WO2011148550A1 - 非水電解質二次電池用正極および非水電解質二次電池 - Google Patents

非水電解質二次電池用正極および非水電解質二次電池 Download PDF

Info

Publication number
WO2011148550A1
WO2011148550A1 PCT/JP2011/001638 JP2011001638W WO2011148550A1 WO 2011148550 A1 WO2011148550 A1 WO 2011148550A1 JP 2011001638 W JP2011001638 W JP 2011001638W WO 2011148550 A1 WO2011148550 A1 WO 2011148550A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
binder
weight
mixture layer
parts
Prior art date
Application number
PCT/JP2011/001638
Other languages
English (en)
French (fr)
Inventor
一樹 遠藤
万郷 藤川
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/383,791 priority Critical patent/US9112209B2/en
Priority to CN201180002952.1A priority patent/CN102473900B/zh
Priority to JP2012517098A priority patent/JP5323259B2/ja
Publication of WO2011148550A1 publication Critical patent/WO2011148550A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a positive electrode for a non-aqueous electrolyte secondary battery including a current collector and a positive electrode mixture layer formed on the surface thereof, and more particularly to improvement of the positive electrode mixture layer.
  • a non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode, a separator interposed therebetween, and a non-aqueous electrolyte.
  • the positive electrode, the negative electrode, and the separator are wound to form an electrode group.
  • the positive electrode includes a current collector and a positive electrode mixture layer formed on the surface of the current collector.
  • the positive electrode mixture layer includes positive electrode active material particles, a binder, and a conductive material as necessary.
  • a lithium-containing transition metal oxide such as LiCoO 2 , LiNiO 2 , LiNi 1-x1 Co x1 O 2 (0 ⁇ x1 ⁇ 1) is used.
  • Patent Document 1 proposes that the electrode mixture layer is divided into a plurality of regions by concave portions provided at regular intervals. Patent Document 1 describes that the electrode can be greatly bent without being damaged.
  • Patent Document 2 proposes that the interface between the electrode mixture layer and the current collector is easily peeled off. It is said that the fracture of the electrode can be prevented by slightly peeling the interface due to the stress at the time of winding.
  • the peel strength at the interface between one electrode mixture layer and the current collector disposed inside the current collector is smaller than the peel strength at the interface between the other electrode mixture layer and the current collector. Proposal to do.
  • Patent Document 3 proposes that the concentration of the binder in the central portion of the electrode mixture layer be 50 to 90% of the concentration in the vicinity of the current collector. Patent Document 3 describes that the amount of the binder can be reduced and the charge / discharge characteristics can be improved without reducing the adhesion between the current collector and the electrode mixture layer.
  • Patent Document 1 since no active material is disposed in the recess, the amount of active material contained in the electrode is small. Therefore, there is a limit to increasing the capacity of the nonaqueous electrolyte secondary battery. In Patent Document 2, since the electrode mixture layer and the current collector are easily peeled off, the current collecting property tends to decrease.
  • the positive electrode breaks down due to stress during winding. For this reason, it has been difficult to achieve a high balance of battery capacity, current collection, and suppression of damage to the positive electrode in a balanced manner.
  • One aspect of the present invention includes a current collector and a positive electrode mixture layer formed on a surface of the current collector.
  • the positive electrode mixture layer includes positive electrode active material particles and a binder.
  • the curve indicating the correlation between the distance from the current collector in the thickness direction of the agent layer and the amount of the binder in the positive electrode mixture layer has the first maximum point, the minimum point, and the second maximum point, and the minimum The point corresponds to the position of the intermediate portion in the thickness direction of the positive electrode mixture layer, the first maximum point corresponds to the position on the current collector side relative to the position corresponding to the minimum point of the positive electrode mixture layer, and the second The maximum point corresponds to a position farther from the current collector than the position corresponding to the minimum point of the positive electrode mixture layer, and the amount W 1 of the binder with respect to 100 parts by weight of the positive electrode active material particles at the first maximum point , at the minimum point, a ratio W 1 / W 2 of the amount W 2 of the binder with respect to 100 parts by weight of the positive electrode active material
  • Another aspect of the present invention includes the positive electrode, the negative electrode, a separator and a non-aqueous electrolyte interposed between the positive electrode and the negative electrode, and the positive electrode, the negative electrode, and the separator are wound to form an electrode group.
  • the present invention relates to a non-aqueous electrolyte secondary battery.
  • the positive electrode for a non-aqueous electrolyte secondary battery of the present invention has a high density, it does not easily break even if stress is generated by winding when forming the electrode group. Therefore, the manufacture of the nonaqueous electrolyte secondary battery is facilitated.
  • a positive electrode for a non-aqueous electrolyte secondary battery (hereinafter also simply referred to as a positive electrode) includes a sheet-like current collector and a positive electrode mixture layer formed on the surface of the current collector.
  • the positive electrode mixture layer includes positive electrode active material particles and a binder as essential components, and includes a conductive material and the like as optional components.
  • the positive electrode mixture layer only needs to be formed on at least one surface of the current collector, and may be formed on both surfaces.
  • the positive electrode is produced, for example, by the following method. Positive electrode active material particles, a binder, and a dispersion medium are mixed to prepare a positive electrode mixture slurry. Optional components may be added to the positive electrode mixture slurry.
  • the positive electrode mixture layer is obtained by applying the positive electrode mixture slurry to the surface of the current collector and drying it. Since the active material density is increased by rolling the positive electrode mixture layer, a high capacity positive electrode can be obtained.
  • the binder contained in the positive electrode mixture slurry is likely to migrate (migrate) to the surface side portion of the positive electrode mixture layer when the positive electrode mixture slurry applied to the surface of the current collector is dried.
  • the binder migration occurs, the weight ratio of the binder in the current collector side portion of the positive electrode mixture layer decreases. As a result, the interface between the positive electrode mixture layer and the current collector becomes easy to peel off, and the current collecting property may be lowered.
  • FIG. 1 is a graph showing the correlation (binder distribution) between the distance from the current collector in the thickness direction of the positive electrode mixture layers a to c and the amount of the binder.
  • the “amount of binder” means the binder present on the plane at a distance d from the current collector (interface between the positive electrode mixture layer and the current collector) in the positive electrode mixture layer. Is expressed as an amount (parts by weight) relative to 100 parts by weight of the positive electrode active material particles.
  • weight ratio of the binder uses almost synonymously with the quantity (weight part) of the binder with respect to 100 weight part of positive electrode active material particles in the layer which has the minute thickness of the position of the distance d.
  • the amount (parts by weight) of the binder with respect to 100 parts by weight of the positive electrode active material particles may be simply referred to as “weight ratio of the binder”.
  • the positive electrode active material is all LiCoO 2 and the binder is all polyvinylidene fluoride (PVDF).
  • the dispersion medium used in preparing the positive electrode mixture slurry is N-methyl-2-pyrrolidone (NMP).
  • Curve A shows the distribution of the binder in the positive electrode mixture layer a.
  • the positive electrode mixture layer a includes a positive electrode active material and a binder.
  • the first positive electrode mixture slurry in which the weight ratio of the binder is 5 parts by weight is applied to the current collector, and then the current collector is heated at 190 ° C. for 1 hour, and then the binder is bonded. It is obtained by applying a second positive electrode mixture slurry in which the weight ratio of the agent is 0.9 parts by weight.
  • Curve B shows the distribution of the binder in the positive electrode mixture layer b.
  • the second weight ratio of the binder is 0.7 parts by weight. It is obtained by applying a positive electrode mixture slurry.
  • Curve C shows the distribution of the binder in the positive electrode mixture layer c obtained by applying a positive electrode mixture slurry having a binder weight ratio of 1.7 parts by weight to the current collector.
  • Each positive electrode mixture slurry is usually dried after coating. The dried coating film is usually finally rolled.
  • the curve C in the positive electrode mixture layer c, the amount of the binder is small on the current collector side. This is considered due to the migration of the binder as described above.
  • the curves A and B indicating the correlation between the distance from the current collector in the thickness direction and the amount of the binder are first on the current collector side, respectively. It has local maxima X A and X B. Curves A and B further have local minimum points Y A and Y B and second local maximum points Z A and Z B.
  • the position corresponding to the minimum point is in the middle in the thickness direction of the positive electrode mixture layer.
  • An intermediate part means the part except the collector side part and surface side part of a positive mix layer.
  • the current collector side portion of the positive electrode mixture layer is defined as having a thickness of 0.00 from the current collector (interface between the current collector and the positive electrode mixture layer), where T is the thickness of the positive electrode mixture layer.
  • the region up to 3T is referred to, and the surface side portion refers to a region from the surface of the positive electrode mixture layer to a thickness of 0.3T.
  • the amount of the binder in the intermediate portion is relatively small.
  • the particles are likely to move near the position corresponding to the minimum point where the amount of the binder is relatively small.
  • the part on the electric body side and the part on the surface side are shifted.
  • the positive electrode mixture layer is deformed and the stress generated by winding is relaxed. Therefore, breakage of the positive electrode such as breakage of the current collector, cracking of the positive electrode mixture layer and cracking can be suppressed.
  • the first maximum point corresponds to a position closer to the current collector than a position corresponding to the minimum point of the positive electrode mixture layer.
  • the positive electrode mixture layer having such a distribution contains a relatively large amount of binder in the current collector side portion. Therefore, the current collector side portion of the positive electrode mixture layer is bonded to the current collector with sufficient adhesive strength. Therefore, the positive electrode mixture layer is difficult to peel off from the current collector, and a decrease in current collecting property can be suppressed.
  • the total thickness of the positive electrode mixture layer is preferably 20 to 150 ⁇ m, and more preferably 50 to 100 ⁇ m.
  • the first maximum point preferably corresponds to a position at a distance of 0.1 to 10 ⁇ m from the current collector in the thickness direction of the positive electrode mixture layer, and more preferably 1 to 5 ⁇ m.
  • the ratio W 1 / W 2 between the amount W 1 of the binder with respect to 100 parts by weight of the positive electrode active material particles at the first maximum point and the amount W 2 of the binder with respect to 100 parts by weight of the positive electrode active material particles at the minimum point. Must be greater than 2. Since the positive electrode satisfying such W 1 / W 2 is in a rolled state until the active material density becomes high, the amount of the binder near the position corresponding to the minimum point is relatively small. The adhesiveness of the positive electrode does not become too high, and damage to the positive electrode when stress is generated by winding can be satisfactorily suppressed.
  • W 1 / W 2 is greater than 2, preferably 2.1 or more, and more preferably 2.4 or more.
  • W 1 / W 2 is more preferably 10 or less, particularly preferably 6 or less, and may be 3 or less.
  • These lower limit values and upper limit values can be arbitrarily combined.
  • W 1 / W 2 may be greater than 2 and 3 or less, or 2.1 or more and 10 or less.
  • W 1 is 1 to 8 parts by weight, preferably 1.2 to 7 parts by weight, and 2 to 5 parts by weight or 1.3 to 3.5 parts by weight per 100 parts by weight of the positive electrode active material particles. Is particularly preferred. By making W 1 in the above range, it becomes easy to maintain good binding properties between the positive electrode mixture layer and the current collector.
  • the amount of the binder with respect to 100 parts by weight of the positive electrode active material particles is preferably 0.6 W. 1 to 0.99 W 1 , more preferably 0.7 W 1 to 0.98 W 1 .
  • W 2 is 0.3 to 1.5 parts by weight, preferably 0.5 to 1.2 parts by weight, more preferably 0.6 to 1.1 parts by weight, per 100 parts by weight of the positive electrode active material particles. .
  • W 2 is 0.3 to 1.5 parts by weight, preferably 0.5 to 1.2 parts by weight, more preferably 0.6 to 1.1 parts by weight, per 100 parts by weight of the positive electrode active material particles. .
  • the second maximum point corresponds to a position (away from the current collector) on the surface side of the positive electrode mixture layer from a position corresponding to the minimum point.
  • the positive electrode mixture layer having such a distribution includes more binder in the surface side portion than in the intermediate portion. Therefore, the positive electrode active material particles can be prevented from falling off from the surface side of the positive electrode mixture layer.
  • the amount W 3 of the binder with respect to 100 parts by weight of the positive electrode active material particles at the second maximum point is preferably smaller than W 1 .
  • W 3 is preferably 1 to 5 parts by weight, more preferably 1 to 3 parts by weight, and particularly preferably 1.1 to 2.5 parts by weight per 100 parts by weight of the positive electrode active material particles. .
  • the W 3 is within the above range, it is easy to further suppress the dropping of the positive electrode active material particles from the surface side of the positive electrode mixture layer.
  • the graph showing the distribution of the binder in the positive electrode mixture layer shows the distance d from the current collector in the thickness direction of the positive electrode mixture layer on the horizontal axis and the weight ratio (parts by weight) of the binder at the distance d. It is a graph which makes a vertical axis
  • the local maximum point in the region closer to the current collector than the position corresponding to the determined local minimum point is set as the first local maximum point, and the local maximum point in the region far from the current collector is determined as the second local maximum point.
  • the one having the maximum value can be set as the first local maximum point.
  • the one having the maximum value can be set as the second maximum point.
  • the straight line connecting the first maximum point and the minimum point preferably has an inclination of ⁇ 0.3 parts by weight / ⁇ m or more and ⁇ 0.05 parts by weight / ⁇ m or less. More preferably, the inclination is ⁇ 0.2 parts by weight / ⁇ m or more and ⁇ 0.05 parts by weight / ⁇ m.
  • the positive electrode mixture layer becomes too thick, the distance between the first maximum point and the minimum point will be too far away, so the absolute value of the slope will be small and the distribution will be gentle, so the effect of suppressing damage to the positive electrode will be small. There is a case.
  • an arbitrary measurement region including the surface of the current collector to the surface of the positive electrode mixture layer is selected, and the measurement region is divided into 255 ⁇ 255 pixels (micro regions).
  • the peak intensity in each minute region is obtained by an electron probe microanalyzer (EPMA) method.
  • EPMA electron probe microanalyzer
  • an electron beam is scanned in the surface direction of the positive electrode, and the peak intensity in each minute region is measured. Find and average.
  • the same measurement is performed along the thickness direction from the surface of the positive electrode mixture layer on one surface of the current collector to the surface of the current collector.
  • the weight ratio (parts by weight) of the binder in an arbitrary region is determined.
  • the relationship between the intensity of the signal and the weight ratio of the binder can be obtained by creating a calibration curve from a sample with a known weight ratio and comparing it.
  • confirm the state of binder distribution in the positive electrode mixture layer by plotting the distance from the current collector in the thickness direction on the horizontal axis and the weight ratio (parts by weight) of the binder on the vertical axis. it can.
  • a sample in the present invention, a cross section in the thickness direction of the positive electrode
  • an accelerated electron beam to detect a characteristic X-ray spectrum.
  • the binder is a fluororesin
  • the elemental fluorine element may be detected.
  • the element correlated with the weight ratio of the binder may be a constituent element of the binder or may not be a constituent element.
  • the binder may be doped with an easily detectable element.
  • the positive electrode active material particles those commonly used in the field of non-aqueous electrolyte secondary batteries can be used.
  • the positive electrode active material is, for example, a lithium-containing transition metal oxide.
  • the lithium-containing transition metal oxide preferably has a layered or hexagonal crystal structure or a spinel structure.
  • the transition metal element include one or more elements selected from the group consisting of Co, Ni, Mn, and the like.
  • the transition metal may be partially substituted with a different element.
  • the surface of the lithium-containing transition metal oxide particles may be coated with a different element.
  • the different elements include one or more elements selected from the group consisting of Na, Mg, Sc, Y, Fe, Cu, Zn, Al, Cr, Pb, Sb, and B. Only one type of positive electrode active material may be used alone, or two or more types may be used in combination.
  • the positive electrode active material includes the element M and another transition metal element (Ni, Co, or Mn)
  • the element M is usually an element different from the transition metal element. In the above general formula, 0 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0.9, and 2 ⁇ z ⁇ 2.3.
  • various binders usually used for positive electrodes for non-aqueous electrolyte secondary batteries for example, fluororesin, olefin resin, acrylic resin, rubber-like resin (styrene-butadiene rubber, etc.) can be used. Of these, fluororesins are preferred. Examples of the fluororesin include, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a copolymer containing vinylidene fluoride (VDF) units (for example, a copolymer containing VDF units and hexafluoropropylene (HFP) units). Polymer).
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • VDF copolymer containing vinylidene fluoride
  • HFP hexafluoropropylene
  • the copolymer preferably contains 50% by weight or more of vinylidene fluoride units. These fluororesins preferably have a weight average molecular weight of 300,000 to 1,500,000.
  • the amount of the binder contained in the entire positive electrode mixture layer may be, for example, 0.9 to 4 parts by weight, preferably 1 to 3 parts by weight per 100 parts by weight of the positive electrode active material.
  • Examples of the conductive material include carbon black such as acetylene black and ketjen black, and graphite.
  • the amount of the conductive material contained in the positive electrode mixture layer may be, for example, 0.5 to 5 parts by weight per 100 parts by weight of the positive electrode active material.
  • Examples of the positive electrode current collector include sheets and foils containing metal materials such as aluminum and titanium.
  • Active material density of the positive electrode mixture layer according to the present invention is 3.3 ⁇ 4g / cm 3, is preferably 3.5 ⁇ 3.8g / cm 3. With such an active material density, a high-capacity battery can be obtained.
  • a positive electrode including a positive electrode mixture layer having a high active material density tends to generate stress therein and tends to be damaged.
  • the active material density of the positive electrode mixture layer is the weight of the positive electrode active material particles contained per 1 cm 3 of the positive electrode mixture layer.
  • the porosity of the positive electrode mixture layer is preferably 10 to 25%, more preferably 15 to 21%. In such a range, damage during winding can be more effectively suppressed, and it is advantageous in terms of increasing the capacity of the battery.
  • the porosity of the positive electrode mixture layer is determined from the weight and true density of each material (positive electrode active material, conductive material, binder, etc.) contained in the positive electrode mixture layer per unit area.
  • the positive electrode of the present invention is obtained, for example, by the following production method.
  • (1) Preparation of slurry The distribution of the binder in the positive electrode mixture layer can be controlled by applying a plurality of slurries with different amounts (usually, weight ratios) of the binder with respect to the amount of the positive electrode active material particles.
  • a positive electrode active material particle, a binder, and a dispersion medium are mixed to prepare a slurry.
  • the first slurry applied to the current collector and the second slurry applied onto the coating film of the first slurry after applying the first slurry are used.
  • three or more types of slurries with different binder weight ratios may be used.
  • Weight ratio of the binder in each slurry may appropriately be adjusted according to the desired distribution of binder (W 1 / W 2 and the slope of the straight line or the like connecting the first local maximum and minimum points).
  • the amount w 1 of the binder with respect to 100 parts by weight of the positive electrode active material particles in the first slurry is preferably 1 to 8 parts by weight, It is more preferably 2 to 5 parts by weight.
  • the amount w 2 of the binder with respect to 100 parts by weight of the positive electrode active material particles is preferably 0.1 to 3 parts by weight, 0.5 to 1.5 parts by weight or 0.5 to 1 part. More preferred are parts by weight.
  • the amount w 1 of the binder with respect to 100 parts by weight of the positive electrode active material particles in the first slurry is preferably 1 to 8 parts by weight. More preferred are parts by weight.
  • the amount w 2 of the binder with respect to 100 parts by weight of the positive electrode active material particles is preferably 0.5 to 1.5 parts by weight, and more preferably 0.6 to 1 part by weight.
  • the amount w 3 of the binder with respect to 100 parts by weight of the positive electrode active material particles is preferably 1 to 3 parts by weight, preferably 1.3 to 2.5 parts by weight or 1.5 to 2.5 parts by weight. More preferred are parts by weight.
  • the ratio w 1 / w 2 between the amount w 1 of the binder with respect to 100 parts by weight of the positive electrode active material particles in the first slurry and the amount w 2 of the binder with respect to 100 parts by weight of the positive electrode active material particles in the second slurry is: It is preferably greater than 2 and 10 or less, more preferably greater than 2 and 6 or less.
  • dispersion medium examples include water, organic solvents such as N-methyl-2-pyrrolidone, and mixed solvents thereof.
  • the first slurry is applied to the surface of the current collector to form the first layer. Until the coating film of the first slurry applied to the surface of the current collector is dried, the binder in the first slurry migrates, and the binder moves in the direction toward the surface side. Accordingly, a binder distribution is formed in the first layer so that the amount increases as the distance from the current collector surface increases.
  • the second slurry is applied to the surface of the first layer to form the second layer. Similar migration occurs in the coating film of the second slurry.
  • a part of the binder contained in the first layer is eluted in the solvent contained in the second slurry.
  • the eluted binder moves to the surface side when the second slurry is dried together with the binder contained in the second slurry.
  • the first layer contains a relatively large amount of the binder, a large amount of the binder remains in the current collector side portion.
  • a first maximum point is generated in the first layer
  • a minimum point is generated at a position away from the current collector from the interface between the first layer and the second layer
  • a second point is formed near the surface of the second layer.
  • a binder distribution that produces a maximum point is obtained.
  • a third slurry is further applied to the surface of the second layer.
  • a positive electrode mixture layer is formed on the surface of the current collector.
  • the first slurry, the second slurry, and the third slurry are preferably applied and then dried with hot air or the like. It is also possible to arbitrarily control the binder migration depending on the drying conditions.
  • the drying temperature is, for example, less than 150 ° C., preferably 80 to 130 ° C., more preferably 90 to 125 ° C.
  • the drying time can be appropriately selected according to the drying temperature and the type of the dispersion medium.
  • the positive electrode mixture layer is usually rolled after drying. By rolling, the thickness of the positive electrode mixture layer (or the thickness of each layer) and / or the active material density can be controlled.
  • each layer can be adjusted as appropriate according to the desired binder distribution.
  • T and T 1 satisfy 0.1T ⁇ T 1 ⁇ 0.4T. It is preferable to satisfy, and it is more preferable to satisfy 0.15T ⁇ T 1 ⁇ 0.3T.
  • T and T 2 preferably satisfy 0.6T ⁇ T 2 ⁇ 0.9T, and satisfy 0.7T ⁇ T 2 ⁇ 0.85T. Is more preferable.
  • the minimum point can be easily controlled by a desired position.
  • the thickness of the first layer may be, for example, 5 to 50 ⁇ m, and more preferably 10 to 20 ⁇ m. Such a range is advantageous in distributing a sufficient amount of the binder to the current collector side portion of the positive electrode mixture layer. Further, it is advantageous in that the minimum point can be effectively suppressed from being located away from the current collector in the thickness direction of the positive electrode mixture layer, and the minimum point can correspond to an appropriate position. In this case, even if the positive electrode mixture layer is peeled off near the minimum point, it is possible to more effectively prevent breakage in the current collector side portion of the positive electrode mixture layer.
  • the thickness T 2 of the second layer By setting the thickness T 2 of the second layer in the above range, the minimum point can be easily controlled by a desired position. Further, it is advantageous for distributing a sufficient amount of the binder to the current collector side portion of the positive electrode mixture layer.
  • the thickness of the second layer may be, for example, 10 to 100 ⁇ m, and more preferably 30 to 80 ⁇ m.
  • the current collector on which the first layer is formed may be heated before applying the second slurry.
  • the crystallinity of the binder contained in the first layer is increased.
  • the heating temperature may be, for example, 150 to 250 ° C., preferably 170 to 230 ° C.
  • T and T 1 satisfy 0.1T ⁇ T 1 ⁇ 0.4T. Is preferable, and it is more preferable to satisfy 0.15T ⁇ T 1 ⁇ 0.3T. This is for the same reason as in the case of the two-layer structure.
  • T and T 2 preferably satisfy 0.05T ⁇ T 2 ⁇ 0.25T, and satisfy 0.1T ⁇ T 2 ⁇ 0.2T. Is more preferable.
  • T and T 3 preferably satisfy 0.45T ⁇ T 3 ⁇ 0.85T, and satisfy 0.55T ⁇ T 3 ⁇ 0.75T. Is more preferable.
  • the thickness of the second layer may be, for example, 5 to 25 ⁇ m, and more preferably 10 to 20 ⁇ m.
  • the thickness T 3 of the third layer By setting the thickness T 3 of the third layer in the above range, the minimum point can be easily controlled by a desired position. In addition, a sufficient amount of the binder can be distributed on the current collector side portion of the positive electrode mixture layer, which is advantageous.
  • the thickness of the third layer may be, for example, 10 to 100 ⁇ m, and more preferably 20 to 60 ⁇ m.
  • the second slurry when the second slurry is applied, a part of the binder contained in the first layer is eluted in the solvent contained in the second slurry.
  • the first layer contains a relatively large amount of the binder, a large amount of the binder remains in the current collector side portion.
  • a binder distribution is obtained in which a first maximum point is generated in the first layer, a minimum point is generated in the vicinity of the second layer, and a second maximum point is generated in the vicinity of the surface of the third layer.
  • the nonaqueous electrolyte secondary battery includes the positive electrode, the negative electrode, a separator interposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte.
  • the positive electrode, the negative electrode, and the separator are wound to form an electrode group.
  • the negative electrode includes a current collector and a negative electrode mixture layer formed on the surface of the current collector.
  • the negative electrode mixture layer includes negative electrode active material particles and a binder as essential components, and includes a thickener, a conductive material, and the like as optional components.
  • Examples of the negative electrode active material include carbon materials such as graphite particles, materials containing Si, and materials containing Sn.
  • the graphite particles particles including a region having a graphite structure can be used, and examples thereof include natural graphite, artificial graphite, and graphitized mesophase carbon particles.
  • Examples of the material containing Si include Si alone, an alloy containing Si, and SiO m1 (0 ⁇ m1 ⁇ 2).
  • Examples of the material containing Sn include Sn alone, an alloy containing Sn, and SnO m2 (0 ⁇ m2 ⁇ 2).
  • a negative electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type.
  • binder various binders exemplified as the binder for the positive electrode mixture layer can be used.
  • the thickener include carboxymethyl cellulose (CMC).
  • the current collector for the negative electrode include sheets and foils containing copper and nickel.
  • the nonaqueous electrolyte includes a nonaqueous solvent and a solute that dissolves in the nonaqueous solvent.
  • Nonaqueous solvents include, for example, cyclic carbonates, chain carbonates, cyclic carboxylic acid esters, and the like.
  • the cyclic carbonate include ethylene carbonate (EC) and propylene carbonate (PC).
  • the chain carbonate include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC).
  • Examples of the cyclic carboxylic acid ester include ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL).
  • a non-aqueous solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the solute is not particularly limited, and examples thereof include inorganic lithium fluoride and a lithium imide compound.
  • examples of the inorganic lithium fluoride include LiPF 6 and LiBF 4
  • examples of the lithium imide compound include LiN (CF 3 SO 2 ) 2 .
  • a microporous film made of polyethylene, polypropylene or the like is generally used as the separator.
  • the thickness of the separator is, for example, 10 to 30 ⁇ m.
  • Example 1 Fabrication of positive electrode (first layer) 100 parts by weight of LiCoO 2 as a positive electrode active material, 2 parts by weight of polyvinylidene fluoride (PVDF, KF polymer L # 7208 manufactured by Kureha Corporation) as a binder, and 3 parts by weight of acetylene black as a conductive material Then, an appropriate amount of N-methyl-2-pyrrolidone (NMP) as a dispersion medium was mixed to prepare a first slurry having a solid content of 73% by weight. The 1st slurry was apply
  • NMP N-methyl-2-pyrrolidone
  • (Second layer) 100 parts by weight of the same positive electrode active material as that of the first layer, 1 part by weight of PVDF as a binder, 3 parts by weight of acetylene black as a conductive material, and an appropriate amount of NMP as a dispersion medium are mixed to obtain a solid content of 78 A weight percent second slurry was prepared. The 2nd slurry was apply
  • the coating film was rolled with a roller so that the active material density of the positive electrode mixture layer was 3.55 g / cm 3 to prepare a positive electrode sheet.
  • the thickness of the 1st layer after rolling was about 15 micrometers
  • the thickness of the 2nd layer was about 40 micrometers
  • the thickness of the whole sheet was 125 micrometers.
  • the positive electrode sheet was cut into a size of 55 mm in width and 500 mm in length to obtain a positive electrode.
  • the coating film was rolled with a roller so that the thickness of the whole negative electrode was 150 ⁇ m, and a negative electrode sheet was produced. Thereafter, the negative electrode sheet was cut into a size of 58 mm in width and 540 mm in length to obtain a negative electrode.
  • LiPF 6 LiPF 6 was dissolved at a concentration of 1 mol / l in a non-aqueous solvent containing ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 1: 3, thereby producing non-aqueous electrolyte.
  • An electrolyte was prepared.
  • a nonaqueous electrolyte secondary battery shown in FIG. 2 was produced by the following procedure. One end of the positive electrode lead 5a was connected to the exposed part of the positive electrode current collector, and one end of the negative electrode lead 6a was connected to the exposed part of the negative electrode current collector.
  • the positive electrode 5 and the negative electrode 6 were wound with a separator 7 made of a polypropylene microporous film having a thickness of 20 ⁇ m between them, and a winding core having an outer diameter of 3 mm was wound to produce an electrode group.
  • the electrode group was sandwiched between the upper insulating ring 8a and the lower insulating ring 8b and accommodated in a cylindrical battery case 1 having an outer diameter of 18 mm and a length of 65 mm.
  • the other end of the negative electrode lead 6 a was welded to the inner bottom surface of the battery case 1.
  • a non-aqueous electrolyte was injected into the battery case 1, and the electrode group was impregnated with the non-aqueous electrolyte by a decompression method.
  • the other end of the positive electrode lead 5 a was welded to the lower surface of the sealing body 2.
  • the battery case 1 was sealed with the sealing body 2 through the gasket 3 to produce a cylindrical lithium ion secondary battery.
  • Example 2 A battery was fabricated in the same manner as in Example 1 except that the amount of the binder in the first slurry was 3 parts by weight and the solid content was 68% by weight.
  • Example 3 A battery was fabricated in the same manner as in Example 1 except that the amount of the binder in the first slurry was 4 parts by weight and the solid content was 60% by weight.
  • Example 4 The positive electrode after forming the first layer was heated at 190 ° C. for 30 minutes. Thereafter, a battery was produced in the same manner as in Example 3 except that the second layer was formed on the surface of the first layer.
  • Example 5 A battery was fabricated in the same manner as in Example 4 except that the amount of the binder in the first slurry was 5 parts by weight and the solid content was 58% by weight.
  • Example 6 A battery was fabricated in the same manner as in Example 4 except that the amount of the binder in the first slurry was 7 parts by weight and the solid content was 50% by weight.
  • Example 7 Fabrication of positive electrode (first layer) Mixing 100 parts by weight of LiCoO 2 as a positive electrode active material, 4 parts by weight of PVDF as a binder, 3 parts by weight of acetylene black as a conductive material, and an appropriate amount of NMP as a dispersion medium, the solid content is 62% by weight.
  • % First slurry was prepared. The 1st slurry was apply
  • (Second layer) Mixing 100 parts by weight of the same positive electrode active material as in the first layer, 0.7 parts by weight of PVDF as a binder, 3 parts by weight of acetylene black as a conductive material, and an appropriate amount of NMP as a dispersion medium, A second slurry having a solid content of 78% by weight was prepared. The 2nd slurry was apply
  • (3rd layer) 100 parts by weight of the same positive electrode active material as in the first layer, 1.5 parts by weight of PVDF as a binder, 3 parts by weight of acetylene black as a conductive material, and an appropriate amount of NMP as a dispersion medium are mixed.
  • the coating film was rolled with a roller so that the active material density of the positive electrode mixture layer was 3.55 g / cm 3 to prepare a positive electrode sheet.
  • the thickness of the 1st layer after rolling was about 15 micrometers
  • the thickness of the 2nd layer was about 10 micrometers
  • the thickness of the 3rd layer was about 30 micrometers
  • the thickness of the whole sheet was 125 micrometers.
  • the positive electrode sheet was cut into a size of 55 mm in width and 500 mm in length to obtain a positive electrode.
  • a battery was fabricated in the same manner as in Example 1 except that the above positive electrode was used.
  • Comparative Example 1 100 parts by weight of LiCoO 2 as a positive electrode active material, 2 parts by weight of PVDF as a binder, 3 parts by weight of acetylene black as a conductive material, and an appropriate amount of NMP as a dispersion medium are mixed to obtain a solid content of 73 wt. % Positive electrode mixture slurry was prepared. The positive electrode mixture slurry was applied on both surfaces of the same positive electrode current collector as in Example 1, and dried under conditions of 110 ° C. for 5 minutes to form a positive electrode mixture layer. The second layer and the third layer were not produced.
  • the coating film was rolled with a roller so that the active material density of the positive electrode mixture layer was 3.55 g / cm 3 to prepare a positive electrode sheet.
  • the total thickness of the sheet after rolling was 125 ⁇ m.
  • the positive electrode sheet was cut into a size of 55 mm in width and 500 mm in length to obtain a positive electrode.
  • a battery was fabricated in the same manner as in Example 1 except that the above positive electrode was used.
  • Comparative Example 2 A battery was fabricated in the same manner as in Example 4 except that the amount of the binder in the first slurry was 10 parts by weight and the solid content was 40% by weight.
  • Comparative Example 3 A battery was fabricated in the same manner as in Example 1 except that the amount of the binder in the second slurry was 1.5 parts by weight and the solid content was 73% by weight.
  • (Second layer) Mix 100 parts by weight of the same positive electrode active material as that of the first layer, 1 part by weight of PVDF as a binder, 3 parts by weight of acetylene black as a conductive material, and an appropriate amount of NMP as a dispersion medium. A 78 wt% second slurry was prepared. The 2nd slurry was apply
  • (3rd layer) 100 parts by weight of the same positive electrode active material as that of the first layer, 0.5 parts by weight of PVDF as a binder, 3 parts by weight of acetylene black as a conductive material, and an appropriate amount of NMP as a dispersion medium are mixed.
  • the 3rd slurry was apply
  • the coating film was rolled with a roller so that the active material density of the positive electrode mixture layer was 3.55 g / cm 3 to prepare a positive electrode sheet.
  • the thickness of the 1st layer after rolling was about 15 micrometers
  • the thickness of the 2nd layer was about 20 micrometers
  • the thickness of the 3rd layer was about 20 micrometers
  • the thickness of the whole sheet was 125 micrometers.
  • the positive electrode sheet was cut into a size of 55 mm in width and 500 mm in length to obtain a positive electrode.
  • a battery was fabricated in the same manner as in Example 1 except that the above positive electrode was used.
  • Example 1 except that the amount of the binder was 10 parts by weight and the solid content was 40% by weight in the first slurry, and the amount of the binder was 5 parts by weight and the solid content was 58% by weight in the second slurry. Thus, a battery was produced.
  • Table 1 shows the layer structure of the positive electrodes in the batteries of Examples 1 to 7 and Comparative Examples 1 to 5.
  • the amount of the binder indicates the amount (parts by weight) of the binder with respect to 100 parts by weight of the positive electrode active material particles in the slurry used for producing each layer.
  • a graph was created with the average value of the amount of the binder on the vertical axis and the distance from the current collector on each surface on the horizontal axis.
  • the amount W 1 of the binder at the first maximum point, the amount W 2 of the binder at the minimum point, the amount W 3 , W 1 / W 2 of the binder at the second maximum point, and the first maximum point and the minimum point The slope of the straight line connecting The results are shown in Table 2.
  • the positive electrode, the negative electrode, and the separator were wound using a core having an outer diameter of 3 mm to produce an electrode group, and then the electrode group was disassembled. The positive electrode was observed to confirm whether the positive electrode current collector was broken. For each example and comparative example, 50 electrode groups were observed and the number of broken electrode groups was determined. The results are shown in Table 2.
  • the first layer was formed and then heated, and then the second layer was formed on the surface of the first layer.
  • the crystallinity of the binder contained in the first layer is increased. Therefore, it is thought that the elution to the 2nd slurry of the binder contained in a 1st layer was suppressed, and the positive mix layer which has a better binder distribution was obtained.
  • Example 7 a first layer, a second layer, and a third layer were formed. Thereby, it is considered that a positive electrode mixture layer having a good binder distribution was obtained.
  • the productivity of the nonaqueous electrolyte secondary battery can be increased. Therefore, it is highly useful as a power source suitable for reducing the size and weight of electronic devices such as mobile phones and notebook computers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 正極合剤層が、正極活物質粒子と、結着剤とを含み、正極合剤層の厚さ方向における集電体からの距離と、結着剤の量との相関を示す曲線が、第1極大点、極小点および第2極大点を有し、極小点が、正極合剤層の厚さ方向における中間部の位置に対応し、極小点に対応する位置よりも、第1極大点が集電体側の位置に対応し、第2極大点が集電体から離れた位置に対応し、第1極大点および極小点のそれぞれにおける、正極活物質粒子100重量部に対する結着剤の量W1と結着剤の量W2との比W1/W2が、2より大きい、非水電解質二次電池用正極。

Description

非水電解質二次電池用正極および非水電解質二次電池
 本発明は、集電体と、その表面に形成された正極合剤層とを備える非水電解質二次電池用正極に関し、より詳しくは正極合剤層の改良に関する。
 近年、携帯電話やノートパソコンなどの電子機器の小型化または軽量化に伴い、これらの機器の電源である二次電池に対する高容量化が要求されている。このような要求から、高エネルギー密度化が可能な非水電解質二次電池が広く普及している。非水電解質二次電池は、正極、負極、これらの間に介在するセパレータおよび非水電解質を具備する。正極、負極およびセパレータは、捲回されて電極群を構成している。
 正極は、集電体と、集電体の表面に形成された正極合剤層とを備える。正極合剤層は、正極活物質粒子と、結着剤と、必要に応じて導電材とを含む。正極活物質としては、LiCoO2、LiNiO2、LiNi1-x1Cox12(0<x1<1)などのリチウム含有遷移金属酸化物が用いられる。
 非水電解質二次電池のさらなる高容量化を目的として、正極活物質粒子を正極合剤層に高密度に充填して、活物質密度を高くすることが検討されている。しかし、活物質密度の高い正極を捲回すると、応力によって集電体の破断、正極合剤層の割れおよびひびなどの正極の破損が生じやすい。そのため、このような正極の破損の抑制が検討されている。
 特許文献1は、電極合剤層を、一定間隔毎に設けた凹部によって複数の領域に分割することを提案している。特許文献1は、電極を破損させることなく、大きく湾曲させることができると記載している。
 特許文献2は、電極合剤層と集電体との界面を剥離しやすくすることを提案している。捲回時の応力により、界面がわずかに剥離することで、電極の破断を防止できるとされている。特許文献2は、集電体の内側に配される一方の電極合剤層と集電体との界面の剥離強度を、他方の電極合剤層と集電体との界面の剥離強度より小さくすることも提案している。
 特許文献3は、電極合剤層内の中心部における結着剤の濃度を、集電体の近傍における濃度の50~90%とすることを提案している。特許文献3は、集電体と電極合剤層との密着性を低下させることなく、結着剤の量を少なくでき、充放電特性を向上できると記載している。
特開2002-343340号公報 特開2008-91054号公報 特開平10-270013号公報
 特許文献1では、凹部に活物質が配されないため、電極に含まれる活物質量が少ない。よって、非水電解質二次電池の高容量化には限界がある。
 特許文献2では、電極合剤層と集電体とを剥離しやすくしているため、集電性が低下しやすい。
 特許文献3の電極合剤層の中心部では、結着剤濃度が小さくなっているため、応力が緩和されやすく、ある程度までは正極の破損が抑制されると考えられる。しかし、活物質密度が3.3g/cm3以上に高くなると、応力を緩和することが困難となる。これは、高密度の電極合剤層では、中心部の結着剤濃度を集電体近傍の濃度の50%に減らしたとしても、過剰となり、活物質粒子同士の密着性が高くなりすぎるためと考えられる。
 活物質密度が高くなるほど、捲回時の応力による正極の破損が顕著になる。そのため、電池の高容量化、集電性および正極の破損の抑制をバランスよく実現するのは困難であった。
 本発明の一局面は、集電体と、集電体の表面に形成された正極合剤層とを備え、正極合剤層が、正極活物質粒子と、結着剤とを含み、正極合剤層の厚さ方向における集電体からの距離と、正極合剤層における結着剤の量との相関を示す曲線が、第1極大点、極小点および第2極大点を有し、極小点が、正極合剤層の厚さ方向における中間部の位置に対応し、第1極大点が、正極合剤層の極小点に対応する位置よりも集電体側の位置に対応し、第2極大点が、正極合剤層の極小点に対応する位置よりも集電体から離れた位置に対応し、第1極大点における、正極活物質粒子100重量部に対する結着剤の量W1と、極小点における、正極活物質粒子100重量部に対する結着剤の量W2との比W1/W2が、2より大きく、W1が、1~8重量部であり、W2が、0.3~1.5重量部であり、正極活物質粒子が、リチウム含有遷移金属酸化物を含み、正極合剤層の活物質密度が3.3~4g/cm3である、非水電解質二次電池用正極に関する。
 本発明の他の局面は、上記の正極、負極、正極と負極との間に介在するセパレータおよび非水電解質を備え、正極、負極およびセパレータが、捲回されて電極群を構成している、非水電解質二次電池に関する。
 本発明の非水電解質二次電池用正極は、高密度であるにもかかわらず、電極群を構成する際に、捲回によって応力が生じても破損しにくい。よって、非水電解質二次電池の製造が容易になる。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
本発明の一実施形態に係る正極合剤層の厚さ方向における集電体からの距離と、正極合剤層における結着剤の量との相関を示すグラフである。 本発明に係る非水電解質二次電池の構成を概略的に示す縦断面図である。
 非水電解質二次電池用正極(以下、単に正極ともいう)は、シート状の集電体と、集電体の表面に形成された正極合剤層とを備える。正極合剤層は、正極活物質粒子と、結着剤とを必須成分として含み、導電材などを任意成分として含む。正極合剤層は、集電体の少なくとも一方の面に形成されていればよく、両方の面に形成されていてもよい。
 正極は、例えば以下の方法で作製される。正極活物質粒子、結着剤および分散媒を混合し、正極合剤スラリーを調製する。正極合剤スラリーには、任意成分を添加してもよい。正極合剤スラリーを集電体の表面に塗布し、乾燥させることで正極合剤層が得られる。正極合剤層を圧延することにより、活物質密度が高められるため、高容量な正極が得られる。
 正極合剤スラリーに含まれる結着剤は、集電体の表面に塗布した正極合剤スラリーを乾燥させる際などに、正極合剤層の表面側部分に移動(マイグレーション)しやすい。結着剤のマイグレーションが起こると、正極合剤層の集電体側部分における結着剤の重量割合が少なくなる。その結果、正極合剤層と集電体との界面が剥離しやすくなり、集電性が低下する場合がある。
 一方、正極合剤層と集電体との剥離を防ぐために、正極合剤層の結着剤の量を大きくすると、高容量化を実現できず、集電性の低下も防止できない。
 そこで、本発明では、集電性の低下および正極の破損を効果的に抑制できるように、正極合剤層における結着剤の分布を制御している。図1は、正極合剤層a~cの厚さ方向における集電体からの距離と、結着剤の量との相関(結着剤の分布)を示すグラフである。なお、このグラフにおける「結着剤の量」とは、正極合剤層における集電体(正極合剤層と集電体との界面)からの距離dの位置の平面に存在する結着剤の平均的な量を、正極活物質粒子100重量部に対する量(重量部)として表したものを意味する。そして、距離dの位置の微小厚みを有する層における、正極活物質粒子100重量部に対する結着剤の量(重量部)とほぼ同義に使用する。なお、本明細書において、正極活物質粒子100重量部に対する結着剤の量(重量部)を単に「結着剤の重量割合」ということがある。
 正極合剤層a~cにおいて、正極活物質はいずれもLiCoO2であり、結着剤はいずれもポリフッ化ビニリデン(PVDF)である。正極合剤スラリーの調製の際に用いた分散媒はいずれもN-メチル-2-ピロリドン(NMP)である。
 曲線Aは、正極合剤層aにおける結着剤の分布を示す。正極合剤層aは、正極活物質と結着剤とを含む。正極合剤層aは、結着剤の重量割合が5重量部である第1正極合剤スラリーを集電体に塗布した後、集電体を190℃で1時間加熱し、その後、結着剤の重量割合が0.9重量部である第2正極合剤スラリーを塗布することで得られる。
 曲線Bは、正極合剤層bにおける結着剤の分布を示す。正極合剤層bは、結着剤の重量割合が5重量部である第1正極合剤スラリーを集電体に塗布した後、結着剤の重量割合が0.7重量部である第2正極合剤スラリーを塗布することで得られる。
 曲線Cは、結着剤の重量割合が1.7重量部である正極合剤スラリーを集電体に塗布することで得られる正極合剤層cにおける結着剤の分布を示す。
 各正極合剤スラリーは、通常、塗布後に乾燥される。乾燥された塗膜は、通常、最終的に圧延される。
 曲線Cが示すように、正極合剤層cでは、集電体側において結着剤の量が小さくなっている。これは、上記のような結着剤のマイグレーションが原因であると考えられる。
 一方、本発明に係る正極合剤層aおよびbでは、厚さ方向における集電体からの距離と、結着剤の量との相関を示す曲線AおよびBが、それぞれ集電体側に第1極大点XAおよびXBを有する。曲線AおよびBは、更に極小点YAおよびYBならびに第2極大点ZAおよびZBを有する。
 極小点に対応する位置は、正極合剤層の厚さ方向における中間部にある。中間部とは、正極合剤層の集電体側部分および表面側部分を除く部分をいう。本発明において、正極合剤層の集電体側部分とは、正極合剤層の厚さをTとするとき、集電体(集電体と正極合剤層との界面)から厚さ0.3Tまでの領域をいい、表面側部分とは、正極合剤層の表面から厚さ0.3Tまでの領域をいう。
 このような分布を有する正極合剤層は、中間部における結着剤の量が相対的に小さくなっている。そして、捲回によって正極に応力が生じた場合、極小点に対応する、相対的に結着剤量が少ない位置付近において、粒子が移動しやすくなっており、粒子間に隙間が生じたり、集電体側の部分と表面側の部分とがずれたりする。その結果、正極合剤層が変形し、捲回によって生じる応力が緩和される。したがって、集電体の破断、正極合剤層の割れおよびひびなどの正極の破損を抑制できる。
 第1極大点は、正極合剤層の極小点に対応する位置よりも集電体側の位置に対応する。このような分布を有する正極合剤層は、集電体側部分に相対的に多くの結着剤を含む。よって、正極合剤層の集電体側部分が、集電体と十分な接着強度で接着される。そのため、正極合剤層が集電体から剥離しにくくなり、集電性の低下を抑制できる。
 本発明において、正極合剤層全体の厚さは、20~150μmであることが好ましく、50~100μmであることがより好ましい。このとき、第1極大点は、正極合剤層の厚さ方向における集電体からの距離0.1~10μmの位置に対応することが好ましく、1~5μmであることがより好ましい。
 ただし、第1極大点における正極活物質粒子100重量部に対する結着剤の量W1と、極小点における正極活物質粒子100重量部に対する結着剤の量W2との比W1/W2は、2より大きくする必要がある。このようなW1/W2を満たす正極は、活物質密度が高くなるまで圧延された状態であっても、極小点に対応する位置付近の結着剤量が相対的に少ないため、粒子同士の密着性が高くなりすぎず、捲回によって応力が生じた場合の正極の破損を良好に抑制できる。このことと、集電体側に第1極大点に対応する位置を有することとが協働的に作用するため、正極合剤層が集電体から剥離しにくくなり、集電性の低下を抑制する効果も大きくなる。このような効果を得やすくするためには、W1/W2は2より大きく、好ましくは2.1以上、さらに好ましくは2.4以上である。W1/W2は、10以下であることがより好ましく、6以下であることが特に好ましく、3以下であってもよい。これらの下限値と、上限値とは、任意に組み合わせることができる。例えば、W1/W2は、2より大きく、3以下であってもよく、2.1以上、10以下であってもよい。
 W1は、正極活物質粒子100重量部あたり1~8重量部であり、好ましくは1.2~7重量部であり、2~5重量部または1.3~3.5重量部であることが特に好ましい。W1を上記の範囲にすることで、正極合剤層と集電体との良好な結着性を維持しやすくなる。
 第1極大点に対応する位置と、集電体(集電体および正極合剤層の界面)との中間において、正極活物質粒子100重量部に対する結着剤の量は、好ましくは0.6W1~0.99W1であり、0.7W1~0.98W1であることがより好ましい。結着剤の量をこのように制御することで、集電性が過度に低くなることを抑制できる。
 W2は、正極活物質粒子100重量部あたり0.3~1.5重量部であり、好ましくは0.5~1.2重量部、さらに好ましくは0.6~1.1重量部である。W2を上記の範囲にすることで、正極合剤層の厚さ方向における中間部で応力が緩和されやすくなり、正極の破損をより抑制しやすくなる。高密度な正極においては、結着剤の中間部における量が相対的に少量であっても十分な密着性を維持できる。
 第2極大点は、極小点に対応する位置よりも正極合剤層の表面側の(集電体から離れた)位置に対応する。このような分布を有する正極合剤層は、表面側部分に、中間部よりも多くの結着剤を含む。したがって、正極合剤層の表面側からの正極活物質粒子の脱落を抑制することができる。
 本発明において、第2極大点における、正極活物質粒子100重量部に対する結着剤の量W3は、W1よりも小さいことが好ましい。結着剤の量をこのように制御することで、十分なレート特性を維持することができる。
 W3は、正極活物質粒子100重量部あたり1~5重量部であることが好ましく、1~3重量部であることがより好ましく、1.1~2.5重量部であることが特に好ましい。W3を上記の範囲にすることで、正極合剤層の表面側からの正極活物質粒子の脱落をより抑制しやすくなる。
 正極合剤層における結着剤の分布を示すグラフは、正極合剤層の厚さ方向における集電体からの距離dを横軸、距離dにおける、結着剤の重量割合(重量部)を縦軸とするグラフである。このとき、グラフの、正極合剤層の中間部に対応する領域において、結着剤の量が極小となる点を極小点とする。グラフの中間部に複数の極小点がある場合には、これらのうち、最小値をとるものを極小点とすることができる。決定した極小点に対応する位置よりも集電体に近い領域にある極大点を第1極大点とし、集電体から遠い領域にある極大点を第2極大点として決定する。極小点に対応する位置よりも集電体に近い領域に複数の極大点がある場合、これらのうち、最大値をとるものを第1極大点とすることができる。同様に、極小点に対応する位置よりも集電体から遠い領域に複数の極大点がある場合、これらのうち、最大値をとるものを第2極大点とすることができる。
 本発明に係る正極合剤層においては、第1極大点と極小点とを結ぶ直線が、-0.3重量部/μm以上、-0.05重量部/μm以下の傾きを有することが好ましく、-0.2重量部/μm以上、-0.05重量部/μmの傾きを有することがより好ましい。正極合剤層が、このような結着剤の分布を有することで、正極合剤層の厚さと結着剤の分布とのバランスがよくなる。その結果、高密度化、集電性および正極の破損の抑制を優れたバランスで実現できる。正極合剤層が厚くなりすぎると、第1極大点と極小点との距離が離れすぎることから、傾きの絶対値は小さくなり、分布がなだらかになるため、正極の破損を抑制する効果が小さくなる場合がある。
 正極合剤層における結着剤の分布の状態を確認する方法の一例について、説明する。
 正極の断面において、集電体表面から正極合剤層表面までを含む任意の測定領域を選択し、当該測定領域を255×255個のピクセル(微小領域)に分割する。電子線プローブマイクロアナライザー(EPMA)法により、それぞれの微小領域におけるピーク強度を求める。具体的には、正極の厚さ方向の断面の任意の位置(例えば、集電体からの距離dの位置)において、正極の面方向に電子線をスキャンし、それぞれの微小領域におけるピーク強度を求め、平均する。同様の測定を、集電体の一方の面の正極合剤層の表面から集電体表面まで厚さ方向に沿って行う。結着剤に含まれる元素に帰属されるシグナルの強度から、任意の領域における結着剤の重量割合(重量部)を求める。シグナルの強度と結着剤の重量割合との関係は、重量割合が既知のサンプルから検量線を作成し、これと対比することで求められる。その後、厚さ方向における集電体からの距離を横軸とし、結着剤の重量割合(重量部)を縦軸としてプロットすることで、正極合剤層における結着剤の分布の状態を確認できる。
 EPMA法では、試料(本発明においては、正極の厚さ方向における断面)に対して加速した電子線を照射し、特性X線のスペクトルを検出する。これにより、電子線が照射されている微小領域における元素の検出および同定、ならびに各元素の割合(濃度)を分析する。
 EPMA測定では、水素元素は検出することができない。また、炭素元素は導電材にも含まれるため、結着剤に含まれる炭素元素を特定することは困難である。よって、これら以外の元素を結着剤の重量割合に相関する元素として検出することが好ましい。例えば、結着剤がフッ素樹脂である場合には、構成元素であるフッ素元素を検出すればよい。結着剤の重量割合に相関する元素は、結着剤の構成元素であってもよく、構成元素でなくてもよい。例えば、結着剤に、検出しやすい元素をドープしてもよい。
 正極活物質粒子には、非水電解質二次電池の分野で常用されるものを使用できる。正極活物質は、例えば、リチウム含有遷移金属酸化物などである。リチウム含有遷移金属酸化物は、層状もしくは六方晶の結晶構造またはスピネル構造を有することが好ましい。遷移金属元素としては、Co、Ni、Mnなどからなる群より選択される1または2以上の元素が挙げられる。遷移金属は、一部が異種元素で置換されていてもよい。また、リチウム含有遷移金属酸化物粒子は、その表面が異種元素で被覆されていてもよい。異種元素としては、Na、Mg、Sc、Y、Fe、Cu、Zn、Al、Cr、Pb、Sb、Bなどからなる群より選択される1または2以上の元素が挙げられる。正極活物質は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 具体的な正極活物質としては、例えば、LixCoO2、LixNiO2、LixMnO2、LixCoyNi1-y2、LixCoy1-yz、LixNi1-yyz、LixMn24、LixMn2-yy4(M=Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、SbおよびBのうち少なくとも1種)が挙げられる。なお、正極活物質が元素Mと他の遷移金属元素(Ni、CoまたはMn)とを含む場合、元素Mは、通常、その遷移金属元素とは異なる元素である。上記の一般式において、0<x≦1.2、0<y≦0.9、2≦z≦2.3である。
 結着剤としては、非水電解質二次電池用正極に通常使用される各種結着剤、例えば、フッ素樹脂、オレフィン樹脂、アクリル樹脂、ゴム状樹脂(スチレン-ブタジエンゴムなど)などが使用できる。これらのうち、フッ素樹脂が好ましい。フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデン(VDF)単位を含む共重合体(例えば、VDF単位およびヘキサフルオロプロピレン(HFP)単位を含む共重合体など)が挙げられる。共重合体は、フッ化ビニリデン単位を全体の50重量%以上含むことが好ましい。これらのフッ素樹脂の重量平均分子量は、30万~150万であることが好ましい。正極合剤層全体に含まれる結着剤の量は、正極活物質100重量部あたり、例えば、0.9~4重量部、好ましくは1~3重量部であればよい。
 導電材としては、アセチレンブラック、ケッチェンブラックなどのカーボンブラック、黒鉛などが挙げられる。正極合剤層に含まれる導電材の量は、例えば、正極活物質100重量部あたり0.5~5重量部であればよい。
 正極集電体としては、アルミニウム、チタンなどの金属材料を含むシート、箔などが挙げられる。
 本発明に係る正極合剤層の活物質密度は、3.3~4g/cm3であり、3.5~3.8g/cm3であることが好ましい。このような活物質密度とすることで、高容量な電池が得られる。一般的に、活物質密度の高い正極合剤層を備える正極は、その内部に応力を発生しやすく、破損しやすい傾向がある。一方、上記のような結着剤の分布状態とすることにより、応力が緩和されやすくなり、正極の破損が抑制される。正極合剤層の活物質密度とは、正極合剤層1cm3あたりに含まれる正極活物質粒子の重量である。
 正極合剤層の空隙率は、10~25%であることが好ましく、15~21%であることがより好ましい。このような範囲では、捲回の際の破損をより有効に抑制できるとともに、電池の高容量化の点でも有利である。正極合剤層の空隙率は、単位面積あたりの正極合剤層に含まれる各材料(正極活物質、導電材、結着剤など)の、それぞれの重量および真密度から求められる。
 本発明の正極は、例えば以下の製造方法により得られる。
(1)スラリーの調製
 正極活物質粒子の量に対する結着剤の量(通常、重量割合)の異なる複数のスラリーを塗布することで、正極合剤層における結着剤の分布を制御できる。正極活物質粒子と、結着剤と、分散媒とを混合してスラリーを調製する。具体的には、集電体に塗布する第1スラリーと、第1スラリーを塗布した後に、第1スラリーの塗膜上に塗布する第2スラリーとを用いる。本発明においては、結着剤の重量割合の異なる3種類以上のスラリーを用いてもよい。
 各スラリーにおける結着剤の重量割合は、所望の結着剤の分布(W1/W2や第1極大点と極小点とを結ぶ直線の傾き等)に応じて適宜調節すればよい。例えば、2種類のスラリーを用いて2層構造とする場合は、第1スラリーにおいて、正極活物質粒子100重量部に対する結着剤の量w1は、1~8重量部であることが好ましく、2~5重量部であることがより好ましい。第2スラリーにおいて、正極活物質粒子100重量部に対する結着剤の量w2は、0.1~3重量部であることが好ましく、0.5~1.5重量部または0.5~1重量部であることがより好ましい。
 3種類のスラリーを用いて3層構造とする場合、第1スラリーにおいて、正極活物質粒子100重量部に対する結着剤の量w1は、1~8重量部であることが好ましく、2~5重量部であることがより好ましい。第2スラリーにおいて、正極活物質粒子100重量部に対する結着剤の量w2は、0.5~1.5重量部であることが好ましく、0.6~1重量部であることがより好ましい。第3スラリーにおいて、正極活物質粒子100重量部に対する結着剤の量w3は、1~3重量部であることが好ましく、1.3~2.5重量部または1.5~2.5重量部であることがより好ましい。
 第1スラリーにおける正極活物質粒子100重量部に対する結着剤の量w1と、第2スラリーにおける正極活物質粒子100重量部に対する結着剤の量w2との比w1/w2は、2より大きく、10以下であることが好ましく、2より大きく、6以下であることがより好ましい。このようなスラリーを用いることで、結着剤の分布状態の良好な正極合剤層を形成することができる。
 分散媒としては、例えば、水、N-メチル-2-ピロリドンなどの有機溶媒、またはこれらの混合溶媒などが例示できる。
(2)正極の作製
 第1スラリーを集電体の表面に塗布し、第1層を形成する。集電体の表面に塗布された第1スラリーの塗膜が乾燥するまでの間に、第1スラリー中の結着剤のマイグレーションが起こり、結着剤が表面側へ向かう方向に移動する。よって、第1層には、集電体表面から離れるほど量が多くなるように結着剤の分布が形成される。
 その後、第2スラリーを第1層の表面に塗布し、第2層を形成する。第2スラリーの塗膜においても、同様のマイグレーションが起こる。ただし、第2スラリーを塗布する際に、第1層に含まれる結着剤の一部が、第2スラリーに含まれる溶媒に溶出する。溶出した結着剤は、第2スラリーに含まれる結着剤とともに、第2スラリーを乾燥させる際などに表面側に移動する。ここで、第1層は比較的多量の結着剤を含むため、多くの結着剤は集電体側部分に残存する。その結果、例えば、第1層内に第1極大点が生じ、第1層と第2層との界面より集電体から離れた位置に極小点が生じ、第2層の表面付近に第2極大点が生じるような結着剤の分布が得られる。
 第3層を形成する場合、更に、第3スラリーを第2層の表面に塗布する。これにより、集電体の表面に正極合剤層を形成する。第1スラリー、第2スラリーおよび第3スラリーは、それぞれ塗布した後、熱風等により乾燥させることが好ましい。乾燥条件により、結着剤のマイグレーションを任意に制御することも可能である。乾燥温度は、例えば、150℃未満、好ましくは80~130℃、さらに好ましくは90~125℃である。乾燥時間は、乾燥温度や分散媒の種類に応じて、適宜選択できる。
 正極合剤層は、乾燥後、通常、圧延される。圧延により、正極合剤層の厚み(または各層の厚み)および/または活物質密度を制御することができる。
 各層の厚さは、所望の結着剤の分布に応じて適宜調節できる。例えば、2層構造とする場合、正極合剤層の厚さをTとし、第1層の厚さをT1とするとき、TとT1は、0.1T≦T1≦0.4Tを満たすことが好ましく、0.15T≦T1≦0.3Tを満たすことがより好ましい。また、第2層の厚さをT2とするとき、TとT2は、0.6T≦T2≦0.9Tを満たすことが好ましく、0.7T≦T2≦0.85Tを満たすことがより好ましい。各層の厚さを上記の範囲とすることで、結着剤の分布状態が所望の状態になるように制御しやすくなる。
 第1層の厚さT1を0.4T以下とすることで、極小点を所望の位置により容易に制御することができる。第1層の厚さは、例えば5~50μmであればよく、10~20μmであることがより好ましい。このような範囲は、正極合剤層の集電体側部分に十分な量の結着剤を分布させる上で有利である。また、極小点が正極合剤層の厚さ方向において集電体から離れた位置になるのを効果的に抑制して、極小点を適切な位置に対応させることができる点で有利である。この場合、極小点付近で正極合剤層が剥離したとしても、正極合剤層の集電体側部分において破損が生じるのをより有効に防止できる。
 第2層の厚さT2を上記の範囲とすることで、極小点を所望の位置により容易に制御することができる。また、正極合剤層の集電体側部分に十分な量の結着剤を分布させる上で有利である。第2層の厚さは、例えば10~100μmであればよく、30~80μmであることがより好ましい。
 第1層を形成した後、第2スラリーを塗布する前に、第1層を形成した集電体を加熱してもよい。加熱することで、第1層に含まれる結着剤の結晶性が高くなる。これにより、第2スラリーを塗布する際の第1層に含まれる結着剤の第2スラリーへの溶出が抑制される。その結果、結着剤の分布状態の良好な正極合剤層が得られる。加熱の温度は、例えば150~250℃、好ましくは170~230℃とすればよい。
 3層構造とする場合、正極合剤層の厚さをTとし、第1層の厚さをT1とするとき、TとT1は、0.1T≦T1≦0.4Tを満たすことが好ましく、0.15T≦T1≦0.3Tを満たすことがより好ましい。これは上記2層構造の場合と同じ理由による。
 また、第2層の厚さをT2とするとき、TとT2は、0.05T≦T2≦0.25Tを満たすことが好ましく、0.1T≦T2≦0.2Tを満たすことがより好ましい。また、第3層の厚さをT3とするとき、TとT3は、0.45T≦T3≦0.85Tを満たすことが好ましく、0.55T≦T3≦0.75Tを満たすことがより好ましい。
 第2層の厚さT2を上記の範囲とすることで、極小点を所望の位置により容易に制御することができる。第2層の厚さは、例えば5~25μmであればよく、10~20μmであることがより好ましい。
 第3層の厚さT3を上記の範囲とすることで、極小点を所望の位置により容易に制御することができる。また、正極合剤層の集電体側部分に、十分な量の結着剤を分布させることができ、有利である。第3層の厚さは、例えば10~100μmであればよく、20~60μmであることがより好ましい。
 上記の方法によれば、第2スラリーを塗布する際に、第1層に含まれる結着剤の一部が、第2スラリーに含まれる溶媒に溶出する。ここで、第1層は比較的多量の結着剤を含むため、多くの結着剤は集電体側部分に残存する。その結果、第1層内に第1極大点が生じ、第2層付近に極小点が生じ、第3層の表面付近に第2極大点が生じるような結着剤の分布が得られる。
 非水電解質二次電池は、上記の正極、負極、正極と負極との間に介在するセパレータおよび非水電解質を具備する。正極、負極およびセパレータは、捲回されて電極群を構成している。
 負極は、集電体と、集電体の表面に形成された負極合剤層とを含む。負極合剤層は、負極活物質粒子と、結着剤とを必須成分として含み、増粘剤、導電材などを任意成分として含む。
 負極活物質としては、黒鉛粒子などの炭素材料、Siを含む材料、Snを含む材料などが挙げられる。黒鉛粒子としては、黒鉛構造を有する領域を含む粒子が使用でき、例えば天然黒鉛、人造黒鉛、黒鉛化メソフェーズカーボン粒子などが挙げられる。Siを含む材料としては、Si単体、Siを含む合金、SiOm1(0<m1<2)などが挙げられる。Snを含む材料としては、Sn単体、Snを含む合金、SnOm2(0<m2<2)などが挙げられる。
 負極活物質は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 結着剤としては、正極合剤層の結着剤として例示した各種結着剤が使用できる。
 増粘剤としては、カルボキシメチルセルロース(CMC)等が挙げられる。
 負極用の集電体としては、銅、ニッケルなどを含むシート、箔などが挙げられる。
 非水電解質は、非水溶媒およびこれに溶解する溶質を含む。非水溶媒は、例えば環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステルなどを含む。環状炭酸エステルとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)などが挙げられる。鎖状炭酸エステルとしては、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)などが挙げられる。環状カルボン酸エステルとしては、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)などが挙げられる。非水溶媒は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 溶質は特に限定されないが、無機リチウムフッ化物、リチウムイミド化合物などが挙げられる。無機リチウムフッ化物としては、LiPF6、LiBF4等が挙げられ、リチウムイミド化合物としてはLiN(CF3SO22等が挙げられる。
 セパレータとしては、ポリエチレン、ポリプロピレンなどからなる微多孔膜が一般に用いられている。セパレータの厚みは、例えば10~30μmである。
 以下に実施例および比較例を挙げて本発明を具体的に説明するが、本発明は以下の実施例に限定されるわけではない。
《実施例1》
(i)正極の作製
(第1層)
 正極活物質である100重量部のLiCoO2、結着剤である2重量部のポリフッ化ビニリデン(PVDF、(株)クレハ製のKFポリマーL#7208)、導電材である3重量部のアセチレンブラックおよび分散媒である適量のN-メチル-2-ピロリドン(NMP)を混合して、固形分73重量%の第1スラリーを調製した。第1スラリーを厚さ15μmのアルミニウム箔からなる集電体の両面に塗布し、110℃、5分の条件で乾燥させて、第1層を形成した。
(第2層)
 第1層と同様の正極活物質100重量部、結着剤である1重量部のPVDF、導電材である3重量部のアセチレンブラックおよび分散媒である適量のNMPを混合して、固形分78重量%の第2スラリーを調製した。第2スラリーを、第1層のそれぞれの表面に塗布し、110℃、5分の条件で乾燥させて、第2層を形成した。
 正極合剤層の活物質密度が3.55g/cm3となるように、ローラで塗膜を圧延し、正極シートを作製した。圧延後の第1層の厚さは約15μmであり、第2層の厚さは約40μmであり、シート全体の厚さは125μmであった。その後、正極シートを幅55mm、長さ500mmの大きさに切断して、正極とした。
(ii)負極の作製
 負極活物質である100重量部の鱗片状黒鉛、結着剤である2重量部のスチレン-ブタジエン共重合体(SBR、日本ゼオン(株)製のBM-400B)、増粘剤である1重量部のカルボキシメチルセルロース(CMC)および分散媒である適量の水を混合して、負極合剤スラリーを調製した。負極合剤スラリーを、厚さ10μmの銅箔からなる負極集電体に塗布し、60℃、5分の条件で乾燥させて、負極集電体の表面に負極合剤層を形成した。その後、負極全体の厚さが150μmとなるようにローラで塗膜を圧延し、負極シートを作製した。その後、負極シートを幅58mm、長さ540mmの大きさに切断して、負極とした。
(iii)非水電解質の調製
 エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを、1:3の体積割合で含む非水溶媒に、LiPF6を1mol/lの濃度で溶解させて非水電解質を調製した。
(iv)電池の作製
 図2に示す非水電解質二次電池を以下の手順で作製した。
 正極集電体の露出部に正極リード5aの一端を接続し、負極集電体の露出部に負極リード6aの一端を接続した。正極5と負極6とを、これらの間に厚さ20μmのポリプロピレン製の微多孔膜からなるセパレータ7を介在させて、外径3mmの巻芯を用いて捲回し、電極群を作製した。
 電極群を上部絶縁リング8aおよび下部絶縁リング8bで挟み、外径18mm、長さ65mmである円筒型の電池ケース1に収容した。負極リード6aの他端を電池ケース1の内底面に溶接した。非水電解質を電池ケース1に注入し、減圧法により電極群に非水電解質を含浸させた。
 正極リード5aの他端を封口体2の下面に溶接した。ガスケット3を介して電池ケース1を封口体2で封口し、円筒型リチウムイオン二次電池を作製した。
《実施例2》
 第1スラリーにおいて、結着剤の量を3重量部とし、固形分68重量%としたこと以外、実施例1と同様にして、電池を作製した。
《実施例3》
 第1スラリーにおいて、結着剤の量を4重量部とし、固形分60重量%としたこと以外、実施例1と同様にして、電池を作製した。
《実施例4》
 第1層を形成した後の正極を、190℃で30分間加熱した。その後、第1層の表面に第2層を形成したこと以外、実施例3と同様にして、電池を作製した。
《実施例5》
 第1スラリーにおいて、結着剤の量を5重量部とし、固形分58重量%としたこと以外、実施例4と同様にして、電池を作製した。
《実施例6》
 第1スラリーにおいて、結着剤の量を7重量部とし、固形分50重量%としたこと以外、実施例4と同様にして、電池を作製した。
《実施例7》
(i)正極の作製
(第1層)
 正極活物質である100重量部のLiCoO2、結着剤である4重量部のPVDF、導電材である3重量部のアセチレンブラックおよび分散媒である適量のNMPを混合して、固形分62重量%の第1スラリーを調製した。第1スラリーを実施例1と同様の集電体の両面に塗布し、110℃、5分の条件で乾燥させて、第1層を形成した。
(第2層)
 第1層と同様の正極活物質100重量部と、結着剤である0.7重量部のPVDF、導電材である3重量部のアセチレンブラックおよび分散媒である適量のNMPを混合して、固形分78重量%の第2スラリーを調製した。第2スラリーを、第1層のそれぞれの表面に塗布し、110℃、5分の条件で乾燥させて、第2層を形成した。
(第3層)
 第1層と同様の正極活物質100重量部と、結着剤である1.5重量部のPVDFを、導電材である3重量部のアセチレンブラックおよび分散媒である適量のNMPを混合して、固形分73重量%の第3スラリーを調製した。第3スラリーを、両面に形成された第2層のそれぞれの表面に塗布し、110℃、5分の条件で乾燥させて、第3層を形成した。
 正極合剤層の活物質密度が3.55g/cm3となるように、ローラで塗膜を圧延し、正極シートを作製した。圧延後の第1層の厚さは約15μmであり、第2層の厚さは約10μmであり、第3層の厚さは約30μmであり、シート全体の厚さは125μmであった。その後、正極シートを幅55mm、長さ500mmの大きさに切断して、正極とした。
 上記の正極を用いたこと以外、実施例1と同様にして、電池を作製した。
《比較例1》
 正極活物質である100重量部のLiCoO2、結着剤である2重量部のPVDF、導電材である3重量部のアセチレンブラックおよび分散媒である適量のNMPを混合して、固形分73重量%の正極合剤スラリーを調製した。正極合剤スラリーを、実施例1と同様の正極集電体の両面に塗布し、110℃、5分の条件で乾燥させて、正極合剤層を形成した。第2層および第3層は作製しなかった。
 正極合剤層の活物質密度3.55g/cm3となるようにローラで塗膜を圧延し、正極シートを作製した。圧延後のシート全体の厚さは125μmであった。その後、正極シートを幅55mm、長さ500mmの大きさに切断して、正極とした。
 上記の正極を用いたこと以外、実施例1と同様にして、電池を作製した。
《比較例2》
 第1スラリーにおいて、結着剤の量を10重量部とし、固形分40重量%としたこと以外、実施例4と同様にして、電池を作製した。
《比較例3》
 第2スラリーにおいて、結着剤の量を1.5重量部とし、固形分73重量%としたこと以外、実施例1と同様にして、電池を作製した。
《比較例4》
(i)正極の作製
(第1層)
 正極活物質である100重量部のLiCoO2、結着剤である4重量部のPVDF、導電材である3重量部のアセチレンブラックおよび分散媒である適量のNMPを混合して、固形分60重量%の第1スラリーを調製した。第1スラリーを実施例1と同様の集電体の両面に塗布し、110℃、5分の条件で乾燥させて第1層を形成した。
(第2層)
 第1層と同様の正極活物質100重量部と、結着剤である1重量部のPVDF、導電材である3重量部のアセチレンブラックおよび分散媒である適量のNMPを混合して、固形分78重量%の第2スラリーを調製した。第2スラリーを、第1層のそれぞれの表面に塗布し、110℃、5分の条件で乾燥させて、第2層を形成した。
(第3層)
 第1層と同様の正極活物質100重量部と、結着剤である0.5重量部のPVDFを、導電材である3重量部のアセチレンブラックおよび分散媒である適量のNMPを混合して、固形分78重量%の第3スラリーを調製した。第3スラリーを、両面に形成された第2層のそれぞれの表面に塗布し、110℃、5分の条件で乾燥させて、第3層を形成した。
 正極合剤層の活物質密度が3.55g/cm3となるように、ローラで塗膜を圧延し、正極シートを作製した。圧延後の第1層の厚さは約15μmであり、第2層の厚さは約20μmであり、第3層の厚さは約20μmであり、シート全体の厚さは125μmであった。その後、正極シートを幅55mm、長さ500mmの大きさに切断して、正極とした。
 上記の正極を用いたこと以外、実施例1と同様にして、電池を作製した。
《比較例5》
 第1スラリーにおいて、結着剤の量10重量部、固形分40重量%とし、第2スラリーにおいて、結着剤の量5重量部、固形分58重量%としたこと以外、実施例1と同様にして、電池を作製した。
 実施例1~7および比較例1~5の各電池における正極の層構成を表1に示す。なお、表1中、結着剤の量とは、各層の作製に使用したスラリー中の正極活物質粒子100重量部に対する結着剤の量(重量部)を示す。
Figure JPOXMLDOC01-appb-T000001
[評価]
 実施例1~7および比較例1~5で作製した非水電解質二次電池について、以下の評価を行った。
(正極合剤層における結着剤の分布の分析)
 各実施例および比較例の正極を2cm角に切断し、エポキシ樹脂で被覆して硬化させた。その後、研磨機にて硬化物の断面研磨を実施し、正極の厚さ方向における断面を露出させた。その後、波長分散型の電子線プローブマイクロアナライザー(EPMA、日本電子(株)製のJXA-8900)により結着剤の分布を分析した。同様の分析を、正極の面方向にスキャンしながら行い、各面における正極活物質粒子100重量部に対する結着剤の量(重量部)の平均値を算出した。この結着剤の量の平均値を縦軸に、各面の集電体からの距離を横軸にしてグラフを作成した。第1極大点における結着剤の量W1、極小点における結着剤の量W2、第2極大点における結着剤の量W3、W1/W2および第1極大点と極小点とを結ぶ直線の傾きを求めた。結果を表2に示す。
(剥離試験)
 一方の面の正極合剤層を取り除いた正極を、幅15mm、長さ100mmの短冊状に切断した。残した正極合剤層を水平方向へ可動できる台座へ両面テープで接着した後、引っ張り圧縮試験機のチャックで集電体の端部をつかんで90°上方へ引っ張り、剥離試験を行った。剥離後の正極の表面における集電体の露出の有無を観察し、集電体と正極合剤層の密着性を評価した。結果を表2に示す。
(捲回不良)
 正極、負極およびセパレータを、外径3mmの巻芯を用いて捲回して電極群を作製した後、電極群を分解した。正極を観察して、正極集電体の破断の有無を確認した。各実施例および比較例について、50個の電極群を観察し、破断した電極群の数を求めた。結果を表2に示す。
(正極活物質粒子の脱落の有無)
 電池の製造工程における正極合剤層の表面側からの正極活物質粒子の脱落の有無を目視で確認した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 以下、得られた結果について詳述する。
 実施例1~3は、第1スラリーおよび第2スラリーにおける結着剤の量を変化させた。これらの実施例では、良好な結着剤の分布を有する正極合剤層が得られた。
 実施例4~6は、第1層を形成した後に加熱し、その後、第1層の表面に第2層を形成した。加熱することで、第1層に含まれる結着剤の結晶性が高くなる。そのため、第1層に含まれる結着剤の第2スラリーへの溶出が抑制され、より良好な結着剤の分布を有する正極合剤層が得られたと考えられる。
 実施例7は、第1層、第2層および第3層を形成した。これにより、良好な結着剤の分布を有する正極合剤層が得られたと考えられる。
 剥離試験において、実施例1~7および比較例2~5では、集電体の露出はほとんどなく、正極合剤層は集電体との密着を保っていた。これは、正極合剤層の集電体側部分において、結着剤の量が比較的大きいためであると考えられる。一方、比較例1では、正極合剤層がまばらに残り、集電体が露出していた。
 W1/W2が2より大きい実施例1~7では、いずれも正極の破損が抑制されていた。実施例1~7の電池は、結着剤の分布状態が特に良好である。そのため、正極合剤層の中間部の極小点付近において隙間やずれが生じ、捲回によって生じる応力が緩和されたと考えられる。
 比較例1~3および5では正極の破損が多数発生していた。特に、比較例5では、中心部の結着剤濃度が過剰となり、活物質粒子同士の密着性が高くなりすぎたと考えられる。そのため、高密度の正極において応力を緩和することが困難になり、破損が多数発生したと考えられる。
 比較例4では正極の破損は少ないものの、正極合剤層の表面側からの正極活物質粒子の脱落がみられた。これは、表面側における結着剤の量が少ないためと考えられる。
 実施例1~5および7の結果より、第1極大点と極小点とを結ぶ直線の傾きが-0.3重量部/μm~-0.05重量部/μmである場合、より正極の破損の抑制された電池が得られることがわかった。
 本発明によれば、捲回時の正極の破損を抑制できるため、非水電解質二次電池の生産性を高めることができる。このため、携帯電話やノートパソコンなどの電子機器の小型、軽量化に適した電源として有用性は高い。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 1 電池ケース
 2 封口体
 3 ガスケット
 5 正極
 5a 正極リード
 6 負極
 6a 負極リード
 7 セパレータ
 8a 上部絶縁リング
 8b 下部絶縁リング

Claims (6)

  1.  集電体と、前記集電体の表面に形成された正極合剤層とを備え、
     前記正極合剤層が、正極活物質粒子と、結着剤とを含み、
     前記正極合剤層の厚さ方向における前記集電体からの距離と、前記正極合剤層における前記結着剤の量との相関を示す曲線が、第1極大点、極小点および第2極大点を有し、
     前記極小点が、前記正極合剤層の厚さ方向における中間部の位置に対応し、
     前記第1極大点が、前記正極合剤層の前記極小点に対応する位置よりも集電体側の位置に対応し、
     前記第2極大点が、前記正極合剤層の前記極小点に対応する位置よりも集電体から離れた位置に対応し、
     前記第1極大点における、前記正極活物質粒子100重量部に対する前記結着剤の量W1と、前記極小点における、前記正極活物質粒子100重量部に対する前記結着剤の量W2との比W1/W2が、2より大きく、
     前記W1が、1~8重量部であり、
     前記W2が、0.3~1.5重量部であり、
     前記正極活物質粒子が、リチウム含有遷移金属酸化物を含み、
     前記正極合剤層の活物質密度が3.3~4g/cm3である、非水電解質二次電池用正極。
  2.  前記正極合剤層の厚さが、20~150μmであり、
     前記結着剤が、フッ素樹脂を含み、
     前記第1極大点が、前記正極合剤層の厚さ方向における前記集電体からの距離0.1~10μmの位置に対応する、請求項1記載の非水電解質二次電池用正極。
  3.  前記第1極大点に対応する位置と、前記集電体との中間において、前記正極活物質粒子100重量部に対する前記結着剤の量が、0.6W1~0.99W1である、請求項1または2記載の非水電解質二次電池用正極。
  4.  前記第1極大点と前記極小点とを結ぶ直線の傾きが、-0.3重量部/μm以上、-0.05重量部/μm以下である、請求項1~3のいずれか1項に記載の非水電解質二次電池用正極。
  5.  前記第2極大点における、前記正極活物質粒子100重量部に対する前記結着剤の量W3が、前記W1よりも小さい、請求項1~4のいずれか1項に記載の非水電解質二次電池用正極。
  6.  請求項1~5のいずれか1項に記載の正極、負極、前記正極と前記負極との間に介在するセパレータおよび非水電解質を備え、前記正極、前記負極および前記セパレータが、捲回されて電極群を構成している、非水電解質二次電池。
PCT/JP2011/001638 2010-05-28 2011-03-18 非水電解質二次電池用正極および非水電解質二次電池 WO2011148550A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/383,791 US9112209B2 (en) 2010-05-28 2011-03-18 Positive electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery
CN201180002952.1A CN102473900B (zh) 2010-05-28 2011-03-18 非水电解质二次电池用正极及非水电解质二次电池
JP2012517098A JP5323259B2 (ja) 2010-05-28 2011-03-18 非水電解質二次電池用正極および非水電解質二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-123016 2010-05-28
JP2010123016 2010-05-28

Publications (1)

Publication Number Publication Date
WO2011148550A1 true WO2011148550A1 (ja) 2011-12-01

Family

ID=45003552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001638 WO2011148550A1 (ja) 2010-05-28 2011-03-18 非水電解質二次電池用正極および非水電解質二次電池

Country Status (5)

Country Link
US (1) US9112209B2 (ja)
JP (1) JP5323259B2 (ja)
KR (1) KR20120024939A (ja)
CN (1) CN102473900B (ja)
WO (1) WO2011148550A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192539A (ja) * 2010-03-15 2011-09-29 Panasonic Corp 非水電解質二次電池用電極およびその製造方法、ならびに非水電解質二次電池
WO2016103939A1 (ja) * 2014-12-25 2016-06-30 日本ゼオン株式会社 リチウムイオン二次電池用電極の製造方法
KR20170047179A (ko) 2015-10-22 2017-05-04 히다치 막셀 가부시키가이샤 비수전해질 이차전지용 양극 및 비수전해질 이차전지
JP2018073602A (ja) * 2016-10-28 2018-05-10 トヨタ自動車株式会社 リチウムイオン二次電池
US10833313B2 (en) 2015-10-22 2020-11-10 Maxell Holdings, Ltd. Positive electrode for nonaqeous electrolyte secondary battery and a nonaqueous electrolyte secondary battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109923700B (zh) * 2016-11-10 2022-07-08 三洋电机株式会社 非水电解质二次电池用电极以及非水电解质二次电池
US11949097B2 (en) * 2018-08-29 2024-04-02 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270013A (ja) 1997-03-27 1998-10-09 Japan Storage Battery Co Ltd 非水電解質二次電池用電極及びその製造方法
JPH11339772A (ja) * 1998-05-28 1999-12-10 Matsushita Electric Ind Co Ltd 二次電池用電極板、およびその二次電池用電極板の製造方法
JP2001345096A (ja) * 2000-05-31 2001-12-14 Matsushita Electric Ind Co Ltd 電池電極の製造装置、および電池電極の製造方法
JP2002343340A (ja) 2001-05-21 2002-11-29 Sony Corp 電極および電池
JP2008059876A (ja) * 2006-08-31 2008-03-13 Hitachi Maxell Ltd リチウムイオン二次電池
JP2008091054A (ja) 2006-09-29 2008-04-17 Matsushita Electric Ind Co Ltd 非水電解液二次電池

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3329629B2 (ja) 1995-09-19 2002-09-30 株式会社東芝 郵便物処理システムと郵便物処理方法
JP3652769B2 (ja) * 1995-12-28 2005-05-25 大日本印刷株式会社 非水電解液二次電池用電極板
JPH11265708A (ja) * 1998-03-16 1999-09-28 Asahi Chem Ind Co Ltd リチウムイオン二次電池
JP3865984B2 (ja) 1999-11-26 2007-01-10 株式会社リコー スクリーン版とその製造方法
TW508861B (en) * 2000-08-08 2002-11-01 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and positive electrode for the same
WO2002054525A1 (fr) * 2000-12-28 2002-07-11 Matsushita Electric Industrial Co., Ltd. Batterie a electrolyte non aqueux et son procede de production
CN1529917A (zh) * 2001-04-10 2004-09-15 三菱麻铁里亚尔株式会社 锂离子聚合物二次电池、该电池用电极及用于该电池的粘合层的粘结剂中的高分子化合物的合成方法
JP4259778B2 (ja) 2001-08-02 2009-04-30 パナソニック株式会社 非水系二次電池用正極の製造方法
JP4016994B2 (ja) 2005-03-24 2007-12-05 住友電気工業株式会社 光ファイバケーブル
US8182944B2 (en) * 2005-04-26 2012-05-22 Zeon Corporation Composite particles for electrochemical element electrode
US20090233177A1 (en) 2006-06-16 2009-09-17 Hideaki Fujita Nonaqueous electrolyte secondary battery
US8034487B2 (en) 2007-07-12 2011-10-11 Kabushiki Kaisha Toshiba Electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery
JP5295664B2 (ja) * 2007-07-12 2013-09-18 株式会社東芝 非水電解質電池用電極および非水電解質電池
CN101359748B (zh) * 2007-07-30 2010-06-02 比亚迪股份有限公司 一种锂离子二次电池及其制备方法
US20090117463A1 (en) * 2007-11-02 2009-05-07 Hideharu Takezawa Lithium ion secondary battery
US9083055B2 (en) * 2009-05-08 2015-07-14 Samsung Sdi Co., Ltd. Electrode with plural active material layers with different amounts of conductive material for rechargeable lithium battery and method for manufacturing the same and rechargeable lithium battery including the electrode

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270013A (ja) 1997-03-27 1998-10-09 Japan Storage Battery Co Ltd 非水電解質二次電池用電極及びその製造方法
JPH11339772A (ja) * 1998-05-28 1999-12-10 Matsushita Electric Ind Co Ltd 二次電池用電極板、およびその二次電池用電極板の製造方法
JP2001345096A (ja) * 2000-05-31 2001-12-14 Matsushita Electric Ind Co Ltd 電池電極の製造装置、および電池電極の製造方法
JP2002343340A (ja) 2001-05-21 2002-11-29 Sony Corp 電極および電池
JP2008059876A (ja) * 2006-08-31 2008-03-13 Hitachi Maxell Ltd リチウムイオン二次電池
JP2008091054A (ja) 2006-09-29 2008-04-17 Matsushita Electric Ind Co Ltd 非水電解液二次電池

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192539A (ja) * 2010-03-15 2011-09-29 Panasonic Corp 非水電解質二次電池用電極およびその製造方法、ならびに非水電解質二次電池
WO2016103939A1 (ja) * 2014-12-25 2016-06-30 日本ゼオン株式会社 リチウムイオン二次電池用電極の製造方法
CN107004837A (zh) * 2014-12-25 2017-08-01 日本瑞翁株式会社 锂离子二次电池用电极的制造方法
CN107004837B (zh) * 2014-12-25 2020-04-24 日本瑞翁株式会社 锂离子二次电池用电极的制造方法
KR20170047179A (ko) 2015-10-22 2017-05-04 히다치 막셀 가부시키가이샤 비수전해질 이차전지용 양극 및 비수전해질 이차전지
US10833313B2 (en) 2015-10-22 2020-11-10 Maxell Holdings, Ltd. Positive electrode for nonaqeous electrolyte secondary battery and a nonaqueous electrolyte secondary battery
US11322730B2 (en) 2015-10-22 2022-05-03 Maxell, Ltd. Positive electrode for nonaqeous electrolyte secondary battery and a nonaqueous electrolyte secondary battery
KR20240004191A (ko) 2015-10-22 2024-01-11 맥셀 주식회사 비수전해질 이차전지용 양극 및 비수전해질 이차전지
JP2018073602A (ja) * 2016-10-28 2018-05-10 トヨタ自動車株式会社 リチウムイオン二次電池

Also Published As

Publication number Publication date
US9112209B2 (en) 2015-08-18
US20120121955A1 (en) 2012-05-17
JPWO2011148550A1 (ja) 2013-07-25
JP5323259B2 (ja) 2013-10-23
KR20120024939A (ko) 2012-03-14
CN102473900B (zh) 2015-08-19
CN102473900A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
US8592070B2 (en) Lithium rechargeable battery
KR100770518B1 (ko) 리튬이온 이차전지
JP5323259B2 (ja) 非水電解質二次電池用正極および非水電解質二次電池
WO2013021630A1 (ja) 非水電解質二次電池用負極および非水電解質二次電池
WO2012001840A1 (ja) 非水電解質二次電池用負極およびその製造方法、ならびに非水電解質二次電池
WO2010131401A1 (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
KR102202013B1 (ko) 전기화학소자용 전극 및 이를 제조하는 방법
KR20060057621A (ko) 리튬이온 2차전지
JP2011192539A (ja) 非水電解質二次電池用電極およびその製造方法、ならびに非水電解質二次電池
KR102248305B1 (ko) 원통형 젤리롤에 사용되는 스트립형 전극 및 그를 포함하는 리튬 이차전지
KR102332441B1 (ko) 비수전해질 이차전지용 음극 및 비수전해질 이차전지
KR20160072009A (ko) 비수전해질 이차전지용 전극권회 소자, 이를 이용한 비수전해질 이차전지, 및 비수전해질 이차전지용 전극권회 소자의 제조 방법
JP5325227B2 (ja) 非水電解質二次電池用電極板及びその製造方法、並びに非水電解質二次電池
KR20150015918A (ko) 이차전지용 분리막 및 이를 포함하는 이차전지
JP5017995B2 (ja) リチウム二次電池用極板の製造方法、その製造法を用いたリチウム二次電池用極板とリチウム二次電池
KR20210143980A (ko) 이차전지
JP4992203B2 (ja) リチウムイオン二次電池
KR20200109141A (ko) 음극 및 이를 포함하는 이차전지
JP5412853B2 (ja) リチウム二次電池の正極の製造方法および正極ならびにリチウム二次電池
JP2014225327A (ja) 非水電解質二次電池
JP2012028086A (ja) 非水電解質二次電池用正極、非水電解質二次電池及びその製造方法
JP5509644B2 (ja) リチウム二次電池の電極合剤用スラリー、電極、その製造方法およびリチウム二次電池
KR20210015260A (ko) 음극 및 이를 포함하는 이차전지
JP2008091054A (ja) 非水電解液二次電池
KR102476648B1 (ko) 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011786254

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 201180002952.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012517098

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127000232

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13383791

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11786254

Country of ref document: EP

Kind code of ref document: A1