WO2011125452A1 - 表面処理蛍光体及び表面処理蛍光体の製造方法 - Google Patents

表面処理蛍光体及び表面処理蛍光体の製造方法 Download PDF

Info

Publication number
WO2011125452A1
WO2011125452A1 PCT/JP2011/056409 JP2011056409W WO2011125452A1 WO 2011125452 A1 WO2011125452 A1 WO 2011125452A1 JP 2011056409 W JP2011056409 W JP 2011056409W WO 2011125452 A1 WO2011125452 A1 WO 2011125452A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
treated
layer
fluorine
content
Prior art date
Application number
PCT/JP2011/056409
Other languages
English (en)
French (fr)
Inventor
孫 仁徳
中谷 康弘
大村 貴宏
満 谷川
貴志 渡邉
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to EP11765354.3A priority Critical patent/EP2554628B1/en
Priority to CN201180015475.2A priority patent/CN102822313B/zh
Priority to KR1020127024133A priority patent/KR20130009779A/ko
Priority to US13/637,777 priority patent/US20130094186A1/en
Priority to JP2011513560A priority patent/JP4846066B2/ja
Publication of WO2011125452A1 publication Critical patent/WO2011125452A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77342Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F13/00Illuminated signs; Luminous advertising
    • G09F13/04Signs, boards or panels, illuminated from behind the insignia
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the present invention relates to a surface-treated phosphor with significantly improved moisture resistance and a method for producing the surface-treated phosphor.
  • white LEDs semiconductor light-emitting elements that emit white light have attracted attention as next-generation light sources because they have advantages such as low power consumption, high efficiency, environmental friendliness, and long life.
  • a method for producing white light in a white LED a method of combining a blue or ultraviolet LED and a phosphor (red, yellow, green phosphor, etc.) that can be excited by the light is generally used.
  • silicate (also called silicate) phosphors having alkaline earth metal elements are attracting attention because they have characteristics such as easy emission of a wide range of emission wavelengths by composition adjustment and high emission efficiency.
  • silicate fluorescence having a structure such as (Sr, Ba, Ca) 2 SiO 4 : Eu 2+ described in Patent Document 1 and (Sr, Ba, Ca) 3 SiO 5 : Eu 2+ described in Patent Document 2.
  • the body is a typical example.
  • the emission wavelength can be tuned by adjusting the relative amount of Sr and Ba or Ca.
  • the silicate phosphor having such an alkaline earth metal element has a problem that its surface is easily decomposed and deteriorated by water vapor or moisture in the air. For this reason, when used for a long time in the atmosphere, the emission intensity and the color tone are liable to decrease, the characteristics as a phosphor are lowered, and there is a serious problem in durability.
  • a method of improving the moisture resistance of the phosphor there is a method of coating the surface of the phosphor particles with an oxide or the like using a gas phase method (dry method), a liquid phase method (wet method) or the like. It is being considered.
  • a method using a vapor phase method aluminum oxide is formed on the surface of sulfide phosphor particles by a method using chemical vapor deposition (CVD) (Patent Document 3) or a method using a plasma method (Patent Document 4).
  • CVD chemical vapor deposition
  • Patent Document 4 A method for coating a membrane is disclosed.
  • liquid phase method examples include a sol-gel reaction method and a neutralization precipitation method.
  • Patent Document 5 discloses an alkoxide such as Si and Ti and / or a derivative thereof at a reaction temperature of 0 to 20 ° C.
  • a surface treatment method for phosphor particles by hydrolysis and dehydration polymerization in the presence of a large amount of ammonia water is disclosed.
  • Patent Document 6 discloses a phosphor having a particulate or layered Si-containing compound placed on its surface.
  • Patent Document 7 discloses a method for coating a zirconia film using a sol-gel method.
  • Patent Document 8 discloses a method in which an ion-containing acidic solution such as aluminum is added to an alkaline solution in which a phosphor is dispersed, and a metal hydroxide is precipitated on the surface of the phosphor particles by a neutralization reaction. Yes.
  • the sol-gel method which is a liquid phase method
  • the degree of freedom in selecting the type of coating is large, but the metal alkoxide as a starting material is usually highly reactive, and the phosphor It was very difficult to control the reaction conditions for causing the hydrolysis reaction only on the surface of the particles.
  • the film obtained by the sol-gel method usually contains an organic component such as an alkoxyl group left behind due to incomplete hydrolysis or alcohol released by the hydrolysis reaction, and thus it is usually difficult to obtain a dense film. It was.
  • An object of the present invention is to provide a surface-treated phosphor that can greatly improve moisture resistance without deteriorating fluorescence properties and has high dispersibility, and a method for producing the surface-treated phosphor. To do.
  • the present invention provides a surface-treated phosphor having a surface treatment layer containing at least one specific element selected from Group 3 to 6 elements of the periodic table and fluorine on the surface of the phosphor,
  • a surface treatment layer containing at least one specific element selected from Group 3 to 6 elements of the periodic table and fluorine on the surface of the phosphor
  • the inventors of the present invention formed a surface treatment layer containing a specific element and fluorine on the surface of the phosphor, and the peak position measured by energy dispersive X-ray elemental analysis was predetermined.
  • the peak position measured by energy dispersive X-ray elemental analysis was predetermined.
  • the surface-treated phosphor of the present invention has a surface treatment layer containing at least one specific element selected from Group 3 to 6 elements of the periodic table and fluorine on the surface of the phosphor.
  • the surface treatment layer contains the specific element and fluorine.
  • the surface treatment layer contains fluorine, it is possible to prevent the phosphor from being deteriorated by water in the coating treatment step.
  • the coating treatment can be performed in an aqueous solution by forming the surface treatment layer. This eliminates problems such as waste liquid treatment in the case of using an organic solvent.
  • the moisture resistance at the time of use of a surface treatment fluorescent substance can be improved because the surface treatment layer containing a fluorine is formed. Since the surface treatment layer has higher stability to water than the silicate phosphor, it contributes to improvement of moisture resistance during use.
  • the said surface treatment layer contains a specific element. This is considered due to the fact that the oxide of the specific element is stable.
  • the chemical bond of fluoride is basically an ionic bond, and the dissociation tendency is larger than that of the covalently bonded oxide. Therefore, in an atmosphere where moisture or moisture exists. If used for a long time, the hydrolysis reaction of the alkaline earth metal in the fluoride may proceed gradually, which is insufficient to ensure long-term stability.
  • the specific element by forming a more stable oxide layer with respect to water, it is possible to impart excellent moisture resistance during long-term use. it can.
  • the specific element is at least one selected from elements of Groups 3 to 6 of the periodic table, and among them, elements of Groups 4 and 5 of the periodic table are preferable. Specifically, zirconium, titanium, hafnium, niobium, vanadium, and tantalum are preferable. Further, these elements may be used in combination.
  • the specific element is preferably present in an oxide state.
  • the oxide of the specific element include zirconium oxide, titanium oxide, hafnium oxide, niobium oxide, vanadium oxide, and tantalum oxide. Of these, zirconium oxide and titanium oxide are particularly preferable.
  • the minimum with preferable content of the specific element in the said surface treatment layer is 5.0 weight%, and a preferable upper limit is 85 weight%. If the content of the specific element is less than 5.0% by weight, the long-term stability of moisture resistance may be insufficient, and if it exceeds 85% by weight, the phosphor characteristics of the surface-treated phosphor deteriorate. Sometimes.
  • the fluorine is preferably present in the form of an alkaline earth metal fluoride formed from an alkaline earth metal and fluorine ions.
  • alkaline earth metal fluoride include a layer made of strontium fluoride, barium fluoride, calcium fluoride, and magnesium fluoride. Of these, strontium fluoride and calcium fluoride are particularly preferable.
  • the preferable lower limit of the fluorine content in the surface treatment layer is 1.0% by weight, and the preferable upper limit is 60% by weight. If the fluorine content is less than 1.0% by weight, it may not be possible to completely suppress degradation and degradation of the phosphor due to water during the coating process, and if it exceeds 60% by weight, long-term stability of moisture resistance. May be insufficient.
  • the thickness of the surface treatment layer is preferably 0.5 to 5000 nm.
  • the thickness is more preferably 1.0 to 3000 nm, still more preferably 5.0 to 1000 nm, and particularly preferably 10 to 500 nm. If the thickness of the surface treatment layer is too thin, the moisture resistance may be insufficient, and if it is too thick, the fluorescent properties of the surface treatment phosphor may deteriorate.
  • the maximum peak of the content of the specific element is It is characterized by being located on the surface side of the maximum peak of the content of.
  • the “electron microscope and the energy dispersive X-ray elemental analysis attached thereto” are, for example, SEM-EDS (Scanning Electron Microscopy / Energy Dispersive Spectroscopy), or TEM-EDS (Transmission Electroscopy Microscopy). A method using an apparatus is used.
  • “maximum peak of content of specific element” or “maximum peak of content of fluorine” is “content of fluorine”. It is assumed that the condition of being located on the surface side of “the maximum peak of” is satisfied.
  • the “maximum peak of the content of the specific element” and the “maximum peak of the content of fluorine” satisfy the above-described conditions, thereby suppressing degradation and degradation of the phosphor due to water during the coating process.
  • excellent moisture resistance can be imparted to the surface-treated phosphor after coating treatment.
  • the surface treatment layer is a single layer and that fluorine is detected at the maximum peak position of the specific element in the element distribution in the cross-sectional thickness direction of the surface treatment layer.
  • the affinity of the phosphor after the coating treatment with the sealing resin is improved, and the dispersibility in the sealing resin is improved.
  • the minimum with preferable fluorine content in the maximum peak position of a specific element is 0.01 weight%, and a preferable upper limit is 30 weight%.
  • the preferable lower limit of the content of the specific element at the maximum peak position is 1.0% by weight, and the preferable upper limit is 75% by weight. By setting it within the above range, a phosphor with little deterioration can be obtained even when used for a long time.
  • a preferable lower limit of the content of the fluorine at the maximum peak position is 0.1% by weight, and a preferable upper limit is 50% by weight. By setting it within the above range, degradation and deterioration of the phosphor during the coating treatment process can be suppressed as compared with water, and at the same time, it contributes to improvement of moisture resistance of the surface treatment phosphor.
  • the surface treatment layer is preferably a single layer. This is because, for example, in the energy dispersive X-ray elemental analysis, the curve of the content of the specific element and fluorine gradually increases or decreases continuously except at the peak portion, and abrupt changes in content caused by the interlayer interface It can be confirmed by the absence. Such a structure greatly contributes to the adhesion of the surface treatment layer, and the problem of delamination is less likely to occur compared to a structure laminated by a physical method.
  • the surface treatment layer may be formed by sequentially forming a fluoride layer and an oxide layer containing an oxide of a specific element in order toward the outermost surface.
  • a fluoride layer when processing a phosphor having poor moisture resistance, there is a tendency to avoid the use of an aqueous solution.
  • the coating treatment can be performed in an aqueous solution. This eliminates the problem of waste liquid treatment and the like.
  • the moisture resistance during use can be improved.
  • the fluoride layer is preferably made of an alkaline earth metal fluoride formed from an alkaline earth metal and fluorine ions.
  • Specific examples include a layer made of strontium fluoride, barium fluoride, calcium fluoride, and magnesium fluoride. Of these, strontium fluoride and calcium fluoride are preferred.
  • a preferable lower limit of the content of fluoride in the fluoride layer is 5% by weight, and a preferable upper limit is 95% by weight.
  • a preferable upper limit is 95% by weight.
  • the thickness of the fluoride layer is not particularly limited, and is usually preferably 0.5 to 5000 nm. More preferably, it is 1 to 2000 nm, and still more preferably 5 to 1000 nm. If the thickness of the fluoride layer is too thin, the above-described effect of preventing deterioration due to water becomes insufficient, and if it is too thick, the fluorescent properties of the phosphor may be adversely affected.
  • the oxide layer preferably contains, for example, zirconium oxide, titanium oxide, hafnium oxide, niobium oxide, vanadium oxide, tantalum oxide, or a composite thereof. Of these, zirconium oxide and titanium oxide are preferable.
  • the preferable lower limit of the oxide content in the oxide layer is 10% by weight, and the preferable upper limit is 95% by weight. If the content of the oxide is less than 10% by weight or exceeds 95% by weight, the long-term stability of moisture resistance becomes insufficient.
  • the thickness of the oxide layer is not particularly limited, and is usually preferably 0.5 to 5000 nm. More preferably, it is 1.0 to 3000 nm, and still more preferably 5.0 to 1000 nm. If the thickness of the oxide layer is too thin, the effect of preventing deterioration is insufficient, and if it is too thick, the fluorescent properties of the phosphor may be adversely affected.
  • a phosphor containing an alkaline earth metal element is preferable.
  • Phosphors having such an alkaline earth metal include, for example, sulfide phosphors, aluminate phosphors, nitride phosphors, oxynitride phosphors, phosphate phosphors, and halon phosphates. Examples thereof include salt-based phosphors and silicate-based phosphors.
  • a silicate phosphor having an alkaline earth metal element is preferable.
  • silicate phosphor having the alkaline earth metal element for example, as a host crystal structure, a structure substantially the same as the crystal structure of M 3 SiO 5 or M 2 SiO 4 (where M is Mg, Ca, Sr and Represents at least one selected from the group consisting of Ba), and Fe, Mn, Cr, Bi, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Examples include phosphors containing at least one selected from the group consisting of Tm and Yb.
  • the phosphor having the alkaline earth metal element may contain an appropriate amount of a metal element other than the alkaline earth metal (for example, Zn, Ga, Al, Y, Gd, Tb).
  • the phosphor having the alkaline earth metal element may contain a small amount of a halogen element (for example, F, Cl, Br), sulfur (S) or phosphorus (P).
  • Examples of the phosphor include an orange phosphor having a composition represented by the following general formula (1), an orange phosphor having a composition represented by the following general formula (2), and the like.
  • M is at least one metal selected from the group consisting of Ba, Ca, Mg, and Zn, 0 ⁇ x ⁇ 1.0, and 2.6 ⁇ y ⁇ 3.3.
  • M is at least one metal selected from the group consisting of Ba, Ca, Mg and Zn
  • D is a halogen anion selected from the group consisting of F, Cl and Br, and 0 ⁇ x ⁇ 1.0 and 2.6 ⁇ y ⁇ 3.3.
  • the phosphor include, for example, Sr 3 SiO 5 : Eu 2+ , (Sr 0.9 Mg 0.025 Ba 0.075 ) 3 SiO 5 : Eu 2+ , (Sr 0.9 Mg 0.05 Ba 0.05 ) 2.7 SiO 5 : Eu 2+ , (Sr 0.9 Mg 0.025 Ba 0.075 ) 3 SiO 5 : Eu 2+ , (Sr 0.9 Ba 0.1 ) 3 SiO 5 : Eu 2+ , Sr 0.97 SiO 5 : Eu 2+ F, (Sr 0.9 Mg 0.1 ) 2.9 SiO 5 : Eu 2+ F, (Sr 0.9 Ca 0.1 ) 3.0 SiO 5 : Eu 2+ Orange phosphors having the same composition of F, (Sr 0.4 Ba 0.6 ) 2 SiO 4 : Eu 2+ , (Sr 0.3 Ba 0.7 ) 2 SiO 4 : Eu 2+ , (Sr 0.2 Ba 0.8 ) 2 SiO 4 : Eu 2+
  • the particle diameter of the phosphor is not particularly limited, but the median particle diameter (D 50 ) is usually preferably in the range of 0.1 to 100 ⁇ m, more preferably 1.0 to 50 ⁇ m, and still more preferably 5.0. ⁇ 30 ⁇ m.
  • D 50 median particle diameter
  • the D 50 is too small, not only the luminance decreases, base phosphor itself becomes agglutination reagent, uniform coating processing becomes difficult. Further, when D 50 is too large, dispersibility becomes poor in the resin, which may adversely affect the characteristics of the light emitting device.
  • the surface-treated phosphor of the present invention preferably has a water conductivity of 100 mS / m or less when 0.1 part by weight of the phosphor is immersed in 100 parts by weight of pure water for 10 minutes.
  • the water conductivity is 100 mS / m or less, the phosphor is less degraded and degraded by water, and exhibits excellent moisture resistance.
  • the electrical conductivity of the water can be measured by, for example, a conductivity meter.
  • the elution amount of silicon is 50 ppm or less when 0.1 part by weight of the phosphor is immersed in 100 parts by weight of pure water for 10 minutes.
  • the elution amount of the silicon is 50 ppm or less, the phosphor is less decomposed and deteriorated by water and exhibits excellent moisture resistance.
  • the surface-treated phosphor of the present invention preferably has an elution amount of strontium of 200 ppm or less when 0.1 part by weight of the phosphor is immersed in 100 parts by weight of pure water for 10 minutes.
  • the elution amount of the strontium is 200 ppm or less, the phosphor is less decomposed and deteriorated by water and exhibits excellent moisture resistance.
  • the elution amount of silicon and strontium can be measured by, for example, inductively coupled plasma emission spectrometry (ICP, apparatus: ICPS-8000, manufactured by Shimadzu Corporation).
  • the surface-treated phosphor of the present invention uses, for example, a method having a step of forming a surface-treated layer by dispersing the phosphor in a solution containing a complex ion containing a specific element and fluorine ions and bringing them into contact with each other. Can be manufactured.
  • a method for producing such a surface-treated phosphor is also one aspect of the present invention.
  • the complex ion containing the specific element and fluorine ion include, for example, a complex ion having a structure of AF 6 2- (A: at least one specific element selected from elements of Groups 3 to 6 of the periodic table) ) And the like.
  • a fluorine-containing solution in which a complex ion having a structure of AO 2 F 4 2 ⁇ or an oxide of a specific element is dissolved may be used.
  • the phosphor is AF 6 2- complex ion (A: at least one specific element selected from Group 3 to 6 elements of the periodic table). It can form by performing the process of forming a surface treatment layer by disperse
  • AF 6 2- complex ions generate free fluorine ions by the following hydrolysis reaction formula (3) in an aqueous solution.
  • the concentration of AF 6 2- complex ions is preferably 0.0005 to 2.0M, more preferably 0.001 to 1.5M, and still more preferably 0.005 to 1.0M. If the AF 6 2- complex ion concentration is too low, the free fluorine ion concentration is low, and the rate of the fluoride formation reaction is slow. If the rate of the fluoride formation reaction is too slow, the phosphor may be degraded by hydrolysis during the treatment process. On the other hand, if the AF 6 2-complex ion concentration is too high, or the solution itself becomes unstable, the reaction is too fast, it may be difficult quality film can be obtained.
  • the MF 6 2- complex ion gradually undergoes a hydrolysis reaction as shown in the above formula (3) in an aqueous solution, and finally, AO 2 is formed as shown in the following formula (4).
  • the reaction of the following formula (4) proceeds slowly even when no phosphor is present in the solution, and oxide particles are formed.
  • the AO 2 oxide is preferentially deposited on the surface of the phosphor.
  • the hydrolysis reaction is promoted by the presence of a compound (hydrolysis accelerator) capable of forming a more stable complex with fluorine ions.
  • the hydrolysis accelerator used in the present invention can be selected from compounds containing boron (B) or aluminum (Al).
  • the compound containing boron and the compound containing aluminum may be used alone or in combination of two or more.
  • Examples of the boron-containing compound include boron oxide, sodium tetraborate, boric acid (H 3 BO 3 ), and the like. Of these, boric acid is preferred.
  • Examples of the aluminum-containing compound include AlCl 3 , AlBr 3 , aluminum hydroxide (Al (OH) 3 ), and the like.
  • the amount of the hydrolysis accelerator with respect to the AF 6 2- complex ion is not particularly limited, but usually the amount of the hydrolysis accelerator with respect to 1 mol of AF 6 2- complex ion is 5 times or less, more preferably 4 times. It is as follows.
  • the reaction time may be appropriately adjusted according to the reaction conditions such as the thickness of the target oxide layer, the concentration of the reaction solution, and the temperature, and is usually about 5 minutes to 20 hours, preferably about 10 minutes to 10 hours. is there. In general, if the amount of the prepared phosphor is constant, the film thickness increases as the reaction time increases. If the reaction time is too short, the formation of the surface treatment layer is incomplete. On the other hand, if the reaction time is too long, it is uneconomical.
  • the reaction temperature may be appropriately adjusted according to the thickness of the target oxide layer, and is usually about 0 to 90 ° C., preferably about 5 to 70 ° C., more preferably about 10 to 50 ° C. .
  • the dispersion conditions during the reaction are not particularly limited as long as the phosphor can be dispersed.
  • magnetic stirrer stirring mechanical stirring with a motor, gas barbbling, liquid circulation, ultrasonic dispersion, rotational dispersion such as a ball mill or a rotary mixer, or a combination of the above methods can be used.
  • the phosphor is recovered through filtration, washing, and drying steps. Drying may be atmospheric drying or reduced pressure drying.
  • the drying temperature is suitably room temperature to 150 ° C.
  • the dried phosphor may be further heat-treated at a temperature of 200 to 600 ° C.
  • the fluoride is formed. Is preferentially formed. As the fluoride is formed, the fluorine ion concentration in the solution decreases, and the reaction of the above general formula (3) or (4) proceeds to the right. As a result, oxide (AO 2 ) starts to precipitate.
  • the surface-treated phosphor of the present invention can be used as a phosphor-containing resin composition by being added to an epoxy resin and / or a silicone resin.
  • the said fluorescent substance containing resin composition is used with a well-known form, for example, it may be filled with a dispenser as a paste, or may be processed and laminated
  • epoxy resin known ones may be used.
  • a hydroxyl, carboxyl or amine-containing compound may be used in the presence of a basic catalyst such as a metal hydroxide (such as sodium hydroxide).
  • a metal hydroxide such as sodium hydroxide
  • the thing etc. which can be manufactured by making it react with chlorohydrin are mentioned.
  • an epoxy resin produced by a reaction between a compound having one or more, preferably two or more carbon-carbon double bonds, and a peroxide (peracid, etc.) is also included.
  • the epoxy resin examples include aliphatic epoxy resins, alicyclic epoxy resins, bisphenol-A epoxy resins, bisphenol-F epoxy resins, phenol novolac epoxy resins, cresol-novolak epoxy resins, biphenyl epoxy resins, 4,4 ′. -Biphenyl epoxy resins, polyfunctional epoxy resins, divinylbenzene dioxide and 2-glycidylphenyl glycidyl ether. Of these, alicyclic epoxy resins and aliphatic epoxy resins are preferred. These epoxy resins may be used alone or in combination of two or more. Examples of the aliphatic epoxy resin include compounds having one or more aliphatic groups and one or more epoxy groups.
  • Examples include butadiene dioxide, dimethylpentane dioxide, diglycidyl ether, 1,4-butane.
  • Examples include diol diglycidyl ether, diethylene glycol diglycidyl ether, and dipentene dioxide.
  • Examples of the alicyclic epoxy resin include compounds having one or more alicyclic groups and one or more oxirane groups. Specific examples include 2- (3,4-epoxy) cyclohexyl-5,5-spiro. -(3,4-epoxy) cyclohexane-m-dioxane, 3,4-epoxycyclohexylalkyl-3,4-epoxycyclohexanecarboxylate, 3,4-epoxy-6-methylcyclohexylmethyl-3,4-epoxy-6 -Methylcyclohexanecarboxylate, vinylcyclohexane dioxide, bis (3,4-epoxycyclohexylmethyl) adipate, bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate, exo-exo bis (2,3-epoxycyclopentyl) ) Ether, endo-exo bis (2,3- Poxycyclopentyl)
  • silicone resin known materials may be used, and examples thereof include a material having a (—SiR 1 R 2 —O—) n polysiloxane skeleton.
  • R 1 R 2 preferably has 2 to 10 carbon atoms, particularly 2 to 6 carbon atoms, and includes alkenyl groups such as vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, acryloxy group, methacryloxy group and the like. Can be mentioned.
  • R 2 is preferably one having 1 to 10 carbon atoms, particularly 1 to 6 carbon atoms, an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group or a cyclohexyl group, an aryl group such as a phenyl group or a tolyl group, Representative examples include an aralkyl group such as a benzyl group.
  • the surface-treated phosphor of the present invention is dispersed in at least one resin selected from the group consisting of polyvinyl acetate, polyvinyl butyral, polyethylene, polypropylene, polymethyl methacrylate, polycarbonate, and cyclic olefin copolymer, It can be used as a wavelength conversion complex.
  • the wavelength conversion composite is used as an illumination system, a wavelength conversion member for a solar cell, or the like.
  • the surface treatment fluorescent substance of this invention may be made into the well-known surface treatment matched with corresponding resin. Further, it may be dispersed in the resin by a known kneading dispersion method.
  • the wavelength conversion composite can be used as a wavelength conversion sheet by forming it into a sheet.
  • a known method can be used as the method for forming the sheet. Specifically, for example, a master batch composed of the surface-treated phosphor of the present invention and a resin is prepared, and a film is formed by an extruder, and the resin and the surface-treated phosphor of the present invention are dispersed in a solvent for dissolving the resin. The method of casting etc. are mentioned.
  • an efficient photoelectric conversion device By using the wavelength conversion composite or the wavelength conversion sheet of the present invention, an efficient photoelectric conversion device can be obtained.
  • a photoelectric conversion device is also one aspect of the present invention.
  • the wavelength of received light may not necessarily be an efficient wavelength of the element itself.
  • the conversion efficiency of the photoelectric conversion device is improved by converting the wavelength of received light into a wavelength that is efficient for the device.
  • the conventional phosphor has low moisture resistance and could not be used suitably.
  • the surface-treated phosphor of the present invention is dispersed in the encapsulant resin and used on the surface of the solar cell. A battery is obtained.
  • a semiconductor light emitting device can be manufactured by forming a phosphor layer using the surface-treated phosphor of the present invention. Such a semiconductor light emitting device is also one aspect of the present invention.
  • the phosphor layer is sealed with the surface-treated phosphor of the present invention. By setting it as the structure containing a stop resin, it can be set as the LED light-emitting device excellent in moisture resistance.
  • Such an LED light-emitting device is also one aspect of the present invention.
  • the LED light-emitting device of the present invention has a luminous intensity retention of 80% or more after being energized for 1000 hours under conditions of a temperature of 60 ° C., a relative humidity of 90%, and a current of 20 mA.
  • the luminous intensity retention is less than 80%, the light emission intensity tends to decrease with time during actual use, and the durability may be insufficient.
  • the luminous intensity retention is preferably 90% or more.
  • the luminous intensity retention ratio represents the ratio of luminous intensity before and after energization under the above-mentioned conditions [(luminous intensity after energization / luminance before energization) ⁇ 100], and the luminous intensity is, for example, OL770 manufactured by Optronic Laboratories. It can be measured using a measurement system or the like.
  • the LED light emitting device of the present invention preferably has a luminous intensity retention rate of 50% or more after being held for 72 hours in an environment of a temperature of 121 ° C. and a relative humidity of 100%.
  • the application of the LED light-emitting device of the present invention is not particularly limited, and can be used in various fields where a normal LED light-emitting device is used. Moreover, you may use individually or in combination. Specifically, for example, it can be used for a liquid crystal display element backlight, an image display device, a lighting device, and the like.
  • the liquid crystal display element backlight a known structure can be used. For example, it may be arranged on the frame of the display element and emit light toward the light guide plate, or may be arranged on the back side of the liquid crystal cell with a diffusion plate interposed therebetween.
  • An example of the image display device is a liquid crystal display element having at least a liquid crystal cell and the liquid crystal display element backlight.
  • Another example includes an LED display that forms an image by regularly emitting light by arranging a plurality of LEDs regularly in two dimensions.
  • the lighting device is not particularly limited, and can be applied to a known LED light emitting device. Since the lighting device has high moisture resistance, for example, indicator lights used for transportation and transportation of vehicles and the like, illumination lights, indoor and outdoor lighting used for residences and buildings, mobile phones, mobile communication, etc. It can be used for lighting used for terminals and the like.
  • a surface-treated phosphor can be obtained.
  • an expensive reaction apparatus is not required, and the coating treatment can be performed in an aqueous solution in a short time. Can be manufactured economically.
  • FIG. 2 is a cross-sectional photograph of a cross section of the surface-treated phosphor obtained in Example 1.
  • FIG. 3 is element distribution data in a cross-sectional direction of the surface-treated phosphor obtained in Example 1.
  • FIG. 4 is a cross-sectional photograph obtained by photographing a cross section of the surface-treated phosphor obtained in Example 2.
  • FIG. 3 is element distribution data in a cross-sectional direction of the surface-treated phosphor obtained in Example 2.
  • FIG. 4 is a cross-sectional photograph obtained by photographing a cross section of the surface-treated phosphor obtained in Example 3.
  • FIG. 3 is element distribution data in a cross-sectional direction of the surface-treated phosphor obtained in Example 3.
  • FIG. 4 is a cross-sectional photograph obtained by photographing a cross section of the surface-treated phosphor obtained in Example 4.
  • FIG. 4 is element distribution data in the cross-sectional direction of the surface-treated phosphor obtained in Example 4.
  • FIG. 6 is a cross-sectional photograph obtained by photographing a cross section of the surface-treated phosphor obtained in Example 5.
  • FIG. 6 is element distribution data in the cross-sectional direction of the surface-treated phosphor obtained in Example 5.
  • FIG. 6 is a cross-sectional photograph obtained by photographing a cross section of the surface-treated phosphor obtained in Example 6.
  • FIG. 7 is a cross-sectional photograph obtained by photographing a cross section of the surface-treated phosphor obtained in Example 7.
  • FIG. 7 is element distribution data in a cross-sectional direction of the surface-treated phosphor obtained in Example 7.
  • FIG. 2 is a cross-sectional photograph obtained by photographing a cross section of the surface-treated phosphor obtained in Comparative Example 1.
  • FIG. 3 is element distribution data in a cross-sectional direction of the surface-treated phosphor obtained in Comparative Example 1.
  • 6 is a cross-sectional photograph obtained by photographing a cross section of the surface-treated phosphor obtained in Comparative Example 2. It is element distribution data of the cross-sectional direction of the surface treatment fluorescent substance obtained in the comparative example 2.
  • FIG. 6 is a cross-sectional photograph obtained by photographing a cross section of the surface-treated phosphor obtained in Comparative Example 3.
  • Example 1 An orange silicate phosphor (Sr 3 SiO) having a median particle diameter (D 50 ) of about 17 ⁇ m was added to 250 ml of a 0.1 mol / L ammonium fluoride titanate ((NH 4 ) 2 TiF 6 ) and 0.1 mol / L boric acid-containing aqueous solution. 5 : Eu 2+ ) 7.5 g was added. While the mixed solution to which the phosphor was added was dispersed by stirring, the mixture was reacted at 35 ° C. for 2 hours. After the reaction, the phosphor recovered through filtration and washing steps was vacuum-dried at 120 ° C. for 1 hour.
  • Sr 3 SiO an orange silicate phosphor having a median particle diameter (D 50 ) of about 17 ⁇ m was added to 250 ml of a 0.1 mol / L ammonium fluoride titanate ((NH 4 ) 2 TiF 6 ) and 0.1 mol / L boric acid-containing aqueous
  • the obtained surface-treated phosphor was subjected to “measurement of coating layer thickness and elemental composition analysis in the cross-sectional direction” by the following method, and a surface-treated layer having a thickness of about 180 nm was formed on the surface of the phosphor. I understood.
  • the elemental composition curve obtained by the elemental composition analysis in the cross-sectional direction a curve indicating the titanium content and a curve indicating the fluorine content are obtained, and the maximum peak of the titanium content is the fluorine content. It was confirmed that it is located on the surface side of the maximum peak of. In addition, about content of specific elements other than titanium, it was below the detection limit.
  • the fluorine content at the maximum peak position of the titanium content was 1.0% by weight.
  • An FE-TEM cross-sectional photograph of the obtained surface-treated phosphor is shown in FIG. 1, and elemental analysis results in the cross-sectional direction are shown in FIG.
  • ⁇ Measurement of coating layer thickness, cross-sectional elemental composition analysis> The obtained surface-treated phosphor is cut in the cross-sectional direction using a Focused Beam (FIB), and the cut surface is observed with a transmission electron microscope (FE-TEM, JEM-2010FEF). The thickness was measured. In addition, thickness measured 5 points
  • the elemental composition of the surface treatment layer is analyzed and identified using energy dispersive X-rays (EDX) attached to the FE-TEM, so that specific elements in the thickness direction (period table 3 to 3) are identified. A curve of the content of the group 6 element) and fluorine was obtained.
  • EDX energy dispersive X-rays
  • Example 2 An orange silicate phosphor having a median particle size (D 50 ) of about 17 ⁇ m (main component: main component: 250 ml of 0.1 mol / L ammonium fluoride titanate ((NH 4 ) 2 TiF 6 ) and 0.1 mol / L boric acid-containing mixed aqueous solution. Sr 3 SiO 5 : Eu 2+ ) 7.5 g was added. While the mixed solution to which the phosphor was added was dispersed by stirring, the mixture was reacted at 35 ° C. for 4 hours. After the reaction, the phosphor recovered through filtration and washing steps was vacuum-dried at 120 ° C. for 1 hour.
  • Example 3 An orange silicate phosphor (main component: Sr 3 SiO 5 : Eu 2+ ) having a median particle diameter (D 50 ) of about 17 ⁇ m was added to 250 ml of an aqueous solution containing 0.75 mol / L ammonium fluorinated titanate ((NH 4 ) 2 TiF 6 ). 7.5 g was added. While the mixed solution to which the phosphor was added was dispersed by stirring, the mixture was reacted at 35 ° C. for 30 minutes. After the reaction, the phosphor recovered through filtration and washing steps was vacuum-dried at 120 ° C. for 1 hour.
  • D 50 median particle diameter
  • Example 4 An orange silicate phosphor (main component: Sr 3 SiO 5 : Eu 2+ Cl) having a median particle diameter (D 50 ) of about 17 ⁇ m was added to 250 ml of an aqueous solution containing 1.0 mol / L ammonium fluorotitanate ((NH 4 ) 2 TiF 6 ). ) 7.5 g was added. While the mixed solution to which the phosphor was added was dispersed by stirring, the mixture was reacted at 35 ° C. for 30 minutes. After the reaction, the phosphor recovered through filtration and washing steps was vacuum-dried at 120 ° C. for 1 hour.
  • D 50 median particle diameter
  • the obtained surface-treated phosphor was subjected to “measurement of the thickness of the coating layer and elemental composition analysis in the cross-sectional direction” in the same manner as in Example 1. As a result, a coating layer having a thickness of about 300 nm was formed on the surface of the phosphor. I found out.
  • the elemental composition curve obtained by the elemental composition analysis in the cross-sectional direction a curve indicating the titanium content and a curve indicating the fluorine content are obtained, and the maximum peak of the titanium content is the fluorine content. It was confirmed that it is located on the surface side of the maximum peak of. In addition, about content of specific elements other than titanium, it was below the detection limit. The fluorine content at the maximum peak position of the titanium content was 6.0% by weight.
  • An FE-TEM cross-sectional photograph of the obtained surface-treated phosphor is shown in FIG. 7, and elemental analysis results in the cross-sectional direction are shown in FIG.
  • Example 5 0.02 mol / L ammonium fluorinated titanate ((NH 4 ) 2 TiF 6 ) and 0.02 mol / L boric acid-containing mixed aqueous solution 250 ml, an orange silicate phosphor having a median particle size (D 50 ) of about 17 ⁇ m (main component: Sr 3 SiO 5 : Eu 2+ ) 7.5 g was added. While the mixed solution to which the phosphor was added was dispersed by stirring, the mixture was reacted at 35 ° C. for 2 hours. After the reaction, the phosphor recovered through filtration and washing steps was vacuum-dried at 120 ° C. for 1 hour.
  • D 50 median particle size
  • Example 6 An orange silicate phosphor having a median particle diameter (D 50 ) of about 17 ⁇ m (main component: main component: 250 ml of 0.1 mol / L ammonium fluorotitanate ((NH 4 ) 2 TiF 6 ) and 0.2 mol / L boric acid-containing mixed aqueous solution. 1.5 g of Sr 3 SiO 5 : Eu 2+ ) was added. While the mixed solution to which the phosphor was added was dispersed by stirring, the mixture was reacted at 35 ° C. for 2 hours. After the reaction, the phosphor recovered through filtration and washing steps was vacuum-dried at 120 ° C. for 1 hour.
  • Example 7 An orange silicate phosphor having a median particle diameter (D 50 ) of about 17 ⁇ m (principal component: main component: 250 ml of 0.1 mol / L ammonium fluoride zirconate ((NH 4 ) 2 ZrF 6 ) and 0.1 mol / L boric acid-containing mixed aqueous solution Sr 3 SiO 5 : Eu 2+ ) 7.5 g was added. While the mixed solution to which the phosphor was added was dispersed by stirring, the mixture was reacted at 35 ° C. for 2 hours. After the reaction, the phosphor recovered through filtration and washing steps was vacuum-dried at 120 ° C. for 1 hour.
  • D 50 median particle diameter
  • the obtained surface-treated phosphor was subjected to “measurement of coating layer thickness and elemental composition analysis in the cross-sectional direction” in the same manner as in Example 1. As a result, a coating layer having a thickness of about 170 nm was formed on the surface of the phosphor. I found out.
  • the elemental composition curve obtained by elemental composition analysis in the cross-sectional direction a curve indicating the zirconium content and a curve indicating the fluorine content are obtained, and the maximum peak of the zirconium content is the fluorine content. It was confirmed that it is located on the surface side of the maximum peak of. The content of specific elements other than zirconium was below the detection limit.
  • the fluorine content at the maximum peak position of the zirconium content was 0.6% by weight.
  • An FE-TEM cross-sectional photograph of the obtained surface-treated phosphor is shown in FIG. 12, and an elemental analysis result in the cross-sectional direction is shown in FIG.
  • Example 8 To 250 ml of hydrofluoric acid aqueous solution in which 0.05 mol / L of vanadium oxide is dissolved, 7.5 g of an orange silicate phosphor (main component: Sr 3 SiO 5 : Eu 2+ ) having a median particle size (D 50 ) of about 17 ⁇ m is added. did. While the mixed solution to which the phosphor was added was dispersed by stirring, the mixture was reacted at 35 ° C. for 30 hours. After the reaction, the phosphor recovered through filtration and washing steps was vacuum-dried at 120 ° C. for 1 hour.
  • an orange silicate phosphor main component: Sr 3 SiO 5 : Eu 2+
  • Example 9 An orange silicate phosphor (main component: Sr 3 SiO 5 : Eu) having a median particle size (D 50 ) of about 17 ⁇ m was added to 250 ml of an aqueous 0.1 mol / L ammonium fluormolybdate ((NH 4 ) 2 MoO 2 F 4 ) solution. 2+ ) 7.5 g was added. While the mixed solution to which the phosphor was added was dispersed by stirring, the mixture was reacted at 35 ° C. for 30 hours. After the reaction, the phosphor recovered through filtration and washing steps was vacuum-dried at 120 ° C. for 1 hour.
  • the obtained surface-treated phosphor was subjected to “measurement of coating layer thickness and elemental composition analysis in the cross-sectional direction” by the following method, and it was found that a coating layer having a thickness of about 50 nm was formed on the surface of the phosphor. It was.
  • the elemental composition curve obtained by the elemental composition analysis in the cross-sectional direction a curve indicating the molybdenum content and a curve indicating the fluorine content are obtained, and the maximum peak of the molybdenum content is the fluorine content. It was confirmed that it is located on the surface side of the maximum peak of. The content of specific elements other than molybdenum was below the detection limit. Further, the fluorine content at the maximum peak position of the molybdenum content was 1.5% by weight.
  • the phosphor particles subjected to the coating treatment were subjected to “measurement of the thickness of the coating layer and elemental composition analysis in the cross-sectional direction” in the same manner as in Example 1.
  • a coating layer having a thickness of about 34 nm was formed on the surface.
  • the elemental composition curve obtained by the elemental composition analysis in the cross-sectional direction only a curve indicating the titanium content was obtained.
  • the fluorine content was below the detection limit.
  • the content of the titanium maximum peak in the surface treatment layer was 20% by weight.
  • An FE-TEM cross-sectional photograph of the obtained surface-treated phosphor is shown in FIG. 18, and an elemental analysis result in the cross-sectional direction is shown in FIG.
  • the phosphor particles subjected to the coating treatment were subjected to “measurement of the thickness of the coating layer and elemental composition analysis in the cross-sectional direction” in the same manner as in Example 1. As a result, a coating layer having a thickness of about 55 nm was formed on the surface. I understood.
  • the obtained LED light emitting device was subjected to a moisture resistance test in a sealed pressure resistant device having a temperature of 121 ° C. and a relative humidity of 100% (Pressure Cooker Test (PCT test)).
  • the moisture resistance of the phosphor was evaluated from the amount of change in luminous intensity by measuring the light emission characteristics of the LED chips before and after the PCT test.
  • relative humidity resistance between samples was evaluated based on the luminous intensity retention rate after 72 hours of the PCT test (PCT72h luminous intensity retention rate) with respect to the luminous intensity before the PCT test.
  • PCT72h luminous intensity retention rate (%) (luminance after PCT 72 hours treatment / luminance before treatment) ⁇ 100
  • an OL770 measuring system manufactured by Optronic Laboratories was used as the measuring apparatus. The results are shown in Table 1.
  • ⁇ Moisture resistance evaluation 2 of phosphor (electric current test)> First, an LED light-emitting device was fabricated in the same manner as in “Moisture resistance evaluation of phosphor 1 (PCT test)”. Next, the obtained LED light-emitting device was energized for 1000 hours under a constant current condition of 20 mA in a constant temperature and humidity chamber at a temperature of 60 ° C. and a relative humidity of 90%. The light emission characteristics of the LED chips before and after the energization test were measured, and the moisture resistance was evaluated from the amount of change in luminous intensity.
  • Luminance retention rate (%) after energization for 1000 hours (luminosity after energization for 1000 hours / luminosity before energization) ⁇ 100
  • OL770 measuring system manufactured by Optronic Laboratories was used as the measuring apparatus. The results are shown in Table 1.
  • ⁇ Moisture resistance evaluation 3 of phosphor (conductivity measurement after immersion in water)> 1 g of the surface-treated phosphor or phosphor obtained in Examples and Comparative Examples was added to 1000 g of pure water (temperature: 35 ° C.) with stirring, and the conductivity of the dispersion at the time when 10 minutes had elapsed after the addition was measured. It was measured using a rate meter (ES-51, manufactured by Horiba, Ltd.).
  • ⁇ Moisture resistance evaluation 4 of phosphor (measurement of dissolved Si and Sr concentration during immersion in water)> 1 g of the surface-treated phosphor or phosphor obtained in Examples and Comparative Examples was added to 1000 g of pure water (temperature: 35 ° C.) with stirring, and the dispersion liquid was filtered when 10 minutes had passed after the addition.
  • concentrations of Si and Sr in the liquid were measured using inductively coupled plasma emission spectrometry (ICP, apparatus: ICPS-8000, manufactured by Shimadzu Corporation).
  • the dispersibility of the phosphor in the resin was evaluated using a centrifugal sedimentation / light transmission type dispersion stability analyzer (LUMiSizer 612, manufactured by LUM). Specifically, about 1 ml of the phosphor-silicone resin composition in which the surface-treated phosphors or phosphors obtained in Examples and Comparative Examples are dispersed in an amount of 8% by weight with respect to the silicone resin is used as a glass analysis cell. Then, the supernatant was irradiated with light, and the integrated value of the amount of change in the amount of light transmitted per hour was determined to evaluate the dispersibility.
  • LUMiSizer 612 centrifugal sedimentation / light transmission type dispersion stability analyzer
  • a surface-treated phosphor that can greatly improve moisture resistance without deteriorating fluorescence characteristics and has high dispersibility, and a method for producing the surface-treated phosphor. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Theoretical Computer Science (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Photovoltaic Devices (AREA)
  • Paints Or Removers (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

  蛍光特性を低下させることなく、耐湿性を大幅に改善することができ、かつ、高い分散性を有する表面処理蛍光体及び該表面処理蛍光体の製造方法を提供する。 周期律表第3~6族の元素から選択される少なくとも1種の特定元素と、フッ素とを含有する表面処理層を蛍光体の表面に有する表面処理蛍光体であって、表面処理層の断面厚み方向の元素分布を、電子顕微鏡及びそれに付属するエネルギー分散型X線元素分析により測定した場合、特定元素の含有量の最大ピークが、フッ素の含有量の最大ピークよりも表面側に位置する表面処理蛍光体。

Description

表面処理蛍光体及び表面処理蛍光体の製造方法
本発明は、耐湿性が著しく改善された表面処理蛍光体及び該表面処理蛍光体の製造方法に関する。
近年、白色光を発する半導体発光素子(白色LED)は、低消費電力、高効率、環境にやさしい、長寿命等の長所を兼ね備えているため、次世代光源として注目を浴びている。
白色LEDにおいて、白色光を作り出す方法としては、青色や紫外光のLEDとそれらの光によって励起されうる蛍光体(赤、黄、緑色蛍光体等)とを組み合わせる方法が一般的用いられている。
また、アルカリ土類金属元素を有するシリケート(珪酸塩とも呼ばれる)蛍光体は、組成調節により広範囲な発光波長を容易に得られることと、発光効率が高いこと等の特徴を有するため注目されている。なかでも、特許文献1に記載の(Sr,Ba,Ca)SiO:Eu2+や、特許文献2に記載の(Sr,Ba,Ca)SiO:Eu2+等の構造を有するシリケート蛍光体が代表例として挙げられる。このシリケート蛍光体では、Srと、Ba又はCaとの相対量を調節することにより発光波長のチューニングが可能である。
しかしながら、このようなアルカリ土類金属元素を有するシリケート蛍光体は、空気中の水蒸気や水分によって表面が分解劣化しやすいという問題があった。そのため、大気中での長時間使用の場合に、発光強度の低下や色調の変化が起こりやすく、蛍光体としての特性が低下し、耐久性に大きな問題があった。
これに対して、蛍光体の耐湿性を改善する方法として、気相法(乾式法)、液相法(湿式法)等を用いて、蛍光体粒子の表面を酸化物等で被覆する方法が検討されている。
例えば、気相法による方法としては、化学的気相成長法(CVD)を用いる方法(特許文献3)や、プラズマ法を用いる方法(特許文献4)によって硫化物蛍光体粒子の表面に酸化アルミニウム膜をコーティングする方法が開示されている。
また、液相法による方法としては、ゾルーゲル反応法と中和沈殿法が挙げられ、例えば、特許文献5には、0~20℃の反応温度でSi、Ti等のアルコキシド及び/又はその誘導体を多量のアンモニア水の存在下で加水分解、脱水重合により蛍光体粒子への表面処理方法を開示されている。また、特許文献6には、表面に粒子状又は層状のSi含有化合物を載置した蛍光体が開示されている。
更に、特許文献7には、ゾルーゲル法を用いたジルコニア膜の被覆方法が開示されている。特許文献8には、アルミニウム等のイオン含有酸性溶液を、蛍光体を分散させたアルカリ性溶液中に添加し、中和反応によって蛍光体粒子の表面に金属水酸化物を析出する方法が開示されている。
しかしながら、特許文献3及び4に開示された気相法では、微粉末である蛍光体粒子を完全に分散することが困難であるため、1個1個の蛍光体粒子の表面に均一かつ全面に被覆することが現実的に難しく、ピンホールや被覆バラツキ等が生じやすいという問題があった。また、気相法は、通常400℃以上の高温で行われるため、蛍光体の種類によっては処理後に蛍光特性が著しく低下してしまうという問題もあった。更に、装置が大掛かりなものとなるため、製造コストが高くなっていた。
一方、液相法であるゾルーゲル法を用いた場合(特許文献5、6及び7)では、被覆物種類の選択自由度が大きいが、出発原料である金属アルコキシドは通常反応性が高く、蛍光体粒子の表面のみで加水分解反応を起させるための反応条件の制御が非常に難しかった。また、ゾルーゲル法で得られた膜には、不完全な加水分解のため残されたアルコキシル基や加水分解反応で脱離したアルコール等の有機成分が含まれるため、通常緻密な膜が得られにくかった。
更に、特許文献5に開示された被覆方法は、加水分解反応が多量のアンモニア水の存在下で行うため、殆どの原料が蛍光体粒子表面以外の溶液中に反応、消費され、反応効率とコストにも問題点があった。加えて、多量のアンモニア水が含まれるので、処理過程中に蛍光体が加水分解によって劣化する恐れもあった。
特許文献6に開示された方法では、被覆物であるSi含有化合物が粒子状又は層状で蛍光体粒子の表面に載置されるとしているが、実際には、耐湿性の改善は殆ど見られなかった。また、特許文献6の実施例に記載された反応条件では、蛍光体粒子の表面に被覆反応が殆ど起こらず、一部被覆ができたとしても、粒子状被覆の場合には水蒸気を効率的に遮断するのは困難であるという問題点があった。
特許文献7に開示された方法は、長時間の反応と精密な温度及びプロセスの制御が必要であり、効率とコストの点に問題があった。
一方、特許文献8に開示された中和沈殿法では、被覆物を蛍光体粒子の表面に連続膜として析出することは事実上困難であった。
特表2009-515030号公報 特開1997-104863号公報 特開2001-139941号公報 特表2009-524736号公報 特開2008-111080号公報 特開2007-224262号公報 特開2009-132902号公報 特開平11-256150号公報
本発明は、蛍光特性を低下させることなく、耐湿性を大幅に改善することができ、かつ、高い分散性を有する表面処理蛍光体及び該表面処理蛍光体の製造方法を提供することを目的とする。
本発明は、周期律表第3~6族の元素から選択される少なくとも1種の特定元素と、フッ素とを含有する表面処理層を蛍光体の表面に有する表面処理蛍光体であって、表面処理層の断面厚み方向の元素分布を、電子顕微鏡及びそれに付属するエネルギー分散型X線元素分析により測定した場合、特定元素の含有量の最大ピークが、フッ素の含有量の最大ピークよりも表面側に位置する表面処理蛍光体である。
以下、本発明を詳述する。
本発明者らは、鋭意検討した結果、蛍光体の表面に、特定元素と、フッ素とを含有する表面処理層を形成し、更に、エネルギー分散型X線元素分析により測定したピーク位置が所定の要件を満たした場合に、蛍光特性を低下させることなく、耐湿性を大幅に改善することができ、かつ、高い分散性を有する表面処理蛍光体が得られることを見出し、本発明を完成させるに至った。
本発明の表面処理蛍光体は、周期律表第3~6族の元素から選択される少なくとも1種の特定元素と、フッ素とを含有する表面処理層を蛍光体の表面に有する。
上記表面処理層は、上記特定元素とフッ素とを含有することを特徴とする。
まず、上記表面処理層がフッ素を含有することで、被覆処理工程において水による蛍光体の劣化が生じることを防止することができる。一般的に、耐湿性に劣る蛍光体を処理する場合には、水溶液の使用を避ける傾向にあるが、本発明では、上記表面処理層を形成することで、被覆処理を水溶液中で行うことができ、有機溶媒を使用する場合における廃液処理等の問題がなくなる。
また、フッ素を含有する表面処理層が形成されていることで、表面処理蛍光体の使用時の耐湿性についても向上されることができる。上記表面処理層はシリケート蛍光体に比べ、水に対する安定性が高いので、使用時の耐湿性改善にも寄与する。
更に、上記表面処理層が特定元素を含有することで、長期耐湿性が向上する。これは、特定元素の酸化物が安定であることによるものと考えられる。
更に、上記表面処理層がフッ素のみを含有する場合は、フッ化物の化学結合は基本的にイオン性結合であり、解離傾向が共有結合の酸化物より大きいため、湿気又は水分が存在する雰囲気に長時間使用すると、フッ化物中のアルカリ土類金属の加水分解反応が徐々に進行する恐れがあり、長期的な安定性の確保に不充分となる。
これに対して、上記フッ素に加えて、上記特定元素を添加することで、水に対してより安定な酸化物層を形成することにより、長期間使用時における優れた耐湿性を付与することができる。
上記特定元素は、周期律表第3~6族の元素から選択される少なくとも1種であるが、なかでも周期律表第4、5族の元素が好ましい。具体的には、ジルコニウム、チタン、ハフニウム、ニオブ、バナジウム、タンタルが好ましい。また、これらの元素を組み合わせて用いてもよい。
上記表面処理層において、上記特定元素は酸化物の状態で存在していることが好ましい。上記特定元素の酸化物としては、例えば、酸化ジルコニウム、酸化チタン、酸化ハフニウム、酸化ニオブ、酸化バナジウム、酸化タンタル等が挙げられる。これらのなかでは、酸化ジルコニウムと酸化チタンが特に好ましい。
上記表面処理層における特定元素の含有量の好ましい下限は5.0重量%、好ましい上限は85重量%である。上記特定元素の含有量が5.0重量%未満であると、耐湿性の長期安定性が不充分となることがあり、85重量%を超えると、表面処理蛍光体の蛍光体特性が低下することがある。
上記表面処理層において、上記フッ素は、アルカリ土類金属とフッ素イオンとから形成されたアルカリ土類金属のフッ化物の状態で存在していることが好ましい。
上記アルカリ土類金属のフッ化物としては、例えば、フッ化ストロンチウム、フッ化バリウム、フッ化カルシウム、フッ化マグネシウムからなる層が挙げられる。これらのなかでは、フッ化ストロンチウム、フッ化カルシウムが特に好ましい。
上記表面処理層におけるフッ素の含有量の好ましい下限は1.0重量%、好ましい上限は60重量%である。上記フッ素の含有量が1.0重量%未満であると、被覆処理過程において水による蛍光体の分解劣化を完全に抑制できなくなることがあり、60重量%を超えると、耐湿性の長期安定性が不充分となることがある。
上記表面処理層の厚みは0.5~5000nmであることが好ましい。より好ましくは1.0~3000nm、更に好ましくは5.0~1000nm、特に好ましくは10~500nmである。表面処理層の厚みが薄すぎると、耐湿性が不足となることがあり、厚すぎると、表面処理蛍光体の蛍光特性が低下することがある。
本発明の表面処理蛍光体は、表面処理層の断面厚み方向の元素分布を、電子顕微鏡及びそれに付属するエネルギー分散型X線元素分析により測定した場合、特定元素の含有量の最大ピークが、フッ素の含有量の最大ピークよりも表面側に位置することを特徴とする。
ここで、「電子顕微鏡及びそれに付属するエネルギー分散型X線元素分析」とは、例えば、SEM-EDS(Scanning Electron Microscopy/Energy Dispersive Spectroscopy)、又は、TEM-EDS(Transmision Electron Microscopy/Energy Dispersive Spectroscopy)装置を用いた方法等が用いられる。
なお、本発明では、「特定元素の含有量の最大ピーク」又は「フッ素の含有量の最大ピーク」が複数存在する場合でも、「特定元素の含有量の最大ピーク」が、「フッ素の含有量の最大ピーク」よりも表面側に位置するという条件を満たすこととする。
本発明では、「特定元素の含有量の最大ピーク」と、「フッ素の含有量の最大ピーク」とが上述した条件を満たすことで、被覆処理過程中における水による蛍光体の分解劣化が抑えられるとともに、被覆処理後の表面処理蛍光体についても、優れた耐湿性を付与することが可能となる。
本発明では、上記表面処理層が単層であり、かつ、上記表面処理層の断面厚み方向の元素分布において、特定元素の最大ピーク位置で、フッ素が検出されることが好ましい。これにより、被覆処理後の蛍光体が封止樹脂との親和性が向上され、封止樹脂への分散性が改善されることとなる。
また、特定元素の最大ピーク位置での、フッ素の含有量の好ましい下限は0.01重量%、好ましい上限は30重量%である。
上記表面処理層の断面厚み方向の元素分布において、上記特定元素の最大ピーク位置における含有量の好ましい下限は1.0重量%、好ましい上限は75重量%である。上記範囲内とすることで、長時間の使用においても劣化の少ない蛍光体が得られる。
また、上記表面処理層の断面厚み方向の元素分布において、上記フッ素の最大ピーク位置における含有量の好ましい下限は0.1重量%、好ましい上限は50重量%である。上記範囲内とすることで、被覆処理過程中における蛍光体の水より分解劣化が抑えられると同時に、表面処理蛍光体の耐湿性の向上にも寄与する。
また、上記表面処理層は、単層であることが好ましい。このことは、例えば、上記エネルギー分散型X線元素分析において、特定元素及びフッ素の含有量の曲線が、ピーク部以外では連続的に漸増又は漸減し、層間界面に起因する急激な含有量の変化がないことによって確認することができる。このような構造であることは、表面処理層の密着性に大きく寄与し、物理的な方法で積層した構造と比較して層間剥離の問題が発生しにくくなる。
また、上記表面処理層は、最表面に向かって順に、フッ化物層、及び、特定元素の酸化物を含有する酸化物層が順次形成されたものであってもよい。
一般的に、耐湿性に劣る蛍光体を処理する場合には、水溶液の使用を避ける傾向にあるが、上記フッ化物層を形成することで、被覆処理を水溶液中で行うことができ、有機溶媒を使用する場合における廃液処理等の問題がなくなる。また、使用時の耐湿性についても向上することができる。また、上記酸化物層が形成されていることで、耐湿性の更なる向上と長期安定性が実現される。
従って、上記フッ化物層の上に、水に対してより安定な酸化物層を被覆することにより、長期間使用時における優れた耐湿性を付与することができる。
上記フッ化物層としては、アルカリ土類金属とフッ素イオンとから形成されたアルカリ土類金属のフッ化物からなるものであることが好ましい。
具体的には例えば、フッ化ストロンチウム、フッ化バリウム、フッ化カルシウム、フッ化マグネシウムからなる層が挙げられる。これらのなかでは、フッ化ストロンチウムとフッ化カルシウムが好ましい。
上記フッ化物層におけるフッ化物の含有量の好ましい下限は5重量%、好ましい上限は95重量%である。上記フッ化物の含有量が5重量%未満であると、被覆処理過程において水による蛍光体の分解劣化を完全に抑制することができなくなり、95重量%を超えると、蛍光体の蛍光特性に悪影響を与えることがある。
上記フッ化物層の厚みは特に限定されず、通常、0.5~5000nmであることが好ましい。より好ましくは1~2000nm、更に好ましくは5~1000nmである。上記フッ化物層の厚みが薄すぎると、前述した水による劣化防止効果が不充分となり、厚すぎると、蛍光体の蛍光特性に悪影響を与えることがある。
上記酸化物層は、例えば、酸化ジルコニウム、酸化チタン、酸化ハフニウム、酸化ニオブ、酸化バナジウム、酸化タンタル、またはそれらの複合物を含有することが好ましい。これらのなかでは、酸化ジルコニウム、酸化チタンが好ましい。
上記酸化物層における酸化物の含有量の好ましい下限は10重量%、好ましい上限は95重量%である。上記酸化物の含有量が10重量%未満であったり、95重量%を超えたりすると、耐湿性の長期安定性が不充分となる。
上記酸化物層の厚みは特に限定されず、通常、0.5~5000nmであることが好ましい。より好ましくは1.0~3000nm、更に好ましくは5.0~1000nmである。上記酸化物層の厚みが薄すぎると、劣化防止効果が不充分となり、厚すぎると、蛍光体の蛍光特性に悪影響を与えることがある。
上記本発明の表面処理蛍光体に用いられる蛍光体としては、アルカリ土類金属元素を含有する蛍光体が好ましい。このようなアルカリ土類金属を有する蛍光体は、例えば、硫化物系蛍光体、アルミン酸塩系蛍光体、窒化物系蛍光体、酸窒化物系蛍光体、リン酸塩系蛍光体、ハロンリン酸塩系蛍光体、シリケート系蛍光体等が挙げられる。
上記蛍光体としては、なかでも、アルカリ土類金属元素を有するシリケート蛍光体が好ましい。
上記アルカリ土類金属元素を有するシリケート蛍光体としては、例えば、母体結晶構造として、MSiOまたはMSiOの結晶構造と実質的に同じ構造(ただし、MはMg、Ca、Sr及びBaからなる群から選択される少なくとも1種を表す)を有し、かつ、付活剤としてFe、Mn、Cr、Bi、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm及びYbからなる群から選択される少なくとも1種を含有する蛍光体が挙げられる。上記「MSiOまたはMSiOの結晶構造と実質的に同じ構造」とは、X線回折法で測定する場合に、MSiOまたはMSiOと同様なX線回折パターンを有することを意味する。
上記アルカリ土類金属元素を有する蛍光体は、アルカリ土類金属以外の金属元素(例えば、Zn、Ga、Al、Y、Gd、Tb)を適量含有してもよい。
また、上記アルカリ土類金属元素を有する蛍光体は、少量のハロゲン元素(例えば、F,Cl,Br)、硫黄(S)またはリン(P)を適量含有してもよい。
上記蛍光体の例としては、例えば、下記一般式(1)のような組成を有する橙色蛍光体、下記一般式(2)のような組成を有する橙色蛍光体等が挙げられる。
(Sr1-xSiO:Eu2+          (1)
式中、MはBa、Ca、Mg及びZnからなる群より選択される少なくとも1種の金属であり、0≦x<1.0であり、2.6≦y≦3.3である。
(Sr1-xSiO:Eu2+D      (2)
式中、MはBa、Ca、Mg及びZnからなる群より選択される少なくとも1種の金属であり、DはF、Cl及びBrからなる群より選択されるハロゲンアニオンであり、0≦x<1.0であり、2.6≦y≦3.3である。
上記蛍光体の具体例としては、例えば、SrSiO:Eu2+、(Sr0.9Mg0.025Ba0.075SiO:Eu2+、(Sr0.9Mg0.05Ba0.052.7SiO:Eu2+、(Sr0.9Mg0.025Ba0.075SiO:Eu2+、(Sr0.9Ba0.1SiO:Eu2+、Sr0.97SiO:Eu2+F、(Sr0.9Mg0.12.9SiO:Eu2+F、(Sr0.9Ca0.13.0SiO:Eu2+Fの等組成を有する橙色蛍光体、(Sr0.4Ba0.6SiO:Eu2+、(Sr0.3Ba0.7SiO:Eu2+、(Sr0.2Ba0.8SiO:Eu2+、(Sr0.57Ba0.4Mg0.03SiO:Eu2+F、(Sr0.6Ba0.4SiO:Eu2+Cl、(Ba,Sr,Ca)(Mg,Zn)Si:Eu2+等の組成を有する緑色蛍光体、(Sr0.7Ba0.3SiO:Eu2+F、(Sr0.9Ba0.1SiO:Eu2+、0.72[(Sr1.025Ba0.925Mg0.05)Si1.03Eu0.050.12]、0.28[SrSi1.02Eu0.60.13]等の組成を有する黄色蛍光体、及び、BaMgSi:Eu2+、BaZnSi:Eu2+等の組成を有する青色蛍光体が挙げられる。
なかでも、上記蛍光体は、MSiOの結晶構造を有する橙色(オレンジ)蛍光体が特に好適である。
上記蛍光体の粒子径としては特に限定されないが、中央粒径(D50)で通常0.1~100μm範囲内であることが好ましく、より好ましくは1.0~50μm、さらに好ましくは5.0~30μmである。上記D50が小さすぎると、輝度が低下するだけではなく、基体蛍光体自体が凝集しやくなり、均一な被覆処理が困難になる。また、D50が大きすぎると、樹脂における分散性が悪くなり、発光素子の特性に悪影響を与える恐れがある。
本発明の表面処理蛍光体は、純水100重量部中に、蛍光体0.1重量部を10分間浸漬した場合における、水の導電率が100mS/m以下であることが好ましい。
上記水の導電率が100mS/m以下であることで、蛍光体が水による分解劣化が少なく、優れた耐湿性を示すこととなる。
なお、上記水の導電率は、例えば、導電率計等によって測定することができる。
本発明の表面処理蛍光体は、純水100重量部中に、蛍光体0.1重量部を10分間浸漬した場合における、ケイ素の溶出量が50ppm以下であることが好ましい。
上記ケイ素の溶出量が50ppm以下であることで、蛍光体が水による分解劣化が少なく、優れた耐湿性を示すこととなる。
本発明の表面処理蛍光体は、純水100重量部中に、蛍光体0.1重量部を10分間浸漬した場合における、ストロンチウムの溶出量が200ppm以下であることが好ましい。
上記ストロンチウムの溶出量が200ppm以下であることで、蛍光体が水による分解劣化が少なく、優れた耐湿性を示すこととなる。
なお、上記ケイ素及びストロンチウムの溶出量は、例えば、誘導結合プラズマ発光分析(ICP、装置:ICPS-8000、島津製作所社製)によって測定することができる。
本発明の表面処理蛍光体は、例えば、蛍光体を特定元素とフッ素イオンとを含有する錯体イオンを含む溶液に分散し、接触させることにより表面処理層を形成する工程を有する方法を用いることにより、製造することができる。このような表面処理蛍光体の製造方法もまた本発明の1つである。
上記特定元素とフッ素イオンとを含有する錯体イオンとしては、例えば、AF 2-の構造を有する錯体イオン(A:周期律表第3~6族の元素から選択される少なくとも1種の特定元素)等が挙げられる。
他に、AO 2-の構造を有する錯体イオンや、特定元素の酸化物を溶解したフッ素含有溶液を用いてもよい。
本発明の表面処理蛍光体を構成する表面処理層は、例えば、蛍光体をAF 2-錯体イオン(A:周期律表第3~6族の元素から選択される少なくとも1種の特定元素)含有溶液に分散し、接触させることにより表面処理層を形成する工程を行うことで形成することができる。
上記AF 2-錯体イオンは、水溶液中において、下記加水分解反応式(3)が進行することで、遊離のフッ素イオンが生成する。
AF 2-+nHO → [AF6-n(OH)2- + nH + nF (3) 
上記AF 2-錯体イオン濃度は、0.0005~2.0Mであることが好ましく、より好ましくは0.001~1.5Mで、更に好ましくは0.005~1.0Mである。上記AF 2-錯体イオン濃度が低すぎると、遊離のフッ素イオン濃度が低いため、フッ化物形成反応の速度が遅くなる。フッ化物形成反応の速度が遅すぎると、処理工程中に蛍光体の加水分解による劣化を生じる恐れがある。一方、上記AF 2-錯体イオン濃度が高すぎると、溶液自身が不安定になるか、反応が速すぎて、良質な膜が得られにくいことがある。
上述のように、MF 2-錯体イオンは水溶液中において上記式(3)のように加水分解反応が徐々に進行し、下記式(4)に示すように、最終的にAOが形成される。下記式(4)の反応は、溶液中に蛍光体が存在しなくてもゆっくりと進行し、酸化物粒子が形成される。ところが、蛍光体が存在すると、AO酸化物が蛍光体の表面に優先的に析出することが本発明者らの実験から分かった。
上記加水分解反応は、下記式(5)に示すように、フッ素イオンとより安定な錯体を作りうる化合物(加水分解促進剤)の存在によって促進される。本発明に使用する加水分解促進剤は、ホウ素(B)又はアルミニウム(Al)を含有する化合物から選ぶことができる。ホウ素を含有する化合物及びアルミニウムを含有する化合物は、単独で使用してもよく、2種以上を混合して使用してもよい。
AF 2- + 2HO → AO + 4H + 6F    (4)
BO 3- + 6H+ + 4F → BF4- + 3HO   (5)
上記ホウ素を含有する化合物としては、例えば、酸化ホウ素、四ホウ酸ナトリウム、ホウ酸(HBO)等が挙げられる。これらの中では、ホウ酸が好ましい。
上記アルミニウムを含有する化合物としては、例えば、AlCl、AlBr、水酸化アルミニウム(Al(OH))等が挙げられる。
上記AF 2-錯体イオンに対する加水分解促進剤の量は特に限定されないが、通常、1モルのAF 2-錯体イオンに対して加水分解促進剤の量が5倍以下、より好ましくは4倍以下である。
反応時間は、目的とする酸化物層の厚み、反応液の濃度、温度等の反応条件に応じて適宜調整すればよく、通常、5分~20時間程度、好ましくは10分~10時間程度である。
一般には、仕込みの蛍光体の量が一定であれば、反応時間が長くなるほど膜厚が厚くなる。反応時間が短すぎると表面処理層の形成が不完全となる。一方、反応時間が長すぎると非経済的である。
反応温度は、目的とする酸化物層の厚みに応じて適宜調整すればよく、通常、0~90℃程度、好ましくは5~70℃程度、より好ましくは、10~50℃程度とすればよい。
反応時の分散条件は特に限定されず、蛍光体を分散させることができる条件であればよい。例えば、磁気スターラー攪拌、モーター付きの機械的な攪拌、ガスバーブリング、液循環、超音波分散、ボールミルやロータリーミキサーのような回転分散、又は上記方法を併用することによって行うことができる。
所定時間反応後に、蛍光体をろ過、洗浄、乾燥工程を経て回収する。乾燥は常圧乾燥でもよく、減圧乾燥でもよい。乾燥時の温度は室温~150℃が適宜である。
また、本発明の表面処理蛍光体の製造方法では、上記乾燥した蛍光体を200~600℃の温度で更に熱処理してもよい。
上述の条件では、フッ化物の形成と特定元素の酸化物の形成が実質的に同じ溶液中に進行するが、蛍光体をAF 2-錯体イオン含有水溶液に分散、接触させた時に、フッ化物が優先的に形成すると推測される。フッ化物の形成に伴い、溶液中のフッ素イオン濃度が低下し、上記一般式(3)又は(4)の反応が右方向へ進む。その結果、酸化物(AO)が析出し始める。
本発明の表面処理蛍光体は、エポキシ樹脂及び/又はシリコーン樹脂に添加することで、蛍光体含有樹脂組成物として使用することができる。
なお、上記蛍光体含有樹脂組成物は公知の形態で使用され、例えば、ペーストとしてディスペンサーで充填されたり、テープ、シート状に加工され積層されたりしても良い。
上記エポキシ樹脂としては、公知の物が使用しても良いが、例えば、ヒドロキシル、カルボキシル又はアミン含有化合物を、金属水酸化物のような塩基性触媒(水酸化ナトリウム等)の存在下で、エピクロロヒドリンと反応させて製造できるもの等が挙げられる。
また、1以上、好ましくは2以上の炭素-炭素二重結合を有する化合物と過酸化物(過酸等)との反応で製造されるエポキシ樹脂等も挙げられる。
上記エポキシ樹脂としては、例えば、脂肪族エポキシ樹脂、脂環式エポキシ樹脂、ビスフェノール-Aエポキシ樹脂、ビスフェノール-Fエポキシ樹脂、フェノールノボラックエポキシ樹脂、クレゾール-ノボラックエポキシ樹脂、ビフェニルエポキシ樹脂、4,4’-ビフェニルエポキシ樹脂、多官能性エポキシ樹脂、ジビニルベンゼンジオキシド及び2-グリシジルフェニルグリシジルエーテルが挙げられる。なかでも、脂環式エポキシ樹脂及び脂肪族エポキシ樹脂が好ましい。これらのエポキシ樹脂は単独で使用してもよいし、2種類以上を併用してもよい。
上記脂肪族エポキシ樹脂としては、1以上の脂肪族基と1以上のエポキシ基を有する化合物が挙げられ、具体例としては、ブタジエンジオキシド、ジメチルペンタンジオキシド、ジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル及びジペンテンジオキシド等が挙げられる。
上記脂環式エポキシ樹脂としては、1以上の脂環式基と1以上のオキシラン基を有する化合物が挙げられ、具体例としては、2-(3,4-エポキシ)シクロヘキシル-5,5-スピロ-(3,4-エポキシ)シクロヘキサン-m-ジオキサン、3,4-エポキシシクロヘキシルアルキル-3,4-エポキシシクロヘキサンカルボキシレート、3,4-エポキシ-6-メチルシクロヘキシルメチル-3,4-エポキシ-6-メチルシクロヘキサンカルボキシレート、ビニルシクロヘキサンジオキシド、ビス(3,4-エポキシシクロヘキシルメチル)アジペート、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート、exo-exoビス(2,3-エポキシシクロペンチル)エーテル、endo-exoビス(2,3-エポキシシクロペンチル)エーテル、2,2-ビス(4-(2,3-エポキシプロポキシ)シクロヘキシル)プロパン、2,6-ビス(2,3-エポキシプロポキシシクロヘキシル-p-ジオキサン)、2,6-ビス(2,3-エポキシプロポキシ)ノルボルネン、リノール酸ダイマーのジグリシジルエーテル、リモネンジオキシド、2,2-ビス(3,4-エポキシシクロヘキシル)プロパン、ジシクロペンタジエンジオキシド、1,2-エポキシ-6-(2,3-エポキシプロポキシ)ヘキサヒドロ-4,7-メタノインダン、p-(2,3-エポキシ)シクロペンチルフェニル-2,3-エポキシプロピルエーテル、1-(2,3-エポキシプロポキシ)フェニル-5,6-エポキシヘキサヒドロ-4,7-メタノインダン、o-(2,3-エポキシ)シクロペンチルフェニル-2,3-エポキシプロピルエーテル)、1,2-ビス[5-(1,2-エポキシ)-4,7-ヘキサヒドロメタノインダノキシル]エタン、シクロペンチルフェニルグリシジルエーテル、シクロヘキサンジオールジグリシジルエーテル及びジグリシジルヘキサヒドロフタレート等が挙げられる。
上記シリコーン樹脂としては、公知の物を使用しても良いが、例えば、(-SiR-O-)nポリシロキサン骨格を持つ物が挙げられる。上記Rとしては、炭素数2~10、特に2~6のものが好ましく、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基等のアルケニル基、アクリロキシ基、メタクリロキシ基等が挙げられる。上記Rとしては、炭素数1~10、特に1~6のものが好ましく、メチル基、エチル基、プロピル基、ブチル基、シクロヘキシル基等のアルキル基、フェニル基、トリル基等のアリール基、ベンジル基等のアラルキル基などが代表的なものとして挙げられる。
本発明の表面処理蛍光体は、ポリ酢酸ビニル、ポリビニルブチラール、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート及びポリカーボネート及び環状オレフィン共重合体からなる群より選択される少なくとも1種の樹脂に分散されることで、波長変換複合体として使用することができる。
上記波長変換複合体は、照明システム、太陽電池用の波長変換部材等として使用される。
上記波長変換複合体の製造方法は特に限定されないが、本発明の表面処理蛍光体は、対応する樹脂に合わせた公知の表面処理がなされていてもよい。また、公知の混練分散方法により樹脂中に分散されていてもよい。
上記波長変換複合体は、シート状に成形することで波長変換シートとして使用することができる。上記シート状に成形する方法は既知の方法を用いることができる。具体的には例えば、本発明の表面処理蛍光体と樹脂からなるマスターバッチを作製し、押出機による製膜する方法、樹脂を溶解する溶媒に樹脂と本発明の表面処理蛍光体を分散させてキャストする方法等が挙げられる。
本発明の波長変換複合体、又は、波長変換シートを用いることで、効率のよい光電変換装置を得ることができる。このような光電変換装置もまた本発明の1つである。
太陽電池に代表される光電変換装置では、受光する光の波長が必ずしも素子自体の効率の良い波長ではないことがある。その際に、受光する光の波長を素子にとって効率のよい波長に変換することにより、光電変換装置の変換効率が向上する。
一方で、従来の蛍光体は、耐湿性が低く好適に使用できなかったが、封止材樹脂に本発明の表面処理蛍光体を分散させ、太陽電池の表面に使用することで効率の良い太陽電池が得られる。 
本発明の表面処理蛍光体を用いて蛍光体層を形成することで半導体発光素子を製造することができる。このような半導体発光素子もまた本発明の1つである。
また、LEDチップと、前記LEDチップを囲繞する樹脂フレームと、樹脂フレームが形成する凹部に充填される蛍光体層を備えるLED発光装置において、前記蛍光体層を本発明の表面処理蛍光体と封止樹脂とを含有する構成とすることで、耐湿性に優れたLED発光装置とすることができる。このようなLED発光装置もまた本発明の1つである。
本発明のLED発光装置は、温度60℃、相対湿度90%、電流20mAの条件で1000時間通電した後の光度保持率が80%以上である。上記光度保持率が80%未満であると、実際使用時に発光強度が経時により低下しやすく、耐久性が足りないことがある。上記光度保持率は、好ましくは90%以上である。
なお、上記光度保持率とは、上述した条件で通電前後の光度の比率[(通電後の光度/通電前の光度)×100]を表し、上記光度は、例えば、オプトロニックラボラトリーズ社製のOL770測定システム等を用いて測定することができる。
また、本発明のLED発光装置は、温度121℃、相対湿度100%環境下で72時間保持した後の光度保持率が50%以上であることが好ましい。
本発明のLED発光装置の用途は特に制限されず、通常のLED発光装置が用いられる各種の分野に使用することが可能である。また、単独で、又は複数個を組み合わせて用いても良い。具体的には、例えば、液晶表示素子バックライト、画像表示装置、照明装置等に使用することができる。
上記液晶表示素子バックライトとしての構成は既知のものを使用できる。例えば、表示素子額縁部分に配置されて導光板に向かって発光しても良いし、液晶セル背面に拡散板を挟みそのさらに背面に配置されても良い。
また、上記画像表示装置としては、例えば、少なくとも液晶セルと上記液晶表示素子バックライトと有する液晶表示素子がその1例である。他の例としては、複数のLEDを2次元的に規則的に配列して選択的に発光させることにより画像を形成するLEDディスプレイ等が挙げられる。
更に、上記照明装置としては、特に限定されず、既知のLED発光装置への適用が可能である。上記照明装置は、耐湿性が高いことから、例えば、車両等の交通、運輸に用いられる表示灯、照明灯や、住居、建築物等に用いられる屋内外の照明や、携帯電話、移動体通信端末等に用いられる照明等に使用することができる。
本発明によれば、空気中の水蒸気や水による表面の分解劣化を防止でき、長時間または高温高湿環境での使用においても光度の低下や色調の変化が起こることのない、耐湿性に優れた表面処理蛍光体を得ることができる。また、本発明の表面処理蛍光体の製造方法によれば、高価な反応装置を必要とせず、被覆処理を水溶液中で短時間で行うことができるので、目的の表面処理蛍光体を効率的、経済的に製造することができる。
実施例1で得られた表面処理蛍光体の断面を撮影した断面写真である。 実施例1で得られた表面処理蛍光体の断面方向の元素分布データである。 実施例2で得られた表面処理蛍光体の断面を撮影した断面写真である。 実施例2で得られた表面処理蛍光体の断面方向の元素分布データである。 実施例3で得られた表面処理蛍光体の断面を撮影した断面写真である。 実施例3で得られた表面処理蛍光体の断面方向の元素分布データである。 実施例4で得られた表面処理蛍光体の断面を撮影した断面写真である。 実施例4で得られた表面処理蛍光体の断面方向の元素分布データである。 実施例5で得られた表面処理蛍光体の断面を撮影した断面写真である。 実施例5で得られた表面処理蛍光体の断面方向の元素分布データである。 実施例6で得られた表面処理蛍光体の断面を撮影した断面写真である。 実施例7で得られた表面処理蛍光体の断面を撮影した断面写真である。 実施例7で得られた表面処理蛍光体の断面方向の元素分布データである。 比較例1で得られた表面処理蛍光体の断面を撮影した断面写真である。 比較例1で得られた表面処理蛍光体の断面方向の元素分布データである。 比較例2で得られた表面処理蛍光体の断面を撮影した断面写真である。 比較例2で得られた表面処理蛍光体の断面方向の元素分布データである。 比較例3で得られた表面処理蛍光体の断面を撮影した断面写真である。 比較例3で得られた表面処理蛍光体の断面方向の元素分布データである。 比較例4で得られた表面処理蛍光体の断面を撮影した断面写真である。 比較例4で得られた表面処理蛍光体の断面方向の元素分布データである。
以下に実施例を掲げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
[実施例1]
0.1mol/Lフッ化チタン酸アンモニウム((NHTiF)と0.1mol/Lほう酸含有混合水溶液250mlに、中央粒径(D50)約17μmの橙色シリケート蛍光体(SrSiO:Eu2+)7.5gを添加した。上記蛍光体を添加した混合液を攪拌によって分散しながら、35℃で2時間を反応させた。反応後に、ろ過、洗浄工程を経て回収した蛍光体を120℃で1時間真空乾燥した。
得られた表面処理蛍光体について、以下の方法で「被覆層の厚み測定、断面方向の元素組成分析」を行ったところ、蛍光体の表面に厚み約180nmの表面処理層が形成されていることが分かった。
また、断面方向の元素組成分析によって得られた元素組成曲線では、チタンの含有量を示す曲線と、フッ素の含有量を示す曲線が得られ、チタンの含有量の最大ピークが、フッ素の含有量の最大ピークよりも表面側に位置することが確認できた。なお、チタン以外の特定元素の含有量については検出限界以下であった。
また、チタンの含有量の最大ピーク位置におけるフッ素の含有量は1.0重量%であった。なお、得られた表面処理蛍光体のFE-TEM断面写真を図1に、その断面方向の元素分析結果を図2に示す。
<被覆層の厚み測定、断面方向の元素組成分析>
得られた表面処理蛍光体について、Focused ion Beam(FIB)を用いて、断面方向に切断し、その切断面を透過電子顕微鏡(FE-TEM、JEM-2010FEF)で観察することによって表面処理層の厚みを測定した。なお、厚みは5点を測定し、その平均値を用いた。
また、表面処理層の元素組成は、上記FE-TEMに付属されているエネルギー分散型X線(EDX)を用いて分析し、同定することにより、厚み方向における特定元素(周期律表第3~6族の元素)及びフッ素の含有量の曲線を得た。
[実施例2]
0.1mol/Lフッ化チタン酸アンモニウム((NHTiF)と0.1mol/Lほう酸含有混合水溶液250mlに、中央粒径(D50)約17μmの橙色シリケート蛍光体(主成分:SrSiO:Eu2+)7.5gを添加した。上記蛍光体を添加した混合液を攪拌によって分散しながら、35℃で4時間を反応させた。反応後に、ろ過、洗浄工程を経て回収した蛍光体を120℃で1時間真空乾燥した。
得られた表面処理蛍光体について、実施例1と同様の方法で「被覆層の厚み測定、断面方向の元素組成分析」を行ったところ、蛍光体の表面に厚み約210nmの表面処理層が形成されていることが分かった。
また、断面方向の元素組成分析によって得られた元素組成曲線では、チタンの含有量を示す曲線と、フッ素の含有量を示す曲線が得られ、チタンの含有量の最大ピークが、フッ素の含有量の最大ピークよりも表面側に位置することが確認できた。なお、チタン以外の特定元素の含有量については検出限界以下であった。
また、チタンの含有量の最大ピーク位置におけるフッ素の含有量は1.8重量%であった。
なお、得られた表面処理蛍光体のFE-TEM断面写真を図3に、その断面方向の元素分析結果を図4に示す。
[実施例3]
0.75mol/Lフッ化チタン酸アンモニウム((NHTiF)含有水溶液250mlに、中央粒径(D50)約17μmの橙色シリケート蛍光体(主成分:SrSiO:Eu2+)7.5gを添加した。上記蛍光体を添加した混合液を攪拌によって分散しながら、35℃で30分を反応させた。反応後に、ろ過、洗浄工程を経て回収した蛍光体を120℃で1時間真空乾燥した。
得られた表面処理蛍光体について、実施例1と同様の方法で「被覆層の厚み測定、断面方向の元素組成分析」を行ったところ、蛍光体の表面に厚み約250nmの被覆層が形成されていることが分かった。
また、断面方向の元素組成分析によって得られた元素組成曲線では、チタンの含有量を示す曲線と、フッ素の含有量を示す曲線が得られ、チタンの含有量の最大ピークが、フッ素の含有量の最大ピークよりも表面側に位置することが確認できた。なお、チタン以外の特定元素の含有量については検出限界以下であった。
また、チタンの含有量の最大ピーク位置におけるフッ素の含有量は4.8重量%であった。
なお、得られた表面処理蛍光体のFE-TEM断面写真を図5に、その断面方向の元素分析結果を図6に示す。
[実施例4]
1.0mol/Lフッ化チタン酸アンモニウム((NHTiF)含有水溶液250mlに、中央粒径(D50)約17μmの橙色シリケート蛍光体(主成分:SrSiO:Eu2+Cl)7.5gを添加した。上記蛍光体を添加した混合液を攪拌によって分散しながら、35℃で30分を反応させた。反応後に、ろ過、洗浄工程を経て回収した蛍光体を120℃で1時間真空乾燥した。
得られた表面処理蛍光体について、実施例1と同様の方法で「被覆層の厚み測定、断面方向の元素組成分析」を行ったところ、蛍光体の表面に厚み約300nmの被覆層が形成されていることが分かった。
また、断面方向の元素組成分析によって得られた元素組成曲線では、チタンの含有量を示す曲線と、フッ素の含有量を示す曲線が得られ、チタンの含有量の最大ピークが、フッ素の含有量の最大ピークよりも表面側に位置することが確認できた。なお、チタン以外の特定元素の含有量については検出限界以下であった。
また、チタンの含有量の最大ピーク位置におけるフッ素の含有量は6.0重量%であった。
なお、得られた表面処理蛍光体のFE-TEM断面写真を図7に、その断面方向の元素分析結果を図8に示す。
[実施例5]
0.02mol/Lフッ化チタン酸アンモニウム((NHTiF)と0.02mol/Lほう酸含有混合水溶液250mlに、中央粒径(D50)約17μmの橙色シリケート蛍光体(主成分:SrSiO:Eu2+)7.5gを添加した。上記蛍光体を添加した混合液を攪拌によって分散しながら、35℃で2時間を反応させた。反応後に、ろ過、洗浄工程を経て回収した蛍光体を120℃で1時間真空乾燥した。
得られた表面処理蛍光体について、実施例1と同様の方法で「被覆層の厚み測定、断面方向の元素組成分析」を行ったところ、蛍光体の表面に厚み約110nmの被覆層が形成されていることが分かった。
また、断面方向の元素組成分析によって得られた元素組成曲線では、チタンの含有量を示す曲線と、フッ素の含有量を示す曲線が得られ、チタンの含有量の最大ピークが、フッ素の含有量の最大ピークよりも表面側に位置することが確認できた。なお、チタン以外の特定元素の含有量については検出限界以下であった。
また、チタンの含有量の最大ピーク位置におけるフッ素の含有量は0.15重量%であった。なお、得られた表面処理蛍光体のFE-TEM断面写真を図9に、その断面方向の元素分析結果を図10に示す。
[実施例6]
0.1mol/Lフッ化チタン酸アンモニウム((NHTiF)と0.2mol/Lほう酸含有混合水溶液250mlに、中央粒径(D50)約17μmの橙色シリケート蛍光体(主成分:SrSiO:Eu2+)1.5gを添加した。上記蛍光体を添加した混合液を攪拌によって分散しながら、35℃で2時間を反応させた。反応後に、ろ過、洗浄工程を経て回収した蛍光体を120℃で1時間真空乾燥した。
得られた表面処理蛍光体について、実施例1と同様の方法で「被覆層の厚み測定、断面方向の元素組成分析」を行ったところ、蛍光体の表面に厚み約200nmの被覆層が形成されていることが分かった。
また、断面方向の元素組成分析によって得られた元素組成曲線では、チタンの含有量を示す曲線と、フッ素の含有量を示す曲線が得られ、チタンの含有量の最大ピークが、フッ素の含有量の最大ピークよりも表面側に位置することが確認できた。なお、チタン以外の特定元素の含有量については検出限界以下であった。
また、チタンの含有量の最大ピーク位置におけるフッ素の含有量は2.5重量%であった。
なお、得られた表面処理蛍光体のFE-TEM断面写真を図11に示す。
[実施例7]
0.1mol/Lフッ化ジルコン酸アンモニウム((NHZrF)と0.1mol/Lほう酸含有混合水溶液250mlに、中央粒径(D50)約17μmの橙色シリケート蛍光体(主成分:SrSiO:Eu2+)7.5gを添加した。上記蛍光体を添加した混合液を攪拌によって分散しながら、35℃で2時間を反応させた。反応後に、ろ過、洗浄工程を経て回収した蛍光体を120℃で1時間真空乾燥した。
得られた表面処理蛍光体について、実施例1と同様の方法で「被覆層の厚み測定、断面方向の元素組成分析」を行ったところ、蛍光体の表面に厚み約170nmの被覆層が形成されていることが分かった。
また、断面方向の元素組成分析によって得られた元素組成曲線では、ジルコニウムの含有量を示す曲線と、フッ素の含有量を示す曲線が得られ、ジルコニウムの含有量の最大ピークが、フッ素の含有量の最大ピークよりも表面側に位置することが確認できた。なお、ジルコニウム以外の特定元素の含有量については検出限界以下であった。
また、ジルコニウムの含有量の最大ピーク位置におけるフッ素の含有量は0.6重量%であった。
なお、得られた表面処理蛍光体のFE-TEM断面写真を図12に、その断面方向の元素分析結果を図13に示す。
[実施例8]
0.05mol/Lの酸化バナジウムを溶解したフッ化水素酸水溶液250mlに、中央粒径(D50)約17μmの橙色シリケート蛍光体(主成分:SrSiO:Eu2+)7.5gを添加した。上記蛍光体を添加した混合液を攪拌によって分散しながら、35℃で30時間を反応させた。反応後に、ろ過、洗浄工程を経て回収した蛍光体を120℃で1時間真空乾燥した。
得られた表面処理蛍光体について、実施例1と同様の方法で「被覆層の厚み測定、断面方向の元素組成分析」を行ったところ、蛍光体の表面に厚み約100nmの被覆層が形成されていることが分かった。
また、断面方向の元素組成分析によって得られた元素組成曲線では、バナジウムの含有量を示す曲線と、フッ素の含有量を示す曲線が得られ、バナジウムの含有量の最大ピークが、フッ素の含有量の最大ピークよりも表面側に位置することが確認できた。なお、バナジウム以外の特定元素の含有量については検出限界以下であった。
また、バナジウムの含有量の最大ピーク位置におけるフッ素の含有量は3.6重量%であった。
[実施例9]
0.1mol/Lのフッ化モリブデン酸アンモニウム((NHMoO)水溶液250mlに、中央粒径(D50)約17μmの橙色シリケート蛍光体(主成分:SrSiO:Eu2+)7.5gを添加した。上記蛍光体を添加した混合液を攪拌によって分散しながら、35℃で30時間を反応させた。反応後に、ろ過、洗浄工程を経て回収した蛍光体を120℃で1時間真空乾燥した。
得られた表面処理蛍光体について以下の方法で「被覆層の厚み測定、断面方向の元素組成分析」を行ったところ、蛍光体の表面に厚み約50nmの被覆層が形成されていることが分かった。
また、断面方向の元素組成分析によって得られた元素組成曲線では、モリブデンの含有量を示す曲線と、フッ素の含有量を示す曲線が得られ、モリブデンの含有量の最大ピークが、フッ素の含有量の最大ピークよりも表面側に位置することが確認できた。なお、モリブデン以外の特定元素の含有量については検出限界以下であった。
また、モリブデンの含有量の最大ピーク位置におけるフッ素の含有量は1.5重量%であった。
[比較例1]
表面未処理の中央粒径(D50)約17μmの橙色シリケート蛍光体(主成分:SrSiO:Eu2+)を用い、この蛍光体について、実施例1と同様の方法で「被覆層の厚み測定、断面方向の元素組成分析」を行ったところ、蛍光体の表面に表面被覆層は形成されておらず、特定元素の含有量を示す曲線も、フッ素の含有量を示す曲線も得られなかった。
なお、得られた蛍光体のFE-TEM断面写真と断面方向の元素分析結果をそれぞれ図14と図15に示す。
[比較例2]
主成分SrSiO:Eu2+の橙色シリケート蛍光体粒子1.0gを、濃度2.0%のトリフルオロプロピルトリメトキシシランを溶かしたエタノールと0.01%の酢酸水の混合水溶液(エタノール:水=5:1)に添加し、1時間反応させた。その後、エタノールを除去し、更に110℃で1時間真空乾燥することによって蛍光体粒子を回収した。
上記処理した蛍光体粒子について、実施例1と同様の方法で「被覆層の厚み測定、断面方向の元素組成分析」を行ったところ、表面に厚み約47nmの被覆層が形成されていたことが分かった。
また、断面方向の元素組成分析によって得られた元素組成曲線では、フッ素の含有量を示す曲線のみが得られた。なお、特定元素の含有量については検出限界以下であった。
更に、表面処理層における、フッ素最大値ピークの含有量は9.5重量%であった。
なお、得られた表面処理蛍光体のFE-TEM断面写真を図16に、その断面方向の元素分析結果を図17に示す。
[比較例3]
主成分SrSiO:Eu2+の橙色シリケート蛍光体粒子12.0gを分散した無水エタノール溶液(400ml)にチタンイソプロポキシド(関東化学社製)8.4gを添加し溶解した。次に、4.2gの水(アンモニア水でpH9.0まで調製)を含有する120mlエタノール液を0.5ml/分の速度で上記分散液に滴下した。滴下終了後にも更に1時間攪拌した。その後、ろ過、洗浄工程を経て、回収した蛍光体粒子を120℃で1時間真空乾燥した。
上記被覆処理した蛍光体粒子について、実施例1と同様の方法で「被覆層の厚み測定、断面方向の元素組成分析」を行ったところ、表面に厚み約34nmの被覆層が形成されていたことが分かった。
また、断面方向の元素組成分析によって得られた元素組成曲線では、チタンの含有量を示す曲線のみが得られた。なお、フッ素の含有量については検出限界以下であった。
更に、表面処理層におけるチタン最大ピークの含有量は20重量%であった。
なお、得られた表面処理蛍光体のFE-TEM断面写真を図18に、その断面方向の元素分析結果を図19に示す。
[比較例4]
主成分SrSiO:Eu2+の橙色シリケート蛍光体粒子12.0gを分散した無水エタノール溶液(400ml)にチタンイソプロポキシド(関東化学社製)8.4gを添加し溶解した。次に、4.2gの水(アンモニア水でpH9.0まで調製)を含有する120mlエタノール液を0.5ml/分の速度で上記分散液に滴下した。滴下終了後にも更に1時間攪拌した。その後、ろ過、洗浄工程を経て、回収した蛍光体粒子を120℃で1時間真空乾燥した。
上記乾燥した蛍光体粒子を、濃度2.0%のトリフルオロプロピルトリメトキシシランを溶かしたエタノールと0.01%の酢酸水の混合水溶液(エタノール:水=5:1)に添加し、1時間反応させた。その後、エタノールを除去し、更に110℃で1時間真空乾燥することによって蛍光体粒子を回収した。
上記被覆処理した蛍光体粒子について、実施例1と同様の方法で「被覆層の厚み測定、断面方向の元素組成分析」を行ったところ、表面に厚み約55nmの被覆層が形成されていたことが分かった。
また、断面方向の元素組成分析によって得られた元素組成曲線では、チタンの含有量を示す曲線と、フッ素の含有量を示す曲線が得られ、チタンの含有量の最大ピークが、フッ素の含有量の最大ピークよりも蛍光体側に位置することが確認できた。なお、チタン以外の特定元素の含有量については検出限界以下であった。
なお、得られた表面処理蛍光体のFE-TEM断面写真を図20に、その断面方向の元素分析結果を図21に示す。
(評価方法)
<蛍光体の耐湿性評価1(PCT試験)>
実施例及び比較例で得られた表面処理蛍光体又は蛍光体をシリコーン樹脂(ダウ・コーニング社製、OE6630)100重量部に対して8重量部混合分散し、更に脱泡することにより蛍光体含有樹脂組成物を調製した。次に、調製した蛍光体含有樹脂組成物を、基板に実装したLEDパッケージ(発光ピーク波長460nm)の上に注入、充填し、更に150℃で2時間加熱することにより、樹脂組成物を硬化させた。上記工程により、LED発光装置を作製した。
得られたLED発光装置を温度121℃、相対湿度100%の密閉耐圧装置において耐湿性試験を行った(Pressure Cooker Test(PCT試験))。
蛍光体の耐湿性は、PCT試験前後のLEDチップの発光特性を測定し、光度の変化量から評価した。具体的には、PCT試験前の光度に対し、PCT試験72時間後の光度の保持率(PCT72h光度保持率)でサンプル間の相対耐湿性を評価した。
PCT72h光度保持率(%)=(PCT72時間処理後の光度/処理前の光度)×100
なお、測定装置には、オプトロニックラボラトリーズ社製のOL770測定システムを用いた。結果を表1に示した。
<蛍光体の耐湿性評価2(通電試験)>
「蛍光体の耐湿性評価1(PCT試験)」と同様の方法でLED発光装置をまず作製した。
次に、得られたLED発光装置を温度60℃、相対湿度90%の恒温恒湿器において、20mAの定電流条件で1000時間を通電した。通電試験前後のLEDチップの発光特性を測定し、光度の変化量から耐湿性を評価した。具体的には、通電試験前の光度(初期光度)に対し、1000時間通電後の光度の保持率でサンプル間の相対耐湿性を評価した。
1000時間通電後の光度保持率(%)=(1000時間通電後の光度/通電前の光度)×100
なお、測定装置には、オプトロニックラボラトリーズ社製のOL770測定システムを用いた。結果を表1に示した。
<蛍光体の耐湿性評価3(水中浸漬後の導電率測定)>
実施例及び比較例で得られた表面処理蛍光体又は蛍光体1gを、攪拌しながら純水(温度:35℃)1000gに添加し、添加後10分経過した時点における分散液の導電率を導電率計(ES-51、堀場製作所社製)を用いて測定した。
<蛍光体の耐湿性評価4(水中浸漬時の溶出Si及びSr濃度測定)>
実施例及び比較例で得られた表面処理蛍光体又は蛍光体1gを、攪拌しながら純水(温度:35℃)1000gに添加し、添加後10分経過した時点で分散液をろ過し、ろ液中のSi及びSrの濃度を誘導結合プラズマ発光分析(ICP、装置:ICPS-8000、島津製作所社製)を用いて測定した。
<蛍光体の分散性評価>
蛍光体の樹脂における分散性は遠心沈降・光透過方式の分散安定性分析装置(LUMiSizer612、L.U.M社製)を用いて評価した。具体的には、シリコーン樹脂に対して、実施例及び比較例で得られた表面処理蛍光体又は蛍光体を8重量%の割合で分散した蛍光体-シリコーン樹脂組成物約1mlをガラス製分析セルに入れ、その上澄み液に光を照射し、1時間あたりの透過する光量の変化量の積分値を求め、分散性を評価した。
なお、表1には、比較例1の蛍光体を用いた蛍光体-樹脂組成物の透過光量の変化量を1.00とし、比較例1の蛍光体を用いた蛍光体-樹脂組成物に対する比率を記載した。
Figure JPOXMLDOC01-appb-T000001
本発明によれば、蛍光特性を低下させることなく、耐湿性を大幅に改善することができ、かつ、高い分散性を有する表面処理蛍光体及び該表面処理蛍光体の製造方法を提供することができる。

Claims (24)

  1. 周期律表第3~6族の元素から選択される少なくとも1種の特定元素と、フッ素とを含有する表面処理層を蛍光体の表面に有する表面処理蛍光体であって、
    表面処理層の断面厚み方向の元素分布を、電子顕微鏡及びそれに付属するエネルギー分散型X線元素分析により測定した場合、特定元素の含有量の最大ピークが、フッ素の含有量の最大ピークよりも表面側に位置する
    ことを特徴とする表面処理蛍光体。
  2. 表面処理層が単層であり、かつ、表面処理層の断面厚み方向の元素分布において、特定元素の最大ピーク位置で、フッ素が検出されることを特徴とする請求項1記載の表面処理蛍光体。
  3. 表面処理層は、最表面に向かって順に、フッ化物層、及び、特定元素の酸化物を含有する酸化物層が存在することを特徴とする請求項1記載の表面処理蛍光体。
  4. 蛍光体は、アルカリ土類金属を含有することを特徴とする請求項1、2又は3記載の表面処理蛍光体。
  5. 蛍光体は、アルカリ土類金属を含有するシリケート系蛍光体からなることを特徴とする請求項1、2、3又は4記載の表面処理蛍光体。
  6. 蛍光体は、下記一般式(1)で示されるシリケート系蛍光体からなることを特徴とする請求項1、2、3、4又は5記載の表面処理蛍光体。
    (Sr1-xSiO:Eu2+          (1)
    式中、MはBa、Ca、Mg及びZnからなる群より選択される少なくとも1種の金属であり、0≦x<1.0であり、2.6≦y≦3.3である。
  7. 蛍光体は、下記一般式(2)で示されるシリケート系蛍光体からなることを特徴とする請求項1、2、3、4又は5記載の表面処理蛍光体。
    (Sr1-xSiO:Eu2+D      (2)
    式中、MはBa、Ca、Mg及びZnからなる群より選択される少なくとも1種の金属であり、DはF、Cl及びBrからなる群より選択されるハロゲンアニオンであり、0≦x<1.0であり、2.6≦y≦3.3である。
  8. 純水100重量部中に、蛍光体0.1重量部を10分間浸漬した場合における、水の導電率が100mS/m以下であることを特徴とする請求項1、2、3、4、5、6又は7記載の表面処理蛍光体。
  9. 純水100重量部中に、蛍光体0.1重量部を10分間浸漬した場合における、ケイ素の溶出量が50ppm以下であることを特徴とする請求項5、6又は7記載の表面処理蛍光体。
  10. 純水100重量部中に、蛍光体0.1重量部を10分間浸漬した場合における、ストロンチウムの溶出量が200ppm以下であることを特徴とする請求項6又は7記載の表面処理蛍光体。
  11. 請求項1、2、3、4、5、6、7、8、9又は10記載の表面処理蛍光体と、エポキシ樹脂及び/又はシリコーン樹脂を含有することを特徴とする蛍光体含有樹脂組成物。
  12. 請求項1、2、3、4、5、6、7、8、9又は10記載の表面処理蛍光体が、ポリ酢酸ビニル、ポリビニルブチラール、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート及びポリカーボネート及び環状オレフィン共重合体からなる群より選択される少なくとも1種の樹脂に分散されてなることを特徴とする波長変換複合体。
  13. 請求項12記載の波長変換樹脂複合体をシート状にしてなることを特徴とする波長変換シート。 
  14. 請求項12記載の波長変換複合体、又は、請求項13記載の波長変換シートを構成部材として用いることを特徴とする光電変換装置。
  15. 請求項1、2、3、4、5、6、7、8、9又は10記載の表面処理蛍光体を用いてなることを特徴とする半導体発光素子。
  16. LEDチップと、前記LEDチップを囲繞する樹脂フレームと、樹脂フレームが形成する凹部に充填される蛍光体層を備えるLED発光装置であって、前記蛍光体層が請求項1、2、3、4、5、6、7、8、9又は10記載の表面処理蛍光体と封止樹脂とを含有することを特徴とするLED発光装置。
  17. 温度60℃、相対湿度90%、電流20mAの条件で1000時間通電した後の光度保持率が80%以上であることを特徴とする請求項16記載のLED発光装置。
  18. 温度121℃、相対湿度100%環境下で72時間保持した後の光度保持率が50%以上であることを特徴とする請求項16記載のLED発光装置。
  19. 請求項16、17又は18記載のLED発光装置を構成部材として用いることを特徴とする液晶表示素子バックライト。
  20. 請求項16、17又は18記載のLED発光装置を構成部材として用いることを特徴とする画像表示装置。
  21. 請求項16、17又は18記載のLED発光装置を構成部材として用いることを特徴とする照明装置。
  22. 請求項1、2、3、4、5、6、7、8、9又は10記載の表面処理蛍光体を製造する方法であって、
    蛍光体を特定元素とフッ素とを含有する錯体イオンを含む溶液に分散し、接触させることにより表面処理層を形成する工程を有することを特徴とする表面処理蛍光体の製造方法。
  23. 特定元素とフッ素とを含有する錯体イオンが、AF 2-(A:周期律表第3~6族の元素から選択される少なくとも1種の特定元素)であることを特徴とする請求項22記載の表面処理蛍光体の製造方法。
  24. 表面処理層を形成する工程において、更にホウ酸を添加することを特徴とする請求項22又は23記載の表面処理蛍光体の製造方法。
PCT/JP2011/056409 2010-03-31 2011-03-17 表面処理蛍光体及び表面処理蛍光体の製造方法 WO2011125452A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11765354.3A EP2554628B1 (en) 2010-03-31 2011-03-17 Surface-treated fluorescent bodies and process for production of surface-treated fluorescent bodies
CN201180015475.2A CN102822313B (zh) 2010-03-31 2011-03-17 表面处理荧光体以及表面处理荧光体的制造方法
KR1020127024133A KR20130009779A (ko) 2010-03-31 2011-03-17 표면 처리 형광체 및 표면 처리 형광체의 제조 방법
US13/637,777 US20130094186A1 (en) 2010-03-31 2011-03-17 Surface-treated fluorescent bodies and process for production of surface-treated fluorescent bodies
JP2011513560A JP4846066B2 (ja) 2010-03-31 2011-03-17 表面処理蛍光体及び表面処理蛍光体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010083512 2010-03-31
JP2010-083512 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011125452A1 true WO2011125452A1 (ja) 2011-10-13

Family

ID=44762412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056409 WO2011125452A1 (ja) 2010-03-31 2011-03-17 表面処理蛍光体及び表面処理蛍光体の製造方法

Country Status (7)

Country Link
US (1) US20130094186A1 (ja)
EP (1) EP2554628B1 (ja)
JP (2) JP4846066B2 (ja)
KR (1) KR20130009779A (ja)
CN (1) CN102822313B (ja)
TW (1) TWI495709B (ja)
WO (1) WO2011125452A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5323286B1 (ja) * 2012-09-03 2013-10-23 幸子 後藤 蓄光性蛍光体
US10414976B2 (en) 2016-03-28 2019-09-17 Nichia Corporation Method for producing fluorescent material, fluorescent material, and light emitting device using the same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103052699A (zh) * 2010-08-04 2013-04-17 积水化学工业株式会社 表面处理荧光体及表面处理荧光体的制造方法
DE102010034322A1 (de) * 2010-08-14 2012-02-16 Litec-Lp Gmbh Oberflächenmodifizierter Silikatleuchtstoffe
WO2012023737A2 (en) 2010-08-14 2012-02-23 Seoul Semiconductor Co., Ltd. Light emitting device having surface-modified silicate luminophores
US9614129B2 (en) 2010-08-14 2017-04-04 Seoul Semiconductor Co., Ltd. Light emitting device having surface-modified luminophores
US9234129B2 (en) 2010-08-14 2016-01-12 Seoul Semiconductor Co., Ltd. Surface-modified quantum dot luminophores
US9196785B2 (en) 2010-08-14 2015-11-24 Seoul Semiconductor Co., Ltd. Light emitting device having surface-modified quantum dot luminophores
JP2012162709A (ja) 2011-01-18 2012-08-30 Sony Chemical & Information Device Corp 被覆蛍光体の製造方法及び被覆蛍光体
CN103597054B (zh) * 2011-08-11 2015-03-18 三井金属矿业株式会社 红色荧光体和发光元件
WO2013183620A1 (ja) 2012-06-08 2013-12-12 電気化学工業株式会社 蛍光体の表面処理方法、蛍光体、発光装置及び照明装置
KR20170141706A (ko) * 2015-04-27 2017-12-26 메르크 파텐트 게엠베하 실리케이트 인광체
US9871173B2 (en) 2015-06-18 2018-01-16 Cree, Inc. Light emitting devices having closely-spaced broad-spectrum and narrow-spectrum luminescent materials and related methods
CN105038776A (zh) * 2015-06-18 2015-11-11 北京宇极科技发展有限公司 锰(Mn4+)掺杂的氟化物荧光粉体材料的制备及表面改性的方法
US10217907B2 (en) * 2016-02-29 2019-02-26 Nichia Corporation Method of producing nitride fluorescent material, nitride fluorescent material, and light emitting device using the same
CN106433639A (zh) * 2016-10-13 2017-02-22 河北利福光电技术有限公司 一种315相橙色硅酸盐荧光粉及其制备方法
US10541353B2 (en) 2017-11-10 2020-01-21 Cree, Inc. Light emitting devices including narrowband converters for outdoor lighting applications
CN110093154B (zh) * 2019-05-23 2020-03-24 东北大学 Mg2+/Si4+取代Ga3+的掺Cr3+镓酸锌基近红外长余辉材料及制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09104863A (ja) 1995-10-12 1997-04-22 Nec Kansai Ltd 被覆蛍光体および蛍光体の被覆処理方法および被覆蛍光体を用いた電界発光灯
JPH11256150A (ja) 1998-03-11 1999-09-21 Toshiba Corp 電場発光蛍光体,その製造方法およびelパネル
JP2001139941A (ja) 1999-09-28 2001-05-22 Osram Sylvania Inc 耐湿性エレクトロルミネセンス蛍光体
JP2002539925A (ja) * 1999-03-24 2002-11-26 サーノフ コーポレイション 湿気に敏感な無機材料のための耐湿性を改善する方法
JP2007224262A (ja) 2005-08-18 2007-09-06 Sumitomo Chemical Co Ltd 蛍光体粒子
JP2008111080A (ja) 2006-10-31 2008-05-15 Mitsubishi Chemicals Corp 蛍光体表面処理方法、蛍光体、蛍光体含有組成物、発光装置、画像表示装置、および照明装置
JP2009515030A (ja) 2005-11-08 2009-04-09 インテマティックス・コーポレーション シリケート系緑色蛍光体
JP2009132902A (ja) 2007-11-08 2009-06-18 Sumitomo Metal Mining Co Ltd 表面被覆ストロンチウムシリケート蛍光体粒子及びその製造方法並びに該蛍光体粒子を具備する発光ダイオード
JP2009524736A (ja) 2006-01-26 2009-07-02 オスラム−シルヴァニア インコーポレイテッド 高い初期輝度を有する耐湿性エレクトロルミネッセンス蛍光体及びその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110590A (ja) * 1987-10-23 1989-04-27 Fujitsu Ltd 耐湿性輝尽性螢光体およびその製法
AU4714801A (en) * 1999-12-07 2001-06-18 Global Products Sales And Marketing, Llc. Long persistent phosphor incorporated within a settable material
JP4042372B2 (ja) * 2001-09-12 2008-02-06 松下電器産業株式会社 蛍光体の製造方法
US20030173540A1 (en) * 2003-02-19 2003-09-18 Mortz Bradford K Long persistent phosphor incorporated within a settable material
CN100412156C (zh) * 2003-03-28 2008-08-20 韩国化学研究所 硅酸锶基磷光体、其制造方法和使用该磷光体的led
JP4516793B2 (ja) * 2003-08-22 2010-08-04 パナソニック株式会社 プラズマディスプレイパネル
JP4562453B2 (ja) * 2004-08-10 2010-10-13 富士フイルム株式会社 エレクトロルミネッセンス蛍光体、その製造方法、及びエレクトロルミネッセンス素子
JP5403197B2 (ja) * 2004-09-29 2014-01-29 戸田工業株式会社 改質蛍光体粒子粉末、該改質蛍光体粒子粉末の製造法及び該改質蛍光体粒子粉末を用いたel素子
JP2006232949A (ja) * 2005-02-23 2006-09-07 Matsushita Electric Works Ltd 蛍光体粒子の処理方法、発光装置、蛍光体粒子
KR100927154B1 (ko) * 2005-08-03 2009-11-18 인터매틱스 코포레이션 실리케이트계 오렌지 형광체
US20070125984A1 (en) * 2005-12-01 2007-06-07 Sarnoff Corporation Phosphors protected against moisture and LED lighting devices
CN101333357B (zh) * 2008-07-02 2010-06-23 大连海事大学 一种发光涂料及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09104863A (ja) 1995-10-12 1997-04-22 Nec Kansai Ltd 被覆蛍光体および蛍光体の被覆処理方法および被覆蛍光体を用いた電界発光灯
JPH11256150A (ja) 1998-03-11 1999-09-21 Toshiba Corp 電場発光蛍光体,その製造方法およびelパネル
JP2002539925A (ja) * 1999-03-24 2002-11-26 サーノフ コーポレイション 湿気に敏感な無機材料のための耐湿性を改善する方法
JP2001139941A (ja) 1999-09-28 2001-05-22 Osram Sylvania Inc 耐湿性エレクトロルミネセンス蛍光体
JP2007224262A (ja) 2005-08-18 2007-09-06 Sumitomo Chemical Co Ltd 蛍光体粒子
JP2009515030A (ja) 2005-11-08 2009-04-09 インテマティックス・コーポレーション シリケート系緑色蛍光体
JP2009524736A (ja) 2006-01-26 2009-07-02 オスラム−シルヴァニア インコーポレイテッド 高い初期輝度を有する耐湿性エレクトロルミネッセンス蛍光体及びその製造方法
JP2008111080A (ja) 2006-10-31 2008-05-15 Mitsubishi Chemicals Corp 蛍光体表面処理方法、蛍光体、蛍光体含有組成物、発光装置、画像表示装置、および照明装置
JP2009132902A (ja) 2007-11-08 2009-06-18 Sumitomo Metal Mining Co Ltd 表面被覆ストロンチウムシリケート蛍光体粒子及びその製造方法並びに該蛍光体粒子を具備する発光ダイオード

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2554628A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5323286B1 (ja) * 2012-09-03 2013-10-23 幸子 後藤 蓄光性蛍光体
WO2014033951A1 (ja) * 2012-09-03 2014-03-06 Goto Sachiko 蓄光性蛍光体
US10414976B2 (en) 2016-03-28 2019-09-17 Nichia Corporation Method for producing fluorescent material, fluorescent material, and light emitting device using the same

Also Published As

Publication number Publication date
EP2554628B1 (en) 2016-07-13
KR20130009779A (ko) 2013-01-23
CN102822313A (zh) 2012-12-12
CN102822313B (zh) 2014-11-26
EP2554628A1 (en) 2013-02-06
JPWO2011125452A1 (ja) 2013-07-08
US20130094186A1 (en) 2013-04-18
TWI495709B (zh) 2015-08-11
EP2554628A4 (en) 2014-03-05
TW201139618A (en) 2011-11-16
JP4846066B2 (ja) 2011-12-28
JP2012031425A (ja) 2012-02-16

Similar Documents

Publication Publication Date Title
JP4846066B2 (ja) 表面処理蛍光体及び表面処理蛍光体の製造方法
JP5407068B2 (ja) 被覆膜付き蛍光体粒子およびその製造方法
JP5443662B2 (ja) 耐湿性蛍光体粒子粉末の製造方法及び該製造方法により得られた耐湿性蛍光体粒子粉末を用いたled素子または分散型el素子
EP2209869A1 (de) Oberflächenmodifizierte leuchstoffe
JP5196084B1 (ja) 被覆膜付きアルカリ土類金属シリケート蛍光体粒子の製造方法
JP4987168B2 (ja) 表面処理蛍光体及び表面処理蛍光体の製造方法
TW200835774A (en) Phosphor flakes for LEDs made from structured films
EP3660552A1 (en) Composition, film, layered structure, light-emitting device, and display
JP2012079883A (ja) Led発光装置
JP5926022B2 (ja) 表面処理蛍光体の製造方法
JP2011089137A (ja) 複合粒子
JP2013040236A (ja) 表面処理蛍光体の製造方法及び表面処理蛍光体
JP2013108016A (ja) 表面処理蛍光体の製造方法、表面処理蛍光体、蛍光体含有樹脂組成物及びled発光装置
WO2019107285A1 (ja) 緑色蛍光体、蛍光体シート、及び発光装置
JP2012077182A (ja) 蛍光体、半導体発光素子及び蛍光体の製造方法
WO2012099179A1 (ja) 被覆蛍光体の製造方法及び被覆蛍光体
JP6477557B2 (ja) 複合粉体、表面処理複合粉体、樹脂組成物、硬化体、光半導体発光装置
CN117460804A (zh) 氟化物荧光体、其制造方法及发光装置
JP2022184763A (ja) フッ化物蛍光体、その製造方法及び発光装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180015475.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011513560

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765354

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127024133

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011765354

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011765354

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13637777

Country of ref document: US