酸素供給装置とを備える。分解器は、化合物の分解を促進する触媒粒子と化合物の酸化を促進する触媒粒子とを有する触媒を含む。分解器に化合物および酸素を供給し、化合物を酸化させて酸化熱を発生させ、発生する酸化熱を用いて化合物の分解を行なう。

Description

水素発生装置および水素発生装置を備える内燃機関
 本発明は、水素発生装置および水素発生装置を備える内燃機関に関する。
 燃料電池や水素を燃料とするエンジン等においては、装置に水素を供給する必要がある。水素を供給する装置としては、天然ガス等を改質する装置または水素ボンベに水素を貯留する装置等の他に、アンモニアを原料として水素を生成する装置が知られている。この装置においては、アンモニアをタンクに貯留しておき、アンモニアを高温にして分解することにより水素を生成することができる。
 特開平5-332152号公報においては、アンモニアガスを燃焼させて駆動力を得るアンモニア燃焼エンジンであって、燃焼室の排気ガスを用いてアンモニアを分解するアンモニア分解反応器を備える燃焼エンジンが開示されている。燃焼室からの排気ガスによって、アンモニア分解反応器内の熱交換パイプが加熱される。熱交換パイプに導かれるアンモニアガスは、排気ガスの熱を吸収する吸熱反応によって水素と窒素とに分解されることが開示されている。
特開平5-332152号公報
 アンモニアを高温にして分解することにより水素を生成する水素発生装置においては、アンモニアの分解を促進する触媒粒子を含む分解触媒を配置することができる。分解触媒を配置することにより、アンモニアの分解を促進することができ、例えばアンモニアを分解させるための温度を下げることができる。
 アンモニアの分解反応は吸熱反応であるために、分解触媒によりアンモニアの分解を継続するためには、分解触媒に熱を供給する必要がある。上記の特開平5-332152号公報に開示されているアンモニア燃焼エンジンにおいては、燃焼室から排出される排気ガスの熱を利用して、アンモニアガスを水素と窒素とに分解している。ところが、排気ガスからアンモニアの分解に必要な熱を取得する装置では、排気ガスの温度が低いときには、分解触媒に十分な熱を供給することができずに適切に水素を生成することができない虞がある。
 例えば、内燃機関の冷間始動時などには、排気ガスの温度上昇に時間がかかってしまうために、水素発生装置が適切に水素を発生させるためには時間がかかる虞がある。上記の公報に開示されているアンモニア燃焼エンジンでは、アンモニアを分解する熱交換パイプを加熱する補助ヒータが配置されている。排気ガスの温度が低い場合には、補助ヒータにより熱交換パイプを加熱している。しかしながら、補助ヒータによりアンモニアの分解反応が生じる温度まで分解触媒を加熱したり、または、補助ヒータによりアンモニアの分解を継続するための熱を供給したりすると、大きな電力が必要となる。補助ヒータに大きな電力を供給するために、大きな電源が必要になるという問題がある。
 また、上記のアンモニア燃焼エンジンでは、水素の吸蔵装置が配置されている。しかし、水素発生装置に水素の吸蔵装置を配置すると水素発生装置が大型化したり、複雑化したりするという問題がある。さらに、水素の吸蔵装置に吸蔵されている水素が消費されてしまうと、水素を供給できなくなってしまうという問題がある。
 本発明は、原料を分解するための熱を触媒に供給する性能に優れた水素発生装置および水素発生装置を備える内燃機関を提供することを目的とする。
 本発明の水素発生装置は、水素原子および窒素原子を含む化合物を分解して水素を生成する分解器と、分解器に上記化合物を供給する化合物供給装置と、分解器に酸素を供給する酸素供給装置とを備える。分解器は、上記化合物の分解を促進する触媒粒子と上記化合物の酸化を促進する触媒粒子とを有する触媒を含む。分解器に上記化合物および酸素を供給し、上記化合物を酸化させて酸化熱を発生させ、発生する酸化熱を用いて上記化合物の分解を行なう。
 上記発明においては、上記分解器は、第1の分解器を構成しており、上記化合物の分解を促進する触媒粒子を有する触媒を含む第2の分解器を更に備え、第1の分解器の触媒と第2の分解器の触媒とは互いに熱交換を行なうように形成されており、化合物供給装置は、第1の分解器および第2の分解器に上記化合物を供給し、第1の分解器に供給する上記化合物の流量および第2の分解器に供給する上記化合物の流量を調整可能に形成されていることが好ましい。
 上記発明においては、第2の分解器の触媒の温度を検出する触媒温度検出器を備え、第2の分解器の触媒の温度が予め定められた温度未満の場合には、第2の分解器に供給する上記化合物の流量を減少させ、第1の分解器に供給する上記化合物の流量を増加させることが好ましい。
 上記発明においては、酸素供給装置は、化合物供給装置が供給する上記化合物に対する酸素のモル比が0以上0.3以下になるように酸素を分解器に供給することが好ましい。
 上記発明においては、触媒の温度を検出する触媒温度検出器と、化合物供給装置および酸素供給装置のうち少なくとも一方を制御する制御装置とを備え、化合物供給装置は、分解器に供給する上記化合物の流量を調整可能に形成されており、酸素供給装置は、分解器に供給する酸素の流量を調整可能に形成されており、制御装置は、触媒温度検出器により検出される触媒の温度が予め定められた温度の範囲内になるように触媒に供給する上記化合物の流量および酸素の流量のうち少なくとも一方を調整することが好ましい。
 上記発明においては、制御装置は、触媒温度検出器により触媒の温度を検出し、検出された触媒の温度が予め定められた温度よりも高い場合に、上記化合物に対する酸素の流量比を減少させることが好ましい。
 上記発明においては、制御装置は、触媒温度検出器により触媒の温度を検出し、検出された触媒の温度が予め定められた温度よりも低い場合に、上記化合物に対する酸素の流量比を増加させることが好ましい。
 上記発明においては、触媒よりも上流側の流路に配置されている混合器を備え、混合器は、酸素供給装置から供給された酸素を含む気体と、化合物供給装置から供給された上記化合物を含む気体との混合を促進するように形成されていることが好ましい。
 本発明の内燃機関は、上述の水素発生装置と、燃料が燃焼する燃焼室および燃焼室に接続されている機関吸気通路を含む機関本体と、水素発生装置に接続されている水素供給機とを備える。酸素供給装置は、機関吸気通路内の空気を分解器に供給する。水素供給機は、水素発生装置にて生成された水素を燃料として燃焼室に供給する。
 上記発明においては、化合物供給装置は、液体の上記化合物を貯留するタンクと、液体の上記化合物を加熱して気化させる蒸発器とを含み、蒸発器で生成された気体の上記化合物の少なくとも一部が、分解器を通らずに燃料として燃焼室に供給されることが好ましい。
 上記発明においては、機関本体は、冷却水で冷却されるように形成されており、水素発生装置は、分解器の下流側に配置され、分解器から流出する気体を冷却する冷却器を含み、冷却器は、分解器から流出する気体を機関本体の冷却水により冷却するように形成されていることが好ましい。
 上記発明においては、内燃機関の機関回転数を検出する回転数検出装置を備え、水素供給機は、燃焼室に供給する水素の量を調整可能に形成されており、機関回転数を検出し、機関回転数が高くなるほど、燃焼室に供給する水素の量を増加させることが好ましい。
 上記発明においては、水素発生装置は、化合物供給装置および酸素供給装置のうち少なくとも一方を制御する制御装置を備え、化合物供給装置は、分解器に供給する上記化合物の流量を調整可能に形成されており、酸素供給装置は、分解器に供給する酸素の流量を調整可能に形成されており、制御装置は、水素供給機により燃焼室に供給される水素の量に基づいて、分解器に供給する酸素の流量および上記化合物の流量のうち少なくとも一方を調整することが好ましい。
 上記発明においては、内燃機関の負荷を検出する負荷検出装置を備え、水素供給機は、燃焼室に供給する水素の量を調整可能に形成されており、内燃機関の負荷を検出し、内燃機関の負荷が小さくなるほど、燃焼室に供給する水素の量を増加させることが好ましい。
 上記発明においては、水素発生装置は、化合物供給装置および酸素供給装置のうち少なくとも一方を制御する制御装置を備え、化合物供給装置は、分解器に供給する上記化合物の流量を調整可能に形成されており、酸素供給装置は、分解器に供給する酸素の流量を調整可能に形成されており、制御装置は、水素供給機により燃焼室に供給される水素の量に基づいて、分解器に供給する酸素の流量および上記化合物の流量のうち少なくとも一方を調整することが好ましい。
 上記発明においては、水素発生装置は、触媒を加熱する加熱器を備え、内燃機関を始動した時に、加熱器により触媒を加熱し、触媒の温度が予め定められた温度よりも高くなった後に、触媒に対して酸素および上記化合物の供給を開始することが好ましい。
 上記発明においては、化合物供給装置は、分解器に供給する上記化合物の流量を調整可能に形成されており、酸素供給装置は、分解器に供給する酸素の流量を調整可能に形成されており、触媒の温度が予め定められた温度よりも低い場合には、上記化合物に対する酸素の流量比を増加させることが好ましい。
 上記発明においては、機関本体の温度を検出する機関温度検出器を備え、化合物供給装置は、分解器に供給する上記化合物の流量を調整可能に形成されており、酸素供給装置は、分解器に供給する酸素の流量を調整可能に形成されており、水素発生装置は、機関本体の温度が予め定められた温度よりも低い場合には、上記化合物に対する酸素のモル比が0.15以上になるように分解器に上記化合物および酸素を供給することが好ましい。
 上記発明においては、内燃機関の運転状態を検出する運転状態検出装置を備え、化合物供給装置は、分解器に供給する上記化合物の流量を調整可能に形成されており、水素発生装置は、内燃機関の運転状態に基づいて、分解器を通らずに蒸発器から燃焼室に供給する上記化合物に対する蒸発器から分解器に供給する上記化合物の流量比を変化させることが好ましい。
 上記発明においては、運転状態検出装置は、機関本体の温度を検出する機関温度検出器を備え、機関本体の温度を検出し、機関本体の温度が低くなるほど、分解器を通らずに燃焼室に供給する上記化合物に対する分解器に供給する上記化合物の流量比を増加させることが好ましい。
 本発明によれば、原料を分解するための熱を触媒に供給する性能に優れた水素発生装置および水素発生装置を備える内燃機関を提供することができる。
実施の形態1における水素発生装置の概略図である。 実施の形態1における水素発生装置の電気ヒータの温度と、触媒の温度との関係を示すグラフである。 実施の形態1における水素発生装置の電気ヒータの温度と、分解器から流出する気体に含まれる水素濃度とのグラフである。 実施の形態1における水素発生装置の分解器に流入する気体のモル比と、分解器から流出する気体に含まれる水素濃度との関係を示すグラフである。 実施の形態1における水素発生装置の分解器に流入する気体のモル比と、分解器から流出する気体に含まれるアンモニア濃度との関係を示すグラフである。 実施の形態1における水素発生装置の分解器に流入する気体のモル比と、触媒の温度との関係を示すグラフである。 実施の形態1における水素発生装置の運転制御のフローチャートである。 実施の形態2における水素発生装置の概略図である。 実施の形態2における水素発生装置の運転制御のフローチャートである。 実施の形態3における第1の内燃機関の概略図である。 実施の形態3における内燃機関の電子制御ユニットの概略図である。 実施の形態3における内燃機関の運転制御のフローチャートである。 実施の形態3における第2の内燃機関の概略図である。 実施の形態3における第3の内燃機関の概略図である。 実施の形態3における第4の内燃機関の概略図である。 実施の形態3における第5の内燃機関の概略図である。
 実施の形態1
 図1から図7を参照して、実施の形態1における水素発生装置について説明する。本実施の形態における水素発生装置は、窒素原子および水素原子を含む化合物を原料として用いている。本実施の形態においては、原料として液体のアンモニアを用いている。水素発生装置は、液体のアンモニアに熱を供給して気化させることにより気体のアンモニアを生成する。さらに、気体のアンモニアを昇温して分解触媒上で分解することにより水素を生成する。
 図1は、本実施の形態における水素発生装置の概略図である。本実施の形態における水素発生装置は、アンモニアを分解するための分解器51aを備える。本実施の形態における分解器51aは、触媒60aを含む。触媒60aは、アンモニアの分解を促進する触媒粒子と、アンモニアの酸化を促進する触媒粒子とを含む。本実施の形態における触媒60aはアンモニアを分解する分解触媒として機能して、更に、アンモニアを酸化する酸化触媒として機能する。すなわち、本実施の形態における分解器51aは、分解触媒および酸化触媒を含む。分解器51aは、分解触媒と酸化触媒とが一体的に形成されている触媒60aを含む。
 本実施の形態における触媒60aは、ハニカム構造に形成されている。本実施の形態における触媒60aは、流体が流れる方向に沿って形成されている複数の流路を有する。触媒60aは、複数の流路が形成されている基材を含む。基材は、例えばコーディエライトまたは金属で形成されている。基材のそれぞれの流路の表面には、コート層が形成されている。コート層には触媒粒子を担持する粒子状の担持体が配置されている。
 本実施の形態においては、アンモニアを酸化するための触媒粒子およびアンモニアを分解するための触媒粒子は、担持体に担持されている。担持体は、たとえば酸化アルミニウムで形成されている。アンモニアを酸化するための触媒粒子の金属は、白金等の貴金属や鉄等の卑金属を例示することができる。本実施の形態においては、白金が採用されている。アンモニアを酸化するための触媒粒子は、この形態に限られず、アンモニアの酸化を促進する任意の金属から形成することができる。
 アンモニアを分解するための触媒粒子の金属は、白金、ロジウム、ルテニウム等の貴金属やニッケルまたはコバルト等の卑金属を例示することができる。本実施の形態においては、ロジウムおよびルテニウムが採用されている。アンモニアを分解するための触媒粒子は、この形態に限られず、アンモニアの分解を促進する任意の金属から形成することができる。
 分解器51aは、容器75を含む。触媒60aは、容器75の内部に配置されている。容器75は、例えばステンレスで形成することができる。容器75には、空気および原料のアンモニアが流入する流入管71が接続されている。また、容器75には、生成した水素を含む気体が流出する流出管70が接続されている。
 本実施の形態における水素発生装置は、原料としてのアンモニアを分解器51aに供給するための化合物供給装置を備える。化合物供給装置は、アンモニアを貯留するためのタンク64を含む。タンク64は、内部が加圧されており、液体のアンモニア49が貯留されている。本実施の形態における化合物供給装置は、液体のアンモニア49を供給するためのポンプ65を含む。ポンプ65は、液体アンモニア供給管68に接続されている。
 化合物供給装置は、液体アンモニア供給管68に接続されている蒸発器66を含む。蒸発器66は、液体のアンモニアを加熱することができるように形成されている。蒸発器66は、液体のアンモニアを気化することができる。本実施の形態における蒸発器66は、電気式の加熱器が取り付けられており、外部から熱が供給されるように形成されている。蒸発器66の出口には、気体のアンモニアを供給するアンモニア供給管61が接続されている。アンモニア供給管61は、流入管71に接続されている。
 本実施の形態における水素発生装置は、分解器51aに酸素を供給する酸素供給装置を備える。本実施の形態における酸素供給装置は、酸素を含む気体としての空気を分解器51aに供給する。本実施の形態における酸素供給装置は、空気ポンプ76を含む。本実施の形態における空気ポンプ76は、分解器51aに外気を供給する。酸素供給装置は、空気ポンプ76に接続されている空気供給管62を含む。空気供給管62は、流入管71に空気を供給するように流入管71に接続されている。本実施の形態における酸素供給装置は、空気を分解器に供給するように形成されているが、この形態に限られず、酸素供給装置は、酸素を含む気体を分解器に供給可能に形成されていれば構わない。
 流入管71の内部には、触媒60aに流入する気体を混合するための混合器69が配置されている。混合器69は、気体のアンモニアと空気とを十分に混合するように形成されている。本実施の形態においては渦巻型の混合器が配置されている。混合器69は、空気供給管62が流入管71に接続される位置よりも下流に配置されている。
 アンモニア供給管61の途中には、触媒60aに供給する気体のアンモニアの流量を調整するための流量調整弁72aが配置されている。また、空気供給管62の途中には、触媒60aに供給する空気の流量を調整する流量調整弁73aが配置されている。
 流出管70には、冷却器85が接続されている。冷却器85は、分解器51aから流出する高温の気体を冷却するように形成されている。冷却器85には流入管87を通して冷媒が流入する。冷却器85にて熱交換を行なった冷媒は流出管88から排出される。水素発生装置から流出する気体は水素を含む。水素発生装置から流出する気体が高温の状態のままで酸素を含む気体に接触すると、水素が燃焼する場合がある。または、水素発生装置から水素が供給される装置が熱的な損傷を受ける場合がある。このために、本実施の形態の水素発生装置は、分解器51aに冷却器85を接続して、分解器51aから流出する気体を冷却している。
 本実施の形態における水素発生装置は、制御装置としての電子制御ユニット31を備える。本実施の形態における電子制御ユニット31は、デジタルコンピュータを含む。水素発生装置に含まれるそれぞれの機器は、電子制御ユニット31により制御されている。アンモニアを供給するポンプ65および空気ポンプ76は、電子制御ユニット31に制御されている。また、流量調整弁72a,73aは、電子制御ユニット31により制御されている。
 分解器51aの容器75の内部において、触媒60aの下流には、触媒60aの温度を検出するための触媒温度検出器として、温度センサ74aが配置されている。温度センサ74aで検出された温度の信号は、電子制御ユニット31に入力される。温度センサ74aとしては、この形態に限られず、触媒60aの温度を検出可能に形成されていれば構わない。例えば、温度センサ74aは、触媒60aの内部に配置されていても構わない。
 本実施の形態における水素発生装置は、触媒60aを加熱する加熱器としての電気ヒータ63を備える。電気ヒータ63は、触媒60aを加熱することができるように形成されている。電気ヒータ63には、電源77が接続されている。本実施の形態における電源77は、電子制御ユニット31に制御されている。
 分解器51aの周りには、断熱部材67が配置されている。断熱部材67は、例えば、ガラスウールなどで形成することができる。分解器51aの周りに断熱部材67を配置することにより、分解器51aからの放熱を抑制することができる。また、水素発生装置の周りに配置する装置や部材が熱的な損傷を受けることを抑制できる。
 本実施の形態における触媒60aを加熱する加熱器は、電気ヒータ63を含むが、この形態に限られず、加熱器は、触媒60aを加熱するように形成されていれば構わない。例えば、分解器51aの容器75の内部において、触媒60aの上流側に触媒60aに流入する気体を加熱するための電気加熱触媒(EHC:Electrically Heated Catalyst)が配置されていても構わない。
 本実施の形態の水素発生装置は、起動時には電気ヒータ63により触媒60aを昇温する。本実施の形態における電気ヒータ63は、触媒60aを活性化温度以上に加熱する。たとえば、触媒60aの温度が略200℃以上になるまで電気ヒータ63にて触媒60aを加熱する。
 本実施の形態においては、触媒60aの温度が予め定められた温度以上になった場合にアンモニアの供給が開始される。たとえば、触媒60aが活性化温度以上になった場合に、アンモニアの供給が開始される。電子制御ユニット31は、蒸発器66を加熱する加熱器を駆動する。電子制御ユニット31は、ポンプ65を駆動し、流量調整弁72aを開いた状態にする。液体のアンモニア49は、矢印100に示すように、蒸発器66に供給される。蒸発器66においては、液体のアンモニア49が気体に変化する。気体になったアンモニアは、アンモニア供給管61を通って、矢印101に示すように流入管71に供給される。
 一方で、電子制御ユニット31は、空気ポンプ76を駆動する。電子制御ユニット31は、流量調整弁73aを開いた状態にする。矢印102に示すように、空気は、空気供給管62を通って、流入管71に供給される。空気とアンモニアとの混合気は、混合器69に流入して混合される。混合気が、混合器69を通ることにより、空気およびアンモニアの局所的な濃度の偏りが生じることを抑制できる。空気とアンモニアとの混合気は、この後に触媒60aに流入する。このように、本実施の形態における水素発生装置は、触媒60aにアンモニアに加えて空気が供給される。
 触媒60aに流入する気体には酸素が含まれるために、触媒60aの酸化機能により、供給された一部のアンモニアが酸化する。アンモニアは以下の式の通り酸化反応を生じる。
 NH+(3/4)O→ (1/2)N+(3/2)HO …(1)
 アンモニアの酸化は、発熱反応である。このため、触媒60aが加熱される。酸化反応に用いられなかったアンモニアは、触媒60aの分解機能により、分解反応が生じる。アンモニアは、窒素と水素とに改質される。アンモニアの分解反応は、以下の式に示すように生じる。
 NH→ (1/2)N+(3/2)H …(2)
 アンモニアの分解反応は、所定の温度以上で生じる。また、アンモニアの分解反応は、吸熱反応である。本実施の形態の水素発生装置は、触媒60aにおいてアンモニアの一部を酸化させて、その酸化熱を用いてアンモニアの分解を行なうことができる。触媒60aから流出する分解ガスは、水素および窒素の他に水蒸気を含む。生成された分解ガスは、矢印103に示すように、流出管70を通って流出する。分解器51aから流出した高温の気体は、冷却器85により冷却される。
 本実施の形態における化合物供給装置は、流量調整弁72aの開度を調整することにより、触媒60aに供給するアンモニアの流量を調整することができる。本実施の形態における酸素供給装置は、流量調整弁73aの開度を調整することにより、触媒60aに供給する空気の流量、すなわち酸素の流量を調整することができる。このように、本実施の形態における水素発生装置は、触媒60aに供給するアンモニアの流量に対する空気の流量(酸素の流量)の比率を調整する流量比調整装置を備える。流量比調整装置は、触媒60aに供給する気体のアンモニアに対する酸素の流量比(モル比)を調整することができる。
 図2は、本実施の形態の水素発生装置において、触媒を加熱する電気ヒータの温度と触媒の温度との関係を示すグラフである。図2は、分解器51aに供給する気体のアンモニアに対する酸素のモル比を固定して、水素を生成したときのグラフである。電気ヒータの温度を徐々に上昇させていくと、電気ヒータの温度が略200℃で、触媒の温度が急激に上昇している。すなわち、電気ヒータの温度が略200℃で、触媒60aに含まれる酸化反応を促進する触媒粒子が活性化する。アンモニアの酸化が生じることにより、酸化熱が発生していることが分かる。
 図3に、本実施の形態の水素発生装置において、触媒を加熱する電気ヒータの温度と、分解器から流出する気体に含まれる水素濃度との関係を説明するグラフを示す。図3は、図2と同様に、分解器51aに供給する気体のアンモニアに対する酸素のモル比を固定して、水素を生成したときのグラフである。電気ヒータの温度が略200℃未満では、水素が生成されていないことが分かる。電気ヒータの温度が略200℃になったときに、水素が生成されていることが分かる。図2および図3を参照して、触媒の温度が略200℃になったときに、酸化反応により触媒60aの温度が急激に上昇し、更にアンモニアが分解されていることが分かる。
 なお、図2および図3の試験において、分解器に供給する空気の流量を零とした場合についても試験を行なったが、電気ヒータの温度を200℃まで上昇しても、水素の生成は観察されなかった。このように、本実施の形態における水素発生装置は、起動時等において、分解反応を生じるために加熱器により触媒を加熱すべき温度を低くすることができる。
 図4に、本実施の形態の分解器に供給する気体のアンモニアに対する酸素のモル比と、分解器から流出する気体の水素濃度との関係を説明するグラフを示す。この試験においては、空間速度を速度V1から速度V4まで変更して複数回の試験を行なっている。アンモニアに対する酸素のモル比を零の近傍から徐々に上昇させると、生成される気体の水素濃度が上昇することが分かる。モル比Rmaxでは水素濃度が最大になる。モル比Rmaxよりも大きな領域では、モル比が大きくなるほど水素濃度が減少している。
 図5に、本実施の形態の分解器に供給する気体のアンモニアに対する酸素のモル比と、分解器から流出する気体のアンモニア濃度との関係を説明するグラフを示す。縦軸は、分解器において分解されずに流出したアンモニア濃度である。アンモニアに対する酸素のモル比を上昇していくと、分解器から流出するアンモニア濃度が減少することが分かる。アンモニアに対する酸素のモル比が、略0.2において分解器から流出する気体のアンモニア濃度が零になることが分かる。すなわち、分解器に供給されるアンモニアが略全て消費されていることが分かる。
 図4および図5を参照して、アンモニアに対する酸素のモル比が小さな領域においては、アンモニアの分解を行なうための熱量が不足している。アンモニアに対する酸素のモル比を上昇させていくと、触媒の温度が上昇する。このために、分解器から流出する気体の水素濃度が上昇するとともに、分解器から流出する気体のアンモニア濃度が減少する。
 ところが、アンモニアに対する酸素のモル比が略0.2を超えると、供給されたアンモニアの全てが消費される。更に、生成された水素が酸化反応で消費される。このために、アンモニアに対する酸素のモル比を上昇させていくと、生成される気体の水素濃度が減少する。このように、分解器に供給するアンモニアに対する酸素のモル比を変更することにより、水素発生装置から流出する気体に含まれる水素濃度およびアンモニア濃度を調整することができる。
 また、図4および図5のグラフにより、触媒に流入する気体の空間速度を変更しても生成される気体の水素濃度およびアンモニア濃度が、ほぼ同じであることが分かる。本実施の形態における水素発生装置は、従来の技術における水素発生装置よりも、空間速度を高くしても大きな濃度で水素を生成することができる。このために、従来の技術における水素発生装置よりも分解器を小型にすることができる。または、触媒を製造するために使用する触媒金属の量を少なくすることができる。
 図6に、本実施の形態の水素発生装置において、分解器に供給する気体のアンモニアに対する酸素のモル比を変化させたときの触媒の温度のグラフを示す。アンモニアに対する酸素のモル比を大きくすると、すなわち酸素の含有率を大きくすると、触媒60aの温度が上昇することが分かる。たとえば、触媒60aに流入する気体に含まれる空気の比率を大きくすると、酸化反応がより多く発生して触媒60aの温度が上昇する。このようにアンモニアに対する酸素のモル比を変更することにより、触媒の温度を調整できることが分かる。
 ところで、触媒の温度が高温になると、触媒が劣化する場合がある。たとえば触媒の温度が高温になると触媒粒子が凝集するシンタリングが生じる場合がある。または、触媒粒子を担持する基材が金属で形成されている場合には、基材の熱的な損傷が生じる場合がある。このために、触媒の温度は、たとえば略1000℃以下であることが好ましい。
 図6を参照すると、アンモニアに対する酸素のモル比が略0.3のときの触媒の温度は、1000℃未満である。このために、水素発生装置は、アンモニアに対する酸素のモル比が略0以上略0.3以下になるように制御することが好ましい。
 本実施の形態における水素発生装置は、アンモニアに対する酸素のモル比を調整して酸化熱を発生させ、アンモニアの酸化熱によりアンモニアの分解を行なうことができる。図1を参照して、水素発生装置の起動時等においては、電気ヒータ63の通電を行なって、触媒60aを加熱する。触媒60aが所定の活性を得ることができる温度まで昇温した後では、電気ヒータ63の通電を停止している。このように、本実施の形態における水素発生装置は、アンモニアの分解を行なっている運転期間中では、触媒60aに対して外部からの熱の供給を行なわずにアンモニアの分解を行なうことができる。
 図7に、本実施の形態における水素発生装置の運転制御を説明するフローチャートを示す。図7に示す運転制御は、例えば、予め定められた時間間隔で繰り返し行なうことができる。本実施の形態における水素発生装置は、分解器の触媒の温度を検出し、触媒の温度が予め定められた温度範囲内になるように、触媒に供給する気体のアンモニアに対する酸素のモル比を調整する。本実施の形態においては、アンモニアの流量および空気の流量を調整する。
 図1および図7を参照して、ステップ201においては、触媒60aの温度を検出する。触媒60aの温度は、触媒60aの下流に配置されている温度センサ74aにより検出することができる。
 ステップ202においては、触媒60aの温度が、予め定められた高温側の温度判定値よりも大きいか否かが判別される。すなわち、予め定められた温度範囲から逸脱しているか否かが判別される。触媒60aの高温側の温度判定値としては、例えば、触媒60aの劣化が顕著に進行する温度を採用することができる。ステップ202において、触媒60aの温度が、予め定められた高温側の温度判定値よりも高い場合には、ステップ203に移行する。
 ステップ203においては、アンモニアに対する空気の流量比を減少させる制御を行なう。本実施の形態においては、触媒に供給する気体の空間速度は変更せずに、アンモニアに対する空気の流量比を減少させている。図1を参照して、本実施の形態においては、空気の流量を調整する流量調整弁73aの開度を小さくする一方で、アンモニアの流量を調整する流量調整弁72aの開度を大きくする制御を行なう。図6を参照して、この制御を行なうことにより、アンモニアに対する酸素のモル比が減少して、触媒60aの温度を下げることができる。ステップ203において、触媒60aの温度が予め定められた温度まで下降したらこの制御を終了する。または、予め定められた流量比まで変化したら、この制御を終了しても構わない。
 ステップ202において、触媒60aの温度が、予め定められた高温側の温度判定値以下の場合には、ステップ204に移行する。ステップ204においては、触媒60aの温度が、予め定められた低温側の温度判定値未満であるか否かが判別される。すなわち、触媒60aの温度が、予め定められた温度範囲から逸脱しているか否かが判別される。触媒60aの低温側の温度判定値としては、例えば、触媒60aの活性化温度を採用することができる。
 ステップ204において、触媒60aの温度が、予め定められた低温側の温度判定値未満である場合には、ステップ205に移行する。ステップ205においては、アンモニアに対する空気の流量比を増加させる制御を行なう。本実施の形態においては、触媒における気体の空間流量は変更せずに、アンモニアに対する空気の流量比を増加させている。図1を参照して、本実施の形態においては、空気の流量を調整する流量調整弁73aの開度を大きくする一方で、アンモニアの流量を調整する流量調整弁72aの開度を小さくする制御を行なう。図6を参照して、この制御を行なうことにより、アンモニアに対する酸素のモル比が増加して、触媒60aの温度を上げることができる。ステップ205において、触媒60aの温度が予め定められた温度まで上昇したらこの制御を終了する。または、予め定められた流量比まで変化したら、この制御を終了しても構わない。
 本実施の形態においては、触媒60aに供給する気体の全流量は変更せずに、アンモニアに対する空気の流量比を変化させているが、この形態に限られず、触媒60aに供給する気体の全流量を変更しても構わない。例えば、触媒温度が高温側の温度判定値を超えた場合には、触媒に供給するアンモニアの流量は変化させずに、空気の流量を零としても構わない。
 本実施の形態の運転制御では、触媒温度の高温側の温度判定値を判別した後に、低温側の温度判定値を判別しているが、この形態に限られず、低温側の温度判定値を判別した後に、高温側の温度判定値を判別しても構わない。または、高温側の温度判定値と低温側の温度判定値を同時に判別しても構わない。更に、触媒温度の高温側の温度判定値と低温側の温度判定値の両方を判別しているが、この形態に限られず、いずれか一方を採用しても構わない。
 ところで、本実施の形態における水素発生装置は、触媒60aに供給するアンモニアに対する酸素のモル比を所望の値に制御するために、触媒60aの温度を用いて制御することができる。図6を参照して、触媒60aの温度は、触媒60aに供給するアンモニアに対する酸素のモル比に対応している。このために、触媒60aの温度を検出することにより、触媒60aに供給するアンモニアに対する酸素のモル比を推定することができる。すなわち、触媒60aに供給するアンモニアに対する空気の流量比を推定することができる。
 例えば、触媒60aに供給するアンモニアに対する酸素のモル比を高くする場合には、触媒60aの温度が高くなるように制御することができる。アンモニアに対する酸素のモル比を目標値に対応する触媒の温度になるように、空気の流量およびアンモニアの流量を制御することができる。このように、本実施の形態における水素発生装置は、アンモニアに対する酸素のモル比の目標値の代わりに、触媒の温度の目標値を採用することができる。
 本実施の形態における水素原子および窒素原子を含む化合物、すなわち水素を生成する原料としては、アンモニアを例に取り上げて説明したが、この形態に限られず、原料は、水素原子および窒素原子を含み、分解して水素を生成する任意の化合物を採用することができる。例えば、原料はヒドラジン(N)を含むことができる。
 本実施の形態における化合物供給装置は、液体の原料を供給するように形成されているが、この形態に限られず、気体の原料を供給するように形成されていても構わない。
 また、原料になる気体を分解および酸化する触媒としては、ハニカム構造に限られず、任意の構造の触媒を採用することができる。たとえば、触媒は、触媒粒子を担持した小型の球状の担体を有するペレット触媒を含んでいても構わない。また、本実施の形態においては、分解触媒と酸化触媒とが一体的に形成された触媒が採用されているが、この形態に限られず、化合物の分解を促進する触媒粒子と化合物の酸化を促進する触媒粒子とを有する触媒が、分解触媒と酸化触媒とから構成されていても構わない。たとえば、排気ガスの流れ方向に沿って、上流側にハニカム構造の酸化触媒が配置され、下流側にハニカム構造の分解触媒が配置されていても構わない。酸化触媒および分解触媒を備える装置において、触媒の温度を検出すべき場合には、たとえば分解触媒の温度を検出することができる。
 実施の形態2
 図8および図9を参照して、実施の形態2における水素発生装置について説明する。本実施の形態における水素発生装置は、酸化を促進する触媒粒子および分解を促進する触媒粒子を含む分解器に加えて、分解を促進する触媒粒子を含む分解器を備える。
 図8に、本実施の形態おける水素発生装置の概略図を示す。本実施の形態における水素発生装置は、第1の分解器としての分解器51aに加え、第2の分解器としての分解器51bを備える。第1の分解器は、実施の形態1における分解器51aと同様である。
 分解器51bは、触媒60bを含む。本実施の形態における触媒60bは、ハニカム構造に形成されている。本実施の形態における触媒60bは、分解を促進する触媒粒子を含む。本実施の形態における触媒60bは、酸化を促進するための触媒粒子が担持されていないが、この形態に限られず、酸化を促進する触媒粒子が担持されていても構わない。
 空気供給管62は、分解器51aの流入管71に接続されている。本実施の形態における酸素供給装置は、分解器51aの触媒60aには酸素を供給する一方で、分解器51bの触媒60bには酸素を供給しないように形成されている。
 本実施の形態における水素発生装置は、触媒60aと触媒60bとが熱交換を行なうように形成されている。本実施の形態においては、分解器51aの容器75と、分解器51bの容器75とが互いに接触して配置されている。触媒60aと触媒60bとが互いに熱交換する構成としては、この形態に限られず、例えば、分解器51aと分解器51bとの間に、熱交換器が配置されていても構わない。熱交換器は、たとえば、触媒60aの内部に配置された第1フィンと、触媒60bの内部に配置された第2フィンとを含み、第1フィンと第2フィンとが伝熱可能な部材で互いに接続されているものを例示することができる。
 分解器51bの容器75の内部において、触媒60bの下流には、触媒60bの温度を検出する触媒温度検出器として、温度センサ74bが配置されている。本実施の形態における化合物供給装置は、化合物としてのアンモニアを触媒60a,60bに供給できるように形成されている。化合物供給装置は、蒸発器66に接続されているアンモニア供給管61が分岐している。分岐したアンモニア供給管61は、分解器51aの流入管71および分解器51bの流入管71に接続されている。分解器51bに向かうアンモニア供給管61の途中には、触媒60bに供給する気体のアンモニアの流量を調整する流量調整弁72bが配置されている。
 本実施の形態における化合物供給装置は、流量調整弁72a,72bの開度を調整することにより、それぞれの触媒60a,60bに供給するアンモニアの流量を調整可能に形成されている。または、分解器51aの触媒60aに供給するアンモニアと、分解器51bの触媒60bに供給するアンモニアとの流量比を変更できるように形成されている。
 分解器51bの容器75には、流出管70が接続されている。分解器51aの容器75に接続されている流出管70および分解器51bの容器75に接続されている流出管70は、互いに合流して冷却器85に接続されている。
 本実施の形態おける水素発生装置は、電子制御ユニット31を備える。それぞれの温度センサ74a,74bの出力は、電子制御ユニット31に入力される。また、それぞれの流量調整弁72a,72b,73aは、電子制御ユニット31により制御されている。
 本実施の形態の水素発生装置は、第1の分解器としての分解器51aにおいて、アンモニアの酸化を行ないながらアンモニアの分解を行なうことができる。また、第2の分解器としての分解器51bにおいてアンモニアの分解を行なうことができる。さらに、分解器51aの触媒60aで生じた酸化熱が、分解器51bの触媒60bに伝達される。本実施の形態の水素発生装置は、分解器51bの触媒60bにおいても、触媒60aにて生じた酸化熱を利用してアンモニアの分解を行なうことができる。
 本実施の形態における水素発生装置は、第1の分解器としての分解器51aに供給するアンモニアの流量および第2の分解器としての分解器51bに供給するアンモニアの流量が変更可能に形成されている。この構成により、水素発生装置に要求される水素量や触媒の温度等の運転状態に応じて、第1の分解器に供給するアンモニア流量および第2の分解器に供給するアンモニア流量を最適化することができる。運転状態に応じて適切に水素の生成を行なうことができる。
 図9に、本実施の形態における水素発生装置の運転制御のフローチャートを示す。本実施の形態の運転制御においては、第2の分解器としての分解器51bの触媒60bの温度が、予め定められた温度の範囲内になるように制御を行う。図9に示す制御は、例えば予め定められた時間間隔ごとに繰り返して行なうことができる。
 ステップ211においては、第2の分解器の触媒の温度を検出する。図8を参照して、電子制御ユニット31は、分解器51bの触媒60bの温度を温度センサ74bにより検出する。
 次に、ステップ212において、分解器51bの触媒60bの温度が予め定められた低温側の温度判定値未満であるか否かを判別する。低温側の温度判定値としては、例えば、分解器51bの触媒60bが活性化する温度を採用することができる。ステップ212において、第2の分解器としての分解器51bの触媒60bの温度が、低温側の温度判定値未満である場合にはステップ213に移行する。
 ステップ213においては、分解器51bに供給するアンモニアに対する分解器51aに供給するアンモニアの流量比を増加させる。本実施の形態においては、分解器51bに供給するアンモニアの流量を減少させる一方で、分解器51aに供給するアンモニアの流量を増加させる制御を行う。図8を参照して、本実施の形態においては、分解器51aに連通する流量調整弁72aの開度を大きくする一方で、分解器51bに連通する流量調整弁72bの開度を小さくする制御を行う。
 この制御を行なうことにより、発熱を伴わない触媒60bに供給するアンモニアの流量を少なくして、発熱を伴う触媒60aに供給するアンモニアの流量を多くする制御を行うことができる。アンモニアの酸化が生じる分解器51aに、多くのアンモニアを供給することができる。触媒60bにおいては、アンモニアの分解反応が少なくなるために、触媒60bの温度を上昇させることができる。分解器51bの触媒60bの温度が下がりすぎて、アンモニアの分解能力が所望の能力未満になることを抑制できる。この場合には、分解器51aに供給する空気の流量を増加させても構わない。分解器51aに供給する空気の流量を増加させることにより、触媒60aの温度低下を抑制することができる。または、触媒60aの温度を上昇させることができる。この結果、触媒60bの温度を速やかに上昇させることができる。
 ステップ213については、たとえば、第2の分解器の触媒60bの温度が予め定められた温度以上になったときに終了することができる。または、予め定められた流量比まで変化させて終了しても構わない。ステップ213における分解器51bの昇温が終了したらこの制御を終了する。
 ステップ212において、分解器51bの触媒60bの温度が低温側の温度判定値以上である場合には、ステップ214に移行する。
 ステップ214においては、分解器51bの触媒60bの温度が予め定められた高温側の温度判定値よりも大きいか否かが判別される。高温側の温度判定値としては、例えば、酸化熱を生じる触媒60aの温度が劣化を生じる温度になるときの触媒60bの温度を採用することができる。ステップ214において、分解器51bの触媒60bの温度が予め定められた高温側の温度判定値以下である場合には、この制御を終了する。分解器51bの触媒60bの温度が予め定められた高温側の温度判定値よりも大きい場合には、ステップ215に移行する。
 ステップ215においては、分解器51bに供給するアンモニアに対する分解器51aに供給するアンモニアの流量比を減少させる制御を行う。本実施の形態においては、分解器51bに供給するアンモニアの流量を増加させる一方で、分解器51aに供給するアンモニアの流量を減少させる制御を行う。図8を参照して、本実施の形態においては、分解器51aに連通する流量調整弁72aの開度を小さくする一方で、分解器51bに連通する流量調整弁72bの開度を大きくする制御を行う。
 この制御を行うことにより、触媒60aの温度を低下させることができる。この場合には、分解器51aに供給する空気の流量を減少させても構わない。分解器51aに供給する空気の流量を減少させることにより、触媒60aの温度を速やかに下降させることができる。アンモニアの酸化反応が生じずに分解反応が生じる触媒60bに供給するアンモニアの流量が多くなるために、触媒60bの温度を低下させることができる。分解器51aの触媒60aの温度が上がりすぎて触媒60aが劣化することを抑制できる。
 ステップ215においては、たとえば、第2の分解器の触媒60bの温度が予め定められた温度以下になったときに終了することができる。または、予め定められた流量比まで変化したらこの制御を終了しても構わない。
 このように、本実施の形態の水素発生装置の制御においては、触媒の温度に基づいて、酸化反応が生じる触媒および酸化反応が生じない触媒に供給するアンモニアの流量を調整することができる。
 本実施の形態の運転制御においては、第2の分解器の触媒の温度を検出しているが、この形態に限られず、第1の分解器の触媒の温度を検出しても構わない。また、本実施の形態においては、低温側の温度判定値の判別を行なった後に高温側の温度判定値の判別を行なっているが、この形態に限られず、いずれを先に行なっても構わない。または、低温側の温度判定値の判別と高温側の温度判定値の判別とを同時に行なっても構わない。または、低温側の温度判定値または高温側の温度判定値の、いずれか一方の温度判定値を採用した制御を行っても構わない。
 その他の構成、作用および効果については、実施の形態1と同様であるので、ここでは説明を繰り返さない。
 実施の形態3
 図10から図16を参照して、実施の形態3における水素発生装置を備える内燃機関について説明する。本実施の形態においては、車両に配置されている内燃機関を例に取り上げて説明する。
 図10は、本実施の形態における内燃機関の概略図である。本実施の形態における内燃機関は、火花点火式である。内燃機関は、機関本体1を備える。機関本体1は、シリンダブロック2とシリンダヘッド4とを含む。シリンダブロック2の内部には、ピストン3が配置されている。ピストン3の冠面とシリンダヘッド4とにより燃焼室5が形成されている。燃焼室5はそれぞれの気筒ごとに形成されている。
 燃焼室5には、機関吸気通路および機関排気通路が接続されている。シリンダヘッド4には、吸気ポート7および排気ポート9が形成されている。吸気弁6は吸気ポート7の端部に配置され、燃焼室5に連通する機関吸気通路を開閉可能に形成されている。排気弁8は、排気ポート9の端部に配置され、燃焼室5に連通する機関排気通路を開閉可能に形成されている。シリンダヘッド4には、点火装置としての点火栓10が固定されている。点火栓10は、燃焼室5にて燃料を点火するように形成されている。本実施の形態における点火栓10は、プラズマジェット点火栓である。
 各気筒の吸気ポート7は、対応する吸気枝管13を介してサージタンク14に連結されている。サージタンク14は、吸気ダクト15を介してエアクリーナ12に連結されている。吸気ダクト15には、吸入空気量を検出するエアフローメータ16が配置されている。吸気ダクト15の内部には、ステップモータ17によって駆動されるスロットル弁18が配置されている。
 本実施の形態における内燃機関は、排気ガスを浄化する排気浄化装置を備える。排気浄化装置は、触媒コンバータ21を含む。各気筒の排気ポート9は、排気マニホールド19に連結されている。排気マニホールド19は、触媒コンバータ21に連結されている。本実施の形態における触媒コンバータ21は、酸化触媒20を含む。触媒コンバータ21は、排気管22に接続されている。
 本実施の形態における排気浄化装置は酸化触媒を含むが、この形態に限られず、排気ガスを浄化する任意の装置を配置することができる。例えば、排気浄化装置は、三元触媒やNOを浄化するための触媒が含んでいても構わない。
 本実施の形態における内燃機関は、水素発生装置を備える。本実施の形態における水素発生装置の構成は、実施の形態1における水素発生装置と同様である(図1参照)。水素発生装置は、触媒60aを含む分解器51aを備える。分解器51aの流入管71は、空気供給管62に接続されている。空気供給管62は、スロットル弁18の上流において、機関吸気通路に接続されている。本実施の形態の内燃機関においては、スロットル弁の下流側の圧力が上流側の圧力よりも低くなることにより、燃料噴射弁86から水素等が噴射される。分解器51aの流出管70は、冷却器85に接続されている。
 本実施の形態における冷却器85には、機関本体1を冷却する機関冷却水が流入する。冷却器85は、分解器51aから流出する気体と機関本体1の冷却水との間で熱交換を行なうように形成されている。機関冷却水により分解器51aから流出する気体が冷却される。この構成により、機関本体の機関冷却水を利用して、分解器51aから流出する気体を冷却することができる。
 本実施の形態における蒸発器66は、加熱部66aを含む。本実施の形態における加熱部66aは、電気ヒータにより加熱するように形成されている。加熱部66aは、この形態に限られず、液体のアンモニアを気化するように形成されていれば構わない。たとえば、加熱部66aは、排気浄化装置を流れる排気ガスとの熱交換により液体のアンモニアを気化するように形成されていても構わない。
 本実施の形態における内燃機関は、水素発生装置にて生成された水素を燃料として燃焼室に供給する水素供給機を備える。本実施の形態における水素供給機は、機関吸気通路の内部に向かって水素を噴射する燃料噴射弁86を含む。燃料噴射弁86は、供給管90を介して冷却器85に接続されている。分解器51aで生成された水素は、矢印103に示すように、流出管70、冷却器85および供給管90を通って燃料噴射弁86に供給される。燃料噴射弁86を開くことにより、水素を含む気体が機関吸気通路に放出される。
 分解器51aにおいて生成された水素を含む気体を冷却器85にて冷却することにより、水素が機関吸気通路に放出されたときに、水素が空気と接触して燃焼することを抑制できる。更に、燃焼した水素が機関吸気通路を逆流するバックファイヤを抑制することができる。
 図11に、本実施の形態における内燃機関の電子制御ユニットの概略図を示す。本実施の形態における内燃機関の制御装置は、電子制御ユニット31を含む。本実施の形態における電子制御ユニット31は、デジタルコンピュータを含む。電子制御ユニット31は、双方向バス32を介して相互に接続されたRAM(ランダムアクセスメモリ)33、ROM(リードオンリメモリ)34、CPU(マイクロプロセッサ)35、入力ポート36および出力ポート37を含む。
 図10および図11を参照して、エアフローメータ16は、燃焼室5に吸入される吸入空気量に比例した出力電圧を発生する。この出力電圧は、対応するAD変換器38を介して入力ポート36に入力される。アクセルペダル40には、負荷センサ41が接続されている。負荷センサ41は、アクセルペダル40の踏込量に比例した出力電圧を発生する。この出力電圧は、対応するAD変換器38を介して入力ポート36に入力される。また、クランク角センサ42は、クランクシャフトが、例えば30°回転する毎に出力パルスを発生し、この出力パルスは入力ポート36に入力される。クランク角センサ42の出力により、機関回転数を検出することができる。
 また、内燃機関の機関本体1は、機関冷却水により冷却されている。内燃機関は、機関本体1の温度を検出する機関温度検出器として、機関冷却水温度センサ43を含む。機関冷却水温度センサ43は、機関冷却水の温度を検出するように形成されている。機関冷却水温度センサ43の出力は、対応するAD変換器38を介して入力ポート36に入力される。更に、電子制御ユニット31には、水素発生装置に含まれる温度センサ等の信号が入力されている。
 電子制御ユニット31の出力ポート37は、それぞれの対応する駆動回路39を介して燃料噴射弁86および点火栓10に接続されている。本実施の形態における電子制御ユニット31は、燃料噴射制御を行うように形成されている。また、出力ポート37は、対応する駆動回路39を介して、スロットル弁18を駆動するステップモータ17に接続されている。更に、電子制御ユニット31は、水素発生装置に含まれる流量調整弁やポンプ等に接続されている。電子制御ユニット31は、水素発生装置に含まれる機器を制御している。
 内燃機関の制御装置としては、この形態に限られず、内燃機関を制御可能に形成されていれば構わない。たとえば、制御装置は、水素発生装置を制御する電子制御ユニットと、機関本体を制御する電子制御ユニットとを含み、これらの複数の電子制御ユニットが、CAN(Controller Area Network)通信などの通信方法により互いに接続されていても構わない。
 図10を参照して、本実施の形態における内燃機関は、水素発生装置の分解器51aにて生成された水素および水素発生装置にて分解されなかった気体のアンモニアが、燃料噴射弁86により吸気枝管13の内部に噴射される。吸入された空気、水素およびアンモニアの混合気は、吸気ポート7を通って燃焼室5に供給される。
 本実施の形態における内燃機関は、燃焼室5において燃料が燃焼されて排気ガスが生じる。燃焼室5において生じた排気ガスは、燃焼室5から排気ポート9に流出する。排気ポート9に流出した排気ガスは、触媒コンバータ21に流入する。触媒コンバータ21の酸化触媒20においては、排気ガスに含まれる未燃の燃料等が酸化される。触媒コンバータ21にて浄化された排気ガスは、排気管22を通って排出される。
 図10および図11を参照して、本実施の形態における内燃機関は、アンモニアおよび水素のうち少なくとも一方を燃料として、燃焼室5において燃焼を行なうことができる。本実施の形態における内燃機関は、内燃機関の運転状態を検出する運転状態検出装置を備える。内燃機関の運転状態としては、例えば、機関回転数や内燃機関の負荷などを例示することができる。本実施の形態における内燃機関は、運転状態を検出し、内燃機関の運転状態に応じて、燃焼室5に供給するアンモニア量および水素量を変化させる制御を行う。
 本実施の形態における内燃機関は、機関回転数を検出する回転数検出装置を備える。また、本実施の形態における内燃機関は、内燃機関の負荷を検出する負荷検出装置を備える。燃焼室5に供給するアンモニア量および水素量は、たとえば、機関回転数および内燃機関の負荷に基づいて選定することができる。機関回転数と内燃機関の負荷とを関数にするアンモニアの供給量のマップおよび水素の供給量のマップを予め作成し、このマップを電子制御ユニット31のROM34に記憶させておくことができる。
 たとえば、クランク角センサ42の出力等により機関回転数を検出する。又は、負荷センサ41の出力等から負荷を検出する。検出した機関回転数または負荷等の運転状態に基づいて、電子制御ユニット31に記憶したマップを用いて、燃焼室に供給するアンモニア量および水素量を選定することができる。
 本実施の形態の内燃機関において、燃焼室5に供給する空気量は、スロットル弁18の開度を制御することにより調整することができる。燃焼室5に流入するアンモニアおよび水素の混合気の量は、燃料噴射弁86の噴射時間または噴射流量を制御することにより調整することができる。更に、水素発生装置は、燃料噴射弁86に供給する混合気に含まれる水素量とアンモニア量との比率を調整することができる。
 水素発生装置の分解器51aに供給する空気流量およびアンモニア流量を調整することにより、燃焼室5に供給する水素量とアンモニア量との比率を変化させることができる。図4および図5を参照して、本実施の形態の水素発生装置においては、分解器51aに供給するアンモニアに対する空気の流量比を変化させることにより、分解器51aから流出する水素濃度およびアンモニア濃度を変化させることができる。たとえば、アンモニアに対する酸素のモル比が0以上Rmax以下の範囲内においては、アンモニアに対する酸素のモル比を大きくすることにより、分解器51aから流出する水素濃度を上昇させる一方で、アンモニア濃度を減少させることができる。
 分解器51aから流出する気体の全流量は、分解器51aに供給する空気流量およびアンモニア流量を制御することにより調整することができる。たとえば、燃料噴射弁86から噴射される単位時間当たりの混合気の量が、分解器51aから流出する気体の流量に相当する。このために、燃料噴射弁86から噴射される単位時間当たりの混合気の量に基づいて、分解器51aに供給するアンモニア流量および空気流量を調整することができる。
 ところで、アンモニアは燃焼速度が遅く、かつ着火性が悪いという燃焼特性を有する。燃焼室5においてアンモニアを燃焼させる場合には、水素は、燃焼室5における燃料の燃焼を促進する助燃剤として機能する。このために、燃焼室5においてアンモニアの燃焼性が悪い場合には、燃料に含まれる水素の比率を高くすることが好ましい。たとえば、機関回転数が高い場合や、内燃機関の負荷が低い場合には、燃焼室に供給する燃料のアンモニアに対する水素の比率を大きくすることが好ましい。
 図12に、本実施の形態における内燃機関の運転制御のフローチャートを示す。ステップ221において、内燃機関の運転状態を検出する。次に、ステップ222において、検出した内燃機関の運転状態に基づいて、燃焼室に供給する水素量およびアンモニア量を選定する。たとえば、電子制御ユニットに予め記憶されているマップにより、水素量およびアンモニア量を選定することができる。
 次に、ステップ223において、燃焼室に供給する水素量およびアンモニア量に基づいて、水素発生装置を制御する。燃焼室に供給する水素量およびアンモニア量は、水素発生装置の分解器から流出する水素量およびアンモニア量に対応する。燃焼室に供給する水素量およびアンモニア量に基づいて、水素発生装置の分解器に供給する空気流量およびアンモニア流量の比率を調整する。この制御を行なうことにより、燃料室に供給する水素量およびアンモニア量を調整できるとともに、水素発生装置において適切な量の水素を生成することができる。本実施の形態においては、燃焼室に供給するアンモニア量および水素量の両方を制御しているが、この形態に限られず、いずれか一方の量を制御しても構わない。
 内燃機関の運転状態として機関回転数を検出する場合には、機関回転数が高いほど、燃焼室に供給する水素の量を増加させる制御を行うことができる。または、内燃機関の回転数が高いほど、燃焼室に供給する燃料のアンモニアに対する水素の比率を大きくする制御を行なうことができる。図4を参照して、水素発生装置においては、内燃機関の回転数が高いほど、分解器に供給する気体のアンモニアに対する空気の流量比を増加させる制御を行なうことができる。この制御を行なうことにより、内燃機関の回転数が高くなっても、燃焼室において安定した燃焼を行なうことができる。
 内燃機関の運転状態として内燃機関の負荷を検出する場合には、内燃機関の負荷が小さいほど、燃焼室に供給する水素の量を増加させる制御を行うことができる。または、内燃機関の負荷が小さいほど、燃焼室に供給する燃料のアンモニアに対する水素の比率を大きくする制御を行なうことができる。図4を参照して、水素発生装置においては、内燃機関の負荷が小さいほど、分解器に供給する気体のアンモニアに対する空気の流量比を増加させる制御を行なうことができる。この制御を行なうことにより、内燃機関の負荷が小さくなっても、燃焼室において安定した燃焼を行なうことができる。
 また、内燃機関の運転状態として、機関本体1の温度を例示することができる。たとえば、機関本体1の温度として、機関冷却水の温度を検出することができる。内燃機関には、機関本体1の温度が低い場合がある。アンモニアは着火性が悪いために、機関本体1の温度が低い場合にはアンモニアに対する水素の比率を高くした燃料を燃焼室5に供給することが好ましい。本実施の形態における内燃機関は、機関本体1の温度が予め定められた温度判定値よりも低い場合には、燃焼室5に供給するアンモニア量に対する水素量を増加させる制御を行なっている。水素発生装置から流出する気体のアンモニアに対する水素の比率が予め定められた比率以上になるように制御することができる。分解器51aに供給するアンモニアに対する空気の流量比を予め定められた比率以上に制御することができる。または、機関本体1の温度が低くなるほど、分解器51aに供給するアンモニアに対する空気の流量比を大きくする制御を行うことができる。
 たとえば、内燃機関を長時間停止した後に始動した場合には、機関本体1は低温である。本実施の形態における内燃機関は、冷間始動時には、分解器51aの周りに配置されているヒータ63(図1参照)により、触媒60aの温度が予め定められた温度以上になるまで触媒60aを加熱する。たとえば、触媒60aの温度が活性化温度以上になったときに、触媒60aに対してアンモニアおよび空気を供給する。本実施の形態においては、内燃機関を始動した時に分解器51aに供給するアンモニアに対する空気の流量比が予め定められた比率以上になるように制御する。または、機関本体1の温度を検出し、機関本体1の温度が上昇すると共に、分解器51aに供給するアンモニアに対する空気の流量比を徐々に小さくする制御を行うことができる。
 図4および図5を参照して、例えば、機関本体1の温度が予め定められた温度判定値よりも低い場合には、アンモニアに対する酸素のモル比を0.15以上にすることができる。すなわち、アンモニアに対する空気のモル比を0.7以上にすることができる。この制御を行なうことにより、分解器から流出する気体に含まれるアンモニアの濃度をほぼ0%にすることができる。更に好ましくは、アンモニアに対する酸素のモル比を0.2以上にすることができる。分解器から流出する気体に含まれる燃料のほぼ全てを水素にすることができる。この結果、燃焼室5において安定した燃焼を行なうことができる。
 内燃機関の運転状態としては、機関回転数、内燃機関の負荷、および機関本体の温度等に限られず、任意の運転状態を採用することができる。
 図10を参照して、本実施の形態の内燃機関は、実施の形態1における水素発生装置が、内燃機関の吸気通路に取り付けられている。実施の形態1において説明したように、分解器に供給するアンモニアに対する酸素のモル比の制御は、触媒の温度を用いて行なうことができる。すなわち、水素発生装置に要求される水素量およびアンモニア量に応じて分解器を制御する場合に、分解器51aの温度センサ74aにより触媒60aの温度を検出し、検出した触媒60aの温度に基づいて、分解器51aに供給するアンモニア流量および空気流量を調整することができる。
 また、実施の形態1と同様に、分解器51aに供給するアンモニアの流量および酸素の流量を調整する場合には、触媒60aの温度が予め定められた所定の範囲内になるように制御することが好ましい。触媒60aの温度範囲としては、たとえば低温側の温度判定値として触媒60aが活性化する温度を例示することができ、また高温側の温度判定値として触媒60aの耐熱温度を例示することができる。
 図13に、本実施の形態における第2の内燃機関の概略図を示す。本実施の形態における第2の内燃機関は、蒸発器66にて生成された気体のアンモニアの一部が、分解器51aを通らずに燃焼室5に供給されるように形成されている。
 本実施の形態における第2の内燃機関は、機関吸気通路に向かって気体のアンモニアを噴射するアンモニア噴射弁83を備える。アンモニア噴射弁83は、供給管89を介して、水素発生装置の蒸発器66に接続されている。蒸発器66で生成されたアンモニアの一部は、矢印106に示すように、供給管89を通ってアンモニア噴射弁83に供給される。蒸発器66において気化したアンモニアの一部は、アンモニア噴射弁83から吸気枝管13の内部に噴射される。図11および図13を参照して、電子制御ユニット31の出力ポート37は、対応する駆動回路39を介してアンモニア噴射弁83に接続されている。アンモニア噴射弁83は、電子制御ユニット31に制御されている。
 本実施の形態の第2の内燃機関においても、アンモニアおよび水素のうち少なくとも一方を燃料として、燃焼室5において燃料を燃焼させることができる。本実施の形態の第2の内燃機関においては、水素発生装置の分解器51aに供給する空気流量およびアンモニア流量を調整することにより、燃料噴射弁86から噴射して燃焼室5に供給する水素量およびアンモニア量を調整することができる。更に、アンモニア噴射弁83を制御することにより、燃焼室5に供給するアンモニア量を調整することができる。
 燃焼室5に供給するアンモニア量および水素量は、内燃機関の運転状態に基づいて定めることができる。電子制御ユニット31は、燃焼室5に供給するアンモニア量および水素量に基づいて、水素発生装置、燃料噴射弁86およびアンモニア噴射弁83を制御する。
 第2の内燃機関においては、蒸発器66において生成された気体のアンモニアの一部が、分解器51aを通らずに燃焼室5に供給される。内燃機関の運転においては、燃焼室5に供給する水素量を少なくしたり、水素量を零にしたりする場合がある。この場合には、蒸発器66から分解器51aに供給するアンモニア量を少なくして、アンモニア噴射弁83に供給するアンモニア量を多くすることができる。たとえば、燃焼室5に供給する水素量を零にする場合には、分解器51aを停止させることができる。すなわち、分解器51aを水素が必要な時に駆動することができる。
 第2の内燃機関においては、内燃機関の運転状態に基づいて、蒸発器66から分解器51aに供給するアンモニア量と、蒸発器66からアンモニア噴射弁83を介して燃焼室5に供給するアンモニア量とを変化させることができる。
 例えば、内燃機関の運転状態として負荷を検出し、内燃機関の負荷が小さいほど蒸発器66から分解器51aに供給するアンモニア流量を増加させて、水素発生装置において多くの水素を生成することができる。燃焼室に多くの水素を供給することができる。アンモニアを分解器51aに供給する流量調整弁72aの開度を大きくすることにより、分解器51aに供給するアンモニア流量を増加させることができる。分解器51aに供給する空気流量については、水素発生装置に要求される水素量およびアンモニア量に基づいて定めることができる。また、内燃機関の負荷が小さいほど、アンモニア噴射弁83から噴射されるアンモニア量を少なくする制御を行うことが好ましい。この制御を行なうことにより、内燃機関の負荷が小さくなるほど、燃焼室5に供給する燃料の水素の割合を大きくすることができて、安定した燃焼を行なうことができる。
 内燃機関の運転状態として、機関回転数を検出する場合も同様の制御を行うことができる。たとえば、機関回転数が高いほど、蒸発器66から分解器51aに供給するアンモニア量を増加させる制御を行う一方で、蒸発器66からアンモニア噴射弁83を介して機関吸気通路に供給するアンモニア量を減少させる制御を行うことができる。分解器51aにおいて生成する水素量を多くすることができる。機関回転数が高いほど、多くの水素を燃焼室に供給することができる。
 内燃機関の運転状態として、機関本体1の温度を検出する場合には、機関本体1の温度が低くなるほど、蒸発器66からアンモニア噴射弁83を介して機関吸気通路に噴射されるアンモニア量を少なくして、蒸発器66から分解器51aに供給するアンモニア量を多くする制御を行なうことができる。分解器51aにおいて生成する水素量を多くすることができる。機関本体の温度が低いほど、多くの水素を燃焼室に供給することができる。
 なお、燃焼室5に供給するアンモニア量を少なくする制御を行なう場合には、アンモニア噴射弁83からのアンモニアの供給量を零にしても構わない。例えば、内燃機関の冷間始動時や機関本体1の温度が予め定められた温度未満の場合には、蒸発器66において気化されるアンモニアの全てを分解器51aに供給することができる。
 図14に、本実施の形態における第3の内燃機関の概略図を示す。第3の内燃機関においては、水素発生装置が分解器51aを備え、分解器51aの触媒60aが排気浄化装置と熱交換を行なうように形成されている。本実施の形態においては、触媒コンバータ21の酸化触媒20にて発生する熱が、分解器51aの触媒60aに伝達されるように形成されている。本実施の形態の第3の内燃機関においては、触媒コンバータ21と分解器51aとが、互いに接触するように配置されている。
 本実施の形態の第3の内燃機関においては、触媒コンバータ21と分解器51aとが接触することにより、酸化触媒20の発生する熱が触媒60aに伝達されるが、この形態に限られず、排気浄化装置に含まれる任意の機器の熱を分解器の触媒に伝達することができる。たとえば、触媒コンバータは、三元触媒を含んでいても構わない。または、機関排気通路を流れる排気ガスが触媒60aの内部に配置された熱交換器の内部を通るように形成されていても構わない。または、酸化触媒20と触媒60aとの間に熱交換器を配置しても構わない。熱交換器は、たとえば、酸化触媒20の内部に配置された第1フィンと、触媒60aの内部に配置された第2フィンとを含み、第1フィンと第2フィンとが伝熱可能な部材で互いに接続されているものを例示することができる。
 また、本実施の形態の第3の内燃機関においては、分解器51aにアンモニアを供給する流路の途中に、分解器51aを迂回するバイパス管91が接続されている。バイパス管91は、蒸発器66の出口に接続されている。バイパス管91の途中には、気体のアンモニアの流量を調整する流量調整弁92が配置されている。流量調整弁92は、電子制御ユニット31により制御されている。バイパス管91は、冷却器85と燃料噴射弁86とを接続する供給管90の途中に接続されている。
 本実施の形態の第3の内燃機関においては、蒸発器66にて気化したアンモニアの一部を、矢印104に示すように、バイパス管91を通って供給管90に供給することができる。蒸発器66で生成した気体のアンモニアを、分解器51aを通さずに機関吸気通路に供給することができる。または、分解器51aを通らずに燃焼室5に供給される化合物に対する分解器51aに供給される化合物の流量比を変化させることができる。例えば、流量調整弁72aの開度を小さくして、流量調整弁92の開度を大きくすることにより、分解器51aに供給するアンモニア量を少なくすると共に、燃料噴射弁86に直接的に供給するアンモニア量を多くすることができる。
 本実施の形態の第3の内燃機関は、触媒コンバータ21の酸化触媒20において発生する熱を、分解器51aの触媒60aに伝達させることができてエネルギー効率が向上する。分解器51aにおいてアンモニアを分解するための熱を排気浄化装置から供給することができる。この結果、触媒60aの昇温のために消費するアンモニア量を少なくすることができる。
 また、内燃機関の冷間始動時等の触媒コンバータ21の温度が低い場合には、分解器51aにおいてアンモニアを酸化させて、触媒60aの酸化熱により触媒コンバータ21を昇温することができる。たとえば、冷間始動時には、電気ヒータ63により触媒60aを活性化温度以上に昇温した後に、アンモニアの酸化反応を生じさせる。触媒60aにて発生した熱を触媒コンバータ21の酸化触媒20に伝達することができる。このために、酸化触媒20を短時間で活性化温度以上に昇温することができる。このため、触媒コンバータ21が低温の場合に、排気浄化装置から排出される排気ガスの性状を向上させることができる。
 本実施の形態の第3の内燃機関においては、水素発生装置の分解器51aの触媒60aの温度が予め定められた温度の範囲内になるように制御を行なうことができる。触媒60aの温度範囲は、触媒60aおよび酸化触媒20が、共に活性化温度以上になるように定めることが好ましい。また、触媒60aの温度範囲は、触媒60aおよび酸化触媒20が許容される耐熱温度未満になるように定めることが好ましい。触媒60aの温度が、予め定められた低温側の温度判定値よりも低い場合には、触媒60aに供給するアンモニアに対する空気の流量比を増加させる制御を行なうことができる。触媒60aの温度が、予め定められた高温側の温度判定値よりも高い場合には、触媒60aに供給するアンモニアに対する空気の流量比を低下させる制御を行なうことができる。
 図15に、本実施の形態における第4の内燃機関の概略図を示す。本実施の形態における第4の内燃機関は、第1の分解器としての分解器51aに加えて、第2の分解器としての分解器51bを備える。
 分解器51aの触媒60aは、アンモニアの分解を促進する触媒粒子およびアンモニアの酸化を促進する触媒粒子を含む。分解器51aに空気を供給する空気供給管62は、機関吸気通路から空気を取入れるように形成されている。分解器51aの出口には流出管70が接続されている。流出管70は、冷却器85に接続されている。冷却器85には、供給管90が接続されている。供給管90は、燃料噴射弁86に接続されている。分解器51bの触媒60bは、アンモニアの分解を促進する触媒粒子を含む。分解器51bには、流量調整弁72bを介して気体のアンモニアが供給される一方で、空気が供給されないように形成されている。分解器51bは、アンモニアの酸化反応を生じずにアンモニアの分解反応を生じるように形成されている。
 分解器51bの触媒60bは、触媒コンバータ21の酸化触媒20と熱交換を行なうように形成されている。本実施の形態においては、分解器51bと触媒コンバータ21とが接触している。
 本実施の形態の第4の内燃機関においては、内燃機関の始動時などの触媒コンバータ21の温度が低い場合には、分解器51bにはアンモニアを供給せずに、分解器51aにアンモニアを供給する。たとえば、冷間始動時に、電気ヒータ63により触媒60aを活性化温度まで加熱する。触媒60aが活性化温度に到達したら酸化反応が生じて、アンモニアの分解を行なうことができる。このために、触媒コンバータ21が低温の場合にも触媒60aにてアンモニアの分解を行なうことができる。
 触媒コンバータ21の酸化触媒20の温度が上昇するに伴って、分解器51bの触媒60bの温度も上昇する。触媒60bの温度が予め定められた温度以上になった場合には、分解器51bにアンモニアを供給する。酸化触媒20の熱が分解器51bの触媒60bに伝達されて、分解器51bにおいてアンモニアの分解を行なうことができる。たとえば、触媒60bの温度が活性化温度以上まで上昇した場合には、流量調整弁72bを開いて分解器51bにアンモニアを供給する。触媒60bにおいてアンモニアの分解を行なうことができる。この場合には、分解器51aに供給するアンモニアの流量を減少させる制御を行うことができる。
 第4の内燃機関においては、内燃機関の運転状態に応じて、第1の分解器に供給するアンモニア流量および第2の分解器に供給するアンモニア流量を変化させることができる。このために、エネルギー効率に優れた内燃機関を提供することができる。また、排気浄化装置の熱を用いてアンモニアの分解を行なうことができるために、分解触媒を加熱するために消費するアンモニア量を少なくすることができる。
 図16に、本実施の形態における第5の内燃機関の概略図を示す。第5の内燃機関は、実施の形態2における水素発生装置と同様の水素発生装置が内燃機関に取り付けられている。第5の内燃機関においては、第1の分解器としての分解器51aと、第2の分解器としての分解器51bとを備える。分解器51aは、アンモニアの分解を促進する触媒粒子およびアンモニアの酸化を促進する触媒粒子を含む。分解器51bは、アンモニアの分解を促進する触媒粒子を含む。
 分解器51bの触媒60bは、触媒コンバータ21の酸化触媒20と熱交換を行なうように形成されている。本実施の形態においては、分解器51bは、触媒コンバータ21と接触している。さらに、分解器51bの触媒60bは、分解器51aの触媒60aと熱交換を行なうように形成されている。本実施の形態においては、分解器51aと分解器51bとが、互いに接触するように配置されている。蒸発器66にて生成されたアンモニアは、供給管89を介して、アンモニア噴射弁83から噴射される。分解器51a,51bにて生成された水素は、燃料噴射弁86から噴射される。その他の構成については、本実施の形態における第4の内燃機関と同様である。
 本実施の形態の第5の内燃機関においては、発熱する機能を有しない分解器51bの触媒60bには、触媒コンバータ21の酸化触媒20にて発生する熱に加えて、分解器51aの触媒60aにて発生する熱を供給することができる。例えば、内燃機関の起動時などにおいては、分解器51aの触媒60aにてアンモニアの酸化を生じさせることにより、分解器51bの触媒60bを短時間で活性化温度以上に昇温することができる。
 第5の内燃機関の運転制御においては、たとえば、空気が供給されていない分解器51bの触媒60bの温度を検出することができる。触媒60bの温度が、予め定められた低温側の温度判定値未満の場合には、酸化機能を有する触媒60aに供給するアンモニア流量を増加させる一方で、酸化機能を有しない触媒60bに供給するアンモニア流量を減少させる制御を行なうことができる。この結果、分解器51bの触媒60bの温度を上昇させることができる。触媒60bの温度が、予め定められた高温側の温度判定値よりも高くなった場合には、酸化機能を有する触媒60aに供給するアンモニア流量を減少させ、酸化機能を有しない触媒60bに供給するアンモニア流量を増加させる制御を行うことができる。
 本実施の形態における燃料噴射弁およびアンモニア噴射弁は、機関吸気通路に燃料を噴射するように形成されているが、この形態に限られず、それぞれの噴射弁は、燃焼室に燃料を供給できるように形成されていれば構わない。たとえば、それぞれの噴射弁は、燃焼室に直接的に燃料を噴射するように配置されていても構わない。
 その他の構成、作用および効果については、実施の形態1または2と同様であるので、ここでは説明を繰り返さない。
 上記の実施の形態は、適宜組み合わせることができる。上述のそれぞれの図において、同一または相当する部分には同一の符号を付している。なお、上記の実施の形態は例示であり発明を限定するものではない。また、実施の形態においては、請求の範囲に含まれる変更が意図されている。
 1  機関本体
 5  燃焼室
 13  吸気枝管
 20  酸化触媒
 31  電子制御ユニット
 41  負荷センサ
 42  クランク角センサ
 43  機関冷却水温度センサ
 49  アンモニア
 51a,51b  分解器
 60a,60b  触媒
 61  アンモニア供給管
 62  空気供給管
 63  電気ヒータ
 66  蒸発器
 72a  流量調整弁
 72b  流量調整弁
 73a  流量調整弁
 74a  温度センサ
 74b  温度センサ
 76  空気ポンプ
 83  アンモニア噴射弁
 85  冷却器
 86  燃料噴射弁
 89  供給管
 90  供給管
 91  バイパス管
 92  流量調整弁

Claims (20)

  1.  水素原子および窒素原子を含む化合物を分解して水素を生成する分解器と、
     分解器に前記化合物を供給する化合物供給装置と、
     分解器に酸素を供給する酸素供給装置とを備え、
     分解器は、前記化合物の分解を促進する触媒粒子と前記化合物の酸化を促進する触媒粒子とを有する触媒を含み、
     分解器に前記化合物および酸素を供給し、前記化合物を酸化させて酸化熱を発生させ、発生する酸化熱を用いて前記化合物の分解を行なうことを特徴とする、水素発生装置。
  2.  前記分解器は、第1の分解器を構成しており、
     前記化合物の分解を促進する触媒粒子を有する触媒を含む第2の分解器を更に備え、
     第1の分解器の触媒と第2の分解器の触媒とは互いに熱交換を行なうように形成されており、
     化合物供給装置は、第1の分解器および第2の分解器に前記化合物を供給し、第1の分解器に供給する前記化合物の流量および第2の分解器に供給する前記化合物の流量を調整可能に形成されている、請求項1に記載の水素発生装置。
  3.  第2の分解器の触媒の温度を検出する触媒温度検出器を備え、
     第2の分解器の触媒の温度が予め定められた温度未満の場合には、第2の分解器に供給する前記化合物の流量を減少させ、第1の分解器に供給する前記化合物の流量を増加させることを特徴とする、請求項2に記載の水素発生装置。
  4.  酸素供給装置は、化合物供給装置が供給する前記化合物に対する酸素のモル比が0以上0.3以下になるように酸素を分解器に供給することを特徴とする、請求項1に記載の水素発生装置。
  5.  触媒の温度を検出する触媒温度検出器と、
     化合物供給装置および酸素供給装置のうち少なくとも一方を制御する制御装置とを備え、
     化合物供給装置は、分解器に供給する前記化合物の流量を調整可能に形成されており、
     酸素供給装置は、分解器に供給する酸素の流量を調整可能に形成されており、
     制御装置は、触媒温度検出器により検出される触媒の温度が予め定められた温度の範囲内になるように触媒に供給する前記化合物の流量および酸素の流量のうち少なくとも一方を調整することを特徴とする、請求項1に記載の水素発生装置。
  6.  制御装置は、触媒温度検出器により触媒の温度を検出し、検出された触媒の温度が予め定められた温度よりも高い場合に、前記化合物に対する酸素の流量比を減少させることを特徴とする、請求項5に記載の水素発生装置。
  7.  制御装置は、触媒温度検出器により触媒の温度を検出し、検出された触媒の温度が予め定められた温度よりも低い場合に、前記化合物に対する酸素の流量比を増加させることを特徴とする、請求項5に記載の水素発生装置。
  8.  触媒よりも上流側の流路に配置されている混合器を備え、
     混合器は、酸素供給装置から供給された酸素を含む気体と、化合物供給装置から供給された前記化合物を含む気体との混合を促進するように形成されていることを特徴とする、請求項1に記載の水素発生装置。
  9.  請求項1に記載の水素発生装置と、
     燃料が燃焼する燃焼室および燃焼室に接続されている機関吸気通路を含む機関本体と、
     水素発生装置に接続されている水素供給機とを備え、
     酸素供給装置は、機関吸気通路内の空気を分解器に供給し、
     水素供給機は、水素発生装置にて生成された水素を燃料として燃焼室に供給することを特徴とする、内燃機関。
  10.  化合物供給装置は、液体の前記化合物を貯留するタンクと、
     液体の前記化合物を加熱して気化させる蒸発器とを含み、
     蒸発器で生成された気体の前記化合物の少なくとも一部が、分解器を通らずに燃料として燃焼室に供給されることを特徴とする、請求項9に記載の内燃機関。
  11.  機関本体は、冷却水で冷却されるように形成されており、
     水素発生装置は、分解器の下流側に配置され、分解器から流出する気体を冷却する冷却器を含み、
     冷却器は、分解器から流出する気体を機関本体の冷却水により冷却するように形成されていることを特徴とする、請求項9に記載の内燃機関。
  12.  内燃機関の機関回転数を検出する回転数検出装置を備え、
     水素供給機は、燃焼室に供給する水素の量を調整可能に形成されており、
     機関回転数を検出し、機関回転数が高くなるほど、燃焼室に供給する水素の量を増加させることを特徴とする、請求項9に記載の内燃機関。
  13.  水素発生装置は、化合物供給装置および酸素供給装置のうち少なくとも一方を制御する制御装置を備え、
     化合物供給装置は、分解器に供給する前記化合物の流量を調整可能に形成されており、
     酸素供給装置は、分解器に供給する酸素の流量を調整可能に形成されており、
     制御装置は、水素供給機により燃焼室に供給される水素の量に基づいて、分解器に供給する酸素の流量および前記化合物の流量のうち少なくとも一方を調整することを特徴とする、請求項12に記載の内燃機関。
  14.  内燃機関の負荷を検出する負荷検出装置を備え、
     水素供給機は、燃焼室に供給する水素の量を調整可能に形成されており、
     内燃機関の負荷を検出し、内燃機関の負荷が小さくなるほど、燃焼室に供給する水素の量を増加させることを特徴とする、請求項9に記載の内燃機関。
  15.  水素発生装置は、化合物供給装置および酸素供給装置のうち少なくとも一方を制御する制御装置を備え、
     化合物供給装置は、分解器に供給する前記化合物の流量を調整可能に形成されており、
     酸素供給装置は、分解器に供給する酸素の流量を調整可能に形成されており、
     制御装置は、水素供給機により燃焼室に供給される水素の量に基づいて、分解器に供給する酸素の流量および前記化合物の流量のうち少なくとも一方を調整することを特徴とする、請求項14に記載の内燃機関。
  16.  水素発生装置は、触媒を加熱する加熱器を備え、
     内燃機関を始動した時に、加熱器により触媒を加熱し、触媒の温度が予め定められた温度よりも高くなった後に、触媒に対して酸素および前記化合物の供給を開始することを特徴とする、請求項9に記載の内燃機関。
  17.  化合物供給装置は、分解器に供給する前記化合物の流量を調整可能に形成されており、
     酸素供給装置は、分解器に供給する酸素の流量を調整可能に形成されており、
     触媒の温度が予め定められた温度よりも低い場合には、前記化合物に対する酸素の流量比を増加させることを特徴とする、請求項9に記載の内燃機関。
  18.  機関本体の温度を検出する機関温度検出器を備え、
     化合物供給装置は、分解器に供給する前記化合物の流量を調整可能に形成されており、
     酸素供給装置は、分解器に供給する酸素の流量を調整可能に形成されており、
     水素発生装置は、機関本体の温度が予め定められた温度よりも低い場合には、前記化合物に対する酸素のモル比が0.15以上になるように分解器に前記化合物および酸素を供給することを特徴とする、請求項9に記載の内燃機関。
  19.  内燃機関の運転状態を検出する運転状態検出装置を備え、
     化合物供給装置は、分解器に供給する前記化合物の流量を調整可能に形成されており、
     水素発生装置は、内燃機関の運転状態に基づいて、分解器を通らずに蒸発器から燃焼室に供給する前記化合物に対する蒸発器から分解器に供給する前記化合物の流量比を変化させることを特徴とする、請求項10に記載の内燃機関。
  20.  運転状態検出装置は、機関本体の温度を検出する機関温度検出器を備え、
     機関本体の温度を検出し、機関本体の温度が低くなるほど、分解器を通らずに燃焼室に供給する前記化合物に対する分解器に供給する前記化合物の流量比を増加させることを特徴とする、請求項19に記載の内燃機関。
PCT/JP2011/079239 2010-12-30 2011-12-16 水素発生装置および水素発生装置を備える内燃機関 WO2012090739A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11853920.4A EP2660193A4 (en) 2010-12-30 2011-12-16 HYDROGEN GENERATOR AND COMBUSTION ENGINE WITH THE HYDROGEN GENERATOR
JP2012550836A JP5830035B2 (ja) 2010-12-30 2011-12-16 水素発生装置を備える内燃機関
CN201180059002.2A CN103249668B (zh) 2010-12-30 2011-12-16 具备氢发生装置的内燃机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/981,932 US8561578B2 (en) 2010-12-30 2010-12-30 Hydrogen generator and internal combustion engine provided with hydrogen generator
US12/981,932 2010-12-30

Publications (1)

Publication Number Publication Date
WO2012090739A1 true WO2012090739A1 (ja) 2012-07-05

Family

ID=46379608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079239 WO2012090739A1 (ja) 2010-12-30 2011-12-16 水素発生装置および水素発生装置を備える内燃機関

Country Status (5)

Country Link
US (1) US8561578B2 (ja)
EP (1) EP2660193A4 (ja)
JP (1) JP5830035B2 (ja)
CN (1) CN103249668B (ja)
WO (1) WO2012090739A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014211155A (ja) * 2013-04-19 2014-11-13 株式会社豊田中央研究所 内燃機関
JP2016064407A (ja) * 2014-09-16 2016-04-28 国立大学法人山梨大学 アンモニア分解触媒とその製造方法および、これを用いた装置
JP2018096616A (ja) * 2016-12-13 2018-06-21 三菱日立パワーシステムズ株式会社 火力発電プラント、ボイラ及びボイラの改造方法
JP2020159259A (ja) * 2019-03-26 2020-10-01 株式会社豊田自動織機 エンジンシステム
WO2020195426A1 (ja) * 2019-03-25 2020-10-01 株式会社豊田自動織機 アンモニアエンジン
WO2020208875A1 (ja) * 2019-04-11 2020-10-15 株式会社豊田自動織機 改質システム及びエンジンシステム
WO2020208876A1 (ja) * 2019-04-11 2020-10-15 株式会社豊田自動織機 改質システム及びエンジンシステム
WO2020241604A1 (ja) * 2019-05-29 2020-12-03 株式会社豊田自動織機 エンジンシステム
WO2020241148A1 (ja) * 2019-05-24 2020-12-03 株式会社豊田自動織機 改質システム
JP2020197211A (ja) * 2019-05-29 2020-12-10 株式会社豊田自動織機 エンジンシステム
JP2021038121A (ja) * 2019-09-04 2021-03-11 株式会社豊田自動織機 水素利用システム
JP2022026678A (ja) * 2020-07-31 2022-02-10 株式会社豊田自動織機 エンジンシステム
CN114278469A (zh) * 2021-12-30 2022-04-05 重庆望江摩托车制造有限公司 一种利用甲醇裂解制氢的混合能源摩托车
CN114320583A (zh) * 2021-12-30 2022-04-12 重庆望江摩托车制造有限公司 采用甲醇裂解制氢的氢能源摩托车
WO2023248725A1 (ja) * 2022-06-24 2023-12-28 株式会社豊田自動織機 アンモニアエンジンシステム
WO2024133916A1 (de) 2022-12-23 2024-06-27 Thyssenkrupp Ag Verminderung von nox und n2o im abgas von mit nh3 betriebenen feuerungsanlagen

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8961923B2 (en) 2010-05-27 2015-02-24 Shawn Grannell Autothermal ammonia cracker
US20120280517A1 (en) * 2011-05-06 2012-11-08 eRevolution Technologies, Inc. Stable hydrogen-containing fuels and systems and methods for generating energy therefrom
US8904765B2 (en) * 2013-04-19 2014-12-09 Kabushiki Kaisha Toyota Chuo Kenkyusho Internal combustion engine
CN104912695A (zh) * 2014-03-12 2015-09-16 王华裕 一种氢气内燃机的供气装置
KR102189722B1 (ko) * 2014-12-19 2020-12-14 삼성중공업 주식회사 선박의 연료공급 시스템
CN105863892B (zh) * 2015-01-21 2018-10-23 中国新能源技术股份有限公司 应用氢气产生装置使用于内燃机助燃的模块
US9771658B2 (en) 2015-10-19 2017-09-26 Christopher Haring Hydrogen generation and control for internal-combustion vehicle
US9771859B2 (en) 2015-10-19 2017-09-26 Christopher Haring Hydrogen generator and control for internal-combustion vehicle
WO2017160154A1 (en) * 2016-03-14 2017-09-21 Statoil Petroleum As Ammonia cracking
JP6986069B2 (ja) * 2016-05-25 2021-12-22 サルース エナジー ソリューションズ エル. ピー.Salus Energy Solutions, L.P. ガソリン及びディーゼル燃焼機関のための、水素添加液体燃料生成・高圧燃料噴射システム
JP6443404B2 (ja) * 2016-07-04 2018-12-26 トヨタ自動車株式会社 熱、水素生成装置
JP6328186B2 (ja) * 2016-08-04 2018-05-23 義広 謝花 液体燃料の燃焼方法
RU179096U1 (ru) * 2017-01-09 2018-04-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет путей сообщения" (СГУПС) Система питания двигателя внутреннего сгорания водородсодержащим топливом
CN107288780A (zh) * 2017-06-09 2017-10-24 厦门大学 带氨裂解装置的动力机构
US11215148B2 (en) * 2018-07-12 2022-01-04 Exxonmobil Research And Engineering Company Vehicle powertrain with on-board catalytic reformer
JP7226972B2 (ja) * 2018-11-09 2023-02-21 好朗 岩井 水素ガス製造装置
JP7161460B2 (ja) * 2019-09-27 2022-10-26 大陽日酸株式会社 無機質球状化粒子製造装置
US11448133B2 (en) * 2020-05-05 2022-09-20 Raytheon Technologies Corporation Moderate pressure liquid hydrogen storage for hybrid-electric propulsion system
EP4337600A1 (en) * 2021-06-18 2024-03-20 Air Products and Chemicals, Inc. Ammonia cracking process
US11840449B1 (en) 2022-08-06 2023-12-12 First Ammonia Motors, Inc. Systems and methods for the catalytic production of hydrogen from ammonia on-board motor vehicles
US12018631B1 (en) 2023-08-29 2024-06-25 Christopher Haring Enhanced control of hydrogen injection for internal combustion engine system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05332152A (ja) 1991-06-25 1993-12-14 Koji Korematsu アンモニア燃焼エンジン
WO2010107065A1 (ja) * 2009-03-17 2010-09-23 株式会社日本触媒 水素製造触媒およびそれを用いた水素製造方法、並びに、アンモニア燃焼用触媒、その製造方法およびこの触媒を用いたアンモニア燃焼方法
JP2010241647A (ja) * 2009-04-07 2010-10-28 Toyota Motor Corp 水素生成装置及び水素生成方法
JP2010269239A (ja) * 2009-05-21 2010-12-02 Hitachi Zosen Corp アンモニア酸化・分解触媒

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3973524A (en) * 1974-11-04 1976-08-10 David Rubin Fuel conversion system
US4480595A (en) * 1982-01-18 1984-11-06 Hobby William M Internal combustion engine
US4416224A (en) * 1982-01-18 1983-11-22 Hobby William M Internal combustion engine
US5938975A (en) * 1996-12-23 1999-08-17 Ennis; Bernard Method and apparatus for total energy fuel conversion systems
CN1575257A (zh) * 2001-10-01 2005-02-02 伽马-格雷诺研究发展有限公司 用于制备特别是用于汽车发动机的至少一种燃料的方法和装置
CA2449538A1 (en) * 2003-11-14 2005-05-14 Dynamic Fuel Systems Inc. Oxygen/hydrogen generator for internal combustion engines
JP2006248814A (ja) * 2005-03-09 2006-09-21 Hitachi Ltd 水素供給装置および水素供給方法
CN100579815C (zh) * 2005-10-18 2010-01-13 董银谈 氢混合动力电动汽车
US8025033B2 (en) * 2007-05-29 2011-09-27 Hydrogen Engine Center, Inc. Hydrogen and ammonia fueled internal combustion engine
JP5049947B2 (ja) * 2008-11-19 2012-10-17 日立造船株式会社 アンモニアエンジンシステム
JP5272767B2 (ja) * 2009-02-05 2013-08-28 トヨタ自動車株式会社 水素生成装置
US8464515B2 (en) * 2010-05-21 2013-06-18 Toyota Jidosha Kabushiki Kaisha Ammonia burning internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05332152A (ja) 1991-06-25 1993-12-14 Koji Korematsu アンモニア燃焼エンジン
WO2010107065A1 (ja) * 2009-03-17 2010-09-23 株式会社日本触媒 水素製造触媒およびそれを用いた水素製造方法、並びに、アンモニア燃焼用触媒、その製造方法およびこの触媒を用いたアンモニア燃焼方法
JP2010241647A (ja) * 2009-04-07 2010-10-28 Toyota Motor Corp 水素生成装置及び水素生成方法
JP2010269239A (ja) * 2009-05-21 2010-12-02 Hitachi Zosen Corp アンモニア酸化・分解触媒

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2660193A4

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014211155A (ja) * 2013-04-19 2014-11-13 株式会社豊田中央研究所 内燃機関
JP2016064407A (ja) * 2014-09-16 2016-04-28 国立大学法人山梨大学 アンモニア分解触媒とその製造方法および、これを用いた装置
JP2018096616A (ja) * 2016-12-13 2018-06-21 三菱日立パワーシステムズ株式会社 火力発電プラント、ボイラ及びボイラの改造方法
WO2020195426A1 (ja) * 2019-03-25 2020-10-01 株式会社豊田自動織機 アンモニアエンジン
JP2020159211A (ja) * 2019-03-25 2020-10-01 株式会社豊田自動織機 アンモニアエンジン
JP7074103B2 (ja) 2019-03-25 2022-05-24 株式会社豊田自動織機 アンモニアエンジン
JP2020159259A (ja) * 2019-03-26 2020-10-01 株式会社豊田自動織機 エンジンシステム
WO2020196133A1 (ja) * 2019-03-26 2020-10-01 株式会社豊田自動織機 エンジンシステム
JP7151581B2 (ja) 2019-03-26 2022-10-12 株式会社豊田自動織機 エンジンシステム
AU2020249938B2 (en) * 2019-03-26 2023-05-11 Kabushiki Kaisha Toyota Jidoshokki Engine system
JP2020172904A (ja) * 2019-04-11 2020-10-22 株式会社豊田自動織機 改質システム及びエンジンシステム
JP7163853B2 (ja) 2019-04-11 2022-11-01 株式会社豊田自動織機 改質システム及びエンジンシステム
AU2019445332B2 (en) * 2019-04-11 2023-07-06 Kabushiki Kaisha Toyota Jidoshokki Reforming system and engine system
JP2020172906A (ja) * 2019-04-11 2020-10-22 株式会社豊田自動織機 改質システム及びエンジンシステム
WO2020208876A1 (ja) * 2019-04-11 2020-10-15 株式会社豊田自動織機 改質システム及びエンジンシステム
US11421629B2 (en) 2019-04-11 2022-08-23 Kabushiki Kaisha Toyota Jidoshokki Reforming system and engine system
WO2020208875A1 (ja) * 2019-04-11 2020-10-15 株式会社豊田自動織機 改質システム及びエンジンシステム
WO2020241148A1 (ja) * 2019-05-24 2020-12-03 株式会社豊田自動織機 改質システム
WO2020241604A1 (ja) * 2019-05-29 2020-12-03 株式会社豊田自動織機 エンジンシステム
JP2020197211A (ja) * 2019-05-29 2020-12-10 株式会社豊田自動織機 エンジンシステム
JP7342754B2 (ja) 2019-05-29 2023-09-12 株式会社豊田自動織機 エンジンシステム
US11578686B2 (en) 2019-05-29 2023-02-14 Kabushiki Kaisha Toyota Jidoshokki Engine system
JP2021038121A (ja) * 2019-09-04 2021-03-11 株式会社豊田自動織機 水素利用システム
JP7259654B2 (ja) 2019-09-04 2023-04-18 株式会社豊田自動織機 水素利用システム
JP2022026678A (ja) * 2020-07-31 2022-02-10 株式会社豊田自動織機 エンジンシステム
JP7351270B2 (ja) 2020-07-31 2023-09-27 株式会社豊田自動織機 エンジンシステム
CN114278469B (zh) * 2021-12-30 2022-10-21 重庆望江摩托车制造有限公司 一种利用甲醇裂解制氢的混合能源摩托车
CN114320583A (zh) * 2021-12-30 2022-04-12 重庆望江摩托车制造有限公司 采用甲醇裂解制氢的氢能源摩托车
CN114278469A (zh) * 2021-12-30 2022-04-05 重庆望江摩托车制造有限公司 一种利用甲醇裂解制氢的混合能源摩托车
WO2023248725A1 (ja) * 2022-06-24 2023-12-28 株式会社豊田自動織機 アンモニアエンジンシステム
WO2024133916A1 (de) 2022-12-23 2024-06-27 Thyssenkrupp Ag Verminderung von nox und n2o im abgas von mit nh3 betriebenen feuerungsanlagen

Also Published As

Publication number Publication date
CN103249668A (zh) 2013-08-14
US8561578B2 (en) 2013-10-22
EP2660193A1 (en) 2013-11-06
JP5830035B2 (ja) 2015-12-09
JPWO2012090739A1 (ja) 2014-06-05
EP2660193A4 (en) 2016-10-12
CN103249668B (zh) 2016-10-12
US20120167840A1 (en) 2012-07-05

Similar Documents

Publication Publication Date Title
JP5830035B2 (ja) 水素発生装置を備える内燃機関
JP6233035B2 (ja) 内燃機関
JP6221760B2 (ja) 内燃機関
JP5187586B2 (ja) 希薄燃焼エンジンからのNOx排出を低減するための装置
EP1787950B1 (en) Fuel reformer and methods for using the same
JP4337786B2 (ja) 内燃機関及び内燃機関の始動制御装置
CN103747862B (zh) 发动机***和操作发动机的方法
US11421629B2 (en) Reforming system and engine system
JP2009504558A (ja) 燃料電池システムおよび改質器の作動方法
WO2020208875A1 (ja) 改質システム及びエンジンシステム
EP2638260B1 (en) Fuel reformer
CN108457774A (zh) 重整***
JP6597677B2 (ja) 内燃機関の排気浄化装置
JP6528755B2 (ja) 内燃機関の排気浄化装置
JP6624017B2 (ja) 内燃機関の排気浄化装置
JP2018076798A (ja) 内燃機関の排気浄化装置
JP2023099906A (ja) エンジンシステム
US10479679B2 (en) Exhaust gas clean-up system equipped with power generating function
JP2006144665A (ja) 燃料改質装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853920

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012550836

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011853920

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011853920

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE