WO2012023605A1 - 衝撃駆動型アクチュエータ - Google Patents

衝撃駆動型アクチュエータ Download PDF

Info

Publication number
WO2012023605A1
WO2012023605A1 PCT/JP2011/068769 JP2011068769W WO2012023605A1 WO 2012023605 A1 WO2012023605 A1 WO 2012023605A1 JP 2011068769 W JP2011068769 W JP 2011068769W WO 2012023605 A1 WO2012023605 A1 WO 2012023605A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
shape memory
memory alloy
insulating heat
heat conductor
Prior art date
Application number
PCT/JP2011/068769
Other languages
English (en)
French (fr)
Inventor
権藤雅彦
Original Assignee
株式会社青電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社青電舎 filed Critical 株式会社青電舎
Priority to KR1020127023363A priority Critical patent/KR101433120B1/ko
Priority to CN201180040106.9A priority patent/CN103080543B/zh
Priority to US13/817,613 priority patent/US9068561B2/en
Priority to JP2012529623A priority patent/JP5878869B2/ja
Publication of WO2012023605A1 publication Critical patent/WO2012023605A1/ja
Priority to US14/732,235 priority patent/US9677547B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/061Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element
    • F03G7/0614Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like characterised by the actuating element using shape memory elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0076Driving means for the movement of one or more optical element using shape memory alloys
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing

Definitions

  • the present invention relates to an impact-driven actuator, and in particular, an impact in the horizontal direction (or in the planar direction) or in the vertical direction (front-back direction or thickness direction) using expansion and contraction changes in the longitudinal direction of a shape memory alloy having a wire form.
  • Shock-driven actuator that enables rotational motion (straight motion) and rotational motion or rectilinear motion based on repetition of the shock motion.
  • Patent Document 1 is a shape memory alloy actuator having a two-way shape memory effect, which can endure a very large number of repeated operations and can dramatically increase the operation life, widen the operation range, and further make the shape
  • the “bidirectional shape memory effect” means that a shape memory alloy storing a fixed shape is deformed at a low temperature and then heated to return to the original stored shape, and when it is further cooled to a low temperature, the shape is deformed at the low temperature It is a phenomenon that returns to shape.
  • the shape memory alloy spontaneously changes its shape only by heating and cooling without applying an external bias force.
  • a shape memory alloy actuator having a bi-directional shape memory effect stores two shapes: a shape deformed at low temperature (a shape of a Martinsite state) and a shape restored at a high temperature (a shape of a matrix state) Show the behavior.
  • a plurality of shape memory alloy wires are disposed between the flat support base and the mover. These shape memory alloy wires are wired so as to be bridged in a further slack state so as to contact the concavo-convex portions formed on the opposing surfaces of the support base and the mover.
  • the mover has an external force applied to the outside, and is pressed against the support base.
  • the shape memory alloy wire is in a slack state at normal temperature, and when heated by energization, it contracts and stretches in a straight line, and the mover moves.
  • the response speed of an actuator having a shape memory alloy is increased.
  • drive current is supplied to the shape memory alloy to cause heating to cause restoration operation, and further, the shape memory alloy is so determined as to determine the displacement amount of the shape memory alloy based on the displacement target value of the movable portion. Control is performed to generate a drive current amount.
  • the invention disclosed in Patent Document 3 efficiently achieves high-speed response of the actuator in a drive device including an actuator having a shape memory alloy.
  • An actuator using a shape memory alloy performs a driving operation using a behavior that stores a change between a shape deformed at low temperature (at normal temperature) and a shape recovered at high temperature (during heat generation) in shape memory alloy. Do.
  • the response of the behavior of the shape memory alloy depends on the change of the thermal state from high temperature to low temperature.
  • the actuator using the conventional shape memory alloy is not sufficiently considered about the change of the thermal state from the high temperature state to the low temperature state, and therefore has a disadvantage that the operation response is low and the practicability is low.
  • the object of the present invention is to utilize the expansion and contraction of a shape memory alloy having a wire-like form by realizing a heat conduction structure that generates a high heat dissipation function in consideration of the thermal characteristics of the shape memory alloy.
  • Another object of the present invention is to provide an impact-driven actuator which is improved in the quickness and quick response of its deformation operation characteristics, and the practicability is enhanced.
  • the impact drive type actuator according to the present invention is configured as follows in order to achieve the above object.
  • An impact-driven actuator includes a wire-like shape memory alloy which contracts by electric heating, an insulating heat conductor which contacts the wire-like shape memory alloy and dissipates heat generated by the wire shape memory alloy, and a wire-like shape. It is characterized by including: a drive circuit unit which momentarily energizes the shape memory alloy to shrink the wire-like shape memory alloy.
  • the wire-like shape memory alloy disposed in a predetermined wiring state is dissipated quickly by bringing the wire-like shape memory alloy into contact with the wire-like shape memory alloy.
  • the insulating heat conductor has a substantially circumferential shape at least in part, and the wire-like shape memory alloy is disposed to be in contact with the circumferential surface of the insulating heat conductor;
  • the shape memory alloy is characterized by displacing the position of the insulating heat conductor when contracting by energization. Since the heat generated by the wire-like shape memory alloy is dissipated by utilizing the entire area of the semicircular portion of the circumferential surface of the insulating heat conductor, the heat escape route can be expanded, It enables rapid low temperature conditions of wire-like shape memory alloys.
  • the edge behavior is caused by the contraction operation of the wire-like shape memory alloy It can be converted into radial movement of the heat conductor and can be used as a drive enabling radial impact of the insulating heat conductor.
  • the circumferential surface of the insulating heat conductor is formed with a groove, and the wire-like shape memory alloy is disposed in the groove.
  • the groove is, for example, V-shaped in cross section, and the wire-like shape memory alloy is arranged to be in contact with each of the two wall surfaces of the V-shaped groove, so that the heat dissipation function can be enhanced.
  • the insulating heat conductor is composed of two constituent members facing each other in a substantially parallel manner and having a plurality of concavo-convex protrusions, and between the two constituent members, the wire-like shape memory alloy is
  • the wire-like shape memory alloy which is disposed to be in contact with the uneven projection, is characterized by changing the distance between the two components when it contracts when energized. According to this configuration, the contraction operation of the wire-like shape memory alloy can be converted into the movement (displacement) of the plate in the direction orthogonal to the plane of the plate, and the distance between the two components can be changed.
  • the insulating heat conductor is composed of two substantially parallel opposing members having a substantially rod-like or pipe-like shape, and is wire-shaped to be in contact with the periphery of the two constituent members.
  • the shape memory alloy is helically wound, and the wire-like shape memory alloy is characterized in that it is displaced so as to reduce the distance between the two constituent members when it contracts upon energization.
  • one constituent member is elastically supported so as to be spaced apart from each other, and one is fixed and the other is elastically supported. It is movable, and in this state, the wire-like shape memory alloy is shrunk to displace the other component toward one of the fixed components.
  • the wire-like shape memory alloy is wound in an annular shape or a figure of eight.
  • the contact area between the wire-like shape memory alloy and the surface of the rod-like insulating heat conductor can be increased, thereby enhancing the ability to dissipate heat generated by energization. it can.
  • each of the insulating heat conductors consisting of two constituent members is configured such that at least the outer surface in contact with the wire-like shape memory alloy is a curve whose cross section includes a substantially semicircle. It is characterized by
  • the insulating heat conductor is formed as a rotatably provided rotating body, and the wire-like shape memory alloy is in contact with and wound around the circumferential surface of the insulating heat conductor.
  • the wire-like shape memory alloy is characterized in that it is fixed at both ends and the wire-like shape memory alloy clamps the insulating heat conductor and damps its rotational movement when it contracts upon energization.
  • the action of contraction of the wire-like shape memory alloy can be used as a means for applying a brake to the rotational operation of the rotating body.
  • the insulating heat conductor is formed as a rotatably provided rotating body, and a spiral groove is formed on the circumferential surface thereof, and the wire-like shape memory alloy is formed of insulating heat. It is provided in contact with and wound in the groove of the circumferential surface of the conductor, and one end is fixed and the other end is supported by the elastic mechanism portion so as to be tensioned, and the wire-like shape memory alloy shrinks by energization. When doing this, it is characterized by rotating the insulating heat conductor.
  • the wire-like shape memory alloy is repeatedly shrunk for a short time, and the rotation relation is taken advantage of using the engagement relationship with the spiral groove formed on the circumferential surface of the rotor insulating heat conductor. It can be used as an impact-driven actuator for rotating a body insulating heat conductor in any one direction.
  • a second wire-like shape memory alloy is provided separately from the wire-like shape memory alloy, and the second wire-like shape memory alloy is a groove in the circumferential surface of the insulating heat conductor.
  • the wire is provided in contact with and wound in the direction opposite to the winding direction of the wire-like shape memory alloy, and one end is fixed and the other end is supported by the second elastic mechanism so as to be pulled, Shape memory alloy rotates the insulating heat conductor in one direction when contracting with electricity, and the second wire shape memory alloy rotates the insulating heat conductor in the opposite direction when contracting with electricity It is characterized by rotating.
  • two wire-like shape memory alloys are used to enable rotation in two directions, clockwise and counterclockwise.
  • the groove formed on the circumferential surface of the insulating heat conductor is a spiral thread groove, and the structure of the thread groove prevents the wire-like shape memory alloy from contacting itself. It is characterized by
  • the insulating heat conductor has a plate-like form, and two plate-shaped insulating heat conductors are disposed to face each other, and one plate-shaped insulating heat conductor is fixed. And the other plate-shaped insulating heat conductor is movably disposed and provided so as to be pulled in one direction by the elastic mechanism, and a wire-like shape is formed between the two plate-shaped insulating heat conductors.
  • a memory alloy is disposed to connect two plate-like insulating thermal conductors with a wire-like shape memory alloy, and the wire-like shape memory alloy is a movable plate-like insulating thermal conductor when it contracts upon energization. It is characterized in that it is displaced by a predetermined distance against the elastic mechanism.
  • the movable body is disposed in frictional contact with the movable plate-shaped insulating heat conductor, and displacement is repeatedly generated in the movable plate-shaped insulating heat conductor. It is characterized in that the moving body is moved in one direction.
  • a booster circuit for converting an input voltage to a high voltage, a capacitor charged from the voltage, a capacitor from a capacitor to a wire shape memory alloy and a switching element are connected in series, It is characterized in that current is supplied to the shape memory alloy.
  • the insulating heat conductor is characterized in that at least a surface portion in contact with the wire-like shape memory alloy is made of aluminum oxide (alumina) or aluminum nitride. Furthermore, in the above configuration, preferably, the insulating heat conductor is composed of two constituent members facing each other substantially in parallel and provided with a plurality of projection members, and in each of these two constituent members, a plurality of projections The members are separated, and the plurality of projecting members are formed of a conductive member, and between the two components, the wire-like shape memory alloy is disposed in contact with the portion formed of the conductive member of the projecting member; The wire-like shape memory alloy is characterized by changing the distance between the two components when it is contracted by energization.
  • insulating heat conductors of various shapes are provided as effectively as possible to a wire-like shape memory alloy disposed in a predetermined wiring state, and this insulation is provided. Since the heat generated at the time of pulse current application is dissipated quickly by the conductive heat conductor in the wire-like shape memory alloy, the temperature of the wire-like shape memory alloy can be rapidly lowered, and the time is relatively short. Thus, it is possible to realize an instantaneous motion that can be repeated, and to realize a highly practical impact-driven actuator.
  • a state (A) when the wire-like shape memory alloy is at a low temperature, and a state (B) when being electrically heated (high temperature) It is a longitudinal cross-sectional view shown. It is a perspective view which shows the external appearance of the principal part of the impact drive type actuator which concerns on the 4th Embodiment of this invention. It is a perspective view which shows the external appearance of the principal part of the impact drive type actuator which concerns on the 5th Embodiment of this invention. It is a wave form diagram showing the drive current supplied to the impact drive type actuator concerning a 5th embodiment.
  • FIG. 1 It is a perspective view which shows the external appearance of the principal part of the impact drive type actuator which concerns on the 6th Embodiment of this invention.
  • FIG. The impact drive-type actuator which concerns on 6th Embodiment WHEREIN It is a fragmentary sectional view which shows the engagement relation of a wire-like shape memory alloy and the screw part of the outer peripheral surface of a rotary body insulating heat conductor. It is a perspective view which shows the external appearance of the principal part of the impact drive type actuator which concerns on the 7th Embodiment of this invention.
  • FIG. 6 is a waveform diagram showing operation characteristics of each part of the drive circuit.
  • FIGS. 1 to 4 A first embodiment of an impact drive type actuator according to the present invention will be described with reference to FIGS. 1 to 4.
  • 10 is an impact drive type actuator
  • 11 is a wire-like shape memory alloy
  • 12 is a disk-shaped insulating heat conductor (hereinafter referred to as "disk-shaped insulating heat conductor 12") .
  • the wire-like shape memory alloy 11 has a predetermined length required to form the impact drive actuator 10.
  • the wire diameter and the wire length of the wire-like shape memory alloy 11 are arbitrary, and are appropriately determined in accordance with the overall size of the impact-driven actuator 10 to be produced.
  • the disc-shaped insulating heat conductor 12 is typically made of aluminum oxide (alumina), and preferably has high electrical insulation and thermal conductivity.
  • the disk-shaped insulating heat conductor 12 may be aluminum oxide only at the surface portion in contact with the wire-shaped shape memory alloy 11.
  • the whole of the disk-shaped insulating heat conductor 12 is made of aluminum, and only the required surface portion is changed to aluminum oxide.
  • the surface of aluminum oxide is formed by anodizing treatment, which is a process similar to electroplating, but has the desirable properties of being significantly harder than the original aluminum, increasing the surface hardness, and also improving the abrasion resistance.
  • aluminum nitride or diamond can be used as the material of the disk-shaped insulating heat conductor 12. The thermal conductivity of aluminum nitride and diamond is superior to that of aluminum oxide, and it is a more suitable material if cost is neglected.
  • the above-mentioned "insulating heat conductor” is generally made of a conductive material, and in order to have the insulating property, the conductive material is divided into a plurality of parts to ensure the insulating property as a whole. Alternatively, processing can be performed.
  • the disk-shaped insulating heat conductor 12 is provided, for example, on the base 13, and as shown in FIG. 1 etc., the contraction of the wire-shaped shape memory alloy 11 causes the direction of the arrow AL1 (arbitrary straight line in one plane Mounted in a movable mounting structure).
  • the disk-shaped insulating heat conductor 12 is supported by the elastic mechanism 14 so as to be pressed in the direction opposite to the arrow AL1.
  • the elastic mechanism portion 14 is movable in contact with one end of the end portion 14a fixed to the base 13 and one circumferential surface of the disk-shaped insulating heat conductor 12, and the end portion 14b presses the portion And a coil spring member 14c disposed between the two end portions 14a and 14b and provided in a required contracted state.
  • the moving end portion 14 b presses the circumferential surface of the disk-shaped insulating heat conductor 12 based on the extension action of the coil spring member 14 c.
  • the wire-like shape memory alloy 11 having a predetermined length is disposed to contact approximately half of the circumferential surface (semicircular curved surface) of the disc-like insulating heat conductor 12. Both ends 11 a and 11 b of the wire-like shape memory alloy 11 are fixed to the base 13 by electrical terminals such as screws 15 or the like.
  • the wire-like shape memory alloy 11 is, as shown in FIG. 3, disposed in a groove 12a formed of, for example, a V-shaped cross section in the circumferential direction of the circumferential surface of the disk-shaped insulating heat conductor 12 and Almost all of the wire-like shape memory alloy 11 is present in the groove 12a and is in contact with the groove surface.
  • a power supply 17 is connected to both ends 11 a and 11 b of the wire-like shape memory alloy 11 via a switch 16.
  • the switch 16 and the power supply 17 form an electric drive circuit unit for contracting the wire-like shape memory alloy 11.
  • the switch 16 is generally a semiconductor switch, and is on / off controlled by a pulse signal.
  • FIG. 2 (B) when the switch 16 is turned on for a required short time, the wire-like shape memory alloy 11 is instantaneously energized, and instantaneously generates heat by this energization, and as a result, the wire-like shape memory alloy 11 is driven to contract instantaneously. Therefore, as shown in FIGS.
  • the disk-shaped insulating heat conductor 12 instantaneously moves in the direction of the arrow AL1 so as to contract the coil spring member 14c against the pressure of the elastic mechanism portion 14.
  • the position is displaced in the direction by a distance d.
  • the wire-like shape memory alloy 11 generates heat and contracts every time the current is intermittently applied to the wire-like shape memory alloy 11 so as to resist the elastic mechanism 14
  • the position of the disk-shaped insulating heat conductor 12 is displaced by a distance d. Since the generated heat is dissipated by the heat conduction action of the disc-like insulating heat conductor 12 after the end of the energization, the wire-like shape memory alloy 11 is rapidly expanded and the disc-like insulating property is exerted by the pressing action of the elastic mechanism portion 14
  • the heat conductor 12 returns to its original position.
  • the impact drive type actuator 10 performs an impact drive operation.
  • the planar shape of the surface of the disc-like insulating heat conductor 12 in contact with the wire-like shape memory alloy 11 is disc-like for the following reasons.
  • the current flows in the wire-shaped memory alloy 11 and contracts, and as a result, the disk-shaped heat conductor moves, but even in the state after the movement, the wire-shaped memory alloy 11 is mostly with the disk-shaped insulating heat conductor
  • the shape that is firmly in contact with the surface becomes a circle with a curve in the rough.
  • (A) shows a state before the wire-like memory alloy 11 shrinks
  • (B) shows a state after the wire-like memory alloy 11 shrinks.
  • the portion where the wire-like memory alloy 11 and the disc-like insulating heat conductor 12 are in contact hardly changes.
  • the disk-shaped insulating heat conductor 12 is a rectangular shape formed linearly, for example, the wire-shaped shape memory alloy 11 is completely separated as the disk-shaped insulating heat conductor 12 moves, and the heat radiation characteristics are thereby eliminated.
  • the insulating heat conductor 12 is described above as being preferably in the shape of a disc, the insulating heat conductor 12 may be an insulating heat conductor having a substantially circumferential shape only in part, although not shown. The point is that if the shape of the portion in contact with the wire-like shape memory alloy 11 is a substantially circumferential shape, the essential operation as the actuator is exactly the same.
  • FIGS. 5 and 6 A second embodiment of the impact drive actuator according to the present invention will be described with reference to FIGS. 5 and 6.
  • 20 is an impact-driven actuator
  • 21 is a wire-like shape memory alloy
  • 22 is an insulating heat conduction of, for example, a round bar shape (a member having a cylindrical shape or a circular tube shape, or other cross sectional shape) It is a body (Hereafter, it is typically described as "round-bar-like insulating heat conductor 22")
  • 23A and 23B are board materials.
  • the plate 23A on the lower side in FIG. 5 is the stationary plate
  • the plate 23B on the upper side in the figure is the moving plate.
  • the two plate members 23A and 23B are disposed in parallel and opposite to each other. Although the position of the plate member 23A does not change, the plate member 23B is provided movably in the direction of the arrow AL2 (vertical direction, thickness direction, or direction perpendicular to the plate members 23A and 23B).
  • a plurality of round rod-shaped insulating heat conductors 22 are disposed in parallel arrangement relation.
  • the plurality of round rod-shaped insulating thermal conductors 22 are divided into the stationary side round rod-shaped insulating thermal conductors 22A and the moving side round rod-shaped insulating thermal conductors 22B.
  • a plurality of round rod-shaped insulating thermal conductors 22A on the stationary side are separated and arranged in parallel at a predetermined distance and fixed on the stationary side plate 23A.
  • On the moving plate member 23B a plurality of round rod-shaped insulating heat conductors 22B on the moving side are separated and arranged in parallel at a predetermined distance, and fixed.
  • the stationary and moving round rod-shaped insulating heat conductors 22A and 22B are alternately arranged as shown in FIG. The numbers of the round rod-shaped insulating heat conductors 22A and 22B on the fixed side and the moving side are approximately equal.
  • the cross direction (preferably orthogonal) of the longitudinal direction of the round-bar insulating heat conductor can be obtained.
  • At least one wire-like shape memory alloy 21 is disposed. In other words, it is in contact with the plurality of uneven projections between the two plate members 23A and 23B, which are formed by the fixed round-bar-shaped insulating heat conductor 22A and the moving-side round-bar insulating heat conductor 22B.
  • the wire-like shape memory alloy 21 is disposed in Both ends of the wire-like shape memory alloy 21 are fixed to the plate member 23A on the fixed side.
  • the round rod-like insulating heat conductor 22A on the fixed side is disposed on the side of the plate material 23A on the fixed side
  • the round rod-like insulating heat conductor 22B on the moving side is the plate material 23B on the moving side Placed on the side of
  • the plate member 23A and the plurality of round rod-shaped insulating heat conductors 22A form a fixed first component member 101
  • the plate 23B and the plurality of round rod-shaped insulating heat conductors 22B move the second component.
  • the component 102 is formed. In the illustrated example shown in FIG.
  • the first component member 101 and the second component member 102 are plate members 23A or 23B, and a plurality of round rod-shaped insulating heat conductors 22A or 22B, which are individual elements. However, these elements may be integrally formed by cutting a metal material such as aluminum, and the surface may be anodized. Further, the first and second component members fabricated by integral molding are processed to be separated as projecting members corresponding to the round rod-like insulating heat conductors 22A and 22B, and thereafter the first and second component members are separated. It can also be configured as a second component. In the case of this configuration, it is possible to omit the alumite treatment which is the surface treatment for insulation. By performing such separation processing, it is possible to ensure the insulation between the adjacent protruding members, and to make the constituent member 101 and the constituent member 102 as an insulating heat conductor as a whole.
  • the wire-like shape memory alloy 21 is intermittently energized by the switch 16 and the power supply 17.
  • the distance between the two plate members 23A and 23B is in the state of h1.
  • a coil spring member (not shown) is provided between the two plate members 23A and 23B to pull the two plate members 23A and 23B and maintain a space h1.
  • the wire-like shape memory alloy 21 is energized, as shown in FIG. 6 (B)
  • the wire-like shape memory alloy 21 shrinks, and the rod-like shape resists the coil spring member in a tensile state.
  • the insulating heat conductor 22B is displaced upward, and the distance between the two plate members 23A and 23B is increased to form the distance h2.
  • the wire-like shape memory alloy 21 generates heat and contracts every time the current is intermittently applied, and the round rod-shaped insulating thermal material on the moving side
  • the positions of the conductor 22B and the plate 23A are displaced to increase the distance between the two plates 23A and 23B.
  • the generated heat is dissipated by the heat conduction of the plurality of round rod-shaped insulating thermal conductors 22 (22A, 22B), so that the wire-like shape memory alloy 21 expands rapidly and the elastic mechanism portion
  • the round rod-like insulating heat conductor 22B and the plate material 23A return to their original positions.
  • the impact drive actuator 20 performs an impact drive operation in the vertical direction.
  • the foregoing has described that when the wire-like shape memory alloy 21 is energized, the distance between the first component member 101 and the second component member 102 is increased. However, by making the following changes in FIG. When the wire-like shape memory alloy 21 is energized, the above-mentioned interval can be reduced. That is, although not shown, the wire tension of the wire-like shape memory alloy 21 of FIG. 6 is uneven from the left and in contact with the round rod-shaped insulating heat conductors 22A and 22B, similarly from the left It changes so that rod-shaped insulating heat conductors 22A and 22B may be touched.
  • the member indicated by reference numeral 22 has been described as a round bar-shaped insulating heat conductor.
  • the member 22 has a characteristic that electricity flows on its surface, but the adjacent members are electrically insulated from each other (a component formed of a projecting member.
  • the cross-sectional shape of the insulating heat conductor is not limited to the shape of a circle, a circular tube, or the like, and may be any shape that forms a projection.
  • a metal (conductive member) such as copper or aluminum can be used as the surface material.
  • the portion (surface metal portion) in contact with the member 22 of the wire-like shape memory alloy 21 is electrically short-circuited, and no heat generation occurs due to energization.
  • the portion that generates heat by energization is a portion of a section between the portions in contact with each of the two adjacent insulating heat conductors.
  • FIG. 7 is an impact drive type actuator
  • 31 is a wire-like shape memory alloy
  • 32A, 32B are rod-shaped (cylinder, prism, other pipe-shaped, etc.) insulating thermal conductors (hereinafter referred to as "rod-shaped" Insulating heat conductors 32A and 32B ".
  • rod-shaped Insulating heat conductors 32A and 32B two rod-shaped insulating heat conductors 32A and 32B are provided, and one rod-shaped insulating heat conductor 32A is fixed to the base 33 at both ends.
  • the other rod-shaped insulating heat conductor 32B is disposed movably.
  • Both ends of the movable rod-shaped insulating heat conductor 32 B are fixed to the support plate 34. Furthermore, each of the two support plates 34 at both ends is coupled to the fixed end 36 on the base 33 via the coil spring member 35 in tension.
  • Two rod-shaped insulating thermal conductors 34A, 34B are disposed parallel to each other with a predetermined gap, and are in contact with the outer periphery of the two rod-shaped insulating thermal conductors 34A, 34B.
  • a plurality of turns 31 is wound in a spiral in a spiral shape. Both ends of the wire-like shape memory alloy 31 are connected to electric terminals 37 provided on the base 33. Further, the switch 16 and the power source 17 are connected between both ends of the wire-like shape memory alloy 31.
  • Each of the two rod-like insulating heat conductors 32A and 32B described above is a basic component to constitute the impact drive type actuator 30 according to the present embodiment.
  • the movable rod-shaped insulating heat conductor 32B is pulled by the coil spring member 35 with respect to the fixed rod-shaped insulating heat conductor 32A, but the wire-like shape memory alloy 31 is spirally wound. Since they are turned, they are disposed at predetermined intervals as shown in FIG. 8A when the wire-like shape memory alloy 31 is not energized.
  • the switch 16 is turned on to energize the wire-like shape memory alloy 31, the wire-like shape memory alloy 31 contracts and the rod-like insulating heat conductor 32B is attracted and displaced in the direction of the arrow AL3. As shown in FIG. 8B, the distance between the two rod-shaped insulating heat conductors 32A and 32B is reduced by the distance d.
  • the rod-shaped insulating heat conductors 32A and 32B have a cylindrical shape with a circular cross section.
  • the wound wire-like shape memory alloy 31 is wired to be in contact with the circularly curved outer surface of each of the rod-shaped insulating heat conductors 32A and 32B.
  • the two rod-shaped insulating thermal conductors 32A and 32B have a flat surface portion facing each other and have a substantially semicircular cross section, thereby keeping the entire wire-like shape as it is.
  • the contact area with the memory alloy 31 can also be increased.
  • the wire-like shape memory alloy 31 can be wound in a figure of eight shape with respect to the two rod-like insulating heat conductors 32A and 32B.
  • the contact area between the wire-like shape memory alloy 31 and the rod-like insulating heat conductors 32A and 32B can be further increased, and the length of the wire-like shape memory alloy 31 can be further increased.
  • the displacement can also be increased.
  • the two rod-shaped insulating thermal conductors 32A and 32B simply shrink the distance between the two rods 32A and 32B because the wire-like memory alloy 31 shrinks with each current flow, and thus the distance can be simply changed. Can also function as an actuator.
  • FIG. 12 50 is an impact drive type actuator, and this impact drive type actuator 50 functions as a high speed response rotation brake device, and as one application example, at the time of rotation of a volume or rotation switch operated by a person, There is one that generates a click feeling due to impact-driven rotation brake action.
  • Reference numeral 51 denotes a wire-like shape memory alloy
  • reference numeral 52 denotes a rotary insulating heat conductor (hereinafter referred to as "rotary insulating heat conductor 52") having a shaft 53 at its central axis. The upper end of the shaft 53 is further extended and connected to the rotary drive, but in the illustrated example of FIG.
  • the extended portion of the upper end of the shaft 53 is omitted.
  • the wire-like shape memory alloy 51 is wound for approximately one turn around the outer peripheral surface of the rotary body insulating heat conductor 52. Both ends of the wire-like shape memory alloy 51 are fixed on the base 54 to the fixed terminals 54A and 54B. A switch 16 and a power supply 17 are connected in series between the two ends of the wire-like shape memory alloy 51.
  • the above-described rotor insulating heat conductor 52 is configured to be rotationally driven by a shaft 53 as indicated by an arrow AL4 based on power from the outside. Therefore, when the wire-like shape memory alloy 51 is not energized, the wire-like shape memory alloy 51 is in contact with the outer peripheral surface of the rotor insulating heat conductor 52 but not in strong contact. Therefore, the rotor insulating heat conductor 52 is free from the braking action (braking action) and is in a state of free rotation without being restrained.
  • the wire-like shape memory alloy 52 When the wire-like shape memory alloy 52 is energized, the wire-like shape memory alloy 52 shrinks instantaneously and makes strong contact with the outer peripheral surface of the rotor insulating heat conductor 52, and the rotor insulating heat conductor 52 is tightened. . As a result, a strong braking force is applied to the rotating body insulating heat conductor 52 in the rotating state.
  • the heat generated by the wire-like shape memory alloy 51 is dissipated through the rotor insulating heat conductor 52, and as a result, the length of the wire-like shape memory alloy 51 returns to the original length, and tightening Disappears and the braking action is released.
  • a wire is formed by winding the rotor insulating heat conductor 52, which is rotated by the rotational driving force given from the outside through the shaft 53, on the outer peripheral surface
  • the contraction by energization of the shape memory alloy 51 can be tightened to produce a braking action.
  • the intermittent instantaneous braking action on the rotor insulating heat conductor 52 based on the wire-like shape memory alloy 51 gives an impact to the shaft 53 and causes a click feeling to the operator rotating the shaft 53. be able to.
  • FIG. 13 denotes an impact drive type actuator, and the impact drive type actuator 60 realizes a motor which rotates in a direction shown by an arrow AL5, for example.
  • the impact drive type actuator 60 is composed of a wire-like shape memory alloy 61 and an insulating heat conductor 62 (hereinafter referred to as “rotor insulating heat conductor 62”) forming a hollow cylindrical rotating body, for example. Ru.
  • the rotor insulating heat conductor 62 is provided on the base 63 so as to be rotatable by the rotation support mechanism 62A.
  • the rotor insulating heat conductor 62 has a predetermined length in the axial direction, and a helical thread 62B is formed on the surface of the outer peripheral surface.
  • the wire-like shape memory alloy 61 is disposed in contact with the inside of the groove along the screw groove on the outer peripheral surface of the rotary conductive magnetic material 62 and wound by, for example, one turn.
  • One end of the wire-like shape memory alloy 61 is fixed to the fixed terminal 64A of the base 63, and the other end is fixed to the fixed terminal 64B via the drawn coil spring member 65.
  • a pulse drive device 66 is electrically connected between both ends of the wire-like shape memory alloy 61, and a pulse current is periodically applied to the wire-like shape memory alloy 61.
  • FIG. 14 shows an example of the periodic pulse drive current output from the pulse drive device 66.
  • the wire-like shape memory alloy 61 in the stretched state when a pulse current is applied from the pulse drive device 66, the wire-like shape memory alloy 61 in the stretched state generates heat due to the application of the pulse current and then dissipates heat.
  • the outer circumferential surface of the rotor insulating heat conductor 62 is tightened, and the coil spring member 65 is stretched, so that the rotor insulating heat conductor 62 has a predetermined angle in the direction of arrow AL5. Rotate.
  • the heat of the wire-like shape memory alloy 61 is dissipated through the rotor insulating heat conductor 62, and the length thereof is extended.
  • the rotary insulating mechanism 62A moves in the axial direction of the rotary insulating heat conductor 62 as the rotary insulating heat conductor 62 rotates.
  • the impact drive type actuator 60 having such a mechanism, for example, by attaching the camera lens to the hollow inside of the rotary member insulating heat conductor 62, it can be configured as a focus adjustment mechanism portion of the camera lens.
  • the rotation screw of the rotary conductive material 62 by the helical screw portion 62B, even if there is no other holding mechanism, etc. 62 also has a linear motion function that can advance and retreat. In this configuration, the length of the optical axis in the camera lens direction can be easily shortened.
  • FIG. 15 A sixth embodiment of the impact drive type actuator according to the present invention will be described with reference to FIG. 15 and FIG.
  • the sixth embodiment is a modification of the fifth embodiment described above. That is, in the configuration of the impact drive actuator 60 according to the fifth embodiment, the motor rotates in one direction, but in the configuration of the impact drive actuator 60-1 according to the present embodiment, the motor can rotate in the opposite direction. Can be realized. That is, as shown in FIG. 15, the rotational direction (counterclockwise direction) indicated by arrow AL6 which is opposite to the rotational direction (clockwise direction) indicated by arrow AL5 is relating to the rotational operation of the rotary electric conductor 61 To rotate).
  • another wire-like shape memory alloy 71 is wound around the thread groove of the outer peripheral surface of the rotor insulating heat conductor 62.
  • the winding direction of the wire-like shape memory alloy 71 is opposite to that of the wire-like shape memory alloy 61 described above.
  • the screw groove in which the wire-like shape memory alloy 71 is wound is different from the screw groove in which the wire-like shape memory alloy 61 is wound, and both are set so as not to be common.
  • the two wire-like shape memory alloys 61 and 71 are disposed in the screw groove so as not to contact each other.
  • One end of the wire-like shape memory alloy 71 is fixed to the fixed terminal 72A of the base 63, and the other end is fixed to the fixed terminal 72B via a drawn coil spring member 73.
  • another pulse driving device (not shown) is electrically connected between both ends of the wire-like shape memory alloy 71, and a pulse current is periodically applied to the wire-like shape memory alloy 71.
  • the other pulse drive device is a device similar to the pulse drive device 66 described above. When the other pulse drive device outputs a pulse signal, the wire-like shape memory alloy 71 is contracted periodically, and the rotor insulating heat conductor 62 is rotated in the direction of the arrow AL6.
  • the wire-like shape memory alloys 61 and 71 When the wire-like shape memory alloys 61 and 71 are in the stretched state, the wire-like shape memory alloys 61 and 71 are in loose contact with the outer circumferential surface of the rotor-insulating heat conductor 62. When the wire-like shape memory alloys 61 and 71 in the stretched state are energized and contracted, the wire-like shape memory alloys 61 and 71 fasten the outer peripheral surface of the rotor insulating heat conductor 62 and the coil spring members 65 and 73 Extends to produce a rotation of a predetermined angle in each set direction. By repeating the supply of the pulse current, the extension state (1), the contraction state (2), and the extension state (3) are repeated, and the rotation is performed. The contraction operation by the wire-like shape memory alloy 61 and the contraction operation by the wire-like shape memory alloy 71 are selectively performed.
  • FIG. 17 shows an engagement relationship between the rotary insulating magnetic conductor 62 and the wire-like shape memory alloy 61 (or 71) in the impact drive type actuators 60 60-1 having a function as a rotary motor.
  • the wire-like shape memory alloy 61 (or 71) is disposed in the thread groove 62B-1 of the spiral thread portion 62B formed on the outer peripheral surface of the rotor insulating heat conductor 62.
  • the rotor insulating heat conductor 62 is formed of an insulating material, and for example, as shown in FIG.
  • the wire shape memory alloy 61 (or 71) is in different screw grooves 62B-1 and both are Since the thread 62B-2 exists between them, each of the wire-like shape memory alloys 61 (or 71) is not separated and a short circuit does not occur.
  • the wire-like shape memory alloy 61 (or 71) firmly contacts the rotor insulating heat conductor 62 in the screw groove 62B-1, so efficient heat dissipation can be performed.
  • the wire-like shape memory alloy 61 performing the action of clockwise (AL5) and the wire-like shape memory alloy 71 performing the action of counterclockwise (AL6) Because the mountains are cut, wrap around several mountains away so that the wires do not hit each other.
  • FIG. 18 denotes an impact drive type actuator.
  • the impact drive type actuator 80 is, for example, a linear movement type (straight advance type) in which the movable portion moves in a direction as shown by an arrow AL7.
  • the impact-driven actuator 80 includes a wire-like shape memory alloy 81, and two rectangular insulating rectangular conductive conductors 82A and 82B (hereinafter referred to as “plate-like insulating thermal conductors 82A, 82B ").
  • the lower plate-like insulating heat conductor 82A is fixed and used as a stator.
  • the upper plate-shaped insulating heat conductor 82B has one end 82B-1 coupled to the fixed end 83 via a coil spring member 84 that is pulled, and the other end 82B-2 is a free end.
  • the plate-like insulating heat conductor 82B can move in the longitudinal direction of the plate-like insulating heat conductor 82A (in the direction of the arrow AL7) in a state of almost overlapping the fixed plate-like insulating heat conductor 82A. It is arranged as.
  • the wire-like shape memory alloy 81 as shown in FIG. 19, is disposed in the space between the two plate-like insulating heat conductors 82A and 82B stacked and one end of the plate-like insulating heat conductor 82A.
  • the wire-like shape memory alloy 81 is in a stretched state. Therefore, the wire-like shape memory alloy 81 connected to the one end 82A-1 of the plate-shaped insulating heat conductor 82A and the one end 82B-1 of the plate-shaped insulating heat conductor 82B has the end 82B-1 Since it is pulled by the coil spring member 84, it is in an extended state.
  • wire-like shape memory alloy 11 When the wire-like shape memory alloy 11 is intermittently energized, the wire-like shape memory alloy 11 contracts and the upper plate-like insulating heat conductor 82B resists the coil spring member 84 in the direction of the arrow AL7. Move in an instant.
  • a drive circuit is electrically connected between both ends of the wire-like shape memory alloy 11.
  • Reference numeral 85 denotes an electrical wiring for energization.
  • the upper plate-like insulating heat conductor 82B functions as a mover.
  • the above-mentioned impact drive type actuator 80 is a linear movement type in which the moving body is moved by placing the moving body on the plate-like insulating heat conductor 82B which is a moving element, as described below. Used as an actuator.
  • FIG. 20 and FIG. 20 An eighth embodiment of the impact drive type actuator according to the present invention will be described with reference to FIG. 20 and FIG.
  • This embodiment is configured based on an impact-driven actuator that enables linear movement of the mover described in FIG. 18, and the mover 86 is placed on the plate-shaped insulating heat conductor 82B that is the mover. By mounting, the moving body 86 is configured to be moved straight.
  • the configuration of the other parts is the same as the configuration described in FIG. 18, and in the configuration shown in FIG. 20, the same components as those shown in FIG. 18 are denoted by the same reference numerals.
  • a friction portion 87 is formed between the upper surface of the plate-like insulating heat conductor 82B and the lower surface of the moving body 86.
  • FIG. 21A The state shown in FIG. 21A is the switch 16 and the power supply 17 which form a drive circuit, and the switch 16 is in the off state. Accordingly, the upper plate-like insulating heat conductor 82B is pulled by the coil spring member 84, and the wire-like shape memory alloy 81 is in the stretched state. In the state of FIG. 21B, the switch 16 is suddenly turned on, and the wire-like shape memory alloy 81 is energized in a pulse manner, and the wire-like shape memory alloy 11 contracts instantaneously.
  • the plate-like insulating heat conductor 82B is momentarily displaced by P in the direction of the arrow AL7 against the coil spring member 84. Even if displacement occurs in the plate-like insulating heat conductor 82B, the moving body 86 on the plate-like insulating heat conductor 82B slips in the friction portion 87 due to inertia, and the moving body 86 does not displace, It remains in the same position of the mobile unit 86. Thereafter, in the state of FIG. 21C, when the switch 16 is turned off and the current is not supplied, the wire-like shape memory alloy 81 is dissipated, and slowly returns to its original length (stretched state).
  • the position of the heat conductor 82B is also pulled by the coil spring member 84 back to its original position due to friction.
  • the position of the moving body 86 also changes with the movement of the plate-like insulating heat conductor 82B.
  • the moving body 86 is consequently moved in the left direction in the drawing by the distance d.
  • the amount of movement per time can be increased as compared with a linear actuator using a piezoelectric element, and the drive frequency can be significantly reduced.
  • the linear movement type actuator can be realized with a low cost and simple drive circuit configuration.
  • the drive circuit 41 includes a DC / DC converter 42, a battery 43, a charging resistor 44, and a discharging capacitor 45.
  • the drive circuit 41 converts the DC voltage applied from the battery 43 by the DC / DC converter 42 to generate, for example, a predetermined DC voltage boosted.
  • the drive circuit 41 is a specific circuit configuration of the power supply 17 described above.
  • the switching transistor 47 is an output end of the drive circuit 41, and one end of a wire-like shape memory alloy 11 or the like is connected to the output end 46 as a load.
  • the switching transistor 47 is connected between the other end of the wire-like shape memory alloy 11 and the like and the ground.
  • the switch transistor 47 corresponds to the switch 16 described above.
  • the switching transistor 47 has a pulse signal supplied to a control terminal 47a connected to the base. When the control signal is supplied to the switching transistor 47, the switching transistor 47 is turned on instantaneously and a current Im flows, whereby current is supplied to the wire-shaped shape memory alloy 11 etc. instantaneously. By supplying a pulse signal to the base of the switching transistor 47, current is intermittently supplied to the wire-like shape memory alloy 11 and the like each time.
  • the drive circuit 41 drives the wire-like shape memory alloy 11 with the output of high voltage (for example, 20 V) and large current (for example, peak current 2A).
  • high voltage for example, 20 V
  • large current for example, peak current 2A.
  • the drive circuit 41 when the drive circuit 41 has the current supply capability of the battery 43, the wire-like shape memory alloy 11 etc. Can be configured to drive directly. In this case, the DC / DC converter 42, the charging resistor 44, and the discharging capacitor 45 become unnecessary, and the drive circuit 41 can be simplified.
  • the cooling time As much as possible.
  • a voltage higher than that of the battery 43 is required, and a DC / DC converter 41 for boosting the voltage is used.
  • the discharging capacitor 45 is charged with a high voltage to turn on the switching transistor 47, whereby the charges accumulated in the discharging capacitor 45 are released at once in the form of current. Since this time is the discharge time Tr and the resistance value of the wire-like shape memory alloy 11 or the like is low, the current Im flows instantaneously.
  • the current Im flows instantaneously to the wire-like shape memory alloy 11 or the like, and the wire-like shape memory alloy itself is heated, and the wire-like shape memory alloy 11 or the like shrinks to be in strong contact with the insulating heat conductor. Since the current is instantaneous, when the wire-like shape memory alloy 11 or the like hits the insulating heat conductor, the current flowing is almost zero. For this reason, even if the insulation of the insulating heat conductor degrades, a short circuit state does not occur and a large current does not continue to flow, and a safe circuit is obtained.
  • the cross section may not be round, but may be rectangular in cross section.
  • the configurations, shapes, sizes, and arrangement relationships described in the above embodiments are merely schematics to the extent that the present invention can be understood and practiced, and numerical values, compositions (materials) of each configuration, etc. Is merely an example. Therefore, the present invention is not limited to the described embodiments, and can be modified in various forms without departing from the scope of the technical idea shown in the claims.
  • the impact drive type actuator according to the present invention is configured by utilizing the expansion and contraction action of a wire-like shape memory alloy, and the temperature is lowered by utilizing the heat dissipation action of a disk-like insulating heat conductor or the like after electric heating. Responsiveness can be improved, and it is used as a highly practical impact drive type actuator, and is further used as a drive mechanism of a rotary motor or a linear motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermally Actuated Switches (AREA)
  • Toys (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

 この衝撃駆動型アクチュエータ(10)は、通電加熱で収縮するワイヤー状形状記憶合金(11)と、このワイヤー状形状記憶合金(11)に接触し当該ワイヤー状形状記憶合金で生じた熱を逃がす円盤状絶縁性熱伝導体(12)と、ワイヤー状形状記憶合金に対して瞬間的に通電を行いワイヤー状形状記憶合金を瞬間的に収縮させる駆動回路部(16,17)と、を備えるように構成される。この衝撃駆動型アクチュエータによれば、形状記憶合金の熱特性を考慮して高い放熱作用を生じる熱伝導構造を実現したため、ワイヤー状形態を有する形状記憶合金の伸縮変形を利用しかつその変形動作特性の迅速性および即応性を良好にし、実用性を高めることが可能となる。

Description

衝撃駆動型アクチュエータ
 本発明は、衝撃駆動型アクチュエータに関し、特に、ワイヤー状形態を有する形状記憶合金の長さ方向の伸縮変化を利用して水平方向(または平面方向)または上下方向(前後方向または厚み方向)の衝撃的な動き(衝撃動作)、および当該衝撃動作の繰り返しに基づく回転動作または直進動作を可能にする衝撃駆動型アクチュエータに関する。
 形状記憶合金を利用したアクチュエータとして、従来、特許文献1~3に記載されたアクチュエータがある。
 特許文献1は、二方向性形状記憶効果を有する形状記憶合金アクチュエータにおいて、非常に多数回の繰り返し動作に耐えかつ動作寿命を飛躍的に長くすることができ、操作範囲を広くし、さらに形状を安定化させた形状記憶合金アクチュエータの設計手法を提案している。「二方向性形状記憶効果」とは、一定形状を記憶させた形状記憶合金を低温で変形し、その後、加熱すると元の記憶した形状に戻り、さらにこれを低温にすると、当該低温で変形した形状に戻る現象のことである。二方向性形状記憶効果では、加熱と冷却だけで、外部からバイアス力を作用させることなく、形状記憶合金が自発的に形状変化を繰り返す。二方向性形状記憶効果を有する形状記憶合金アクチュエータでは、低温時に変形した形状(マルティンサイト状態の形状)と高温時に形状回復した形状(母相状態の形状)との2つの形状を記憶するような挙動を示す。
 特許文献2に記載される形状記憶合金アクチュエータでは、いずれも平板状の支持基材と可動子との間に、複数本の形状記憶合金線を配置している。これらの形状記憶合金線は、支持基材と可動子の各々の対向面に形成された凹凸部に接触するように、さらに弛んだ状態で架け渡すように、配線されている。可動子は、外側に外力が与えられており、支持基材に押し付けられている。形状記憶合金線は常温では弛んだ状態にあり、通電で加熱すると収縮緊張して直線状に張り、可動子が移動するように構成されている。
 特許文献3に開示される駆動装置では、形状記憶合金を有するアクチュエータにおいて応答の高速化を図っている。このアクチュエータでは、形状記憶合金に駆動電流を通電し加熱を生じさせて復元動作を行わせるようにし、さらに、可動部の変位目標値に基づき形状記憶合金の変位量を決めるように形状記憶合金の駆動電流量を生成する制御を行っている。特許文献3に開示された発明は、形状記憶合金を有するアクチュエータで構成される駆動装置において、アクチュエータの応答の高速化を効率よく図るものである。
特開2003-003948号公報 特開2005-226458号公報 特開2006-166555号公報
 形状記憶合金を利用したアクチュエータは、形状記憶合金における低温時(常温時)に変形した形状と高温時(通電発熱時)に形状回復した形状との変化を記憶する挙動を利用して駆動動作を行う。形状記憶合金の挙動の応答性は、高温時から低温時への熱状態の変化に依存する。従来の形状記憶合金を利用したアクチュエータは、高温時から低温時への熱状態の変化について十分に考慮されておらず、そのため動作応答性が低く、実用性が低いという欠点を有していた。
 本発明の目的は、上記の課題に鑑み、形状記憶合金の熱特性を考慮して高い放熱作用を生じる熱伝導構造を実現することにより、ワイヤー状形態を有する形状記憶合金の伸縮変形を利用しかつその変形動作特性の迅速性および即応性を良好にし、実用性を高めた衝撃駆動型アクチュエータを提供することにある。
 本発明に係る衝撃駆動型アクチュエータは、上記の目的を達成するため、次のように構成される。
 本発明に係る衝撃駆動型アクチュエータは、通電加熱で収縮するワイヤー状形状記憶合金と、ワイヤー状形状記憶合金に接触し当該ワイヤー形状記憶合金で生じた熱を逃がす絶縁性熱伝導体と、ワイヤー状形状記憶合金に対して瞬間的に通電しワイヤー状形状記憶合金を収縮させる駆動回路部とを備えることで特徴づけられる。
 上記の衝撃駆動型アクチュエータでは、所定の配線状態で配置されるワイヤー状の形状記憶合金に対して、当該ワイヤー状形状記憶合金に接触させることにより当該形状記憶合金で生じた熱を迅速に放散させて逃がす絶縁性熱伝導体を設けるようにしたため、瞬間的な通電による発熱で生じた熱を迅速に逃がすことができ、ワイヤー状形状記憶合金の低温化を迅速に達成することができる。
 上記の構成において、好ましくは、絶縁性熱伝導体は少なくとも一部に略円周形状を有し、絶縁性熱伝導体の円周面に接触するようにワイヤー状形状記憶合金を配置し、ワイヤー状形状記憶合金は、通電で収縮する時、絶縁性熱伝導体の位置を変位させることを特徴とする。
 ワイヤー状形状記憶合金で発生する通電時の熱を、絶縁性熱伝導体の円周面のほぼ半円部の全域を利用して放散するようにしたため、熱の逃げ道を大きくとることができ、ワイヤー状形状記憶合金の迅速な低温下を可能にする。また半円形の形状で利用され、かつワイヤー状形状記憶合金の全体が絶縁性熱伝導体の円周面の半円部に当たるように構成することにより、ワイヤー状形状記憶合金の収縮動作によって縁性熱伝導体の半径方向の動きに変換することができ、絶縁性熱伝導体の径方向の衝撃を可能にする駆動部として用いることができる。
 上記の構成において、好ましくは、絶縁性熱伝導体の円周面は溝が形成され、ワイヤー状形状記憶合金は溝の中に配置されることを特徴とする。
 溝は、例えば断面形状がV字型であり、ワイヤー状形状記憶合金はV字溝の2つの壁面の各々に接触するように配置されるため、熱の放散機能を高めることができる。
 上記の構成において、好ましくは、絶縁性熱伝導体は、略平行に対向しかつ複数の凹凸突起部を有する2つの構成部材で構成され、2つの構成部材の間に、ワイヤー状形状記憶合金が凹凸突起部に接するように配置され、ワイヤー状形状記憶合金は、通電で収縮する時、2つの構成部材の間隔を変化させることを特徴とする。
 この構成によれば、ワイヤー状形状記憶合金の収縮動作を板材の面に直交する方向の板材の動き(変位)に変換することができ、2つの構成部材の間隔を変化させることができる。
 上記の構成において、好ましくは、絶縁性熱伝導体は、略平行に対向しかつ略棒状またはパイプ形状を有する2本の構成部材で構成され、2本の構成部材の周囲に接するようにワイヤー状形状記憶合金が螺旋形に巻回され、ワイヤー状形状記憶合金は、通電で収縮する時、2本の構成部材の間隔を小さくするように変位させることを特徴とする。
 2本の構成部材の絶縁性熱伝導体に関して、間をあけて配置し、当該間をあけるように1本の構成部材が弾性支持されており、かつ一方を固定しかつ弾性支持された他方を移動自在とし、この状態でワイヤー状形状記憶合金を収縮させて、他方の構成部材を、固定された一方の構成部材に接近するように変位させる。
 上記の構成において、好ましくは、ワイヤー状形状記憶合金は輪状または8の字状に巻回されることを特徴とする。
 8の字状に巻回する構成では、ワイヤー状形状記憶合金と棒状絶縁性熱伝導体の表面との接触面積を大きくすることができ、これにより通電で生じた熱の放散能力を高めることができる。
 上記の構成において、好ましくは、2本の構成部材からなる絶縁性熱伝導体の各々は、少なくともワイヤー状形状記憶合金と接触する外表面はその断面が略半円を含む曲線となるよう構成されていることを特徴とする。
 上記の構成において、好ましくは、絶縁性熱伝導体は、回転自在に設けられた回転体として形成され、ワイヤー状形状記憶合金は、絶縁性熱伝導体の円周面に接触しかつ巻回して設けられると共に、両端を固定され、ワイヤー状形状記憶合金は、通電で収縮する時、絶縁性熱伝導体を締め付けその回転動作を制動することを特徴とする。
 上記の構成では、ワイヤー状形状記憶合金の収縮による作用を、回転体の回転動作にブレーキ(制動)をかけるための手段として利用することが可能となる。
 上記の構成において、好ましくは、絶縁性熱伝導体は回転自在に設けられた回転体として形成され、かつその円周面に螺旋状の溝が形成され、ワイヤー状形状記憶合金は、絶縁性熱伝導体の円周面の溝内に接触しかつ巻回して設けられると共に、一端は固定されかつ他端は引張されるように弾性機構部で支持され、ワイヤー状形状記憶合金は、通電で収縮する時、絶縁性熱伝導体を回転させることを特徴とする。
 上記の構成では、ワイヤー状形状記憶合金を短時間の収縮を繰り返し、かつ回転体絶縁性熱伝導体の円周面に形成された螺旋状の溝との係合関係を利用して、当該回転体絶縁性熱伝導体を任意の一方向に回転させるための衝撃駆動型アクチュエータとして用いることができる。
 上記の構成において、好ましくは、ワイヤー状形状記憶合金とは別に、第2のワイヤー状形状記憶合金が設けられ、第2のワイヤー状形状記憶合金は、絶縁性熱伝導体の円周面の溝内に接触しかつワイヤー状形状記憶合金の巻き方向とは反対の方向に巻回して設けられると共に、一端は固定されかつ他端は引張されるように第2の弾性機構部で支持され、ワイヤー状形状記憶合金は、通電で収縮する時、絶縁性熱伝導体を一方向に回転させ、かつ第2のワイヤー状形状記憶合金は、通電で収縮する時、絶縁性熱伝導体を反対方向に回転させることを特徴とする。
 上記の構成では、2本のワイヤー状形状記憶合金を利用することにより、時計回り方向と反時計回り方向の2方向の回転を可能にする。
 上記の構成において、好ましくは、絶縁性熱伝導体の円周面に形成された溝は螺旋状のネジ溝であり、このネジ溝の構造によってワイヤー状形状記憶合金は自らと接触することがないことを特徴とする。
 上記の構成において、好ましくは、絶縁性熱伝導体は板状の形態を有し、2枚の板状絶縁性熱伝導体を対面して配置し、一方の板状絶縁性熱伝導体は固定され、かつ他方の板状絶縁性熱伝導体は移動自在に配置されると共に弾性機構部で一方向に引かれるように設けられ、2枚の板状絶縁性熱伝導体の間にワイヤー状形状記憶合金を配置してワイヤー状形状記憶合金で2枚の板状絶縁性熱伝導体を連結し、ワイヤー状形状記憶合金は、通電で収縮する時、移動自在の板状絶縁性熱伝導体を弾性機構部に抗して所定距離だけ変位させることを特徴とする。
 上記の構成において、好ましくは、移動自在の板状絶縁性熱伝導体の上に摩擦接触状態で移動体を配置し、移動自在な板状絶縁性熱伝導体に繰り返して変位を生じさせることにより移動体を一方向に移動させるようにしたことを特徴とする。
 上記の構成において、好ましくは、入力電圧を高電圧へ変換する昇圧回路と、その電圧から充電されるコンデンサと、コンデンサからワイヤー状形状記憶合金とスイッチング素子が直列に接続され、瞬間的にワイヤー状形状記憶合金へ電流を流すことを特徴とする。
 上記の構成において、好ましくは、絶縁性熱伝導体は、少なくともワイヤー状形状記憶合金と接触する表面部分が酸化アルミニウム(アルミナ)または窒化アルミニウムで構成されたことを特徴とする。
 さらに上記の構成において、好ましくは、絶縁性熱伝導体は、それぞれ略平行に対向しかつ複数の突起部材を備える2つの構成部材で構成され、これらの2つの構成部材の各々で、複数の突起部材は分離されており、かつ複数の突起部材は導電部材で構成され、2つの構成部材の間に、ワイヤー状形状記憶合金が突起部材の導電部材で構成された部分に接するように配置され、ワイヤー状形状記憶合金は、通電で収縮する時、2つの構成部材の間隔を変化させることを特徴とする。
 本発明に係る衝撃駆動型アクチュエータによれば、所定の配線状態で配置されるワイヤー状形状記憶合金に対して各種形状の絶縁性熱伝導体を可能な限り有効に接触させるように設け、この絶縁性熱伝導体によってワイヤー状形状記憶合金でパルス的通電時に生じた熱を迅速に放散させて逃がすようにしたため、ワイヤー状形状記憶合金の低温化を迅速に行うことができ、比較的に短い時間で繰り返すことが可能な瞬間的動作を実現することができ、実用性の高い衝撃駆動型アクチュエータを実現することができる。
本発明の第1の実施形態に係る衝撃駆動型アクチュエータの要部の外観を示す斜視図である。 第1の実施形態に係る衝撃駆動型アクチュエータでワイヤー状形状記憶合金が低温であるときの状態(A)と、通電加熱(高温)であるときの状態(B)を示す平面図である。 第1の実施形態に係る衝撃駆動型アクチュエータでワイヤー状形状記憶合金と円盤状絶縁性熱伝導体との接触状態を示す部分断面図である。 第1の実施形態に係る衝撃駆動型アクチュエータでワイヤー状形状記憶合金と円盤状絶縁性熱伝導体との接触を通して放熱する状態を示す部分断面図である。 本発明の第2の実施形態に係る衝撃駆動型アクチュエータの要部の外観を分解して示す斜視図である。 第2の実施形態に係る衝撃駆動型アクチュエータでワイヤー状形状記憶合金が低温であるときの状態(A)と、通電加熱(高温)であるときの状態(B)とを示す端面図である。 本発明の第3の実施形態に係る衝撃駆動型アクチュエータの要部の外観を示す斜視図である。 第3の実施形態に係る衝撃駆動型アクチュエータでワイヤー状形状記憶合金が低温であるときの状態(A)と、通電加熱(高温)であるときの状態(B)とを示す縦断面図である。 第3の実施形態の第1の変形例に係る衝撃駆動型アクチュエータで、図8の(A)と同様な図である。 第3の実施形態の第2の変形例に係る衝撃駆動型アクチュエータで、ワイヤー状形状記憶合金の巻き方を示す要部の部分斜視図である。 第3の実施形態の第2の変形例に係る衝撃駆動型アクチュエータでワイヤー状形状記憶合金が低温であるときの状態(A)と、通電加熱(高温)であるときの状態(B)とを示す縦断面図である。 本発明の第4の実施形態に係る衝撃駆動型アクチュエータの要部の外観を示す斜視図である。 本発明の第5の実施形態に係る衝撃駆動型アクチュエータの要部の外観を示す斜視図である。 第5の実施形態に係る衝撃駆動型アクチュエータに供給される駆動電流を示す波形図である。 本発明の第6の実施形態に係る衝撃駆動型アクチュエータの要部の外観を示す斜視図である。 第6の実施形態に係る衝撃駆動型アクチュエータの動作特性で、反時計回りの方向の回転動作の駆動状態(A)と時計回りの方向の回転動作の駆動状態(B)とを説明するための図である。 第6の実施形態に係る衝撃駆動型アクチュエータにおいて、ワイヤー状形状記憶合金と回転体絶縁性熱伝導体の外周面のネジ部との係合関係を示す部分断面図である。 本発明の第7の実施形態に係る衝撃駆動型アクチュエータの要部の外観を示す斜視図である。 第7の実施形態に係る衝撃駆動型アクチュエータで2枚の板状絶縁性熱伝導体とワイヤー状形状記憶合金との関係を示す分解斜視図である。 本発明の第8の実施形態に係る衝撃駆動型アクチュエータの要部の外観を示す斜視図である。 第8の実施形態に係る衝撃駆動型アクチュエータで直進的な駆動動作を説明する図である。 本発明に係る衝撃駆動型アクチュエータで使用される駆動回路の電気回路図である。 駆動回路の各部の動作特性を示す波形図である。
 以下に、本発明の好適な実施形態(実施例)を図面に基づいて説明する。
 [第1の実施形態]
 図1~図4を参照して、本発明に係る衝撃駆動型アクチュエータの第1の実施形態を説明する。各図において、10は衝撃駆動型アクチュエータであり、11はワイヤー状形状記憶合金であり、12は円盤形状の絶縁性熱伝導体(以下「円盤状絶縁性熱伝導体12」と記す)である。ワイヤー状形状記憶合金11は、衝撃駆動型アクチュエータ10を構成する上で必要とされる所定の長さを有している。実際上、ワイヤー状形状記憶合金11のワイヤー径およびワイヤー長は任意であり、作製しようとする衝撃駆動型アクチュエータ10の全体のサイズに応じて適宜に決められる。また円盤状絶縁性熱伝導体12は代表的に酸化アルミニウム(アルミナ)で形成され、好ましくは、高い電気的絶縁性と熱伝導性を有している。なお円盤状絶縁性熱伝導体12は、なくともワイヤー状形状記憶合金11と接触する表面部分のみが酸化アルミニウムであっても良い。この場合には、例えば、円盤状絶縁性熱伝導体12の全体をアルミニウムで作り、所要の表面部分のみを酸化アルミニウムに変化させる。酸化アルミニウムの表面は電気メッキと類似の工程である陽極酸化処理によって形成されるが、元のアルミニウムに比べて格段に硬くなり、表面硬度が増して、摩擦耐性も向上するという好ましい特性を持つ。また円盤状絶縁性熱伝導体12の材料としては窒化アルミニムやダイヤモンドを用いることもできる。窒化アルミニムやダイヤモンドの熱伝導度は酸化アルミニウムより優れており、コストを度外視すればより適した材料である。
 さらに上記の「絶縁性熱伝導体」については、一般的に導電性の材質で作り、絶縁性を持たせるため、導電性材質を複数に分断化して全体的に見て絶縁性を確保する処理または加工を行うようにすることもできる。
 円盤状絶縁性熱伝導体12は、例えば基台13の上に設けられ、かつ図1等に示されるようにワイヤー状形状記憶合金11の収縮作用により矢印AL1の方向(一面内の任意な直線方向)に移動可能な取付け構造で取り付けられている。円盤状絶縁性熱伝導体12は、弾性機構部14によって矢印AL1の反対の方向に押圧するように支持されている。弾性機構部14は、基台13に固定される端部14aと、円盤状絶縁性熱伝導体12の円周面の一箇所に接触して移動可能であって当該箇所を押圧する端部14bと、2つの端部14a,14bの間に配置されかつ所要の収縮状態で設けられたコイルスプリング部材14cとによって構成されている。コイルスプリング部材14cの伸長作用に基づき移動端部14bは円盤状絶縁性熱伝導体12の円周面を押圧する。
 所定の長さのワイヤー状形状記憶合金11は、円盤状絶縁性熱伝導体12の円周面のほぼ半分領域(半円形湾曲面)に接触するように配置されている。ワイヤー状形状記憶合金11の両端11a,11bは基台13にネジ15等の電気端子で固定されている。ワイヤー状形状記憶合金11は、図3に示すように、円盤状絶縁性熱伝導体12の円周面の円周方向に例えばV字形状の断面で形成された溝12a内に配置され、かつワイヤー状形状記憶合金11のほぼ全部が溝12a内に存在して溝面に接触するようにしている。ワイヤー状形状記憶合金11の通常の伸長状態において円盤状絶縁性熱伝導体12が弾性機構部14によって矢印AL1の反対方向に押圧されているので、ワイヤー状形状記憶合金11のほぼ全領域が溝12aの溝面にしっかりと接触した状態にある。
 図2の(A),(B)に示すように、ワイヤー状形状記憶合金11の両端11a,11bには、スイッチ16を介して電源17が接続される。スイッチ16と電源17でワイヤー状形状記憶合金11を収縮させる電気駆動回路部が形成される。スイッチ16は、一般的には半導体スイッチであり、パルス信号でオン・オフ制御される。図2の(B)に示すように、スイッチ16が所要の短時間オンすると、ワイヤー状形状記憶合金11には瞬時に通電され、この通電によって瞬時に発熱し、その結果、ワイヤー状形状記憶合金11は瞬時に収縮するように駆動される。そのため、図1および図2(A)に示すように、円盤状絶縁性熱伝導体12は、弾性機構部14の押圧に抗してそのコイルスプリング部材14cを縮めるように、瞬時に矢印AL1の方向にその位置を距離dだけ変位する。ワイヤー状形状記憶合金11への上記通電が間欠的に行われると、その通電による発熱によってワイヤー状形状記憶合金11は間欠的に収縮する。ワイヤー状形状記憶合金11は、元の長さに対してほぼ4%程度収縮する。ワイヤー状形状記憶合金11への通電がなくなると、図4に示すように円盤状絶縁性熱伝導体12による熱伝導作用18によってワイヤー状形状記憶合金11で生じた熱が急速に放熱される。その結果、ワイヤー状形状記憶合金11は直ぐに元の長さ状態(伸長状態)に戻る。こうして、ワイヤー状形状記憶合金11において、相対的に短い時間間隔での瞬間的な収縮を行うことが可能となる。
 上記構成を有する第1の実施形態に係る衝撃駆動型アクチュエータ10によれば、ワイヤー状形状記憶合金11に間欠的に通電が行われるたびに発熱して収縮し、弾性機構部14に抗して円盤状絶縁性熱伝導体12の位置を距離dだけ変位させる。通電終了後には、発生した熱は円盤状絶縁性熱伝導体12の熱伝導作用で放熱するので、ワイヤー状形状記憶合金11は迅速に伸長して弾性機構部14の押圧作用で円盤状絶縁性熱伝導体12は元の位置に戻る。このようにして衝撃駆動型アクチュエータ10は衝撃駆動動作を行う。
 円盤状絶縁性熱伝導体12においてワイヤー状形状記憶合金11と接する面の平面形状が、円盤状になっているのには次の理由がある。ワイヤー状記憶合金11に電流が流れて収縮し、その結果円盤状熱伝導体が移動するが、その移動した後の状態においても、ワイヤー状記憶合金11が円盤状絶縁性熱伝導体と大部分においてしっかりと接する形状がおおかたにおいて曲線を持った円形となる。図2において(A)はワイヤー状記憶合金11が縮む前の状態、(B)は縮んだ後の状態を表わしている。そのどちらにおいても、ワイヤー状記憶合金11と円盤状絶縁性熱伝導体12とが接している部分がほとんど変わらない。これが例えば、仮に円盤状絶縁性熱伝導体12が直線で形成される四角形だとすると、円盤状絶縁性熱伝導体12の移動に伴ってワイヤー状形状記憶合金11が、全面的に離れて、放熱特性が著しく悪化するために、この用途には適さないことになってくる。
 以上では、絶縁性熱伝導体12が好ましくは円盤の形状であると説明したが、図示しないが、一部のみに略円周形状を有する絶縁性熱伝導体であっても良い。要は、ワイヤー状形状記憶合金11が接する部分の形状が略円周形状であれば、アクチュエータとしての本質的な動作は全く同じとなる。
 [第2の実施形態]
 図5と図6を参照して、本発明に係る衝撃駆動型アクチュエータの第2の実施形態を説明する。各図において、20は衝撃駆動型アクチュエータであり、21はワイヤー状形状記憶合金であり、22は例えば丸棒形状(円柱形状または円管形状、その他の断面形状を有する部材)の絶縁性熱伝導体(以下では代表的に「丸棒状絶縁性熱伝導体22」と記す)であり、23A,23Bは板材である。2枚の板材23A,23Bについて、図5中下側の板材23Aは固定側板材であり、図中上側の板材23Bは移動側板材である。2枚の板材23A,23Bは、平行にかつ対向するように配置されている。板材23Aの位置は変化しないが、板材23Bは矢印AL2の方向(上下方向、厚み方向、または板材23A,23Bに直角な方向)に移動可能に設けられている。
 2枚の板材23A,23Bの間には、平行な配置関係で複数本の丸棒状絶縁性熱伝導体22が配置される。複数本の丸棒状絶縁性熱伝導体22は、固定側の丸棒状絶縁性熱伝導体22Aと移動側の丸棒状絶縁性熱伝導体22Bとに分けられる。
 固定側の板材23Aの上には固定側の複数本の丸棒状絶縁性熱伝導体22Aが平行にかつ所定の距離をあけて分離して配置され、かつ固定されている。移動側の板材23Bには移動側の複数本の丸棒状絶縁性熱伝導体22Bが平行に所定の距離をあけて分離して配置され、かつ固定されている。固定側および移動側の丸棒状絶縁性熱伝導体22A,22Bは、図6に示すように、交互に配置されることになる。固定側および移動側の丸棒状絶縁性熱伝導体22A,22Bの各々の本数はほぼ等しい。固定側の丸棒状絶縁性熱伝導体22Aと移動側の丸棒状絶縁性熱伝導体22Bとの間には、丸棒状絶縁性熱伝導体の長手方向に交差(好ましくは直交)するように、少なくとも1本のワイヤー状形状記憶合金21が配置される。換言すれば、固定側の丸棒状絶縁性熱伝導体22Aと移動側の丸棒状絶縁性熱伝導体22Bとにより形成された、2つの板材23A,23Bの間の複数の凹凸突起部に接するように、ワイヤー状形状記憶合金21が配置されている。ワイヤー状形状記憶合金21の両端は固定側の板材23Aに固定されている。ワイヤー状形状記憶合金21に対して、固定側の丸棒状絶縁性熱伝導体22Aは固定側の板材23Aの側に配置され、移動側の丸棒状絶縁性熱伝導体22Bは移動側の板材23Bの側に配置される。板材23Aと複数本の丸棒状絶縁性熱伝導体22Aとによって固定側の第1の構成部材101が形成され、板材23Bと複数本の丸棒状絶縁性熱伝導体22Bとによって移動側の第2の構成部材102が形成される。
 図5に示された図示例では、第1の構成部材101および第2の構成部材102は、それぞれ個別の要素である、板材23Aまたは23B、複数本の丸棒状絶縁性熱伝導体22Aまたは22Bによって構成されるが、これらの要素をアルミニウムなどの金属材料の切削による一体成型で作り、その表面をアルマイト処理したものでも良い。さらに一体成型で作った上記の第1および第2の構成部材を、上記の丸棒状絶縁性熱伝導体22A,22Bに相当する突起状の部材として分離するように加工し、その後において第1および第2の構成部材として構成することもできる。この構成の場合、絶縁性のための表面処理であるアルマイト処理を省略することもできる。このような分離加工を行うことにより隣接する突起状部材の間の絶縁性を確保、構成部材101および構成部材102を全体として絶縁性熱伝導体とすることができる。
 ワイヤー状形状記憶合金21には、スイッチ16と電源17とによって間欠的に通電が行われる。
 ワイヤー状形状記憶合金21に通電がなされない状態では、図6の(A)に示すように、2枚の板材23A,23Bの間隔はh1の状態にある。2枚の板材23A,23Bの間には両者を引張するコイルスプリング部材(図示せず)が設けられ、間隔h1を保つ。ワイヤー状形状記憶合金21に通電が行われた場合には、図6の(B)に示すように、ワイヤー状形状記憶合金21が収縮し、引張状態にあるコイルスプリング部材に抗して丸棒状絶縁性熱伝導体22Bを上方に変位させ、2枚の板材23A,23Bの間隔を大きくして間隔h2となる。
 上記構成を有する第2の実施形態に係る衝撃駆動型アクチュエータ20によれば、ワイヤー状形状記憶合金21に間欠的に通電が行われるたびに発熱して収縮し、移動側の丸棒状絶縁性熱伝導体22Bと板材23Aの位置を変位させ、2枚の板材23A,23Bの間隔を大きくする。通電終了後には、発生した熱は複数本の丸棒状絶縁性熱伝導体22(22A,22B)の熱伝導作用で放熱するので、ワイヤー状形状記憶合金21は迅速に伸長して弾性機構部の押圧作用で丸棒状絶縁性熱伝導体22Bと板材23Aは元の位置に戻る。このようにして衝撃駆動型アクチュエータ20は上下方向の衝撃駆動動作を行う。
 以上は、ワイヤー状形状記憶合金21に通電すると、第1の構成部材101と第2の構成部材102の間隔が大きくなることを説明したが、図6において次のように変更を行うことで、ワイヤー状形状記憶合金21への通電によって、上記の間隔を小さく縮ませることができる。
 すなわち、図示しないが、図6のワイヤー状形状記憶合金21のワイヤーの張り方が左から凸凹となって丸棒状絶縁性熱伝導体22Aおよび22Bに接しているのを、同じく左から凹凸と丸棒状絶縁性熱伝導体22Aおよび22Bに接するように変更する。ただし、この場合には、ワイヤー状形状記憶合金21が通るような通り穴を板材23Aおよび23Bに設けておく必要がある。この場合には、上記とは反対に、2枚の板材23A,23Bの間には両者の間を拡張するコイルスプリング部材(図示せず)が設けられ、ワイヤー状形状記憶合金に通電される前には、より広い間隔が保たれる。
 また以上の説明では、ワイヤー状形状記憶合金21が2本用いられるように説明したが、ワイヤー状形状記憶合金21の本数は1本でも2本以上でも良い。さらに丸棒状絶縁性熱伝導体22(22A,22B)は、その長さの最低はワイヤー状形状記憶合金21が接すれば良いので、衝撃駆動型アクチュエータ20の全体の幅を小さくすることもできる。
 また上記の説明では、符号22で示した部材を丸棒形状の絶縁性熱伝導体として説明した。しかし、部材22には、その表面では電気が流れる特性を有するが、隣接するもの同士が電気的に絶縁されている熱伝導体(突起状部材で形成される構成部材。「絶縁性熱伝導体」に相当する。)であってもよい。この場合、絶縁性熱伝導体の断面形状は、丸、円管等の形状には限定されず、突起部を形成する任意の形状であってもよい。さらにこのときには、その表面材質には銅やアルミニウム等の金属(導電部材)を用いることができる。この場合には、ワイヤー状形状記憶合金21は、部材22に接している部分(表面金属部分)は電気的に短絡され、通電に起因する発熱は生じない。ワイヤー状形状記憶合金21において、通電によって発熱する部分は、隣接する2つの絶縁性熱伝導体の各々に接触する箇所の間の区間の部分である。部材22についてこのような構造を採用することにより、等価的な電気抵抗を下げることができ、熱伝導効率を向上させることができ、さらに本発明に係る衝撃駆動型アクチュエータを低電圧で駆動することができる。
 [第3の実施形態]
 図7~図11を参照して、本発明に係る衝撃駆動型アクチュエータの第3の実施形態を説明する。図7において、30は衝撃駆動型アクチュエータであり、31はワイヤー状形状記憶合金であり、32A,32Bは棒形状(円柱、角柱、その他にパイプ形状等)の絶縁性熱伝導体(以下「棒状絶縁性熱伝導体32A,32B」と記す)である。本実施形態の衝撃駆動型アクチュエータ30では、2本の棒状絶縁性熱伝導体32A,32Bを有し、一方の棒状絶縁性熱伝導体32Aはその両端部を基台33に固定されており、他方の棒状絶縁性熱伝導体32Bは移動自在に配置されている。移動自在な棒状絶縁性熱伝導体32Bは、その両端部は支持板34に固定されている。さらに両端の2枚の当該支持板34の各々は、引張状態にあるコイルスプリング部材35を介して基台33上の固定端部36に結合されている。2本の棒状絶縁性熱伝導体34A,34Bは所定の隙間をあけて平行に配置され、かつ2本の棒状絶縁性熱伝導体34A,34Bの外側の周囲に接するようにワイヤー状形状記憶合金31が複数の巻き数で螺旋形に輪状に巻回されている。ワイヤー状形状記憶合金31の両端は、基台33に設けられた電気端子37に接続されている。さらに、ワイヤー状形状記憶合金31の両端の間には上記のスイッチ16と電源17が接続されている。
 上記の2本の棒状絶縁性熱伝導体32A,32Bは、それぞれ、本実施形態に係る衝撃駆動型アクチュエータ30を構成するための基本的な構成部材となる。
 固定された棒状絶縁性熱伝導体32Aに対して、移動自在な棒状絶縁性熱伝導体32Bは、コイルスプリング部材35で引張された状態にあるが、ワイヤー状形状記憶合金31が螺旋状に巻回されているので、ワイヤー状形状記憶合金31に通電がなされない状態では図8の(A)に示すように所定の間隔を開けて配置されている。スイッチ16がオンされてワイヤー状形状記憶合金31に通電が行われた場合には、ワイヤー状形状記憶合金31が収縮し、棒状絶縁性熱伝導体32Bが引き寄せられて、矢印AL3の方向に変位し、図8の(B)に示すように、2本の棒状絶縁性熱伝導体32A,32Bの間隔が距離dだけ小さくなる。
 図7および図8で示した実施形態の構成では、棒状絶縁性熱伝導体32A,32Bは断面が円形の円柱形状を有している。巻回されたワイヤー状形状記憶合金31は、各棒状絶縁性熱伝導体32A,32Bの円形状に湾曲した外表面に接触するように配線されている。また2本の棒状絶縁性熱伝導体32A,32Bは、図9に示すように、対抗する面部分を平面にし、断面をほぼ半円形状にすることで、全体を小さくしたままでワイヤー状形状記憶合金31との接触面積を大きくすることもできる。
 また2本の棒状絶縁性熱伝導体32A,32Bに対するワイヤー状形状記憶合金31の巻き方については、図10および図11に示すように、8の字状にすることもできる。この場合にはさらにワイヤー状形状記憶合金31と棒状絶縁性熱伝導体32A,32Bとの接触面積を大きくすることができ、さらにワイヤー状形状記憶合金31の長さも大きくすることができ、発生する変位も大きくすることができる。
 図示しないが、2本の棒状絶縁性熱伝導体32A,32Bは、電流を流す度にワイヤー状記憶合金31が収縮して、2本の棒32A,32Bの間隔を狭めるので、単純に間隔可変のアクチュエータとしても機能できる。
 [第4の実施形態]
 図12を参照して、本発明に係る衝撃駆動型アクチュエータの第4の実施形態を説明する。図12において、50は衝撃駆動型アクチュエータであり、この衝撃駆動型アクチュエータ50は高速応答の回転ブレーキ装置として機能するもので、一つの応用例として人が操作するボリュームや回転スイッチなどの回転時に、衝撃駆動の回転ブレーキ作用によりクリック感を生じさせるものがある。51はワイヤー状形状記憶合金であり、52は中心軸部にシャフト53を有する回転体状の絶縁性熱伝導体(以下「回転体絶縁性熱伝導体52」と記す)である。シャフト53の上端部はさらに延長されて回転駆動部と連結されているが、図12の図示例ではシャフト53の上端の延長部分は省略されている。本実施形態の衝撃駆動型アクチュエータ50では、回転体絶縁性熱伝導体52の外周面の周りにワイヤー状形状記憶合金51をほぼ1周分巻いている。ワイヤー状形状記憶合金51の両端は基台54上に固定端子54A,54Bに固定されている。またワイヤー状形状記憶合金51の両端の間にはスイッチ16と電源17が直列接続の関係で接続されている。
 上記の回転体絶縁性熱伝導体52は、外部からの動力に基づきシャフト53によって矢印AL4に示すごとく回転駆動される構造となっている。従って、ワイヤー状形状記憶合金51が通電されない通常状態であるときには、ワイヤー状形状記憶合金51は回転体絶縁性熱伝導体52の外周面に触れているが強く接触していない。従って回転体絶縁性熱伝導体52は、ブレーキ作用(制動作用)を受けず、拘束されることなく自由に回転する状態にある。ワイヤー状形状記憶合金52に通電を行うと、ワイヤー状形状記憶合金52が瞬時に収縮し、回転体絶縁性熱伝導体52の外周面に強く接触し、回転体絶縁性熱伝導体52を締め付ける。その結果、回転状態にある回転体絶縁性熱伝導体52に強いブレーキ力が加わる。通電が終了すると、ワイヤー状形状記憶合金51で生じた熱は、回転体絶縁性熱伝導体52を通して放熱され、その結果、ワイヤー状形状記憶合金51の長さが元の長さに戻り、締め付けがなくなり、ブレーキ作用が解除される。
 上記構成を有する第4の実施形態に係る衝撃駆動型アクチュエータ50によれば、シャフト53を通して外部から与えられる回転駆動力で回転する回転体絶縁性熱伝導体52を、その外周面に巻いたワイヤー状形状記憶合金51の通電による収縮で締め付け、ブレーキ作用を生じさせることができる。ワイヤー状形状記憶合金51に基づく回転体絶縁性熱伝導体52に対する間欠的な瞬時のブレーキ作用は、シャフト53に対して衝撃を与え、シャフト53を回転する操作者に対してクリック感を生じさせることができる。
 [第5の実施形態]
 図13と図14を参照して、本発明に係る衝撃駆動型アクチュエータの第5の実施形態を説明する。図13において、60は衝撃駆動型アクチュエータであり、この衝撃駆動型アクチュエータ60によって例えば矢印AL5に示すような方向に回転するモータが実現される。衝撃駆動型アクチュエータ60は、ワイヤー状形状記憶合金61と、例えば中空の円筒形状の回転体をなす絶縁性熱伝導体62(以下「回転体絶縁性熱伝導体62」と記す)とから構成される。回転体絶縁性熱伝導体62は、基台63の上に回転支持機構62Aによって回転自在になるように設けられている。回転体絶縁性熱伝導体62はその軸方向に所定の長さを有し、かつ外周面の表面には螺旋状のネジ部62Bが形成されている。ワイヤー状形状記憶合金61は、回転体絶縁性熱伝導体62の外周面のネジ溝に沿って溝内に接触して例えば1周分巻回して配置されている。ワイヤー状形状記憶合金61の一端部は基台63の固定端子64Aに固定され、他端部は引長されたコイルスプリング部材65を介して固定端子64Bに固定される。またワイヤー状形状記憶合金61の両端部の間には電気的にパルス駆動装置66が接続されており、ワイヤー状形状記憶合金61に周期的にパルス電流が通電される。図14に、パルス駆動装置66が出力する周期的なパルス駆動電流の例を示す。
 上記の衝撃駆動型アクチュエータ60では、パルス駆動装置66からパルス電流を与えられると、伸長状態にあるワイヤー状形状記憶合金61は、パルス電流の通電で発熱を生じかつその後放熱され、これにより周期的に収縮を繰り返す。ワイヤー状形状記憶合金61が収縮すると、回転体絶縁性熱伝導体62の外周面を締め付け、コイルスプリング部材65が引き伸ばされ、そのため回転体絶縁性熱伝導体62が矢印AL5の方向に所定角度だけ回転する。非通電時には、回転体絶縁性熱伝導体62を通じてワイヤー状形状記憶合金61の熱が放熱され、その長さが伸長する。このとき、回転体絶縁性熱伝導体62とワイヤー状形状記憶合金61の摩擦が少なくなり、コイルスプリング部材65が、ワイヤー状形状記憶合金61を元の位置へ引き戻す。回転体絶縁性熱伝導体62の所定角度の回転動作は、パルス電流が与えられるたびに行われ、その結果、回転体絶縁性熱伝導体62は矢印AL5の方向に回転することになる。なおワイヤー状形状記憶合金61が伸長状態にあるときには、緩い状態で回転体絶縁性熱伝導体62の外表面に接触している。
 上記の衝撃駆動型アクチュエータ60において、回転支持機構62Aに、回転体絶縁性熱伝導体62の回転に伴って回転体絶縁性熱伝導体62がその軸方向に移動する。このような機構を有する衝撃駆動型アクチュエータ60によれば、例えば、回転体絶縁性熱伝導体62の中空内部にカメラレンズを取り付けることにより、カメラレンズの焦点調整機構部として構成することができる。
 このカメラレンズの焦点調整機構としての応用では、螺旋状のネジ部62Bによって、転体絶縁性熱伝導体62の回転によって、他に何の保持機構などがなくても転体絶縁性熱伝導体62が進退することできる直動機能を合わせ持つ。この構成では、カメラレンズ方向の光軸の長さを簡単に短くすることができる。
 [第6の実施形態]
 図15と図16を参照して、本発明に係る衝撃駆動型アクチュエータの第6の実施形態を説明する。この第6の実施形態は、上記の第5の実施形態の変形例である。すなわち、第5実施形態に係る衝撃駆動型アクチュエータ60の構成では一方向に回転するモータであったが、本実施形態に係る衝撃駆動型アクチュエータ60-1の構成では、反対方向にも回転できるモータを実現することができる。すなわち、図15に示すように、回転体絶縁性熱伝導体61の回転動作に関して、矢印AL5に示す回転方向(時計回りの方向)とは反対である矢印AL6に示す回転方向(反時計回りの方向)の回転を行わせるように構成される。
 構成の上では、図13で説明した構成に加えて、もう1つのワイヤー状形状記憶合金71が回転体絶縁性熱伝導体62の外周面のネジ溝に巻回される。ワイヤー状形状記憶合金71の巻き方向は、前述のワイヤー状形状記憶合金61とは反対の巻き方向になっている。またワイヤー状形状記憶合金71が巻かれるネジ溝は、ワイヤー状形状記憶合金61が巻かれたネジ溝とは別であり、両者は共通にならないように設定されている。換言すれば、2本のワイヤー状形状記憶合金61,71は互いに接触しないようなネジ溝に配置される。
 ワイヤー状形状記憶合金71の一端部は基台63の固定端子72Aに固定され、他端部は引長されたコイルスプリング部材73を介して固定端子72Bに固定される。またワイヤー状形状記憶合金71の両端部の間には電気的に他のパルス駆動装置(図示せず)が接続されており、ワイヤー状形状記憶合金71に周期的にパルス電流が通電される。当該他のパルス駆動装置は、前述したパルス駆動装置66と同様な装置である。当該他のパルス駆動装置がパルス信号を出力することにより、ワイヤー状形状記憶合金71を周期的に収縮され、矢印AL6の方向に回転体絶縁性熱伝導体62を回転させる。
 図16には、回転体絶縁性熱伝導体62の回転動作に関して、矢印AL6の方向(反時計回りの方向)の回転動作(A)と、矢印AL5の方向(時計回りの方向)の回転動作(B)とを示す。2つの回転動作(A),(B)の各々では、スイッチ16と電源17からなるパルス駆動装置66,74によってパルス電流が供給される。スイッチ16がオンするときにパルス電流が通電される。これによってワイヤー状形状記憶合金61,71の各々では、その状態が伸長状態(1)、収縮状態(2)、再び伸長状態(3)と推移して、その結果、回転駆動が行われる。ワイヤー状形状記憶合金61,71が伸長状態にあるとき、ワイヤー状形状記憶合金61,71は、回転体絶縁性熱伝導体62の外周面に緩く接触している。伸長状態にあるワイヤー状形状記憶合金61,71が通電され収縮状態になるとき、ワイヤー状形状記憶合金61,71は回転体絶縁性熱伝導体62の外周面を締め付け、コイルスプリング部材65,73が伸び、それぞれの設定された方向に所定角度の回転を生じる。パルス電流の供給を繰り返すことにより、伸長状態(1)、収縮状態(2)、伸長状態(3)が繰り返され、回転が行われる。ワイヤー状形状記憶合金61による収縮動作、ワイヤー状形状記憶合金71による収縮動作は、いずれか一方が選択的に行われる。
 図17に、回転モータとしての機能を有する衝撃駆動型アクチュエータ60,60-1における回転体絶縁性熱伝導体62とワイヤー状形状記憶合金61(または71)の係合関係を示す。ワイヤー状形状記憶合金61(または71)は、回転体絶縁性熱伝導体62の外周面に形成された螺旋状のネジ部62Bのネジ溝62B-1内に配置されている。回転体絶縁性熱伝導体62は絶縁性の材質で形成されており、かつ例えば図17に示すようにワイヤー状形状記憶合金61(または71)は異なるネジ溝62B-1内にあって両者の間にはネジ山62B-2が存在するので、ワイヤー状形状記憶合金61(または71)の各々は分離されて短絡状態が生じることはない。ワイヤー状形状記憶合金61(または71)はネジ溝62B-1内でしっかりと回転体絶縁性熱伝導体62に接触するので、効率の良い放熱を行うことができる。
 右回り(AL5)の作用を行うワイヤー状形状記憶合金61と左回り(AL6)の作用を行うワイヤー状形状記憶合金71は、回転体絶縁性熱伝導体62の螺旋ネジ部62Bが多数のネジ山が切られているので、ワイヤー同士がぶつからないように、数山離れたところに巻くようにする。
 [第7の実施形態]
 図18と図19を参照して、本発明に係る衝撃駆動型アクチュエータの第7の実施形態を説明する。図18において、80は衝撃駆動型アクチュエータであり、この衝撃駆動型アクチュエータ80は例えば矢印AL7に示すような方向に可動部が移動するリニア移動型(直進型)のアクチュエータである。衝撃駆動型アクチュエータ80は、ワイヤー状形状記憶合金81と、平行に配置されかつ重ねられた矩形板状の2枚の絶縁性熱伝導体82A,82B(以下「板状絶縁性熱伝導体82A,82B」と記す)とから構成される。下側の板状絶縁性熱伝導体82Aは、固定されており、固定子として用いられる。上側の板状絶縁性熱伝導体82Bは、その一端82B-1が、引張されたコイルスプリング部材84を介して固定端部83に結合され、その他端82B-2が自由端となっている。板状絶縁性熱伝導体82Bは、固定された板状絶縁性熱伝導体82Aにほぼ重なった状態で板状絶縁性熱伝導体82Aの長手方向(矢印AL7の方向)に移動することができるように配置されている。ワイヤー状形状記憶合金81は、図19に示すように、重ね合わされた2枚の板状絶縁性熱伝導体82A,82Bの間のスペースに配置され、かつ板状絶縁性熱伝導体82Aの一端部82A-1と板状絶縁性熱伝導体82Bの一端部82B-1とに結合されている。通電が行われない通常の状態では、ワイヤー状形状記憶合金81は伸長状態にある。従って、板状絶縁性熱伝導体82Aの一端部82A-1と板状絶縁性熱伝導体82Bの一端部82B-1とに連結されたワイヤー状形状記憶合金81は、端部82B-1をコイルスプリング部材84で引張されているので、伸長状態にある。ワイヤー状形状記憶合金11に間欠的に通電が行われると、ワイヤー状形状記憶合金11が収縮し、コイルスプリング部材84に抗して上側の板状絶縁性熱伝導体82Bが矢印AL7の方向に瞬時に移動する。ワイヤー状形状記憶合金11の両端部の間には、電気的に駆動回路が接続されている。85は通電用の電気配線である。上側の板状絶縁性熱伝導体82Bは移動子として機能する。
 上記の衝撃駆動型アクチュエータ80は、下記に説明されるように、移動子である板状絶縁性熱伝導体82Bの上に移動体を載置することにより、当該移動体を移動させるリニア移動型アクチュエータとして利用される。
 [第8の実施形態]
 図20と図21を参照して、本発明に係る衝撃駆動型アクチュエータの第8の実施形態を説明する。この実施形態は、図18で説明した移動子のリニア移動を可能にする衝撃駆動型アクチュエータに基づいて構成されており、移動子である板状絶縁性熱伝導体82Bの上に移動体86を載置することにより、当該移動体86を直進的に移動させるように構成される。その他の部分の構成については、図18で説明した構成と同じであり、図20に示した構成において、図18で示した要素と同一の要素には同一の符号を付している。
 移動子である板状絶縁性熱伝導体82Bの上に載置された直方体状の移動体86は、板状絶縁性熱伝導体82Bの長手方向に沿ってのみ直進的に移動可能になるように移動方向を拘束して置かれている。板状絶縁性熱伝導体82Bの上面と移動体86の下面との間には摩擦部87が生じるようになっている。
 次に、図21を参照して本実施形態に係る衝撃駆動型アクチュエータ80に基づく移動体86の直進型の移動について説明する。
 図21の(A)の状態は、駆動回路をなすスイッチ16と電源17で、スイッチ16はオフの状態にある。従って、上側の板状絶縁性熱伝導体82Bはコイルスプリング部材84で引張され、ワイヤー状形状記憶合金81は伸長した状態にある。
 図21の(B)の状態では、スイッチ16が急激にオンされ、ワイヤー状形状記憶合金81にパルス的に通電がなされ、ワイヤー状形状記憶合金11が瞬間的に収縮する。その結果、コイルスプリング部材84に抗して板状絶縁性熱伝導体82Bが矢印AL7の方向にPだけ瞬間的に変位する。板状絶縁性熱伝導体82Bに変位が生じても、板状絶縁性熱伝導体82B上の移動体86は、慣性のため摩擦部87ですべり状態が生じ、移動体86は変位せず、移動体86のそのままの位置に留まる。
 その後、図21の(C)の状態では、スイッチ16がオフになり、通電がなくなると、ワイヤー状形状記憶合金81は放熱され、ゆっくりと元の長さ(伸長状態)に戻り、板状絶縁性熱伝導体82Bの位置も摩擦のためにコイルスプリング部材84で引かれて元の位置に戻る。その結果、移動体86の位置も板状絶縁性熱伝導体82Bの移動と共に変化する。そのとき、移動体86は、結果的に距離dだけ図中左方向に移動することになる。
 ワイヤー状形状記憶合金に周期的に通電を行って上記の状態の変化を繰り返すと、移動体86を図中左方向に直進的に移動させることができる、
 本実施形態に係るリニア移動用の衝撃駆動型アクチュエータ80によれば、圧電素子によるリニア型アクチュエータに比較して、1回あたりの移動量を大きくすることができ、駆動周波数を大幅に下げることができ、低コストで簡単な駆動回路構成でリニア移動型のアクチュエータを実現することができる。
 次に、前述したワイヤー状形状記憶合金11,21,31,51,61,71,81(以下「ワイヤー状形状記憶合金11等」と記す。)を収縮・伸長するための駆動回路を図22と図23を参照して説明する。ワイヤー状形状記憶合金11等は、駆動回路41から与えられるパルス的な通電に基づいて間欠的に収縮する。駆動回路41は、DC/DCコンバータ42と電池43と充電抵抗44と放電用コンデンサ45から構成される。駆動回路41は、電池43で印加される直流電圧をDC/DCコンバータ42で変換して、例えば昇圧された所定の直流電圧を生成する。当該駆動回路41は上記の電源17の具体的回路構成である。46は駆動回路41の出力端であり、当該出力端46に負荷としてワイヤー状形状記憶合金11等の一端が接続される。ワイヤー状形状記憶合金11等の他端には、アースとの間にスイッチングトランジスタ47が接続される。スイッチトランジスタ47は前述のスイッチ16に相当する。スイッチングトランジスタ47はベースに接続された制御端子47aにパルス信号が供給される。スイッチングトランジスタ47に制御信号が供給されると、スイッチングトランジスタ47は瞬時にオンになって電流Imが流れ、これによってワイヤー状形状記憶合金11等に瞬時に通電が行われる。スイッチングトランジスタ47のベースにパルス信号が供給されることにより、そのたびにワイヤー状形状記憶合金11等には間欠的に電流が給電される。
 図23では、駆動回路41における放電用コンデンサ45の電圧変化特性(A)、負荷電流Imの変化特性(B)、およびワイヤー状形状記憶合金11の長さの変化特性(C)が示されている。ワイヤー状形状記憶合金11等の長さの変化特性(C)において、範囲48が加熱時の範囲となり、範囲49が冷却時の範囲となる。ワイヤー状形状記憶合金11での冷却時間を長く保つためにワイヤー状形状記憶合金11等での通電時間を短くし、オフ時間を長くとるようにしている。また可能な限り通電時間を短くするために、駆動回路41は高電圧(例えば20V)、大電流(例えばピーク電流2A)の出力でワイヤー状形状記憶合金11を駆動する。なお、衝撃駆動型アクチュエータの設計上において求められる条件に応じて、駆動回路41は電池43の電流供給能力がある場合には、電池の入力電圧からパルス的な通電によりワイヤー状形状記憶合金11等を直接に駆動するように構成することができる。この場合には、DC/DCコンバータ42、充電抵抗44、放電用コンデンサ45が不要になり、駆動回路41の簡素化を図ることができる。
 ワイヤー状形状記憶合金11等を応答速度を向上させて間欠的に収縮または伸張させるには、好ましくは、できるだけ冷却時間を大きくする必要がある。そのためには限られた時間の中で、通電時間を短くするために、パルスデューティ(通電時間/周期)を短くし、その波高値を大きくする必要がある。そのために電池43の電圧以上の電圧が必要となり、電圧を昇圧させるDC/DCコンバータ41を用いる。そして、放電用コンデンサ45に高電圧で充電させてスイッチングトランジスタ47をONにすることで、放電用コンデンサ45に貯まった電荷を一度に電流の形で放出させる。この時間が放電時間Trで、ワイヤー状形状記憶合金11等の抵抗値が低いために、瞬時で電流Imが流れる。
 ワイヤー状形状記憶合金11等に瞬時に電流Imが流れて、ワイヤー状形状記憶合金自体が加熱されてワイヤー状形状記憶合金11等が収縮して、絶縁性熱伝導体に強く接することになる。電流は瞬時であるために、ワイヤー状形状記憶合金11等が絶縁性熱伝導体に当たったときには、流れる電流はほぼゼロになっている。このため、仮に絶縁性熱伝導体の絶縁性が劣化したとしても、ショート状態になって大電流が流れ続けることがなく、安全な回路となる。
 以上は、ワイヤー状形状記憶合金を説明したが、その断面は丸でなくてよく、四角形の断面形状をしたものであっても良い。
 以上の実施形態で説明された構成、形状、大きさおよび配置関係については本発明が理解・実施できる程度に概略的に示したものにすぎず、また数値および各構成の組成(材質)等については例示にすぎない。従って本発明は、説明された実施形態に限定されるものではなく、特許請求の範囲に示される技術的思想の範囲を逸脱しない限り様々な形態に変更することができる。
 本発明に係る衝撃駆動型アクチュエータは、ワイヤー状形状記憶合金の伸縮作用を利用して構成されており、通電発熱後に円盤状絶縁性熱伝導体等の熱放散作用を利用して低温化するため応答性を高めることができ、実用性の高い衝撃駆動型アクチュエータとして利用され、さらに回転モータあるいはリニアモータの駆動機構として利用される。
  10     衝撃駆動型アクチュエータ
  11     ワイヤー状形状記憶合金
  12     円盤状絶縁性熱伝導体
  13     基台
  14     弾性機構部
  14c    コイルスプリング部材
  15     ネジ
  16     スイッチ
  17     電源
  20     衝撃駆動型アクチュエータ
  21     ワイヤー状形状記憶合金
  22     丸棒状絶縁性熱伝導体
  22A    固定側の丸棒状絶縁性熱伝導体
  22B    移動側の丸棒状絶縁性熱伝導体
  23A    板材
  23B    板材
  30     衝撃駆動型アクチュエータ
  31     ワイヤー状形状記憶合金
  32A    棒状絶縁性熱伝導体
  32B    棒状絶縁性熱伝導体
  33     基台
  34     支持板
  35     コイルスプリング部材
  36     固定端部
  37     電気端子
  41     駆動回路
  42     DC/DCコンバータ
  44     充電抵抗
  45     放電コンデンサ
  47     スイッチングトランジスタ
  50     衝撃駆動型アクチュエータ
  51     ワイヤー状形状記憶合金
  52     回転体絶縁性熱伝導体
  53     シャフト
  54     基台
  60     衝撃駆動型アクチュエータ
  60-1   衝撃駆動型アクチュエータ
  61     ワイヤー状形状記憶合金
  62     回転体絶縁性熱伝導体
  63     基台
  65     コイルスプリング部材
  66     パルス駆動装置
  71     ワイヤー状形状記憶合金
  73     コイルスプリング部材
  80     衝撃駆動型アクチュエータ
  81     ワイヤー状形状記憶合金
  82A    板状絶縁性熱伝導体
  82B    板状絶縁性熱伝導体
  84     コイルスプリング部材
  86     移動体
  101    第1の構成部材
  102    第2の構成部材

Claims (16)

  1.  通電加熱で収縮するワイヤー状形状記憶合金(11,21,31,51,61,71,81)と、
     前記ワイヤー状形状記憶合金(11,21,31,51,61,71,81)に接触し前記ワイヤー状形状記憶合金で生じた熱を逃がす絶縁性熱伝導体(12,22,32A,32B,52,62,82A,82B,101,102)と、
     前記ワイヤー状形状記憶合金(11,21,31,51,61,71,81)に対して瞬間的に通電し前記ワイヤー状形状記憶合金(11,21,31,51,61,71,81)を収縮させる駆動回路部(16,17,41,66)と、
     を備えることを特徴とする衝撃駆動型アクチュエータ。
  2.  前記絶縁性熱伝導体(12,22,32A,32B,52,62)は少なくとも一部に略円周形状を有し、
     前記絶縁性熱伝導体(12,22,32A,32B,52,62)の円周面に接触するように前記ワイヤー状形状記憶合金(11,21,31,51,61,71)を配置し、
     前記ワイヤー状形状記憶合金(11,21,31,51,61,71)は、通電で収縮する時、前記絶縁性熱伝導体(12,22,32A,32B,52,62)の位置を変位させることを特徴とする請求項1記載の衝撃駆動型アクチュエータ。
  3.  前記絶縁性熱伝導体(12)の前記円周面には溝(12a)が形成され、前記ワイヤー状形状記憶合金(11)は前記溝(12a)の中に配置されることを特徴とする請求項2記載の衝撃駆動型アクチュエータ。
  4.  前記絶縁性熱伝導体は、略平行に対向しかつ複数の凹凸突起部(22A,22B)を有する2つの構成部材(101,102)で構成され、前記2つの構成部材(101,102)の間に、前記ワイヤー状形状記憶合金(21)が前記凹凸突起部(22A,22B)に接するように配置され、前記ワイヤー状形状記憶合金(21)は、通電で収縮する時、前記2つの構成部材(101,102)の間隔を変化させることを特徴とする請求項1記載の衝撃駆動型アクチュエータ。
  5.  前記絶縁性熱伝導体は、略平行に対向しかつ略棒状またはパイプ形状を有する2本の構成部材(32A,32B)で構成され、前記2本の構成部材(32A,32B)の周囲に接するように前記ワイヤー状形状記憶合金(31)が螺旋形に巻回され、前記ワイヤー状形状記憶合金(31)は、通電で収縮する時、前記2本の構成部材(32A,32B)の間隔を小さくするように変位させることを特徴とする請求項1記載の衝撃駆動型アクチュエータ。
  6.  前記ワイヤー状形状記憶合金(31)は輪状または8の字状に巻回されることを特徴とする請求項5記載の衝撃駆動型アクチュエータ。
  7.  前記2本の構成部材(32A,32B)からなる前記絶縁性熱伝導体の各々は、少なくとも前記ワイヤー状形状記憶合金(31)と接触する外表面はその断面が略半円を含む曲線となるよう構成されていることを特徴とする請求項5または6記載の衝撃駆動型アクチュエータ。
  8.  前記絶縁性熱伝導体(52,62)は、回転自在に設けられた回転体として形成され、
     前記ワイヤー状形状記憶合金(51,61,71)は、前記絶縁性熱伝導体(52,62)の円周面に接触しかつ巻回して設けられると共に、両端を固定され、
     前記ワイヤー状形状記憶合金(51,61,71)は、通電で収縮する時、前記絶縁性熱伝導体(52,62)を締め付けその回転動作を制動することを特徴とする請求項1記載の衝撃駆動型アクチュエータ。
  9.  前記絶縁性熱伝導体(62)は回転自在に設けられた回転体として形成され、かつその円周面に螺旋状の溝(62B-1)が形成され、
     前記ワイヤー状形状記憶合金(61)は、前記絶縁性熱伝導体(62)の円周面の前記溝(62B-1)内に接触しかつ巻回して設けられると共に、一端は固定されかつ他端は引張されるように弾性機構部(65)で支持され、
     前記ワイヤー状形状記憶合金(61)は、通電で収縮する時、前記絶縁性熱伝導体(62)を回転させることを特徴とする請求項1記載の衝撃駆動型アクチュエータ。
  10.  前記ワイヤー状形状記憶合金(61)とは別に、第2のワイヤー状形状記憶合金(71)が設けられ、
     前記第2のワイヤー状形状記憶合金(71)は、前記絶縁性熱伝導体(62)の円周面の前記溝(62B-1)内に接触しかつ前記ワイヤー状形状記憶合金(61)の巻き方向とは反対の方向に巻回して設けられると共に、一端は固定されかつ他端は引張されるように第2の弾性機構部(73)で支持され、
     前記ワイヤー状形状記憶合金(61)は、通電で収縮する時、前記絶縁性熱伝導体(62)を一方向に回転させ、かつ前記第2のワイヤー状形状記憶合金(71)は、通電で収縮する時、前記絶縁性熱伝導体(62)を反対方向に回転させることを特徴とする請求項9記載の衝撃駆動型アクチュエータ。
  11.  前記絶縁性熱伝導体(62)の円周面に形成された前記溝(62B-1)は螺旋状のネジ溝(62B)であり、このネジ溝の構造によって前記ワイヤー状形状記憶合金(61,71)は自らと接触することがないことを特徴とする請求項9または10記載の衝撃駆動型アクチュエータ。
  12.  前記絶縁性熱伝導体(82A,82B)は板状の形態を有し、
     2枚の前記板状絶縁性熱伝導体(82A,82B)を対面して配置し、一方の前記板状絶縁性熱伝導体(82A)は固定され、かつ他方の前記板状絶縁性熱伝導体(82B)は移動自在に配置されると共に弾性機構部(84)で一方向に引かれるように設けられ、
     2枚の前記板状絶縁性熱伝導体(82A,82B)の間に前記ワイヤー状形状記憶合金(81)を配置して前記ワイヤー状形状記憶合金(81)で2枚の前記板状絶縁性熱伝導体(82A,82B)を連結し、
     前記ワイヤー状形状記憶合金(81)は、通電で収縮する時、移動自在の前記板状絶縁性熱伝導体(82B)を前記弾性機構部(84)に抗して所定距離だけ変位させることを特徴とする請求項1記載の衝撃駆動型アクチュエータ。
  13.  移動自在の前記板状絶縁性熱伝導体(82A)の上に摩擦接触状態で移動体(86)を配置し、移動自在な前記板状絶縁性熱伝導体(82A)に繰り返して前記変位を生じさせることにより前記移動体(86)を一方向に移動させるようにしたことを特徴とする請求項12記載の衝撃駆動型アクチュエータ。
  14.  前記駆動回路部(41)は、入力電圧を高電圧へ変換する昇圧回路(42)と、その出力電圧で充電されるコンデンサ(45)と、前記コンデンサ(45)から前記ワイヤー状形状記憶合金とスイッチング素子(47)が直列に接続され、瞬間的に前記ワイヤー状形状記憶合金へ電流を流すことを特徴とする請求項1~13のいずれか1項に記載の衝撃駆動型アクチュエータ。
  15.  前記絶縁性熱伝導体は、少なくとも前記ワイヤー状形状記憶合金と接触する表面部分が酸化アルミニウム(アルミナ)または窒化アルミニウムで構成されたことを特徴とする請求項1~14のいずれか1項に記載の衝撃駆動型アクチュエータ。
  16.  前記絶縁性熱伝導体は、それぞれ略平行に対向しかつ複数の突起部材を備える2つの構成部材で構成され、
     前記2つの構成部材の各々で、前記複数の突起部材は分離されており、かつ前記複数の突起部材は導電部材で構成され、
     前記2つの構成部材の間に、前記ワイヤー状形状記憶合金(21)が前記突起部材の前記導電部材で構成された部分に接するように配置され、前記ワイヤー状形状記憶合金(21)は、通電で収縮する時、前記2つの構成部材の間隔を変化させることを特徴とする請求項1または4記載の衝撃駆動型アクチュエータ。
PCT/JP2011/068769 2010-08-20 2011-08-19 衝撃駆動型アクチュエータ WO2012023605A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127023363A KR101433120B1 (ko) 2010-08-20 2011-08-19 충격 구동형 액추에이터
CN201180040106.9A CN103080543B (zh) 2010-08-20 2011-08-19 冲击驱动式致动器
US13/817,613 US9068561B2 (en) 2010-08-20 2011-08-19 Impact drive type actuator
JP2012529623A JP5878869B2 (ja) 2010-08-20 2011-08-19 衝撃駆動型アクチュエータ
US14/732,235 US9677547B2 (en) 2010-08-20 2015-06-05 Impact drive type actuator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-185151 2010-08-20
JP2010185151 2010-08-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/817,613 A-371-Of-International US9068561B2 (en) 2010-08-20 2011-08-19 Impact drive type actuator
US14/732,235 Division US9677547B2 (en) 2010-08-20 2015-06-05 Impact drive type actuator

Publications (1)

Publication Number Publication Date
WO2012023605A1 true WO2012023605A1 (ja) 2012-02-23

Family

ID=45605257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068769 WO2012023605A1 (ja) 2010-08-20 2011-08-19 衝撃駆動型アクチュエータ

Country Status (5)

Country Link
US (2) US9068561B2 (ja)
JP (1) JP5878869B2 (ja)
KR (1) KR101433120B1 (ja)
CN (1) CN103080543B (ja)
WO (1) WO2012023605A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037806A (ja) * 2012-08-17 2014-02-27 Smk Corp 駆動装置及びその製造方法
JP2014088818A (ja) * 2012-10-30 2014-05-15 Minebea Co Ltd アクチュエータ
JP2020063682A (ja) * 2018-10-15 2020-04-23 株式会社青電舎 アクチュエータおよびアクチュエータ駆動回路
WO2020096844A1 (en) * 2018-11-08 2020-05-14 Microsoft Technology Licensing, Llc Haptic actuator using force multiplying spring and smart alloy wire
JP2020172863A (ja) * 2019-04-08 2020-10-22 株式会社テージーケー アクチュエータ及び触感付与装置
US11450495B2 (en) 2017-11-17 2022-09-20 Maruwa Corporation Actuator and actuator manufacturing method
US11466672B2 (en) 2018-01-22 2022-10-11 Maruwa Corporation Actuator

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8904781B2 (en) * 2012-07-13 2014-12-09 Simmonds Precision Products, Inc. Interlaced actuation system
US9046884B2 (en) * 2012-12-31 2015-06-02 Microsoft Technology Licensing, Llc Mood-actuated device
JP5999381B2 (ja) * 2014-06-20 2016-09-28 Smk株式会社 駆動装置
US9909572B2 (en) 2014-06-20 2018-03-06 Smk Corporation Drive device
KR102338062B1 (ko) * 2014-06-30 2021-12-13 엘지디스플레이 주식회사 형상 기억 복합체 및 이를 포함하는 가변형 표시장치
JP5751374B1 (ja) * 2014-07-03 2015-07-22 Smk株式会社 衝撃発生アクチュエータおよびタッチパネル
US9919505B2 (en) * 2014-07-25 2018-03-20 The Boeing Company Apparatus and method for a shape memory alloy mandrel
JP6213738B2 (ja) * 2014-10-10 2017-10-18 Smk株式会社 駆動装置及びその取付け構造
EP3098444B1 (de) * 2015-05-29 2017-07-05 SMR Patents S.à.r.l. Aktuatoreinrichtung für eine rückblickvorrichtung eines kraftfahrzeugs
US9919808B2 (en) 2015-06-01 2018-03-20 Parker-Hannifin Corporation Piezoelectrically-controlled fuel delivery system
DE102015007822B4 (de) 2015-06-18 2023-06-01 Audi Ag Bedienvorrichtung für ein Kraftfahrzeug und Kraftfahrzeug
DE102016104775A1 (de) * 2016-03-15 2017-09-21 SMR Patents S.à.r.l. Modulares Aktorsystem, das eine Formgedächtnislegierung verwendet
US10161391B2 (en) 2016-03-31 2018-12-25 Synaptics Incorporated Shape memory haptic actuator device
JP6741339B2 (ja) * 2016-04-12 2020-08-19 東洋電装株式会社 衝撃フィードバック操作装置
JP6326194B2 (ja) * 2016-05-25 2018-05-16 レノボ・シンガポール・プライベート・リミテッド 形状記憶合金を利用したアクチュエータの駆動システム、駆動方法および電子機器
JP6326193B2 (ja) * 2016-05-25 2018-05-16 レノボ・シンガポール・プライベート・リミテッド 形状記憶合金を利用したアクチュエータの駆動システム、電子機器、パルス幅の決定方法および触覚フィードバックの調整方法
DE102016109872A1 (de) 2016-05-30 2017-11-30 Valeo Schalter Und Sensoren Gmbh Anzeigevorrichtung, Fahrerassistenzsystem und Verfahren für ein Kraftfahrzeug, sowie Kraftfahrzeug
KR101938273B1 (ko) * 2016-07-01 2019-01-15 자화전자(주) 광학기기용 회동 구동장치 및 이를 구비하는 카메라 모듈
JP6769603B2 (ja) * 2016-08-02 2020-10-14 株式会社テージーケー アクチュエータ
JP6813170B2 (ja) * 2016-08-02 2021-01-13 株式会社テージーケー アクチュエータ
JP6769602B2 (ja) * 2016-08-02 2020-10-14 株式会社テージーケー アクチュエータ
DE102017209343B4 (de) * 2017-06-01 2019-02-07 Airbus Defence and Space GmbH Rotationsantrieb für Satellitenkomponente mit wärmegesteuertem Antriebsverhalten
CN110730941A (zh) * 2017-06-06 2020-01-24 剑桥机电有限公司 触觉按钮
IT201700073563A1 (it) 2017-06-30 2018-12-30 Getters Spa Insiemi attuatori comprendenti fili in lega a memoria di forma e rivestimenti con particelle di materiali a cambiamento di fase
CN108634876B (zh) * 2018-05-22 2020-12-08 博兴战新产业发展有限公司 一种机器人零件盘
IT201800006584A1 (it) 2018-06-22 2019-12-22 Attuatore oscillante in lega a memoria di forma
US11524737B2 (en) 2018-09-06 2022-12-13 Shimano Inc. Actuation device and telescopic apparatus
IT201800020047A1 (it) 2018-12-18 2020-06-18 Actuator Solutions GmbH Sottoinsieme di attuatore in lega a memoria di forma e valvola per fluidi che lo comprende
IT201900003589A1 (it) 2019-03-12 2020-09-12 Actuator Solutions GmbH Attuatore multistabile basato su fili in lega a memoria di forma
US10933974B2 (en) * 2019-04-29 2021-03-02 Toyota Motor Engineering & Manufacturing North America, Inc. Morphable body with shape memory material members
JP7114087B2 (ja) * 2019-10-02 2022-08-08 株式会社丸和製作所 アクチュエータおよびアクチュエータの製造方法
IT201900025057A1 (it) 2019-12-20 2021-06-20 Actuator Solutions GmbH Attuatore discreto basato su lega a memoria di forma
CN114930019B (zh) 2020-03-30 2024-02-13 工程吸气公司 双稳态形状记忆合金惯性致动器
KR102334675B1 (ko) 2020-06-24 2021-12-06 주식회사 아이티엠반도체 직선 왕복형 액추에이터 장치
KR20230149819A (ko) 2021-03-02 2023-10-27 사에스 게터스 에스.페.아. 비대칭 쌍안정 형상 기억 합금 관성 액추에이터
IT202100010589A1 (it) 2021-04-27 2022-10-27 Actuator Solutions GmbH Sottoinsieme fluidico azionato da lega a memoria di forma e apparecchiatura che lo incorpora
CN114523468B (zh) * 2022-03-10 2023-09-26 燕山大学 一种基于形状记忆合金丝的微小型双向旋转驱动器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004308657A (ja) * 2003-04-07 2004-11-04 Hewlett-Packard Development Co Lp 形状記憶アクチュエータを有するポンプ及びそれを備えた燃料電池システム
JP2005155427A (ja) * 2003-11-25 2005-06-16 Matsushita Electric Works Ltd 形状記憶合金アクチュエータ
JP2009109907A (ja) * 2007-10-31 2009-05-21 Konica Minolta Opto Inc 駆動装置およびレンズ駆動装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686866B2 (ja) * 1985-08-16 1994-11-02 キヤノン株式会社 形状記憶合金アクチュエ−タ
US4761955A (en) * 1987-07-16 1988-08-09 The Boeing Company Rotary actuator utilizing a shape memory alloy
ATE175517T1 (de) * 1994-11-14 1999-01-15 Landis & Gyr Tech Innovat Antriebseinrichtung mit einem antriebselement aus einer formgedächtnislegierung
US6133547A (en) * 1996-09-05 2000-10-17 Medtronic, Inc. Distributed activator for a two-dimensional shape memory alloy
US6124662A (en) * 1999-03-22 2000-09-26 Maness; Richard Actuator using electrical contacts pressed in abutment
JP2000310181A (ja) * 1999-04-27 2000-11-07 Sony Corp 形状記憶合金を用いた駆動装置
KR20020021809A (ko) * 1999-08-12 2002-03-22 추후기재 형상 기억 합금 액추에이터 및 제어 방법
JP2002130114A (ja) * 2000-10-20 2002-05-09 Toshiba Corp アクチュエータ装置
WO2002068820A1 (en) * 2001-02-22 2002-09-06 Nanomuscle, Inc. Shape memory alloy actuator with improved temperature control
JP2002369561A (ja) * 2001-06-01 2002-12-20 National Institute Of Advanced Industrial & Technology 形状記憶合金を用いた作動機構
JP4243042B2 (ja) 2001-06-22 2009-03-25 トキコーポレーション株式会社 形状記憶合金アクチュエータおよびその設計方法
JP4353921B2 (ja) * 2003-05-12 2009-10-28 三菱電機株式会社 駆動装置、レンズ駆動装置、及びカメラ
EP1626177A1 (en) * 2003-05-12 2006-02-15 Mitsubishi Denki Kabushiki Kaisha Drive device
AU2003244145A1 (en) * 2003-06-27 2005-01-13 Nokia Corporation Camera lens-positioning device using shape memory alloy and camera using the device
JP2005083291A (ja) * 2003-09-10 2005-03-31 Mitsubishi Electric Corp 駆動装置
JP4142597B2 (ja) 2004-02-10 2008-09-03 トキコーポレーション株式会社 形状記憶合金アクチュエータ
US7188473B1 (en) * 2004-04-26 2007-03-13 Harry HaruRiko Asada Shape memory alloy actuator system using segmented binary control
JP4788135B2 (ja) 2004-12-06 2011-10-05 コニカミノルタホールディングス株式会社 駆動装置および駆動システム
US7665300B2 (en) * 2005-03-11 2010-02-23 Massachusetts Institute Of Technology Thin, flexible actuator array to produce complex shapes and force distributions
EP1905128A4 (en) * 2005-07-13 2010-01-27 Univ Leland Stanford Junior TUBULAR MEMORY ALLOY ACTUATORS
JP2007046561A (ja) * 2005-08-11 2007-02-22 Konica Minolta Opto Inc 形状記憶合金を用いた駆動装置及び駆動装置に用いられる形状記憶合金の製造方法
JP2007092556A (ja) * 2005-09-27 2007-04-12 Konica Minolta Opto Inc 駆動装置及びその製造方法
JP4924519B2 (ja) * 2007-04-23 2012-04-25 コニカミノルタオプト株式会社 駆動装置、駆動装置の製造方法
CN101452099B (zh) * 2007-11-29 2010-06-09 群光电子股份有限公司 具有形状记忆合金的动作装置
JP4828582B2 (ja) * 2008-07-15 2011-11-30 日本航空電子工業株式会社 形状記憶合金アクチュエータ
JP5321132B2 (ja) * 2009-02-26 2013-10-23 コニカミノルタ株式会社 駆動装置及びレンズ駆動装置
WO2012023606A1 (ja) * 2010-08-20 2012-02-23 株式会社青電舎 触感提示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004308657A (ja) * 2003-04-07 2004-11-04 Hewlett-Packard Development Co Lp 形状記憶アクチュエータを有するポンプ及びそれを備えた燃料電池システム
JP2005155427A (ja) * 2003-11-25 2005-06-16 Matsushita Electric Works Ltd 形状記憶合金アクチュエータ
JP2009109907A (ja) * 2007-10-31 2009-05-21 Konica Minolta Opto Inc 駆動装置およびレンズ駆動装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037806A (ja) * 2012-08-17 2014-02-27 Smk Corp 駆動装置及びその製造方法
JP2014088818A (ja) * 2012-10-30 2014-05-15 Minebea Co Ltd アクチュエータ
US11450495B2 (en) 2017-11-17 2022-09-20 Maruwa Corporation Actuator and actuator manufacturing method
US11466672B2 (en) 2018-01-22 2022-10-11 Maruwa Corporation Actuator
JP2020063682A (ja) * 2018-10-15 2020-04-23 株式会社青電舎 アクチュエータおよびアクチュエータ駆動回路
WO2020096844A1 (en) * 2018-11-08 2020-05-14 Microsoft Technology Licensing, Llc Haptic actuator using force multiplying spring and smart alloy wire
US11054904B2 (en) 2018-11-08 2021-07-06 Microsoft Technology Licensing, Llc Haptic actuator using force multiplying spring and smart alloy wire
JP2020172863A (ja) * 2019-04-08 2020-10-22 株式会社テージーケー アクチュエータ及び触感付与装置
JP7235300B2 (ja) 2019-04-08 2023-03-08 株式会社テージーケー アクチュエータ及び触感付与装置

Also Published As

Publication number Publication date
US20150275867A1 (en) 2015-10-01
CN103080543A (zh) 2013-05-01
JPWO2012023605A1 (ja) 2013-10-28
JP5878869B2 (ja) 2016-03-08
US9068561B2 (en) 2015-06-30
US20130145760A1 (en) 2013-06-13
KR101433120B1 (ko) 2014-08-22
KR20120127637A (ko) 2012-11-22
CN103080543B (zh) 2016-06-22
US9677547B2 (en) 2017-06-13

Similar Documents

Publication Publication Date Title
WO2012023605A1 (ja) 衝撃駆動型アクチュエータ
JP6330918B2 (ja) 駆動装置及びその製造方法
US20130255279A1 (en) Magnetic refrigeration device and magnetic refrigeration system
KR20030085131A (ko) 온도제어를 개선한 형상기억합금 액츄에이터
WO2017085880A1 (ja) 硬度可変アクチュエータ
US20100253180A1 (en) Actuator
JP2008072862A (ja) 発電デバイスおよびそれを備えた発電装置
WO2016174741A1 (ja) 硬度可変アクチュエータ
KR102587050B1 (ko) 비회전식 코어부재를 가진 비회전식 교류 발전기
US20130188313A1 (en) Cooling apparatuses, electronic device assemblies, and cooling assemblies using magnetic shape memory members
JP2009159664A (ja) 電場応答性高分子を用いた発電装置
JP5268309B2 (ja) ロッドリニアアクチュエータ
US20170033645A1 (en) Electromagnetic Generator
JP6241733B2 (ja) ロングストロークソレノイド
US7531930B2 (en) Energy producing magnetic converter
GB2376796A (en) Motors and generators using a coiled-coil piezoelectric device
WO2016185562A1 (ja) 硬度可変アクチュエータ
US20230198427A1 (en) Rotation drive mechanism
CN116317680A (zh) 一种差动磁控形状记忆合金的尺蠖直线驱动器及驱动方法
JP2011176947A (ja) 電気機器用コイル
JP2001099206A (ja) アクチュエータ及びその制御方法
RU2613670C2 (ru) Привод линейного перемещения
JP6135523B2 (ja) 板状アクチュエータ
RU2592070C2 (ru) Привод линейного перемещения
KR20240007866A (ko) 비회전식 전력변환장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180040106.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11818245

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012529623

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127023363

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13817613

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11818245

Country of ref document: EP

Kind code of ref document: A1