WO2011118709A1 - スイッチング電源回路およびスイッチング電源回路の制御方法 - Google Patents

スイッチング電源回路およびスイッチング電源回路の制御方法 Download PDF

Info

Publication number
WO2011118709A1
WO2011118709A1 PCT/JP2011/057185 JP2011057185W WO2011118709A1 WO 2011118709 A1 WO2011118709 A1 WO 2011118709A1 JP 2011057185 W JP2011057185 W JP 2011057185W WO 2011118709 A1 WO2011118709 A1 WO 2011118709A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
power supply
circuits
supply circuit
switching power
Prior art date
Application number
PCT/JP2011/057185
Other languages
English (en)
French (fr)
Inventor
和広 大下
紀雄 榮
矢吹 俊生
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to ES11759514T priority Critical patent/ES2847882T3/es
Priority to CN201180014255.8A priority patent/CN102804576B/zh
Priority to EP11759514.0A priority patent/EP2555399B1/en
Priority to BR112012024228-8A priority patent/BR112012024228B1/pt
Priority to AU2011230323A priority patent/AU2011230323B2/en
Priority to KR1020127021692A priority patent/KR101346542B1/ko
Priority to US13/579,955 priority patent/US8994343B2/en
Publication of WO2011118709A1 publication Critical patent/WO2011118709A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a switching power supply circuit and a switching power supply circuit control method, and more particularly to a power factor correction circuit.
  • a circuit composed of a reactor, a diode, and a switch element has been proposed as a power factor correction circuit for improving the power factor on the input side. More specifically, a reactor and a switch element are connected in series between two input terminals, and a diode and a switch element are connected in series between two output terminals. The diode is provided with its anode facing the switch element side. A smoothing capacitor is provided between the two output terminals.
  • a power factor correction circuit having 2 circuits has been proposed.
  • the conduction timings of the switch elements belonging to the two circuits are made different from each other.
  • Such a power factor correction circuit is called a so-called interleaved power factor correction circuit.
  • Patent Document 1 is disclosed as a technique related to the present invention.
  • an object of the present invention is to provide a switching power supply circuit that contributes to the realization of electrical characteristics corresponding to load fluctuations.
  • a first aspect of the switching power supply circuit according to the present invention includes first and second input terminals (P1, P2), first and second output terminals (P3, P4), and the second input terminal. And a second power supply line (LL) connecting the second output terminal and a plurality of circuits (3, 3a, 3b), each of the plurality of circuits including the first input terminal and the second input terminal.
  • P1, P2 first and second input terminals
  • P3, P4 first and second output terminals
  • LL second power supply line
  • a first power supply line (LH1, LH2) connecting the first output terminal, a reactor (L1, L2) provided on the first power supply line, and the reactor connected in series on the first power supply line; Diodes (D11, D21) disposed with the anode facing the reactor, switch elements (S1, S2) provided between the reactor and the diode, and the second power supply line
  • Diodes (D11, D21) disposed with the anode facing the reactor, switch elements (S1, S2) provided between the reactor and the diode, and the second power supply line
  • a second aspect of the switching power supply circuit according to the present invention is the switching power supply circuit according to the first aspect, wherein the switch element (S1) belonging to the plurality of circuits (3a) is an insulated gate bipolar transistor.
  • the switch element (S1) belonging to the other circuit (3b) is a MOS field effect transistor.
  • a third aspect of the switching power supply circuit according to the present invention is the switching power supply circuit according to the first aspect, wherein the switching element (S1) belonging to the one of the plurality of circuits (3a) is a silicon carbide semiconductor or The switching element (S2) formed of a gallium nitride semiconductor and belonging to the other plurality of circuits (3b) is formed of a silicon semiconductor.
  • a fourth aspect of the switching power supply circuit according to the present invention is the switching power supply circuit according to any one of the first to third aspects, wherein the reactor (L1) belongs to the plurality of circuits (3a). Is smaller than the impedance of the reactor belonging to the other one of the plurality of circuits (3b).
  • a first aspect of the switching power supply circuit control method is the switching power supply circuit control method according to any one of the first to fourth aspects, wherein the plurality of circuits (3a, 3b) A first step of maintaining all the switching elements (S1, S2) belonging to non-conduction, and a current flowing through the first and second input terminals (P1, P2) exceeds a first predetermined value (Iref1) The second step of repeatedly switching between conduction / non-conduction of the switching element (S1) belonging to the one of the plurality of circuits (3a) is performed.
  • a second aspect of the switching power supply circuit control method is the switching power supply circuit control method according to the first aspect, wherein in the second step, the first and the first steps in the first step are performed.
  • the switching element (S1) belonging to the one of the plurality of circuits (3a) based on a first DC voltage command value higher than the voltage between the two output terminals (P3, P4). Switch repeatedly.
  • a third aspect of the switching power supply circuit control method according to the present invention is the switching power supply circuit control method according to the first or second aspect, wherein the first and second input terminals (P1, P2). )
  • the first and second input terminals (P1, P2) When the current flowing through the first circuit exceeds a second predetermined value (Iref2) that is larger than the first predetermined value (Iref1), the one circuit (3a) and the other circuit
  • Iref2 a second predetermined value that is larger than the first predetermined value (Iref1)
  • a fourth aspect of the switching power supply circuit control method according to the present invention is the switching power supply circuit control method according to the third aspect, and is larger than the first DC voltage command value in the third step. Based on the second DC voltage command value, the switching elements (S1, S2) belonging to the one plurality of circuits (3a) and the other one of the plurality of circuits (3b) are turned on / off. Switch repeatedly.
  • a fifth aspect of the switching power supply circuit control method is a switching power supply circuit control method according to any one of the first to fourth aspects, wherein the first step and the second step are the same.
  • the switching elements (S1, S2) belonging to the plurality of circuits (3, 3a, 3b) Prior to the first relationship between the current and the efficiency of the switching power supply circuit, all of the switching elements (S1, S2) belonging to the plurality of circuits (3, 3a, 3b) are kept nonconductive. And switching between conduction / non-conduction of the switching element (S1) of the plurality of circuits (3a) based on the first DC voltage command value, and the current and the switching power supply
  • a fifth step for determining a second relationship between the efficiency of the circuit and the first predetermined value (Iref1) is the same in both the first relationship and the second relationship. Wherein the current is employed to provide the rate.
  • the case where the plurality of circuits are two first and second circuits will be described below as an example.
  • At least one characteristic of the reactor, the switch element, and the diode of the first circuit is different from at least one characteristic of the reactor, the switch element, and the diode of the second circuit. Therefore, the electrical characteristics of the switching power supply circuit are different between the first state in which only the first circuit is operated and the second state in which only the second circuit is operated. The electrical characteristics of the switching power supply circuit in the third state where both the first and second circuits are operated are different from the electrical characteristics in the first state and the second state.
  • the three electric characteristics can be exhibited as the switching power supply circuit by the two first and second circuits.
  • the electrical characteristics in each of the first state to the third state affect the power factor, efficiency, and harmonics, respectively. Therefore, the power factor, efficiency, and harmonics can be appropriately adjusted by appropriately selecting the first state and the third state.
  • the first state to the third state can be appropriately selected according to the fluctuation of the load connected to the first and second output terminals. Therefore, it is possible to contribute to the realization of electrical characteristics according to the load variation.
  • a circuit having a MOS field effect transistor has a smaller current capacity than an insulated gate bipolar transistor, and is widely used in television receivers and the like. Therefore, general-purpose parts can be used, and costs can be reduced.
  • the switching element formed of the silicon carbide semiconductor or the gallium nitride semiconductor has lower conduction loss and higher breakdown voltage than the switching element formed of the silicon semiconductor.
  • the reactors belonging to a plurality of circuits can be reduced in size.
  • the switching power supply circuit when the current is lower than the first predetermined value, all the switching elements are non-conductive. When the current is low, the ratio of the switching loss to the loss generated in the circuit is large. Therefore, the efficiency in the state where the current is lower than the first predetermined value can be increased. On the other hand, when the current is larger than the first predetermined value, the efficiency in this state can be improved by repeatedly switching the conduction / non-conduction of the switching elements belonging to a plurality of circuits.
  • the first DC voltage command value in the range in which the current is large as compared with the control method in which the first DC voltage command value is equal to the DC voltage in the first step A stable operation of the circuit in two steps can be realized.
  • the efficiency of the circuit in a range where the current is small can be increased.
  • the third aspect of the control method of the switching power supply circuit since the ratio of the switching loss accounts for a large part of the loss generated in the circuit when the current is low, the current is lower than the second predetermined value. Efficiency can be increased. On the other hand, when the current is larger than the second predetermined value, the efficiency in this state can be improved by repeatedly switching the conduction / non-conduction of the switching elements belonging to one and the other plurality of circuits.
  • the efficiency in the third step is higher than that in the control method in which the second DC voltage command value is made equal to the first DC voltage command value. Can be improved.
  • the first step and the second step can be selected so as to obtain the highest efficiency.
  • the switching power supply circuit includes a plurality of circuits 3, input terminals P1 and P2, and output terminals P3 and P4.
  • a DC voltage is applied between the input terminals P1 and P2.
  • a diode rectifier circuit 2 is connected to the input terminals P1 and P2.
  • the diode rectifier circuit 2 rectifies the AC voltage from the AC power source 1 and applies the rectified DC voltage between the input terminals P1 and P2.
  • the potential applied to the input terminal P2 is lower than the potential applied to the input terminal P1. It is not essential that the diode rectifier circuit 2 is connected to the input terminals P1 and P2. Any configuration that applies a DC voltage between the input terminals P1 and P2 only needs to be connected to the input terminals P1 and P2.
  • the plurality of circuits 3 are all connected to the input terminals P1 and P2 and the output terminals P3 and P4. As will be described later, each circuit 3 functions as a booster circuit that boosts the DC voltage applied to the input terminals P1 and P2 and functions as a power factor correction circuit that improves the power factor on the input side.
  • a smoothing capacitor C1 is provided between the output terminals P3 and P4.
  • the smoothing capacitor C1 smoothes the DC voltage boosted by each circuit 3.
  • a capacitor C2 may be provided between the input terminals P1 and P2.
  • the capacitor C ⁇ b> 2 can reduce noise of the current input to each circuit 3.
  • FIG. 2 shows a conceptual example of a specific configuration of the plurality of circuits 3.
  • two circuits 3a and 3b are shown as an example.
  • the outputs of the circuits 3a and 3b are input to the inverter 4 via the smoothing capacitor C1. That is, the output terminals P3 and P4 are connected to the inverter 4 on the input side of the inverter 4.
  • the input terminal P2 and the output terminal P4 are connected to each other by a power line LL.
  • the circuit 3a includes a power line LH1, a reactor L1, a diode D11, and a switch element S1.
  • the power supply line LH1 connects the input terminal P1 and the output terminal P3.
  • Reactor L1 is provided on power supply line LH1.
  • the diode D11 is connected in series with the reactor L1 on the output terminal P3 side with respect to the reactor L1.
  • the diode D11 is provided with its anode facing the reactor L1.
  • the switch element S1 is provided between the point between the reactor L1 and the diode D11 and the power line LL.
  • the control unit 5 controls conduction / non-conduction of the switch element S1.
  • the switch element S1 includes a transistor T1 and a diode D12.
  • the transistor T1 is an insulated gate bipolar transistor, for example, and is provided with its emitter electrode facing the power supply line LL.
  • the switch element S1 does not necessarily have to include the transistor T1 and the diode D12.
  • the diode D12 may not be provided.
  • a MOS Metal-Oxide-Semiconductor field effect transistor may be employed as the switch element S1.
  • the circuit 3b includes a power line LH2, a reactor L2, a diode D21, and a switch element S2.
  • the connection relationship among the power supply line LH2, the reactor L2, the diode D21, and the switch element S2 is the same as the connection relationship between the power supply line LH1, the reactor L1, the diode D11, and the switch element S1.
  • the switch element S2 includes a transistor T2 and a diode D22.
  • the connection relationship between the transistor T2 and the diode D22 is the same as the connection relationship between the transistor T1 and the diode D12.
  • the diode D22 is not an essential requirement, and the switch element S1 may be a MOS field effect transistor, for example.
  • the control unit 5 controls conduction / non-conduction of the switch element S2.
  • control of the switch elements S1 and S2 described below is the control unit 5 unless otherwise specified.
  • control unit 5 includes a microcomputer and a storage device.
  • the microcomputer executes each processing step (in other words, a procedure) described in the program.
  • the storage device is, for example, a ROM (Read-Only-Memory), a RAM (Random-Access-Memory), a rewritable nonvolatile memory (EPROM (Erasable-Programmable-ROM), etc.), and various storage devices such as a hard disk device. One or more can be configured.
  • the storage device stores various information, data, and the like, stores a program executed by the microcomputer, and provides a work area for executing the program.
  • control unit 5 is not limited to this, and various procedures executed by the control unit 5 or various means or various functions implemented may be realized by hardware.
  • the switch element S2 can be made non-conductive and the circuit 3a can be operated alone.
  • the switch element S1 can be made non-conductive and the circuit 3b can be operated alone.
  • a current flows from the input terminal P1 to the input terminal P2 via the reactor L1 and the switch element S1.
  • Such a current increases in accordance with an inclination determined by the inductance of the reactor L1 and the DC voltage between the input terminals P1 and P2 (see the current IL1 in FIG. 3). Electromagnetic energy is accumulated in the reactor L1 by such current.
  • the current is reduced by a gradient based on the inductance of the reactor L1 and the capacitance of the smoothing capacitor C1 (see current IL1 in FIG. 3).
  • the switch element S1 is turned on again. Thereafter, the above-described operation is repeated. With this operation, the current IL1 changes along a sawtooth shape.
  • the mode in which the switch element S1 is turned on immediately after the current IL1 flowing through the reactor L1 reaches zero is called a so-called current critical mode.
  • the circuit 3a can function as a switching power supply circuit that boosts the voltage between the input terminals P1 and P2 and applies it between the output terminals P3 and P4. Even in a period in which no current flows to the smoothing capacitor C1 (a period in which the switch element S1 is conductive), a current flows in the diode rectifier circuit 2 via the switch element S1. Therefore, the conduction angle of the current flowing through the diode rectifier circuit 2 can be expanded. In other words, the circuit 3a can function as a power factor correction circuit.
  • the current IL1 flowing through the reactor L1 is detected, and the detected current IL1 is input to the control unit 5.
  • the control unit 5 detects a zero cross of the current IL1, and outputs a switch signal to the switch element S1 from the time when the zero cross is detected.
  • the control part 5 stops the output of the said switch signal when the period determined based on arbitrary DC voltage command values (command value about the voltage between the output terminals P3 and P4) passed. .
  • the single operation of the circuit 3b is the same as that of the circuit 3a. Therefore, the circuit 3b functions as a booster circuit and also functions as a power factor correction circuit.
  • the current IL2 flowing through the reactor L2 is detected and the detected current IL2 is input to the control unit 5 in order to realize switching for the circuit 3b.
  • the control unit 5 detects a zero cross of the current IL2, and outputs a switch signal to the switch element S2 from the time when the zero cross is detected. And the control part 5 stops the output of the said switch signal when the period determined based on arbitrary DC voltage command values passed.
  • the current critical mode is adopted, but not limited thereto.
  • the switch element S1 or the switch element S2 may be turned on when the current IL1 becomes a predetermined value larger than zero. Such a mode is called a so-called continuous current mode. Further, for example, the switch element S1 or the switch element S2 may be turned on when a predetermined time has elapsed since the current IL1 became zero. Such a mode is called a so-called current discontinuous mode.
  • the current critical mode will be described as a representative example below.
  • circuits 3a and 3b can be operated in cooperation. Such driving is also called interleaving. The details will be described below.
  • the switch element S2 becomes conductive when a predetermined period (the predetermined period may be zero) has elapsed since the switch element S1 became conductive.
  • the predetermined period is a period shorter than a period (hereinafter also referred to as a cycle) T from when the switch element S1 is turned on to when it is turned on again.
  • a cycle a period
  • switch element S1 can be grasped
  • switch element S2 can be grasped
  • the current I flowing through the diode rectifier circuit 2 is equal to the current IL1 flowing through the reactor L1.
  • the current I flowing through the diode rectifier circuit 2 is equal to the sum of the currents IL1 and IL2.
  • a portion where the current IL1 is low is filled with a portion where the current IL2 is high (so-called mountain).
  • the valley of the current IL2 is filled with a peak of the current IL1. Therefore, the fluctuation component (so-called harmonic component) of the current I can be lowered (see the current I in FIG. 3).
  • the shift of the cycle of the currents IL1 and IL2 is not limited to a half cycle, but the harmonic component can be reduced most if the cycle is a half cycle.
  • the peak of the current IL2 fills the valley of the current IL1
  • the average value of the current IL1 can be increased.
  • the maximum value of the current I can be reduced in order to achieve the same average value as when the circuit 3a is operated alone.
  • the control unit 5 detects, for example, a zero cross of the current IL1, and outputs a switch signal to the switch element S1 from the time when the zero cross is detected. And the control part 5 stops the output of the said switch signal when the period determined based on arbitrary DC voltage command values passed. In parallel with this, the control unit 5 outputs a switch signal to the switch element S2 after a predetermined period (for example, a half cycle) has elapsed from the time when the zero crossing of the current IL1 is detected, and based on an arbitrary DC voltage command value. The output of the switch signal is stopped when the period determined in this manner elapses.
  • a predetermined period for example, a half cycle
  • the circuits 3a and 3b can be operated independently, and the circuits 3a and 3b can be operated in cooperation.
  • the controller 5 also has a function of switching between the single operation of the circuit 3a, the single operation of the circuit 3b, and the cooperative operation of the circuits 3a and 3b.
  • ⁇ Characteristics of circuits 3a and 3b> at least one of the characteristics of the switching elements S1 and S2 belonging to the circuits 3a and 3b, the characteristics of the diodes D11 and D21, and the characteristics of the reactors L1 and L2 is different from each other. Thereby, the electrical characteristics of the circuit 3a and the electrical characteristics of the circuit 3b are different.
  • the electrical characteristics of the switching power supply circuit in the first state where the circuit 3a is operated alone are different from the electrical characteristics of the switching power supply circuit in the second state where the circuit 3b is operated independently. Furthermore, the electrical characteristics of the switching power supply circuit in the third state in which the circuits 3a and 3b are operated in cooperation are different from the electrical characteristics of the switching power supply circuit in the first state and the second state.
  • the three circuits 3a and 3b can exhibit three electrical characteristics. Further, a 0th state in which both of the two circuits 3a and 3b are not operated, that is, a state in which both of the switch elements S1 and S2 are made non-conductive may be employed. If this is adopted, four electric characteristics can be exhibited by the two circuits 3a and 3b.
  • device characteristics that are different in each of the circuits 3a and 3b are listed as examples.
  • inductances of reactors L1 and L2 reverse recovery characteristics and forward voltages of diodes D11 and D21, conduction characteristics and gate constants of switch elements S1 and S2 can be given. All of these device characteristics affect any of the power factor, efficiency, and harmonics included in the current as a switching power supply circuit. Moreover, the influence of these device characteristics on the power factor, efficiency, and harmonics depends on the load of the inverter 4 (for example, output current, output frequency, etc.).
  • the first state, the second state, and the third state are appropriately selected.
  • the switching power supply circuit may be operated by adopting the state. Or you may employ
  • the state of the load of the inverter 4 may be classified into four ranges and the 0th state to the 3rd state may be adopted respectively.
  • the switching power supply circuit can be operated in the most appropriate operating state according to the load of the inverter 4. It can be operated.
  • the present switching power supply circuit can contribute to the realization of electrical characteristics corresponding to load fluctuations.
  • circuits 3a and 3b are exemplified and described as the plurality of circuits 3.
  • the combination S is represented by the following equation.
  • a C b is expressed by the following equation.
  • the S switching power supply circuit electrical characteristics can be realized.
  • the present switching power supply circuit can contribute to the realization of electrical characteristics corresponding to a finer load state.
  • Some of the plurality of circuits 3 may have the same device characteristics.
  • FIG. 4 is a diagram showing an example of a switching power supply circuit.
  • the switching power supply circuit illustrated in FIG. 4 is different from the switching power supply circuit illustrated in FIG. 2 in that the two switching elements S1 and S2 belong to the circuits 3a and 3b, respectively.
  • the switch element S1 is an insulated gate bipolar transistor.
  • the switch element S2 is a MOS field effect transistor.
  • MOS has been used in the past for metal / oxide / semiconductor stacked structures, and is taken from the acronym Metal-Oxide-Semiconductor.
  • the material of the gate insulating film and the gate electrode has been improved from the viewpoint of recent integration and improvement of the manufacturing process.
  • polycrystalline silicon has been adopted instead of metal as a material for a gate electrode mainly from the viewpoint of forming a source / drain in a self-aligned manner.
  • a material having a high dielectric constant is adopted as a material for the gate insulating film, but the material is not necessarily limited to an oxide.
  • MOS is not necessarily limited to the metal / oxide / semiconductor laminated structure, and this specification does not assume such limitation. That is, in view of technical common sense, here, “MOS” has not only an abbreviation derived from the word source but also a broad meaning including a laminated structure of a conductor / insulator / semiconductor.
  • the insulated gate bipolar transistor has a large conduction loss as a device characteristic as compared with a MOS field effect transistor, and has a large current capacity as a device characteristic as compared with a MOS field effect transistor.
  • the circuit 3b is operated alone. Since the switch element S1 does not conduct in a region where the current I is small, the occurrence of conduction loss can be suppressed, and thus the efficiency can be improved. Further, for example, only the circuit 3a is operated independently in a region where the current is medium (for example, the load of the inverter 4 is a middle region). Therefore, even if the current capacity of the switch element S2 is insufficient, since the switch element S1 having a large current capacity is used, damage to the switch element S2 can be prevented.
  • the circuits 3a and 3b are operated in cooperation.
  • the current I is large (for example, the load of the inverter 4 is high)
  • the circuits 3a and 3b are operated in cooperation.
  • the current can be distributed to the switch elements S1 and S2, and the current flowing through the switch elements S1 and S2 can be reduced.
  • the maximum value of the current flowing through the switch element S2 may be set lower than the maximum value of the current flowing through the switch element S1. This can be realized in consideration of the following two points.
  • the slope of the current flowing through the switching element S2 (that is, the slope when the current IL2 increases) can be lowered.
  • the conduction period of the switch element S2 is short, the maximum value of the current flowing through the switch element S2 decreases. Therefore, the maximum value of the current flowing through the switch element S2 can be made lower than the maximum value of the current flowing through the switch element S1 by appropriately setting the inductance of the reactor L2 and the conduction period of the switch element S2.
  • the circuit 3b that employs a MOS field effect transistor as the switch element S2 is widely used in, for example, a television receiver. Therefore, the switch element S2 which is a general-purpose component can be employed, and the manufacturing cost can be reduced.
  • the switch element S1 may be formed of a SiC (silicon carbide) semiconductor or GaN (gallium nitride semiconductor), and the switch element S2 may be formed of a Si (silicon) semiconductor.
  • the switch element S1 formed of a SiC semiconductor or a GaN semiconductor has a smaller conduction loss than the switch element S2 formed of, for example, a Si semiconductor. Therefore, for example, the efficiency in the first state in which the circuit 3a is independently operated can be further increased.
  • the manufacturing cost of the switch element S2 formed of Si semiconductor is lower than the manufacturing cost of the switch element S1 formed of SiC semiconductor or GaN semiconductor. Therefore, the manufacturing cost can be reduced as compared with the case where both of the switch elements S1 and S2 are formed of SiC semiconductor or GaN semiconductor.
  • a reactor having a small current capacity may be adopted as the reactor L2. That is, the wire diameter of the coil included in the reactor L2 may be reduced. Thereby, reactor L2 can be reduced in size and manufacturing cost can be reduced.
  • a circuit 3b employing such a reactor L2 is also widely used in television receivers and the like. Therefore, the reactor L2 which is a general-purpose component can be employed, and the manufacturing cost can be reduced.
  • Air conditioner with switching power supply circuit Next, consider the case where the present switching power supply circuit is provided in an air conditioner. At this time, the switching power supply circuit is provided on the input side of the inverter 4 as in the example of FIG. 2, and the inverter 4 applies an AC voltage to a motor (not shown) to control the rotational speed of the motor.
  • the motor drives a compressor or a fan included in the air conditioner.
  • FIG. 5 shows the occurrence time of each outside air temperature in Japan and the relationship between the outside air temperature and the air conditioning load.
  • the air conditioning load in FIG. 5 is recognized as a heating load when the outside air temperature is less than 20 degrees Celsius (hereinafter, omitted), and as a cooling load when the outside air temperature is greater than 20 degrees.
  • the period when the outside air temperature is, for example, 5 degrees or less is relatively short throughout the year.
  • the period requiring a large value for the heating capacity is short.
  • the capability in this case, the heating capability
  • the heating intermediate capability P2 that is half the rated capability is the outside temperature. This is consistent with the ability when is 7-8 degrees (T2).
  • T2 the heating intermediate capability
  • the inverter 4 is frequently operated in a state where the air conditioning load is equal to or less than the heating intermediate capacity P2 throughout the year.
  • the cooling intermediate capacity P3 is around 29 degrees (T3). It matches the ability when There are relatively many periods during which the cooling intermediate capacity P3 or less is operated.
  • the electrical characteristics of the switching power supply circuit with respect to a moderate load or less are compared with the case where the switching power supply circuit is employed in other fields. Improvement is particularly desired.
  • the switching power supply circuit is controlled as follows.
  • the 0th state, the first state, and the third state are switched in accordance with the load state.
  • the load status is distinguished by the current I, for example. Therefore, here, for example, the 0th state, the first state, and the third state are switched according to the magnitude of the current I.
  • FIG. 6 shows an example of the relationship between the magnitude of the current I and the efficiency in each state.
  • the relationship between the current I and the efficiency in the 0th state, the first state, and the third state is indicated by a solid line, a broken line, and a one-point difference line, respectively.
  • Such a relationship can be obtained in advance by experiments or simulations.
  • the relationship in the 0th state can be obtained by calculating the efficiency of the switching power supply circuit while changing the current I while maintaining all the switch elements S1 and S2 non-conductive. The same applies to the first state and the third state.
  • the efficiency in each state has a generally convex shape.
  • the current value I1 that takes the efficiency peak in the 0th state is smaller than the current value I2 that takes the efficiency peak in the first state, and the current value I2 is smaller than the current value I3 that takes the efficiency peak in the third state.
  • the efficiency in the 0th state and the efficiency in the first state take the same value at a current value Iref1 that is larger than the current value I1 and smaller than the current value I2.
  • the efficiency in the first state and the efficiency in the third state have the same value at a current value Iref2 that is larger than the current value I2 and smaller than the current value I3.
  • the 0th state, the 1st state, and the 3rd state are switched as follows in order to increase the efficiency in a wide range of current. That is, when the current I is smaller than the current value Iref1, the circuits 3a and 3b are not operated, that is, the switch elements S1 and S2 are kept nonconductive and the 0th state is adopted.
  • the circuit 3a is operated alone, that is, switching between conduction / non-conduction of the switch element S1 is repeated to adopt the first state.
  • the circuits 3a and 3b are operated cooperatively, that is, the switching of the switching elements S1 and S2 is repeatedly switched to adopt the third state.
  • the efficiency can be increased in a wide range of the current I (in other words, a wide range of the load).
  • the relationship between the current and the efficiency in the switching power supply circuit having only one circuit 3a is shown by a two-dot dashed curve.
  • the circuit constants of the switching power supply circuit are set so that the efficiency peaks in the vicinity of the center (near the current value I2) in order to increase the efficiency in the entire region of the current I.
  • the efficiency can be improved over a wide range of the current I by the above-described control method.
  • the efficiency can be improved over a wide range of loads.
  • the efficiency in a region where the load is small can be improved. Therefore, it is particularly effective for an air conditioner having a high frequency of operation below the intermediate capacity.
  • the current matches the current value Iref1
  • either the 0th state or the first state may be adopted, and when the current matches the current value Iref2, any of the first state or the third state may be adopted.
  • the reference for switching the state is not necessarily limited to the current values Iref1 and Iref2, and there may be a slight deviation. Further, such a control method is not limited to the air conditioner, and may be employed in a switching power supply circuit mounted in another device.
  • the efficiency in the first state can be further improved as illustrated in FIG.
  • the curve indicated by the thin broken line represents the efficiency when the switch element S1 formed by the Si semiconductor is employed, and the curve indicated by the thick broken line is formed by the SiC semiconductor or the GaN semiconductor.
  • the efficiency when the switch element S1 is employed is shown.
  • the efficiency of the third state of the switch element S1 is increased by the SiC semiconductor or the GaN semiconductor, the illustration is omitted in FIG.
  • control unit 5 controls the switch elements S1 and S2 in the first state to the third state based on the DC voltage command value as the command value for the DC voltage between the output terminals P3 and P4. More specifically, for example, the conduction period of the switch elements S1 and S2 may be determined based on a DC voltage command value.
  • the control unit 5 employs the first state when the current I is larger than the current value Iref1, for example.
  • the control unit 5 may adopt the first DC voltage command value A that is larger than the DC voltage between the output terminals P3 and P4 in the 0th state.
  • the larger the current I that is, the larger the load
  • the circuit 3 may be unstable. More specifically, for example, the DC voltage may be lower than the value required by the inverter. According to this control method, when the current I is larger than the current value Iref, a larger first DC voltage command value A is adopted.
  • the inverter 4 drives the motor.
  • the efficiency of the motor decreases as the current I increases. This is because the copper loss increases as the current I increases.
  • copper loss can be reduced by increasing the DC voltage. If the DC voltage is increased, the efficiency of the circuit 3 is decreased. However, the decrease in the efficiency of the motor due to this is less than the increase in the efficiency of the motor by reducing the copper loss. Can be improved. Therefore, if the inverter 4 drives a motor, by using this control method, it is possible to suppress the reduction of the motor efficiency in the range where the current I is large or to increase the motor efficiency. Further, according to the present control method, as described above, the efficiency of the circuit can be improved in the range where the current I is small, and as a result, the motor efficiency in this range can be improved.
  • the switch element S1 is a master-side switch element
  • the switch element S2 is a slave-side switch element.
  • the impedances of the reactors L1 and L2 are different from each other.
  • the inductance of the reactor L1 is twice the inductance of the reactor L2.
  • the number of turns of the coil which reactor L2 has can be made into the half of the number of turns of the coil which reactor L2 has. Therefore, the reactor L2 can be reduced in size and the manufacturing cost can be reduced.
  • FIG. 9 shows an example of currents IL1, IL2, and I in such a switching power supply circuit.
  • a switch signal is output to the switch element S1, and the switch element S1 becomes conductive. Therefore, the current IL1 increases at a predetermined slope between time t1 and time t3. Then, the output of the switch signal to the switch element S1 is stopped between time t3 and time t5. As a result, the switch element S1 becomes non-conductive, and the current IL1 decreases with a predetermined slope. Since the current IL1 reaches 0 at time t5, a switch signal is output to the switch element S1 again, and the switch element S1 becomes conductive. Thereafter, the above-described operation is repeated in the circuit 3a.
  • the slope when the current IL1 increases and the slope when the current IL1 decreases are the same except for the positive and negative.
  • the current IL1 when the conduction period and the non-conduction period of the switch element S1 are the same is illustrated. Therefore, in the illustration of FIG. 9, the current IL1 exhibits an isosceles triangle in one cycle T that is a period between time t1 and time t5.
  • the current IL2 reaches 0 when half of one cycle T has elapsed (that is, at time t3).
  • the switch signal is output again to the switch element S2, and the above-described operation is repeated.
  • the current I which is the sum of them has a valley at the time.
  • the minimum value of the current I takes the same 0 as the minimum value of the currents IL1 and IL2 at the time.
  • the maximum value of current IL1 takes a value larger than the maximum value of each of currents IL1 and IL2 (here, 1.5 times that of currents IL1 and IL2) at times t2 and t4. Therefore, the difference between the maximum value and the minimum value of the current I that is the sum of the currents IL1 and IL2 is large (here, 1.5 times that of the currents IL1 and IL2), and harmonics are easily generated.
  • the switch signal may be output to the switch element S2 only during the period from the time t4 to the time t5 in the one cycle T from the time t1 to the time t5.
  • the current IL2 becomes a peak during the period when the current IL1 becomes a trough, and the current IL2 becomes zero during the period when the current IL1 becomes a peak. Therefore, the difference between the maximum value and the minimum value of the current I, which is the sum of the currents IL1 and IL2, can be reduced.
  • the maximum value and the minimum value of the current I are 1 time and 0.5 times the maximum value of the current IL1 (or current IL2), respectively, and the difference is 0. 0 of the maximum value of the current IL1 (or current IL2). Reduce to 5 times.
  • the switch element S2 when the inductance ratio of the reactors L1 and L2 is 2, as illustrated in FIG. 10, the switch element S2 is turned on only in the last quarter of one cycle T. If the ratio of the inductance of the reactor L1 to the reactor L2 is N (N is a number greater than 1), the switching element S2 only needs to be conducted only in the last 2N cycles of one cycle T. In other words, from the first time point (t1) when the switch element S1 is turned on to the second time point (t5) before the second time point (t5) when the switch element S1 is turned on, the third time point (t4) before the 1 / N period and the second time point The switch element S2 may be made conductive only between (t5).
  • the inductances and current capacities of reactors L1 and L2 may be different from each other.
  • the inductance of reactor L1 is smaller than the inductance of reactor L2, and the current capacity of reactor L1 is larger than the current capacity of reactor L2.
  • the wire diameter of the coil which reactor L2 has can be made smaller than the wire diameter of the coil which reactor L2 has. Therefore, even if the inductance of the reactor L2 is large, the reactor L2 can be prevented from being enlarged, and the manufacturing cost can be reduced.
  • FIG. 11 shows an example of currents IL1, IL2, and I in such a switching power supply circuit.
  • the switching of the switch element S1 in the circuit 3a is the same as the switching according to the description with reference to FIG.
  • a switch signal is output to the switch element S2 in a period from time t3 when the half cycle has elapsed from time t1 when the switch element S1 is turned on to time t5 (that is, a half cycle). Conducted. Therefore, the current IL2 increases during the period from time t3 to time t5.
  • the inductance of reactor L2 is larger than the inductance of reactor L1, and the conduction periods of switching elements S1 and S2 are the same, so the slope of current IL2 is lower than the slope of current IL1. Therefore, the maximum value of current IL2 is lower than the maximum value of current IL1.
  • the circuits 3a and 3b can be operated in cooperation without causing a malfunction of the reactor L2.
  • the current capacity of the reactor L2 is set larger than the current IL2.
  • the inductance of the reactor L2 may be close to the inductance of the reactor L1.
  • the slope of the current IL2 is lowered, and consequently the maximum value of the current IL2 is lowered.
  • Such currents IL1, IL2, and I are illustrated in FIG.
  • the maximum value of the current IL2 decreases, the maximum value of the current I also decreases. Therefore, the difference between the maximum value and the minimum value of current I can be reduced, and the current capacity of reactor L2 can be reduced.
  • the conduction time of the switch elements S1 and S2 may be shifted. In other words, the phase difference between the currents IL1 and IL2 may be changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 本発明は、負荷の変動に応じた電気特性の実現に資するスイッチング電源回路である。回路(3a)はリアクトル(L1)と、ダイオード(D11)とスイッチ素子(S1)とを有する。リアクトル(L1)とダイオード(D11)とは電源線(LH1)上で相互に直列に接続される。スイッチ素子(S1)はリアクトル(L1)とダイオード(D11)との間の点と電源線(LL)との間に設けられる。回路(3b)はリアクトル(L2)とダイオード(D21)とスイッチ素子(S2)とを有する。リアクトル(L2)とダイオード(D21)とは電源線(LH2)上で相互に直列に接続される。スイッチ素子(S2)はリアクトル(L2)とダイオード(D21)との間の点と電源線(LL)との間に設けられる。リアクトル(L1,L2)、スイッチ素子(S1,S2)及びダイオード(D11,D21)の少なくともいずれかの特性が相互に異なる。

Description

スイッチング電源回路およびスイッチング電源回路の制御方法
 本発明はスイッチング電源回路およびスイッチング電源回路の制御方法に関し、特に力率改善回路に関する。
 従来から、入力側の力率を改善する力率改善回路として、リアクトルとダイオードとスイッチ素子とからなる回路(いわゆる昇圧回路)が提案されている。より詳細には、リアクトルとスイッチ素子とが2つの入力端の間で相互に直列に接続され、2つの出力端の間でダイオードとスイッチ素子とが相互に直列に接続される。ダイオードはそのアノードをスイッチ素子側に向けて設けられる。2つの出力端の間には平滑コンデンサが設けられる。
 かかる回路において、スイッチ素子が導通しているときにはリアクトルとスイッチ素子とを介して入力端に電流が流れ、スイッチ素子が非導通であるときにはリアクトルとダイオードと出力端とを介して入力端に電流が流れる。これによって、入力電流の導通角度を広げ、以って入力側の力率を改善している。
 また2の当該回路を有する力率改善回路も提案されている。かかる力率改善回路では2つの当該回路に属するスイッチ素子の導通タイミングを互いに異ならせる。かかる力率改善回路は、いわゆるインターリーブ形の力率改善回路と呼ばれる。
 また本発明に関連する技術として特許文献1が開示されている。
特開平11-289766号公報
 上記2つの回路を有するスイッチング電源回路において、平滑コンデンサの負荷が変動する場合に、その負荷の変動に応じたスイッチング電源回路の電気特性という観点で、なお工夫の余地があった。
 そこで、本発明は、負荷の変動に応じた電気特性の実現に資するスイッチング電源回路を提供することを目的とする。
 本発明にかかるスイッチング電源回路の第1の態様は、第1および第2の入力端(P1,P2)と、第1および第2の出力端(P3,P4)と、前記第2の入力端及び前記第2の出力端を接続する第2の電源線(LL)と、複数の回路(3,3a,3b)とを備え、前記複数の回路の各々は、前記第1の入力端と前記第1の出力端とを接続する第1電源線(LH1,LH2)と、前記第1電源線上に設けられるリアクトル(L1,L2)と、前記第1電源線上で前記リアクトルと直列に接続され、アノードを前記リアクトル側に向けて配置されるダイオード(D11,D21)と、前記リアクトルと前記ダイオードとの間の点と、前記第2電源線との間に設けられるスイッチ素子(S1,S2)とを有し、一の前記複数の回路と他の一の前記複数の回路とにそれぞれ属する前記リアクトル、前記スイッチ素子及び前記ダイオードの少なくともいずれか一つの特性が相互に異なる。
 本発明にかかるスイッチング電源回路の第2の態様は、第1の態様にかかるスイッチング電源回路であって、前記一の前記複数の回路(3a)に属する前記スイッチ素子(S1)は絶縁ゲートバイポーラトランジスタであって、前記他の一の前記複数の回路(3b)に属する前記スイッチ素子(S1)はMOS電界効果トランジスタである。
 本発明にかかるスイッチング電源回路の第3の態様は、第1の態様にかかるスイッチング電源回路であって、前記一の前記複数の回路(3a)に属する前記スイッチング素子(S1)は炭化珪素半導体或いは窒化ガリウム半導体によって形成され、前記他の一の前記複数の回路(3b)に属する前記スイッチング素子(S2)は珪素半導体によって形成される。
 本発明にかかるスイッチング電源回路の第4の態様は、第1から第3のいずれか一つの態様にかかるスイッチング電源回路であって、前記一の複数の回路(3a)に属する前記リアクトル(L1)のインピーダンスは、前記他の一の前記複数の回路(3b)に属する前記リアクトルのインピーダンスよりも小さい。
 本発明にかかるスイッチング電源回路の制御方法の第1の態様は、第1から第4のいずれか一つの態様にかかるスイッチング電源回路の制御方法であって、前記複数の回路(3a,3b)に属する前記スイッチング素子(S1,S2)の全てを非導通に維持する第1工程と、前記第1及び前記第2の入力端(P1,P2)を流れる電流が第1所定値(Iref1)を超えたときに、前記一の前記複数の回路(3a)に属する前記スイッチング素子(S1)の導通/非導通を繰り返し切り替える第2工程とを実行する。
 本発明にかかるスイッチング電源回路の制御方法の第2の態様は、第1の態様にかかるスイッチング電源回路の制御方法であって、前記第2工程において、前記第1工程における前記第1及び前記第2の出力端(P3,P4)の間の電圧よりも高い第1の直流電圧指令値に基づいて前記一の前記複数の回路(3a)に属する前記スイッチング素子(S1)の導通/非導通を繰り返し切り替える。
 本発明にかかるスイッチング電源回路の制御方法の第3の態様は、第1又は第2の態様にかかるスイッチング電源回路の制御方法であって、前記第1及び前記第2の入力端(P1,P2)を流れる電流が、前記第1所定値(Iref1)よりも大きい第2所定値(Iref2)を超えたときに、前記一の前記複数の回路(3a)および前記他の一の前記複数の回路(3b)にそれぞれ属する前記スイッチング素子(S1,S2)の導通/非導通を繰り返し切り替える第3工程を更に実行する。
 本発明にかかるスイッチング電源回路の制御方法の第4の態様は、第3の態様にかかるスイッチング電源回路の制御方法であって、前記第3工程において、前記第1の直流電圧指令値よりも大きい第2の直流電圧指令値に基づいて前記一の前記複数の回路(3a)および前記他の一の前記複数の回路(3b)にそれぞれ属する前記スイッチング素子(S1,S2)の導通/非導通を繰り返し切り替える。
 本発明にかかるスイッチング電源回路の制御方法の第5の態様は、第1から第4のいずれか一つの態様にかかるスイッチング電源回路の制御方法であって、前記第1工程及び前記第2工程に先立って、前記複数の回路(3,3a,3b)に属する前記スイッチング素子(S1,S2)の全てを非導通に維持し、前記電流と前記スイッチング電源回路の効率との間の第1の関係を求める第4工程と、前記第1の直流電圧指令値に基づいて前記一の前記複数の回路(3a)の前記スイッチング素子(S1)の導通/非導通を繰り返し切り替え、前記電流と前記スイッチング電源回路の効率との間の第2の関係を求める第5工程とが更に実行され、前記第1所定値(Iref1)として、前記第1関係と前記第2関係のいずれにおいても同じ前記効率を与える前記電流が採用される。
 本発明にかかるスイッチング電源回路の第1の態様によれば、以下に、複数の回路が2つの第1および第2の回路である場合を例に挙げて説明する。
 第1の回路のリアクトル、スイッチ素子、ダイオードの少なくとも一つの特性が、第2の回路のリアクトル、スイッチ素子、ダイオードの少なくとも一つの特性と相違している。よって、第1の回路のみを動作させた第1状態と、第2の回路のみを動作させた第2状態では、スイッチング電源回路としての電気特性が相違する。また第1および第2の回路の両方を動作させた第3状態でのスイッチング電源回路としての電気特性は、第1状態および第2状態での電気特性と相違する。
 以上のように、2つの第1および第2の回路によって、スイッチング電源回路として3つの電気特性を発揮することができる。
 しかも第1状態から第3状態の各々における電気特性は、力率、効率、高調波へとそれぞれ影響を与える。よって、かかる第1状態および第3状態を適宜に選択することで、力率、効率、高調波を適宜に調整することができる。
 本スイッチング電源回路によれば、例えば第1および第2の出力端に接続される負荷の変動に応じて第1状態ないし第3状態を適宜に選択することができる。したがって、負荷の変動に応じた電気特性の実現に資することができる。
 本発明にかかるスイッチング電源回路の第2の態様によれば、MOS電界効果トランジスタを有する回路は絶縁ゲートバイポーラトランジスタよりも電流容量が小さく、テレビ受像機などで汎用されている。よって汎用部品を使用でき、コストを低下できる。
 本発明にかかるスイッチング電源回路の第3の態様によれば、炭化珪素半導体あるいは窒化ガリウム半導体によって形成されるスイッチング素子は、珪素半導体によって形成されるスイッチング素子よりも導通損失が低く耐圧が高い。
 本発明にかかるスイッチング電源回路の第4の態様によれば、一の複数の回路に属するリアクトルを小型化できる。
 本発明にかかるスイッチング電源回路の制御方法の第1の態様によれば、電流が第1所定値よりも低いときにはスイッチング素子の全てが非導通となる。電流が低い状態では回路で生じる損失のうちスイッチング損失が占める割合が大きいので、電流が第1所定値よりも低い状態における効率を高めることができる。一方電流が第1所定値よりも大きいときには一の複数の回路に属するスイッチング素子の導通/非導を繰り返し切り替えることで、この状態における効率を向上できる。
 本発明にかかるスイッチング電源回路の制御方法の第2の態様によれば、第1の直流電圧指令値を第1工程における直流電圧と等しくする制御方法に比して、電流が大きい範囲での第2工程における回路の安定動作を実現できる。一方で、電流が小さい範囲での回路の効率を高めることができる。
 本発明にかかるスイッチング電源回路の制御方法の第3の態様によれば、電流が低い状態では回路で生じる損失のうちスイッチング損失が占める割合が大きいので、電流が第2所定値よりも低い状態における効率を高めることができる。一方電流が第2所定値よりも大きいときには一および他の一の複数の回路に属するスイッチング素子の導通/非導を繰り返し切り替えることで、この状態における効率を向上できる。
 本発明にかかるスイッチング電源回路の制御方法の第4の態様によれば、第2の直流電圧指令値を第1の直流電圧指令値と等しくする制御方法に比して、第3工程における効率を向上することができる。
 本発明にかかるスイッチング電源回路の制御方法の第5の態様によれば、最も効率が高くなるように、第1工程および第2工程を選択できる。
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
スイッチング電源回路の概念的な構成の一例を示す図である。 スイッチング電源回路の概念的な構成の一例を示す図である。 各スイッチ素子の導通/非導通の状態と、各リアクトルを流れる電流と、各リアクトルを流れる電流の和との一例を示す概念的な図である。 スイッチング電源回路の概念的な構成の一例を示す図である。 日本において各外気温度の発生時間と、外気温度と空調負荷との関係を示す図である。 電流に対する効率の関係の模式的な一例を示す図である。 電流に対する効率の関係の模式的な一例を示す図である。 電流に対する効率の関係の模式的な一例を示す図である。 各リアクトルを流れる電流とその和との一例を示す概念的な図である。 各リアクトルを流れる電流とその和との一例を示す概念的な図である。 各リアクトルを流れる電流とその和との一例を示す概念的な図である。 各電流の一例を示す概念的な図である。
 第1の実施の形態.
 図1に例示するように、スイッチング電源回路は複数の回路3と入力端P1,P2と出力端P3,P4とを備えている。
 入力端P1,P2の間には直流電圧が印加される。図1の例示では、入力端P1,P2にはダイオード整流回路2が接続されている。ダイオード整流回路2は交流電源1からの交流電圧を整流し、整流後の直流電圧を入力端P1,P2の間に印加する。ここでは入力端P2に印加される電位は入力端P1に印加される電位よりも低い。なお、入力端P1,P2にダイオード整流回路2が接続されることは必須要件ではない。入力端P1,P2の間に直流電圧を印加する任意の構成が入力端P1,P2に接続されていればよい。
 複数の回路3はいずれも入力端P1,P2及び出力端P3,P4に接続される。各回路3は後述するように昇圧回路として機能して入力端P1,P2に印加された直流電圧を昇圧するとともに入力側の力率を改善する力率改善回路として機能する。
 出力端P3,P4の間には平滑コンデンサC1が設けられている。平滑コンデンサC1は各回路3によって昇圧された直流電圧を平滑する。
 また入力端P1,P2の間にはコンデンサC2が設けられてもよい。コンデンサC2は各回路3に入力する電流のノイズを低減することができる。
 図2には複数の回路3の具体的な構成の概念的な一例が示されている。図2では一例として2つの回路3a,3bが示されている。また図2の例示では、回路3a,3bの出力が平滑コンデンサC1を介してインバータ4に入力されている。つまり、出力端P3,P4がインバータ4の入力側でインバータ4に接続される。
 入力端P2と出力端P4とは電源線LLによって相互に接続されている。
 回路3aは電源線LH1とリアクトルL1とダイオードD11とスイッチ素子S1とを備えている。電源線LH1は入力端P1と出力端P3とを接続する。リアクトルL1は電源線LH1上に設けられている。ダイオードD11はリアクトルL1に対して出力端P3側でリアクトルL1に直列に接続される。またダイオードD11はそのアノードをリアクトルL1に向けて設けられる。
 スイッチ素子S1はリアクトルL1とダイオードD11との間の点と、電源線LLとの間に設けられる。スイッチ素子S1の導通/非導通は制御部5によって制御される。図2の例示では、スイッチ素子S1はトランジスタT1とダイオードD12とを備えている。トランジスタT1は例えば絶縁ゲートバイポーラトランジスタであって、そのエミッタ電極を電源線LL側に向けて設けられる。なお、スイッチ素子S1は必ずしもトランジスタT1とダイオードD12とを有している必要は無い。例えばダイオードD12が設けられていなくてもよい。またスイッチ素子S1として例えばMOS(Metal-Oxide-Semiconductor)電界効果トランジスタが採用されてもよい。
 回路3bは電源線LH2とリアクトルL2とダイオードD21とスイッチ素子S2とを備えている。電源線LH2とリアクトルL2とダイオードD21とスイッチ素子S2との接続関係は電源線LH1とリアクトルL1とダイオードD11とスイッチ素子S1との接続関係と同じである。また図2の例示ではスイッチ素子S2はトランジスタT2とダイオードD22とを有している。トランジスタT2とダイオードD22との接続関係はトランジスタT1とダイオードD12との接続関係と同一である。またダイオードD22は必須要件ではなく、またスイッチ素子S1は例えばMOS電界効果トランジスタであってもよい。スイッチ素子S2の導通/非導通はそれぞれ制御部5によって制御される。
 なお、以下で説明するスイッチ素子S1,S2の制御について、特別な記載が無い限りその主体は制御部5である。
 またここでは、制御部5はマイクロコンピュータと記憶装置を含んで構成される。マイクロコンピュータは、プログラムに記述された各処理ステップ(換言すれば手順)を実行する。上記記憶装置は、例えばROM(Read-Only-Memory)、RAM(Random-Access-Memory)、書き換え可能な不揮発性メモリ(EPROM(Erasable-Programmable-ROM)等)、ハードディスク装置などの各種記憶装置の1つ又は複数で構成可能である。当該記憶装置は、各種の情報やデータ等を格納し、またマイクロコンピュータが実行するプログラムを格納し、また、プログラムを実行するための作業領域を提供する。なお、マイクロコンピュータは、プログラムに記述された各処理ステップに対応する各種手段として機能するとも把握でき、あるいは、各処理ステップに対応する各種機能を実現するとも把握できる。また、制御部5はこれに限らず、制御部5によって実行される各種手順、あるいは実現される各種手段又は各種機能の一部又は全部をハードウェアで実現しても構わない。
 <回路3a,3bの単独運転>
 本スイッチング電源回路においてスイッチ素子S2を非導通とし、回路3aを単独で動作させることができる。同様にスイッチ素子S1を非導通とし、回路3bを単独で動作させることができる。まず回路3aの単独運転について説明する。
 回路3aにおいてスイッチ素子S1が導通していれば、入力端P1から入力端P2へとリアクトルL1及びスイッチ素子S1を経由して電流が流れる。かかる電流はリアクトルL1のインダクタンスと入力端P1,P2の間の直流電圧とによって定まる傾斜に応じて増大する(図3において電流IL1を参照)。かかる電流によってリアクトルL1には電磁エネルギーが蓄積される。
 そしてスイッチ素子S1が導通から非導通へと切り替わると、入力端P1から入力端P2へとリアクトルL1、ダイオードD11及び平滑コンデンサC1を経由して電流が流れる(図1参照)。このとき、リアクトルL1に蓄積された電磁エネルギーによる電圧(誘導起電圧)が入力端P1,P2の間の直流電圧に加算されて、その合計が平滑コンデンサC1に印加される。よって、入力端P1,P2の間の直流電圧を昇圧して、昇圧後の直流電圧を平滑コンデンサC1に印加できる。
 かかる電流はリアクトルL1のインダクタンス及び平滑コンデンサC1の静電容量等に基づく傾斜で低減する(図3において電流IL1を参照)。そして、かかる電流、即ち電流IL1が零になったときに、再びスイッチ素子S1を導通させる。その後は上述した動作を繰り返す。かかる動作により電流IL1は鋸歯状の形状に沿って変化する。このようにリアクトルL1に流れる電流IL1が零に至った直後にスイッチ素子S1を導通させるモードは、いわゆる電流臨界モードと呼ばれる。
 以上のように回路3aは、入力端P1,P2の間の電圧を昇圧して出力端P3,P4の間に印加するスイッチング電源回路として機能することができる。また平滑コンデンサC1へと電流が流れない期間(スイッチ素子S1が導通する期間)であっても、スイッチ素子S1を介してダイオード整流回路2には電流が流れる。よって、ダイオード整流回路2を流れる電流の導通角度を広げることができる。換言すれば回路3aは力率改善回路として機能することができる。
 かかる回路3aについてのスイッチングを実現すべく、リアクトルL1を流れる電流IL1が検知されて、検知された電流IL1が制御部5に入力される。制御部5は例えば電流IL1のゼロクロスを検知し、当該ゼロクロスを検知した時点からスイッチ素子S1へとスイッチ信号を出力する。そして、制御部5は任意の直流電圧指令値(出力端P3,P4の間の電圧についての指令値)に基づいて決定される期間が経過したことを以って当該スイッチ信号の出力を停止する。
 回路3bの単独運転についても回路3aと同様である。よって回路3bも昇圧回路として機能するとともに力率改善回路としても機能する。なお、かかる回路3bについてのスイッチングを実現すべく、リアクトルL2を流れる電流IL2が検知されて、検知された電流IL2が制御部5に入力される。制御部5は例えば電流IL2のゼロクロスを検知し、当該ゼロクロスを検知した時点からスイッチ素子S2へとスイッチ信号を出力する。そして、制御部5は任意の直流電圧指令値に基づいて決定される期間が経過したことを以って当該スイッチ信号の出力を停止する。
 なお、上述の例では電流臨界モードが採用されているがこれに限らない。例えば電流IL1が零よりも大きい所定値となったときにスイッチ素子S1或いはスイッチ素子S2を導通させてもよい。かかるモードはいわゆる電流連続モードと呼ばれる。また例えば電流IL1が零になった時点から所定時間が経過したときにスイッチ素子S1或いはスイッチ素子S2を導通させてもよい。かかるモードはいわゆる電流不連続モードと呼ばれる。いずれのモードを採用してもよいことは後述する他の実施の形態にも適用されるが、以下では代表的に電流臨界モードを例に挙げて説明する。
 <回路3a,3bの協働運転>
 本スイッチング電源回路においては回路3a,3bを協働して運転させることができる。かかる運転はインターリーブとも呼ばれる。以下の詳細に説明する。
 スイッチ素子S2は、スイッチ素子S1が導通した時点から所定期間(所定期間は零でもよい)経過したときに導通する。かかる所定期間は、スイッチ素子S1が導通してから再び導通するまでの期間(以下、周期とも呼ぶ)Tより短い期間である。図3の例示では、所定期間として期間Tの半分を採用しており、以下では所定期間として期間Tの半分を採用した場合について説明する。なお、スイッチ素子S1の導通時点を基準としてスイッチ素子S2の導通時点が決定されるので、スイッチ素子S1をマスター側のスイッチ素子と把握でき、スイッチ素子S2をスレーブ側のスイッチ素子と把握できる。
 上記スイッチングにより、回路3bにおいては回路3aに対して半周期遅れて同じ動作が行われる。よって、リアクトルL2を流れる電流IL2はリアクトルL1を流れる電流IL1に対して半周期遅れる。
 例えば回路3aのみを単独で動作させる場合には、ダイオード整流回路2を流れる電流IはリアクトルL1を流れる電流IL1と等しい。一方、回路3a,3bを協働して動作させる場合には、ダイオード整流回路2を流れる電流Iは電流IL1,IL2の和と等しい。かかる和によって、電流IL1の値が低い部分(いわゆる谷)は電流IL2の値が高い部分(いわゆる山)によって埋められる。同様に、電流IL2の谷は電流IL1の山によって埋められる。よって、電流Iの変動成分(いわゆる高調波成分)を低くすることができる(図3の電流Iを参照)。なお、電流IL1,IL2の周期のずれは半周期に限らないが、半周期であれば最も高調波成分を低減できる。また電流IL1の谷を電流IL2の山が埋めるので、電流IL1の平均値を高めることもできる。換言すれば、回路3aを単独で動作させる場合と同じ平均値を達成するために、電流Iの最大値を低減することができる。
 かかる回路3a,3bについてのスイッチングを実現すべく、制御部5は例えば電流IL1のゼロクロスを検知し、当該ゼロクロスを検知した時点からスイッチ素子S1へとスイッチ信号を出力する。そして、制御部5は任意の直流電圧指令値に基づいて決定される期間が経過したことを以って当該スイッチ信号の出力を停止する。またこれと並行して、制御部5は電流IL1のゼロクロスを検知した時点から所定期間(例えば半周期)経過した時点からスイッチ素子S2へとスイッチ信号を出力し、任意の直流電圧指令値に基づいて決定される期間が経過したことを以って当該スイッチ信号の出力を停止する。
 以上のように、本スイッチング電源回路によれば、回路3a,3bをそれぞれ単独で動作させることができ、また回路3a,3bを協働して動作させることもできる。なお、制御部5は回路3aの単独運転と回路3bの単独運転と回路3a,3bの協働運転とを切り替える機能も有する。
 <回路3a,3bの特性>
 本実施の形態では、それぞれ回路3a,3bに属するスイッチ素子S1,S2の特性、ダイオードD11,D21の特性、及びリアクトルL1,L2の特性の少なくともいずれかは、互いに相違している。これにより、回路3aの電気特性と回路3bの電気特性とが相違する。
 したがって、回路3aを単独で動作させた第1状態におけるスイッチング電源回路の電気特性と、回路3bを単独で動作させた第2状態におけるスイッチング電源回路の電気特性とは互いに相違する。さらに回路3a,3bを協働して動作させた第3状態におけるスイッチング電源回路の電気特性は、第1状態及び第2状態におけるスイッチング電源回路の電気特性のいずれとも異なる。
 したがって、本スイッチング電源回路によれば、2つの回路3a,3bによって、3つの電気特性を発揮することができる。また2つの回路3a,3bの両方を動作させない第0状態、すなわちスイッチ素子S1,S2の両方を非導通とする状態も採用してもよい。これを採用すれば、2つの回路3a,3bによって4つの電気特性を発揮することができる。
 以下、各回路3a,3bにおいて相違させるデバイス特性を例示的に列挙する。例えばリアクトルL1,L2のインダクタンス、ダイオードD11,D21の逆回復特性および順方向電圧、スイッチ素子S1,S2の導通特性およびゲート定数などが挙げられる。これらのデバイス特性はいずれもスイッチング電源回路としての力率、効率、電流に含まれる高調波のいずれかに対して影響を与える。しかも、これらのデバイス特性が力率、効率、高調波へと与える影響はインバータ4の負荷(例えば出力電流や出力周波数など)に依存する。よって、例えばインバータ4の負荷の低、中、高の区別(例えばインバータ4の出力周波数の低域、中域、高域の区別)に応じて、適宜に第1状態、第2状態、第3状態を採用してスイッチング電源回路を動作させるとよい。或いはインバータ4の負荷の低、中、高の区別に応じてそれぞれ第0状態、第1状態、第3状態を採用しても良い。もちろん、インバータ4の負荷の状態を4つの範囲に区別してそれぞれ第0状態から第3状態を採用しても良い。そして、第0状態、第1状態、第2状態、第3状態でのスイッチング電源回路の電気特性を適宜に設定することで、インバータ4の負荷に応じて最も適切な動作状態でスイッチング電源回路を動作させることができる。換言すれば、本スイッチング電源回路は負荷の変動に応じた電気特性の実現に資することができる。
 以上のように、複数の回路3として回路3a,3bを例示して説明したが、互いにデバイス特性が異なるN個の回路3を採用すればその組み合わせSは次式で表される。
Figure JPOXMLDOC01-appb-M000001
 ここで、abは次式で表される。
Figure JPOXMLDOC01-appb-M000002
 よって、互いにデバイス特性が異なるN個の回路3が設けられていれば、S通りのスイッチング電源回路の電気特性を実現できる。換言すれば、本スイッチング電源回路は、より細かい負荷の状態に応じた電気特性の実現に資することができる。なお複数の回路3のうちいくつかは互いに同じデバイス特性を有してもよい。
 図4はスイッチング電源回路の一例を示す図である。図4に例示するスイッチング電源回路は、回路3a,3bにそれぞれ属する2つのスイッチ素子S1,S2という点で、図2に例示するスイッチング電源回路と相違している。具体的には、スイッチ素子S1が絶縁ゲートバイポーラトランジスタである。スイッチ素子S2はMOS電界効果トランジスタである。なお「MOS」という用語は、古くは金属/酸化物/半導体の積層構造に用いられており、Metal-Oxide-Semiconductorの頭文字を採ったものとされている。しかしながら特にMOS構造を有する電界効果トランジスタにおいては、近年の集積化や製造プロセスの改善などの観点からゲート絶縁膜やゲート電極の材料が改善されている。
 例えばMOS電界効果トランジスタにおいては、主としてソース・ドレインを自己整合的に形成する観点から、ゲート電極の材料として金属の代わりに多結晶シリコンが採用されてきている。また電気的特性を改善する観点から、ゲート絶縁膜の材料として高誘電率の材料が採用されるが、当該材料は必ずしも酸化物には限定されない。
 従って「MOS」という用語は必ずしも金属/酸化物/半導体の積層構造のみに限定されて採用されているわけではなく、本明細書でもそのような限定を前提としない。即ち、技術常識に鑑みて、ここでは「MOS」とはその語源に起因した略語としてのみならず、広く導電体/絶縁体/半導体の積層構造をも含む意義を有する。
 さて、絶縁ゲートバイポーラトランジスタはMOS電界効果トランジスタに比して大きい導通損失をデバイス特性として有する一方で、MOS電界効果トランジスタに比して大きい電流容量をデバイス特性として有する。
 よって、例えば電流Iが小さい領域(例えばインバータ4の負荷が低域)では回路3bのみを単独で動作させる。電流Iが小さい領域でスイッチ素子S1が導通しないので、導通損失の発生を抑制でき、ひいては効率を向上することができる。また例えば電流が中ほどの領域(例えばインバータ4の負荷が中域)では回路3aのみを単独で動作させる。よって、たとえスイッチ素子S2の電流容量が不足したとしても、電流容量の大きいスイッチ素子S1を用いているので、スイッチ素子S2の損傷を防止することができる。
 また例えば電流Iが大きい領域(例えばインバータ4の負荷が高域)では回路3a,3bを協働して動作させる。これにより、たとえ回路3a単独での動作によってスイッチ素子S1の電流容量が足りなくても、スイッチ素子S1,S2に電流を分配することができ、各スイッチ素子S1,S2に流れる電流を低減できる。なお、スイッチ素子S1,S2の電流容量の差に鑑みると、スイッチ素子S2に流れる電流の最大値を、スイッチ素子S1に流れる電流の最大値よりも低くするとよい。これは、次の2点を考慮して実現できる。第1に、リアクトルL2のインダクタンスが高ければ、スイッチ素子S2を流れる電流の傾斜(すなわち電流IL2が増大する際の傾斜)を低くできる。第2に、スイッチ素子S2の導通期間が短ければ、スイッチ素子S2を流れる電流の最大値は低下する。したがって、リアクトルL2のインダクタンスとスイッチ素子S2の導通期間を適宜に設定することで、スイッチ素子S2に流れる電流の最大値をスイッチ素子S1に流れる電流の最大値よりも低くできる。
 またスイッチ素子S2としてMOS電界効果トランジスタを採用した回路3bは、例えばテレビ受像機などで汎用されている。よって汎用部品のスイッチ素子S2を採用することができ、製造コストを低下することができる。
 またスイッチ素子S1はSiC(炭化珪素)半導体或いはGaN(窒化ガリウム半導体)によって形成されてもよく、スイッチ素子S2はSi(珪素)半導体によって形成されてもよい。SiC半導体またはGaN半導体によって形成されたスイッチ素子S1はたとえばSi半導体によって形成されたスイッチ素子S2と比較して導通損失が小さい。したがって、例えば回路3aが単独運転する第1状態における効率を更に高めることができる。一方、Si半導体によって形成されるスイッチ素子S2の製造コストはSiC半導体或いはGaN半導体によって形成されるスイッチ素子S1の製造コストよりも低い。したがって、スイッチ素子S1,S2の両方がSiC半導体或いはGaN半導体によって形成される場合に比べて、製造コストを低減できる。
 またリアクトルL2として小さい電流容量を有するリアクトルを採用してもよい。即ち、リアクトルL2が有するコイルの線径を小さくしてもよい。これにより、リアクトルL2を小型化でき、また製造コストを低減できる。かかるリアクトルL2を採用した回路3bもテレビ受像機などで汎用されている。よって汎用部品のリアクトルL2を採用することができ、製造コストを低下することができる。
 <スイッチング電源回路が搭載される空気調和機>
 次に本スイッチング電源回路が空気調和機に設けられる場合について考慮する。このとき図2の例示と同様に本スイッチング電源回路はインバータ4の入力側に設けられ、インバータ4は不図示のモータへと交流電圧を印加してモータの回転速度を制御する。モータは空気調和機が有する圧縮機又はファンを駆動する。
 図5は、日本において各外気温度の発生時間と、外気温度と空調負荷との関係と、を示している。図5の空調負荷は、外気温度が摂氏(以下、省略)20度よりも小さい範囲では暖房負荷として把握され、外気温度が20度よりも大きい範囲では冷房負荷として把握される。図5に例示するように、暖房運転においては外気温度が低いほど暖房負荷が大きく、ひいてはインバータ4の負荷も大きい。しかしながら図5に示すように外気温度が例えば5度以下である期間は年間を通じて比較的に短い。
 よって、暖房能力として大きな値を必要とする期間は短い。例えば外気温度が-1度(T1)付近であるときに空気調和機が発揮する能力(ここでは暖房能力)を暖房定格能力P1とすれば、その定格能力の半値たる暖房中間能力P2は外気温度が7~8度(T2)であるときの能力と一致する。この暖房中間能力P2以下で運転される期間(外気温度が7~8℃よりも高い期間)は暖房中間能力P2以上で運転される期間(外気温度が7~8℃よりも低い期間)に比べて多い。換言すれば、年間を通じて空調負荷が暖房中間能力P2以下の状態でインバータ4が運転される頻度が高い。
 一方、冷房運転においては、外気温度が高いほど冷房能力を必要とする。しかしながら図5に例示するように外気温度が例えば33度以上である期間は比較的短い。よって冷房能力として大きな値を必要とする期間は短い。例えば外気温度が35度(T4)付近であるときに空調機が発揮する能力(ここでは冷房能力)を冷房定格能力P4とすれば、その冷房中間能力P3は外気温度が29度(T3)付近であるときの能力と一致する。この冷房中間能力P3以下で運転される期間は比較的多い。
 以上のように中程度以下の負荷に対する運転の頻度が高い空気調和機においては、他の分野でスイッチング電源回路が採用される場合と比べて、中程度以下の負荷に対するスイッチング電源回路の電気特性の向上が特に望まれている。
 そこで、例えば次のように本スイッチング電源回路を制御する。ここでは第0状態と第1状態と第3状態とを負荷の状況に応じて切り替える例について説明する。負荷の状況としては、例えば電流Iによって区別される。よって、ここでは例えば電流Iの大きさに応じて第0状態と第1状態と第3状態とを切り替える。
 図6は電流Iの大きさと、各状態における効率との関係の一例を示している。図6の例示では、電流Iと第0状態、第1状態、第3状態における効率との関係がそれぞれ実線、破線、一点差線の曲線で示されている。かかる関係は実験或いはシミュレーションによって予め求めることができる。例えばスイッチ素子S1,S2の全てを非導通に維持し電流Iを変化させながらスイッチング電源回路の効率を算出することで第0状態における当該関係を求めることができる。第1状態、第3状態についても同様である。
 図6に例示するように、各状態における効率はおおよそ上に凸の形状を有している。また第0状態において効率のピークを採る電流値I1は、第1状態において効率のピークを採る電流値I2よりも小さく、電流値I2は第3状態において効率のピークを採る電流値I3よりも小さい。そして、第0状態における効率と第1状態における効率とは、電流値I1よりも大きく電流値I2よりも小さい電流値Iref1で互いに同じ値を採る。第1状態における効率と第3状態における効率とは、電流値I2よりも大きく電流値I3よりも小さい電流値Iref2で互いに同じ値を採る。
 よって、電流の広い範囲において効率を高めるべく、次のように第0状態、第1状態、第3状態を切り替える。即ち、電流Iが電流値Iref1よりも小さいときに、回路3a,3bを動作させず、すなわちスイッチ素子S1,S2を非導通に維持して第0状態を採用する。電流Iが電流値Iref1よりも大きいときに、回路3aを単独運転させ、すなわちスイッチ素子S1の導通/非導通の切り替えを繰り返して、第1状態を採用する。電流Iが電流値Iref2よりも大きいときに回路3a,3bを協働運転させ、すなわちスイッチ素子S1,S2の導通/非導通の切り替えを繰り返して、第3状態を採用する。これによって、図7に例示するように、電流Iの広い範囲(換言すれば負荷の広い範囲)で効率を高めることができる。
 なお、図6,7の例示では、比較のために、一つの回路3aのみを有するスイッチング電源回路における電流と効率との関係が二点破線の曲線で示されている。図6,7の例示では、電流Iの全領域において効率を高めるべく、その中心付近(電流値I2付近)で効率のピークを採るように、スイッチング電源回路の回路定数が設定されている。図6,7の例示から理解できるように、上述の制御方法によって電流Iの広い範囲で効率を向上することができる。
 以上のように、本制御方法によれば負荷の広い範囲で効率を向上できる。特に、電流Iが電流値Iref1よりも小さいときに第0状態を採用することで、負荷が小さい領域での効率を向上できる。よって、中間能力以下での運転の頻度が高い空気調和機にとって特に有効である。
 なお、電流が電流値Iref1と一致するときには第0状態、第1状態のいずれを採用してもよく、電流が電流値Iref2と一致するときには第1状態、第3状態のいずれを採用してもよい。また状態の切り替えの基準は必ずしも電流値Iref1,Iref2に限らず、若干のずれがあってもよい。さらにかかる制御方法は空気調和機に限るものではなく、他の装置に搭載されたスイッチング電源回路において採用されてもよい。
 また例えばスイッチ素子S1がSiC半導体或いはGaN半導体によって形成されていれば、図8に例示するように第1状態における効率を更に向上することができる。図8の例示では、細線の破線で示された曲線がSi半導体によって形成されたスイッチ素子S1を採用した場合の効率を表し、太線の破線で示された曲線がSiC半導体或いはGaN半導体で形成されたスイッチ素子S1を採用した場合の効率を示している。なお、スイッチ素子S1がSiC半導体またはGaN半導体によって第3状態の効率も増大するものの、図8では図示を省略した。
 <直流電圧指令値>
 制御部5は上述したように第1状態~第3状態において、出力端P3,P4の間の直流電圧についての指令値たる直流電圧指令値に基づいて、スイッチ素子S1,S2を制御する。より詳細には例えば直流電圧指令値に基づいて、スイッチ素子S1,S2の導通期間を決定してもよい。
 さて例えば図7では、制御部5は例えば電流Iが電流値Iref1よりも大きいときに第1状態を採用した。このとき、制御部5は第0状態における出力端P3,P4の間の直流電圧よりも大きい第1の直流電圧指令値Aを採用するとよい。これは、次の理由による。即ち、電流Iが大きいほど(つまり、負荷が大きいほど)、直流電圧のリップルが増大する。直流電圧のリップルが増大すれば、回路3の不安定な動作を招く可能性がある。より具体的には、例えば直流電圧が、インバータが必要とする値を下回る可能性がある。本制御方法によれば、電流Iが電流値Irefよりも大きいときに、より大きい第1の直流電圧指令値Aを採用している。これにより、平滑コンデンサC1に蓄えられる電荷が増大するので、直流電圧のリップルを低減できる。よって安定的な動作を実現できる。一方、直流電圧が増大すれば、回路3における損失が増大して効率の低下を招く。本制御方法によれば、電流Iが電流値Irefよりも小さいときには直流電圧はより小さい値を採るので、この範囲における効率を向上することができる。以上のように、電流Iが大きい範囲での回路3の安定的な動作を実現しつつも、電流Iが小さい範囲での回路の効率を向上することができる。
 同様に第3状態における第2の直流電圧指令値Bとして、第1状態において採用される第1の直流電圧指令値Aよりも大きい値を採用することが望ましい。これによって、電流Iが電流値Iref2よりも大きいときの回路3の安定的な動作に資することができる。また電流Iが電流値Iref1よりも大きく、電流値Iref2よりも小さい範囲で、第2の直流電圧指令値Bを採用する場合に比べて、この範囲での効率を向上することができる。
 しかも、本実施の形態においては、インバータ4がモータを駆動している。モータの効率は電流Iが増大すると低下する。これは、電流Iが増大することで銅損が増大するからである。一方で、直流電圧を増大させることで銅損を低減させることができる。なお、直流電圧を増大させれば回路3の効率が低下するものの、これに起因するモータの効率の低下は、銅損を低減させることによるモータの効率の増大を下回るので、結果としてモータの効率を向上させることができる。よって、インバータ4がモータを駆動する場合であれば、本制御方法を用いることとで、電流Iが大きい範囲でのモータの効率の低減を抑制、或いはモータの効率を増大させることができる。また、本制御方法によれば、上述のように、電流Iが小さい範囲では回路の効率を向上できるので、結果としてこの範囲のモータ効率の向上に貢献することができる。
 <デバイス特性の異なる回路3a,3bの動作例>
 次に、デバイス特性の異なる回路3a,3bを協働して動作させる際のスイッチングの例について述べる。以下では、スイッチ素子S1をマスター側のスイッチ素子とし、スイッチ素子S2をスレーブ側のスイッチ素子とする。
 例えば図2のスイッチング電源回路において、リアクトルL1,L2のインピーダンスが互いに相違する。ここでは、例えばリアクトルL1のインダクタンスがリアクトルL2のインダクタンスの2倍であると仮定する。これにより、リアクトルL2が有するコイルの巻数をリアクトルL2が有するコイルの巻数の半分にすることができる。よって、リアクトルL2の小型化を実現でき、また製造コストを低減できる。
 図9は、かかるスイッチング電源回路における電流IL1,IL2,Iの一例を示している。回路3aにおいて、時刻t1から時刻t3の間にはスイッチ素子S1にスイッチ信号が出力されてスイッチ素子S1が導通する。よって、時刻t1から時刻t3の間において電流IL1が所定の傾斜で増大している。そして、時刻t3から時刻t5の間にはスイッチ素子S1へのスイッチ信号の出力が停止する。これによりスイッチ素子S1が非導通になって電流IL1は所定の傾斜で低減する。電流IL1は時刻t5の時点で0に至るので再びスイッチ素子S1へとスイッチ信号が出力されてスイッチ素子S1が導通する。以後、回路3aにおいては上述した動作を繰り返す。
 なお、図9では、電流IL1が増大する際の傾斜と電流IL1が低減する際の傾斜とはその正負を除いて同一である。換言すれば、スイッチ素子S1の導通期間と非導通期間とが互いに同じである場合の電流IL1が例示されている。よって、図9の例示では、時刻t1から時刻t5の間の期間である一周期Tにおいて、電流IL1は二等辺三角形を呈する。
 一方、回路3bにおいて、時刻t1においてスイッチ素子S2へとスイッチ信号が出力されてスイッチ素子S2が導通する。これにより電流IL2は所定の傾斜で増大する。なお電流IL1,IL2が増大する際の傾斜はそれぞれリアクトルL1,L2のインダクタンスが大きいほど低い。ここではリアクトルL2のインダクタンスはリアクトルL1のインダクタンスの半値であるので、電流IL2が増大している際の傾斜(時間に対する増分の割合)は電流IL1が増大している際の傾斜の2倍である。
 そして、電流IL2の最大値が電流IL1の最大値と一致する時刻t2において、スイッチ素子S2へのスイッチ信号の出力を停止する。これによりスイッチ素子S2が非導通になって電流IL2は所定の傾斜で低減する。なお電流IL1,IL2が低減する際の傾斜もそれぞれリアクトルL1,L2のインダクタンスが大きいほど低い。ここではリアクトルL2のインダクタンスはリアクトルL1のインダクタンスの半値であるので、電流IL2が低減している際の傾斜(時間に対する低減分の割合)は電流IL1が低減している際の傾斜の2倍である。
 電流IL1,IL2の傾斜の関係に鑑みれば、電流IL2は一周期Tの半分が経過した時点(即ち時刻t3)で0に至る。そして、時刻t3において再びスイッチ素子S2へとスイッチ信号が出力されて上述した動作を繰り返す。
 かかる回路3a,3bの協働運転によって、ダイオード整流回路2には電流I(=IL1+IL2)が流れる。
 電流IL1,IL2はそれぞれ同じ時刻(例えば時刻t1,t5)で谷を有するので、これらの和である電流Iも当該時刻で谷を有する。換言すれば、電流Iの最小値は当該時刻において各電流IL1,IL2の最小値と同じ0を採る。また電流IL1の最大値は時刻t2、t4において、各電流IL1,IL2の最大値よりも大きい値(ここでは電流IL1,IL2の1.5倍)を採る。よって、電流IL1,IL2の和たる電流Iの最大値と最小値との差が大きく(ここでは電流IL1,IL2の1.5倍)、高調波が生じやすい。
 なお、スイッチ素子S1,S2の導通時点をずらしても構わない。換言すれば、電流IL1,IL2との間の位相差を変更しても構わない。しかしながら、当該位相差を変化させたとしても電流Iの最大値と最小値との差はさほど変化しない。
 そこで、図10に示すように、時刻t1から時刻t5の一周期Tのうち、時刻t4から時刻t5の期間のみ、スイッチ素子S2へとスイッチ信号を出力してもよい。これによって、電流IL1が谷となる期間で電流IL2が山になり、電流IL1が山となる期間では電流IL2は0になる。したがって、電流IL1,IL2の和たる電流Iの最大値と最小値との差を低減することができる。ここでは電流Iの最大値及び最小値は、それぞれ電流IL1(あるいは電流IL2)の最大値の1倍及び0.5倍であり、その差は電流IL1(あるいは電流IL2)の最大値の0.5倍にまで低減する。
 なお、リアクトルL1,L2のインダクタンスの比が2である場合では、図10に例示するように、一周期Tのうち最後の4分の一周期のみ、スイッチ素子S2を導通させている。リアクトルL2に対するリアクトルL1のインダクタンスの比がN(Nは1より大きい数字)であれば、一周期Tのうち最後の2N分の一周期のみ、スイッチ素子S2を導通させればよい。換言すると、スイッチ素子S1が導通した第1時点(t1)から次に導通する第2時点(t5)よりも1周期のN分の1の期間前の第3時点(t4)と、第2時点(t5)との間のみ、スイッチ素子S2を導通させればよい。
 また例えば図2のスイッチング電源回路において、リアクトルL1,L2のインダクタンスおよび電流容量を互いに異ならせてもよい。ここでは、例えばリアクトルL1のインダクタンスはリアクトルL2のインダクタンスよりも小さく、リアクトルL1の電流容量がリアクトルL2の電流容量よりも大きいと仮定する。これにより、リアクトルL2が有するコイルの線径をリアクトルL2が有するコイルの線径よりも小さくできる。よってたとえリアクトルL2のインダクタンスが大きくとも、リアクトルL2の大型化を抑制することができ、また製造コストを低減できる。
 図11はかかるスイッチング電源回路における電流IL1,IL2,Iの一例を示している。回路3aにおけるスイッチ素子S1のスイッチングは図9を参照した説明にかかるスイッチングと同一である。
 一方、スイッチ素子S2には、スイッチ素子S1が導通した時刻t1から半周期が経過した時刻t3から、時刻t5までの間の期間(即ち半周期)においてスイッチ信号が出力されて、スイッチ素子S2が導通している。よって、時刻t3から時刻t5の期間において電流IL2が増大する。ただし、リアクトルL2のインダクタンスはリアクトルL1のインダクタンスよりも大きく、スイッチ素子S1,S2の導通期間が互いに同一であるので、電流IL2の傾斜は電流IL1の傾斜よりも低い。したがって、電流IL2の最大値は電流IL1の最大値よりも低い。
 よって、リアクトルL2の電流容量がリアクトルL1の電流容量より小さくとも、リアクトルL2の不具合を招来することなく、回路3a,3bを協働して動作させることができる。なお当然であるが、リアクトルL2の電流容量は電流IL2の電流よりも大きく設定される。
 なお、図11の例示においても、スイッチ素子S1,S2の導通時点をずらしても構わない。換言すれば、電流IL1,IL2との間の位相差を変更しても構わない。
 また例えば図9を参照して説明したスイッチング電源回路において、リアクトルL2のインダクタンスをリアクトルL1のインダクタンスに近づけても構わない。これによって、電流IL2の傾斜が低下し、ひいては電流IL2の最大値が低下する。かかる電流IL1,IL2,Iが図12に例示されている。電流IL2の最大値の低下に伴って、電流Iの最大値も低下する。よって、電流Iの最大値と最小値との差を低減できるとともに、リアクトルL2の電流容量を低減することができる。
 なお、図12の例示においても、スイッチ素子S1,S2の導通時点をずらしても構わない。換言すれば、電流IL1,IL2との間の位相差を変更しても構わない。
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 D11,D12 ダイオード
 L1,L2 リアクトル
 LH1,LH2,LL 電源線
 P1,P2 入力端
 P3,P4 出力端
 S1,S2 スイッチ素子

Claims (18)

  1.  第1および第2の入力端(P1,P2)と、
     第1および第2の出力端(P3,P4)と、
     前記第2の入力端及び前記第2の出力端を接続する第2の電源線(LL)と、
     複数の回路(3,3a,3b)と
    を備え、
     前記複数の回路の各々は、
     前記第1の入力端と前記第1の出力端とを接続する第1電源線(LH1,LH2)と、
     前記第1電源線上に設けられるリアクトル(L1,L2)と、
     前記第1電源線上で前記リアクトルと直列に接続され、アノードを前記リアクトル側に向けて配置されるダイオード(D11,D21)と、
     前記リアクトルと前記ダイオードとの間の点と、前記第2電源線との間に設けられるスイッチ素子(S1,S2)と
    を有し、
     一の前記複数の回路と他の一の前記複数の回路とにそれぞれ属する前記リアクトル、前記スイッチ素子及び前記ダイオードの少なくともいずれか一つの特性が相互に異なる、スイッチング電源回路。
  2.  前記一の前記複数の回路(3a)に属する前記スイッチ素子(S1)は絶縁ゲートバイポーラトランジスタであって、前記他の一の前記複数の回路(3b)に属する前記スイッチ素子(S1)はMOS電界効果トランジスタである、請求項1に記載のスイッチング電源回路。
  3.  前記一の前記複数の回路(3a)に属する前記スイッチング素子(S1)は炭化珪素半導体或いは窒化ガリウム半導体によって形成され、前記他の一の前記複数の回路(3b)に属する前記スイッチング素子(S2)は珪素半導体によって形成される、請求項1に記載のスイッチング電源回路。
  4.  前記一の複数の回路(3a)に属する前記リアクトル(L1)のインピーダンスは、前記他の一の前記複数の回路(3b)に属する前記リアクトルのインピーダンスよりも小さい、請求項1に記載のスイッチング電源回路。
  5.  前記一の複数の回路(3a)に属する前記リアクトル(L1)のインピーダンスは、前記他の一の前記複数の回路(3b)に属する前記リアクトルのインピーダンスよりも小さい、請求項2に記載のスイッチング電源回路。
  6.  前記一の複数の回路(3a)に属する前記リアクトル(L1)のインピーダンスは、前記他の一の前記複数の回路(3b)に属する前記リアクトルのインピーダンスよりも小さい、請求項3に記載のスイッチング電源回路。
  7.  請求項1から6のいずれか一つに記載のスイッチング電源回路の制御方法であって、
     前記複数の回路(3a,3b)に属する前記スイッチング素子(S1,S2)の全てを非導通に維持する第1工程と、
     前記第1及び前記第2の入力端(P1,P2)を流れる電流が第1所定値(Iref1)を超えたときに、前記一の前記複数の回路(3a)に属する前記スイッチング素子(S1)の導通/非導通を繰り返し切り替える第2工程と
    を実行する、スイッチング電源回路の制御方法。
  8.  前記第2工程において、前記第1工程における前記第1及び前記第2の出力端(P3,P4)の間の電圧よりも高い第1の直流電圧指令値に基づいて前記一の前記複数の回路(3a)に属する前記スイッチング素子(S1)の導通/非導通を繰り返し切り替える、請求項7に記載のスイッチング電源回路の制御方法。
  9.  前記第1及び前記第2の入力端(P1,P2)を流れる電流が、前記第1所定値(Iref1)よりも大きい第2所定値(Iref2)を超えたときに、前記一の前記複数の回路(3a)および前記他の一の前記複数の回路(3b)にそれぞれ属する前記スイッチング素子(S1,S2)の導通/非導通を繰り返し切り替える第3工程
    を更に実行する、請求項7に記載のスイッチング電源回路の制御方法。
  10.  前記第1及び前記第2の入力端(P1,P2)を流れる電流が、前記第1所定値(Iref1)よりも大きい第2所定値(Iref2)を超えたときに、前記一の前記複数の回路(3a)および前記他の一の前記複数の回路(3b)にそれぞれ属する前記スイッチング素子(S1,S2)の導通/非導通を繰り返し切り替える第3工程
    を更に実行する、請求項8に記載のスイッチング電源回路の制御方法。
  11.  前記第3工程において、前記第1の直流電圧指令値よりも大きい第2の直流電圧指令値に基づいて前記一の前記複数の回路(3a)および前記他の一の前記複数の回路(3b)にそれぞれ属する前記スイッチング素子(S1,S2)の導通/非導通を繰り返し切り替える、請求項9に記載のスイッチング電源回路の制御方法。
  12.  前記第3工程において、前記第1の直流電圧指令値よりも大きい第2の直流電圧指令値に基づいて前記一の前記複数の回路(3a)および前記他の一の前記複数の回路(3b)にそれぞれ属する前記スイッチング素子(S1,S2)の導通/非導通を繰り返し切り替える、請求項10に記載のスイッチング電源回路の制御方法。
  13.  前記第1工程及び前記第2工程に先立って、
     前記複数の回路(3,3a,3b)に属する前記スイッチング素子(S1,S2)の全てを非導通に維持し、前記電流と前記スイッチング電源回路の効率との間の第1の関係を求める第4工程と、
     前記第1の直流電圧指令値に基づいて前記一の前記複数の回路(3a)の前記スイッチング素子(S1)の導通/非導通を繰り返し切り替え、前記電流と前記スイッチング電源回路の効率との間の第2の関係を求める第5工程と
    が更に実行され、
     前記第1所定値(Iref1)として、前記第1関係と前記第2関係のいずれにおいても同じ前記効率を与える前記電流が採用される、請求項7に記載のスイッチング電源回路の制御方法。
  14.  前記第1工程及び前記第2工程に先立って、
     前記複数の回路(3,3a,3b)に属する前記スイッチング素子(S1,S2)の全てを非導通に維持し、前記電流と前記スイッチング電源回路の効率との間の第1の関係を求める第4工程と、
     前記第1の直流電圧指令値に基づいて前記一の前記複数の回路(3a)の前記スイッチング素子(S1)の導通/非導通を繰り返し切り替え、前記電流と前記スイッチング電源回路の効率との間の第2の関係を求める第5工程と
    が更に実行され、
     前記第1所定値(Iref1)として、前記第1関係と前記第2関係のいずれにおいても同じ前記効率を与える前記電流が採用される、請求項8に記載のスイッチング電源回路の制御方法。
  15.  前記第1工程及び前記第2工程に先立って、
     前記複数の回路(3,3a,3b)に属する前記スイッチング素子(S1,S2)の全てを非導通に維持し、前記電流と前記スイッチング電源回路の効率との間の第1の関係を求める第4工程と、
     前記第1の直流電圧指令値に基づいて前記一の前記複数の回路(3a)の前記スイッチング素子(S1)の導通/非導通を繰り返し切り替え、前記電流と前記スイッチング電源回路の効率との間の第2の関係を求める第5工程と
    が更に実行され、
     前記第1所定値(Iref1)として、前記第1関係と前記第2関係のいずれにおいても同じ前記効率を与える前記電流が採用される、請求項9に記載のスイッチング電源回路の制御方法。
  16.  前記第1工程及び前記第2工程に先立って、
     前記複数の回路(3,3a,3b)に属する前記スイッチング素子(S1,S2)の全てを非導通に維持し、前記電流と前記スイッチング電源回路の効率との間の第1の関係を求める第4工程と、
     前記第1の直流電圧指令値に基づいて前記一の前記複数の回路(3a)の前記スイッチング素子(S1)の導通/非導通を繰り返し切り替え、前記電流と前記スイッチング電源回路の効率との間の第2の関係を求める第5工程と
    が更に実行され、
     前記第1所定値(Iref1)として、前記第1関係と前記第2関係のいずれにおいても同じ前記効率を与える前記電流が採用される、請求項10に記載のスイッチング電源回路の制御方法。
  17.  前記第1工程及び前記第2工程に先立って、
     前記複数の回路(3,3a,3b)に属する前記スイッチング素子(S1,S2)の全てを非導通に維持し、前記電流と前記スイッチング電源回路の効率との間の第1の関係を求める第4工程と、
     前記第1の直流電圧指令値に基づいて前記一の前記複数の回路(3a)の前記スイッチング素子(S1)の導通/非導通を繰り返し切り替え、前記電流と前記スイッチング電源回路の効率との間の第2の関係を求める第5工程と
    が更に実行され、
     前記第1所定値(Iref1)として、前記第1関係と前記第2関係のいずれにおいても同じ前記効率を与える前記電流が採用される、請求項11に記載のスイッチング電源回路の制御方法。
  18.  前記第1工程及び前記第2工程に先立って、
     前記複数の回路(3,3a,3b)に属する前記スイッチング素子(S1,S2)の全てを非導通に維持し、前記電流と前記スイッチング電源回路の効率との間の第1の関係を求める第4工程と、
     前記第1の直流電圧指令値に基づいて前記一の前記複数の回路(3a)の前記スイッチング素子(S1)の導通/非導通を繰り返し切り替え、前記電流と前記スイッチング電源回路の効率との間の第2の関係を求める第5工程と
    が更に実行され、
     前記第1所定値(Iref1)として、前記第1関係と前記第2関係のいずれにおいても同じ前記効率を与える前記電流が採用される、請求項12に記載のスイッチング電源回路の制御方法。
PCT/JP2011/057185 2010-03-26 2011-03-24 スイッチング電源回路およびスイッチング電源回路の制御方法 WO2011118709A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
ES11759514T ES2847882T3 (es) 2010-03-26 2011-03-24 Circuito de alimentación de energía de conmutación y método para controlar el circuito de alimentación de energía de conmutación
CN201180014255.8A CN102804576B (zh) 2010-03-26 2011-03-24 开关电源电路和开关电源电路的控制方法
EP11759514.0A EP2555399B1 (en) 2010-03-26 2011-03-24 Switching power supply circuit, and method for control of switching power supply circuit
BR112012024228-8A BR112012024228B1 (pt) 2010-03-26 2011-03-24 método para controle de circuito de fornecimento de energia comutável
AU2011230323A AU2011230323B2 (en) 2010-03-26 2011-03-24 Switching power supply circuit, and method for control of switching power supply circuit
KR1020127021692A KR101346542B1 (ko) 2010-03-26 2011-03-24 스위칭 전원 회로 및 스위칭 전원 회로의 제어 방법
US13/579,955 US8994343B2 (en) 2010-03-26 2011-03-24 Switching power supply circuit, and method for control of switching power supply circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010071916 2010-03-26
JP2010-071916 2010-03-26

Publications (1)

Publication Number Publication Date
WO2011118709A1 true WO2011118709A1 (ja) 2011-09-29

Family

ID=44673255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057185 WO2011118709A1 (ja) 2010-03-26 2011-03-24 スイッチング電源回路およびスイッチング電源回路の制御方法

Country Status (9)

Country Link
US (1) US8994343B2 (ja)
EP (1) EP2555399B1 (ja)
JP (1) JP4844696B2 (ja)
KR (1) KR101346542B1 (ja)
CN (1) CN102804576B (ja)
AU (1) AU2011230323B2 (ja)
BR (1) BR112012024228B1 (ja)
ES (1) ES2847882T3 (ja)
WO (1) WO2011118709A1 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5780074B2 (ja) * 2011-09-09 2015-09-16 ダイキン工業株式会社 スイッチング電源回路の制御装置およびヒートポンプユニット
JP5345716B2 (ja) * 2012-02-16 2013-11-20 シャープ株式会社 空気調和器
EP2840695B1 (en) * 2012-04-20 2018-01-31 Mitsubishi Electric Corporation Power conversion device, motor drive control apparatus provided with power conversion device, air blower and compressor provided with motor drive control apparatus, and air conditioner provided with air blower or compressor
WO2014073567A1 (ja) 2012-11-08 2014-05-15 ダイキン工業株式会社 スイッチング電源回路制御方法
KR102058042B1 (ko) * 2013-03-13 2019-12-20 엘지전자 주식회사 전력변환장치, 및 이를 구비하는 공기조화기
JP6168809B2 (ja) * 2013-03-26 2017-07-26 三菱重工業株式会社 スイッチング電源回路
EP2858224A1 (en) 2013-10-07 2015-04-08 Dialog Semiconductor GmbH Assymetric inductor in multi-phase DCDC converters
JP5804019B2 (ja) * 2013-10-16 2015-11-04 ダイキン工業株式会社 電力変換装置
EP3063861A4 (en) * 2014-01-14 2016-12-28 Mediatek Inc POWER SUPPLY CIRCUITS AND CONTROL METHOD THEREFOR
US10396771B2 (en) 2014-01-14 2019-08-27 Mediatek Inc. Voltage supply circuits and controlling methods therefor
JP6330350B2 (ja) * 2014-02-03 2018-05-30 三菱電機株式会社 電源装置及び電源装置の制御方法
WO2015182335A1 (ja) * 2014-05-30 2015-12-03 株式会社Ihi 非接触給電システム、受電装置及び送電装置
US9755568B2 (en) * 2014-07-09 2017-09-05 Nidec Motor Corporation System and method for detecting loss of input phase by sensing before power rectifier
US10063181B2 (en) * 2014-07-14 2018-08-28 Nidec Motor Corporation System and method for detecting loss of input phase by sensing after power rectifier
EP3205007A1 (en) * 2014-10-06 2017-08-16 IDT Europe GmbH Multi-phase switched power converter
JP2016123148A (ja) * 2014-12-24 2016-07-07 三菱電機株式会社 スイッチング電源装置
WO2018025355A1 (ja) * 2016-08-03 2018-02-08 三菱電機株式会社 電力変換装置、モータ駆動制御装置、送風機、圧縮機および空気調和機
JP6733418B2 (ja) * 2016-08-19 2020-07-29 株式会社富士通ゼネラル 電源装置及びこれを搭載した空気調和機
JP6289574B1 (ja) * 2016-09-30 2018-03-07 三菱電機株式会社 直流電力変換器
JP6897487B2 (ja) * 2017-10-23 2021-06-30 トヨタ自動車株式会社 電源装置
US10044267B1 (en) 2017-12-14 2018-08-07 Dialog Semiconductor (Uk) Limited Current emulation auto-calibration with peak-current servo
JP6782265B2 (ja) * 2018-02-22 2020-11-11 株式会社デンソー 昇圧コンバータ
JP7230735B2 (ja) 2018-08-10 2023-03-01 株式会社デンソー 車両用電力変換装置
US10847989B2 (en) * 2018-11-28 2020-11-24 Robert Bosch Gmbh Consumer arrangement and operating method
KR102681716B1 (ko) * 2021-11-16 2024-07-05 엘지전자 주식회사 전력변환장치 및 이를 포함하는 공기 조화기

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11289766A (ja) 1998-04-03 1999-10-19 Toshiba Ave Co Ltd 電源装置
JP2006136046A (ja) * 2004-11-02 2006-05-25 Foster Electric Co Ltd 力率改善装置
JP2006187140A (ja) * 2004-12-28 2006-07-13 Toshiba Corp コンバータ電源回路
JP2007195282A (ja) * 2006-01-17 2007-08-02 Renesas Technology Corp 電源装置
JP2008086107A (ja) * 2006-09-27 2008-04-10 Matsushita Electric Ind Co Ltd モータ駆動制御装置
JP2009159727A (ja) * 2007-12-26 2009-07-16 Toshiba Corp コンバータ電源回路およびコンバータ電源駆動方法
JP2009163948A (ja) * 2007-12-28 2009-07-23 Toyota Motor Corp 燃料電池システム及び昇圧コンバータ
WO2010023978A1 (ja) * 2008-09-01 2010-03-04 三菱電機株式会社 コンバータ回路、並びにそれを備えたモータ駆動制御装置、空気調和機、冷蔵庫、及び誘導加熱調理器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5905369A (en) * 1996-10-17 1999-05-18 Matsushita Electric Industrial Co., Ltd. Variable frequency switching of synchronized interleaved switching converters
JP3702091B2 (ja) * 1998-03-31 2005-10-05 富士通株式会社 電源装置、および電源回路の制御方法
US6084790A (en) * 1999-01-07 2000-07-04 Astec International Limited Circuit to ensure equal current sharing and switching losses between parallel power devices
AT412388B (de) * 2000-01-20 2005-02-25 Fronius Schweissmasch Prod Verfahren zum regeln einer schweissstromquelle mit einem resonanzkreis
US20040174152A1 (en) * 2003-03-04 2004-09-09 Hwang Jeffrey H. Pulse-skipping switching power converter
ITMI20032095A1 (it) * 2003-10-28 2005-04-29 Roal Electronics S P A Dispositivo per il controllo del fattore di potenza.
US7215560B2 (en) * 2004-12-14 2007-05-08 International Rectifier Corporation EMI noise reduction circuit and method for bridgeless PFC circuit
GB0500183D0 (en) * 2005-01-07 2005-02-16 Koninkl Philips Electronics Nv Switched mode power supply
US8120334B2 (en) * 2006-05-01 2012-02-21 Texas Instruments Incorporated System and method for phase management in a multiphase switching power supply
US8432713B2 (en) * 2008-06-02 2013-04-30 Dell Products, Lp System and method for reducing an input current ripple in a boost converter
JP2010233439A (ja) * 2009-03-03 2010-10-14 Toshiba Corp 電源制御装置、及びそれを用いた電源装置
KR101510181B1 (ko) * 2010-09-06 2015-04-10 삼성전자 주식회사 전원공급회로

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11289766A (ja) 1998-04-03 1999-10-19 Toshiba Ave Co Ltd 電源装置
JP2006136046A (ja) * 2004-11-02 2006-05-25 Foster Electric Co Ltd 力率改善装置
JP2006187140A (ja) * 2004-12-28 2006-07-13 Toshiba Corp コンバータ電源回路
JP2007195282A (ja) * 2006-01-17 2007-08-02 Renesas Technology Corp 電源装置
JP2008086107A (ja) * 2006-09-27 2008-04-10 Matsushita Electric Ind Co Ltd モータ駆動制御装置
JP2009159727A (ja) * 2007-12-26 2009-07-16 Toshiba Corp コンバータ電源回路およびコンバータ電源駆動方法
JP2009163948A (ja) * 2007-12-28 2009-07-23 Toyota Motor Corp 燃料電池システム及び昇圧コンバータ
WO2010023978A1 (ja) * 2008-09-01 2010-03-04 三菱電機株式会社 コンバータ回路、並びにそれを備えたモータ駆動制御装置、空気調和機、冷蔵庫、及び誘導加熱調理器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2555399A4 *

Also Published As

Publication number Publication date
AU2011230323A1 (en) 2012-09-06
CN102804576B (zh) 2016-04-27
KR20120107139A (ko) 2012-09-28
EP2555399B1 (en) 2020-12-09
EP2555399A4 (en) 2017-12-13
US8994343B2 (en) 2015-03-31
KR101346542B1 (ko) 2013-12-31
AU2011230323B2 (en) 2014-02-13
CN102804576A (zh) 2012-11-28
ES2847882T3 (es) 2021-08-04
EP2555399A1 (en) 2013-02-06
JP2011223865A (ja) 2011-11-04
US20120313614A1 (en) 2012-12-13
BR112012024228B1 (pt) 2019-11-12
BR112012024228A2 (pt) 2016-07-12
JP4844696B2 (ja) 2011-12-28

Similar Documents

Publication Publication Date Title
JP4844696B2 (ja) スイッチング電源回路およびスイッチング電源回路の制御方法
JP5822792B2 (ja) 電源回路およびそれを備える空気調和機
AU2011233221B8 (en) Switching Power Supply Circuit
WO2014132943A1 (ja) Dc-ac変換装置及び制御回路
JP6272438B1 (ja) 電力変換装置
JP6439482B2 (ja) コンバータ及び制御回路
US9843269B2 (en) Switching power supply circuit control method
JP2009060691A (ja) インバータ装置及びその設計方法
WO2016098160A1 (ja) 電力変換装置、圧縮機、送風機、および空気調和機
JP5482358B2 (ja) スイッチング電源回路の制御方法
Zeljkovic et al. Efficiency optimized single-stage reconfigurable DC/DC converter for hybrid and electric vehicles
JP2007082332A (ja) Dc−dcコンバータ及びその制御方法
US10811953B2 (en) Power supply device
JP6168211B2 (ja) 電力変換装置
JP6168809B2 (ja) スイッチング電源回路
JPWO2011074154A1 (ja) Dc/dcコンバータ
WO2022130612A1 (ja) 電力変換装置
JP5915753B2 (ja) 電力変換装置
JP2022165252A (ja) 電力変換装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180014255.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759514

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2168/KOLNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011230323

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20127021692

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13579955

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011759514

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011230323

Country of ref document: AU

Date of ref document: 20110324

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012024228

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012024228

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120924