WO2017085880A1 - 硬度可変アクチュエータ - Google Patents

硬度可変アクチュエータ Download PDF

Info

Publication number
WO2017085880A1
WO2017085880A1 PCT/JP2015/082754 JP2015082754W WO2017085880A1 WO 2017085880 A1 WO2017085880 A1 WO 2017085880A1 JP 2015082754 W JP2015082754 W JP 2015082754W WO 2017085880 A1 WO2017085880 A1 WO 2017085880A1
Authority
WO
WIPO (PCT)
Prior art keywords
hardness
phase
shape memory
induction
variable
Prior art date
Application number
PCT/JP2015/082754
Other languages
English (en)
French (fr)
Inventor
哲矢 森島
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to EP15908819.4A priority Critical patent/EP3378373A4/en
Priority to JP2017551504A priority patent/JP6568951B2/ja
Priority to PCT/JP2015/082754 priority patent/WO2017085880A1/ja
Priority to CN201580083431.1A priority patent/CN108135437A/zh
Publication of WO2017085880A1 publication Critical patent/WO2017085880A1/ja
Priority to US15/983,155 priority patent/US20180263468A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/00078Insertion part of the endoscope body with stiffening means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • A61B1/0057Constructional details of force transmission elements, e.g. control wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0058Flexible endoscopes using shape-memory elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • A61B1/018Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor for receiving instruments

Definitions

  • the present invention relates to a hardness variable actuator for changing the hardness of a flexible member.
  • Japanese Patent No. 3212673 discloses an endoscope that can change the hardness of the soft part of the insertion part.
  • a flexible member for example, a coil pipe
  • a flexible adjustment member for example, a coil pipe
  • a flexible adjusting wire is fixed via a separator.
  • the flexible member and the flexibility adjusting member extend along the soft portion to the operation portion, and extend over substantially the entire soft portion. By pulling the flexibility adjusting member, the flexible member is compressed and hardened, thereby changing the hardness of the soft part.
  • Japanese Patent No. 3142828 discloses a hardness varying device for a flexible tube using a shape memory alloy. This hardness varying device is arranged to extend in the axial direction in a coil disposed in a flexible tube, an electrically insulating tube disposed inside the coil, and the electrically insulating tube. A shape memory alloy wire and an electric heating means for energizing the shape memory alloy wire are provided.
  • the shape memory alloy wire has the property that its length expands at low temperatures and contracts at high temperatures.
  • the shape memory alloy wire extends through fixing portions provided at both ends of the coil, and a caulking member is fixed to both ends thereof.
  • the shape memory alloy wire is arranged so that it is loosened at a low temperature and the caulking member is engaged with and stretched at a fixed part at a high temperature.
  • Shape wire made of shape memory alloy shrinks and hardens the coil at a high temperature heated by the electric heating means. On the other hand, at low temperatures without energization, the shape memory alloy wire stretches to soften the coil.
  • This hardness variable device can be configured in a small size because of its simple configuration, but when the shape memory alloy wire contracts, both ends of the shape memory alloy wire are constrained and a load is applied to the shape memory alloy wire. There is difficulty in its durability.
  • An object of the present invention is to provide a durable variable hardness actuator that is mounted on a flexible member and can provide different hardness to the flexible member with a simple configuration.
  • variable hardness actuator includes a shape memory member that can change phase between the first phase and the second phase.
  • the shape memory member assumes a soft state that can be easily deformed according to external forces, thus providing a relatively low hardness for the flexible member.
  • the shape memory member when the shape memory member is in the second phase, it takes a hard state showing a tendency to take a memory shape memorized in advance against an external force, and thus the flexible member has a relatively high hardness.
  • the variable hardness actuator further includes an induction member that causes the shape memory member to cause a phase transition between the first phase and the second phase, and a conductive member that is electrically connected to the induction member.
  • the conductive member is disposed around the outer periphery of the induction member and physically protects the induction member.
  • FIG. 1 shows a variable hardness actuator according to the first embodiment.
  • FIG. 2 shows a variable hardness actuator according to the second embodiment.
  • FIG. 3 shows a variable hardness actuator according to the third embodiment.
  • FIG. 4 shows a variable hardness actuator according to the fourth embodiment.
  • FIG. 5 shows a hardness variable actuator according to the fifth embodiment.
  • FIG. 1 shows a variable hardness actuator according to the first embodiment.
  • the hardness variable actuator 10 has a function of providing the flexible member with different hardness by being able to take different hardness states, and between the first phase and the second phase.
  • the shape memory member 20 in which the phase can change, the induction member 30 that causes the shape memory member 20 to change the phase between the first phase and the second phase, and the conductive member electrically connected to the induction member 30 A member 70 is provided.
  • the shape memory member 20 is disposed on the flexible member with at least one free end.
  • the shape memory member 20 When the shape memory member 20 is in the first phase, it takes a soft state that can be easily deformed according to an external force, that is, exhibits a low elastic modulus, and thus provides a relatively low hardness for the flexible member. Further, when the shape memory member 20 is in the second phase, the shape memory member 20 takes a hard state showing a tendency to take a memory shape memorized in advance against an external force, that is, exhibits a high elastic coefficient, and thus is flexible. Providing a relatively high hardness to the structural member.
  • the memory shape is not limited to this, but may be a linear shape, for example.
  • the external force means a force that can deform the shape memory member 20, and gravity is also considered as a part of the external force.
  • the induction member 30 has a performance of generating heat.
  • the shape memory member 20 has a property that the phase is changed from the first phase to the second phase with respect to the heating of the induction member 30.
  • the shape memory member 20 may be made of, for example, a shape memory alloy.
  • the shape memory alloy is not limited to this, but may be, for example, an alloy containing NiTi.
  • the shape memory member 20 is not limited to this, and may be made of other materials such as a shape memory polymer, a shape memory gel, and a shape memory ceramic.
  • the shape memory alloy constituting the shape memory member 20 may be one in which the phase changes between the martensite phase and the austenite phase, for example.
  • the shape memory alloy undergoes plastic deformation relatively easily with respect to external force during the martensite phase. That is, the shape memory alloy exhibits a low elastic modulus during the martensite phase.
  • the shape memory alloy resists external force and does not easily deform during the austenite phase. Even if it is deformed due to a large external force, if the large external force disappears, it shows superelasticity and returns to the memorized shape. That is, the shape memory alloy exhibits a high elastic modulus during the austenite phase.
  • the induction member 30 is made of a conductive material and has a property of generating heat in response to supply of current.
  • the induction member 30 may be formed of, for example, a heating wire, that is, a conductive member having a large electric resistance.
  • the shape memory member 20 has an elongated external shape.
  • the induction member 30 is formed of a wire-like member and is disposed around the outside of the shape memory member 20.
  • the induction member 30 extends spirally around the shape memory member 20 along the longitudinal axis of the shape memory member 20 with an appropriate gap from the shape memory member 20. Thanks to such a configuration, the heat generated by the induction member 30 is efficiently transmitted to the shape memory member 20.
  • the conductive member 70 may be formed of a conductive member having a low electrical resistance.
  • the conductive member 70 is composed of a wire-like member, and is disposed around the outside of the induction member 30.
  • the conductive member 70 extends spirally around the induction member 30 along the longitudinal axis of the shape memory member 20 with an appropriate gap from the induction member 30. Due to such a layout, the conductive member 70 physically protects the induction member 30 well.
  • the shape memory member 20 may be made of a conductive material.
  • an insulating film 42 is provided around the shape memory member 20.
  • the insulating film 42 functions to prevent a short circuit between the shape memory member 20 and the induction member 30.
  • the insulating film 42 is provided so as to cover at least a portion facing the induction member 30.
  • FIG. 1 illustrates a form in which the outer peripheral surface of the shape memory member 20 is partially covered, the present invention is not limited thereto, and is provided so as to cover the entire outer peripheral surface of the shape memory member 20. Alternatively, the shape memory member 20 may be entirely covered.
  • An insulating film 44 is provided around the induction member 30.
  • the insulating film 44 functions to prevent a short circuit between the shape memory member 20 and the induction member 30 and a short circuit between adjacent portions of the induction member 30.
  • the shape memory member 20 has a first end 22 and a second end 24, and the induction member 30 has a first end 32 located on the first end 22 side of the shape memory member 20, and a shape
  • the storage member 20 has a second end 34 located on the second end 24 side.
  • the conductive member 70 has a first end 72 located on the first end 22 side of the shape memory member 20 and a second end 74 located on the second end 24 side of the shape memory member 20. ing.
  • the first end 32 of the induction member 30 and the first end 72 of the conductive member 70 are electrically connected to each other via the connection portion 76.
  • the connecting portion 76 may be constituted by, for example, wiring, but is not limited thereto, and may be a structure that can be electrically connected. For example, caulking, welding, brazing, soldering, conductive bonding You may be comprised with an agent etc.
  • the second end 34 of the induction member 30 is electrically connected to the control unit 50 via the wiring 64.
  • the second end 74 of the conductive member 70 is electrically connected to the control unit 50 via the wiring 62.
  • the control unit 50 includes one power source 52 and one switch 54. One end of the switch 54 is connected to the wiring 64, and the other end of the switch 54 is connected to the power source 52. A wiring 62 is connected to the power source 52.
  • the control unit 50 supplies current to the induction member 30 in response to the switch 54 being turned on, that is, closing operation, and stops supplying current to the induction member 30 in response to the switch 54 being turned off, that is, opened.
  • the induction member 30 generates heat in response to the supply of current.
  • the above-described hardness variable actuator 10 is attached to the flexible member without any restriction on both ends of the shape memory member 20.
  • the hardness variable actuator 10 is arranged with a small gap in a limited space of the flexible member such that one end or both ends of the shape memory member 20 are free ends.
  • the limited space means a space that can just accommodate the variable hardness actuator 10. Therefore, even if the deformation of one of the variable hardness actuator 10 and the flexible member is slight, it can contact the other and apply an external force.
  • the flexible member is a tube having an inner diameter slightly larger than the outer diameter of the variable hardness actuator 10, and the variable hardness actuator 10 may be disposed inside the tube.
  • the present invention is not limited to this, and the flexible member only needs to have a space slightly larger than the hardness variable actuator 10.
  • variable hardness actuator 10 When the shape memory member 20 is in the first phase, the variable hardness actuator 10 provides a relatively low hardness to the flexible member, and thus an external force acting on the flexible member, that is, a force capable of deforming the shape memory member 20. Almost deforms according to.
  • variable hardness actuator 10 provides a relatively high hardness to the flexible member and deforms the external force acting on the flexible member, that is, the shape memory member 20. The tendency to return to the memory shape against the obtained force is shown.
  • control unit 50 switches the phase of the shape memory member 20 between the first phase and the second phase, the hardness of the flexible member is switched.
  • variable hardness actuator 10 In addition to switching the hardness, under a situation in which an external force is acting on the flexible member, the variable hardness actuator 10 also functions as a bidirectional actuator that switches the shape of the flexible member. In addition, in the situation where no external force is acting on the flexible member and the flexible member is deformed in the first phase before the phase of the shape memory member 20 is switched to the second phase, It also functions as a unidirectional actuator that restores the shape of the flexible member.
  • FIG. 2 shows a variable hardness actuator according to the second embodiment.
  • members denoted by the same reference numerals as those shown in FIG. 1 are similar members, and detailed description thereof is omitted. In the following, explanation will be given with an emphasis on the difference. That is, the part which is not touched by the following description is the same as that of 1st embodiment.
  • the hardness variable actuator 10A includes an elongated shape memory member 20 and a plurality of induction members 30.
  • the hardness variable actuator 10 ⁇ / b> A shown in FIG. 2 includes two induction members 30, but is not limited thereto, and may include more induction members 30.
  • the plurality of induction members 30 are arranged at intervals along the longitudinal axis of the shape memory member 20.
  • Each induction member 30 extends spirally around the shape memory member 20 along the longitudinal axis of the shape memory member 20 with an appropriate gap from the shape memory member 20. Thanks to such a configuration, the heat generated by the induction member 30 is efficiently transmitted to the shape memory member 20.
  • the plurality of induction members 30 may be the same structure. However, without being limited thereto, the plurality of induction members 30 may include a plurality of different structures. Different structures may have, for example, different lengths, different thicknesses, different pitches, and may be made of different materials. That is, all or some of the plurality of induction members 30 may have the same characteristics or different characteristics.
  • the hardness variable actuator 10 ⁇ / b> A further includes an outer wiring 80 arranged around the outer periphery of the plurality of induction members 30.
  • the outer wiring 80 is formed in a band shape, and includes a plurality of conductive members 82 and an elongated insulating layer 84 that supports the conductive members 82.
  • the number of conductive members 82 may be the same as the number of induction members 30, but is not limited thereto, and may be larger than the number of induction members 30.
  • the conductive member 82 extends in the longitudinal direction of the insulating layer 84.
  • the conductive member 82 is embedded in the insulating layer 84, for example.
  • the outer wiring 80 extends spirally around the outer periphery of the plurality of induction members 30. With such a layout, the outer wiring 80 physically protects the induction member 30 well.
  • Each induction member 30 has a first end 32 located on the first end 22 side of the shape memory member 20 and a second end 34 located on the second end 24 side of the shape memory member 20. is doing.
  • the shape memory member 20 is also conductive.
  • the first ends 32 of the plurality of induction members 30 are both electrically connected to the shape memory member 20 via the connection portion 66.
  • the connecting portion 66 may be constituted by, for example, wiring, but is not limited thereto, and may be a structure that can be electrically connected. For example, caulking, welding, brazing, soldering, conductive bonding You may be comprised with an agent etc.
  • the shape memory member 20 is electrically connected to the control unit 50 via the wiring 62 on the second end 24 side.
  • the second ends 34 of the plurality of induction members 30 are electrically connected to the plurality of conductive members 82 of the outer wiring 80 via connection portions 86, respectively.
  • Each of the plurality of conductive members 82 is electrically connected to the control unit 50 via a plurality of wirings 64.
  • the control unit 50 includes one power source 52 and a plurality of switches 54. One end of each of the plurality of switches 54 is connected to the wiring 64, and the other end thereof is commonly connected to the power supply 52. A wiring 62 is connected to the power source 52.
  • the controller 50 independently supplies a current to the corresponding induction member 30 in response to the on or closing operation of each switch 54, and the corresponding induction in response to the off or opening operation of each switch 54. The supply of current to the member 30 is stopped independently. The induction member 30 generates heat in response to the supply of current.
  • variable hardness actuator 10A of the present embodiment is the same as that of the variable hardness actuator 10 of the first embodiment. Further, in the hardness variable actuator 10 ⁇ / b> A of the present embodiment, the plurality of induction members 30 are independently operated by turning on and off the respective switches 54. The actuator operation by each induction member 30 is the same as in the first embodiment.
  • FIG. 3 shows a variable hardness actuator according to the third embodiment.
  • members denoted by the same reference numerals as those shown in FIG. 1 are similar members, and detailed description thereof is omitted.
  • explanation will be given with an emphasis on the difference. That is, the part which is not touched by the following description is the same as that of 1st embodiment.
  • the hardness variable actuator 10 ⁇ / b> B is disposed around the elongated shape memory member 20, the induction member 30 extending spirally around the outer shape of the shape memory member 20, and the outer periphery of the induction member 30.
  • An outer wiring 90 is provided.
  • the outer wiring 90 is formed in a band shape or a sheet shape, and includes a single conductive member 92 and a long and thin insulating layer 94 that supports the conductive member 92.
  • the conductive member 92 extends parallel to the axis of the shape memory member 20.
  • the conductive member 92 is embedded in the insulating layer 94, for example.
  • the outer wiring 90 is arranged so as to surround the outer periphery of the inducing member 30. In FIG. 3, the pair of edges of the outer wiring 90 facing each other are drawn apart from each other, but may be joined to each other. With such a layout, the outer wiring 90 physically protects the inducing member 30 well.
  • the induction member 30 has a first end 32 located on the first end 22 side of the shape memory member 20 and a second end 34 located on the second end 24 side of the shape memory member 20. ing.
  • the first end 32 of the induction member 30 is electrically connected to the conductive member 92 of the outer wiring 90 via the connection portion 96.
  • the connecting portion 96 may be formed of, for example, wiring, but is not limited thereto, and may be a structure that can be electrically connected. For example, caulking, welding, brazing, soldering, conductive bonding You may be comprised with an agent etc.
  • the second end 34 of the induction member 30 is electrically connected to the control unit 50 via the wiring 62.
  • the conductive member 92 is electrically connected to the control unit 50 via the wiring 64 on the second end 24 side of the shape memory member 20.
  • the control unit 50 includes one power source 52 and one switch 54.
  • the power supply 52 and the switch 54 are connected in series.
  • the switch 54 is connected to the wiring 64, and the power source 52 is connected to the wiring 62.
  • variable hardness actuator 10B of the present embodiment are the same as in the first embodiment.
  • FIG. 4 shows a variable hardness actuator according to the fourth embodiment. 4, members denoted by the same reference numerals as those shown in FIG. 1 are similar members, and detailed description thereof is omitted. In the following, explanation will be given with an emphasis on the difference. That is, the part which is not touched by the following description is the same as that of 1st embodiment.
  • variable hardness actuator 10C of the present embodiment is different from the variable hardness actuator 10 of the first embodiment in that an insulating film 46 is provided around the conductive member 70.
  • the hardness variable actuator 10 ⁇ / b> C of the present embodiment includes an elongated shape memory member 20, an induction member 30 disposed around the outer periphery of the shape memory member 20, and an outer periphery of the induction member 30.
  • a conductive member 70 is provided.
  • the induction member 30 and the conductive member 70 are electrically connected via the connection portion 76.
  • the induction member 30 extends spirally around the shape memory member 20 along the longitudinal axis of the shape memory member 20.
  • the conductive member 70 extends spirally around the induction member 30 along the longitudinal axis of the shape memory member 20.
  • An insulating film 46 is provided around the conductive member 70.
  • the insulating film 46 functions to prevent a short circuit between the induction member 30 and the conductive member 70 and a short circuit between adjacent portions of the conductive member 70.
  • the conductive member 70 and the insulating film 46 constitute an outer wiring formed into a wire shape.
  • the outer wiring is arranged around the outer side of the induction member 30.
  • the conductive member 70 extends spirally around the induction member 30 along the longitudinal axis of the shape memory member 20 with an appropriate gap from the induction member 30. With such a layout, the outer wiring physically protects the induction member 30 well.
  • FIG. 5 shows a hardness variable actuator according to the fifth embodiment.
  • members denoted by the same reference numerals as those shown in FIG. 2 are similar members, and detailed description thereof is omitted. In the following, explanation will be given with an emphasis on the difference. That is, the part which is not touched by the following description is the same as that of 2nd embodiment.
  • the hardness variable actuator 10 ⁇ / b> D of the present embodiment has an outer wiring 80 on the second end 24 side of the shape memory member 20 in comparison with the hardness variable actuator 10 ⁇ / b> A of the second embodiment.
  • the cooling device 100 is connected to the extended outer wiring 80.
  • the cooling device 100 has a function of cooling the conductive member 82 of the outer wiring 80.
  • the cooling device 100 may be composed of, for example, a Peltier element, a heat radiating fin, a fan, a water pipe, and the like.
  • the conductive member 82 of the outer wiring 80 is not intended to heat the shape memory member 20, it may be composed of a conductive member having a low electrical resistance, in contrast to the induction member 30. In general, a conductive member having a low electric resistance has high thermal conductivity. For this reason, the conductive member 82 cools well with respect to the heat radiation action and cooling action of the cooling device 100. The conductive member 82 cooled by the cooling device 100 cools the induction member 30 and the shape memory member 20 this time. That is, the outer wiring 80 contributes to cooling of the induction member 30 and the shape memory member 20 due to the thermal conductivity of the conductive member 82. This contributes to shortening the time required for the shape memory member 20 to return to the soft state.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

 可撓性部材に装着され、可撓性部材に異なる硬度を提供し得る硬度可変アクチュエータ(10)は、第一の相と第二の相の間で相が移り変わり得る形状記憶部材(20)を備えている。形状記憶部材(20)は、第一の相にあるときは、外力に従って容易に変形し得る軟質状態を取り、したがって、可撓性部材に比較的低い硬度を提供する。また、形状記憶部材(20)は、第二の相にあるときは、外力に抗してあらかじめ記憶している記憶形状を取る傾向を示す硬質状態を取り、したがって、可撓性部材に比較的高い硬度を提供する。硬度可変アクチュエータ(10)はさらに、形状記憶部材(20)に第一の相と第二の相の間の相の移り変わりを引き起こさせる誘起部材(30)と、誘起部材(30)と電気的に接続された導電部材(70)を備えている。導電部材(70)は、誘起部材(30)の外側周囲に配置されており、誘起部材(30)を物理的に保護している。

Description

硬度可変アクチュエータ
 本発明は、可撓性部材の硬度を変更するための硬度可変アクチュエータに関する。
 日本国特許第3122673号は、挿入部の軟性部の硬度を変更し得る内視鏡を開示している。この内視鏡では、可撓性部材(たとえばコイルパイプ)の両端部が内視鏡の所定位置に固定されており、この可撓性部材には可撓性調整部材(たとえばコイルパイプに挿通された可撓性調整ワイヤ)が分離体を介して固定されている。可撓性部材と可撓性調整部材は、軟性部に沿って操作部にまで延び、かつ軟性部のほぼ全体にわたって延びている。可撓性調整部材を引っ張ることによって、可撓性部材が圧縮されて硬くなり、これにより、軟性部の硬度が変更される。
 可撓性部材と可撓性調整部材は軟性部のほぼ全体にわたって延びているため、このような機構を駆動するには、非常に大きな力を必要とする。この機構の電動化を図った場合、大型の動力源が必要とされ、その構成は、大がかりなものとなる。
 日本国特許第3142928号は、形状記憶合金を用いた可撓管用硬度可変装置を開示している。この硬度可変装置は、可撓管内に配設されるコイルと、このコイルの内側に配設される電気的絶縁性チューブと、この電気的絶縁性チューブ内にその軸方向に延びて配置される形状記憶合金製ワイヤと、この形状記憶合金製ワイヤを通電する通電加熱手段を備えている。
 形状記憶合金製ワイヤは、低温時には、その長さが伸長し、高温時には、収縮する性質を有している。形状記憶合金製ワイヤは、コイルの両端に設けられた固定部を通って延出しており、その両端にかしめ部材が固定されている。形状記憶合金製ワイヤは、低温時には弛み、高温時には、かしめ部材が固定部に係合して突っ張るように配されている。
 形状記憶合金製ワイヤは、通電加熱手段によって加熱された高温時には収縮してコイルを硬くする。一方、通電のない低温には、形状記憶合金製ワイヤは伸長してコイルを柔らかくする。
 この硬度可変装置は、シンプルな構成であるため小型に構成され得るが、形状記憶合金製ワイヤの収縮時には、形状記憶合金製ワイヤの両端が拘束され、形状記憶合金製ワイヤに負荷がかかるため、その耐久性に難がある。
 本発明の目的は、可撓性部材に装着され、可撓性部材に異なる硬度を提供し得る、シンプルな構成で耐久性のある硬度可変アクチュエータを提供することである。
 この目的のため、硬度可変アクチュエータは、第一の相と第二の相の間で相が移り変わり得る形状記憶部材を備えている。形状記憶部材は、第一の相にあるときは、外力に従って容易に変形し得る軟質状態を取り、したがって、可撓性部材に比較的低い硬度を提供する。また、形状記憶部材は、第二の相にあるときは、外力に抗してあらかじめ記憶している記憶形状を取る傾向を示す硬質状態を取り、したがって、可撓性部材に比較的高い硬度を提供する。硬度可変アクチュエータはさらに、形状記憶部材に第一の相と第二の相の間の相の移り変わりを引き起こさせる誘起部材と、誘起部材と電気的に接続された導電部材を備えている。導電部材は、誘起部材の外側周囲に配置されており、誘起部材を物理的に保護している。
図1は、第一実施形態による硬度可変アクチュエータを示している。 図2は、第二実施形態による硬度可変アクチュエータを示している。 図3は、第三実施形態による硬度可変アクチュエータを示している。 図4は、第四実施形態による硬度可変アクチュエータを示している。 図5は、第五実施形態による硬度可変アクチュエータを示している。
 [第一実施形態]
 図1は、第一実施形態による硬度可変アクチュエータを示している。図1に示されるように、硬度可変アクチュエータ10は、異なる硬度状態を取り得ることにより可撓性部材に異なる硬度を提供する機能を有しており、第一の相と第二の相の間で相が移り変わり得る形状記憶部材20と、形状記憶部材20に第一の相と第二の相の間の相の移り変わりを引き起こさせる誘起部材30と、誘起部材30と電気的に接続された導電部材70を備えている。形状記憶部材20は、少なくとも一つの自由端をもって可撓性部材に配される。
 形状記憶部材20は、第一の相にあるときは、外力に従って容易に変形し得る軟質状態を取り、すなわち低い弾性係数を示し、したがって、可撓性部材に比較的低い硬度を提供する。また、形状記憶部材20は、第二の相にあるときは、外力に抗してあらかじめ記憶している記憶形状を取る傾向を示す硬質状態を取り、すなわち高い弾性係数を示し、したがって、可撓性部材に比較的高い硬度を提供する。記憶形状は、これに限らないが、たとえば直線状であってよい。
 ここにおいて、外力とは、形状記憶部材20を変形させ得る力を意味しており、重力も外力の一部と考える。
 誘起部材30は、熱を発する性能を有している。形状記憶部材20は、誘起部材30の加熱に対して、第一の相から第二の相に相が移り変わる性質を有している。
 形状記憶部材20は、たとえば形状記憶合金から構成されていてよい。形状記憶合金は、これに限らないが、たとえばNiTiを含む合金であってよい。また、形状記憶部材20は、これに限らず、形状記憶ポリマー、形状記憶ゲル、形状記憶セラミックなど、他の材料から構成されていてもよい。
 形状記憶部材20を構成する形状記憶合金は、たとえば、マルテンサイト相とオーステナイト相の間で相が移り変わるものであってよい。その形状記憶合金は、マルテンサイト相時には、外力に対して比較的容易に塑性変形する。つまり、その形状記憶合金は、マルテンサイト相時には低い弾性係数を示す。一方、その形状記憶合金は、オーステナイト相時には、外力に抵抗して容易には変形しない。さらに大きな外力のために変形しても、その大きな外力がなくなれば、超弾性を示して、記憶している形状に戻る。つまり、その形状記憶合金は、オーステナイト相時には高い弾性係数を示す。
 誘起部材30は、導電性材料から構成されており、電流の供給に対して熱を発する性質を有している。誘起部材30は、たとえば電熱線、つまり電気抵抗の大きい導電性部材で構成されてよい。
 形状記憶部材20は、細長い外観形状を有している。誘起部材30は、ワイヤ状の部材で構成されており、形状記憶部材20の外側周囲に配置されている。誘起部材30は、形状記憶部材20から適度なすき間をおいて、形状記憶部材20の長手軸に沿って、形状記憶部材20の周囲を螺旋状に延びている。このような構成のおかげで、誘起部材30によって発せられる熱は、形状記憶部材20に効率良く伝達される。
 導電部材70は、誘起部材30とは対照的に、電気抵抗の小さい導電性部材で構成されてよい。導電部材70は、ワイヤ状の部材で構成されており、誘起部材30の外側周囲に配置されている。導電部材70は、誘起部材30から適度なすき間をおいて、形状記憶部材20の長手軸に沿って、誘起部材30の周囲を螺旋状に延びている。このようなレイアウトにより、導電部材70は、誘起部材30を物理的に良好に保護している。
 形状記憶部材20は、導電性材料から構成されていてよい。たとえば、形状記憶部材20の周囲には絶縁膜42が設けられている。絶縁膜42は、形状記憶部材20と誘起部材30の間の短絡を防止する働きをする。絶縁膜42は、少なくとも誘起部材30に面する部分を覆って設けられている。図1には、形状記憶部材20の外周面を部分的に覆って設けられている形態が描かれているが、これに限らず、形状記憶部材20の外周面の全体を覆って設けられていてもよく、また、形状記憶部材20の全体を覆って設けられていてもよい。
 誘起部材30の周囲には絶縁膜44が設けられている。絶縁膜44は、形状記憶部材20と誘起部材30の間の短絡と、誘起部材30の隣接する部分間の短絡を防止する働きをする。
 形状記憶部材20は第一の端22と第二の端24を有しており、誘起部材30は、形状記憶部材20の第一の端22の側に位置する第一の端32と、形状記憶部材20の第二の端24の側に位置する第二の端34を有している。導電部材70は、形状記憶部材20の第一の端22の側に位置する第一の端72と、形状記憶部材20の第二の端24の側に位置する第二の端74を有している。
 誘起部材30の第一の端32と導電部材70の第一の端72は、接続部76を介して互いに電気的に接続されている。接続部76は、例えば配線で構成され得るが、これに限定されることはなく、電気的接続を取り得る構造体であればよく、例えば、かしめ、溶接、ロウ付け、ハンダ付け、導電性接着剤などで構成されてもよい。
 誘起部材30の第二の端34は、配線64を介して制御部50に電気的に接続されている。導電部材70の第二の端74は、配線62を介して制御部50に電気的に接続されている。
 制御部50は、一つの電源52と一つのスイッチ54を含んでいる。スイッチ54の一端は配線64と接続されており、スイッチ54の他端は電源52と接続されている。また電源52には配線62が接続されている。制御部50は、スイッチ54のオンすなわち閉じ動作に応じて、誘起部材30に電流を供給し、また、スイッチ54のオフすなわち開き動作に応じて、誘起部材30に対する電流の供給を停止する。誘起部材30は、電流の供給に応じて熱を発する。
 上述された硬度可変アクチュエータ10は、形状記憶部材20の両端が何ら拘束されることなく、可撓性部材に装着される。たとえば、硬度可変アクチュエータ10は、形状記憶部材20の一端または両端が自由端であるように、可撓性部材の限られた空間内に少ないすき間をもって配置される。
 ここにおいて、限られた空間とは、硬度可変アクチュエータ10をちょうど収容し得る空間を意味している。したがって、硬度可変アクチュエータ10と可撓性部材の一方の変形は、わずかであっても、他方に接触して外力を与え得る。
 たとえば、可撓性部材は、硬度可変アクチュエータ10の外径よりもわずかに大きい内径をもつチューブであり、このチューブの内部に硬度可変アクチュエータ10が配置されてよい。これに限らず、可撓性部材は、硬度可変アクチュエータ10よりもわずかに大きい空間を有してさえいればよい。
 形状記憶部材20が第一の相にあるとき、硬度可変アクチュエータ10は、比較的低い硬度を可撓性部材に提供し、可撓性部材に作用する外力すなわち形状記憶部材20を変形させ得る力に従って容易に変形する。
 また、形状記憶部材20が第二の相にあるとき、硬度可変アクチュエータ10は、比較的高い硬度を可撓性部材に提供し、可撓性部材に作用する外力すなわち形状記憶部材20を変形させ得る力に抗して記憶形状に戻る傾向を示す。
 たとえば制御部50によって形状記憶部材20の相が第一の相と第二の相の間で切り換えられることによって、可撓性部材の硬度が切り換えられる。
 硬度の切り換えに加えて、可撓性部材に外力が作用している状況下においては、硬度可変アクチュエータ10は、可撓性部材の形状を切り換える双方向アクチュエータとしても機能する。また、可撓性部材に外力が作用しておらず、形状記憶部材20の相が第二の相に切り換えられる前の第一の相において可撓性部材が変形されている状況下においては、可撓性部材の形状を元に戻す単一方向アクチュエータとしても機能する。
 [第二実施形態]
 図2は、第二実施形態による硬度可変アクチュエータを示している。図2において、図1に示された部材と同一の参照符号が付された部材は同様の部材であり、その詳しい説明は省略される。以下、相違部分に重点をおいて説明される。つまり、以下の説明で触れられない部分は、第一実施形態と同様である。
 図2に示されるように、硬度可変アクチュエータ10Aは、細長い形状記憶部材20と、複数の誘起部材30を備えている。図2に示された硬度可変アクチュエータ10Aは、二つの誘起部材30を備えているが、これに限定されることなく、さらに多くの誘起部材30を備えていてもよい。複数の誘起部材30は、形状記憶部材20の長手軸に沿って間隔を置いて配置されている。各誘起部材30は、形状記憶部材20から適度なすき間をおいて、形状記憶部材20の長手軸に沿って、形状記憶部材20の周囲を螺旋状に延びている。このような構成のおかげで、誘起部材30によって発せられる熱は、形状記憶部材20に効率良く伝達される。
 複数の誘起部材30は、同一構造体であってよい。しかし、これに限定されることなく、複数の誘起部材30は、複数の異なる構造体を含んでいてもよい。異なる構造体は、たとえば、異なる長さや異なる太さや異なるピッチを有していてもよく、また、異なる材料で作られていてもよい。つまり、複数の誘起部材30は、すべてまたはいくつかが、同じ特性を有していてもよいし、異なる特性を有していてもよい。
 硬度可変アクチュエータ10Aはさらに、複数の誘起部材30の外側周囲に配置された外側配線80を有している。外側配線80は、帯状に形づくられており、複数本の導電部材82と、導電部材82を支持している細長い絶縁層84を有している。導電部材82の本数は、例えば誘起部材30の個数と同じであってよいが、これに限定されることなく、誘起部材30の個数よりも多くてもよい。導電部材82は、絶縁層84の長手方向に延びている。導電部材82は、例えば絶縁層84の内部に埋め込まれている。外側配線80は、複数の誘起部材30の外側周囲に螺旋状に延びている。このようなレイアウトにより、外側配線80は、誘起部材30を物理的に良好に保護している。
 各誘起部材30は、形状記憶部材20の第一の端22の側に位置する第一の端32と、形状記憶部材20の第二の端24の側に位置する第二の端34を有している。
 形状記憶部材20も導電性を有している。複数の誘起部材30の第一の端32は共に、接続部66を介して形状記憶部材20に電気的に接続されている。接続部66は、例えば配線で構成され得るが、これに限定されることはなく、電気的接続を取り得る構造体であればよく、例えば、かしめ、溶接、ロウ付け、ハンダ付け、導電性接着剤などで構成されてもよい。形状記憶部材20は、第二の端24の側において、配線62を介して制御部50に電気的に接続されている。
 複数の誘起部材30の第二の端34は、それぞれ、接続部86を介して外側配線80の複数の導電部材82と電気的に接続されている。複数の導電部材82は、それぞれ、複数の配線64を介して制御部50に電気的に接続されている。
 制御部50は、一つの電源52と複数のスイッチ54を含んでいる。複数のスイッチ54の一端はそれぞれ配線64と接続されており、それらの他端は共通して電源52と接続されている。また電源52には配線62が接続されている。制御部50は、それぞれのスイッチ54のオンすなわち閉じ動作に応じて、対応の誘起部材30に電流を独立して供給し、また、それぞれのスイッチ54のオフすなわち開き動作に応じて、対応の誘起部材30に対する電流の供給を独立して停止する。誘起部材30は、電流の供給に応じて熱を発する。
 本実施形態の硬度可変アクチュエータ10Aの装着の仕方は、第一実施形態の硬度可変アクチュエータ10と同様である。また、本実施形態の硬度可変アクチュエータ10Aでは、複数の誘起部材30が、それぞれのスイッチ54のオンオフによって独立に動作される。各誘起部材30によるアクチュエータ動作は、第一実施形態と同様である。
 [第三実施形態]
 図3は、第三実施形態による硬度可変アクチュエータを示している。図3において、図1に示された部材と同一の参照符号が付された部材は同様の部材であり、その詳しい説明は省略される。以下、相違部分に重点をおいて説明される。つまり、以下の説明で触れられない部分は、第一実施形態と同様である。
 図3に示されるように、硬度可変アクチュエータ10Bは、細長い形状記憶部材20と、形状記憶部材20の外側周囲に螺旋状に延びている誘起部材30と、誘起部材30の外側周囲に配置された外側配線90を備えている。
 外側配線90は、帯状またはシート状に形づくられており、一本の導電部材92と、導電部材92を支持している細長い絶縁層94を有している。導電部材92は、形状記憶部材20の軸に平行に延びている。導電部材92は、例えば絶縁層94の内部に埋め込まれている。外側配線90は、誘起部材30の外側周囲に包囲するように配置されている。図3では、外側配線90の互いに向かい合う一対の縁は、離されて描かれているが、互いに接合されていてもよい。このようなレイアウトにより、外側配線90は、誘起部材30を物理的に良好に保護されている。
 誘起部材30は、形状記憶部材20の第一の端22の側に位置する第一の端32と、形状記憶部材20の第二の端24の側に位置する第二の端34を有している。
 誘起部材30の第一の端32は、接続部96を介して外側配線90の導電部材92に電気的に接続されている。接続部96は、例えば配線で構成され得るが、これに限定されることはなく、電気的接続を取り得る構造体であればよく、例えば、かしめ、溶接、ロウ付け、ハンダ付け、導電性接着剤などで構成されてもよい。
 誘起部材30の第二の端34は、配線62を介して制御部50に電気的に接続されている。
 導電部材92は、形状記憶部材20の第二の端24の側において、配線64を介して制御部50に電気的に接続されている。
 制御部50は、一つの電源52と一つのスイッチ54を含んでいる。電源52とスイッチ54は直列に接続されている。スイッチ54は配線64と接続されており、電源52は配線62と接続されている。
 本実施形態の硬度可変アクチュエータ10Bの装着の仕方および動作は、第一実施形態と同様である。
 [第四実施形態]
 図4は、第四実施形態による硬度可変アクチュエータを示している。図4において、図1に示された部材と同一の参照符号が付された部材は同様の部材であり、その詳しい説明は省略される。以下、相違部分に重点をおいて説明される。つまり、以下の説明で触れられない部分は、第一実施形態と同様である。
 本実施形態の硬度可変アクチュエータ10Cは、第一実施形態の硬度可変アクチュエータ10と比較すると、導電部材70の周囲には絶縁膜46が設けられている点において相違している。
 すなわち、本実施形態の硬度可変アクチュエータ10Cは、図4に示されるように、細長い形状記憶部材20と、形状記憶部材20の外側周囲に配置された誘起部材30と、誘起部材30の外側周囲に配置された導電部材70を備えている。誘起部材30と導電部材70は、接続部76を介して電気的に接続されている。誘起部材30は、形状記憶部材20の長手軸に沿って、形状記憶部材20の周囲を螺旋状に延びている。導電部材70は、形状記憶部材20の長手軸に沿って、誘起部材30の周囲を螺旋状に延びている。
 導電部材70の周囲には絶縁膜46が設けられている。絶縁膜46は、誘起部材30と導電部材70の間の短絡と、導電部材70の隣接する部分間の短絡を防止する働きをする。
 導電部材70と絶縁膜46は、ワイヤ状に形づくられた外側配線を構成している。この外側配線は、誘起部材30の外側周囲に配置されている。導電部材70は、誘起部材30から適度なすき間をおいて、形状記憶部材20の長手軸に沿って、誘起部材30の周囲を螺旋状に延びている。このようなレイアウトにより、外側配線は、誘起部材30を物理的に良好に保護している。
 [第五実施形態]
 図5は、第五実施形態による硬度可変アクチュエータを示している。図5において、図2に示された部材と同一の参照符号が付された部材は同様の部材であり、その詳しい説明は省略される。以下、相違部分に重点をおいて説明される。つまり、以下の説明で触れられない部分は、第二実施形態と同様である。
 図5に示されるように、本実施形態の硬度可変アクチュエータ10Dは、第二実施形態の硬度可変アクチュエータ10Aとの比較において、形状記憶部材20の第二の端24の側において、外側配線80が延長されており、延長された外側配線80に冷却装置100が接続されている。
 冷却装置100は、外側配線80の導電部材82を冷やす機能を有している。冷却装置100は、たとえば、ペルチェ素子、放熱フィン、ファン、送水管などで構成されてよい。
 外側配線80の導電部材82は、形状記憶部材20の加熱を目的としていないため、誘起部材30とは対照的に、電気抵抗の小さい導電性部材で構成されてよい。電気抵抗の小さい導電性部材は、一般に、高い熱伝導性を有している。このため、導電部材82は、冷却装置100の放熱作用や冷却作用に対して良好に冷える。冷却装置100によって冷やされた導電部材82は、今度は誘起部材30と形状記憶部材20を冷やす。つまり、外側配線80は、導電部材82の熱伝導性のために、誘起部材30と形状記憶部材20の冷却に寄与する。これは、形状記憶部材20が軟質状態に戻るまでに要する時間の短縮に貢献する。

Claims (9)

  1.  可撓性部材に装着され、前記可撓性部材に異なる硬度を提供し得る硬度可変アクチュエータであり、
     第一の相と第二の相の間で相が移り変わり得る形状記憶部材を備えており、前記形状記憶部材は、前記第一の相にあるときは、外力に従って容易に変形し得る軟質状態を取り、したがって、前記可撓性部材に比較的低い硬度を提供し、前記第二の相にあるときは、外力に抗してあらかじめ記憶している記憶形状を取る傾向を示す硬質状態を取り、したがって、前記可撓性部材に比較的高い硬度を提供し、さらに、
     前記形状記憶部材に前記第一の相と前記第二の相の間の相の移り変わりを引き起こさせる導電性の誘起部材と、
     前記誘起部材と電気的に接続された導電部材を備えており、
     前記導電部材は、前記誘起部材の外側周囲に配置されており、前記誘起部材を物理的に保護している、硬度可変アクチュエータ。
  2.  前記導電部材と、前記導電部材の周囲に設けられた絶縁層から構成された外側配線を有している、請求項1に記載の硬度可変アクチュエータ。
  3.  前記外側配線は、帯状に形づくられている、請求項2に記載の硬度可変アクチュエータ。
  4.  前記外側配線は、前記誘起部材の外側周囲を包囲するように配置されている、請求項3に記載の硬度可変アクチュエータ。
  5.  前記外側配線は、螺旋状に延びている、請求項3に記載の硬度可変アクチュエータ。
  6.  前記外側配線は、前記導電部材の熱伝導性のために、前記形状記憶部材および前記誘起部材の冷却に寄与する、請求項2に記載の硬度可変アクチュエータ。
  7.  前記外側配線は、ワイヤ状に形づくられている、請求項2に記載の硬度可変アクチュエータ。
  8.  前記誘起部材を含む複数の誘起部材を有している、請求項1に記載の硬度可変アクチュエータ。
  9.  前記外側配線は、前記導電部材を含む複数の導電部材を有している、請求項2に記載の硬度可変アクチュエータ。
PCT/JP2015/082754 2015-11-20 2015-11-20 硬度可変アクチュエータ WO2017085880A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15908819.4A EP3378373A4 (en) 2015-11-20 2015-11-20 VARIABLE HARDNESS ACTUATOR
JP2017551504A JP6568951B2 (ja) 2015-11-20 2015-11-20 硬度可変アクチュエータ
PCT/JP2015/082754 WO2017085880A1 (ja) 2015-11-20 2015-11-20 硬度可変アクチュエータ
CN201580083431.1A CN108135437A (zh) 2015-11-20 2015-11-20 硬度可变致动器
US15/983,155 US20180263468A1 (en) 2015-11-20 2018-05-18 Variable-stiffness actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/082754 WO2017085880A1 (ja) 2015-11-20 2015-11-20 硬度可変アクチュエータ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/983,155 Continuation US20180263468A1 (en) 2015-11-20 2018-05-18 Variable-stiffness actuator

Publications (1)

Publication Number Publication Date
WO2017085880A1 true WO2017085880A1 (ja) 2017-05-26

Family

ID=58718065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082754 WO2017085880A1 (ja) 2015-11-20 2015-11-20 硬度可変アクチュエータ

Country Status (5)

Country Link
US (1) US20180263468A1 (ja)
EP (1) EP3378373A4 (ja)
JP (1) JP6568951B2 (ja)
CN (1) CN108135437A (ja)
WO (1) WO2017085880A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022003860A1 (ja) * 2020-07-01 2022-01-06 国立大学法人東京医科歯科大学 姿勢変化機構、鉗子及び姿勢変化方法
US11654584B2 (en) 2021-06-18 2023-05-23 Industrial Technology Research Institute Actuator

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6866499B2 (ja) * 2017-11-17 2021-04-28 オリンパス株式会社 剛性可変装置と剛性可変システムと内視鏡
WO2019171471A1 (ja) * 2018-03-06 2019-09-12 オリンパス株式会社 可撓管挿入装置、剛性制御装置、剛性制御装置の作動方法、及び剛性制御プログラムを記録した記録媒体
CN108527411B (zh) * 2018-04-10 2021-02-05 南京晨光集团有限责任公司 一种可变刚度的柔性机械手
CN113383259B (zh) * 2019-02-06 2023-06-09 奥林巴斯株式会社 刚性可变装置以及刚性可变装置的制造方法
CN109999317A (zh) * 2019-05-21 2019-07-12 心凯诺医疗科技(上海)有限公司 一种可调节硬度的导管及介入装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101601U (ja) * 1981-12-29 1983-07-11 株式会社町田製作所 内視鏡
JP2005046273A (ja) * 2003-07-31 2005-02-24 Olympus Corp 内視鏡用オーバーチューブ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531066A (ja) * 1991-08-01 1993-02-09 Olympus Optical Co Ltd 管状挿入具
JPH08122655A (ja) * 1994-10-28 1996-05-17 Olympus Optical Co Ltd 湾曲可撓管
JP3963021B2 (ja) * 1994-12-13 2007-08-22 カシオ計算機株式会社 アクチュエータ移動装置
JPH1014862A (ja) * 1996-06-28 1998-01-20 Olympus Optical Co Ltd 湾曲部付可撓管装置
ES2370178T3 (es) * 2006-08-17 2011-12-13 Koninklijke Philips Electronics N.V. Accionador de presión.
JP5042656B2 (ja) * 2007-02-09 2012-10-03 オリンパスメディカルシステムズ株式会社 撮像装置
CN103068295B (zh) * 2010-11-09 2015-06-03 奥林巴斯医疗株式会社 内窥镜用摄像装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101601U (ja) * 1981-12-29 1983-07-11 株式会社町田製作所 内視鏡
JP2005046273A (ja) * 2003-07-31 2005-02-24 Olympus Corp 内視鏡用オーバーチューブ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3378373A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022003860A1 (ja) * 2020-07-01 2022-01-06 国立大学法人東京医科歯科大学 姿勢変化機構、鉗子及び姿勢変化方法
US11654584B2 (en) 2021-06-18 2023-05-23 Industrial Technology Research Institute Actuator

Also Published As

Publication number Publication date
EP3378373A4 (en) 2019-07-24
CN108135437A (zh) 2018-06-08
US20180263468A1 (en) 2018-09-20
EP3378373A1 (en) 2018-09-26
JPWO2017085880A1 (ja) 2018-09-06
JP6568951B2 (ja) 2019-08-28

Similar Documents

Publication Publication Date Title
JP6568951B2 (ja) 硬度可変アクチュエータ
JP6421202B2 (ja) 硬度可変アクチュエータ
WO2016174741A1 (ja) 硬度可変アクチュエータ
JP6574852B2 (ja) 硬度可変アクチュエータ
JP6655733B2 (ja) 剛性可変アクチュエータ
US11471030B2 (en) Variable stiffness device, variable stiffness system, endoscope, and stiffness varying method
WO2016189683A1 (ja) 硬度可変アクチュエータ
JP2009299487A (ja) 形状記憶合金アクチュエータ
US11596294B2 (en) Variable stiffness device and method of varying stiffness
US11259690B2 (en) Variable stiffness apparatus
CN110520030B (zh) 刚性可变致动器和电力供给方法
WO2016185562A1 (ja) 硬度可変アクチュエータ
WO2016185561A1 (ja) 硬度可変アクチュエータ
JP6630845B2 (ja) 剛性可変アクチュエータ
JP4165184B2 (ja) アクチュエータ
JP2011027004A (ja) 形状記憶合金アクチュエータ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908819

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017551504

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015908819

Country of ref document: EP