WO2011104996A1 - 熱硬化性樹脂組成物、bステージ熱伝導性シート及びパワーモジュール - Google Patents

熱硬化性樹脂組成物、bステージ熱伝導性シート及びパワーモジュール Download PDF

Info

Publication number
WO2011104996A1
WO2011104996A1 PCT/JP2010/073776 JP2010073776W WO2011104996A1 WO 2011104996 A1 WO2011104996 A1 WO 2011104996A1 JP 2010073776 W JP2010073776 W JP 2010073776W WO 2011104996 A1 WO2011104996 A1 WO 2011104996A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive sheet
thermosetting resin
group
heat conductive
secondary sintered
Prior art date
Application number
PCT/JP2010/073776
Other languages
English (en)
French (fr)
Inventor
山本 圭
西村 隆
研史 三村
元基 正木
平松 星紀
暁紅 殷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201080064596.1A priority Critical patent/CN102770956B/zh
Priority to US13/576,065 priority patent/US9029438B2/en
Priority to DE112010005303.0T priority patent/DE112010005303B4/de
Publication of WO2011104996A1 publication Critical patent/WO2011104996A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49568Lead-frames or other flat leads specifically adapted to facilitate heat dissipation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1027IV
    • H01L2924/10272Silicon Carbide [SiC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/1033Gallium nitride [GaN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15158Shape the die mounting substrate being other than a cuboid
    • H01L2924/15159Side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a thermosetting resin composition, a B-stage heat conductive sheet, and a power module, and in particular, is used to manufacture a heat conductive sheet that transfers heat from a heat generating member such as an electric / electronic device to a heat radiating member.
  • the present invention relates to a thermosetting resin composition and a B-stage heat conductive sheet, and a power module including a heat conductive sheet obtained from the thermosetting resin composition and the B-stage heat conductive sheet.
  • a member for transferring heat from a heat generating member of an electric / electronic device to a heat radiating member is required to be excellent in both thermal conductivity and electric insulation.
  • a heat conductive sheet containing an inorganic filler excellent in heat conductivity and electrical insulation is widely used.
  • the inorganic filler excellent in thermal conductivity and electrical insulation include alumina, boron nitride, silica, and aluminum nitride.
  • hexagonal boron nitride (h-BN) has excellent chemical stability in addition to thermal conductivity and electrical insulation, and is non-toxic and relatively inexpensive. Particularly suitable for use. Since this hexagonal boron nitride has a scaly shape, it is also referred to as scaly boron nitride in this technical field.
  • thermally conductive sheet containing boron nitride examples include isotropic heat such as secondary agglomerated particles formed by agglomerating primary particles of flaky boron nitride and secondary sintered particles obtained by further sintering the particles.
  • isotropic heat such as secondary agglomerated particles formed by agglomerating primary particles of flaky boron nitride and secondary sintered particles obtained by further sintering the particles.
  • secondary particles having conductivity are dispersed in a thermosetting resin matrix (see, for example, Patent Documents 1 and 2).
  • the heat conductivity in the thickness direction of the sheet is enhanced by secondary particles having isotropic heat conductivity.
  • the thermal conductivity of the thermal conductive sheet is improved by increasing the blending amount of the inorganic filler.
  • defects such as voids and cracks are likely to occur in the heat conductive sheet, and the electrical insulation of the heat conductive sheet is lowered. Therefore, the generation of defects in the thermally conductive sheet is suppressed by providing a pressurizing step when producing the thermally conductive sheet.
  • B stage heat conductive sheet a B stage heat conductive sheet
  • a power module is manufactured by placing a B-stage thermally conductive sheet between a lead frame on which a semiconductor element is mounted and a metal plate, and then sealing it with a sealing resin by transfer molding, Generation
  • production of the defect in a heat conductive sheet is suppressed with the shaping
  • the molding pressure If it is too high, the secondary sintered particles will collapse, and the thermal conductivity of the thermal conductive sheet will decrease.
  • the present invention has been made in order to solve the above-described problems, and has excellent thermal conductivity while maintaining electrical insulation by controlling the occurrence location and size of defects such as voids and cracks. It aims at obtaining the thermosetting resin composition which gives the heat conductive sheet which has, and a B-stage heat conductive sheet. Moreover, an object of this invention is to provide the power module excellent in electrical insulation and heat dissipation.
  • the present inventors incorporated secondary sintered particles having voids of a specific size, thereby secondary generation of defects due to deformation relaxation. It was found that the generation of large defects in the base portion (thermosetting resin matrix between the inorganic fillers) of the heat conductive sheet can be suppressed by restricting the voids in the particles and controlling the size of the defects.
  • the present invention is a thermosetting resin composition comprising an inorganic filler and a thermosetting resin matrix component, wherein the inorganic filler is a secondary sintered particle composed of primary particles of scaly boron nitride. And at least a part of the secondary sintered particles has a maximum void diameter of 5 ⁇ m or more and 80 ⁇ m or less.
  • the present invention is a B-stage heat conductive sheet obtained by dispersing an inorganic filler in a thermosetting resin matrix in a B-stage state, and the inorganic filler is composed of primary particles of scaly boron nitride.
  • the B-stage heat conductive sheet is characterized in that the secondary sintered particles are included and at least a part of the secondary sintered particles has a maximum void diameter of 5 ⁇ m or more and 80 ⁇ m or less.
  • the present invention is a thermally conductive sheet in which an inorganic filler is dispersed in a thermosetting resin matrix, and the inorganic filler is secondary sintered composed of primary particles of scaly boron nitride.
  • a power module comprising a thermally conductive sheet containing particles and at least a part of the secondary sintered particles having a maximum void diameter of 5 ⁇ m or more and 80 ⁇ m or less.
  • thermosetting resin composition that provides a thermally conductive sheet having excellent thermal conductivity while maintaining electrical insulation by controlling the occurrence location and size of defects such as voids and cracks, and A B-stage heat conductive sheet can be obtained.
  • the power module excellent in electrical insulation and heat dissipation can be provided.
  • FIG. 2 is a cross-sectional view of a heat conductive sheet obtained from the thermosetting resin composition of Embodiment 1.
  • FIG. It is sectional drawing of the heat conductive sheet obtained from the thermosetting resin composition which does not contain a hollow secondary sintered particle.
  • FIG. 6 is a cross-sectional view of a power module according to a third embodiment.
  • FIG. 10 is a diagram for explaining a manufacturing process for the power module according to the third embodiment.
  • 6 is a graph showing the relationship between the blending amount of the adhesion-imparting agent and the bending strength of the B-stage heat conductive sheet in Experiments 3 and 6 to 8 and Comparative Experiments 1 and 4 to 5.
  • thermosetting resin composition of the present embodiment includes an inorganic filler and a thermosetting resin matrix component.
  • the inorganic filler used in the thermosetting resin composition of the present embodiment includes secondary sintered particles composed of primary particles of scaly boron nitride.
  • secondary sintered particles mean particles obtained by agglomerating and sintering primary particles of scaly boron nitride, and are generally known in the art.
  • thermosetting resin composition of the present embodiment has a void having a maximum void diameter of 5 ⁇ m or more and 80 ⁇ m or less.
  • the thermosetting resin composition of the present embodiment appropriately controls the location and size of defects in the heat conductive sheet by blending secondary sintered particles having such a maximum void diameter. Can do.
  • the maximum gap diameter is less than 5 ⁇ m, defects generated in the base portion of the thermally conductive sheet cannot be suppressed, and the electrical insulation of the thermally conductive sheet is deteriorated.
  • the maximum void diameter exceeds 80 ⁇ m, defects that occur in the base portion of the heat conductive sheet can be suppressed, but defects generated in the voids of the secondary sintered particles become too large, The electrical insulation property of the heat conductive sheet is lowered.
  • the “maximum void diameter of secondary sintered particles” means that a thermally conductive sheet in which secondary sintered particles are dispersed in a thermosetting resin matrix is actually produced, and this heat conduction is achieved. It means a value obtained by actually measuring the maximum diameter of the voids of the secondary sintered particles after taking several photos of the cross-section of the conductive sheet that have been magnified several thousand times with an electron microscope.
  • secondary sintered particles having voids having a maximum void diameter of less than 0.5 ⁇ m are referred to as “solid secondary sintered particles”, and those having voids having a maximum void diameter of 0.5 ⁇ m or more.
  • the secondary sintered particles are referred to as “hollow secondary sintered particles”, and both the solid secondary sintered particles and the hollow secondary sintered particles are referred to as “secondary sintered particles”.
  • the hollow secondary sintered particles 1 have large voids 3 formed between the primary particles 2 of the flaky boron nitride.
  • the maximum void diameter of the hollow secondary sintered particles 1 is preferably 2/3 or less of the average particle diameter of the hollow secondary sintered particles 1.
  • the shell portion around the large void 3 becomes too thin, and the pressing step In this case (for example, the pressure when producing the B-stage thermally conductive sheet or the transfer molding pressure when producing the power module), the large gap 3 may not be maintained.
  • the large voids 3 in the hollow secondary sintered particles 1 are larger than defects generated in the base portion of the heat conductive sheet when the power module is manufactured.
  • the B-stage heat conductive sheet is exposed to a high temperature in a non-pressurized state during the production of the power module.
  • the thermosetting resin matrix melts and flows.
  • the thermosetting resin matrix in the hollow secondary sintered particles 1 having a small capillary force flows out, thereby preventing the occurrence of defects in the base portion of the heat conductive sheet.
  • the capillary phenomenon when the B stage heat conductive sheet is exposed to a high temperature in a non-pressurized state and the thermosetting resin matrix melts and flows is generally expressed by the following equation (1).
  • Can do. h 2T cos ⁇ / ⁇ gr (1)
  • h represents the ease of outflow of the thermosetting resin matrix (m)
  • T represents the surface tension (N / m)
  • represents the contact angle (°)
  • represents heat.
  • g represents the acceleration of gravity (m / m 2 )
  • r represents the diameter of defects generated in the base portion of the heat conductive sheet
  • the hollow secondary sintered particles 1 represents the maximum void diameter (m).
  • the easiness of the flow of the thermosetting resin matrix when the thermosetting resin matrix is melted depends on the diameter of defects generated in the base portion of the heat conductive sheet, the hollow secondary This is related to the maximum void diameter of the sintered particles 1, and the smaller the diameter, the greater the capillary force. That is, the fluidity of the melted thermosetting resin matrix can be controlled by increasing the maximum void diameter of the hollow secondary sintered particles 1 from the diameter of defects generated in the base portion of the heat conductive sheet. .
  • FIG. 2 shows a cross-sectional view of a heat conductive sheet obtained from the thermosetting resin composition of the present embodiment.
  • the heat conductive sheet includes a thermosetting resin matrix 5 and secondary sintered particles (hollow secondary sintered particles 1 and solid secondary sintered particles dispersed in the thermosetting resin matrix 5. 4) and arbitrary scaly boron nitride particles 6 described below.
  • defects 7 are generated in the large voids 3 in the hollow secondary sintered particles 1 and the size of the defects 7 is controlled. Thereby, generation
  • FIG. 3 shows a cross-sectional view of a heat conductive sheet obtained from a thermosetting resin composition that does not contain the hollow secondary sintered particles 1.
  • the heat conductive sheet is composed of a thermosetting resin matrix 5, solid secondary sintered particles 4 dispersed in the thermosetting resin matrix 5, and any scaly boron nitride described below. And particles 6.
  • the voids generated in the base portion the thermosetting resin matrix 5 portion between the inorganic fillers
  • a large defect 7 is generated, and the electrical insulation is lowered.
  • the average major axis of the primary particles 2 of the flaky boron nitride constituting the secondary sintered particles is preferably 15 ⁇ m or less, more preferably 0.1 ⁇ m or more and 8 ⁇ m or less.
  • “the average long diameter of the primary particles 2 of the scaly boron nitride” means actually producing a heat conductive sheet in which the secondary sintered particles are dispersed in the thermosetting resin matrix 5, After taking a number of photographs that were magnified several thousand times with an electron microscope after polishing the cross section of this thermal conductive sheet, the major axis of the primary particles was actually measured, and the value obtained by averaging the measured values means.
  • the scaly boron nitride primary particles 2 When the average major axis of the scaly boron nitride primary particles 2 is larger than 15 ⁇ m, the scaly boron nitride primary particles 2 do not aggregate isotropically and anisotropy occurs in the thermal conductivity of the secondary sintered particles. There are things to do. As a result, a heat conductive sheet having desired heat conductivity may not be obtained.
  • the average particle size of the secondary sintered particles is preferably 20 ⁇ m or more and 180 ⁇ m or less, more preferably 40 ⁇ m or more and 130 ⁇ m or less.
  • the “average particle diameter of the secondary sintered particles” means that a thermally conductive sheet in which the secondary sintered particles are dispersed in the thermosetting resin matrix 5 is actually manufactured, and this heat It was obtained by grinding the cross section of the conductive sheet and taking several photos magnified several thousand times with an electron microscope, then actually measuring the particle size of the secondary sintered particles and averaging the measured values. Mean value. Alternatively, after actually producing a heat conductive sheet in which secondary sintered particles are dispersed in the thermosetting resin matrix 5, this heat conductive sheet is heated at a temperature of 500 ° C.
  • the average value of the particle sizes obtained by particle size distribution measurement by laser diffraction / scattering method is expressed as “secondary firing”. It is good also as "the average particle diameter of a particle.”
  • the average particle size of the secondary sintered particles is less than 20 ⁇ m, a heat conductive sheet having desired heat conductivity may not be obtained.
  • the average particle size of the secondary sintered particles exceeds 180 ⁇ m, it becomes difficult to knead and disperse the secondary sintered particles in the thermosetting resin composition, which may hinder workability and moldability. is there. Furthermore, a heat conductive sheet having a desired thickness cannot be obtained, and the electrical insulation property may be lowered.
  • the maximum particle size of the secondary sintered particles is preferably about 90% or less of the thickness of the heat conductive sheet.
  • the shape of the secondary sintered particles is not limited to a spherical shape, and may be another shape such as a scale shape. However, in the case of a shape other than the spherical shape, the average particle diameter means the length of the long side in the shape.
  • the secondary sintered particles are preferably spherical.
  • Secondary sintered particles can be produced according to a known method using the scaly boron nitride primary particles 2. Specifically, it can be produced by agglomerating primary particles 2 of flaky boron nitride using a known method and then sintering.
  • the sintering temperature is not particularly limited, but is generally about 2,000 ° C.
  • the agglomeration method is not particularly limited, but a slurry obtained by uniformly mixing the scaly boron nitride primary particles 2, the water-soluble binder, and water is sprayed from above and dried while the droplets fall. A spray drying method in which granulation is performed is preferable.
  • the spray drying method is often used for mass production, and it is easy to obtain spherical and fluid granules (secondary agglomerated particles).
  • the size of the voids in the obtained secondary agglomerated particles can be controlled by adjusting the slurry concentration.
  • the primary particles 2 of the flaky boron nitride in the slurry are kept at a low concentration until the secondary aggregated particles after drying from the droplets. The amount of deformation becomes large and becomes hollow secondary aggregated particles.
  • the solid secondary agglomerated particles are spray-dried using a slurry containing 30 parts by mass or more and 120 parts by mass or less of water with respect to 100 parts by mass of the scaly boron nitride primary particles 2.
  • a slurry containing 30 parts by mass or more and 120 parts by mass or less of water with respect to 100 parts by mass of the scaly boron nitride primary particles 2.
  • the hollow secondary agglomerated particles can be produced by performing spray drying using a slurry containing 150 parts by mass or more and 300 parts by mass or less of water with respect to 100 parts by mass of the scaly boron nitride primary particles 2. it can.
  • the proportion of solid secondary aggregated particles is increased.
  • the hollow secondary agglomerated particles and the solid secondary agglomerated particles formed as described above can be made into the hollow secondary sintered particles 1 and the solid secondary sintered particles 4 by sintering, respectively. .
  • the inorganic filler used in the thermosetting resin composition of the present embodiment is composed of the primary particles 2 of the scaly boron nitride constituting the secondary sintered particles, and Alternatively, it may further include primary particles 6 of flaky boron nitride.
  • the average major axis of the scaly boron nitride primary particles 6 is preferably 3 ⁇ m or more and 50 ⁇ m or less.
  • the scaly boron nitride primary particles 6 having an average major axis in such a range are blended, the scaly boron nitride primary particles 6 are filled in a balanced manner between the secondary sintered particles in the heat conductive sheet.
  • the thermal conductivity of the heat conductive sheet can be increased.
  • the filling rate of the scaly boron nitride primary particles 6 in the thermally conductive sheet can be increased, and the heat of the thermally conductive sheet can be increased.
  • the conductivity can be further increased.
  • the average major axis of the scaly boron nitride primary particles 6 is less than 3 ⁇ m, it is necessary to increase the filling amount of the scaly boron nitride primary particles 6 in order to improve the thermal conductivity of the heat conductive sheet.
  • the specific surface area of the scaly boron nitride primary particles 6 is increased, when the heat conductive sheet is produced, the thermosetting resin matrix 5 and the scaly boron nitride primary particles, which are portions having high thermal resistance, are produced. There are cases where the interface with 6 increases and the desired thermal conductivity cannot be obtained.
  • the average major axis exceeds 50 ⁇ m, the size of the primary particles 6 of the flaky boron nitride is too large, and the primary particles 6 of the flaky boron nitride are difficult to be appropriately filled between the secondary sintered particles. Sometimes.
  • the inorganic filler used in the thermosetting resin composition of the present embodiment is from the viewpoint of improving the thermal conductivity and electrical insulation of the thermal conductive sheet, or balancing the thermal conductivity and electrical insulation.
  • a known inorganic powder can be further included.
  • Known inorganic powders include fused silica (SiO 2 ), crystalline silica (SiO 2 ), aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN), silicon carbide (SiC), and the like. These can be used alone or in combination of two or more.
  • the content of the inorganic filler in the thermosetting resin composition of the present embodiment is preferably the content of the inorganic filler in the heat conductive sheet (solid content of the thermosetting resin composition) is preferably 30% by volume or more. More preferably, the amount is 40% by volume or more and 80% by volume or less. When the content of the inorganic filler is less than 30% by volume, the amount of the inorganic filler is too small, and a heat conductive sheet having desired heat conductivity may not be obtained.
  • the content of the hollow secondary sintered particles 1 in the thermosetting resin composition of the present embodiment is the hollow secondary in the heat conductive sheet (solid content of the thermosetting resin composition).
  • the amount of the sintered particles 1 is preferably 3% by volume or more, more preferably 5% by volume or more and 20% by volume or less.
  • the content of the hollow secondary sintered particles 1 is less than 5% by volume, the amount of the hollow secondary sintered particles 1 is too small, and the effect of suppressing the occurrence of defects in the base portion of the heat conductive sheet is obtained. You may not get enough.
  • thermosetting resin matrix component used for the thermosetting resin composition of this Embodiment is a component which provides the thermosetting resin matrix 5 used as the base (base material) of a heat conductive sheet.
  • the thermosetting resin matrix component generally includes a thermosetting resin and a curing agent. It does not specifically limit as a thermosetting resin, A well-known thing can be used in the said technical field.
  • the thermosetting resin include an epoxy resin, an unsaturated polyester resin, a phenol resin, a melamine resin, a silicone resin, and a polyimide resin.
  • a thermosetting resin gives the thermosetting resin matrix 5 excellent in heat resistance from a viewpoint of obtaining the heat conductive sheet excellent in heat resistance.
  • thermosetting resin that provides a thermosetting resin matrix 5 that does not lose its original physical properties even when exposed to a temperature of 180 ° C. to 250 ° C.
  • thermosetting is a heat-resistant epoxy resin.
  • a heat-resistant epoxy resin having two or more epoxy groups in one molecule, preferably having an epoxy equivalent in the range of 100 to 1000, more preferably 150 to 500 is desirable.
  • Examples of preferred heat-resistant epoxy resins include bisphenol A, 2,2-bis (4-hydroxyphenylbutane) (bisphenol B), 1,1′-bis (4-hydroxyphenyl) ethane, bis (4-hydroxyphenyl) ) Glycidyl ether epoxy resins of polyphenol compounds such as methane (bisphenol F), 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, 4-hydroxyphenyl ether, p- (4-hydroxy) phenol, That is, diglycidyl ether bisphenol type epoxy resin; dicyclopentadiene type epoxy resin; naphthalene type epoxy resin; biphenyl type epoxy resin; anthracene type epoxy resin; phenol novolac type epoxy resin, cresol novolac type epoxy resin Novolak type epoxy resins; glycidyl amine type epoxy resin; triphenolmethane type epoxy resins; and Mechiruepikuro type epoxy resins.
  • bisphenol A 2,2-bis (4-hydroxyphenylbutane
  • heat-resistant epoxy resins are generally commercially available, and for example, EPICRON EXA-4710 sold by DIC Corporation, JER YX4000 sold by Japan Epoxy Resin Corporation, and the like can be used. These heat resistant epoxy resins can be used alone or in combination of two or more. Since these heat-resistant epoxy resins are generally solid at room temperature, considering the handling properties of the thermosetting resin composition (especially the handling properties when semi-cured), they are used by dissolving in a liquid epoxy resin at room temperature. It is preferable to do.
  • “normal temperature” generally means 25 ° C. (in the following, the term “normal temperature” is used in the same meaning).
  • the epoxy resin that is liquid at room temperature is not particularly limited, and those known in the technical field can be used.
  • the liquid epoxy resin preferably has two or more epoxy groups in one molecule.
  • Preferred liquid epoxy resins include, for example, bisphenol type epoxy resins such as bisphenol A type epoxy resins and bisphenol F type epoxy resins, cresol novolac type epoxy resins such as O-cresol novolak type epoxy resins, and alicyclic epoxy resins. Can be mentioned.
  • Such a liquid epoxy resin is generally commercially available.
  • JER 828 sold by Japan Epoxy Resin Co., Ltd. or Celoxide 2021P sold by Daicel Chemical Industries, Ltd. can be used.
  • These liquid epoxy resins can be used alone or in combination of two or more.
  • the mass ratio of the heat-resistant epoxy resin (solid epoxy resin) and the liquid epoxy resin may be appropriately adjusted according to the type of the epoxy resin used, but is generally not limited, but is generally 10:90 to 90:10, preferably Is from 30:70 to 70:30.
  • thermosetting resin it does not specifically limit as a hardening
  • examples of the curing agent include alicyclic acid anhydrides such as methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, and hymic anhydride; dodecenyl succinic anhydride, etc.
  • Aliphatic anhydrides aromatic anhydrides such as phthalic anhydride and trimellitic anhydride; organic dihydrazides such as dicyandiamide and adipic dihydrazide; tris (dimethylaminomethyl) phenol; dimethylbenzylamine; 1,8-diazabicyclo (5,4,0) undecene and derivatives thereof; imidazoles such as 2-methylimidazole, 2-ethyl-4-methylimidazole and 2-phenylimidazole; phenol novolak, o-cresol novolak, p-cresol novolak, t- Butylpheno Lunovolak, dicyclopentadiene cresol, polyparavinylphenol, bisphenol A type novolak, xylylene modified novolak, decalin modified novolak, poly (di-o-hydroxyphenyl) methane, poly (di-m-hydroxyphenyl) methane, poly (di Phenolic resins such
  • thermosetting resin composition according to the kind of thermosetting resin to be used, a hardening agent, etc., and generally with respect to 100 mass parts thermosetting resin. It is 0.1 mass part or more and 200 mass parts or less.
  • thermosetting resin matrix 5 Since the primary particles 2 of the flaky boron nitride constituting the secondary sintered particles do not have a functional group capable of reacting with the thermosetting resin matrix component on the surface, secondary sintering with the thermosetting resin matrix 5 is performed. Adhesion between particles may not be sufficient.
  • the thermosetting resin matrix 5 having excellent heat resistance is hard and brittle, and when the amount of inorganic filler such as secondary sintered particles is increased for the purpose of increasing thermal conductivity, the thermal conductive sheet is Often becomes brittle. Actually, in the thermosetting resin composition using the heat-resistant epoxy resin that gives the thermosetting resin matrix 5 having excellent heat resistance, the heat-conductive sheet is manufactured (for example, when the thermosetting resin composition is applied).
  • the thermosetting resin composition of the present embodiment preferably contains a specific adhesion-imparting agent at a specific ratio. By blending this adhesion-imparting agent, the thermosetting resin matrix component can be easily penetrated into the voids of the secondary sintered particles together with the adhesion-imparting agent, and the handling property is not lowered. It becomes possible to obtain the heat conductive sheet which improved the adhesiveness between 5 and secondary sintered particle.
  • FIG. 4 shows an enlarged cross-sectional view of a heat conductive sheet obtained from a thermosetting resin composition containing an adhesion-imparting agent.
  • the adhesion-imparting agent 8 penetrates into the voids in the secondary sintered particles, and the thermosetting resin matrix 5 and the primary particles 2 of the scaly boron nitride constituting the secondary sintered particles. Improve interfacial adhesion. Thereby, the crack and peeling in the interface of the thermosetting resin matrix 5 and secondary sintered particle are suppressed, and the heat conductivity and electrical insulation of a heat conductive sheet improve.
  • FIG. 5 the expanded sectional view of the heat conductive sheet obtained from the thermosetting resin composition which does not contain the adhesion imparting agent 7 is shown in FIG.
  • defects 7 occur at the interface between the thermosetting resin matrix 5 and the secondary sintered particles. This defect 7 causes cracking and peeling of the sheet, and lowers the thermal conductivity and electrical insulation of the thermally conductive sheet.
  • the adhesion imparting agent 8 is a flexible resin having a weight average molecular weight of 600 or more and 70,000 or less, preferably 600 or more and 60,000 or less, and a glass transition temperature of 130 ° C. or less, preferably 100 ° C. or less.
  • the weight average molecular weight of the flexible resin is less than 600, the effect of improving the adhesion between the thermosetting resin matrix 5 and the secondary sintered particles is sufficiently obtained even when the flexible resin is blended. I can't.
  • the weight average molecular weight of the flexible resin exceeds 70,000, the viscosity of the flexible resin increases and the flexible resin hardly penetrates into the voids of the secondary sintered particles.
  • thermosetting resin matrix 5 the effect of improving the adhesion between the thermosetting resin matrix 5 and the secondary sintered particles cannot be sufficiently obtained.
  • glass transition temperature of the flexible resin exceeds 130 ° C., it is difficult for the flexible resin to penetrate into the voids of the secondary sintered particles. The effect of improving the adhesion between the particles is not sufficiently obtained.
  • flexible resins examples include polyvinyl alcohol, acrylic resin, polyvinyl butyral, phenoxy resin, bisphenol type epoxy resin, styrene-based polymer, silicone rubber, styrene-butadiene rubber, butadiene rubber, isoprene rubber, nitrile rubber, butyl rubber, acrylic For example, rubber. These can be used alone or in combination of two or more.
  • bisphenol-type epoxy resins and styrene-based polymers are preferable from the viewpoint of improving the adhesion between the thermosetting resin matrix 5 and the secondary sintered particles.
  • the bisphenol type epoxy resin means an epoxy resin obtained by a reaction of bisphenols such as bisphenol A and bisphenol F with epichlorohydrin, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol A / F. Type epoxy resin.
  • bisphenol type epoxy resins those represented by the following general formula (1) are particularly preferable.
  • A is an aliphatic hydrocarbon, bisphenol A skeleton, bisphenol F skeleton, bisphenol A / F mixed skeleton, naphthalene skeleton, biphenyl skeleton, dicyclopentadiene skeleton, or
  • a bisphenol A skeleton, a bisphenol F skeleton or a bisphenol A / F mixed skeleton B is CH 2 , CH (CH 3 ) or C (CH 3 ) 2 , and n is 0 to 10, preferably Is 1-8.
  • the bisphenol A / F mixed skeleton means a skeleton having both a bisphenol A skeleton and a bisphenol F skeleton.
  • the bisphenol type epoxy resin represented by the general formula (1) is generally commercially available, and for example, JER E1256, E4250, E4275, etc. sold by Japan Epoxy Resin Co., Ltd. can be used.
  • the alkylene oxide-modified bisphenol type epoxy resin refers to one having one or more alkylene oxide groups bonded to oxygen directly bonded to the aromatic ring constituting the bisphenol type epoxy resin.
  • the alkylene oxide group is preferably present as two or more repeating units.
  • the alkylene oxide group is preferably bonded between all aromatic rings in one molecule, and even when directly bonded to oxygen bonded directly to the aromatic ring, it is bonded via an acetal bond or the like. You may do it.
  • alkylene oxide group examples include an ethyleneoxyethyl group, a propyleneoxypropyl group, a poly (ethyleneoxy) ethyl group, a poly (propyleneoxy) propyl group, a group obtained by addition polymerization of ethylene oxide and propylene oxide, and the like.
  • alkylene oxide modified bisphenol type epoxy resin in the present invention is an epoxy resin obtained by a reaction of alkylene oxide modified bisphenols such as alkylene oxide modified bisphenol A and alkylene oxide modified bisphenol F with chlorohydrin, etc. It is represented by general formula (2).
  • B is CH 2 , CH (CH 3 ) or C (CH 3 ) 2
  • X is an ethyleneoxyethyl group, a di (ethyleneoxy) ethyl group, a tri (ethyleneoxy) ethyl group, Tetra (ethyleneoxy) ethyl group, propyleneoxypropyl group, di (propyleneoxy) propyl group, tri (propyleneoxy) propyl group, tetra (propyleneoxy) propyl group, butyleneoxybutyl group, di (butyleneoxy) butyl group, A tri (butyleneoxy) butyl group, a tetra (butyleneoxy) butyl group, an alkylene group having 2 to 15 carbon atoms, or an aliphatic hydrocarbon group having 6 to 17 carbon atoms having a cycloalkane skeleton, and m is 0 -20, preferably 2-5.
  • the alkylene oxide-modified bisphenol-type epoxy resin represented by the general formula (2) is generally commercially available.
  • EPICLON EXA 4850, 4816, 4822, etc. which are sold can be used.
  • the styrenic polymer means a polymer having a styrene unit in the molecular chain.
  • styrene polymers styrene polymers having an epoxy group are preferable.
  • Such styrenic polymers are generally commercially available, and, for example, Marproof (registered trademark) G-0115S, G-0250S, G-1005SA and the like sold by NOF Corporation can be used.
  • the compounding amount of the adhesion imparting agent 8 is in the range of 5 to 30 parts by mass, preferably 5 to 20 parts by mass with respect to 100 parts by mass of the thermosetting resin matrix component.
  • the blending amount of the adhesion imparting agent 8 is less than 5 parts by mass, the amount of the adhesion imparting agent 8 is too small, and the effect of improving the adhesion between the thermosetting resin matrix 5 and the secondary sintered particles. Is not enough.
  • the compounding amount of the adhesion imparting agent 8 exceeds 30 parts by mass, the viscosity of the thermosetting resin composition increases, and defects such as voids are generated in the sheet when the heat conductive sheet is produced. In addition, the electrical insulation of the heat conductive sheet is lowered.
  • the thermosetting resin composition of this Embodiment can contain a coupling agent from a viewpoint of improving the adhesive force of the interface of the thermosetting resin matrix 5 and an inorganic filler.
  • the coupling agent is not particularly limited, and those known in the technical field can be used.
  • Examples of coupling agents include ⁇ -glycidoxypropyltrimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltriethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, ⁇ -mercaptopropyltri And methoxysilane.
  • These coupling agents can be used alone or in combination of two or more.
  • the blending amount of the coupling agent may be appropriately set according to the type of thermosetting resin or coupling agent to be used, but generally 0.01 mass with respect to 100 parts by mass of the thermosetting resin. Part to 5 parts by mass.
  • thermosetting resin composition of the present embodiment can further contain a solvent from the viewpoint of adjusting the viscosity of the composition. It does not specifically limit as a solvent, What is necessary is just to select a well-known thing suitably according to the kind of thermosetting resin and inorganic filler to be used. Examples of such solvents include toluene and methyl ethyl ketone. These can be used alone or in combination of two or more.
  • the amount of the solvent in the thermosetting resin composition is not particularly limited as long as kneading is possible, and generally 40 parts by mass with respect to 100 parts by mass in total of the thermosetting resin and the inorganic filler. The amount is 300 parts by mass or less.
  • thermosetting resin composition of this Embodiment containing the above structural components is not specifically limited, It can carry out according to a well-known method.
  • the thermosetting resin composition of the present embodiment can be manufactured as follows. First, a predetermined amount of thermosetting resin, a necessary amount of curing agent for curing the thermosetting resin, and a predetermined amount of adhesion-imparting agent 8 are mixed if necessary. Next, after adding a solvent to this mixture, an inorganic filler such as secondary sintered particles is added and premixed. In addition, when the viscosity of a mixture is low, it is not necessary to add a solvent.
  • thermosetting resin composition can be obtained by kneading the preliminary mixture using a three roll or a kneader.
  • a coupling agent before a kneading
  • thermosetting resin composition of the present embodiment obtained as described above contains the hollow secondary sintered particles 1, the large size of the hollow secondary sintered particles 1 is large when the power module is manufactured. Defects can be generated only in the gaps 3 and the size of the defects can be controlled to suppress the generation of defects in the base portion of the thermally conductive sheet. That is, it is possible to provide a thermally conductive sheet having excellent thermal conductivity while maintaining the electrical insulation by controlling the occurrence location and size of defects such as voids and cracks.
  • the B-stage heat conductive sheet of the present embodiment is a sheet obtained by semi-curing the thermosetting resin composition described above. That is, the B-stage heat conductive sheet of the present embodiment is a B-stage heat conductive sheet in which an inorganic filler is dispersed in a thermosetting resin matrix in a B-stage state, and the inorganic filler is It includes secondary sintered particles composed of primary particles of flaky boron nitride, and at least a part of the secondary sintered particles has a maximum void diameter of 5 ⁇ m or more and 80 ⁇ m or less.
  • the B-stage heat conductive sheet of the present embodiment can be produced by a method including a step of applying the thermosetting resin composition to a substrate and drying the substrate, and a step of semi-curing the applied dried product.
  • a base material For example, well-known base materials, such as a resin sheet and a film by which the mold release process was carried out, can be used.
  • a B-stage heat conductive sheet with a metal plate using metal plates, such as copper foil, as a base material.
  • the method for applying the thermosetting resin composition is not particularly limited, and a known method such as a doctor blade method can be used.
  • the applied thermosetting resin composition may be dried at ambient temperature, but may be heated to 80 ° C. or higher and 150 ° C. or lower as needed from the viewpoint of promoting the volatilization of the solvent.
  • the semi-curing temperature of the coated and dried product may be appropriately set according to the type of thermosetting resin to be used, but is generally 80 ° C. or higher and 200 ° C. or lower.
  • the semi-curing time is not particularly limited, but is generally 2 minutes or longer and 24 hours or shorter.
  • when semi-curing the coated dried product it may be pressurized as necessary.
  • the pressing pressure in this case is preferably 0.5 MPa or more and 30 MPa or less, more preferably 4 MPa or more and 20 MPa or less, and most preferably 4 MPa or more and 15 MPa or less.
  • the pressing time is not particularly limited, but is generally 5 minutes or more and 60 minutes or less.
  • the B-stage heat conductive sheet of the present embodiment obtained as described above is excellent in adhesiveness with various members such as a heat-generating member, and contains the hollow secondary sintered particles 1, During the production of the power module, defects are generated only in the large voids 3 of the hollow secondary sintered particles 1 and the size of the defects is controlled to suppress the generation of defects in the base portion of the heat conductive sheet. be able to. That is, it is possible to provide a thermally conductive sheet having excellent thermal conductivity while maintaining the electrical insulation by controlling the occurrence location and size of defects such as voids and cracks.
  • the power module of the present embodiment includes a heat conductive sheet obtained from the thermosetting resin composition or the B-stage heat conductive sheet. That is, the power module of the present embodiment is a thermally conductive sheet in which an inorganic filler is dispersed in a thermosetting resin matrix, and the inorganic filler is composed of primary particles of scaly boron nitride. And at least a part of the secondary sintered particles include a thermally conductive sheet having a maximum void diameter of 5 ⁇ m or more and 80 ⁇ m or less.
  • the configuration other than the heat conductive sheet is not particularly limited, and a known power module configuration can be adopted.
  • FIG. 6 is a cross-sectional view of the power module of the present embodiment.
  • the power module includes a heat conductive sheet 11, a heat sink 10 and a lead frame 12 that sandwich the heat conductive sheet 11, and a power semiconductor element 13 mounted on the lead frame 12.
  • the power semiconductor element 13 and the power semiconductor element 13 and the lead frame 12 are wire-bonded with a metal wire 14. Further, parts other than the external connection end of the lead frame 12 and the external heat dissipation part of the heat sink 10 are sealed with a sealing resin 15.
  • members other than the heat conductive sheet 11 are not particularly limited, and those known in the technical field can be used.
  • the power semiconductor element 13 those formed of silicon can be generally used, but it is preferable to use those formed of a wide band gap semiconductor having a larger band gap than silicon.
  • the wide band gap semiconductor include silicon carbide, gallium nitride-based materials, and diamond. Since the power semiconductor element 13 formed of a wide band gap semiconductor has high voltage resistance and high allowable current density, the power semiconductor element 13 can be downsized. And by using the power semiconductor element 13 reduced in size as described above, the power module incorporating the power semiconductor element 13 can be reduced in size.
  • the power semiconductor element 13 formed of a wide band gap semiconductor has high heat resistance, it leads to miniaturization of the heat sink 10, the heat conductive sheet 11, the lead frame 12, etc., and further miniaturization of the power module. It becomes possible. Furthermore, since the power semiconductor element 13 formed of a wide band gap semiconductor has low power loss, the efficiency of the element can be increased.
  • FIG. 7 is a diagram for explaining a manufacturing process of the power module of the present embodiment.
  • a B-stage thermally conductive sheet 16 is formed on the heat sink 10 (step (a)).
  • the B-stage heat conductive sheet can be directly formed on the heat sink 10 using the thermosetting resin composition.
  • the B-stage heat conductive sheet 16 may be disposed on the heat sink 10 after the B-stage heat conductive sheet 16 is separately formed.
  • the heat sink 10 on which the B-stage heat conductive sheet 16 is formed is placed in the transfer mold 20 (step (b)).
  • the lead frame 12 on which the power semiconductor element 13 and the metal wire 14 are mounted is disposed on the B-stage heat conductive sheet 16 (step (c)).
  • the sealing resin 15 is poured into the transfer mold 20 and is pressure-molded to cure the sealing resin 15 (step (d)).
  • Various conditions during the pressure molding are not particularly limited.
  • the molding temperature is 80 ° C. or higher and 250 ° C. or lower, preferably 150 ° C. or higher and 200 ° C. or lower
  • the molding pressure is 5 MPa or higher and 30 MPa or lower
  • the molding time is 30 seconds or longer. 180 seconds or less.
  • the B-stage heat conductive sheet 16 is at a high temperature until the pressure is transmitted. Exposed to no pressure.
  • the B-stage heat conductive sheet 16 produced by pressurization generally undergoes deformation relaxation (expansion) and at the same time, the thermosetting resin matrix melts and flows to the base portion of the B-stage heat conductive sheet 16. Defects occur.
  • the B-stage thermally conductive sheet 16 includes the hollow secondary sintered particles 1 having a predetermined maximum void diameter, the thermosetting resin in the hollow secondary sintered particles 1 having a small capillary force flows out. In addition, the occurrence of defects in the base portion can be prevented.
  • the power module can be obtained by removing the transfer mold 20 (step (e)). In addition, you may post-cure the obtained power module as needed.
  • the heat conductive sheet 11 incorporated in the power module manufactured in this way generates defects only in the large voids 3 of the hollow secondary sintered particles 1, thereby preventing defects in the base portion of the heat conductive sheet.
  • production is suppressed and the magnitude
  • the B-stage heat conductive sheet 16 is used when assembled in the power module, adhesion between the heat conductive sheet 11 and the heat sink 10 and between the heat conductive sheet 11 and the lead frame 12 is also improved.
  • the power module is improved and has excellent reliability.
  • the secondary sintered particles used in Examples and Comparative Examples are sintered at about 2000 ° C. after spray drying using a slurry containing primary particles of boron nitride, a water-soluble binder, and water. It was produced by.
  • the maximum void diameter of the secondary sintered particles was controlled by adjusting the amount of water in the slurry.
  • the maximum pore size of the secondary sintered particles is a number of photographs obtained by preparing a sample in which the secondary sintered particles are embedded in an epoxy resin, polishing the cross section of the sample, and magnifying it several thousand times with an electron microscope. After taking a picture, the maximum diameter of the voids of the secondary sintered particles was actually measured.
  • Example 1 100 parts by mass of a liquid bisphenol A type epoxy resin (Epicoat 828 manufactured by Japan Epoxy Resin Co., Ltd.) and 1 part by mass of 1-cyanomethyl-2-methylimidazole (Curesol 2PN-CN manufactured by Shikoku Kasei Kogyo Co., Ltd.) And 78 parts by mass of methyl ethyl ketone as a solvent were mixed. Thereafter, secondary sintered particles and scaly boron nitride primary particles were added to the mixture as an inorganic filler and premixed.
  • a liquid bisphenol A type epoxy resin Epicoat 828 manufactured by Japan Epoxy Resin Co., Ltd.
  • 1-cyanomethyl-2-methylimidazole Curesol 2PN-CN manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • secondary sintered particles and scaly boron nitride primary particles were added to the mixture as an inorganic filler and premixed.
  • the inorganic filler is a secondary sintered particle having a maximum void diameter of 5 to 30 ⁇ m (average particle diameter of 65 ⁇ m) in the heat conductive sheet and having a maximum void diameter of less than 0.1 ⁇ m.
  • Sintered particles (average particle size: 65 ⁇ m) were added at 10% by volume, and primary particles of flaky boron nitride (average major axis: 30 ⁇ m) were added at 15% by volume.
  • the thermosetting resin composition was obtained by kneading this preliminary mixture with a three roll. Next, this thermosetting resin composition was applied onto a 105 ⁇ m thick copper foil using a doctor blade method, followed by a heat drying treatment at 110 ° C.
  • Example 2 The blending amount of methyl ethyl ketone was 125 parts by mass, and as an inorganic filler, secondary sintered particles (average particle size of 65 ⁇ m) having a maximum void diameter of 5 to 30 ⁇ m in the heat conductive sheet were 5% by volume, and. Except that secondary sintered particles (average particle size 65 ⁇ m) having a maximum void diameter of less than 1 ⁇ m were added in an amount of 20% by volume, and primary particles of flaky boron nitride (average major axis 30 ⁇ m) were added in an amount of 25% by volume, A thermosetting resin composition, a B-stage heat conductive sheet and a power module were obtained in the same manner as in Example 1.
  • Example 3 The blending amount of methyl ethyl ketone was 125 parts by mass, and as an inorganic filler, secondary sintered particles (average particle size of 65 ⁇ m) having a maximum void diameter of 50 to 80 ⁇ m in the heat conductive sheet were 5% by volume, and. Except that secondary sintered particles (average particle size 65 ⁇ m) having a maximum void diameter of less than 1 ⁇ m were added in an amount of 20% by volume, and primary particles of flaky boron nitride (average major axis 30 ⁇ m) were added in an amount of 25% by volume, A thermosetting resin composition, a B-stage heat conductive sheet and a power module were obtained in the same manner as in Example 1.
  • Example 4 The blending amount of methyl ethyl ketone was 125 parts by mass, and as the inorganic filler, secondary sintered particles (average particle size of 65 ⁇ m) having a maximum void diameter of 5 to 30 ⁇ m in the thermally conductive sheet were 10% by volume, and 0.0. Except that the secondary sintered particles having a maximum void diameter of less than 1 ⁇ m (average particle diameter of 65 ⁇ m) are 15% by volume, and the primary particles of flaky boron nitride (average major axis of 30 ⁇ m) are 25% by volume, A thermosetting resin composition, a B-stage heat conductive sheet and a power module were obtained in the same manner as in Example 1.
  • Example 5 The blending amount of methyl ethyl ketone was 125 parts by mass, and as the inorganic filler, secondary sintered particles (average particle diameter of 65 ⁇ m) having a maximum void diameter of 5 to 30 ⁇ m in the heat conductive sheet were 20% by volume, and 0.0. Except that the secondary sintered particles having a maximum void diameter of less than 1 ⁇ m (average particle diameter of 65 ⁇ m) are 5% by volume, and the primary particles of flaky boron nitride (average major axis of 30 ⁇ m) are 25% by volume, A thermosetting resin composition, a B-stage heat conductive sheet and a power module were obtained in the same manner as in Example 1.
  • Example 6 The blending amount of methyl ethyl ketone was 234 parts by mass, and as the inorganic filler, secondary sintered particles (average particle size 65 ⁇ m) having a maximum void diameter of 5 to 30 ⁇ m in the heat conductive sheet were 5% by volume, and 0.0. Except that secondary sintered particles (average particle size 65 ⁇ m) having a maximum void diameter of less than 1 ⁇ m were added to 30% by volume, and primary particles of flaky boron nitride (average major axis 30 ⁇ m) were added to 35% by volume, A thermosetting resin composition, a B-stage heat conductive sheet and a power module were obtained in the same manner as in Example 1.
  • Example 1 The blending amount of methyl ethyl ketone was 78 parts by mass, and as an inorganic filler, secondary sintered particles (average particle size 65 ⁇ m) having a maximum void diameter of less than 0.1 ⁇ m in the heat conductive sheet were 15% by volume, scaly A thermosetting resin composition, a B-stage thermal conductive sheet, and a power module were obtained in the same manner as in Example 1 except that the primary particles (average major axis: 30 ⁇ m) in the shape of boron nitride were added so as to be 15% by volume. It was.
  • secondary sintered particles average particle size 65 ⁇ m having a maximum void diameter of less than 0.1 ⁇ m in the heat conductive sheet were 15% by volume
  • scaly A thermosetting resin composition, a B-stage thermal conductive sheet, and a power module were obtained in the same manner as in Example 1 except that the primary particles (average major axis: 30 ⁇ m) in the shape of boron nitride were
  • thermosetting resin composition (Comparative Example 2)
  • the blending amount of methyl ethyl ketone was 125 parts by mass, and as an inorganic filler, secondary sintered particles (average particle size 65 ⁇ m) having a maximum void diameter of 0.1 to 1 ⁇ m in the heat conductive sheet were 5% by volume, Other than adding secondary sintered particles (average particle size 65 ⁇ m) having a maximum void diameter of less than 0.1 ⁇ m to 20% by volume, and primary particles of flaky boron nitride (average major axis 30 ⁇ m) to 25% by volume Obtained the thermosetting resin composition, the B-stage heat conductive sheet, and the power module in the same manner as in Example 1.
  • the electrical insulating properties of the heat conductive sheets incorporated in the power modules of Examples 1 to 6 and Comparative Examples 1 to 3 were evaluated by measuring the partial discharge start voltage and the breakdown voltage.
  • the partial discharge starting voltage was measured by applying a voltage continuously at a constant boost of 0.5 kV / second to start partial discharge.
  • the dielectric breakdown voltage measured the voltage which a dielectric sheet breaks down by applying a voltage to the thermally conductive sheet by step boosting every 0.5 kV in oil.
  • the case where the partial discharge start voltage was 3 kV or more was evaluated as ⁇
  • the case where it was less than 3 kV was evaluated as x.
  • the dielectric breakdown voltage the case where the dielectric breakdown voltage was 5 kV or more was rated as “ ⁇ ”, and the case where it was less than 5 kV was rated as “x”.
  • Table 1 The results of these evaluations are shown in Table 1.
  • the thermal conductive sheets incorporated in the power modules of Examples 1 to 6 had both high partial discharge start voltage and dielectric breakdown voltage and good electrical insulation.
  • the heat conductive sheet incorporated in the power module of Comparative Example 1 had low partial discharge start voltage and dielectric breakdown voltage, and electrical insulation was not sufficient.
  • the cross section of this heat conductive sheet was observed with an electron microscope, it was confirmed that a defect of 5 ⁇ m or more was generated in the base part in the heat conductive sheet or the interface part with the secondary sintered particles.
  • the heat conductive sheet incorporated in the power module of Comparative Example 2 also had low partial discharge start voltage and dielectric breakdown voltage, and electrical insulation was not sufficient.
  • this cross section of the thermally conductive sheet was observed with an electron microscope, various parts such as a base portion in the thermally conductive sheet, an interface portion with the secondary sintered particles, and a void portion in the secondary sintered particles It was confirmed that a defect occurred.
  • the heat conductive sheet incorporated in the power module of Comparative Example 3 had a low partial discharge start voltage and insufficient electrical insulation.
  • defects in the thermally conductive sheet were generated in the voids in the secondary sintered particles, but the size of the defect exceeded 100 ⁇ m. I confirmed.
  • thermosetting resin composition and a B-stage heat conductive sheet that provide a heat conductive sheet having excellent heat conductivity while maintaining insulation can be obtained.
  • the power module excellent in electrical insulation and heat dissipation can be provided by using said thermosetting resin composition and B-stage heat conductive sheet.
  • the secondary sintered particles used in this experiment were spray dried using a slurry containing primary particles of boron nitride having an average major axis of 3 ⁇ m, a water-soluble binder, and water, and then fired at about 2,000 ° C. And then sintered (grain growth).
  • the average major axis of the primary particles was prepared by preparing a sample in which secondary sintered particles were embedded in an epoxy resin, and taking several photographs that were magnified several thousand times with an electron microscope by polishing the cross section of the sample. Thereafter, the major axis of the primary particles was actually measured, and the measured value was averaged.
  • Table 2 shows the types and characteristics of the adhesion-imparting agents used in the following experiments.
  • Adhesion imparting agent A-1 19 parts by mass and methyl ethyl ketone MEK (solvent): 181 parts by mass were stirred and mixed, and then a naphthalene type epoxy resin solid at room temperature (EPICLON EXA-4710: manufactured by DIC Corporation): 80 Bisphenol A type epoxy resin (JER828: manufactured by Japan Epoxy Resin Co., Ltd.): 20 parts by mass and 1-cyanoethyl-2-methylimidazole (curing agent, Curesol 2PN-CN: Shikoku Chemical Industry Co., Ltd.) (Product made): 1 part by mass was added and further stirred and mixed.
  • the boron nitride secondary sintered particles prepared above were added to this mixture so as to be 40% by volume with respect to the total volume of all components excluding the solvent, and premixed.
  • This preliminary mixture was further kneaded with a three-roll to obtain a thermosetting resin composition in which secondary sintered particles of boron nitride were uniformly dispersed.
  • thermosetting resin composition was obtained in the same manner as in Experiment 1 except that the adhesion imparting agent A-2 was used instead of the adhesion imparting agent A-1.
  • Example 3 A thermosetting resin composition was obtained in the same manner as in Experiment 1 except that the adhesion imparting agent A-3 was used instead of the adhesion imparting agent A-1.
  • Example 4 A thermosetting resin composition was obtained in the same manner as in Experiment 1 except that the adhesion promoter A-5 was used in place of the adhesion promoter A-1.
  • thermosetting resin composition was obtained in the same manner as in Experiment 1 except that the adhesion imparting agent A-6 was used instead of the adhesion imparting agent A-1.
  • Adhesion imparting agent A-1 Heat was applied in the same manner as in Experiment 1, except that 5 mass parts of adhesion imparting agent A-3 was used instead of 19 parts by mass, and the addition amount of methyl ethyl ketone MEK was changed to 160 parts by mass. A curable resin composition was obtained.
  • Adhesion imparting agent A-1 Heat was applied in the same manner as in Experiment 1 except that 11 mass parts of adhesion imparting agent A-3: 11 parts by mass was used and the addition amount of methyl ethyl ketone MEK was changed to 169 parts by mass. A curable resin composition was obtained.
  • Adhesion imparting agent A-1 Heat was applied in the same manner as in Experiment 1 except that 25 mass parts of adhesion imparting agent A-3 was used instead of 19 parts by mass and the addition amount of methyl ethyl ketone MEK was changed to 190 parts by mass. A curable resin composition was obtained. (Experiment 9) A thermosetting resin composition was obtained in the same manner as in Experiment 1 except that the adhesion imparting agent A-8 was used instead of the adhesion imparting agent A-1. (Experiment 10) A thermosetting resin composition was obtained in the same manner as in Experiment 1 except that the adhesion promoter A-9 was used instead of the adhesion promoter A-1.
  • thermosetting resin composition was obtained in the same manner as in Experiment 1 except that (YX4000: manufactured by Japan Epoxy Resin Co., Ltd.) was used.
  • Naphthalene type epoxy resin solid at normal temperature (EPICLON EXA-4710: manufactured by DIC Corporation): 80 parts by mass, bisphenol A type epoxy resin liquid at normal temperature (JER828: manufactured by Japan Epoxy Resin Co., Ltd.): 20 parts by mass, 1- Cyanoethyl-2-methylimidazole (curing agent, Curazole 2PN-CN: manufactured by Shikoku Kasei Kogyo Co., Ltd.): 1 part by mass and methyl ethyl ketone MEK (solvent): 152 parts by mass were mixed with stirring.
  • the boron nitride secondary sintered particles prepared above were added to this mixture so as to be 40% by volume with respect to the total volume of all components excluding the solvent, and premixed.
  • This preliminary mixture was further kneaded with a three-roll to obtain a thermosetting resin composition in which secondary sintered particles of boron nitride were uniformly dispersed.
  • thermosetting resin composition was obtained in the same manner as in Experiment 1 except that the adhesion imparting agent A-4 was used instead of the adhesion imparting agent A-1.
  • Comparative Experiment 3 A thermosetting resin composition was obtained in the same manner as in Experiment 1 except that the adhesion imparting agent A-7 was used instead of the adhesion imparting agent A-1.
  • Adhesion imparting agent A-1 Heat was applied in the same manner as in Experiment 1 except that 3 mass parts of adhesion imparting agent A-3 was used instead of 19 parts by mass and the addition amount of methyl ethyl ketone MEK was changed to 157 parts by mass. A curable resin composition was obtained.
  • Adhesion imparting agent A-1 Heat was applied in the same manner as in Experiment 1, except that 34 mass parts of adhesion imparting agent A-3 was used instead of 19 parts by mass, and the addition amount of methyl ethyl ketone MEK was changed to 203 parts by mass. A curable resin composition was obtained.
  • thermosetting resin compositions obtained in Experiments 1 to 11 and Comparative Experiments 1 to 5 is applied to a heat-dissipating member having a thickness of 105 ⁇ m by a doctor blade method, and then heated and dried at 110 ° C. for 15 minutes. Thus, a dried product having a thickness of 100 ⁇ m was obtained.
  • two sheets of the coated dried product formed on the heat radiating member are stacked so that the coated dried product side is inside, and then semi-cured by heating at 120 ° C. for 20 minutes while applying a pressurization pressure of 5 MPa (B Stage)
  • a thermally conductive sheet was obtained.
  • the B-stage heat conductive sheet is completely cured by heating at 160 ° C. for 3 hours while further pressurizing it with a press pressure of 5 MPa, and the heat conductive sheet (thickness 200 ⁇ m) sandwiched between two heat radiating members.
  • the heat conductivity in the sheet thickness direction of the heat conductive sheet sandwiched between the two heat radiating members was measured by a laser flash method.
  • the measurement result of this thermal conductivity is based on the thermal conductivity obtained with the thermal conductive sheet of Comparative Experiment 1, and the relative value of the thermal conductivity obtained with the thermal conductive sheet of each experiment or each comparative experiment ( It is shown in Table 3 as [value of [thermal conductivity obtained with thermal conductive sheet of each experiment or comparative experiment] / [thermal conductivity obtained with thermal conductive sheet of comparative experiment 1]).
  • the dielectric breakdown electric field (BDE) of the thermal conductive sheet is the dielectric breakdown voltage (BDV) measured by applying a voltage at a constant boost of 1 kV / second to the thermal conductive sheet sandwiched between heat radiating members in oil. ) Divided by the thickness of the thermally conductive sheet.
  • BDE dielectric breakdown electric field
  • the measurement result of the bending strength is based on the bending strength obtained with the heat conductive sheet of Comparative Experiment 1, and the relative value of the bending strength obtained with the heat conductive sheet of each experiment or each comparative experiment ([each experiment Or it was shown in Table 3 as a value of (bending strength obtained with the heat conductive sheet of each comparative experiment] / [bending strength obtained with the heat conductive sheet of the comparative experiment 1].
  • thermally conductive sheet (thickness: 200 ⁇ m) was obtained in the same manner as described above except that the release-treated film was used in place of the heat radiating member, and the coated dried product was completely cured and then the film was removed. .
  • the glass transition temperature was measured using the dynamic viscoelasticity measuring apparatus. The results are shown in Table 3.
  • Table 3 also summarizes the types and blending amounts of the components used in each experiment and comparative experiment. The amount of each component is part by mass.
  • thermosetting in which a flexible resin having a weight average molecular weight of 600 or more and 70,000 or less and a glass transition temperature of 130 ° C. or less is blended as an adhesion-imparting agent at a predetermined ratio. It was found that the conductive resin compositions (Experiments 1 to 11) give a heat conductive sheet having high heat conductivity and dielectric breakdown voltage and excellent heat resistance. It was also found that this thermosetting resin composition has a high bending strength in a semi-cured state (B stage state) and can prevent cracking and chipping of the sheet during the production of the heat conductive sheet.
  • thermosetting resin composition that does not contain an adhesion-imparting agent
  • a heat that contains a flexible resin whose weight average molecular weight or glass transition temperature is not within a predetermined range as an adhesion-imparting agent In the curable resin composition (Comparative Experiments 2 and 3) and the thermosetting resin composition (Comparative Experiments 4 and 5) in which the compounding amount of the adhesion imparting agent is not appropriate, the heat resistance was sufficient, but the thermal conductivity. Either the dielectric breakdown voltage or the bending strength was not sufficient.
  • FIG. 8 is a graph showing the relationship between the bending strength of the B-stage heat conductive sheet.
  • the blending amount of the adhesion-imparting agent is in the range of 5 parts by mass or more and 30 parts by mass or less, sufficient bending strength can be obtained, and at the time of manufacturing the heat conductive sheet (particularly, B stage state Handling at the time of molding and processing in).
  • the blending amount of the adhesion imparting agent is within this range, the dielectric breakdown voltage is increased.
  • the blending amount of the adhesion-imparting agent is not in the range of 5 parts by mass or more and 30 parts by mass or less, sufficient bending strength cannot be obtained, and the heat conductive sheet is manufactured (particularly, molding in the B stage state). ⁇ During processing, cracks and chipping occur, resulting in poor handling. In addition, if the compounding amount of the adhesion-imparting agent is not within this range, the dielectric breakdown voltage is also lowered.
  • the adhesion-imparting agent when the blending amount of the adhesion-imparting agent is blended within a predetermined range, the adhesion between the thermosetting resin matrix and the secondary sintered particles is improved, and the electrical insulation is lowered. It is considered that cracking and peeling of the thermal conductive sheet that is the cause are suppressed.
  • the adhesion promoter when the adhesion promoter is not blended, the effect of improving the adhesion between the thermosetting resin matrix and the secondary sintered particles cannot be obtained, and the blending amount of the adhesion promoter is small. In the case where the effect of improving the adhesion between the thermosetting resin matrix and the secondary sintered particles is insufficient, and the amount of the adhesion imparting agent is too large, the solvent is not used during the production of the heat conductive sheet.
  • thermosetting resin composition of Experiments 1 to 11 was used and sealed with a sealing resin by a transfer molding method to produce a power module.
  • this power module after attaching a thermocouple to the lead frame and the central part of the copper heat sink, the power module was operated and the temperatures of the lead frame and the heat sink were measured.
  • all power modules using the heat conductive sheets obtained from the thermosetting resin compositions of Examples 1 to 11 had a small temperature difference between the lead frame and the heat sink and were excellent in heat dissipation. .
  • thermosetting resin composition that gives a heat conductive sheet excellent in the above.
  • the heat conductive sheet excellent in heat resistance, heat conductivity, and electrical insulation can be provided by using this thermosetting resin composition.
  • the power module excellent in heat resistance and heat dissipation can be provided by using this thermosetting resin composition and a heat conductive sheet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

 本発明は、無機充填材及び熱硬化性樹脂マトリックス成分を含む熱硬化性樹脂組成物であって、前記無機充填材は、鱗片状窒化ホウ素の一次粒子から構成される二次焼結粒子を含み、且つ前記二次焼結粒子の少なくとも一部が、5μm以上80μm以下の最大空隙径を有することを特徴とする熱硬化性樹脂組成物である。この熱硬化性樹脂組成物は、ボイドやクラックなどの欠陥の発生箇所及び大きさを制御して電気絶縁性を保持しつつ、優れた熱伝導性を有する熱伝導性シートを与えることができる。

Description

熱硬化性樹脂組成物、Bステージ熱伝導性シート及びパワーモジュール
 本発明は、熱硬化性樹脂組成物、Bステージ熱伝導性シート及びパワーモジュールに関し、特に、電気・電子機器などの発熱部材から放熱部材へ熱を伝達させる熱伝導性シートを製造するために用いられる熱硬化性樹脂組成物及びBステージ熱伝導性シート、並びに熱硬化性樹脂組成物及びBステージ熱伝導性シートから得られる熱伝導性シートを具備するパワーモジュールに関する。
 電気・電子機器の発熱部材から放熱部材へ熱を伝達させる部材には、熱伝導性及び電気絶縁性の両方に優れていることが要求される。このような要求を満たすものとして、熱伝導性及び電気絶縁性に優れた無機充填材を配合した熱伝導性シートが広く用いられている。ここで、熱伝導性及び電気絶縁性に優れた無機充填材としては、アルミナ、窒化ホウ素、シリカ、窒化アルミニウムなどが挙げられる。その中でも六方晶窒化ホウ素(h-BN)は、熱伝導性及び電気絶縁性に加えて化学的安定性にも優れており、しかも無毒性且つ比較的安価でもあることから、熱伝導性シートに使用するのに特に適している。この六方晶窒化ホウ素は、鱗片状の形状を有しているため、当該技術分野では鱗片状窒化ホウ素とも称されている。
 窒化ホウ素を含む熱伝導性シートとしては、鱗片状窒化ホウ素の一次粒子を凝集して形成した二次凝集粒子や、これをさらに焼結させた二次焼結粒子のような等方的な熱伝導性を有する二次粒子を熱硬化性樹脂マトリックス中に分散させたものが提案されている(例えば、特許文献1及び2参照)。このような熱伝導性シートは、等方的な熱伝導性を有する二次粒子によってシートの厚さ方向の熱伝導性が高められている。
 ところで、近年、電気・電子機器の高耐圧・大電流化に伴い、各種半導体素子の発熱温度が高くなっている。そこで、この各種半導体素子の熱を効率良く放散させるために、無機充填材の配合量を多くすることによって熱伝導性シートの熱伝導性を向上させている。しかし、無機充填材の配合量を多くすると、熱伝導性シート内にボイドやクラックなどの欠陥が発生し易くなり、熱伝導性シートの電気絶縁性が低下してしまう。そのため、熱伝導性シートを作製する際に加圧工程を設けることよって熱伝導性シート内の欠陥の発生を抑制している。例えば、熱伝導性シートを備えたパワーモジュールにおいては、パワーモジュールに組み込む前のBステージ状態の熱伝導性シート(以下、「Bステージ熱伝導性シート」という。)を作製する際に、加圧工程を設けることによってBステージ熱伝導性シート内の欠陥の発生を抑制している。また、半導体素子が搭載されたリードフレームと金属板との間にBステージ熱伝導性シートを配置した後、これをトランスファモールド成形により封止樹脂で封止することによってパワーモジュールを製造する場合、トランスファモールド成形時の成形圧力によって熱伝導性シート内の欠陥の発生を抑制している。
特開2003-60134号公報 国際公開第2009/041300号公報
 しかしながら、パワーモジュールを製造する際のトランスファモールド成形では、Bステージ熱伝導性シートに圧力がかかるまでには一定の時間を要するため、圧力がかかる前の高温無加圧時に、加圧して作製されたBステージ熱伝導性シートが変形緩和(膨張)して熱伝導性シート内に欠陥が発生する。これは、加圧によって作製されたBステージ熱伝導性シートに歪や残留応力が生じていることに起因している。この時、熱伝導性シートに発生した欠陥は、いくつか集まって大きくなり易く、この大きな欠陥によって熱伝導性シートの電気絶縁性が著しく低下してしまう。そして、この熱伝導性シートに発生した欠陥は、トランスファモールド成形時の成形圧力によっても低減することが難しい。なお、トランスファモールド成形時の成形圧力を高めることによって熱伝導性シート内の欠陥を低減することができるとも考えられるが、特に、無機充填材として二次焼結粒子を用いる場合には、成形圧力を高くし過ぎると、二次焼結粒子が崩れてしまい、熱伝導性シートの熱伝導性が低下してしまう。
 本発明は、前記のような課題を解決するためになされたものであり、ボイドやクラックなどの欠陥の発生箇所及び大きさを制御して電気絶縁性を保持しつつ、優れた熱伝導性を有する熱伝導性シートを与える熱硬化性樹脂組成物及びBステージ熱伝導性シートを得ることを目的とする。
 また、本発明は、電気絶縁性及び熱放散性に優れたパワーモジュールを提供することを目的とする。
 本発明者らは、上記のような問題を解決すべく鋭意研究した結果、特定の大きさの空隙を有する二次焼結粒子を配合することで、変形緩和による欠陥の発生を二次焼結粒子の空隙内に規制すると共にその欠陥の大きさを制御し、熱伝導性シートのベース部分(無機充填材間の熱硬化性樹脂マトリックス)における大きな欠陥の発生を抑制し得ることを見出した。
 すなわち、本発明は、無機充填材及び熱硬化性樹脂マトリックス成分を含む熱硬化性樹脂組成物であって、前記無機充填材は、鱗片状窒化ホウ素の一次粒子から構成される二次焼結粒子を含み、且つ前記二次焼結粒子の少なくとも一部が、5μm以上80μm以下の最大空隙径を有することを特徴とする熱硬化性樹脂組成物である。
 また、本発明は、無機充填材をBステージ状態の熱硬化性樹脂マトリックス中に分散してなるBステージ熱伝導性シートであって、前記無機充填材は、鱗片状窒化ホウ素の一次粒子から構成される二次焼結粒子を含み、且つ前記二次焼結粒子の少なくとも一部が、5μm以上80μm以下の最大空隙径を有することを特徴とするBステージ熱伝導性シートである。
 さらに、本発明は、無機充填材を熱硬化性樹脂マトリックス中に分散してなる熱伝導性シートであって、前記無機充填材は、鱗片状窒化ホウ素の一次粒子から構成される二次焼結粒子を含み、且つ前記二次焼結粒子の少なくとも一部が、5μm以上80μm以下の最大空隙径を有する熱伝導性シートを具備することを特徴とするパワーモジュールである。
 本発明によれば、ボイドやクラックなどの欠陥の発生箇所及び大きさを制御して電気絶縁性を保持しつつ、優れた熱伝導性を有する熱伝導性シートを与える熱硬化性樹脂組成物及びBステージ熱伝導性シートを得ることができる。
 また、本発明によれば、電気絶縁性及び熱放散性に優れたパワーモジュールを提供することができる。
5μm以上80μm以下の最大空隙径を有する二次焼結粒子の断面図である。 実施の形態1の熱硬化性樹脂組成物から得られる熱伝導性シートの断面図である。 中空二次焼結粒子を含まない熱硬化性樹脂組成物から得られる熱伝導性シートの断面図である。 密着性付与剤を含む熱硬化性樹脂組成物から得られる熱伝導性シートの拡大断面図である。 密着性付与剤を含まない熱硬化性樹脂組成物から得られる熱伝導性シートの拡大断面図である。 実施の形態3のパワーモジュールの断面図である。 実施の形態3のパワーモジュールの製造工程を説明するための図である。 実験3及び6~8、比較実験1及び4~5における密着性付与剤の配合量と、Bステージ熱伝導性シートの曲げ強度との関係を示すグラフである。
 実施の形態1.
 本実施の形態の熱硬化性樹脂組成物は、無機充填材及び熱硬化性樹脂マトリックス成分を含む。
 本実施の形態の熱硬化性樹脂組成物に用いられる無機充填材は、鱗片状窒化ホウ素の一次粒子から構成される二次焼結粒子を含む。本明細書において「二次焼結粒子」は、鱗片状窒化ホウ素の一次粒子を凝集して焼結させたものを意味し、当該技術分野において一般的に公知である。しかしながら、一般的な二次焼結粒子は、鱗片状窒化ホウ素の一次粒子の間に形成された小さな空隙(具体的には0.5μm未満の最大空隙径を有する空隙)をもつのに対し、本実施の形態の熱硬化性樹脂組成物に用いられる二次焼結粒子の少なくとも一部は、5μm以上80μm以下の最大空隙径を有する空隙をもつ。本実施の形態の熱硬化性樹脂組成物は、このような最大空隙径を有する二次焼結粒子を配合することにより、熱伝導性シートにおける欠陥の発生箇所及び大きさを適切に制御することができる。最大空隙径が5μm未満であると、熱伝導性シートのベース部分に発生する欠陥を抑制することができず、熱伝導性シートの電気絶縁性が低下する。一方、最大空隙径が80μmを超えると、熱伝導性シートのベース部分に発生する欠陥については抑制することができるものの、二次焼結粒子の空隙内に発生する欠陥が大きくなりすぎてしまい、熱伝導性シートの電気絶縁性が低下する。
 ここで、本明細書において「二次焼結粒子の最大空隙径」とは、熱硬化性樹脂マトリックス中に二次焼結粒子が分散された熱伝導性シートを実際に作製し、この熱伝導性シートの断面を研磨して電子顕微鏡で数千倍に拡大した写真を数枚撮影した後、二次焼結粒子の空隙の最大径を実際に測定することによって得た値を意味する。
 以下、本明細書において、0.5μm未満の最大空隙径を有する空隙をもつ二次焼結粒子を「中実二次焼結粒子」、0.5μm以上の最大空隙径を有する空隙をもつ二次焼結粒子を「中空二次焼結粒子」、中実二次焼結粒子及び中空二次焼結粒子の両方を「二次焼結粒子」という。
 ここで、中空二次焼結粒子の断面図を図1に示す。図1に示すように、中空二次焼結粒子1は、鱗片状窒化ホウ素の一次粒子2の間に形成された大きな空隙3を有する。
 この中空二次焼結粒子1の最大空隙径は、中空二次焼結粒子1の平均粒径の2/3以下であることが好ましい。中空二次焼結粒子1の最大空隙径が、中空二次焼結粒子1の平均粒径の2/3を超えると、大きな空隙3周りの殻の部分が薄くなりすぎてしまい、加圧工程の際(例えば、Bステージ熱伝導性シートを作製する際の圧力や、パワーモジュールを作製する際のトランスファモールド成形圧力)に、大きな空隙3を維持できないことがある。
 この中空二次焼結粒子1中の大きな空隙3は、パワーモジュールの作製時において熱伝導性シートのベース部分に発生する欠陥に比べて大きい。このような大きな空隙3を有する中空二次焼結粒子1を熱硬化性樹脂組成物に配合した場合、パワーモジュールの作製時において、Bステージ熱伝導性シートが無加圧状態で高温にさらされると、変形緩和が発生すると同時に熱硬化性樹脂マトリックスが溶融して流動する。そして、変形緩和による膨張によって、毛細管力が小さい中空二次焼結粒子1内の熱硬化性樹脂マトリックスが流出し、熱伝導性シートのベース部分における欠陥の発生を防止する。
 ここで、Bステージ熱伝導性シートが無加圧状態で高温にさらされ、熱硬化性樹脂マトリックスが溶融して流動する際の毛細管現象は、一般的に、以下の式(1)によって表すことができる。
 h=2Tcosθ/ρgr (1)
 上記式(1)中、hは熱硬化性樹脂マトリックスの流出し易さ(m)を表し、Tは表面張力(N/m)を表し、θは接触角(°)を表し、ρは熱硬化性樹脂マトリックスの密度(kg/m3)を表し、gは重力加速度(m/m2)を表し、rは熱伝導性シートのベース部分に発生する欠陥の径及び中空二次焼結粒子1の最大空隙径(m)を表す。
 この式(1)からわかるように、熱硬化性樹脂マトリックスが溶融した際の熱硬化性樹脂マトリックスの流出し易さは、熱伝導性シートのベース部分に発生する欠陥の径や、中空二次焼結粒子1の最大空隙径と関係しており、これらの径が小さいものほど毛細管力が大きいといえる。つまり、熱伝導性シートのベース部分に発生する欠陥の径よりも中空二次焼結粒子1の最大空隙径を大きくすることで、溶融した熱硬化性樹脂マトリックスの流動性を制御することができる。
 次に、本実施の形態の熱硬化性樹脂組成物から得られる熱伝導性シートの断面図を図2に示す。図2において、熱伝導性シートは、熱硬化性樹脂マトリックス5と、熱硬化性樹脂マトリックス5中に分散された二次焼結粒子(中空二次焼結粒子1及び中実二次焼結粒子4)及び下記で説明する任意の鱗片状窒化ホウ素の一次粒子6とから構成されている。この熱伝導性シートでは、中空二次焼結粒子1内の大きな空隙3に欠陥7を生じさせると共に、その欠陥7の大きさを制御している。これにより、熱伝導性シートのベース部分(無機充填材間の熱硬化性樹脂マトリックス5部分)における欠陥の発生を抑制することができる。
 他方、中空二次焼結粒子1を含まない熱硬化性樹脂組成物から得られる熱伝導性シートの断面図を図3に示す。図3において、熱伝導性シートは、熱硬化性樹脂マトリックス5と、熱硬化性樹脂マトリックス5中に分散された中実二次焼結粒子4及び下記で説明する任意の鱗片状窒化ホウ素の一次粒子6とから構成されている。この熱伝導性シートでは、ベース部分(無機充填材間の熱硬化性樹脂マトリックス5部分)に発生する空隙を制御することができないために大きな欠陥7が発生し、電気絶縁性が低下する。
 つまり、パワーモジュールを製造する際のトランスファモールド成形では、Bステージ熱伝導性シートに圧力がかかるまでには一定の時間を要するため、圧力がかかる前の高温無加圧時に、加圧して作製されたBステージ熱伝導性シートが変形緩和(膨張)すると同時に熱硬化性樹脂マトリックス5が溶融して流動し、熱伝導性シート内に欠陥7が発生する。しかし、所定の中空二次焼結粒子1を配合した本実施の形態の熱硬化性樹脂組成物から作製したBステージ熱伝導性シートを用いれば、この欠陥7を中空二次焼結粒子1の大きな空隙3内にのみ発生させると共に、その欠陥7の大きさを制御し、熱伝導性シートのベース部分における欠陥7の発生を抑制することができる。その結果、熱伝導性シートの電気絶縁性の低下を防止することができる。
 二次焼結粒子を構成する鱗片状窒化ホウ素の一次粒子2の平均長径は、好ましくは15μm以下、より好ましくは0.1μm以上8μm以下である。ここで、本明細書において「鱗片状窒化ホウ素の一次粒子2の平均長径」とは、熱硬化性樹脂マトリックス5中に二次焼結粒子が分散された熱伝導性シートを実際に作製し、この熱伝導性シートの断面を研磨して電子顕微鏡で数千倍に拡大した写真を数枚撮影した後、一次粒子の長径を実際に測定し、その測定値を平均することによって求めた値を意味する。鱗片状窒化ホウ素の一次粒子2の平均長径が15μmよりも大きいと、鱗片状窒化ホウ素の一次粒子2が等方的に凝集せず、二次焼結粒子の熱伝導性に異方性が発生することがある。その結果、所望の熱伝導性を有する熱伝導性シートが得られないことがある。
 二次焼結粒子の平均粒径は、好ましくは20μm以上180μm以下、より好ましくは40μm以上130μm以下である。ここで、本明細書において「二次焼結粒子の平均粒径」とは、熱硬化性樹脂マトリックス5中に二次焼結粒子が分散された熱伝導性シートを実際に作製し、この熱伝導性シートの断面を研磨して電子顕微鏡で数千倍に拡大した写真を数枚撮影した後、二次焼結粒子の粒径を実際に測定し、その測定値を平均することによって求めた値を意味する。或いは、熱硬化性樹脂マトリックス5中に二次焼結粒子が分散された熱伝導性シートを実際に作製した後、この熱伝導性シートを、電気炉を用いて500℃~800℃の温度で空気雰囲気中にて5~10時間程度熱処理して灰化することによって得た二次焼結粒子について、レーザー回折・散乱法による粒度分布測定によって得られた粒径の平均値を「二次焼結粒子の平均粒径」としてもよい。二次焼結粒子の平均粒径が20μm未満であると、所望の熱伝導性を有する熱伝導性シートが得られないことがある。一方、二次焼結粒子の平均粒径が180μmを超えると、熱硬化性樹脂組成物中に二次焼結粒子を混練分散させることが難しくなり、作業性や成形性に支障を生じることがある。さらに、所望の厚さを有する熱伝導性シートが得られず、電気絶縁性が低下することもある。
 また、二次焼結粒子の最大粒径は、熱伝導性シートの厚さに対して大きすぎると界面を伝わって電気絶縁性が低下するおそれがある。よって、二次焼結粒子の最大粒径は、熱伝導性シートの厚さの約9割以下であることが好ましい。
 なお、二次焼結粒子の形状は、球状に限定されず、鱗片状などの他の形状であってもよい。ただし、球状以外の他の形状の場合、平均粒径は当該形状における長辺の長さを意味する。また、球状の二次焼結粒子であれば、熱硬化性樹脂組成物を製造する際に、熱硬化性樹脂マトリックス成分の流動性を確保しつつ、二次焼結粒子の配合量を高めることができるため、二次焼結粒子は球状であることが好ましい。
 二次焼結粒子は、鱗片状窒化ホウ素の一次粒子2を用い、公知の方法に従って製造することができる。具体的には、鱗片状窒化ホウ素の一次粒子2を公知の方法を用いて凝集させた後、焼結させることによって作製することができる。ここで、焼結温度は特に限定されないが、一般的に2,000℃程度である。凝集方法としては特に限定されないが、鱗片状窒化ホウ素の一次粒子2と、水溶性バインダと、水とを均一に混合して得たスラリーを上部から噴霧し、液滴が落下する間に乾燥と造粒とを行うスプレードライ法が好ましい。スプレードライ法は、大量生産によく用いられ、球状で流動性の良い顆粒(二次凝集粒子)が得られ易いためである。このスプレードライ法において、得られる二次凝集粒子内の空隙の大きさは、スラリー濃度を調製することによって制御することができる。スプレードライ法では、液滴の落下と同時に乾燥を行うことから、スラリー中の鱗片状窒化ホウ素の一次粒子2を低濃度にしておくことによって、液滴から乾燥後の二次凝集粒子になるまでの変形量が大きくなり、中空二次凝集粒子となる。逆に、スラリー中の鱗片状窒化ホウ素の一次粒子2を高濃度にしておくことによって、液滴から乾燥後の二次凝集粒子になるまでの変形量が小さくなり、中実二次凝集粒子となる。
 具体的には、中実二次凝集粒子は、100質量部の鱗片状窒化ホウ素の一次粒子2に対して30質量部以上120質量部以下の水を含むスラリーを用いてスプレードライを行うことによって作製することができる。スラリー中の水が上記範囲よりも少ないと、スラリー粘度が高くなって流動性が低くなり、噴霧の際にスプレードライヤーが閉塞して連続運転ができなくなるという不都合が起こることがある。スラリー中の水が上記範囲よりも多いと、中空二次凝集粒子が形成される割合が多くなる。一方、中空二次凝集粒子は、100質量部の鱗片状窒化ホウ素の一次粒子2に対して150質量部以上300質量部以下の水を含むスラリーを用いてスプレードライを行うことによって作製することができる。スラリー中の水が上記範囲よりも少ないと、中実二次凝集粒子が形成される割合が多くなる。
 上記のようにして形成された中空二次凝集粒子及び中実二次凝集粒子は、焼結させることにより、それぞれ中空二次焼結粒子1及び中実二次焼結粒子4とすることができる。
 本実施の形態の熱硬化性樹脂組成物に用いられる無機充填材は、熱伝導性シートの熱伝導性を向上させる観点から、二次焼結粒子を構成する鱗片状窒化ホウ素の一次粒子2とは別に、鱗片状窒化ホウ素の一次粒子6をさらに含むことができる。この鱗片状窒化ホウ素の一次粒子6の平均長径は、3μm以上50μm以下であることが好ましい。かかる範囲の平均長径を有する鱗片状窒化ホウ素の一次粒子6を配合すれば、熱伝導性シート中で二次焼結粒子の間に鱗片状窒化ホウ素の一次粒子6がバランスよく充填されるので、熱伝導シートの熱伝導性を高めることができる。特に、鱗片状窒化ホウ素の一次粒子6の平均長径が5μm以上20μm以下であると、熱伝導性シートにおける鱗片状窒化ホウ素の一次粒子6の充填率を高くすることができ、熱伝導シートの熱伝導性をより一層高めることができる。鱗片状窒化ホウ素の一次粒子6の平均長径が3μm未満であると、熱伝導性シートの熱伝導性を向上させるために、鱗片状窒化ホウ素の一次粒子6の充填量を高める必要がある。その結果、鱗片状窒化ホウ素の一次粒子6の比表面積が大きくなるため、熱伝導性シートを作製した際に、熱抵抗の大きい部分である熱硬化性樹脂マトリクス5と鱗片状窒化ホウ素の一次粒子6との界面が多くなり、所望の熱伝導性が得られないことがある。一方、かかる平均長径が50μmを超えると、鱗片状窒化ホウ素の一次粒子6のサイズが大きすぎてしまい、鱗片状窒化ホウ素の一次粒子6が二次焼結粒子の間に適切に充填され難くなることがある。
 本実施の形態の熱硬化性樹脂組成物に用いられる無機充填材は、熱伝導性シートの熱伝導性や電気絶縁性を向上させたり、熱伝導性と電気絶縁性とのバランスを図る観点から、本発明の効果を損なわない範囲において、公知の無機粉末をさらに含むことができる。公知の無機粉末としては、溶融シリカ(SiO2)、結晶シリカ(SiO2)、酸化アルミニウム(Al23)、窒化アルミニウム(AlN)、炭化ケイ素(SiC)などを挙げることができる。これらは、単独又は2種以上を組み合わせて用いることができる。
 本実施の形態の熱硬化性樹脂組成物における無機充填材の含有量は、熱伝導性シート(熱硬化性樹脂組成物の固形分)中の無機充填材の含有量が好ましくは30体積%以上、より好ましくは40体積%以上80体積%以下となる量である。無機充填材の含有量が30体積%未満であると、無機充填材の量が少なすぎてしまい、所望の熱伝導性を有する熱伝導性シートが得られないことがある。無機充填材の中でも、本実施の形態の熱硬化性樹脂組成物における中空二次焼結粒子1の含有量は、熱伝導性シート(熱硬化性樹脂組成物の固形分)中の中空二次焼結粒子1の含有量が好ましくは3体積%以上、より好ましくは5体積%以上20体積%以下となる量である。中空二次焼結粒子1の含有量が5体積%未満であると、中空二次焼結粒子1の量が少なすぎてしまい、熱伝導性シートのベース部分における欠陥の発生を抑制する効果が十分に得られないことがある。
 本実施の形態の熱硬化性樹脂組成物に用いられる熱硬化性樹脂マトリックス成分は、熱伝導性シートのベース(母材)となる熱硬化性樹脂マトリックス5を与える成分である。この熱硬化性樹脂マトリックス成分は、熱硬化性樹脂及び硬化剤を一般に含む。
 熱硬化性樹脂としては、特に限定されず、当該技術分野において公知のものを用いることができる。熱硬化性樹脂の例としては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、シリコーン樹脂、ポリイミド樹脂などが挙げられる。
 また、熱硬化性樹脂は、耐熱性に優れた熱伝導性シートを得る観点から、耐熱性に優れた熱硬化性樹脂マトリックス5を与えるものであることが好ましい。具体的には、180℃~250℃の温度に曝されても本来の物性を失わない熱硬化性樹脂マトリックス5を与える熱硬化性樹脂であることが好ましい。このような熱硬化性の例としては、耐熱性エポキシ樹脂が挙げられる。耐熱性エポキシ樹脂は、1分子中に2個以上のエポキシ基を有し、好ましくは100以上1000以下、より好ましくは150以上500の範囲のエポキシ当量を有するものが望ましい。
 好ましい耐熱性エポキシ樹脂の例としては、ビスフェノールA、2,2-ビス(4-ヒドロキシフェニルブタン)(ビスフェノールB)、1,1’-ビス(4-ヒドロキシフェニル)エタン、ビス(4-ヒドロキシフェニル)メタン(ビスフェノールF)、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、4-ヒドロキシフェニルエーテル、p-(4-ヒドロキシ)フェノールなどのポリフェノール類化合物のグリシジルエーテル系エポキシ樹脂、すなわちジグリシジルエーテルビスフェノール型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂;ナフタレン型エポキシ樹脂;ビフェニル型エポキシ樹脂;アントラセン型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂;グリシジルアミン型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂;メチルエピクロ型エポキシ樹脂などが挙げられる。このような耐熱性エポキシ樹脂は、一般に市販されており、例えば、DIC株式会社から販売されているEPICRON EXA-4710や、ジャパンエポキシレジン株式会社から販売されているJER YX4000などを用いることができる。これらの耐熱性エポキシ樹脂は、単独又は2種以上を組み合わせて用いることができる。これらの耐熱性エポキシ樹脂は、一般に常温で固形であるため、熱硬化性樹脂組成物のハンドリング性(特に、半硬化時のハンドリング性)を考慮すると、常温で液状のエポキシ樹脂に溶解して使用することが好ましい。ここで、本明細書において「常温」とは、一般に25℃のことを意味する(以下において「常温」なる語は、同じ意味で用いる)。
 常温で液状のエポキシ樹脂としては、特に限定されず、当該技術分野において公知のものを用いることができる。液状のエポキシ樹脂は、1分子中に2個以上のエポキシ基を有するものが望ましい。好ましい液状のエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂などのビスフェノール型エポキシ樹脂、O-クレゾールノボラック型エポキシ樹脂などのクレゾールノボラック型エポキシ樹脂、脂環式エポキシ樹脂などが挙げられる。このような液状のエポキシ樹脂は、一般に市販されており、例えば、ジャパンエポキシレジン株式会社から販売されているJER 828や、ダイセル化学工業株式会社から販売されているセロキサイド2021Pなどを用いることができる。これらの液状のエポキシ樹脂は、単独又は2種以上を組み合わせて用いることができる。
 耐熱性エポキシ樹脂(固形のエポキシ樹脂)と液状のエポキシ樹脂との質量割合は、使用するエポキシ樹脂の種類に応じて適宜調整すればよく特に限定されないが、一般に10:90~90:10、好ましくは30:70~70:30である。
 硬化剤としては、特に限定されず、使用する熱硬化性樹脂の種類にあわせて公知のものを適宜選択すればよい。特に、熱硬化性樹脂としてエポキシ樹脂を用いる場合、硬化剤の例としては、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸及び無水ハイミック酸などの脂環式酸無水物;ドデセニル無水コハク酸などの脂肪族酸無水物;無水フタル酸及び無水トリメリット酸などの芳香族酸無水物;ジシアンジアミド及びアジピン酸ジヒドラジドなどの有機ジヒドラジド;トリス(ジメチルアミノメチル)フェノール;ジメチルベンジルアミン;1,8-ジアザビシクロ(5,4,0)ウンデセン及びその誘導体;2-メチルイミダゾール、2-エチル-4-メチルイミダゾール及び2-フェニルイミダゾールなどのイミダゾール類;フェノールノボラック、o-クレゾールノボラック、p-クレゾールノボラック、t-ブチルフェノールノボラック、ジシクロペンタジエンクレゾール、ポリパラビニルフェノール、ビスフェノールA型ノボラック、キシリレン変性ノボラック、デカリン変性ノボラック、ポリ(ジ-o-ヒドロキシフェニル)メタン、ポリ(ジ-m-ヒドロキシフェニル)メタン、ポリ(ジ-p-ヒドロキシフェニル)メタンなどのフェノール樹脂が挙げられる。これらは、単独又は2種以上を組み合わせて用いることができる。
 熱硬化性樹脂組成物における硬化剤の配合量は、使用する熱硬化性樹脂や硬化剤の種類などに応じて適宜調整すればよく、一般的に、100質量部の熱硬化性樹脂に対して0.1質量部以上200質量部以下である。
 二次焼結粒子を構成する鱗片状窒化ホウ素の一次粒子2は、その表面に熱硬化性樹脂マトリックス成分と反応し得る官能基を有さないため、熱硬化性樹脂マトリックス5と二次焼結粒子との間の密着性が十分でないことがある。また、耐熱性に優れた熱硬化性樹脂マトリックス5は硬くて脆く、熱伝導性を高めることを目的として二次焼結粒子などの無機充填材の配合量を多くした場合、熱伝導性シートは脆くなることが多い。実際、耐熱性に優れた熱硬化性樹脂マトリックス5を与える耐熱性エポキシ樹脂を用いた熱硬化性樹脂組成物では、熱伝導性シートの製造時(例えば、熱硬化性樹脂組成物の塗工時や塗布乾燥物の成形時など)に割れや欠けが生じ易く、ハンドリング性も十分でないことがある。
 そこで、上記の問題を解決するために、本実施の形態の熱硬化性樹脂組成物は、特定の密着性付与剤を特定の割合で含むことが好ましい。この密着性付与剤を配合することによって、二次焼結粒子の空隙に密着性付与剤と共に熱硬化性樹脂マトリックス成分を浸透させ易くすると共に、ハンドリング性を低下させることなく、熱硬化性樹脂マトリックス5と二次焼結粒子との間の密着性を高めた熱伝導シートを得ることが可能になる。
 ここで、密着性付与剤を含む熱硬化性樹脂組成物から得られる熱伝導性シートの拡大断面図を図4に示す。図4に示すように、密着性付与剤8が二次焼結粒子中の空隙に浸透し、熱硬化性樹脂マトリックス5と二次焼結粒子を構成する鱗片状窒化ホウ素の一次粒子2との界面の密着性を向上させる。これにより、熱硬化性樹脂マトリックス5と二次焼結粒子との界面における割れや剥離が抑制され、熱伝導性シートの熱伝導性や電気絶縁性が向上する。他方、密着性付与剤7を含まない熱硬化性樹脂組成物から得られる熱伝導性シートの拡大断面図を図5に示す。この熱伝導性シートでは、図5に示すように、熱硬化性樹脂マトリックス5と二次焼結粒子との界面に欠陥7が生じる。この欠陥7は、シートの割れや剥離の原因となり、熱伝導性シートの熱伝導性や電気絶縁性を低下させる。
 密着性付与剤8は、600以上70,000以下、好ましくは600以上60,000以下の重量平均分子量、及び130℃以下、好ましくは100℃以下のガラス転移温度を有する可撓性樹脂である。可撓性樹脂の重量平均分子量が600未満であると、可撓性樹脂を配合しても熱硬化性樹脂マトリックス5と二次焼結粒子との間の密着性を向上させる効果が十分に得られない。一方、可撓性樹脂の重量平均分子量が70,000を超えると、可撓性樹脂の粘度が高くなり、二次焼結粒子の空隙に可撓性樹脂が浸透し難くなる。その結果、熱硬化性樹脂マトリックス5と二次焼結粒子との間の密着性を向上させる効果が十分に得られない。また、可撓性樹脂のガラス転移温度が130℃を超えた場合も同様に、二次焼結粒子の空隙に可撓性樹脂が浸透し難くなるため、熱硬化性樹脂マトリックス5と二次焼結粒子との間の密着性を向上させる効果が十分に得られない。
 可撓性樹脂の例としては、ポリビニルアルコール、アクリル樹脂、ポリビニルブチラール、フェノキシ樹脂、ビスフェノール型エポキシ樹脂、スチレン系ポリマー、シリコーンゴム、スチレン-ブタジエンゴム、ブタジエンゴム、イソプレンゴム、ニトリルゴム、ブチルゴム、アクリルゴムなどが挙げられる。これらは単独又は2種以上を組み合わせて用いることができる。これらの可撓性樹脂の中でも、熱硬化性樹脂マトリックス5と二次焼結粒子との間の密着性を向上させる効果の点で、ビスフェノール型エポキシ樹脂及びスチレン系ポリマーが好ましい。
 ビスフェノール型エポキシ樹脂とは、ビスフェノールA、ビスフェノールFなどのビスフェノール類と、エピクロヒドリンなどとの反応によって得られるエポキシ樹脂を意味し、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールA/F型エポキシ樹脂などが挙げられる。ビスフェノール型エポキシ樹脂の中でも、下記の一般式(1)で表されるものが特に好ましい。
Figure JPOXMLDOC01-appb-C000010
 上記式(1)中、Aは脂肪族炭化水素、ビスフェノールA型骨格、ビスフェノールF型骨格、ビスフェノールA/F混合型骨格、ナフタレン骨格、ビフェニル骨格、ジシクロペンタジエン骨格、又は
Figure JPOXMLDOC01-appb-C000011
、好ましくはビスフェノールA型骨格、ビスフェノールF型骨格又はビスフェノールA/F混合型骨格であり、BはCH2、CH(CH3)又はC(CH32であり、nは0~10、好ましくは1~8である。ここで、ビスフェノールA/F混合型骨格とは、ビスフェノールA型骨格とビスフェノールF型骨格の両方を有する骨格を意味する。
 上記一般式(1)で表されるビスフェノール型エポキシ樹脂は、一般に市販されており、例えば、ジャパンエポキシレジン株式会社から販売されているJER E1256、E4250、E4275などを用いることができる。
 また、ビスフェノール型エポキシ樹脂は、アルキレンオキサイド変性などの変性が行われていているものを使用してもよい。アルキレンオキサイド変性ビスフェノール型エポキシ樹脂とは、ビスフェノール型エポキシ樹脂を構成する芳香族環に直接結合した酸素に、1つ以上のアルキレンオキサイド基が結合したものをいう。このアルキレンオキサイド変性ビスフェノール型エポキシ樹脂において、アルキレンオキサイド基は、2個以上の繰り返し単位として存在していることが好ましい。また、アルキレンオキサイド基は、1分子中の全ての芳香族環の間を結合していることが好ましく、芳香族環に直接結合した酸素に直接結合していても、アセタール結合などを介して結合していてもよい。アルキレンオキサイド基の例としては、エチレンオキシエチル基、プロピレンオキシプロピル基、ポリ(エチレンオキシ)エチル基、ポリ(プロピレンオキシ)プロピル基、エチレンオキドとプロピレンオキシドとの付加重合により得られる基などが挙げられる。
 本発明において特に好ましいアルキレンオキサイド変性ビスフェノール型エポキシ樹脂としては、アルキレンオキサイド変性ビスフェノールA、アルキレンオキサイド変性ビスフェノールFなどのアルキレンオキサイド変性ビスフェノール類と、クロロヒドリンなどとの反応によって得られるエポキシ樹脂であり、下記の一般式(2)で表される。
Figure JPOXMLDOC01-appb-C000012
 上記式(2)中、BはCH2、CH(CH3)又はC(CH32であり、Xはエチレンオキシエチル基、ジ(エチレンオキシ)エチル基、トリ(エチレンオキシ)エチル基、テトラ(エチレンオキシ)エチル基、プロピレンオキシプロピル基、ジ(プロピレンオキシ)プロピル基、トリ(プロピレンオキシ)プロピル基、テトラ(プロピレンオキシ)プロピル基、ブチレンオキシブチル基、ジ(ブチレンオキシ)ブチル基、トリ(ブチレンオキシ)ブチル基、テトラ(ブチレンオキシ)ブチル基、炭素原子数2~15のアルキレン基、またはシクロアルカン骨格を有する炭素原子数6~17の脂肪族炭化水素基であり、mは0~20、好ましくは2~5である。
 上記一般式(2)で表されるアルキレンオキサイド変性ビスフェノール型エポキシ樹脂は、一般に市販されており、例えば、ジャパンエポキシレジン株式会社から販売されているYL7175-500、YL7175-1000や、DIC株式会社から販売されているEPICLON EXA4850、4816、4822などを用いることができる。
 スチレン系ポリマーとは、分子鎖中にスチレン単位を有するポリマーを意味し、例えば、ポリスチレン、スチレン-メタクリル酸メチル共重合体、アクリロニトリル-スチレン共重合体、無水マレイン酸-スチレン共重合体、マレイミド-スチレン共重合体、アクリロニトリル-フダジエン-スチレンなどが挙げられる。
 スチレン系ポリマーの中でも、エポキシ基を有するスチレン系ポリマーが好ましい。このようなスチレン系ポリマーは、一般に市販されており、例えば、日油株式会社から販売されているマープルーフ(登録商標)G-0115S、G-0250S、G-1005SAなどを用いることができる。
 密着性付与剤8の配合量は、熱硬化性樹脂マトリックス成分100質量部に対して、5質量部以上30質量部以下、好ましくは5質量部以上20質量部以下の範囲である。密着性付与剤8の配合量が5質量部未満であると、密着性付与剤8の量が少なすぎ、熱硬化性樹脂マトリックス5と二次焼結粒子との間の密着性を向上させる効果が十分に得られない。一方、密着性付与剤8の配合量が30質量部を超えると、熱硬化性樹脂組成物の粘度が高くなり、熱伝導性シートを作製する際にシート中にボイドなどの欠陥が生じてしまい、熱伝導性シートの電気絶縁性が低下する。
 本実施の形態の熱硬化性樹脂組成物は、熱硬化性樹脂マトリックス5と無機充填材との界面の接着力を向上させる観点から、カップリング剤を含有することができる。カップリング剤としては、特に限定されず、当該技術分野において公知のものを用いることができる。カップリング剤の例としては、γ-グリシドキシプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシランなどが挙げられる。これらのカップリング剤は、単独又は2種以上を組み合わせて用いることができる。
 カップリング剤の配合量は、使用する熱硬化性樹脂やカップリング剤の種類などにあわせて適宜設定すればよいが、一般的に、100質量部の熱硬化性樹脂に対して0.01質量部以上5質量部以下である。
 本実施の形態の熱硬化性樹脂組成物は、当該組成物の粘度を調整する観点から、溶剤をさらに含むことができる。溶剤としては、特に限定されず、使用する熱硬化性樹脂や無機充填材の種類にあわせて公知のものを適宜選択すればよい。かかる溶剤の例としては、トルエンやメチルエチルケトンなどが挙げられる。これらは、単独又は2種以上を組み合わせて用いることができる。
 熱硬化性樹脂組成物における溶剤の配合量は、混練が可能な量であれば特に限定されず、一般的に、熱硬化性樹脂と無機充填剤との合計100質量部に対して40質量部以上300質量部以下である。
 上記のような構成成分を含有する本実施の形態の熱硬化性樹脂組成物の製造方法は、特に限定されず、公知の方法に従って行うことができる。例えば、本実施の形態の熱硬化性樹脂組成物は、以下のようにして製造することができる。
 まず、所定量の熱硬化性樹脂、この熱硬化性樹脂を硬化させるために必要な量の硬化剤、及び必要であれば所定量の密着性付与剤8を混合する。
 次に、この混合物に溶剤を加えた後、二次焼結粒子などの無機充填材を加えて予備混合する。なお、混合物の粘度が低い場合には、溶剤を加えなくてもよい。
 次に、この予備混合物を3本ロールやニーダなどを用いて混練することによって熱硬化性樹脂組成物を得ることができる。なお、熱硬化性樹脂組成物にカップリング剤を配合する場合、カップリング剤は混練工程前までに加えればよい。
 上記のようにして得られる本実施の形態の熱硬化性樹脂組成物は、中空二次焼結粒子1を配合しているので、パワーモジュールの作製時に、この中空二次焼結粒子1の大きな空隙3内にのみ欠陥を発生させ、且つその欠陥の大きさを制御し、熱伝導性シートのベース部分における欠陥の発生を抑制することができる。つまり、ボイドやクラックなどの欠陥の発生箇所及び大きさを制御して電気絶縁性を保持しつつ、優れた熱伝導性を有する熱伝導性シートを与えることができる。
 実施の形態2.
 本実施の形態のBステージ熱伝導性シートは、上記の熱硬化性樹脂組成物をシート化して半硬化させたものである。すなわち、本実施の形態のBステージ熱伝導性シートは、無機充填材をBステージ状態の熱硬化性樹脂マトリックス中に分散してなるBステージ熱伝導性シートであって、前記無機充填材は、鱗片状窒化ホウ素の一次粒子から構成される二次焼結粒子を含み、且つ前記二次焼結粒子の少なくとも一部が、5μm以上80μm以下の最大空隙径を有することを特徴とする。
 本実施の形態のBステージ熱伝導性シートは、上記の熱硬化性樹脂組成物を基材に塗布して乾燥させる工程と、塗布乾燥物を半硬化させる工程とを含む方法によって製造することができる。
 ここで、基材としては、特に限定されず、例えば、離型処理された樹脂シートやフィルムなどのような公知の基材を用いることができる。また、基材として銅箔などの金属板を用い、金属板付のBステージ熱伝導性シートとしてもよい。
 熱硬化性樹脂組成物の塗布方法としては、特に限定されず、ドクターブレード法などのような公知の方法を用いることができる。
 塗布した熱硬化性樹脂組成物の乾燥は、周囲温度で行ってよいが、溶剤の揮発を促進させる観点から、必要に応じて80℃以上150℃以下に加熱してもよい。
 塗布乾燥物の半硬化温度は、使用する熱硬化性樹脂の種類にあわせて適宜設定すればよいが、一般的に80℃以上200℃以下である。また、半硬化時間は、特に限定されないが、一般的に2分以上24時間以下である。
 また、塗布乾燥物を半硬化させる場合、必要に応じて加圧してもよい。特に、上記の乾燥工程によって塗布乾燥物内に欠陥が発生した場合には、加圧して欠陥を除去しておくことが好ましい。この場合のプレス圧は、好ましくは0.5MPa以上30MPa以下、より好ましくは4MPa以上20MPa以下、最も好ましくは4MPa以上15MPa以下である。プレス圧が0.5MPa未満であると、Bステージ熱伝導性シート内の欠陥を十分に除去することができないことがある。一方、プレス圧が30MPaを超えると、二次焼結粒子が変形又は崩壊してしまい、熱伝導性シートの熱伝導性及び電気絶縁性が低下することがある。また、プレス時間は、特に限定されないが、一般的に5分以上60分以下である。
 上記のようにして得られる本実施の形態のBステージ熱伝導性シートは、発熱部材などの各種部材との接着性に優れていると共に、中空二次焼結粒子1を配合しているので、パワーモジュールの作製時に、この中空二次焼結粒子1の大きな空隙3内にのみ欠陥を発生させ、且つその欠陥の大きさを制御し、熱伝導性シートのベース部分における欠陥の発生を抑制することができる。つまり、ボイドやクラックなどの欠陥の発生箇所及び大きさを制御して電気絶縁性を保持しつつ、優れた熱伝導性を有する熱伝導性シートを与えることができる。
 実施の形態3.
 本実施の形態のパワーモジュールは、上記の熱硬化性樹脂組成物又はBステージ熱伝導性シートから得られる熱伝導性シートを具備する。すなわち、本実施の形態のパワーモジュールは、無機充填材を熱硬化性樹脂マトリックス中に分散してなる熱伝導性シートであって、前記無機充填材は、鱗片状窒化ホウ素の一次粒子から構成される二次焼結粒子を含み、且つ前記二次焼結粒子の少なくとも一部が、5μm以上80μm以下の最大空隙径を有する熱伝導性シートを具備することを特徴とする。
 本実施の形態のパワーモジュールにおいて、熱伝導性シート以外の構成は特に限定されず、公知のパワーモジュールの構成を採用することができる。
 以下、本実施の形態のパワーモジュールの一例について図面を用いて説明する。
 図6は、本実施の形態のパワーモジュールの断面図である。図6において、パワーモジュールは、熱伝導性シート11と、熱伝導性シート11を狭持するヒートシンク10及びリードフレーム12と、リードフレーム12上に搭載された電力半導体素子13とを備えている。そして、電力半導体素子13の間、及び電力半導体素子13とリードフレーム12との間は、金属線14によってワイヤボンディングされている。また、リードフレーム12の外部接続用端部、及びヒートシンク10の外部放熱部以外は封止樹脂15で封止されている。
 このパワーモジュールにおいて、熱伝導性シート11以外の部材は特に限定されず、当該技術分野において公知のものを用いることができる。ただし、電力半導体素子13としては、ケイ素によって形成されたものを一般に用いることができるが、ケイ素に比べてバンドギャップが大きいワイドバンドギャップ半導体によって形成されたものを用いることが好ましい。ワイドバンドギャップ半導体としては、例えば、炭化ケイ素、窒化ガリウム系材料又はダイヤモンドが挙げられる。
 ワイドバンドギャップ半導体によって形成された電力半導体素子13は、耐電圧性が高く、許容電流密度も高いため、電力半導体素子13の小型化が可能となる。そして、このように小型化された電力半導体素子13を用いることにより、電力半導体素子13を組み込んだパワーモジュールの小型化も可能になる。
 また、ワイドバンドギャップ半導体により形成された電力半導体素子13は、耐熱性も高いため、ヒートシンク10、熱伝導性シート11、リードフレーム12などの小型化にもつながり、パワーモジュールの一層の小型化が可能になる。
 さらに、ワイドバンドギャップ半導体により形成された電力半導体素子13は、電力損失も低いため、素子としての高効率化も可能となる。
 次に、上記構成を有するパワーモジュールの製造方法について図面を用いて説明する。
 図7は、本実施の形態のパワーモジュールの製造工程を説明するための図である。図7に示すように、まず、ヒートシンク10上にBステージ熱伝導性シート16を形成する(工程(a))。ここで、Bステージ熱伝導性シートは、上記熱硬化性樹脂組成物を用いてヒートシンク10上に直接形成することができる。或いは、別個にBステージ熱伝導性シート16を形成した後、Bステージ熱伝導性シート16をヒートシンク10上に配置してもよい。
 次に、Bステージ熱伝導性シート16が形成されたヒートシンク10を、トランスファモールド用金型20内に配置する(工程(b))。
 次に、電力半導体素子13及び金属線14を実装したリードフレーム12をBステージ熱伝導性シート16上に配置する(工程(c))。
 次に、トランスファモールド用金型20内に封止樹脂15を流し込み、加圧成形して封止樹脂15を硬化させる(工程(d))。この加圧成形の際の各種条件は特に限定されないが、一般に、成形温度が80℃以上250℃以下、好ましくは150℃以上200℃以下、成形圧力が5MPa以上30MPa以下、成形時間が30秒以上180秒以下である。この工程(d)において、封止樹脂15による成形圧力がBステージ熱伝導性シート16に伝わるまでには一定の時間を要するため、圧力が伝わるまでの間、Bステージ熱伝導性シート16は高温無加圧状態にさらされる。この時、加圧して作製されたBステージ熱伝導性シート16は、一般に、変形緩和(膨張)すると同時に熱硬化性樹脂マトリックスが溶融して流動し、Bステージ熱伝導性シート16のベース部分に欠陥が生じる。しかし、Bステージ熱伝導性シート16は、所定の最大空隙径を有する中空二次焼結粒子1を含んでいるため、毛細管力が小さい中空二次焼結粒子1内の熱硬化性樹脂が流出し、ベース部分における欠陥の発生を防止することができる。
 最後に、トランスファモールド用金型20を除去することによって、パワーモジュールを得ることができる(工程(e))。
 なお、得られたパワーモジュールは、必要に応じてポストキュアを行ってもよい。
 このようにして製造されるパワーモジュールに組み込まれた熱伝導性シート11は、中空二次焼結粒子1の大きな空隙3内にのみ欠陥を発生させることによって熱伝導性シートのベース部分における欠陥の発生を抑制し、且つ中空二次焼結粒子1内の欠陥の大きさを制御している。これにより、熱伝導性シート11における電気絶縁性の低下を防止することができ、電気絶縁性及び熱放散性に優れたパワーモジュールとなる。また、パワーモジュールに組み込む際にBステージ熱伝導性シート16を用いているため、熱伝導性シート11とヒートシンク10との間、及び熱伝導性シート11とリードフレーム12との間の接着性も向上し、信頼性に優れたパワーモジュールとなる。
 以下、実施例及び比較例により本発明の詳細を説明するが、これらによって本発明が限定されるものではない。
 実施例及び比較例で用いた二次焼結粒子は、窒化ホウ素の一次粒子と、水溶性バインダと、水とを含むスラリーを用いてスプレードライを行った後、約2000℃で焼結させることにより作製した。ここで、二次焼結粒子の最大空隙径は、スラリー中の水の量を調節することによって制御した。また、二次焼結粒子の最大空隙径は、二次焼結粒子をエポキシ樹脂に埋封したサンプルを作製し、そのサンプルの断面を研磨して電子顕微鏡で数千倍に拡大した写真を数枚撮影した後、二次焼結粒子の空隙の最大径を実際に測定することによって求めた。
 (実施例1)
 液状のビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン株式会社製エピコート828)100質量部と、硬化剤である1-シアノメチル-2-メチルイミダゾール(四国化成工業株式会社製キュアゾール2PN-CN)1質量部と、溶媒であるメチルエチルケトン78質量部とを混合した。その後、この混合物に、無機充填材として二次焼結粒子及び鱗片状窒化ホウ素の一次粒子を加えて予備混合した。ここで、無機充填材は、熱伝導性シートにおいて5~30μmの最大空隙径を有する二次焼結粒子(平均粒径65μm)が5体積%、0.1μm未満の最大空隙径を有する二次焼結粒子(平均粒径65μm)が10体積%、鱗片状窒化ホウ素の一次粒子(平均長径30μm)が15体積%となるように加えた。続いて、この予備混合物を三本ロールにて混練することによって熱硬化性樹脂組成物を得た。
 次に、この熱硬化性樹脂組成物を、厚さ105μmの銅箔上にドクターブレード法を用いて塗布した後、110℃で15分間の加熱乾燥処理を行い、厚さ200μmのBステージ熱伝導性シートを得た。
 次に、銅箔上に形成されたBステージ熱伝導性シートをトランスファモールド用金型に配置した後、電力半導体素子及び金属線を実装したリードフレームをBステージ熱伝導性シート上に配置した。そして、トランスファモールド用金型内に封止樹脂を流し込んで加圧成形した。この加圧成形において、成形温度を180℃、成形圧力を10MPa、成形時間を90秒とした。続いて、トランスファモールド用金型を取り外した後、175℃で8時間、ポストキュアすることにより、パワーモジュールを得た。
 (実施例2)
 メチルエチルケトンの配合量を125質量部としたこと、及び無機充填材として、熱伝導性シートにおいて5~30μmの最大空隙径を有する二次焼結粒子(平均粒径65μm)が5体積%、0.1μm未満の最大空隙径を有する二次焼結粒子(平均粒径65μm)が20体積%、鱗片状窒化ホウ素の一次粒子(平均長径30μm)が25体積%となるように加えたこと以外は、実施例1と同様にして熱硬化性樹脂組成物、Bステージ熱伝導性シート及びパワーモジュールを得た。
 (実施例3)
 メチルエチルケトンの配合量を125質量部としたこと、及び無機充填材として、熱伝導性シートにおいて50~80μmの最大空隙径を有する二次焼結粒子(平均粒径65μm)が5体積%、0.1μm未満の最大空隙径を有する二次焼結粒子(平均粒径65μm)が20体積%、鱗片状窒化ホウ素の一次粒子(平均長径30μm)が25体積%となるように加えたこと以外は、実施例1と同様にして熱硬化性樹脂組成物、Bステージ熱伝導性シート及びパワーモジュールを得た。
 (実施例4)
 メチルエチルケトンの配合量を125質量部としたこと、及び無機充填材として、熱伝導性シートにおいて5~30μmの最大空隙径を有する二次焼結粒子(平均粒径65μm)が10体積%、0.1μm未満の最大空隙径を有する二次焼結粒子(平均粒径65μm)が15体積%、鱗片状窒化ホウ素の一次粒子(平均長径30μm)が25体積%となるように加えたこと以外は、実施例1と同様にして熱硬化性樹脂組成物、Bステージ熱伝導性シート及びパワーモジュールを得た。
 (実施例5)
 メチルエチルケトンの配合量を125質量部としたこと、及び無機充填材として、熱伝導性シートにおいて5~30μmの最大空隙径を有する二次焼結粒子(平均粒径65μm)が20体積%、0.1μm未満の最大空隙径を有する二次焼結粒子(平均粒径65μm)が5体積%、鱗片状窒化ホウ素の一次粒子(平均長径30μm)が25体積%となるように加えたこと以外は、実施例1と同様にして熱硬化性樹脂組成物、Bステージ熱伝導性シート及びパワーモジュールを得た。
 (実施例6)
 メチルエチルケトンの配合量を234質量部としたこと、及び無機充填材として、熱伝導性シートにおいて5~30μmの最大空隙径を有する二次焼結粒子(平均粒径65μm)が5体積%、0.1μm未満の最大空隙径を有する二次焼結粒子(平均粒径65μm)が30体積%、鱗片状窒化ホウ素の一次粒子(平均長径30μm)が35体積%となるように加えたこと以外は、実施例1と同様にして熱硬化性樹脂組成物、Bステージ熱伝導性シート及びパワーモジュールを得た。
 (比較例1)
 メチルエチルケトンの配合量を78質量部としたこと、及び無機充填材として、熱伝導性シートにおいて0.1μm未満の最大空隙径を有する二次焼結粒子(平均粒径65μm)が15体積%、鱗片状窒化ホウ素の一次粒子(平均長径30μm)が15体積%となるように加えたこと以外は、実施例1と同様にして熱硬化性樹脂組成物、Bステージ熱伝導性シート及びパワーモジュールを得た。
 (比較例2)
 メチルエチルケトンの配合量を125質量部としたこと、及び無機充填材として、熱伝導性シートにおいて0.1~1μmの最大空隙径を有する二次焼結粒子(平均粒径65μm)が5体積%、0.1μm未満の最大空隙径を有する二次焼結粒子(平均粒径65μm)が20体積%、鱗片状窒化ホウ素の一次粒子(平均長径30μm)が25体積%となるように加えたこと以外は、実施例1と同様にして熱硬化性樹脂組成物、Bステージ熱伝導性シート及びパワーモジュールを得た。
 (比較例3)
 メチルエチルケトンの配合量を125質量部としたこと、及び無機充填材として、熱伝導性シートにおいて100~150μmの最大空隙径を有する二次焼結粒子(平均粒径65μm)が5体積%、0.1μm未満の最大空隙径を有する二次焼結粒子(平均粒径65μm)が20体積%、鱗片状窒化ホウ素の一次粒子(平均長径30μm)が25体積%となるように加えたこと以外は、実施例1と同様にして熱硬化性樹脂組成物、Bステージ熱伝導性シート及びパワーモジュールを得た。
 上記の実施例1~6及び比較例1~3のパワーモジュールに組み込まれた熱伝導性シートについて、部分放電開始電圧及び絶縁破壊電圧を測定することにより電気絶縁性を評価した。部分放電開始電圧は、0.5kV/秒の一定昇圧にて電圧を連続的に印加することで部分放電が開始する電圧を測定した。また、絶縁破壊電圧は、油中で、熱伝導シートに0.5kV毎のステップ昇圧にて電圧を印加することにより熱伝導シートが絶縁破壊する電圧を測定した。ここで、部分放電開始電圧の評価において、部分放電開始電圧が3kV以上であったものを○、3kV未満であったものを×とした。また、絶縁破壊電圧の評価において、絶縁破壊電圧が5kV以上であったものを○、5kV未満であったものを×とした。これらの評価の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000013
 表1の結果からわかるように、実施例1~6のパワーモジュールに組み込まれた熱伝導性シートは、部分放電開始電圧及び絶縁破壊電圧の両方が高く、電気絶縁性が良好であった。これらの熱伝導性シートについて電子顕微鏡にて断面観察を行ったところ、熱伝導性シート内の欠陥は二次焼結粒子内の空隙部分に発生していることを確認した。
 これに対して比較例1のパワーモジュールに組み込まれた熱伝導性シートは、部分放電開始電圧及び絶縁破壊電圧の両方が低く、電気絶縁性が十分でなかった。この熱伝導性シートについて電子顕微鏡にて断面観察を行ったところ、熱伝導性シート内のベース部分や二次焼結粒子との界面部分に5μm以上の欠陥が発生していることを確認した。
 同様に、比較例2のパワーモジュールに組み込まれた熱伝導性シートも、部分放電開始電圧及び絶縁破壊電圧の両方が低く、電気絶縁性が十分でなかった。この熱伝導性シートについて電子顕微鏡にて断面観察を行ったところ、熱伝導性シート内のベース部分や二次焼結粒子との界面部分、二次焼結粒子内の空隙部分などの様々な部分に欠陥が発生していることを確認した。
 また、比較例3のパワーモジュールに組み込まれた熱伝導性シートは、部分放電開始電圧が低く、電気絶縁性が十分でなかった。この熱伝導性シートについて電子顕微鏡にて断面観察を行ったところ、熱伝導性シート内の欠陥は二次焼結粒子内の空隙部分に発生していたものの、欠陥の大きさが100μmを超えていることを確認した。
 以上の結果からわかるように、本発明によれば、特定の大きさの空隙を有する二次焼結粒子を配合することにより、ボイドやクラックなどの欠陥の発生箇所及び大きさを制御して電気絶縁性を保持しつつ、優れた熱伝導性を有する熱伝導性シートを与える熱硬化性樹脂組成物及びBステージ熱伝導性シートを得ることができる。また、本発明によれば、上記の熱硬化性樹脂組成物及びBステージ熱伝導性シートを用いることにより、電気絶縁性及び熱放散性に優れたパワーモジュールを提供することができる。
 次に、熱硬化性樹脂組成物に特定の密着性付与剤を配合することによる効果を確認するために以下の実験を行った。
 この実験で用いた二次焼結粒子は、平均長径3μmの窒化ホウ素の一次粒子と、水溶性バインダと、水とを含むスラリーを用いてスプレードライを行った後、約2,000℃で焼成して焼結(粒成長)させることによって作製した。ここで、一次粒子の平均長径は、二次焼結粒子をエポキシ樹脂に埋封したサンプルを作製し、そのサンプルの断面を研磨して電子顕微鏡で数千倍に拡大した写真を数枚撮影した後、一次粒子の長径を実際に測定し、その測定値を平均することによって求めた。
 以下の実験で用いた密着性付与剤の種類及びその特性を表2に示す。
Figure JPOXMLDOC01-appb-T000014
 (実験1)
 密着性付与剤A-1:19質量部と、メチルエチルケトンMEK(溶剤):181質量部とを攪拌混合した後、常温で固形のナフタレン型エポキシ樹脂(EPICLON EXA-4710:DIC株式会社製):80質量部、常温で液状のビスフェノールA型エポキシ樹脂(JER828:ジャパンエポキシレジン株式会社製):20質量部、及び1-シアノエチル-2-メチルイミダゾール(硬化剤、キュアゾール2PN-CN:四国化成工業株式会社製):1質量部を添加してさらに攪拌混合した。次に、この混合物に、上記で作製した窒化ホウ素の二次焼結粒子を、溶剤を除いた全成分の合計体積に対して40体積%となるように添加して予備混合した。この予備混合物を三本ロールにてさらに混練し、窒化ホウ素の二次焼結粒子が均一に分散された熱硬化性樹脂組成物を得た。
 (実験2)
 密着性付与剤A-1の代わりに密着性付与剤A-2を用いたこと以外は実験1と同様にして熱硬化性樹脂組成物を得た。
 (実験3)
 密着性付与剤A-1の代わりに密着性付与剤A-3を用いたこと以外は実験1と同様にして熱硬化性樹脂組成物を得た。
 (実験4)
 密着性付与剤A-1の代わりに密着性付与剤A-5を用いたこと以外は実験1と同様にして熱硬化性樹脂組成物を得た。
 (実験5)
 密着性付与剤A-1の代わりに密着性付与剤A-6を用いたこと以外は実験1と同様にして熱硬化性樹脂組成物を得た。
 (実験6)
 密着性付与剤A-1:19質量部の代わりに密着性付与剤A-3:5質量部を用い、メチルエチルケトンMEKの添加量を160質量部に変えたこと以外は実験1と同様にして熱硬化性樹脂組成物を得た。
 (実験7)
 密着性付与剤A-1:19質量部の代わりに密着性付与剤A-3:11質量部を用い、メチルエチルケトンMEKの添加量を169質量部に変えたこと以外は実験1と同様にして熱硬化性樹脂組成物を得た。
 (実験8)
 密着性付与剤A-1:19質量部の代わりに密着性付与剤A-3:25質量部を用い、メチルエチルケトンMEKの添加量を190質量部に変えたこと以外は実験1と同様にして熱硬化性樹脂組成物を得た。
 (実験9)
 密着性付与剤A-1の代わりに密着性付与剤A-8を用いたこと以外は実験1と同様にして熱硬化性樹脂組成物を得た。
 (実験10)
 密着性付与剤A-1の代わりに密着性付与剤A-9を用いたこと以外は実験1と同様にして熱硬化性樹脂組成物を得た。
 (実験11)
 密着性付与剤A-1の代わりに密着性付与剤A-3を用い、常温で固形のナフタレン型エポキシ樹脂(EPICLON EXA-4710:DIC株式会社製)の代わりに常温で固形のビフェニル型エポキシ樹脂(YX4000:ジャパンエポキシレジン株式会社製)を用いたこと以外は実験1と同様にして熱硬化性樹脂組成物を得た。
 (比較実験1)
 常温で固形のナフタレン型エポキシ樹脂(EPICLON EXA-4710:DIC株式会社製):80質量部、常温で液状のビスフェノールA型エポキシ樹脂(JER828:ジャパンエポキシレジン株式会社製):20質量部、1-シアノエチル-2-メチルイミダゾール(硬化剤、キュアゾール2PN-CN:四国化成工業株式会社製):1質量部、及びメチルエチルケトンMEK(溶剤):152質量部を攪拌混合した。次に、この混合物に、上記で作製した窒化ホウ素の二次焼結粒子を、溶剤を除いた全成分の合計体積に対して40体積%となるように添加して予備混合した。この予備混合物を三本ロールにてさらに混練し、窒化ホウ素の二次焼結粒子が均一に分散された熱硬化性樹脂組成物を得た。
 (比較実験2)
 密着性付与剤A-1の代わりに密着性付与剤A-4を用いたこと以外は実験1と同様にして熱硬化性樹脂組成物を得た。
 (比較実験3)
 密着性付与剤A-1の代わりに密着性付与剤A-7を用いたこと以外は実験1と同様にして熱硬化性樹脂組成物を得た。
 (比較実験4)
 密着性付与剤A-1:19質量部の代わりに密着性付与剤A-3:3質量部を用い、メチルエチルケトンMEKの添加量を157質量部に変えたこと以外は実験1と同様にして熱硬化性樹脂組成物を得た。
 (比較実験5)
 密着性付与剤A-1:19質量部の代わりに密着性付与剤A-3:34質量部を用い、メチルエチルケトンMEKの添加量を203質量部に変えたこと以外は実験1と同様にして熱硬化性樹脂組成物を得た。
 実験1~11及び比較実験1~5で得られた熱硬化性樹脂組成物をそれぞれ、厚さ105μmの放熱部材上にドクターブレード法にて塗布した後、110℃で15分間、加熱乾燥させることによって、厚さが100μmの塗布乾燥物を得た。
 次に、放熱部材上に形成した塗布乾燥物を、塗布乾燥物側が内側になるように2枚重ねた後、5MPaのプレス圧で加圧しながら120℃で20分間加熱することで半硬化(Bステージ)熱伝導性シートを得た。これをさらに5MPaのプレス圧で加圧しながら160℃で3時間加熱することで、Bステージ熱伝導性シートを完全に硬化させ、2つの放熱部材に挟まれた熱伝導性シート(厚さ200μm)を得た。
 上記の2つの放熱部材に挟まれた熱伝導性シートについて、シート厚さ方向の熱伝導率をレーザーフラッシュ法にて測定した。この熱伝導率の測定結果は、比較実験1の熱伝導性シートで得られた熱伝導率を基準とし、各実験又は各比較実験の熱伝導性シートで得られた熱伝導率の相対値([各実験又は各比較実験の熱伝導性シートで得られた熱伝導率]/[比較実験1の熱伝導性シートで得られた熱伝導率]の値)として表3に示した。
 また、上記の2つの放熱部材に挟まれた熱伝導性シートについて、絶縁破壊電界(BDE)を評価した。熱伝導性シートの絶縁破壊電界(BDE)は、油中で、放熱部材に挟まれた熱伝導性シートに1kV/秒の一定昇圧にて電圧を印加することにより測定された絶縁破壊電圧(BDV)を熱伝導性シートの厚さで割ることにより算出した。この絶縁破壊電界(BDE)の結果は、比較実験1の熱伝導性シートで得られたBDEを基準とし、各実験又は比較実験の熱伝導性シートで得られたBDEの相対値([各実験又は比較実験の熱伝導性シートで得られたBDE]/[比較実験1の熱伝導性シートで得られたBDE]の値)として表3に示した。
 次に、放熱部材の代わりに離型処理したフィルムを用い、塗布乾燥物を半硬化(Bステージ化)した後に、フィルムを除去したこと以外は上記と同様にして、Bステージ熱伝導性シート(厚さ200μm)を得た。このBステージ熱伝導性シートを10×70mmの短冊状に加工し、三点曲げ強度試験を行った。この曲げ強度の測定結果は、比較実験1の熱伝導性シートで得られた曲げ強度を基準とし、各実験又は各比較実験の熱伝導性シートで得られた曲げ強度の相対値([各実験又は各比較実験の熱伝導性シートで得られた曲げ強度]/[比較実験1の熱伝導性シートで得られた曲げ強度]の値)として表3に示した。
 また、放熱部材の代わりに離型処理したフィルムを用い、塗布乾燥物を完全に硬化した後に、フィルムを除去したこと以外は上記と同様にして、熱伝導性シート(厚さ200μm)を得た。この熱伝導性シートについて、動的粘弾性測定装置を用いてガラス転移温度を測定した。その結果を表3に示す。
 なお、表3では、各実験及び比較実験で使用した構成成分の種類及び配合量についてもまとめた。各構成成分の配合量は質量部である。
Figure JPOXMLDOC01-appb-T000015
 表3の結果に示されているように、600以上70,000以下の重量平均分子量及び130℃以下のガラス転移温度を有する可撓性樹脂を所定の割合で密着性付与剤として配合した熱硬化性樹脂組成物(実験1~11)は、熱伝導性及び絶縁破壊電圧が高く、且つ耐熱性に優れる熱伝導性シートを与えることがわかった。また、この熱硬化性樹脂組成物は、半硬化状態(Bステージ状態)での曲げ強度が大きく、熱伝導性シートの製造時にシートの割れや欠けを防止できることもわかった。
 これに対して、密着性付与剤を配合しない熱硬化性樹脂組成物(比較実験1)、重量平均分子量又はガラス転移温度が所定の範囲にない可撓性樹脂を密着性付与剤として配合した熱硬化性樹脂組成物(比較実験2及び3)、密着性付与剤の配合量が適切でない熱硬化性樹脂組成物(比較実験4及び5)では、耐熱性は十分であったものの、熱伝導性、絶縁破壊電圧及び曲げ強度のいずれかが十分でなかった。
 これらの結果を詳細に検討するため、実験3及び6~8、比較実験1及び4~5(密着性付与剤の配合量のみが異なる熱硬化性樹脂組成物)における密着性付与剤の配合量と、Bステージ熱伝導性シートの曲げ強度との関係を示すグラフを図8に示す。
 図8からわかるように、密着性付与剤の配合量が5質量部以上30質量部以下の範囲にあると、十分な曲げ強度が得られ、熱伝導性シートの製造時(特に、Bステージ状態での成形・加工時)のハンドリング性が向上する。加えて、密着性付与剤の配合量がこの範囲にあると、絶縁破壊電圧が高くなる。逆に、密着性付与剤の配合量が5質量部以上30質量部以下の範囲にないと、十分な曲げ強度が得られず、熱伝導性シートの製造時(特に、Bステージ状態での成形・加工時)に割れや欠けが生じ、ハンドリング性が低下する。加えて、密着性付与剤の配合量がこの範囲にないと、絶縁破壊電圧も低くなる。
 以上のことを考慮すると、密着性付与剤の配合量を所定の範囲で配合した場合、熱硬化性樹脂マトリックスと二次焼結粒子との間の密着性が向上し、電気絶縁性を低下させる原因となる熱伝導性シートの割れや剥離が抑制されると考えられる。逆に、密着性付与剤を配合しない場合は、熱硬化性樹脂マトリックスと二次焼結粒子との間の密着性を向上させる効果が得られず、密着性付与剤の配合量が少ない場合は、熱硬化性樹脂マトリックスと二次焼結粒子との間の密着性を向上させる効果が不十分であり、密着性付与剤の配合量が多すぎる場合は、熱伝導性シートの製造時に溶剤が残存し易くなってシート中にボイドが発生する。その結果、熱伝導性シートの割れや剥離が生じ、電気絶縁性を低下すると考えられる。したがって、所望のハンドリング性や電気絶縁性を得るためには、密着性付与剤の配合量の選択が重要であるといえる。
 また、重量平均分子量やガラス転移温度が高い可撓性樹脂を密着性付与剤として用いた場合(比較実験2及び3)、十分な曲げ強度が得られず、熱伝導性シートの製造時に割れや欠けが生る。これは、二次焼結粒子中の空隙に密着性付与剤が十分に浸透せず、熱硬化性樹脂マトリックスと二次焼結粒子との間の密着性が不十分であるためであると考えられる。そして、この場合も、熱伝導性シートの割れや剥離によって電気絶縁性が低下している。したがって、所望のハンドリング性や電気絶縁性を得るためには、適切な範囲の重量平均分子量及びガラス転移温度を有する可撓性樹脂の選択が重要であるといえる。
 次に、実験1~11の熱硬化性樹脂組成物から得られた熱伝導性シートを用い、トランスファモールド法にて封止樹脂で封止して、パワーモジュールを作製した。
 このパワーモジュールにおいて、リードフレームと銅のヒートシンクの中央部とに熱電対を取り付けた後、パワーモジュールを稼動させ、リードフレームとヒートシンクとの温度をそれぞれ測定した。その結果、実施例1~11の熱硬化性樹脂組成物から得られた熱伝導性シートを用いたパワーモジュールはいずれも、リードフレームとヒートシンクとの温度差が小さく、熱放散性に優れていた。
 以上の結果からわかるように、特定の密着性付与剤を特定の割合で配合することにより、未硬化時及び半硬化時のハンドリング性が良好であり、且つ耐熱性、熱伝導性及び電気絶縁性に優れた熱伝導性シートを与える熱硬化性樹脂組成物を提供することができる。また、この熱硬化性樹脂組成物を用いることにより、耐熱性、熱伝導性及び電気絶縁性に優れた熱伝導性シートを提供することができる。さらに、この熱硬化性樹脂組成物及び熱伝導性シートを用いることにより、耐熱性や熱放散性に優れたパワーモジュールを提供することができる。
 なお、本国際出願は、2010年2月23日に出願した日本国特許出願第2010-037501号に基づく優先権を主張するものであり、この日本国特許出願の全内容を本国際出願に援用する。

Claims (18)

  1.  無機充填材及び熱硬化性樹脂マトリックス成分を含む熱硬化性樹脂組成物であって、
     前記無機充填材は、鱗片状窒化ホウ素の一次粒子から構成される二次焼結粒子を含み、且つ前記二次焼結粒子の少なくとも一部が、5μm以上80μm以下の最大空隙径を有することを特徴とする熱硬化性樹脂組成物。
  2.  前記二次焼結粒子の最大空隙径は、前記二次焼結粒子の平均粒径の2/3以下であることを特徴とする請求項1に記載の熱硬化性樹脂組成物。
  3.  前記無機充填材は、鱗片状窒化ホウ素の一次粒子をさらに含むことを特徴とする請求項1又は2に記載の熱硬化性樹脂組成物。
  4.  600以上70,000以下の重量平均分子量及び130℃以下のガラス転移温度を有する可撓性樹脂である密着性付与剤を、熱硬化性樹脂マトリックス成分100質量部に対して5質量部以上30質量部以下の範囲でさらに含むことを特徴とする請求項1~3のいずれか一項に記載の熱硬化性樹脂組成物。
  5.  前記可撓性樹脂は、ビスフェノール型エポキシ樹脂及びスチレン系ポリマーからなる群より選択される少なくとも1つであることを特徴とする請求項4に記載の熱硬化性樹脂組成物。
  6.  前記ビスフェノール型エポキシ樹脂は、以下の一般式(1)又は(2):
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (式中、Aは脂肪族炭化水素、ビスフェノールA型骨格、ビスフェノールF型骨格、ビスフェノールA/F混合型骨格、ナフタレン骨格、ビフェニル骨格、ジシクロペンタジエン骨格、又は
    Figure JPOXMLDOC01-appb-C000003
    であり、BはCH2、CH(CH3)又はC(CH32であり、Xはエチレンオキシエチル基、ジ(エチレンオキシ)エチル基、トリ(エチレンオキシ)エチル基、テトラ(エチレンオキシ)エチル基、プロピレンオキシプロピル基、ジ(プロピレンオキシ)プロピル基、トリ(プロピレンオキシ)プロピル基、テトラ(プロピレンオキシ)プロピル基、ブチレンオキシブチル基、ジ(ブチレンオキシ)ブチル基、トリ(ブチレンオキシ)ブチル基、テトラ(ブチレンオキシ)ブチル基、炭素原子数2~15のアルキレン基、またはシクロアルカン骨格を有する炭素原子数6~17の脂肪族炭化水素基であり、nは0~10であり、mは0~20である)により表されることを特徴とする請求項5に記載の熱硬化性樹脂組成物。
  7.  無機充填材をBステージ状態の熱硬化性樹脂マトリックス中に分散してなるBステージ熱伝導性シートであって、
     前記無機充填材は、鱗片状窒化ホウ素の一次粒子から構成される二次焼結粒子を含み、且つ前記二次焼結粒子の少なくとも一部が、5μm以上80μm以下の最大空隙径を有することを特徴とするBステージ熱伝導性シート。
  8.  前記二次焼結粒子の最大空隙径は、前記二次焼結粒子の平均粒径の2/3以下であることを特徴とする請求項7に記載のBステージ熱伝導性シート。
  9.  前記無機充填材は、鱗片状窒化ホウ素の一次粒子をさらに含むことを特徴とする請求項7又は8に記載のBステージ熱伝導性シート。
  10.  600以上70,000以下の重量平均分子量及び130℃以下のガラス転移温度を有する可撓性樹脂である密着性付与剤を、熱硬化性樹脂マトリックス100質量部に対して5質量部以上30質量部以下の範囲でさらに含むことを特徴とする請求項7~9のいずれか一項に記載のBステージ熱伝導性シート。
  11.  前記可撓性樹脂は、ビスフェノール型エポキシ樹脂及びスチレン系ポリマーからなる群より選択される少なくとも1つであることを特徴とする請求項10に記載のBステージ熱伝導性シート。
  12.  前記ビスフェノール型エポキシ樹脂は、以下の一般式(1)又は(2):
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    (式中、Aは脂肪族炭化水素、ビスフェノールA型骨格、ビスフェノールF型骨格、ビスフェノールA/F混合型骨格、ナフタレン骨格、ビフェニル骨格、ジシクロペンタジエン骨格、又は
    Figure JPOXMLDOC01-appb-C000006
    であり、BはCH2、CH(CH3)又はC(CH32であり、Xはエチレンオキシエチル基、ジ(エチレンオキシ)エチル基、トリ(エチレンオキシ)エチル基、テトラ(エチレンオキシ)エチル基、プロピレンオキシプロピル基、ジ(プロピレンオキシ)プロピル基、トリ(プロピレンオキシ)プロピル基、テトラ(プロピレンオキシ)プロピル基、ブチレンオキシブチル基、ジ(ブチレンオキシ)ブチル基、トリ(ブチレンオキシ)ブチル基、テトラ(ブチレンオキシ)ブチル基、炭素原子数2~15のアルキレン基、またはシクロアルカン骨格を有する炭素原子数6~17の脂肪族炭化水素基であり、nは0~10であり、mは0~20である)により表されることを特徴とする請求項11に記載のBステージ熱伝導性シート。
  13.  無機充填材を熱硬化性樹脂マトリックス中に分散してなる熱伝導性シートであって、前記無機充填材は、鱗片状窒化ホウ素の一次粒子から構成される二次焼結粒子を含み、且つ前記二次焼結粒子の少なくとも一部が、5μm以上80μm以下の最大空隙径を有する熱伝導性シートを具備することを特徴とするパワーモジュール。
  14.  前記二次焼結粒子の最大空隙径は、前記二次焼結粒子の平均粒径の2/3以下であることを特徴とする請求項13に記載のパワーモジュール。
  15.  前記無機充填材は、鱗片状窒化ホウ素の一次粒子をさらに含むことを特徴とする請求項13又は14に記載のパワーモジュール。
  16.  前記熱伝導性シートは、600以上70,000以下の重量平均分子量及び130℃以下のガラス転移温度を有する可撓性樹脂である密着性付与剤を、熱硬化性樹脂マトリックス100質量部に対して5質量部以上30質量部以下の範囲でさらに含むことを特徴とする請求項13~15のいずれか一項に記載のパワーモジュール。
  17.  前記可撓性樹脂は、ビスフェノール型エポキシ樹脂及びスチレン系ポリマーからなる群より選択される少なくとも1つであることを特徴とする請求項16に記載のパワーモジュール。
  18.  前記ビスフェノール型エポキシ樹脂は、以下の一般式(1)又は(2):
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    (式中、Aは脂肪族炭化水素、ビスフェノールA型骨格、ビスフェノールF型骨格、ビスフェノールA/F混合型骨格、ナフタレン骨格、ビフェニル骨格、ジシクロペンタジエン骨格、又は
    Figure JPOXMLDOC01-appb-C000009
    であり、BはCH2、CH(CH3)又はC(CH32であり、Xはエチレンオキシエチル基、ジ(エチレンオキシ)エチル基、トリ(エチレンオキシ)エチル基、テトラ(エチレンオキシ)エチル基、プロピレンオキシプロピル基、ジ(プロピレンオキシ)プロピル基、トリ(プロピレンオキシ)プロピル基、テトラ(プロピレンオキシ)プロピル基、ブチレンオキシブチル基、ジ(ブチレンオキシ)ブチル基、トリ(ブチレンオキシ)ブチル基、テトラ(ブチレンオキシ)ブチル基、炭素原子数2~15のアルキレン基、またはシクロアルカン骨格を有する炭素原子数6~17の脂肪族炭化水素基であり、nは0~10であり、mは0~20である)により表されることを特徴とする請求項17に記載のパワーモジュール。
PCT/JP2010/073776 2010-02-23 2010-12-28 熱硬化性樹脂組成物、bステージ熱伝導性シート及びパワーモジュール WO2011104996A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080064596.1A CN102770956B (zh) 2010-02-23 2010-12-28 热固性树脂组合物、导热性乙阶片材及电源模块
US13/576,065 US9029438B2 (en) 2010-02-23 2010-12-28 Thermosetting resin composition, B-stage heat conductive sheet, and power module
DE112010005303.0T DE112010005303B4 (de) 2010-02-23 2010-12-28 Wärmehärtende Kunstharzzusammensetzung, B-Stufen Wärmeleitfähigkeitsschicht und Leistungsmodul

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010037501A JP5340202B2 (ja) 2010-02-23 2010-02-23 熱硬化性樹脂組成物、bステージ熱伝導性シート及びパワーモジュール
JP2010-037501 2010-02-23

Publications (1)

Publication Number Publication Date
WO2011104996A1 true WO2011104996A1 (ja) 2011-09-01

Family

ID=44506431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073776 WO2011104996A1 (ja) 2010-02-23 2010-12-28 熱硬化性樹脂組成物、bステージ熱伝導性シート及びパワーモジュール

Country Status (5)

Country Link
US (1) US9029438B2 (ja)
JP (1) JP5340202B2 (ja)
CN (1) CN102770956B (ja)
DE (1) DE112010005303B4 (ja)
WO (1) WO2011104996A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013062379A (ja) * 2011-09-13 2013-04-04 Nitto Denko Corp 熱伝導性シートおよびその製造方法
JP2014040341A (ja) * 2012-08-22 2014-03-06 Denki Kagaku Kogyo Kk 窒化ホウ素粉末及びその用途
JP2014040533A (ja) * 2012-08-23 2014-03-06 Mitsubishi Electric Corp 熱硬化性樹脂組成物、熱伝導性樹脂シートの製造方法と熱伝導性樹脂シート、並びに電力用半導体装置
JP2014196403A (ja) * 2013-03-29 2014-10-16 三菱電機株式会社 熱硬化性樹脂組成物、熱伝導性樹脂シート及びその製造方法、並びにパワーモジュール
US20150037575A1 (en) * 2012-03-30 2015-02-05 Showa Denko K.K. Curable heat radiation composition
JP2016219600A (ja) * 2015-05-20 2016-12-22 京セラ株式会社 半導体用ダイアタッチペースト及び半導体装置
JPWO2014136959A1 (ja) * 2013-03-07 2017-02-16 デンカ株式会社 窒化ホウ素粉末及びこれを含有する樹脂組成物
WO2021200725A1 (ja) * 2020-03-31 2021-10-07 デンカ株式会社 窒化ホウ素焼結体及びその製造方法、並びに複合体及びその製造方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6088731B2 (ja) * 2011-10-14 2017-03-01 日東シンコー株式会社 放熱用部材、及び半導体モジュールの製造方法
CN103748673B (zh) * 2011-10-28 2016-12-14 积水化学工业株式会社 叠层体及功率半导体模块用部件的制造方法
EP2868641B1 (en) * 2012-06-27 2020-01-15 Mizushima Ferroalloy Co., Ltd. Sintered spherical bn particles with concave part, method for producing same, and polymer material comprising them
CN105074909B (zh) * 2013-03-15 2017-09-26 三菱电机株式会社 导热性绝缘片、功率模块及其制造方法
WO2014199650A1 (ja) * 2013-06-14 2014-12-18 三菱電機株式会社 熱硬化性樹脂組成物、熱伝導性シートの製造方法、及びパワーモジュール
JP6514462B2 (ja) * 2013-10-01 2019-05-15 日東電工株式会社 軟磁性樹脂組成物および軟磁性フィルム
JP6276576B2 (ja) * 2013-12-18 2018-02-07 日東電工株式会社 半導体モジュール用熱伝導性シート
JP6413249B2 (ja) * 2014-02-03 2018-10-31 住友ベークライト株式会社 熱伝導性シートおよび半導体装置
JP5854062B2 (ja) * 2014-02-03 2016-02-09 住友ベークライト株式会社 熱伝導性シートおよび半導体装置
JP6375140B2 (ja) * 2014-04-30 2018-08-15 日東電工株式会社 熱伝導性ポリマー組成物及び熱伝導性成形体
JP6572643B2 (ja) * 2014-07-02 2019-09-11 住友ベークライト株式会社 熱伝導性シート、熱伝導性シートの硬化物および半導体装置
JP6413478B2 (ja) * 2014-08-21 2018-10-31 住友ベークライト株式会社 造粒粉、放熱用樹脂組成物、放熱シート、半導体装置、および放熱部材
CN105566852A (zh) * 2014-11-05 2016-05-11 住友电木株式会社 热传导性片用树脂组合物、带有基材的树脂层、热传导性片和半导体装置
JP6648402B2 (ja) * 2014-12-22 2020-02-14 住友ベークライト株式会社 熱伝導性シート、熱伝導性シートの硬化物および半導体装置
DE112016003257T5 (de) * 2015-07-21 2018-04-05 Sumitomo Bakelite Co., Ltd. Wärmeleitende harzzusammensetzung, wärmeleitende folie und halbleiterbauelement
DE102015118245A1 (de) * 2015-10-26 2017-04-27 Infineon Technologies Austria Ag Thermisches Schnittstellenmaterial mit definierten thermischen, mechanischen und elektrischen Eigenschaften
JP6279162B2 (ja) * 2015-12-25 2018-02-14 三菱電機株式会社 半導体装置およびその製造方法
JP6501075B2 (ja) * 2016-02-24 2019-04-17 パナソニックIpマネジメント株式会社 樹脂構造体とその構造体を用いた電子部品及び電子機器
JP6472568B2 (ja) * 2016-03-07 2019-02-20 三菱電機株式会社 半導体装置の製造方法
JP2018145090A (ja) * 2018-03-28 2018-09-20 住友ベークライト株式会社 造粒粉、放熱用樹脂組成物、放熱シート、半導体装置、および放熱部材
JP7172338B2 (ja) 2018-09-19 2022-11-16 富士電機株式会社 半導体装置及び半導体装置の製造方法
JP2020053531A (ja) * 2018-09-26 2020-04-02 スリーエム イノベイティブ プロパティズ カンパニー 熱伝導性シート前駆体、並びに該前駆体から得られる熱伝導性シート及びその製造方法
JP7167310B2 (ja) * 2019-03-27 2022-11-08 富士フイルム株式会社 放熱シートの製造方法
CN114467367B (zh) * 2019-09-25 2024-05-07 富士胶片株式会社 散热片
US11912011B2 (en) 2019-10-23 2024-02-27 Denka Company Limited Composite sheet and method for manufacturing same, and laminate and method for manufacturing same
WO2021201064A1 (ja) * 2020-03-31 2021-10-07 日東電工株式会社 複合材料
CN115210308A (zh) * 2020-03-31 2022-10-18 日东电工株式会社 复合材料
WO2021201065A1 (ja) * 2020-03-31 2021-10-07 日東電工株式会社 複合材料
CN114401923B (zh) * 2020-03-31 2024-04-30 电化株式会社 块状氮化硼颗粒及其制造方法
EP4130121A4 (en) * 2020-03-31 2024-04-17 Nitto Denko Corporation COMPOSITE MATERIAL
JP7184953B2 (ja) * 2020-03-31 2022-12-06 日東電工株式会社 複合材料
EP4130123A4 (en) * 2020-03-31 2024-04-10 Nitto Denko Corporation COMPOSITE MATERIAL AND METHOD FOR MANUFACTURING A COMPOSITE MATERIAL
JP7361910B2 (ja) * 2020-05-29 2023-10-16 デンカ株式会社 樹脂の半硬化物と塊状窒化ホウ素粒子とを含有するシート
US20240010900A1 (en) * 2020-12-04 2024-01-11 Sumitomo Bakelite Co., Ltd. Thermally-conductive resin composition and molded article
JP7124249B1 (ja) * 2021-01-06 2022-08-23 デンカ株式会社 放熱シート及び放熱シートの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1126661A (ja) * 1997-07-01 1999-01-29 Denki Kagaku Kogyo Kk 放熱スペーサー
JP2003060134A (ja) * 2001-08-17 2003-02-28 Polymatech Co Ltd 熱伝導性シート
JP2003105324A (ja) * 2001-07-23 2003-04-09 Ricoh Co Ltd 砥粒及びその製造方法、研磨具及びその製造方法、研磨用砥石及びその製造方法、並びに研磨装置
JP2004082323A (ja) * 2002-06-26 2004-03-18 Ricoh Co Ltd 研磨具およびその製造方法
JP2005014190A (ja) * 2003-06-27 2005-01-20 Ricoh Co Ltd 研磨フィルムおよび研磨方法
WO2009041300A1 (ja) * 2007-09-26 2009-04-02 Mitsubishi Electric Corporation 熱伝導性シート及びパワーモジュール

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1260671A (en) * 1984-06-07 1989-09-26 Takahisa Koshida High-purity powder of hexagonal boron nitride and a method for the preparation thereof
JP2545639B2 (ja) * 1990-07-30 1996-10-23 富士通株式会社 積層型圧電素子
US5531945A (en) * 1992-04-13 1996-07-02 Mitsubishi Gas Chemical Company, Inc. Process for the production of base board for printed wiring
US6676704B1 (en) * 1994-08-12 2004-01-13 Diamicron, Inc. Prosthetic joint component having at least one sintered polycrystalline diamond compact articulation surface and substrate surface topographical features in said polycrystalline diamond compact
US6517583B1 (en) * 2000-01-30 2003-02-11 Diamicron, Inc. Prosthetic hip joint having a polycrystalline diamond compact articulation surface and a counter bearing surface
JPH11135443A (ja) * 1997-10-31 1999-05-21 Canon Inc 堆積膜の形成装置及び形成方法
SE519862C2 (sv) * 1999-04-07 2003-04-15 Sandvik Ab Sätt att tillverka ett skär bestående av en PcBN-kropp och en hårdmetall- eller cermet-kropp
US20060121068A1 (en) * 1999-08-31 2006-06-08 General Electric Company Boron nitride particles of spherical geometry and process for making thereof
US7976941B2 (en) * 1999-08-31 2011-07-12 Momentive Performance Materials Inc. Boron nitride particles of spherical geometry and process for making thereof
EP1193233A1 (en) * 2000-02-07 2002-04-03 Ibiden Co., Ltd. Ceramic substrate for semiconductor production/inspection device
JP2002270553A (ja) * 2001-03-13 2002-09-20 Mitsubishi Gas Chem Co Inc 電子部品の製造法
US6709622B2 (en) * 2001-03-23 2004-03-23 Romain Billiet Porous nanostructures and method of fabrication thereof
JP2002343751A (ja) * 2001-05-14 2002-11-29 Mitsubishi Gas Chem Co Inc 電子部品の製造法
US6645612B2 (en) * 2001-08-07 2003-11-11 Saint-Gobain Ceramics & Plastics, Inc. High solids hBN slurry, hBN paste, spherical hBN powder, and methods of making and using them
US7192644B2 (en) * 2002-04-22 2007-03-20 Stc.Unm Non-aqueous borate routes to boron nitride
US7141086B2 (en) 2002-06-03 2006-11-28 Ricoh Company, Ltd. Abrasive grain and method for producing it, polishing tool and method for producing it, grinding wheel and method for producing it, and polishing apparatus
JP2005089251A (ja) * 2003-09-18 2005-04-07 Mitsui Chemicals Inc 窒化アルミニウム顆粒、その製造方法及び用途
JP2005149770A (ja) 2003-11-11 2005-06-09 Japan Aviation Electronics Industry Ltd コネクタ
PL1647790T3 (pl) * 2004-07-01 2009-01-30 Ibiden Co Ltd Sposób wytwarzania porowatego elementu ceramicznego
US7488537B2 (en) * 2004-09-01 2009-02-10 Radtke Robert P Ceramic impregnated superabrasives
JP2006348139A (ja) * 2005-06-15 2006-12-28 Fujikura Ltd アルファサイアロン蛍光体粉末の製造方法
RU2008147149A (ru) * 2006-05-01 2010-06-10 Асахи Гласс Компани, Лимитед (Jp) Способ получения стекла
DE102008014119B4 (de) * 2008-03-13 2013-11-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Herstellen eines 3-dimensionalen, polymeres Material aufweisenden Formkörpers, Verfahren zum Herstellen einer Beschichtung aus polymerem Material sowie ein 3-dimensionaler Formkörper
JP5047024B2 (ja) 2008-03-25 2012-10-10 三菱電機株式会社 熱伝導性樹脂組成物、熱伝導性樹脂シート及びパワーモジュール
JP2010037501A (ja) 2008-08-08 2010-02-18 Gun Ei Chem Ind Co Ltd トリアゾール系共縮合物およびその製造方法
JP5732202B2 (ja) * 2010-05-07 2015-06-10 株式会社シャネル化粧品技術開発研究所 窒化ホウ素複合粉体を配合してなる化粧料組成物
TWI474991B (zh) * 2010-08-19 2015-03-01 Earthgen Corp 製備球型氮化硼聚集體之漿料及其應用
US8694065B2 (en) * 2011-09-23 2014-04-08 General Electric Company Cryogenic cooling system with wicking structure
MY170458A (en) * 2011-11-29 2019-08-02 Mitsubishi Chem Corp Agglomerated boron nitride particles, composition containing said particles, and three-dimensional integrated circuit having layer comprising said composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1126661A (ja) * 1997-07-01 1999-01-29 Denki Kagaku Kogyo Kk 放熱スペーサー
JP2003105324A (ja) * 2001-07-23 2003-04-09 Ricoh Co Ltd 砥粒及びその製造方法、研磨具及びその製造方法、研磨用砥石及びその製造方法、並びに研磨装置
JP2003060134A (ja) * 2001-08-17 2003-02-28 Polymatech Co Ltd 熱伝導性シート
JP2004082323A (ja) * 2002-06-26 2004-03-18 Ricoh Co Ltd 研磨具およびその製造方法
JP2005014190A (ja) * 2003-06-27 2005-01-20 Ricoh Co Ltd 研磨フィルムおよび研磨方法
WO2009041300A1 (ja) * 2007-09-26 2009-04-02 Mitsubishi Electric Corporation 熱伝導性シート及びパワーモジュール

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013062379A (ja) * 2011-09-13 2013-04-04 Nitto Denko Corp 熱伝導性シートおよびその製造方法
US20150037575A1 (en) * 2012-03-30 2015-02-05 Showa Denko K.K. Curable heat radiation composition
US10717896B2 (en) 2012-03-30 2020-07-21 Showa Denko K.K. Curable heat radiation composition
JP2014040341A (ja) * 2012-08-22 2014-03-06 Denki Kagaku Kogyo Kk 窒化ホウ素粉末及びその用途
JP2014040533A (ja) * 2012-08-23 2014-03-06 Mitsubishi Electric Corp 熱硬化性樹脂組成物、熱伝導性樹脂シートの製造方法と熱伝導性樹脂シート、並びに電力用半導体装置
JPWO2014136959A1 (ja) * 2013-03-07 2017-02-16 デンカ株式会社 窒化ホウ素粉末及びこれを含有する樹脂組成物
JP2014196403A (ja) * 2013-03-29 2014-10-16 三菱電機株式会社 熱硬化性樹脂組成物、熱伝導性樹脂シート及びその製造方法、並びにパワーモジュール
JP2016219600A (ja) * 2015-05-20 2016-12-22 京セラ株式会社 半導体用ダイアタッチペースト及び半導体装置
WO2021200725A1 (ja) * 2020-03-31 2021-10-07 デンカ株式会社 窒化ホウ素焼結体及びその製造方法、並びに複合体及びその製造方法
CN115298150A (zh) * 2020-03-31 2022-11-04 电化株式会社 氮化硼烧结体及其制造方法、以及复合体及其制造方法
CN115298150B (zh) * 2020-03-31 2024-02-09 电化株式会社 氮化硼烧结体及其制造方法、以及复合体及其制造方法

Also Published As

Publication number Publication date
CN102770956B (zh) 2015-04-29
CN102770956A (zh) 2012-11-07
DE112010005303T5 (de) 2012-12-20
US9029438B2 (en) 2015-05-12
JP5340202B2 (ja) 2013-11-13
DE112010005303B4 (de) 2016-07-07
JP2011176024A (ja) 2011-09-08
US20130012621A1 (en) 2013-01-10

Similar Documents

Publication Publication Date Title
WO2011104996A1 (ja) 熱硬化性樹脂組成物、bステージ熱伝導性シート及びパワーモジュール
WO2012070289A1 (ja) 熱伝導性シート及びパワーモジュール
JP6000749B2 (ja) 熱硬化性樹脂組成物、熱伝導性樹脂シートの製造方法と熱伝導性樹脂シート、並びに電力用半導体装置
JP5171798B2 (ja) 熱硬化性樹脂組成物、熱伝導性樹脂シート及びその製造方法、並びにパワーモジュール
JP5208060B2 (ja) 熱硬化性樹脂組成物、熱伝導性樹脂シート及びその製造方法、並びにパワーモジュール
JP5349432B2 (ja) 電子部品装置の製法およびそれに用いる電子部品封止用樹脂組成物シート
JP5855042B2 (ja) パワーモジュールの製造方法
JP2011178894A (ja) 熱硬化性樹脂組成物、熱伝導性シート及びパワーモジュール
WO2018008450A1 (ja) フィルム用樹脂組成物、フィルム、基材付フィルム、金属/樹脂積層体、樹脂硬化物、半導体装置、および、フィルム製造方法
JP2014193965A (ja) 高熱伝導性樹脂組成物、高熱伝導性半硬化樹脂フィルム及び高熱伝導性樹脂硬化物
JP2014152299A (ja) 熱硬化性樹脂組成物、熱伝導性樹脂シート、その製造方法及びそれを備えるパワーモジュール
JP6025966B2 (ja) 熱伝導性絶縁シート、パワーモジュール及びその製造方法
JP2015196823A (ja) 熱硬化性樹脂組成物、熱伝導性樹脂シート及びその製造方法、並びにパワーモジュール
JP2016155946A (ja) 熱硬化性樹脂組成物、熱伝導性樹脂シート、回路基板及びパワーモジュール
JP2014189701A (ja) 高熱伝導性樹脂硬化物、高熱伝導性半硬化樹脂フィルム及び高熱伝導性樹脂組成物
WO2018150779A1 (ja) 樹脂組成物、樹脂シート及び半導体装置並びに半導体装置の製造方法
JP7200674B2 (ja) 放熱構造体の製造方法
TWI824032B (zh) 樹脂組成物、複合成形體、半導體元件及樹脂硬化物
JP2020063438A (ja) 樹脂組成物、樹脂硬化物および複合成形体
WO2020080158A1 (ja) 熱伝導性樹脂組成物
WO2023189030A1 (ja) 熱硬化性樹脂組成物、樹脂硬化物および複合成形体
WO2023182470A1 (ja) 熱硬化性樹脂組成物、熱伝導性樹脂シート、放熱積層体、放熱性回路基板、半導体装置およびパワーモジュール
JP2023102284A (ja) 熱伝導性樹脂組成物、熱伝導性樹脂シート、放熱積層体、放熱性回路基板、半導体装置およびパワーモジュール
JP2016204669A (ja) 熱硬化性樹脂組成物、熱伝導性樹脂シートの製造方法と熱伝導性樹脂シート、並びに電力用半導体装置
JP2023145355A (ja) 熱硬化性樹脂組成物、熱硬化性樹脂シート、絶縁シート及び半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080064596.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846659

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13576065

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112010005303

Country of ref document: DE

Ref document number: 1120100053030

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10846659

Country of ref document: EP

Kind code of ref document: A1