WO2012066800A1 - 電流検出装置及びモータ制御装置 - Google Patents

電流検出装置及びモータ制御装置 Download PDF

Info

Publication number
WO2012066800A1
WO2012066800A1 PCT/JP2011/057362 JP2011057362W WO2012066800A1 WO 2012066800 A1 WO2012066800 A1 WO 2012066800A1 JP 2011057362 W JP2011057362 W JP 2011057362W WO 2012066800 A1 WO2012066800 A1 WO 2012066800A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
current detection
axis
detection device
phase
Prior art date
Application number
PCT/JP2011/057362
Other languages
English (en)
French (fr)
Inventor
峻 谷口
中沢 洋介
鈴木 健太郎
結城 和明
和也 安井
克 前川
山崎 修
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2012066800A1 publication Critical patent/WO2012066800A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter

Definitions

  • Embodiments relate to a current detection device and a motor control device using the current detection device.
  • the conventional technique has a problem that a current ripple generated by pulse width modulation (PWM) is picked up and a detection error occurs in the current detection value.
  • the “detection error” represents a deviation of the detected value with respect to the actual current vector, and when the added value is used as the detected value, the average value of the current vector and the average of the added value in the cycle of addition. It is defined as deviation.
  • a multi-phase inverter usually has only one A / D converter due to cost problems, and cannot detect a plurality of phase currents at the same time, and the current detection timing is different for each phase. Yes. If the current detection timing is changed for each phase, there is a problem that, when converted to a current vector, a detection error that differs depending on the position of the vector occurs in the detected current.
  • the present invention has been made in view of such a problem of the prior art, and an object thereof is to provide a current detection device capable of reducing a detection error included in a detection current and a motor control device using the current detection device.
  • the embodiment is a current detection device that detects an output current of a multiphase inverter using triangular wave pulse width modulation, and a current detection unit that detects current at a plurality of specific timings during a predetermined period of time, Adding means for adding current detection values at a plurality of specific timings during the predetermined period, wherein the current detection unit is configured to increase the carrier wave of the triangular wave PWM as the plurality of specific timings during the predetermined period. It is characterized in that current detection is performed at least once each on both the downstream side and the downstream side.
  • FIG. 1 is a block diagram of a motor control device according to a first embodiment.
  • the vector diagram of the orthogonal voltage component for every voltage command vector. Explanatory drawing of the electric current detection timing in 1st Embodiment.
  • FIG. 6 is an amplitude diagram of a detection current when a detection delay occurs in a three-phase current. Explanatory drawing of the relationship between the several electric current detection value in the short time, and its average value. Explanatory drawing of the electric current detection timing in 10th Embodiment. Explanatory drawing of the electric current detection timing in 11th Embodiment. The block diagram of the inverter control apparatus of 12th Embodiment.
  • FIG. 1 shows a configuration of a motor control device that controls a sensorless control with a synchronous motor 4 common to each embodiment as a load.
  • This motor control device converts a DC power into an AC power by a PWM gate signal, and also performs a reverse conversion thereof, a synchronous motor 4 that operates by receiving an AC output of the PWM inverter 2, and a synchronous operation from the PWM inverter 2.
  • Current detectors 3u and 3w for detecting AC currents iu and iw of U and W2 phases among AC currents iu, iv and iw of U, V and W phases of AC power supplied to the electric motor 4, and PWM inverter 2
  • the AC currents iu and iw detected by the current detectors 3u and 3w are A / D converted at a predetermined timing, taken as digital current detection values Iu and Iw, and calculated to be voltage commands for each phase.
  • a control device 5 that outputs Vu, Vv, and Vw is provided.
  • This control device 5 includes a triangular wave PWM modulator 1 that generates a gate command by PWMing the voltage commands Vu, Vv, and Vw of each phase to be output by a triangular wave carrier wave and controls the PWM inverter 2.
  • the direction of the magnetic flux of the permanent magnet is defined as the d axis
  • the axis orthogonal to the d axis is defined as the q axis.
  • the U-phase winding direction is defined as the ⁇ axis
  • the direction perpendicular thereto is defined as the ⁇ axis
  • the angle up to the d axis direction with respect to the ⁇ axis direction is defined as the rotational phase angle ⁇ of the synchronous machine.
  • the phase angle estimated by the control device is used instead of the sensor output. Therefore, the estimated phase angle is ⁇ est, and the corresponding coordinate system is defined as the ⁇ -axis and the ⁇ -axis.
  • the synchronous motor 4 generates a magnetic field by three-phase alternating currents iu, iv, iw flowing in the respective excitation phases of the stator, and generates torque by magnetic interaction with the rotor.
  • the control device 5 is constituted by a microcomputer, but its calculation function is shown by being divided into constituent elements: a rotational phase angle estimator 7, a current controller 8, a 3-axis / 2-axis coordinate converter 9, A 2-axis / 3-axis coordinate converter 10 and a digital current detection processor 11 are included.
  • the current detectors 3u and 3w output the current response values of the two-phase iu and iw of the three-phase alternating currents iu, iv and iw flowing through the synchronous motor 4 as analog signals.
  • the structure which detects the electric current of 2 phases is shown in FIG. 1, the structure which detects the electric current response value of each of U, V, and W3 phase may be sufficient.
  • the digital current detection processor 11 performs A / D conversion on the current detection analog signals iu and iw of the current detectors 3u and 3w at predetermined timings and adds a predetermined number of times for each phase to detect digital current for each phase.
  • the values Iu and Iw are output to the 3-axis / 2-axis coordinate converter 9.
  • the rotational phase angle estimator 7 estimates the rotational phase angle ⁇ est of the synchronous motor 4 from the current response values I ⁇ res and I ⁇ res converted by the 3-axis / 2-axis coordinate converter 9.
  • the 3-axis / 2-axis coordinate converter 9 uses the rotation phase angle ⁇ est obtained by the rotation phase angle estimator 7 for the current response values Iu, Iw output from the digital current detection processor 11 to obtain a three-phase signal.
  • Three-axis / 2-axis coordinate conversion between the fixed coordinate system and the ⁇ -axis rotational coordinate system is performed to obtain the two-axis current values I ⁇ res, I ⁇ res from the three-phase current values Iu, Iv, Iw, and the rotational phase angle estimator 7 and the current controller 8 is output.
  • the V-phase current value Iv is obtained by conversion from the detected U-phase and W-phase current values Iu and Iw.
  • the current controller 8 compares the 2-axis current response values I ⁇ res, I ⁇ res converted by the 3-axis / 2-axis coordinate converter 9 with the current command values I ⁇ ref, I ⁇ ref, and determines the biaxial voltage command values V ⁇ , V ⁇ .
  • the 2-axis / 3-axis coordinate converter 10 converts the 2-axis voltage command values V ⁇ , V ⁇ from the current controller 8 into 2-axis / 3-axis coordinates, and converts the 3-phase voltage commands Vu, Vv, Vw into a triangular wave PWM modulator 1. Output to.
  • the triangular wave PWM modulator 1 generates a gate command by performing pulse width modulation (PWM) on the three-phase voltage commands Vu, Vv, and Vw with a triangular wave carrier wave, and controls the PWM inverter 2 by gate control.
  • PWM pulse width modulation
  • the digital current detection processor 11 has the functional configuration shown in FIG. 2, and includes a multi-input / output channel for A / D converting the analog input signals iu and iw at predetermined timings and outputting them as digital values.
  • the timing setter 112 gives a timing setting channel command to the A / D converter 111 at the current detection timing of each embodiment described later.
  • the following current detection processing is performed to reduce detection current errors that occur in the orthogonal direction, improve the estimation accuracy of the rotational phase angle, and realize stable control. .
  • the voltage vector composition during the half cycle of the triangular wave carrier wave is modulated to match the voltage command vector.
  • (U, V, W) (0, 0, 0)
  • (U, V , W) (1,1,1)
  • (U, V, W) (1,1,0)
  • a voltage vector matching the voltage command vector is output by combining the two types of voltage vectors.
  • a voltage component Vh orthogonal to the direction of the voltage vector to be output is also output.
  • the orthogonal voltage vector Vh becomes zero if synthesized during a half cycle of the carrier wave (Carrier), but this orthogonal voltage vector generates a current ripple Ih as shown in FIG.
  • this orthogonal voltage vector vibrates for one cycle every time the voltage command vector rotates by 1/6 period, that is, generates a current ripple having a frequency six times the carrier frequency.
  • the current ripple Ih is point-symmetric about the top of the carrier, and the positive and negative are different on the upstream side and downstream side of the carrier.
  • the waveform is close to point symmetry although it is not perfectly point symmetric due to the influence of inductance and voltage command vector change.
  • it is point symmetric at the peak on the peak side of the carrier wave.
  • point symmetry is similarly applied to the peak on the trough side of the carrier wave.
  • FIG. 6 shows the current detection timing executed by the control device 5 in the first embodiment.
  • the digital current detection processor 11 at this timing performs A / D conversion on the analog current detection signals iu and iw from the current detectors 3u and 3w for each cycle of the carrier wave as one current detection period, Current detection is performed at least once on the upstream side and at least once on the downstream side, the detected values are added, and the added values are output as digital current response values Iu and Iw. Thereby, a positive error and a negative error are added, and the detection error included in the detection current can be reduced.
  • the timing setting is performed by the timing setting unit 112 in this embodiment and in any of the following embodiments.
  • current detection is performed at a predetermined timing once on the upstream side and twice on the downstream side for each cycle of the carrier wave. If current detection is performed at predetermined timing at least once on the downstream side, detection errors included in the detection value can be reduced.
  • the detection value at the vertex timing may be added as shown in FIG. Second embodiment).
  • two periods of the carrier wave are set as current detection period units, and current detection is performed at a predetermined timing at least once each on the upstream side and the downstream side of the carrier wave for each current detection period.
  • the added value may be a current response value (third embodiment).
  • the current detection may be performed at least once on the upstream side and the downstream side of the carrier wave (fourth embodiment). ). Since the average value of the current ripple Ih is the same on the upstream side and the downstream side of the carrier wave, if the number of current detections is the same on the upstream side and the downstream side, the amount of current ripple Ih that can be canceled increases. According to the current detection method shown in FIG. 9, the detection error is reduced compared to the case where the number of detections is different between the upstream side and the downstream side.
  • the detection value at the vertex may be added as shown in FIG. Embodiment).
  • the current ripple Ih is symmetric about the vertex of the carrier wave. Therefore, at the timing when the heights of the carrier waves on the upstream side and the downstream side coincide with each other, the current ripples are equal in magnitude and opposite in sign. If the current value is detected at this timing, the current ripple is completely canceled. Therefore, the current value is detected and added at the timing when the carrier heights coincide on the upstream and downstream sides of the carrier. As a result, the current ripple Ih can be effectively canceled and accurate current detection can be achieved.
  • the current value is also detected at the peak of the carrier wave, and the current value is detected at another position. It is also possible to add (seventh embodiment). As a result, the current ripple Ih can be effectively canceled and accurate current detection can be achieved.
  • the sixth and seventh embodiments not only the detection error included in the current vector but also the detection error included in the three-phase current can be canceled.
  • 13 and 14 show the relationship between the U-phase voltage Vu and the U-phase current iu in PWM.
  • the output of the U-phase voltage Vu has a pattern (FIG. 13) in which a voltage having the same sign is output and a pattern (FIG. 14) in which a voltage having a different sign is output.
  • the current iu is point-symmetric with respect to the vertex of the carrier wave. Therefore, the detection error included in the three-phase current can be effectively canceled by using the current detection method of the present embodiment.
  • FIG. 15 shows a current detection method according to the eighth embodiment.
  • One period of the carrier wave is set as an addition period, and the current is detected at the center timing of each equally divided period, and four current detection values are added.
  • the current value can be detected and added at the timing at which the carrier heights coincide on the upstream side and the downstream side of the carrier, and the current ripple Ih is effectively obtained.
  • the current can be detected with high accuracy.
  • the current value is also detected at the peak of the carrier wave, and this is detected at another position.
  • the current value is added (9th embodiment). Therefore, in this embodiment, one period of the carrier wave is set as an addition period, and one period is divided into five equal parts, current is detected at the center timing of each equal period, and five current detection values are added. As a result, the current ripple Ih can be effectively canceled and accurate current detection can be achieved.
  • the current detection methods of the eighth and ninth embodiments have the effect of facilitating mounting on an actual machine because the detection interval is constant while having the effect of canceling the detection error.
  • the fundamental component of the output current in the three-phase inverter is a sine wave as shown in FIG. 17A
  • the detection timing is delayed
  • the phase of the output current is shifted as shown in FIG. 17B. Detected.
  • the output current 21 should normally have a constant amplitude, but becomes a detection current 22 that vibrates at twice the output frequency.
  • the current detection methods of the sixth and seventh embodiments and the tenth embodiment it is also possible to combine with a current detection method (eleventh embodiment).
  • the current detection method according to the tenth embodiment eliminates the current detection error due to the fundamental wave
  • the current detection method according to the sixth and seventh embodiments eliminates the current detection error due to the current ripple due to PWM.
  • the detection error can be made almost zero. Thereby, the responsiveness of the current control system can be improved.
  • the current ripple Ih is completely point-symmetrical around the vertex of the carrier wave.
  • the modulation wave that is, the voltage command vector
  • the current ripple Ih approaches point symmetry with the vertex of the carrier wave as the center, and the reduction effect increases.
  • FIG. 22 shows a general configuration.
  • the inverter control apparatus which generalized the motor control apparatus shown in FIG. 1 is shown.
  • the PWM inverter 2 supplies a three-phase current to the load 4, and the analog current detectors 3 u, 3 v, 3 w detect the three-phase currents for the load 4 and output them to the control device 5.
  • the control device 5 has the same configuration as that of the control device 5 in the motor control device according to the first embodiment.
  • the digital current detection processor 11 performs A / D conversion on the analog current detection signals for each of the U, V, and W phases, and adds them for each phase to obtain a current average value.
  • the 3-axis / 2-axis coordinate converter 9 It is the structure which outputs to. Even in the configuration of FIG. 22, the current detection can be performed on two of the three phases, and the remaining one-phase current can be calculated therefrom.
  • the example of the load current control by the PWM inverter was shown, for example, it can be applied to the control of the power supply current when the load 4 is a power source and the inverter 2 acts as a converter. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

 PWMインバータの出力電流を検出するのに、その検出電流に含まれる検出誤差を低減する電流検出装置であって、あらかじめ設定した一定期間中の複数の特定のタイミング毎に電流を検出する電流検出手段111,112と、一定期間中の複数の特定のタイミング毎の電流検出値を加算する加算手段113u,113wとを備え、電流検出手段は、一定期間中の複数の特定のタイミングとして、三角波PWMの搬送波の上り側と下り側との両方でそれぞれ少なくとも1回ずつ電流検出を行うことを特徴とする。

Description

電流検出装置及びモータ制御装置
 実施の形態は、電流検出装置及びそれを用いたモータ制御装置に関する。
 従来、PWM(Pulse Width Modulation)インバータの電力変換装置では、PWMインバータの出力電流を検出する際に、検出電流に含まれる信号ノイズ等を低減するために電流検出を複数回行い、その加算値を検出する方法を採用している。
 しかしながら、従来の技術では、パルス幅変調(PWM)によって発生する電流リプルを拾ってしまい、電流検出値に検出誤差が生じてしまう問題点があった。尚、ここで「検出誤差」とは、実際の電流ベクトルに対する検出値のずれを表し、加算値を検出値とする場合には、加算する周期における電流ベクトルの平均値と加算値の平均とのずれと定義している。
 また、多相インバータでは、通常、コストの問題からA/Dコンバータが1つしか搭載されておらず、複数の相電流を同時に検出することはできず、電流検出タイミングを相毎に異ならせている。そして相毎に電流検出タイミングを異ならせると、電流ベクトルに変換したときに、検出電流にベクトルの位置毎に異なった検出誤差が生じる問題点もあった。
特許第3312472号公報
 本発明は、このような従来技術の課題に鑑みてなされたもので、検出電流に含まれる検出誤差を低減できる電流検出装置及びそれを用いたモータ制御装置を提供することを目的とする。
 実施の形態は、三角波パルス幅変調を用いた多相インバータの出力電流を検出する電流検出装置であって、あらかじめ設定した一定期間中の複数の特定のタイミング毎に電流を検出する電流検出手段と、前記一定期間中の複数の特定のタイミング毎の電流検出値を加算する加算手段とを備え、前記電流検出手段は、前記一定期間中の複数の特定のタイミングとして、前記三角波PWMの搬送波の上り側と下り側との両方でそれぞれ少なくとも1回ずつ電流検出を行うことを特徴とする。
第1の実施の形態のモータ制御装置のブロック図。 第1の実施の形態のモータ制御装置における電流検出処理部のブロック図。 3軸固定座標系における電圧指令ベクトルとPWM出力ベクトルの関係の説明図。 直交電圧成分による電流リプルの波形図。 電圧指令ベクトル毎の直交電圧成分のベクトル図。 第1の実施の形態における電流検出タイミングの説明図。 第2の実施の形態における電流検出タイミングの説明図。 第3の実施の形態における電流検出タイミングの説明図。 第4の実施の形態における電流検出タイミングの説明図。 第5の実施の形態における電流検出タイミングの説明図。 第6の実施の形態における電流検出タイミングの説明図。 第7の実施の形態における電流検出タイミングの説明図。 三角波PWMにおけるU相電圧とU相電流との関係例1の説明図。 三角波PWMにおけるU相電圧とU相電流との関係例2の説明図。 第8の実施の形態における電流検出タイミングの説明図。 第9の実施の形態における電流検出タイミングの説明図。 3相電流における検出遅れが生じた際の検出電流の波形図。 3相電流における検出遅れが生じた際の検出電流の振幅図。 短時間における複数の電流検出値とその平均値の関係の説明図。 第10の実施の形態における電流検出タイミングの説明図。 第11の実施の形態における電流検出タイミングの説明図。 第12の実施の形態のインバータ制御装置のブロック線図。
 以下、実施の形態を図に基づいて詳説する。
 図1に各実施の形態に共通する同期電動機4を負荷とし、センサレス制御により制御するモータ制御装置の構成を示している。このモータ制御装置は、PWMゲート信号により直流電力を交流電力に変換し、またその逆変換も行うPWMインバータ2、このPWMインバータ2の交流出力を受けて動作する同期電動機4、PWMインバータ2から同期電動機4に供給される交流電力のU,V,W各相の交流電流iu,iv,iwのうちU,W2相の交流電流iu,iwを検出する電流検出器3u,3w、PWMインバータ2のゲート制御を行うため、電流検出器3u,3wの検出する交流電流iu,iwを所定のタイミングにてA/D変換し、デジタル電流検出値Iu,Iwとして取り込み、演算して各相の電圧指令Vu,Vv,Vwを出力する制御装置5を備えている。この制御装置5は、その出力する各相の電圧指令Vu,Vv,Vwを三角波搬送波によってPWMすることによりゲート指令を作成し、PWMインバータ2をゲート制御する三角波PWM変調器1を含んでいる。
 永久磁石同期電動機のセンサレス制御装置においては、回転子の回転に同期して回転する座標系として、永久磁石の磁束の方向をd軸、このd軸に直交する軸をq軸と定義する。また、U相巻線方向をα軸、これに直交する方向をβ軸と定義し、α軸方向を基準としてd軸方向までの角度を同期機の回転位相角θと定義する。また、同期機のセンサレス制御装置には回転位相角センサがなく、回転位相角θそのものを検出することができないため、当該制御装置において推定された位相角をそのセンサ出力の代わりに使用する。したがって、推定位相角をθestとし、これに対応する座標系をγ軸,δ軸と定義する。
 同期電動機4は、固定子の各励磁相に流れる3相交流電流iu,iv,iwによって磁界を発生し、回転子との磁気的相互作用によりトルクを発生するものである。
 制御装置5はマイクロコンピュータにて構成されるものであるが、その演算機能を構成要素に分けて示すと、回転位相角推定器7、電流制御器8、3軸/2軸座標変換器9、2軸/3軸座標変換器10、デジタル電流検出処理器11を含んでいる。
 電流検出器3u,3wは、同期電動機4に流れる3相交流電流iu,iv,iwのうち2相iu,iwの電流応答値をアナログ信号として出力する。尚、図1では2相の電流を検出する構成を示しているが、U,V,W3相それぞれの電流応答値を検出する構成であってもよい。
 デジタル電流検出処理器11は、電流検出器3u,3wの電流検出アナログ信号iu,iwを所定のタイミング毎にA/D変換し、かつ相毎に所定回数ずつ加算して相毎のデジタル電流検出値Iu,Iwを3軸/2軸座標変換器9に出力する。
 回転位相角推定器7は、3軸/2軸座標変換器9の変換処理した電流応答値Iγres,Iδresから、同期電動機4の回転位相角θestを推定する。
 3軸/2軸座標変換器9は、デジタル電流検出処理器11の出力する電流応答値Iu,Iwに対して、回転位相角推定器7によって得られた回転位相角θestを用いて、3相固定座標系とγδ軸回転座標系の3軸/2軸座標変換を行い、3相電流値Iu,Iv,Iwから2軸電流値Iγres,Iδresを得、回転位相角推定器7と電流制御器8に出力する。尚、V相電流値Ivについては、検出されるU相、W相電流値Iu,Iwから換算して得ている。
 電流制御器8は、3軸/2軸座標変換器9の変換した2軸電流応答値Iγres,Iδresと電流指令値Iγref,Iδrefを比較し、2軸電圧指令値Vγ,Vδを決定する。
 2軸/3軸座標変換器10は、電流制御器8からの2軸電圧指令値Vγ,Vδを2軸/3軸座標変換し、3相電圧指令Vu,Vv,Vwを三角波PWM変調器1に出力する。三角波PWM変調器1は、上記のように、3相電圧指令Vu,Vv,Vwを三角波搬送波によってパルス幅変調(PWM)することによりゲート指令を作成し、PWMインバータ2をゲート制御する。
 上記のデジタル電流検出処理器11は、図2に示す機能構成であり、アナログ入力信号iu,iwを所定のタイミング毎にA/D変換してデジタル値にして出力するマルチ入出力チャネルを備えたA/Dコンバータ111、このA/Dコンバータ111に対して変換処理タイミングを設定するタイミング設定器112、A/Dコンバータ111の各出力チャネルから出力するデジタル電流検出値を所定回数加算し、電流平均値Iu,Iwとして出力する加算器113u,113wから構成されている。タイミング設定器112は、後述の各実施の形態の電流検出タイミングにてA/Dコンバータ111に対してタイミング設定チャネル指令を与える。
 以上の構成のモータ制御装置の動作について説明する。電流検出器3u,3wで検出した電流Iu,Iwに検出誤差が含まれると、検出誤差に従い、回転位相角推定器7によって推定した回転位相角θestに振動が発生する。例えば、特許第3312472号公報の回転位相角推定器を用いた場合、単相交番電圧を指令に印加し、その直交方向成分の電流を用いて回転位相角を推定している。したがって、インバータによって発生する直交方向の検出電流誤差がそのまま回転位相角の推定誤差となる。
 そこで、本実施の形態における制御装置5では、次のような電流検出処理を実施して直交方向に生じる検出電流誤差を低減し、回転位相角の推定精度を向上させ、安定な制御を実現する。
 三角波PWMインバータ2では、2種類の零ベクトルと2種類の電圧ベクトルを合成することで、三角波搬送波の半周期間における電圧ベクトルの合成が電圧指令ベクトルと一致するように変調する。例えば、U,V,W3相の3軸固定座標系において、電圧指令ベクトルが図3の位置にある場合には、(U,V,W)=(0,0,0)、(U,V,W)=(1,1,1)の2種類の零ベクトルと(U,V,W)=(1,0,0)、(U,V,W)=(1,1,0)との2種類の電圧ベクトルの合成によって電圧指令ベクトルと一致する電圧ベクトルを出力する。この時、出力したい電圧ベクトルの方向と直交する電圧成分Vhも出力されることになる。この直交電圧ベクトルVhは搬送波(Carrier)の半周期間で合成すれば零になるが、この直交電圧ベクトルによって図4に示すように電流リプルIhが発生することになる。
 図5に示すように、この直交電圧ベクトルは電圧指令ベクトルが1/6周期回転する毎に1周期の振動をし、すなわち搬送波周波数の6倍の周波数の電流リプルが発生する。
 ここで、図4から電流リプルIhは搬送波(Carrier)の頂点を中心に点対称となっており、搬送波の上り側と下り側で正負が異なっている。(実際には、インダクタンスの影響や電圧指令ベクトルの変化により、完全には点対称とはならないものの、点対称に近い波形となる。)図4では、搬送波の山側の頂点で点対称であることを示しているが、搬送波の谷側の頂点に関しても同様に点対称となる。また、電圧指令ベクトルの方向や大きさが異なる条件でも、上り側と下り側の正負が入れ替わったり、電流リプルの大きさが変化したりするだけで、この傾向は変わらない。
 図6に、第1の実施の形態において制御装置5が実行する電流検出タイミングを示している。当該タイミングでのデジタル電流検出処理器11は、1回の電流検出期間としての搬送波の1周期毎に、電流検出器3u,3wそれぞれからのアナログ電流検出信号iu,iwをA/D変換し、上り側で少なくとも1回、下り側で少なくとも1回の電流検出を行い、その検出値を加算し、加算値をデジタル電流応答値Iu,Iwとして出力する。これにより、正の誤差と負の誤差を加算することになり、検出電流に含まれる検出誤差を低減することができる。尚、タイミングの設定は、本実施の形態でも、また、以下のいずれの実施の形態でも、このタイミング設定器112による。
 図6に示す第1の実施の形態では、搬送波の1周期毎にその上り側で1回、下り側で2回、所定のタイミングで電流検出を行っているが、一般的には、上り側と下り側で少なくとも1回以上、所定のタイミング毎に電流検出を行えば、その検出値に含まれる検出誤差が低減できる。
 また、搬送波の頂点に関しては、検出誤差が必ず零となるので、上り側、下り側の回数には含まれないが、図7のように頂点のタイミングでの検出値を加算してもよい(第2の実施の形態)。
 さらに、図8のように搬送波の2周期分を電流検出期間単位とし、この電流検出期間毎に搬送波の上り側、下り側でそれぞれ少なくとも1回以上、所定のタイミング毎に電流検出を行い、その加算値を電流応答値としてもよい(第3の実施の形態)。
 また、図9のように搬送波の1周期未満の検出値を加算する場合であっても、搬送波の上り側と下り側で少なくとも1回以上の電流検出を行えばよい(第4の実施の形態)。搬送波の上り側と下り側で電流リプルIhの平均値は等しいので、電流検出回数を上り側と下り側で同じにすれば、電流リプルIhをキャンセルできる量が増える。この図9に示す電流検出方法によれば、上り側と下り側で検出回数が異なる場合と比較して検出誤差が低減される。
 さらに、搬送波の頂点は上り側、下り側の回数には含まないので、図9の検出タイミングに加え、例えば、図10に示すように頂点での検出値を加算してもよい(第5の実施の形態)。
 第6の実施の形態を、図11を用いて説明する。前述の通り、電流リプルIhは搬送波の頂点を中心に点対称となっている。したがって、上り側、下り側それぞれの搬送波の高さが一致するタイミングでは、電流リプルは大きさが等しく、符号が逆である。このタイミングで電流値を検出すれば、電流リプルは完全に打ち消される。そこで、搬送波の上り側、下り側それぞれで搬送波の高さが一致するタイミングにて電流値を検出し、加算する。これにより、電流リプルIhを効果的にキャンセルし、精度の良い電流検出が図れる。
 また、搬送波の頂点は上り側、下り側のどちらにも含まないので、例えば、図12に示したように、搬送波の頂点でも電流値を検出し、これを他の位置で検出した電流値に加算することもできる(第7の実施の形態)。これにより、電流リプルIhを効果的にキャンセルし、精度の良い電流検出が図れる。
 これら第6、第7の実施の形態によれば、電流ベクトルに含まれる検出誤差だけでなく、3相電流に含まれる検出誤差を打ち消すこともできる。図13、図14にPWMにおけるU相電圧VuとU相電流iuの関係を示す。PWMにおいて、U相電圧Vuの出力は符号の同じ電圧が出力されるパターン(図13)と符号の異なる電圧が出力されるパターン(図14)とがある。これらのいずれの場合でも、電流iuは、搬送波の頂点に対して点対称となる。そこで、本実施の形態の電流検出方法を用いれば、3相電流に含まれる検出誤差を効果的に打ち消すことができる。
 図15に第8の実施の形態の電流検出方法を示す。搬送波の1周期を加算期間とし、4等分して、各等分期間の中心タイミングで電流検出し、4個の電流検出値を加算している。これにより、第6の実施の形態と同様に、搬送波の上り側、下り側それぞれで搬送波の高さが一致するタイミングにて電流値を検出し、加算することができ、電流リプルIhを効果的にキャンセルし、精度の良い電流検出ができる。
 また、上述したように、搬送波の頂点は上り側、下り側のどちらにも含まれないので、図16に示すように、搬送波の頂点でも電流値を検出し、これを他の位置で検出した電流値に加算する(第9の実施の形態)。そこで、本実施の形態では、搬送波の1周期を加算期間とし、1周期を5等分して、各等分期間の中心タイミングで電流検出し、5個の電流検出値を加算している。これにより、電流リプルIhを効果的にキャンセルし、精度の良い電流検出が図れる。加えて、これら第8、第9の実施の形態の電流検出方法は、検出誤差が打ち消される効果を持ちながら、検出間隔を一定とするため、実機への実装が容易になる効果を有する。
 次に、第10の実施の形態について説明する。3相インバータにおいて出力電流の基本波成分が図17(a)のような正弦波となった場合、検出タイミングが遅れると、図17(b)に示すように出力電流の位相がずれたように検出される。すると、図18に示すように、通常は振幅が一定の出力21であるはずが、出力周波数の2倍で振動する検出電流22となる。
 インバータ出力電流の基本波は正弦波状であるが、短い時間では概ね線形に変化していると考えることができる。したがって、ある短い期間において複数回電流を検出し、その電流を加算平均すれば、平均検出時点(検出時点を時間的に平均した時点)における電流と一致する。すなわち、図19に示すように、複数回のタイミングti,t2,t3それぞれの電流検出値i1,i2,i3を平均すると、iave=(i1+i2+i3)/3となる。いま、idet=iaveとなるタイミングをtdetとすれば、tdet=tave=(ti+t2+t3)/3となる。
 例えば、U,V,W3相インバータにおいて、電流検出を図20、図21のような各タイミングでU,V,W相の電流に対して個別に行えば、平均検出時点taveが一致する。すなわち、tuave=tvave=twaveとなるので、検出電流を加算平均すれば、U,V,W3相全てにおいて平均検出時点taveでの電流が得られることになる。このようにすれば、A/D変換器111が1つしかなく、複数の電流を同時に検出することができないシステムでも、U,V,W相各相の実質的に同時刻の電流値を得ることができ、検出誤差を低減することができる。
 また、図13、図14に示したように、3相電流は搬送波の頂点に対して点対称となるので、第6、第7の実施の形態の電流検出方法と第10の実施の形態の電流検出方法とを組み合わせることもできる(第11の実施の形態)。この場合、第10の実施の形態の電流検出方法により基本波による電流検出誤差がなくなり、第6、第7の実施の形態の電流検出方法によりPWMによる電流リプルによる電流検出誤差がなくなるので、電流検出誤差をほとんどゼロにすることができる。これにより、電流制御系の応答性を向上できる。
 これまでの説明では、電流リプルIhは搬送波の頂点を中心に完全な点対称となっているが、前述の通り、実際には、インダクタンスの影響や電圧指令ベクトルの変化により、完全には点対称とはならないため、多少の検出誤差が生じる恐れがある。そこで、複数の電流検出値を加算する周期内で変調波(すなわち電圧指令ベクトル)を一定とすることにより、電流リプルIhが搬送波の頂点を中心とする点対称に近づき、低減効果が大きくなる。
 また、上記の各実施の形態は3相PWMインバータに対する例を示したが、本発明は多相インバータであれば、全て利用できる。
 また、3相のうちU相電流、W相電流を検出し、そこからV相電流を演算する構成を示したが、全ての電流を検出する構成とすることもできる。図22は、一般的な構成を示している。図1に示したモータ制御装置を一般化したインバータ制御装置を示している。負荷4に対してPWMインバータ2が3相電流を供給し、負荷4に対する3相電流それぞれをアナログの電流検出器3u,3v,3wが検出して制御装置5に出力する。制御装置5は、第1の実施の形態のモータ制御装置における制御装置5と共通の構成である。ただし、デジタル電流検出処理器11はU,V,W3相それぞれのアナログ電流検出信号をA/D変換し、かつ相毎に加算して電流平均値を求め、3軸/2軸座標変換器9に出力する構成である。尚、この図22の構成にあっても、電流検出は3相のうちの2相に対して行い、そこから残りの1相の電流を演算する構成にすることもできる。
 さらに、各実施の形態では、PWMインバータによる負荷電流の制御の例を示したが、例えば、負荷4が電源であり、インバータ2がコンバータとして作用した場合の電源電流の制御に適用することもできる。
 1…三角波PWM変調器
 2…PWMインバータ
 3u,3v,3w…電流検出器
 4…同期電動機(負荷)
 5…制御装置
 7…回転位相角推定器
 8…電流制御器
 9…3軸/2軸座標変換器
 10…2軸/3軸座標変換器
 11…デジタル電流検出処理器
 111…A/Dコンバータ
 112…検出タイミング設定器
 113u,113w…加算器

Claims (8)

  1.  三角波パルス幅変調(PWM)を用いた多相インバータの出力電流を検出する電流検出装置であって、
     あらかじめ設定した一定期間中の複数の特定のタイミング毎に相毎の電流を検出する電流検出手段と、
     前記一定期間中の複数の特定のタイミング毎の電流検出値を相毎に加算する加算手段とを備え、
     前記電流検出手段は、前記一定期間中の複数の特定のタイミングとして、相毎に前記三角波PWMの搬送波の上り側と下り側との両方でそれぞれ少なくとも1回ずつ電流検出を行うことを特徴とする電流検出装置。
  2.  前記電流検出手段は、前記一定期間中の複数の特定のタイミングとして、前記三角波PWMの搬送波の上り側と下り側とで同じ回数ずつ電流検出を行うことを特徴とする請求項1に記載の電流検出装置。
  3.  前記電流検出手段は、前記三角波PWMの搬送波の上り側と下り側とで搬送波の高さが一致するタイミングにて電流検出を行うことを特徴とする請求項2に記載の電流検出装置。
  4.  前記電流検出手段は、前記一定期間の中心を搬送波の山の頂点あるいは谷の頂点とし、前記電流検出のタイミングとして、前記一定期間を等分した期間において各等分期間の中心に設定したことを特徴とする請求項3に記載の電流検出装置。
  5.  加算する周期内で変調波を一定とすることを特徴とする請求項1~4のいずれかに記載の電流検出装置。
  6.  前記電流検出手段は、前記一定期間中に複数の相毎に複数のタイミングにて電流検出を行うのに、各相の複数の電流検出タイミングを前記一定期間において時間的に平均した際の平均検出タイミングが等しくなる設定にしたことを特徴とする請求項1に記載の電流検出装置。
  7.  請求項1~4、6のいずれかに記載の電流検出装置と、
     前記電流検出装置の検出する3相それぞれの電流値に基づいてモータの位相を推定する回転位相推定手段と、
     前記電流検出装置で検出した電流値を、前記回転位相推定手段の求めた位相推定値を用い、回転子の磁束方向をd軸としこれと直交する軸をq軸とする回転dq座標系の電流値に座標変換する3軸/2軸座標変換手段と、
     前記回転dq座標系上で、前記座標変換した検出電流と電流指令との差に基づいて2軸電圧指令を演算する電流指令演算手段と、
     前記電流指令演算手段の算出する2軸電圧指令を、前記回転位相推定手段の求めた位相推定値を用いて3軸固定座標系の電圧指令に変換する2軸/3軸座標変換手段と、
     前記2軸/3軸座標変換手段の変換した3軸固定座標系の電圧指令を三角波搬送波にてパルス幅変調してゲート信号を得る三角波PWM変調手段と、
     前記三角波PWM変調手段の出力するゲート信号にて電力変換を行い、前記モータに出力するPWMインバータとを備えたモータ制御装置。
  8.  請求項5に記載の電流検出装置と、
     前記電流検出装置の検出する3相それぞれの電流値に基づいてモータの位相を推定する回転位相推定手段と、
     前記電流検出装置で検出した電流値を、前記回転位相推定手段の求めた位相推定値を用い、回転子の磁束方向をd軸としこれと直交する軸をq軸とする回転dq座標系の電流値に座標変換する3軸/2軸座標変換手段と、
     前記回転dq座標系上で、前記座標変換した検出電流と電流指令との差に基づいて2軸電圧指令を演算する電流指令演算手段と、
     前記電流指令演算手段の算出する2軸電圧指令を、前記回転位相推定手段の求めた位相推定値を用いて3軸固定座標系の電圧指令に変換する2軸/3軸座標変換手段と、
     前記2軸/3軸座標変換手段の変換した3軸固定座標系の電圧指令を三角波搬送波にてパルス幅変調してゲート信号を得る三角波PWM変調手段と、
     前記三角波PWM変調手段の出力するゲート信号にて電力変換を行い、前記モータに出力するPWMインバータとを備えたモータ制御装置。
PCT/JP2011/057362 2010-11-15 2011-03-25 電流検出装置及びモータ制御装置 WO2012066800A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-254902 2010-11-15
JP2010254902A JP2012110074A (ja) 2010-11-15 2010-11-15 電流検出装置及びモータ制御装置

Publications (1)

Publication Number Publication Date
WO2012066800A1 true WO2012066800A1 (ja) 2012-05-24

Family

ID=46083745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057362 WO2012066800A1 (ja) 2010-11-15 2011-03-25 電流検出装置及びモータ制御装置

Country Status (2)

Country Link
JP (1) JP2012110074A (ja)
WO (1) WO2012066800A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182020A1 (ja) * 2014-05-28 2015-12-03 パナソニックIpマネジメント株式会社 ブラシレスモータ駆動装置
CN108448994A (zh) * 2018-01-25 2018-08-24 华意压缩机股份有限公司 一种变频压缩机空载运行转速快速估算方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6658554B2 (ja) * 2017-01-10 2020-03-04 株式会社デンソー 交流電動機の制御装置
JP6646028B2 (ja) 2017-11-20 2020-02-14 ファナック株式会社 電流検出器を有するモータ駆動装置
JP6946988B2 (ja) * 2017-12-06 2021-10-13 株式会社デンソー 駆動装置
JP7047602B2 (ja) * 2018-05-31 2022-04-05 トヨタ自動車株式会社 モータ制御装置、その制御方法及びプログラム
WO2023243451A1 (ja) * 2022-06-17 2023-12-21 株式会社日立製作所 電力変換器の制御装置および制御方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182832A (ja) * 2007-01-25 2008-08-07 Matsushita Electric Ind Co Ltd モータ駆動装置
JP2010011639A (ja) * 2008-06-27 2010-01-14 Hitachi Industrial Equipment Systems Co Ltd 電力変換装置
JP2010183661A (ja) * 2009-02-03 2010-08-19 Toyota Motor Corp 回転電機制御システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182832A (ja) * 2007-01-25 2008-08-07 Matsushita Electric Ind Co Ltd モータ駆動装置
JP2010011639A (ja) * 2008-06-27 2010-01-14 Hitachi Industrial Equipment Systems Co Ltd 電力変換装置
JP2010183661A (ja) * 2009-02-03 2010-08-19 Toyota Motor Corp 回転電機制御システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182020A1 (ja) * 2014-05-28 2015-12-03 パナソニックIpマネジメント株式会社 ブラシレスモータ駆動装置
JP6089215B2 (ja) * 2014-05-28 2017-03-08 パナソニックIpマネジメント株式会社 ブラシレスモータ駆動装置
US10199966B2 (en) 2014-05-28 2019-02-05 Panasonic Intellectual Property Management Co., Ltd. Brushless motor drive device
CN108448994A (zh) * 2018-01-25 2018-08-24 华意压缩机股份有限公司 一种变频压缩机空载运行转速快速估算方法
CN108448994B (zh) * 2018-01-25 2021-05-07 长虹华意压缩机股份有限公司 一种变频压缩机空载运行转速快速估算方法

Also Published As

Publication number Publication date
JP2012110074A (ja) 2012-06-07

Similar Documents

Publication Publication Date Title
JP5900600B2 (ja) 電動機の磁極位置推定装置およびそれを用いた制御装置
JP5069306B2 (ja) 回転電機の制御装置
JP4631672B2 (ja) 磁極位置推定方法、モータ速度推定方法及びモータ制御装置
JP6617500B2 (ja) 電動パワーステアリング制御方法、電動パワーステアリング制御装置、電動パワーステアリング装置および車両
JP3661642B2 (ja) モータの制御装置及びその制御方法
US20070296371A1 (en) Position sensorless control apparatus for synchronous motor
WO2012066800A1 (ja) 電流検出装置及びモータ制御装置
US20160190972A1 (en) Power conversion device
JP6091446B2 (ja) 電動機制御装置
JP6129972B2 (ja) 交流電動機の制御装置、交流電動機駆動システム、流体圧制御システム、位置決めシステム
JP6685452B1 (ja) 回転電機の制御装置
JP5165545B2 (ja) 電動機の磁極位置推定装置
JP2010246260A (ja) モータ制御装置およびモータ制御方法
JP4722002B2 (ja) Pwmインバータ制御装置及びpwmインバータ制御方法並びに冷凍空調装置
WO2017030055A1 (ja) 回転機の制御装置および制御方法
JP6116449B2 (ja) 電動機駆動制御装置
JP5652701B2 (ja) モータ駆動制御装置
JP6324615B2 (ja) 交流回転機の制御装置および電動パワーステアリングの制御装置
JP7385776B2 (ja) 電動機の制御装置
JP4312993B2 (ja) インバータ制御方法およびその装置
CN110785923A (zh) 电机控制装置和电机控制方法
JP4448351B2 (ja) 電力変換器の制御装置
JP2011066990A (ja) 回転機制御装置
JP6414109B2 (ja) 交流電動機の回転制御装置及び交流電動機の回転制御方法
JP2017005895A (ja) 回転機の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11841672

Country of ref document: EP

Kind code of ref document: A1