WO2012086012A1 - 基板熱処理装置 - Google Patents

基板熱処理装置 Download PDF

Info

Publication number
WO2012086012A1
WO2012086012A1 PCT/JP2010/073019 JP2010073019W WO2012086012A1 WO 2012086012 A1 WO2012086012 A1 WO 2012086012A1 JP 2010073019 W JP2010073019 W JP 2010073019W WO 2012086012 A1 WO2012086012 A1 WO 2012086012A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
wafer
support plate
groove
substrate
Prior art date
Application number
PCT/JP2010/073019
Other languages
English (en)
French (fr)
Inventor
岡田 拓士
俊和 中澤
鈴木 直行
Original Assignee
キヤノンアネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンアネルバ株式会社 filed Critical キヤノンアネルバ株式会社
Priority to KR1020137018628A priority Critical patent/KR101559022B1/ko
Priority to CN201080070887.1A priority patent/CN103270579B/zh
Priority to PCT/JP2010/073019 priority patent/WO2012086012A1/ja
Priority to JP2012549513A priority patent/JP5487327B2/ja
Publication of WO2012086012A1 publication Critical patent/WO2012086012A1/ja
Priority to US13/915,712 priority patent/US9607868B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68721Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge clamping, e.g. clamping ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins

Definitions

  • the present invention relates to a substrate heat treatment apparatus used in an electronic device manufacturing process or the like.
  • Patent Document 1 proposes that a substrate is supported by a support pin integrated with a lifting device, and the substrate is heated close to a heating plate.
  • a heating plate is disposed on the upper side of the vacuum device, and an elevating device having the support pins is provided on the lower side of the heating plate.
  • a guard ring having a larger diameter than the wafer on the outer periphery.
  • Patent Document 2 When the wafer is heated by the facing lamp, the wafer surface temperature is usually highest at the center of the wafer, and at the outer edge, heat escapes to the surroundings and the temperature is lowered.
  • the outer ring When the outer ring is installed, the outer edge of the wafer is regarded as an integral part of the outer ring, and heat radiation can be reduced. This improves the uniformity of the wafer temperature.
  • the guard ring is arranged at a predetermined position in the apparatus, the wafer to be processed is carried by the transfer mechanism, and after the wafer and the guard ring are determined to have a predetermined positional relationship, the lamp light is irradiated. The wafer is heated. The processed wafer is carried out in the same manner.
  • the wafer is to be heat-treated at a plurality of positions according to various purposes (change the distance between the lamp and the wafer during irradiation), the positional relationship between the wafer and the outer ring at each position changes. End up. If the position of the outer ring is changed to avoid this, the mechanism becomes complicated. There is also a problem of reliability.
  • the guard ring since the guard ring is used to obtain uniformity of the temperature of the wafer to be heated, it is desirable that the guard ring be made of the same material as the wafer. However, unlike the wafer, it is repeatedly used (heated), so that the thermal characteristics (specific heat) Often, another material is used that is close to the wafer and durable.
  • the guard ring has the purpose of obtaining uniformity of the wafer temperature and preventing or reducing the temperature rise and damage of the parts by blocking the irradiation of the lamp light to the lower part of the chamber.
  • the first problem is the problem of thermal expansion. Since the guard ring is directly irradiated with heat, it is heated to a high temperature exceeding 500 ° C., for example, in the same manner as the wafer.
  • the guard ring is often made of a brittle material such as ceramics, and the lifting device that moves the guard ring up and down is made of a metal material such as stainless steel.
  • the parts may be damaged due to excessive thermal stress or differences in expansion amount, resulting in damage to the guard ring, broken fastening parts (screws), fastening part parts ( Defects such as metal deformation occur. Even if the damage does not occur, the deformed parts may rub against each other to generate particles.
  • the second problem is the problem of heat escape through the joint between the guard ring and the shaft of the lifting device.
  • the wafer is heated to a high temperature.
  • the guard ring blocks the irradiation of the lamp light to the lower part of the chamber and prevents or reduces the temperature rise of the parts. Therefore, a large temperature difference occurs between the upper side and the lower side of the guard ring. This temperature difference promotes heat transfer between the guard ring and the shaft. This means that heat escapes from the guard ring through the shaft. Thermal escape is a loss in the wafer heating process.
  • the guard ring serves to make the wafer temperature uniform during the process. When heat escapes from the joint between the guard ring and the shaft, temperature non-uniformity occurs in the guard ring surface, and the temperature of the heated wafer becomes non-uniform.
  • the present invention has been made in view of the above-described conventional problems.
  • the object of the present invention is to reduce damage to structural members due to thermal expansion even at high temperatures and to uniformly heat a substrate at high speed.
  • An object of the present invention is to provide a substrate heat treatment apparatus.
  • one embodiment of the present invention is a substrate heat treatment apparatus that performs heat treatment on a substrate, and is configured to be able to hold a substrate support plate capable of supporting the substrate and the substrate support plate.
  • the elevating mechanism has elevating means for elevating and lowering the substrate support plate between a first position close to the heating means and a second position separated from the heating means.
  • the influence can be mitigated, and damage to the constituent members can be reduced.
  • the substrate can be heated uniformly and rapidly.
  • FIG. 1 It is a schematic diagram of the substrate heat processing apparatus which concerns on one Embodiment of this invention. It is an outer periphery ring which concerns on one Embodiment of this invention, and the structure figure (exploded view) of the lower part. It is an outer periphery ring which concerns on one Embodiment of this invention, and a structure figure of the lower part. It is a top view of the outer periphery ring which concerns on one Embodiment of this invention, Comprising: It is A arrow view of FIG.
  • FIG. 1 is a structural diagram around a cooling stage of a substrate heating apparatus according to an embodiment of the present invention. It is the schematic of the substrate heat processing apparatus which concerns on one Embodiment of this invention. It is the schematic of the substrate heat processing apparatus which concerns on one Embodiment of this invention. It is a figure which shows the wafer removal
  • FIG. 1 is a schematic diagram of a substrate heat treatment apparatus for performing heat treatment on a substrate according to the present embodiment.
  • reference numeral 1 denotes a chamber
  • reference numeral 2 denotes an exhaust port
  • reference numeral 3 denotes a wafer W loading port.
  • the chamber 1 is connected to the exhaust system through the exhaust port 2.
  • the exhaust system is formed by appropriately selected vacuum pumps, valves, and gauges, and the inside of the chamber 1 can be evacuated to a desired pressure.
  • the wafer W before processing is loaded from the wafer transfer system through the loading port 3 and the processed wafer W is unloaded.
  • the top plate portion of the chamber 1 has a light incident window 10 made of a light transmitting material.
  • a lamp 11 as a heating unit is provided on the upper side of the light incident window 10 (that is, on the upper side in the gravity direction of the wafer W placed on the outer peripheral ring 5 described later), and the light of the lamp 11 enters through the light incident window. Then, the wafer W is heated.
  • the heating means is not limited to a lamp, and may be any configuration as long as it can release heat and heat a substrate provided separately by the heat, such as a heating plate.
  • the outer peripheral ring 4, which is an annular member, is a substrate support plate for supporting the wafer W, and is arranged so that the lamp light from the lamp 11 enters, that is, faces the lamp 11.
  • Wafer support pins 5 are provided on the outer ring 4.
  • three wafer support pins 5 are used.
  • the outer peripheral ring 4 is placed on the lifting mechanism 20 via a ball 12 as a connecting member. Since the sphere 12 as the connecting member is configured to be at least slidable with the outer ring 4, the outer ring 4 is not rigidly connected to the lifting mechanism 20.
  • the elevating mechanism 20 includes a connection ring 6, a shaft 7, and an actuator 15.
  • the connection ring 6 is a member (substrate support plate holding part) for holding the outer ring 4 and is moved up and down by being fastened to the shaft 7 and driving the actuator 15. That is, by driving the actuator 15, the elevating mechanism 20 moves up and down (moves up and down) the outer ring (that is, the wafer W placed on the outer ring) held on the connection ring 6 via the sphere 12.
  • the wafer W can be stopped at a predetermined position such as a first position (for example, a heating position) close to the lamp 11 and a second position (for example, a transfer position) farther from the lamp 11 than the first position. Can be made.
  • the actuator 15 is a servo motor, but may be other means such as an air cylinder. Further, in order to move the shaft 7 with high accuracy, linear motion guidance is also necessary.
  • This embodiment is an apparatus that performs lamp heat treatment in a vacuum. Since the linear motion guide and actuator 15 are installed on the atmosphere side outside the chamber, the shaft 7 is vacuum-sealed using a bellows (not shown). In the present embodiment, the connection ring 6 is supported by the two shafts 7, but the number of shafts is not limited to this and may be one or three or more. It is not necessary for all shafts to be connected to and driven by an actuator, and some may be used as linear motion guides only.
  • the lamp heating apparatus includes the outer peripheral ring 4.
  • the outer peripheral ring 4 serves to support the wafer W as well as improve the uniformity of the wafer temperature and shield the lamp light from the lower part of the chamber.
  • the wafer W is supported by wafer support pins 5 that are protruded from the outer peripheral ring 4.
  • the outer peripheral ring 4 is moved up and down by an actuator 15 to change the position of the wafer W for heating and conveyance.
  • FIG. 2 is a structural diagram (exploded view) of the outer peripheral ring 4 and its lower part according to the present embodiment.
  • FIG. 3 is an exploded view of FIG. 2, which is an exploded view.
  • the outer peripheral ring 4 is ring-shaped SiC (thermal conductivity: 270 W / m ⁇ K), and the insertion holes 5 a are formed at three locations.
  • Wafer support pins 5 made of SiC (thermal conductivity: 270 W / m ⁇ K) are inserted into the insertion holes 5 a, and the wafer W can be supported by the three wafer support pins 5. If the wafer W is irradiated with lamp light (heating light) from the lamp 11 while the wafer W is placed on the wafer support pins 5, the outer ring 4 is also heated by the lamp light.
  • the outer ring 4 since the outer ring 4 has a high thermal conductivity, the outer ring 4 becomes high in temperature by irradiation with the lamp light and radiates heat. Since the outer edge portion of the wafer W faces at least the outer peripheral ring 4, the heat radiated from the outer peripheral ring 4 can act on the outer edge portion of the wafer W. That is, the outer peripheral ring 4 heated by the lamp light radiates and heats the outer edge portion of the wafer W. Therefore, the temperature between the center portion and the outer edge portion of the wafer W can be reduced.
  • the shape of the outer peripheral ring 4 is a ring shape (annular shape).
  • the shape is not limited to this shape, and when the wafer W is supported via the wafer support pins, the outer peripheral ring 4 is formed on the outer edge portion of the wafer.
  • the shape may be disk-shaped or polygonal, such as a quadrangle.
  • the wafer W is supported by providing the wafer support pins 5 on the outer ring 4. Therefore, when the wafer W is supported by the substrate support plate, the contact area between the wafer W and the substrate support plate can be made a point.
  • the inner peripheral edge of the guard ring is tapered along the circumferential direction, and the taper formed in the circumferential direction and the edge of the wafer are brought into line contact with each other to place the wafer on the guard ring.
  • the wafer W since the wafer W is placed on the substrate support plate by point contact, the movement of heat due to heat conduction between the wafer W and the substrate support plate can be further reduced. .
  • the outer peripheral ring 4 as the substrate support plate has the function of the conventional guard ring as well as the substrate support function. Accordingly, in the configuration in which both the substrate and the guard ring are moved up and down, the relative positional relationship between the substrate and the guard ring does not change.
  • the wafer support pins 5 are provided at three locations.
  • the wafer support pins 5 may be provided at any number of locations such as four locations and five locations as long as the wafer W can be stably supported. That is, since the wafer W can be stably supported if it is supported at three points by the wafer support pins, the wafer support pins 5 may be provided at least at three locations.
  • connection ring 6 located below the outer ring 4 is somewhat smaller than the outer ring.
  • the connection ring 6 is fastened to the shaft 7 and is driven up and down by an actuator such as a servo motor.
  • the connection ring 6 is not in direct contact with the outer ring 4.
  • the outer peripheral ring 4 is supported by the connection ring 6 via three balls 12 (connecting members) sandwiched between the two parts rather than the surface.
  • connection ring 6 is SUS (thermal conductivity: 16.7 W / m ⁇ K).
  • the ball 12 as the connecting member is intended to support the outer ring 4 and to thermally separate the outer ring 4 and the connection ring 6 as a part of the lifting device 20.
  • the sphere 12 as a member has a thermal conductivity smaller than that of the outer peripheral ring 4 as a substrate support plate.
  • the sphere 12 is made of a material having a smaller heat transfer coefficient than that of the connection ring 6 such as quartz or ceramics, and is fitted into a groove 13 provided on the connection ring 6.
  • the sphere 12 is quartz (thermal conductivity: 1.38 W / m ⁇ K).
  • three grooves 13 are provided on the circumference of the connection ring 6 at an equal distribution, and one sphere is fitted in each groove.
  • the depth of the groove 13 is smaller than the diameter of the sphere 12. Therefore, when the sphere 12 is fitted into the groove 13, the upper half portion of the sphere 12 protrudes from the groove 13.
  • the shape of the groove 13 is an ellipse, and the direction of the long axis (longitudinal direction, that is, the direction in which the groove 13 extends) is the radial direction of the connection ring 6 (the direction from the outer edge of the ring toward the center).
  • a groove 14 (hereinafter referred to as a V-shaped cross section) having a cross-section (V-shaped cross section) in which the V shape of the alphabet is turned upside down on the lower surface of the outer ring 4 (the surface facing the lamp 11, that is, the lifting mechanism 20 side). V-groove) is formed (see FIG. 5).
  • the number, position, and longitudinal direction of the V grooves 14 are provided so as to face the grooves 13 on the connection ring 6 side. Therefore, the extending direction (longitudinal direction) of the V groove 14 is the radial direction of the outer peripheral ring 4.
  • the sphere 12 fitted in the connection ring 6 comes into contact with the slope portion of the V-groove 14 and is stabilized.
  • the diameter of the sphere 12 is longer than the height of the recess of the groove 13 (groove depth).
  • the outer ring 4 and the elevating mechanism 20 side can be separated by a coupling portion (the sphere 12 that is a connecting member) between the outer ring 4 and the elevating mechanism 20.
  • the first problem can be solved by this embodiment.
  • bond part of the outer periphery ring 4 and the raising / lowering mechanism 20 for moving this outer periphery ring 4 up and down is not rigidly connected, even if there exists thermal expansion, it is not structurally restrained.
  • the outer peripheral ring 4 and the connection ring 6 included in the lifting mechanism 20 are coupled to both the outer peripheral ring 4 and the connection ring 6 via a sphere 12 that is a separate member.
  • the outer ring 4 and the connection ring 6 are formed with grooves in the radial direction, and the sphere 12 sandwiched between them has a degree of freedom of movement in the radial direction.
  • a ring-shaped part expands in diameter when heated to a high temperature. Even if the outer ring 4 and the connection ring 6 become hot and expand in the radial direction due to thermal expansion, even if there is a difference in the thermal expansion speed between the outer ring 4 and the connection ring 6, 12 follows to some extent and is not structurally constrained. That is, as described above, since the longitudinal direction of the groove 13 and the V-groove 14 is set along the radial direction in which the outer ring 4 and the connection ring 6 spread due to thermal expansion, the outer ring 4 and the connection ring 6 are set.
  • the sphere 12 can move in both the groove 13 and the V-groove 14 even if they are thermally expanded due to different thermal expansion coefficients, and the stress applied in the radial direction by the thermal expansion (the connection between the sphere 12 and the outer ring 4). And stress applied to the connecting portion between the sphere 12 and the connection ring 6).
  • the groove 13 whose longitudinal direction is set in the radial direction of the connection ring 6 and the V-groove 14 whose longitudinal direction is set in the radial direction of the outer peripheral ring 4 are used as the stress relaxation guide. Function.
  • the ball 12 and the wall of the groove 13 and / or the V-groove 14 may slip at the contact point, it is possible to prevent excessive friction. For the above reasons, excessive thermal stress does not occur in the outer ring 4 or the connection ring 6 that is a part of the lifting mechanism 20, and the risk of breakage can be reduced.
  • the sphere 12 is used as a connecting member between the outer ring 4 and the connection ring 6 included in the lifting device 20, but the shape is not limited to the sphere.
  • the connecting member that connects the outer ring 4 and the lifting device 20 is a separate member from both the outer ring 4 and the lifting device 20, so that the outer ring 4 and the lifting device 20 are rigidly connected. Can be linked by no bond. That is, by making the connecting member a separate member from both the outer ring 4 and the lifting device 20, even if the outer ring 4 and the connection ring 6 have different coefficients of thermal expansion, the difference in the coefficient of thermal expansion can be obtained. Can be relaxed.
  • the shape of the connecting member is the same as that of the groove (for example, the V-groove 14) formed in the substrate support plate (for example, the outer peripheral ring 4) to be connected to the connecting member. It is preferable to make the shape at least slidable with both the wall surface and the wall surface of the groove (for example, the groove 13) formed in the substrate support plate holding portion (for example, the connection ring 6) of the lifting device.
  • the shape is slidable at least with both the substrate support plate and the lifting device to be connected to the connection member in this way, for example, any shape such as a confetti shape, a rugby ball shape, a cylindrical shape, a prismatic shape, a rectangular parallelepiped shape, etc.
  • the connecting member is at least slidable with both the substrate support plate and the lifting device to be connected, so that the substrate support plate and the lifting device for raising and lowering the substrate support plate are different in thermal expansion. Even in the case of thermal expansion at a rate, the substrate support plate can be supported on the lifting device while alleviating the difference in thermal expansion.
  • the problem of heat escape which is the second problem, can be solved by making the contact area between the outer ring 4 and the connection ring 6 as small as possible.
  • the outer ring 4 is supported with respect to the connection ring 6 via the three balls 12 sandwiched between the two parts instead of the surface. That is, the number of locations where the sphere 12 contacts the outer ring 4 and the connection ring 6 is 2 points per sphere, that is, only 6 points in total. The smaller the area of these contacts, the less heat transfer.
  • the thermal conductivity of the sphere 12 that is a connecting member between the outer ring 4 and the connection ring 6 is made smaller than that of the outer ring 4, the sphere 12 moves from the outer ring 4 to the connection ring 6. It will function as a screen for heat flow. Therefore, heat escape from the outer ring 4 to the connection ring 6 can be reduced.
  • the lamp 11, the outer ring 4, the connection ring 6, and the shaft 7 are arranged in this order from the top to the bottom in the direction of gravity, the lamp light from the lamp 11 enters the shaft 7. Can be blocked by the outer ring 4. Furthermore, as described above, heat transfer from the heated outer ring 4 to the connection ring 6 can also be reduced. Accordingly, since heat due to the heating process is not easily transmitted to the shaft 7 of the lifting device 20, it is possible to reduce the space around the lifting device 20 from becoming high temperature.
  • the present embodiment proposes a mechanism for separating and joining the outer ring 4 and the connection ring 6 (that is, the lifting device 20), which is a lower structure than the outer ring 4, without being rigidly connected.
  • the ball 12 as the connecting member
  • the groove 13 formed in the connection ring 6, and the V groove 14 formed in the outer ring 4 the positional relationship between the outer ring 4 and the connection ring 6 is shifted. Can be reduced.
  • the temperature of the peripheral ring 4 and the surroundings of the elevating device which is a driving unit for moving the wafer W up and down, rise with the wafer W.
  • Each part is often made of different materials, and the degree of contact with the lamp light is also different.
  • the outer ring 4 and the lifting device 20 which is a lower structure.
  • the outer peripheral ring 4 according to the present invention plays a role of supporting the wafer W in the first place.
  • the change in the position of the outer peripheral ring 4 causes the wafer W to be displaced and the wafer W to be detached from the wafer support pins 5, thereby hindering the conveyance.
  • the positional relationship between the wafer W and the outer ring 4 changes, the temperature distribution of the wafer W changes.
  • the ball 12, the groove 13 formed in the connection ring 6, and the V groove 14 formed in the outer ring 4 are employed as a connection mechanism between the outer ring 4 and the lifting device 20. That is, the V-shaped groove 14 is formed on the lower surface (the lower surface in the gravity direction) of the outer ring 4, and the oval groove 13 is formed on the upper surface (the upper surface in the gravity direction) of the connection ring 6. A mechanism in which the sphere 12 is sandwiched is used. Positioning the outer ring 4 with good reproducibility by the wedge effect when the sphere 12 is in contact with the inclined surface of the V-groove 14 and the interaction of the combination of the sphere 12, the groove 13 and the V-groove 14 disposed at three locations. Can do.
  • One is preferably a V-groove.
  • the outer ring 4 and the connection ring 6 are not structurally rigidly connected because of the separable structure. Therefore, even if the outer peripheral ring 4 is heated together with the wafer W during heating, it is possible to reduce the risk of generation of excessive thermal stress due to thermal expansion and damage due to interference between components. Even if the outer ring 4 contracts during cooling of the outer ring 4, the outer ring and the connection ring 6 are not rigidly connected, so that the risk of breakage can be similarly reduced.
  • the contact area of a connection member and the outer periphery ring 4 is very small (only the point contact of 12 balls and the V-groove 14 slope). Thereby, the heat escape from the outer periphery ring 4 can be decreased. Furthermore, a positioning mechanism for the outer ring 4 is provided at the joint between the outer ring 4 and the connection ring 6. Thereby, even in the case of continuous processing, the positional deviation of the wafer W and the outer ring 4 can be reduced.
  • the positioning mechanism itself does not require a sensor or actuator, and is simple and low-cost.
  • a substrate cooling mechanism for cooling the substrate and a substrate support plate cooling mechanism for cooling the substrate support plate are provided. That is, the outer peripheral ring 4 that supports the wafer W is heated by the elevating device 20 that is a driving mechanism by receiving the irradiation of the lamp light emitted from the lamp 11 above the vacuum chamber 1 as the processing chamber (upward in the gravity direction). .
  • a cooling stage as a substrate cooling mechanism capable of placing the wafer W on the lower part (lower side in the direction of gravity) of the vacuum chamber 1 is installed, and the heated wafer W can be forcibly cooled. .
  • a cooling plate as a substrate support plate cooling mechanism capable of mounting at least a region 4a facing the outer edge of the wafer W of the outer peripheral ring 4 is installed at a lower portion of the cooling stage, and at least The region 4a facing the outer edge of the wafer W of the outer peripheral ring 4 after heating can be cooled.
  • heat removal means such as flowing cooling water is provided inside the cooling stage and the cooling plate.
  • the wafer W in the substrate heat treatment apparatus shown in FIG. 1, can be placed on the lower side in the gravity direction of the outer peripheral ring 4, and the placed wafer W can be cooled.
  • a configured cooling stage 8 is provided.
  • a cooling plate 9 configured to mount at least a region 4a facing the outer edge of the wafer W of the outer peripheral ring 4 below the cooling stage 8 in the direction of gravity and to cool the mounted region 4a. Is provided. Both the cooling stage 8 and the cooling plate 9 have a flow path formed therein so that cooling water can flow.
  • FIG. 6 shows the shape and arrangement of the wafer W, the outer ring 4 and the cooling stage 8.
  • the inner circle diameter d2 of the outer peripheral ring 4 is somewhat smaller than the outer diameter d1 of the wafer, and the wafer support pins 5 are arranged at equal distribution on the inner circle edge and the periphery of the outer ring 4.
  • the wafer W is horizontally supported by the tips of the plurality of wafer support pins 5.
  • the wafer W and the outer ring 4 are arranged concentrically.
  • the cooling stage 8 is also concentrically arranged at the lower part (for example, the bottom part) of the vacuum chamber 1, and its diameter d3 is smaller than the inner circular diameter of the outer peripheral ring 4 (d1> d2> d3).
  • the diameter of the cooling plate 9 is larger than the diameter d3 of the cooling stage 8, and the cooling plate 9 is in contact with the lower surface of the cooling stage 8 and the upper surface of the cooling plate 9, and the outer edge portion of the upper surface of the cooling plate 9 is It is arranged to be exposed.
  • a region 4a facing the outer edge portion of the wafer W of the outer peripheral ring 4 is placed on the exposed outer edge portion 9a of the cooling plate 9.
  • the outer peripheral ring 4 supporting the heated wafer W is driven and lowered by the actuator 15.
  • there is a sufficient space (escape: the exposed outer edge portion 9a of the cooling plate 9) to accommodate the region 4a facing the outer edge portion of the wafer W of the outer peripheral ring 4 that has moved to the lower outer side of the cooling stage 8. )
  • the wafer W is transferred to the cooling stage 8 when the level of the tip of the wafer support pin 5 reaches the same level as the surface of the cooling stage 8 while the outer peripheral ring 4 is being lowered.
  • the cooling plate 9 is a member having a flat surface portion (exposed outer edge portion 9a) on which the outer peripheral ring 4 can be placed, and is provided with heat removal means such as flowing cooling water inside. Or a part of the vacuum chamber 1 (bottom surface or the like).
  • the configuration characteristic of the present invention described in the first embodiment is effective, and the reliability of the mechanism is improved.
  • the outer ring 4 is not rigidly connected to the structure part (elevating device 20) below the gravitational direction, and is placed on the connection ring 6 with the ball 12 interposed therebetween. If the outer ring 4 and the structure portion below it are rigidly connected by screw fastening or the like, the outer ring 4 may be excessively pressed against the cooling plate 9 when the outer ring 4 is placed on the cooling plate 9. There is.
  • the connecting ring 6 is further lowered after the outer ring 4 is placed on the cooling plate 9, the outer ring 4 and the connecting ring 6 are separated, and the outer ring 4 is completely attached to the cooling plate 9. Can be put in. Therefore, the outer ring 4 is not pressed against the cooling plate 9 and no gap is formed between the outer ring 4 and the cooling plate 9. Further, when the outer ring 4 is cooled, it contracts.
  • the mechanism according to this embodiment in which the outer ring 4 and the connection ring 6 are separated during cooling is not mechanically constrained. This can reduce the risk of breakage.
  • the outer peripheral ring 4 is moved upward again by driving of the elevating device 20, and the next wafer W is loaded and the processing is continued. In this movement, the outer peripheral ring 4 is required to eliminate or reduce the deviation from the position where the previous wafer W is processed. The reason is the same as described above.
  • the positioning mechanism provided in the connection part of the outer periphery ring 4 and the connection ring 6 acts effectively also to this request.
  • the process flow in this embodiment will be described below.
  • the wafer W is loaded into the vacuum chamber 1 through the loading port 3 from the wafer transfer system.
  • the outer ring 4 waits at an appropriate position, and is placed on the tips of the three wafer support pins 5 that are projected on the outer ring 4 in cooperation with the arm of the wafer transfer robot.
  • the elevating device 20 raises the outer peripheral ring 4 on which the wafer W is placed to a position where it is irradiated with lamp light (heating position) and stops. At this position, the wafer W is heated by being irradiated with the lamp light emitted from the lamp 11 (FIG. 7).
  • the irradiated position can be arbitrarily set at a plurality of positions within the movable range of the outer ring 4.
  • the elevating device 20 moves the outer peripheral ring 4 on which the heated wafer W is placed below the vacuum chamber 1. During the lowering, only the wafer W is delivered to the stage 8. The wafer W is cooled on the stage 8 placed thereon. Here, the wafer W immediately after heating has a high temperature, and in order to prevent damage to the wafer W due to thermal shock, the wafer W may wait until it is lowered to an appropriate temperature before being placed on the cooling stage 8.
  • the elevating device 20 further lowers the outer peripheral ring 4 that has transferred the wafer W to the cooling stage 8, and the outer edge portion 9 a of the outer peripheral ring 4 that faces the outer edge portion of the wafer W is exposed on the cooling plate 9. The outer peripheral ring 4 is cooled. Here, the outer ring 4 and the connection ring 6 are separated.
  • the elevating device 20 leaves the outer ring 4 on the cooling plate 9, further lowers the connection ring 6, and stops at a predetermined lowest point.
  • the process proceeds to a step of unloading the cooled wafer W out of the chamber 1.
  • the elevating device 20 raises the connection ring 6 and joins with the outer peripheral ring 4 placed on the cooling plate 9.
  • the outer ring 4 is positioned by the sphere 12, the groove 13, and the V-groove 14. That is, an oval groove 13 is formed on the circumference of the connection ring 6 and the sphere 12 is fitted.
  • the spheres 12 are provided at three locations on the circumference of the connection ring 6.
  • the outer peripheral ring 4 is installed on the connecting ring 6 with a sphere 12 sandwiched therebetween.
  • the outer ring 4 and the connection ring 6 are united and continue to rise, and the tip of the wafer support pin 5 protruding from the outer ring 4 is at the level of the stage 8 surface. When it reaches, the wafer W is lifted from the stage 8.
  • the elevating device 20 raises the wafer W supported by the three wafer support pins 5 together with the outer ring 4 and the connection ring 6 and stops at an appropriate position (transfer position). The wafer W is unloaded through the loading port 3 in cooperation with the arm of the wafer transfer robot.
  • the ring (outer peripheral ring) placed on the outer periphery of the wafer in order to obtain the temperature uniformity of the wafer W is effectively cooled every time the wafer is processed. can do.
  • the outer ring 4 is moved up and down by the actuator 15 and placed on the cooling plate 9. At this time, the outer ring 4 is separated from the drive unit (lifting device 20) side including the actuator. For this reason, the outer periphery ring 4 is pressed against the cooling plate 9 during cooling and is not damaged.
  • the outer peripheral ring 4 is naturally placed on the cooling plate 9, it can be contacted without any gap between the two parts and can be cooled effectively.
  • the cooling stage 8 may be provided with an electrostatic chuck (ESC: Electro Static Chucking).
  • ESC Electro Static Chucking
  • electrostatic adsorption a voltage is applied between the wafer W and the cooling stage 8 provided with the dielectric layer, and the wafer W is adsorbed and fixed by the force generated between the two.
  • the application of voltage is stopped and the adsorption is released, but a part of the electric charge remains (residual electric charge) and the adsorption force remains in the dielectric layer. If the wafer support pins attempt to lift and hold the wafer in this state, the remaining attracting force acts as a repulsive force, causing a problem that the wafer W jumps up, shifts or cracks in an unintended direction.
  • the wafer W when the wafer W is detached from the cooling stage 8 adsorbed by the electrostatic chuck, the wafer W is grounded (grounded) to remove residual charges.
  • the wafer support pins 5, the outer ring 4, the sphere 12, and the connection ring 6 are made of a material having electrical conductivity, and a ground circuit is formed so that the connection ring 6 can be grounded as desired. Is effective.
  • the wafer support pins 5 and the outer ring 4 are made of a material having electrical conductivity, so that the substrate support plate has electrical conductivity, and the sphere 12 as a connecting member is also made of a material having electrical conductivity.
  • the connection ring 6 which is a mounting part of the board
  • a switch (mechanical contact) 17 is provided, and by switching the switch 17, the connection ring 6 can be connected to the ground G as desired to form a ground circuit. Therefore, the charge remaining on the wafer W can be released by the ground circuit.
  • the wafer support pins 5 and the balls 12 are preferably made of a material having a low heat transfer coefficient for the purpose of reducing heat escape.
  • a material having a small coefficient of thermal expansion is desired in order to reduce expansion and deformation due to heat. Therefore, for example, it is conceivable that quartz or ceramics having no electrical conductivity is used as the wafer support pins 5 and the spheres 12. In such a case, a similar effect can be obtained by providing a mechanical contact (switch 17) at a location where the ground circuit is interrupted (for example, the outer ring 4) and operating it at an appropriate timing. it can.
  • the cooling stage 8 when the cooling stage 8 is electrostatically attracted by the electrostatic chuck, it is possible to suppress the wafer desorption error by reliably grounding the residual charge of the wafer W.
  • the embodiment and process flow described above are cases in which an embodiment of the present invention is applied to an apparatus for heating a wafer in a vacuum.
  • the lamp heat treatment may be performed in a space substituted with nitrogen at atmospheric pressure, and the mechanism proposed in one embodiment of the present invention is not limited to application only with a vacuum apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

本発明は、高温であっても熱膨張による構成部材の破損を低減し、基板を均一に高速加熱することが可能である基板熱処理装置を提供する。本発明の一実施形態は、基板に対して熱処理を行う基板熱処理装置であって、基板を支持可能な外周リング(4)と、接続リング(6)を有し、外周リング(4)を昇降させる昇降装置(20)と、外周リング(4)の熱伝導率よりも小さい熱伝導率を有する球(12)と、外周リング(4)に支持された基板を加熱するランプ(11)と、を備える。球(12)は、外周リング(4)および接続リング(6)の双方とは別個の部材である。昇降装置(20)は、外周リング(4)をランプ(11)に対して近接した第1の位置と離れた第2の位置との間で昇降させる。

Description

基板熱処理装置
 本発明は、電子デバイス製造工程等で用いられる基板熱処理装置に関する。
 従来、基板を加熱するための機構として、特許文献1では、昇降装置に一体化された支持ピンにて基板を支持して、該基板を加熱プレートに近づけて加熱することが提案されている。特許文献1に開示された技術では、真空装置の上側に加熱プレートを配置し、該加熱プレートの下側に、上記支持ピンを有する昇降装置を設けている。基板を加熱する際には、支持ピンに基板を載置した後に、昇降装置を駆動することにより支持ピンを上昇させ、上記基板を加熱プレートに接近させて基板を加熱する。
 一方、高速加熱する場合、ランプ加熱装置においてウエハ温度の均一性を得るため、その外周にウエハよりひと回り径の大きなリング状の部品(以下、ガードリングと称する)を設置することが提案されている(特許文献2)。対向したランプでウエハを加熱するとウエハの表面温度は通常、ウエハ中心が最も高くなり、外縁部では周囲へふく射により熱が逃げ、温度は低くなる。外周リングを設置するとウエハ外縁部は外周リングと一体とみなされ、熱放射を少なくすることができる。これによりウエハ温度の均一性を向上させる。
 従来の技術では、ガードリングが装置内の所定の位置に配置され、処理されるウエハが搬送機構で運ばれてきて、ウエハとガードリングとを所定の位置関係に決めた後、ランプ光を照射しウエハを加熱する。また処理後のウエハは同様に運び出される。このような構造では、例えばウエハをさまざまな目的に応じて複数のポジションで加熱処理したい場合、(照射時のランプとウエハの距離を変える)各ポジションでのウエハと外周リングの位置関係が変わってしまう。これを回避するために外周リングのポジションを変えるなどすると、機構が複雑になってしまう。また、信頼性の問題もある。
 また、ガードリングは、加熱されるウエハ温度の均一性を得るために用いられるため、ウエハと同じ材質であることが望ましいが、ウエハと異なり繰り返し使用(加熱)されるため、熱的特性(比熱や熱伝導率)がウエハに近く、かつ耐久性のある別の材質のものを選ぶことが多い。
 その理由のひとつとして機構的な制約からガードリングに強制的な冷却手段を設けることが、難しいということがある。特に真空中で処理する装置の場合、冷却手段が得られないことは、望まぬガードリング温度の上昇、処理前のウエハとの温度差およびそれらの経時変化などを招き、プロセスへの影響も懸念される。なお、ガードリングにはウエハ温度の均一性を得るとともに、チャンバー下部へのランプ光の照射を遮り、部品の温度上昇や損傷を防ぐないしは軽減する目的もある。
特開平7-254545号公報 特開2000-58471号公報
 さて、上記特許文献1に開示された昇降装置を有する加熱装置において高速加熱をするためには、ウエハの端から熱が逃げることを低減する必要がある。そこで、特許文献1に係る加熱装置に、特許文献2に開示されたガードリングをウエハの周囲に設ける場合には、該ガードリングを昇降させる機構(昇降装置)が別途必要になる。すなわち、昇降装置のシャフトにガードリングを接続する必要がある。
 このようにガードリングが、ウエハの支持を兼ね、かつアクチュエータ等により上下動される機構(昇降装置)を実現する際には、下記のような問題がある。
 第一の問題点は、熱膨張の問題である。ガードリングは熱の照射を直接受けるのでウエハと同様にプロセス時、例えば500℃を超える高温に加熱される。ガードリングはセラミックス等のぜい性材料で製作されることが多く、これを上下動させる昇降装置はステンレス等の金属材料で製作される。ガードリングとしてのセラミックスと昇降装置としての金属材料の間には組合せによって異なるが、熱膨張率に2~4倍程度の差がある。これらが高温に加熱されたとき、熱による膨張量に差が生じる。ガードリングと昇降装置のシャフトとが剛結されていると、過大な熱応力あるいは膨張量の差による部品同士の干渉のため、ガードリングの破損、締結部(ねじ)の破損、締結部部品(金属)の変形等の不具合が起こる。破損に至らなくとも、変形した部品同士がこすれ合いパーティクルが発生する可能性もある。
 第二の問題点は、ガードリングと昇降装置のシャフトとの結合部を通しての熱逃げの問題である。プロセス時はウエハが高温に加熱される。上述した通り、ガードリングはチャンバー下部へのランプ光の照射を遮り、部品の温度上昇を防ぐないしは軽減する。そのためガードリングの上側と下側の間には大きな温度差が生じる。この温度差によりガードリングとシャフトとの間には熱伝達が促進される。これはガードリングからシャフトを通して熱が逃げていくことを意味する。熱逃げはウエハ加熱プロセスにおいてロスになる。また、ガードリングにはプロセス時、ウエハの温度を均一にする役目がある。ガードリングとシャフトの結合部から熱が逃げると、ガードリング面内に温度の不均一が生じ、加熱されているウエハの温度が不均一となる。
 本発明は、上記従来の問題点に鑑みてなされたもので、その目的とするところは、高温であっても熱膨張による構成部材の破損を低減し、基板を均一に高速加熱することが可能である基板熱処理装置を提供することにある。
 このような目的を達成するために、本発明の一態様は、基板に対して熱処理を行う基板熱処理装置であって、基板を支持可能な基板支持板と、前記基板支持板を保持可能に構成され、前記基板支持板を昇降させる昇降機構と、前記基板支持板と前記昇降機構とを連結する連結部材であって、前記基板支持板の熱伝導率よりも小さい熱伝導率を有する連結部材と、前記基板支持板に支持された基板を、該基板支持板の重力方向上側から加熱する加熱手段と、を備え、前記連結部材は、前記基板支持板および前記昇降機構の双方とは別個の部材であり、前記昇降機構は、前記基板支持板を前記加熱手段に対して近接した第1の位置と離れた第2の位置との間で昇降させる昇降手段を有することを特徴とする。
 本発明によれば、基板支持板と昇降機構との間で熱膨張率が異なっていても、その影響を緩和することができ、構成部材の破損を低減することができる。また、基板支持板と昇降機構との間で熱逃げが低減されているため、基板を均一にかつ急速に加熱できる。
本発明の一実施形態に係る基板熱処理装置の模式図である。 本発明の一実施形態に係る外周リングとその下部の構造図(分解図)である。 本発明の一実施形態に係る外周リングとその下部の構造図である。 本発明の一実施形態に係る外周リングの平面図であって、図3のA矢視図である。 本発明の一実施形態に係る位置出し機構で用いられる球と外周リングのV溝、接続リングの溝を説明する図であって、図4のB矢視図である。 本発明の一実施形態に係る基板加熱装置の冷却ステージ周辺の構造図ある。 本発明の一実施形態に係る基板熱処理装置の概略図である。 本発明の一実施形態に係る基板熱処理装置の概略図である。 本発明の一実施形態に係るウエハ脱離機構を示す図である。
 以下、図面を参照して本発明の実施形態を詳細に説明する。なお、以下で説明する図面で、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
 (第1の実施形態) 
 図1は、本実施形態に係る、基板に対して熱処理を行う基板熱処理装置の模式図である。図1において、符号1はチャンバー、符号2は排気口、符号3はウエハWの搬入ポートである。チャンバー1は、排気口2を通じて排気系に接続される。排気系は適切に選択された真空ポンプ、バルブ、ゲージ類により形成され、チャンバー1内部を所望の圧力に真空排気することができる。搬入ポート3を通じてウエハ搬送系から、処理前のウエハWを搬入、処理後のウエハWを搬出する。チャンバー1の天板部分には光透過材料で製作された光入射窓10がある。光入射窓10の上側(すなわち、後述する外周リング5に載置されたウエハWの重力方向上側)には加熱手段としてのランプ11が設けられており、ランプ11の光が光入射窓を通して入射されウエハWを加熱する。なお、上記加熱手段は、ランプに限らず、例えば加熱プレートなど、熱を放出し、該熱により離間して設けられた基板を加熱できればいずれの構成であっても良い。 
 環状部材である外周リング4はウエハWを支持するための基板支持板であり、ランプ11からのランプ光が入射するように、すなわち、ランプ11に臨むように配置されている。該外周リング4にはウエハ支持ピン5が設けられている。本実施形態では、ウエハ支持ピン5は3本用いられる。外周リング4は、連結部材としての球12を介して昇降機構20に載置される。連結部材としての球12は、外周リング4と少なくとも摺動可能に構成されているので、外周リング4は、昇降機構20に剛結されていない。
 上記昇降機構20は、接続リング6、シャフト7、およびアクチュエータ15を有している。接続リング6は、外周リング4を保持するための部材(基板支持板保持部)であり、シャフト7に締結されアクチュエータ15が駆動することにより上下動される。すなわち、アクチュエータ15の駆動により、昇降機構20は、接続リング6に球12を介して保持された外周リング(すなわち、外周リング上に載置されたウエハW)を昇降(上下動)させることができ、上記ウエハWをランプ11に近接した第1の位置(例えば加熱位置)、および第1の位置よりもランプ11から離れた第2の位置(例えば、搬送位置)等の所定の位置に静止させることができる。
 アクチュエータ15はサーボモータであるが、エアシリンダ等、他の手段でも良い。またシャフト7を精度よく動かすために、直動案内も必要である。本実施形態は、真空内でランプ加熱処理を行う装置である。直動案内、アクチュエータ15はチャンバー外部の大気側に設置されるため、シャフト7はベローズ(不図示)を用いて真空シールされている。本実施形態では、接続リング6を2本のシャフト7で支持しているが、シャフト数はこれに限定されず1本あるいは3本以上でも良い。すべてのシャフトがアクチュエータに連結され駆動される必要はなく、何本かは直動ガイドのみとして使用することも考えられる。
 このように、本実施形態に係るランプ加熱装置では、外周リング4を備える。該外周リング4がウエハ温度の均一性向上、チャンバー下部へのランプ光の遮蔽とともに、ウエハWの支持を兼ねて担う。ウエハWは外周リング4に突き立てられたウエハ支持ピン5で支持される。外周リング4はアクチュエータ15により上下動されて加熱や搬送のためにウエハWのポジションを変化させる。
 すなわち、本実施形態では、外周リング4と、これより下方の構造部であって外周リングを昇降させるための昇降機構20とが分離、結合する機構を提案する。図2は本実施形態に係る外周リング4とその下部の構造図(分解図)である。図3は、分解図である図2を組立てた図である。
 図2、3において、外周リング4は、リング状のSiC(熱伝導率:270W/m・K)であり、差込孔5aが3箇所に形成されている。該差込孔5aには、SiC(熱伝導率:270W/m・K)からなるウエハ支持ピン5が差し込まれており、3つのウエハ支持ピン5によりウエハWを支持することができる。これらウエハ支持ピン5にウエハWを載置した状態で、ランプ11からランプ光(加熱光)をウエハWに照射すると、外周リング4も上記ランプ光により加熱される。このとき、外周リング4は熱伝導率が高いので、上記ランプ光の照射によって高温になり、熱を放射する。ウエハWの外縁部は少なくとも外周リング4に対向しているので、上記外周リング4から放射された熱はウエハWの外縁部に作用することができる。すなわち、ランプ光によって加熱された外周リング4は、ウエハWの外縁部を放射加熱する。従って、ウエハWの中心部と外縁部との温度を小さくすることができる。
 なお、本実施形態では、外周リング4の形状をリング状(環状)にしているが、この形状に限定されず、ウエハ支持ピンを介してウエハWを支持した際に、該ウエハの外縁部に少なくとも対向するような形状であれば、円盤状であっても良いし、四角形など多角形であっても良い。
 また、本実施形態では、外周リング4にウエハ支持ピン5を設けてウエハWを支持している。よって、ウエハWを基板支持板にて支持する際に、ウエハWと基板支持板との接触領域を点にすることができる。従来では、ガードリングの内周縁部を円周方向に沿ってテーパー形状にし、該円周方向に形成されたテーパー部とウエハの縁部とを線接触させることにより、ガードリング上にウエハを載置しているが、本実施形態では、点接触によりウエハWを基板支持板上に載置しているので、ウエハWと基板支持板との熱伝導による熱の移動をより低減することができる。
 また、本実施形態では、上述のように、基板支持板としての外周リング4が基板支持機能と共に、従来のガードリングの機能も兼ね備えている。従って、基板とガードリングとの双方を昇降させる構成において、基板とガードリングとの相対位置関係が変わらない。
 なお、本実施形態では、ウエハ支持ピン5を3箇所に設けているが、4箇所、5箇所などウエハWを安定に支持できれば何箇所に設けても良い。すなわち、ウエハ支持ピンによる3点支持であれば、ウエハWを安定に支持することができるので、ウエハ支持ピン5は、少なくとも3箇所に設ければ良い。
 また、外周リング4の下に位置する接続リング6の外径は、外周リングよりも幾分小さい。このように、接続リング6の径が外周リング4より小さいことにより、ランプ光が外周リング4で遮られ接続リング6が高温になるのを防ぐないしは軽減することができる。接続リング6はシャフト7と締結されサーボモータ等のアクチュエータにより上下駆動される。しかしながら、接続リング6は外周リング4とは直接接触していない。本実施形態では、外周リング4は、面ではなく、両部品の間にはさみ込まれた3個の球12(連結部材)を介して接続リング6に支持されている。なお、本実施形態では、接続リング6は、SUS(熱伝導率:16.7W/m・K)である。本実施形態では、連結部材としての球12は、外周リング4を支持する目的と共に、外周リング4と昇降装置20の一部としての接続リング6とを熱的に分離することが目的なので、連結部材としての球12は、基板支持板としての外周リング4の熱伝導率よりも小さい熱伝導率を有する。
 上記球12は、石英、セラミックス等の接続リング6よりも熱伝達率の小さな材料で製作され、接続リング6上に設けられた溝13にはめ込まれる。本実施形態では、球12は石英(熱伝導率:1.38W/m・K)である。図4に示されるように、溝13は接続リング6周上に等配分で3ヶ所設けられ、溝1ヶ所につき球1個がはめ込まれる。溝13の深さは球12の直径よりは小さい。よって、球12を溝13にはめ込んだとき、球12の上半分程度の部分が溝13から出ていることになる。溝13の形状は長円であり、その長軸の向き(長手方向、すなわち溝13の延在する方向)は、接続リング6の径方向(リングの外縁から中心に向かう方向)である。
 一方、外周リング4の下面(ランプ11と対向する側の面、すなわち昇降機構20側)にはアルファベットのVの字を天地逆向きにした形状の断面(V字断面)を持つ溝14(以下V溝と称する)が形成されている(図5参照)。V溝14の数、位置、長手方向の向きは上記接続リング6側の溝13に相対するように設けられる。従って、V溝14の延在する方向(長手方向)は、外周リング4の径方向である。V溝14の深さを適切に設定すれば、接続リング6にはめ込まれた球12は、V溝14の斜面部分で接して安定する。また、球12の直径は、溝13の凹部の高さ(溝の深さ)よりも長い。この機構では、外周リング4と昇降機構20側とを、外周リング4と昇降機構20との結合部(連結部材である球12)で分離することができる。
 本実施形態により上記第一の問題点を解決することができる。 
 本実施形態では、外周リング4と該外周リング4を上下動させるための昇降機構20との結合部が剛結されていないため、熱膨張があっても構造的に拘束されない。すなわち、外周リング4と昇降機構20が有する接続リング6とは、外周リング4および接続リング6の双方と別個の部材である球12を介して連結されている。上記のごとく外周リング4、接続リング6には径方向に溝が形成され、それらの間にはさみ込まれた球12には径方向に動きの自由度がある。リング状の部品は高温に加熱されると径が拡がる。外周リング4、接続リング6が高温になって熱膨張により径方向に拡がっても、さらには外周リング4と接続リング6との間に熱膨張の速度に差があっても、この動きに球12がある程度追従し、構造的に拘束されることはない。すなわち、上述のように、熱膨張により外周リング4および接続リング6が広がる方向である径方向に沿って溝13およびV溝14の長手方向が設定されているので、外周リング4および接続リング6が異なる熱膨張率により熱膨張しても、球12は、溝13およびV溝14内の双方を移動することができ、熱膨張により径方向にかかる応力(球12と外周リング4との連結部にかかる応力、および球12と接続リング6との連結部にかかる応力)を緩和することができる。このように、本実施形態では、接続リング6の径方向に長手方向が設定された溝13、および外周リング4の径方向に長手方向が設定されたV溝14は、上記応力緩和のガイドとして機能する。 
 また完全に追従することが不可能で球12と溝13および/またはV溝14の壁とが接触点で滑ることがあるとしても過度な摩擦は防ぐことができる。以上の理由により、外周リング4や昇降機構20の一部である接続リング6には過度な熱応力が生じず、破損のリスクを低下させることができる。
 なお、本実施形態では、外周リング4と昇降装置20が有する接続リング6との連結部材として球12を用いているが、その形状は球に限定されない。本実施形態では、外周リング4と昇降装置20とを連結する連結部材を、外周リング4と昇降装置20の双方と別個の部材とすることにより、外周リング4と昇降装置20とを剛結ではない結合により連結することができる。すなわち、上記連結部材を、外周リング4と昇降装置20の双方と別個の部材とすることにより、外周リング4と接続リング6とが異なる熱膨張率であっても、該熱膨張率の差を緩和することができる。
 このような熱膨張率の差の緩和の観点から、連結部材の形状を、連結部材の連結対象である基板支持板(例えば、外周リング4)に形成された溝(例えば、V溝14)の壁面および昇降装置が有する基板支持板保持部(例えば、接続リング6)に形成された溝(例えば、溝13)の壁面の双方と少なくとも摺動可能な形状とすることは好ましい。このように連結部材の連結対象である基板支持板および昇降装置の双方と少なくとも摺動可能な形状であれば、例えば、金平糖形状、ラグビーボール形状、円柱形状、角柱形状、直方体などいずれの形状であっても良い。このように、連結部材が、連結対象である基板支持板と昇降装置の双方と少なくとも摺動可能であることにより、基板支持板と該基板支持板を昇降させるための昇降装置とが異なる熱膨張率で熱膨張する場合であっても、該熱膨張の差を緩和しつつも、昇降装置上に基板支持板を支持することができる。
 上記第二の問題点である熱逃げの問題に対しては、外周リング4と接続リング6の接触面積を極力小さくすることで解決できる。上記のごとく、外周リング4は、接続リング6に対して、面ではなく両部品の間にはさみ込まれた3個の球12を介して支持されている。つまり球12と外周リング4、接続リング6とが接触する箇所は球1ヶ所につき2点、合計6点のみである。これら接触部の面積が小さいほど、熱伝達は減少する。さらに、本実施形態では、外周リング4と接続リング6との連結部材である球12の熱伝導率を外周リング4よりも小さくしているので、球12は外周リング4から接続リング6への熱の流れの衝立として機能することになる。従って、外周リング4から接続リング6への熱逃げを低減することができる。
 また、本実施形態では、重力方向上から下に向かって、ランプ11、外周リング4、接続リング6、シャフト7の順に配置しているので、ランプ11からのランプ光がシャフト7に入射するのを外周リング4により遮ることができる。さらには、上述のように、加熱された外周リング4から接続リング6への熱の移動も低減することができる。従って、加熱プロセスによる熱が、昇降装置20のシャフト7に伝わりにくいので、昇降装置20の周囲の空間が高温となることを軽減することができる。
 このように、本実施形態は、外周リング4とこれより下方の構造部である接続リング6(すなわち、昇降装置20)とが剛結されておらず、これら部材を分離、結合する機構を提案するが、連結部材としての球12、接続リング6に形成された溝13、および外周リング4に形成されたV溝14を用いることにより、外周リング4と接続リング6との位置関係のずれを低減することができる。
 加熱プロセスにおいては、ウエハWと共に外周リング4、およびこれを上下動させる駆動部である昇降装置等の周囲も温度が上昇する。それぞれの部品は材質が異なることが多い上、ランプ光の当たり具合も異なる。このため加熱による膨張や、降温による収縮を繰返すうちに外周リング4と昇降装置20との結合部では、外周リング4とこれより下方の構造部である昇降装置20(本実施形態では接続リング6)の位置関係とがずれてくる可能性が高い。この位置関係のずれは、できるだけ少ない方が良い。その理由は、第一に本発明に係る外周リング4は、ウエハWを支持する役目を担っている。よって、外周リング4の位置が変わっていってしまうことはウエハWのずれや、ウエハ支持ピン5からのウエハWの脱落を招き、搬送に支障をもたらすからである。第二にウエハWと外周リング4との位置関係が変わってしまうと、ウエハWの温度分布が変わってしまうからである。
 しかしながら、本実施形態では、外周リング4と昇降装置20との接続機構として、球12、接続リング6に形成された溝13、および外周リング4に形成されたV溝14を採用している。すなわち、外周リング4の下面(重力方向下側の面)にV溝14を形成し、接続リング6の上面(重力方向上側の面)に長円型の溝13を形成し、これらの間に球12をはさみ込んだ機構を用いている。球12がV溝14の斜面部分に接するときのくさび効果(くさび作用)と3ヶ所配置された球12と溝13、V溝14の組合せの相互作用により外周リング4を再現性よく位置決めすることができる。
 なお、上述の、球がV溝の斜面に接するときのくさび作用による位置決め効果を得ることを考慮すると、外周リング4および接続リング6に形成される溝(連結部材が挿入される溝)の少なくとも一方をV溝にすることが好ましい。
 このように、本実施形態によれば、外周リング4と接続リング6(すなわち、昇降装置20)とは、分離できる構造のため構造的に剛結されない。よって、加熱時に外周リング4がウエハWとともに加熱されても、熱膨張による過大な熱応力の発生、部品同士の干渉による破損のリスクを下げることができる。また、外周リング4の冷却時に該外周リング4が収縮しても、外周リングと接続リング6とが剛結されていないため、同様に破損のリスクを下げることができる。 
 また、外周リング4と接続リング6の結合部では、連結部材と外周リング4との接触面積が極めて小さい(12球とV溝14斜面との点接触のみ)。これにより、外周リング4からの熱逃げを少なくすることができる。 さらに、外周リング4と接続リング6の結合部に、外周リング4の位置決め機構を有する。これにより、連続処理する場合でも、ウエハWや外周リング4の位置ずれを低減することができる。位置決め機構は、それ自体にセンサやアクチュエータを必要とせず、シンプルかつ低コストである。
 (第2の実施形態) 
 さて、ウエハWの加熱と冷却とを同一のチャンバー(特に真空チャンバー)内で行う場合、加熱後のウエハWと外周リング4とをいかに速やかに冷却するかということが重要となる。特に真空中でウエハWを処理する装置の場合、難しい問題となる。電子デバイスの製造装置においては、時間当たりの処理数(スループット)が重要である。真空中でウエハWを加熱処理する装置の場合、第1の実施形態で説明したように、真空チャンバー1外部に設置されたランプ11の光を、真空チャンバー1の一面に設けられた光入射窓10を通して入射すれば、ランプ11に対向して載置されたウエハWをふく射により効果的に加熱することができる。
 一方、冷却に関しては有効な手段が乏しい。真空中では熱伝導がほとんど起こらず、主となる冷却のメカニズムとしては、ふく射による熱の伝導しか望めないからである。このため、冷却時にはチャンバーに適切な種類のガスを導入して、チャンバー内圧力を上げ、ガスを媒体として熱伝導を促すこともある。しかしながら、ガスは熱伝達率が十分ではなく効率的な冷却は難しい。また、プロセスの種類によっては、冷却中もウエハを真空中に保持した方が好ましい場合もある。
 本実施形態では、基板を冷却するための基板冷却機構、および基板支持板を冷却するための基板支持板冷却機構を設けている。すなわち、ウエハWを支持した外周リング4は駆動機構である昇降装置20により、処理室としての真空チャンバー1の上方(重力方向上側)でランプ11から照射されたランプ光の照射を受け加熱される。一方、真空チャンバー1の下部(重力方向下側)にウエハWを載置することができる基板冷却機構としての冷却ステージが設置されており、加熱後のウエハWを強制的に冷却することができる。また、上記冷却ステージのさらに下部には、外周リング4のウエハWの外縁部と対向する領域4aを少なくとも載置することができる基板支持板冷却機構としての冷却プレートが設置されており、少なくとも、加熱後の外周リング4の上記ウエハWの外縁部と対向する領域4aを冷却することができる。なお、冷却ステージおよび冷却プレート内部には冷却水を流す等の除熱手段が施されている。
 本実施形態では、図7に示すように、図1に示す基板熱処理装置において、外周リング4の重力方向下側に、ウエハWを載置可能し、該載置されたウエハWを冷却可能に構成された冷却ステージ8が設けられている。また、冷却ステージ8の重力方向下側に、外周リング4のウエハWの外縁部と対向する領域4aを少なくとも載置し、該載置された領域4aを冷却可能に構成された冷却プレート9が設けられている。冷却ステージ8、冷却プレート9にはともに内部に流路が加工され、冷却水を流すことができる。
 ここで外周リング4に支持されたウエハWを冷却ステージに載置する際の動作を説明する。図6はウエハW、外周リング4、冷却ステージ8の形状、配置を示したものである。この図のごとく、外周リング4の内円径d2はウエハの外径d1より幾分小さく、ウエハ支持ピン5は外周リング4の内円縁部、周上に等配分に配置され、配置された複数のウエハ支持ピン5の先端で水平にウエハWを支持する。ウエハW、外周リング4は同心に配置される。冷却ステージ8もこれらと同心に真空チャンバー1の下部(例えば底部)に配置され、その径d3は、外周リング4の内円径よりさらに小さい(d1 > d2 > d3)。また、冷却プレート9の径は、冷却ステージ8の径d3よりも大きく、該冷却プレート9は、冷却ステージ8の下面と冷却プレート9の上面とが接し、かつ冷却プレート9の上面の外縁部が露出するように配置されている。本実施形態では、この冷却プレート9の露出した外縁部9a上に、外周リング4のウエハWの外縁部と対向する領域4aが載置される。
 加熱後のウエハWを支持した外周リング4はアクチュエータ15によって駆動され下降する。上記のような構造で、冷却ステージ8外側下部に移動してきた外周リング4のウエハWの外縁部と対向する領域4aが収まるのに十分なスペース(逃げ:上記冷却プレート9の露出した外縁部9a)を設けておけば、外周リング4が下降途中、ウエハ支持ピン5の先端のレベルが冷却ステージ8の表面と同じレベルに達したとき、ウエハWは冷却ステージ8に乗り移る。
 さらに、外周リング4を冷却する冷却ステージ8について説明する。上記のごとく、下降途中にウエハWを手放した外周リング4を、昇降装置20によりさらに下降させる。ここで冷却ステージ8の外周、一段下に冷却プレート9を設け、これに外周リング4を置けば効果的に外周リング4を冷やすことができる。冷却プレート9は、内部に冷却水を流す等の除熱手段が施され、外周リング4を載置することができる平面部(上記露出した外縁部9a)を持つ部材であり、真空チャンバー1内の部品、ないし真空チャンバー1の一部(底面など)である。
 加熱されたウエハW、外周リング4を効果的に冷却するための上記の構成において、第1の実施形態にて説明した本発明に特徴的な構成が有効に作用し、機構の信頼性を向上させることができる。外周リング4は、これより重力方向下方の構造部(昇降装置20)と剛結されず、球12を挟んで接続リング6に載置されている。外周リング4とこれより下方の構造部とがねじ締結等で剛結されていると外周リング4を冷却プレート9に置く際に、外周リング4が冷却プレート9に過度に押付けられてしまう可能性がある。過度に押付けられると、外周リング4自体、あるいはこれに連なる上下駆動部(昇降装置20)で部品の破損や変形の恐れがある。また、外周リング4が冷却プレート9の手前で止まり、外周リング4と冷却プレート9との間に、わずかでも隙間ができる場合、接触による熱伝達が十分に行われず効果的な冷却ができない。
 本実施形態に係る機構において、外周リング4を冷却プレート9に置いた後接続リング6をさらに下降させれば、外周リング4と接続リング6とが分離し、外周リング4を冷却プレート9に完全に置くことができる。よって外周リング4を冷却プレート9に押付けたり、外周リング4と冷却プレート9との間に隙間ができることはない。また、外周リング4が冷却されるときには収縮する。冷却中に外周リング4と接続リング6とが分離している本実施形態に係る機構は、機械的に拘束されない。これによって破損のリスクを低下させることができる。
 一枚のウエハWの処理が終わり、外周リング4を冷却した後、昇降装置20の駆動により、外周リング4は、再び上方へ移動し、次のウエハWを載せて処理を続ける。この動きの中で外周リング4は、前のウエハWを処理した位置からのずれを無くす、ないしは該ずれを低減することが求められる。理由は前述の場合と同様である。この要望に対しても、外周リング4と接続リング6の連結部分に設けられた位置決め機構は有効に作用する。
 以下に本実施形態におけるプロセスの流れを記す。 
 (1)ウエハ搬送系から、真空チャンバー1内に搬入ポート3を通してウエハWが搬入される。外周リング4が適切なポジションでこれを待ち受け、ウエハ搬送ロボットのアームと連携して外周リング4の上に突き立てられた3本のウエハ支持ピン5の先端に載せる。 
 (2)昇降装置20は、ウエハWを載せた外周リング4を、ランプ光を照射するポジション(加熱位置)まで上昇させて静止する。このポジションで、ウエハWは、ランプ11から照射されたランプ光の照射を受けて加熱される(図7)。なお、照射されるポジションは外周リング4の可動範囲内において、任意に複数箇所設定することができる。
 (3)加熱後、昇降装置20は、加熱されたウエハWを載せた外周リング4を真空チャンバー1の下方へ移動させる。下降途中、ウエハWのみをステージ8に引き渡す。ウエハWは載置されたステージ8上で冷却される。ここで加熱直後のウエハWは温度が高く、熱衝撃によるウエハWの破損を防ぐため、冷却ステージ8に載置される前に適切な温度に低下するまで待機する場合がある。 
 (4)昇降装置20は、ウエハWを冷却ステージ8に引き渡した外周リング4を、さらに下降させ、外周リング4のウエハWの外縁部と対向する領域4aを冷却プレート9の露出した外縁部9aに載置し、外周リング4を冷却する。ここで外周リング4と接続リング6は分離する。 
 (5)昇降装置20は、外周リング4を冷却プレート9上に残して、接続リング6をさらに下降させ、定められた最下点で停止する。
 (6)次いで、冷却を終えたウエハWをチャンバー1の外へ搬出する工程に移行する。
 昇降装置20は、接続リング6を上昇させ、冷却プレート9に載置されている外周リング4と結合する。外周リング4は、このとき球12、溝13、およびV溝14により位置決めされる。すなわち、接続リング6の周上に長円形の溝13が形成され球12が、はめ込まれる。球12は上述のように接続リング6の周上3ヶ所設けられている。外周リング4は、接続リング6の上に球12をはさみ込んで設置される。 
 (7)昇降装置20の駆動により、外周リング4と接続リング6とは一体になって、さらに上昇を続け、外周リング4に突き立てられたウエハ支持ピン5の先端がステージ8表面のレベルに達したところでウエハWをステージ8から持ち上げる。 
 (8)昇降装置20は、3本のウエハ支持ピン5に支持されたウエハWを、外周リング4、接続リング6とともに上昇させ、適切なポジション(搬送位置)で停止する。ウエハWは、ウエハ搬送ロボットのアームと連携し、搬入ポート3を通して、搬出される。
 このように、本実施形態によれば、ランプ加熱装置において、ウエハWの温度均一性を得るためにウエハ外周に載置されるリング(外周リング)を、ウエハを処理する度に効果的に冷却することができる。これにより装置の安定稼動のみならず、プロセス性能の向上に貢献する。 
 外周リング4は、アクチュエータ15により上下動され、冷却用プレート9に載置される。このとき外周リング4は、アクチュエータを含む駆動部(昇降装置20)側と分離する。このため外周リング4は冷却時、冷却プレート9に押し付けられて破損することはない。また外周リング4は、冷却プレート9の上に自然に載置されるため、両部品の間に隙間ができることなく接し、効果的に冷却を行うことができる。
 (第3の実施形態) 
 本実施形態では、第2の実施形態において、冷却ステージ8に静電チャック(ESC:Electro Static Chucking)を設けても良い。
 ただし、ウエハWを載置する冷却ステージ8に静電チャックが用いられる場合、適切な脱離(デチャック)手段を備える必要がある。静電吸着はウエハWと誘電層が設けられた冷却ステージ8の間に電圧を印加し、両者の間に発生した力によってウエハWを吸着、固定する。ウエハWを脱離する場合には、電圧の印加を止め吸着を解除するが、誘電層には一部の電荷が残り(残留電荷)、吸着力が残る。この状態でウエハ支持ピンがウエハを持ち上げて保持しようとすると、残った吸着力が反発力として作用し、意図せぬ方向にウエハWが跳ね上がったり、ずれたり、割れたりするという問題がある。
 この問題を解決するために、本実施形態では、ウエハWを静電チャックにより吸着した冷却ステージ8から脱離する際に、ウエハWを接地(アース)して残留電荷を除去する。そのために、ウエハ支持ピン5、外周リング4、球12、および接続リング6を、電気伝導性を有する材質で製作し、該接続リング6を所望に応じて接地できるような接地回路を形成することが有効である。また構造的にも確実にウエハWの電荷を逃がすことができる必要がある。よって、途中に絶縁体が入り接地回路が遮断されないことが望ましい。
 図9では、ウエハ支持ピン5および外周リング4を電気伝導性を有する材質で製作することにより、基板支持板に電気伝導性を持たせ、連結部材である球12も電気伝導性を有する材料で形成する。さらに、昇降装置20の基板支持板の載置部である接続リング6を電気伝導性の材質で作製し、シャフト7の接続リング6との接続領域を非導電性の材料によりなる非導電部とする。このような構成において、スウィッチ(機械的接点)17を設け、該スウィッチ17の切り替えにより所望に応じて接続リング6をグランドGに接続して接地回路を形成可能にする。従って、ウエハWに残留した電荷を、上記接地回路により逃がすことができる。
 なお、ウエハ支持ピン5、球12は熱逃げを減らす目的から熱伝達率が小さい材料が望ましい。また、熱による膨張、変形を減らすために熱膨張率も小さな材料が望まれる。したがって、例えば、ウエハ支持ピン5や球12として電気伝導性のない石英やセラミックスが使用されることが考えられる。この様な場合、接地回路が途切れている箇所(例えば、外周リング4)で、機械的な接点(スウィッチ17)を設け、適切なタイミングでこれを作動させることにより、同様の効果を得ることができる。
 本実施形態によれば、静電チャックにより冷却ステージ8が静電吸着される場合、ウエハWの残留電荷を確実にアース(接地)することによってウエハの脱離エラーを抑制することができる。
 以上の実施形態、プロセスの流れは、本発明の一実施形態が真空中でウエハを加熱する装置に適用されたケースを挙げたものである。ランプ加熱処理は、大気圧下、窒素置換された空間で行われる例などもあり、本発明の一実施形態で提案される機構が真空装置のみでの適用に限定されるものではない。

Claims (6)

  1.  基板に対して熱処理を行う基板熱処理装置であって、
     基板を支持可能な基板支持板と、
     前記基板支持板を保持可能に構成され、前記基板支持板を昇降させる昇降機構と、
     前記基板支持板と前記昇降機構とを連結する連結部材であって、前記基板支持板の熱伝導率よりも小さい熱伝導率を有する連結部材と、
     前記基板支持板に支持された基板を、該基板支持板の重力方向上側から加熱する加熱手段と、を備え、
     前記連結部材は、前記基板支持板および前記昇降機構の双方とは別個の部材であり、
     前記昇降機構は、前記基板支持板を前記加熱手段に対して近接した第1の位置と離れた第2の位置との間で昇降させる昇降手段を有することを特徴とする基板加熱処理装置。
  2.  前記連結部材は球であり、
     前記基板支持板は、該基板支持板の重力方向下側の面に設けられた第一の溝を有し、
     前記昇降機構は、前記基板支持板を保持可能な基板支持板保持部と、該基板支持板保持部の重力方向上側の面に設けられた第二の溝とを有し、
     前記球が、前記第一の溝と前記第二の溝との間に挟みこまれることにより、前記昇降機構は、前記基板支持板を保持することを特徴とする請求項1に記載の基板加熱処理装置。
  3.  前記第一の溝および第二の溝の少なくとも一方がV字断面を有するV溝であり、
     前記第一の溝、第二の溝、および前記球が、前記球が前記V溝の斜面に接するときのくさび作用による位置決め機構を形成していることを特徴とする請求項2に記載の基板加熱処理装置。
  4.  前記第一の溝は、V溝であり、
     前記球の直径は前記第二の溝の凹部の高さよりも長いことを特徴とする請求項3に記載の基板加熱処理装置。
  5.  前記基板支持板は、環状部材であることを特徴とする請求項1に記載の基板加熱処理装置。
  6.  前記基板支持板は、該基板支持板の重力方向下側の面に設けられた第一の溝を有し、
     前記昇降機構は、前記基板支持板を保持可能な基板支持板保持部と、該基板支持板保持部の重力方向上側の面に設けられた第二の溝とを有し、
     前記連結部材は、前記第一の溝の壁面および前記第二の溝の壁面の双方と少なくとも摺動可能に構成された部材であり、
     前記連結部材が、前記第一の溝と前記第二の溝との間に挟みこまれることにより、前記昇降機構は、前記基板支持板を保持することを特徴とする請求項1に記載の基板加熱処理装置。
PCT/JP2010/073019 2010-12-21 2010-12-21 基板熱処理装置 WO2012086012A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137018628A KR101559022B1 (ko) 2010-12-21 2010-12-21 기판 열처리 기구
CN201080070887.1A CN103270579B (zh) 2010-12-21 2010-12-21 基板热处理设备
PCT/JP2010/073019 WO2012086012A1 (ja) 2010-12-21 2010-12-21 基板熱処理装置
JP2012549513A JP5487327B2 (ja) 2010-12-21 2010-12-21 基板熱処理装置
US13/915,712 US9607868B2 (en) 2010-12-21 2013-06-12 Substrate heat treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/073019 WO2012086012A1 (ja) 2010-12-21 2010-12-21 基板熱処理装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/915,712 Continuation US9607868B2 (en) 2010-12-21 2013-06-12 Substrate heat treatment apparatus

Publications (1)

Publication Number Publication Date
WO2012086012A1 true WO2012086012A1 (ja) 2012-06-28

Family

ID=46313316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073019 WO2012086012A1 (ja) 2010-12-21 2010-12-21 基板熱処理装置

Country Status (5)

Country Link
US (1) US9607868B2 (ja)
JP (1) JP5487327B2 (ja)
KR (1) KR101559022B1 (ja)
CN (1) CN103270579B (ja)
WO (1) WO2012086012A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150010521A (ko) * 2013-07-19 2015-01-28 삼성디스플레이 주식회사 기상 증착 장치 및 이를 이용한 표시 장치의 제조방법
JP2016219509A (ja) * 2015-05-15 2016-12-22 富士電機株式会社 加熱冷却方法及び加熱冷却機器

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104520975B (zh) * 2012-07-30 2018-07-31 株式会社日立国际电气 衬底处理装置及半导体器件的制造方法
JP5657059B2 (ja) * 2013-06-18 2015-01-21 東京エレクトロン株式会社 マイクロ波加熱処理装置および処理方法
CN103594410B (zh) * 2013-11-21 2016-06-29 华东光电集成器件研究所 一种组合式控温承片台
US9410249B2 (en) * 2014-05-15 2016-08-09 Infineon Technologies Ag Wafer releasing
KR101680071B1 (ko) * 2015-05-18 2016-11-28 (주)에스티아이 열처리 장치 및 열처리 방법
US20170353994A1 (en) * 2016-06-06 2017-12-07 Applied Materials, Inc. Self-centering pedestal heater
JP6770915B2 (ja) * 2017-03-08 2020-10-21 株式会社Screenホールディングス 熱処理装置
JP6824080B2 (ja) * 2017-03-17 2021-02-03 株式会社Screenホールディングス 熱処理装置および放射温度計の測定位置調整方法
EP3665718B1 (en) * 2017-08-07 2024-04-24 Sharpack Technology Pte. Ltd. Hot wall flux free solder ball treatment arrangement
JP6971865B2 (ja) 2018-01-17 2021-11-24 キオクシア株式会社 処理装置
JP7032955B2 (ja) * 2018-02-28 2022-03-09 株式会社Screenホールディングス 熱処理方法
WO2021019930A1 (ja) * 2019-07-26 2021-02-04 富士フイルム株式会社 スプレー装置およびスプレー塗布方法
DE102021124498B3 (de) * 2021-09-22 2023-01-26 Asm Assembly Systems Gmbh & Co. Kg Unterstützungsstift zum Unterstützen eines Substrats in einem Bestückbereich eines Bestückautomaten sowie Bestückautomat mit einem Magazin mit mehreren solcher Unterstützungsstifte.
CN116845013B (zh) * 2023-08-21 2024-05-03 上海普达特半导体设备有限公司 用于清洗设备的固定装置以及用于半导体设备的清洗设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176822A (ja) * 1997-12-05 1999-07-02 Hitachi Ltd 半導体処理装置
JP2002110581A (ja) * 2000-09-26 2002-04-12 Tokyo Electron Ltd 熱処理装置と熱処理方法
JP2007180331A (ja) * 2005-12-28 2007-07-12 Ishikawajima Harima Heavy Ind Co Ltd 熱処理装置
JP2010123637A (ja) * 2008-11-17 2010-06-03 Sumco Corp ウェーハ熱処理装置
JP2010205922A (ja) * 2009-03-03 2010-09-16 Canon Anelva Corp 基板熱処理装置及び基板の製造方法
JP2010238788A (ja) * 2009-03-30 2010-10-21 Dainippon Screen Mfg Co Ltd 熱処理装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254545A (ja) 1994-03-15 1995-10-03 Oki Electric Ind Co Ltd 半導体基板の熱処理方法及びそのための装置
JP3296300B2 (ja) 1998-08-07 2002-06-24 ウシオ電機株式会社 光照射式加熱装置
CN100356505C (zh) * 2003-12-26 2007-12-19 清华大学 带竖立式热处理腔的半导体快速热处理设备
KR100638584B1 (ko) * 2005-08-01 2006-10-27 삼성전자주식회사 웨이퍼 가열장치 및 웨이퍼 가열장치의 셋팅 방법
US20090078202A1 (en) * 2007-09-26 2009-03-26 Neocera, Llc Substrate heater for material deposition
JP2009234927A (ja) * 2008-03-25 2009-10-15 Fujifilm Corp 4−(アシルオキシメチル)シクロヘキサンカルボアルデヒド
TW201135845A (en) * 2009-10-09 2011-10-16 Canon Anelva Corp Acuum heating and cooling apparatus
JP5380263B2 (ja) 2009-12-15 2014-01-08 キヤノンアネルバ株式会社 イオンビーム発生器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176822A (ja) * 1997-12-05 1999-07-02 Hitachi Ltd 半導体処理装置
JP2002110581A (ja) * 2000-09-26 2002-04-12 Tokyo Electron Ltd 熱処理装置と熱処理方法
JP2007180331A (ja) * 2005-12-28 2007-07-12 Ishikawajima Harima Heavy Ind Co Ltd 熱処理装置
JP2010123637A (ja) * 2008-11-17 2010-06-03 Sumco Corp ウェーハ熱処理装置
JP2010205922A (ja) * 2009-03-03 2010-09-16 Canon Anelva Corp 基板熱処理装置及び基板の製造方法
JP2010238788A (ja) * 2009-03-30 2010-10-21 Dainippon Screen Mfg Co Ltd 熱処理装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150010521A (ko) * 2013-07-19 2015-01-28 삼성디스플레이 주식회사 기상 증착 장치 및 이를 이용한 표시 장치의 제조방법
KR102181233B1 (ko) * 2013-07-19 2020-11-23 삼성디스플레이 주식회사 기상 증착 장치 및 이를 이용한 표시 장치의 제조방법
JP2016219509A (ja) * 2015-05-15 2016-12-22 富士電機株式会社 加熱冷却方法及び加熱冷却機器

Also Published As

Publication number Publication date
KR20130103604A (ko) 2013-09-23
US9607868B2 (en) 2017-03-28
CN103270579A (zh) 2013-08-28
US20130272686A1 (en) 2013-10-17
JP5487327B2 (ja) 2014-05-07
JPWO2012086012A1 (ja) 2014-05-22
KR101559022B1 (ko) 2015-10-08
CN103270579B (zh) 2016-03-09

Similar Documents

Publication Publication Date Title
JP5487327B2 (ja) 基板熱処理装置
US11133210B2 (en) Dual temperature heater
US7922440B2 (en) Apparatus and method for centering a substrate in a process chamber
JP6506290B2 (ja) 基板粒子生成が低減する基板支持装置
WO2010026955A1 (ja) 基板保持部材、基板処理装置、基板処理方法
JP6614933B2 (ja) 基板載置機構および基板処理装置
US20070215049A1 (en) Transfer of wafers with edge grip
KR102256563B1 (ko) 기판 배치 기구, 성막 장치 및 성막 방법
KR101728390B1 (ko) 식각 장치 및 플라즈마 처리 장치
KR20180069991A (ko) 분리형 웨이퍼 서셉터 및 이를 포함하는 반도체 공정 챔버 장비
JP2009094147A (ja) 半導体ウエハ保持装置
KR20160086277A (ko) 접합 장치, 접합 시스템, 접합 방법 및 컴퓨터 기억 매체
JP2018050013A (ja) 基板処理装置
KR20150087133A (ko) 기판 홀딩 시스템 및 방법
KR101489828B1 (ko) 기판 지지 모듈
KR100638059B1 (ko) 플라즈마 처리장치
JP4539981B2 (ja) 基板保持装置
JP6753654B2 (ja) プラズマ処理装置
CN114144288B (zh) 真空装置
KR102399208B1 (ko) 측벽으로부터의 피처부들을 갖는 프로세싱 챔버
JP6972386B2 (ja) 吸着装置及び真空処理装置
JP7176361B2 (ja) 基板処理方法及び基板処理装置
JP2006005374A (ja) プラズマ処理装置及びウエハのプラズマ処理方法
KR20060132248A (ko) 리프터 핀들을 가지는 정전척

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080070887.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10861099

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012549513

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137018628

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10861099

Country of ref document: EP

Kind code of ref document: A1