WO2011104816A1 - エレベータの制御装置 - Google Patents

エレベータの制御装置 Download PDF

Info

Publication number
WO2011104816A1
WO2011104816A1 PCT/JP2010/052761 JP2010052761W WO2011104816A1 WO 2011104816 A1 WO2011104816 A1 WO 2011104816A1 JP 2010052761 W JP2010052761 W JP 2010052761W WO 2011104816 A1 WO2011104816 A1 WO 2011104816A1
Authority
WO
WIPO (PCT)
Prior art keywords
car
elevator
evacuation
emergency stop
floor
Prior art date
Application number
PCT/JP2010/052761
Other languages
English (en)
French (fr)
Inventor
博樹 浅野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN2010800561650A priority Critical patent/CN102652102A/zh
Priority to JP2012501555A priority patent/JPWO2011104816A1/ja
Priority to PCT/JP2010/052761 priority patent/WO2011104816A1/ja
Publication of WO2011104816A1 publication Critical patent/WO2011104816A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/027Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions to permit passengers to leave an elevator car in case of failure, e.g. moving the car to a reference floor or unlocking the door
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/021Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions the abnormal operating conditions being independent of the system
    • B66B5/022Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions the abnormal operating conditions being independent of the system where the abnormal operating condition is caused by a natural event, e.g. earthquake
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/021Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions the abnormal operating conditions being independent of the system
    • B66B5/024Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions the abnormal operating conditions being independent of the system where the abnormal operating condition is caused by an accident, e.g. fire

Definitions

  • the present invention relates to an elevator control device that travels to a predetermined evacuation position after an emergency stop of an elevator car.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an elevator control device that can shorten the time required for the car to move to the evacuation position. .
  • An elevator control apparatus includes a car position detecting means for detecting a position of an elevator car, a disaster detecting means for detecting a disaster with respect to the elevator, and an emergency stop of the car when the disaster is detected.
  • Driving control means for traveling to an evacuation position after the operation control means, the emergency control position of the car when raising and lowering the car and the weight at the time of the disaster, the car and the weight
  • the evacuation position in the vicinity of the emergency stop position of the car is the other of the upper side and the lower side of the intermediate position when the car is one of the upper side and the lower side of the intermediate position passing each other.
  • the vehicle travels to the evacuation position by passing each other.
  • FIG. 1 is a block diagram of an elevator control device according to Embodiment 1 of the present invention.
  • FIG. It is a side view of the elevator for demonstrating the case where the safety priority mode is set to the elevator control apparatus in Embodiment 1 of this invention.
  • FIG. 1 is a block diagram of an elevator control apparatus according to Embodiment 1 of the present invention.
  • Reference numeral 1 denotes an elevator driving motor.
  • the elevator driving motor 1 has a function of supplying a driving force for raising and lowering an elevator car (not shown in FIG. 1) and a weight (not shown in FIG. 1) in opposite directions.
  • the earthquake sensor 2 is an earthquake sensor.
  • the earthquake sensor 2 is provided in an elevator hoistway (not shown) or the like.
  • This earthquake sensor 2 functions as a disaster detection means for detecting a disaster to the elevator.
  • the earthquake sensor 2 has a function of sensing the shaking of the building where the elevator is set.
  • the elevator control means 3 is an elevator control means.
  • the elevator control means 3 is composed of an elevator machine room (not shown) and a control panel provided in a hoistway.
  • the elevator control means 3 includes an elevator operation control means 4, a speed command control means 5, a speed detection means 6, a car position detection means 7, and a control operation time management means 8.
  • the elevator operation control means 4 has a function of managing and controlling the operation of the elevator.
  • the speed command control means 5 has a function of controlling the rotational speed of the elevator driving motor 1 based on a command from the elevator operation control means 4.
  • the speed detection means 6 has a function of detecting the actual speed of the elevator driving motor 1.
  • the car position detecting means 7 has a function of automatically detecting the position of the car based on the actual speed of the elevator driving motor 1 detected by the speed detecting means 6.
  • the control operation time management means 8 has a function of managing the time until transition to the control operation based on a command from the elevator operation control means 4.
  • the elevator operation control means 4 causes the speed command control means 5 to stop the car urgently. Command to output.
  • the speed command control means 5 to which such a command is input outputs a stop command to the elevator driving motor 1.
  • the elevator driving motor 1 to which such a command is input starts to decelerate.
  • the speed command control means 5 controls the speed of the elevator driving motor 1 by outputting an optimum speed command based on the feedback detection value.
  • control operation time management means 8 starts counting the time until automatic return to the control operation, triggered by the transition to the emergency stop control by the elevator operation control means 4. And if the time until it transfers to control operation passes, the elevator operation control means 4 will output the instruction
  • the speed command control means 5 to which such a command is input outputs a command to the elevator drive motor 1 so that the car travels to the evacuation position determined based on the car emergency stop position detected by the car position detection means 7.
  • the elevator driving motor 1 to which the command is input drives the car to travel to the evacuation position. With this driving, the car arrives at the evacuation position. A user in the car can evacuate from the evacuation position to the outside of the car.
  • a mode for determining the evacuation position a mode according to the situation can be set from the safety priority mode and the travel time reduction mode. These modes can be switched by operating a switch or the like.
  • the control operation in the present embodiment will be described.
  • FIG. 2 is a side view of the elevator for explaining a case where the safety priority mode is set in the elevator control apparatus according to Embodiment 1 of the present invention.
  • 9 is a sheave.
  • the sheave 9 is attached to the rotating shaft of the elevator driving motor 1.
  • a main rope 10 is wound around the sheave 9.
  • a car 11 is connected to one end of the main rope 10.
  • a weight 12 is connected to the other end of the main rope 10.
  • 13 is the nearest floor. This nearest floor 13 is the floor closest to the emergency stop position of the car 11 among the evacuation floors that can stop the car 11 during the control operation.
  • 14 is a floor directly below.
  • 15 is an upper refuge floor.
  • the upper evacuation floor 15 is an evacuation floor disposed on the ⁇ floor above the nearest floor 13.
  • This driving direction 16 is the driving direction.
  • This driving direction 16 is a traveling direction when the car 11 resumes driving after an emergency stop. As shown in FIG. 2, in the safety priority mode, when the car 11 makes an emergency stop immediately above the nearest floor 13, the car 11 resumes traveling toward the upper evacuation floor 15 in the driving direction 16 away from the weight 12. .
  • FIG. 3 is a side view of the elevator for explaining the case where the safety priority mode is set in the elevator control apparatus according to Embodiment 1 of the present invention.
  • 17 is the nearest floor.
  • the nearest floor 17 corresponds to the n + ⁇ floor.
  • 18 is an exit.
  • the exit 18 is provided at a height corresponding to the n + ⁇ floor.
  • the exit 18 may be provided between adjacent floors.
  • the exit 18 is provided to rescue the user in the car 11 from other than the elevator entrance.
  • the exit 18 is provided in a hoistway facing the car 11.
  • Reference numeral 19 denotes a driving direction. As shown in FIG. 3, when the car 11 stops just above the exit 18, the car 11 resumes traveling toward the nearest floor 17 in the driving direction 19 away from the weight 12.
  • the car 11 resumes traveling in the driving direction 19 or the like away from the weight 12. For this reason, it can prevent reliably that the cage
  • the distance to the evacuation position such as the upper evacuation floor 15 or the nearest floor 17 is long, it takes a long time for the car 11 to move to the evacuation position, and anxiety is raised for the users in the car 11. .
  • the travel time reduction mode In contrast, in the travel time reduction mode, the time required for the car 11 to move to the evacuation position can be shortened.
  • the travel time reduction mode of the elevator control device of the present embodiment will be described in detail.
  • FIG. 4 is a diagram for explaining floor position information stored in the elevator control apparatus according to Embodiment 1 of the present invention.
  • 20 is a memory. This memory 20 is provided in the elevator control means 3.
  • the memory 20 is composed of an E2PROM or the like that can rewrite information and stores the stored information even after the power is turned off.
  • the memory 20 stores a floor position information table in the height direction between each floor where the elevator is installed and the exit 18.
  • the floor position information of each floor is the position information when the car 11 arrives at a position where the user can get on and off using the elevator doorway.
  • the floor position information of the exit 18 is position information when the car 11 arrives at a position where the user in the car 11 can be rescued from other than the elevator entrance.
  • the height difference between each floor and the reference floor is stored in advance as the floor position information.
  • the elevator is in a learning operation to detect floor position information and store it in the memory 20.
  • the value detected by the car position detection means 7 is stored in the memory 20 as floor position information.
  • FIG. 5 is a diagram for explaining the concept of the floor information of the elevator control apparatus according to Embodiment 1 of the present invention.
  • FIG. 6 is a flowchart for explaining the operation of the elevator control apparatus according to Embodiment 1 of the present invention for storing the floor information.
  • the current position of the car 11 is specified. It is supposed to be a floor. For example, when the car 11 is located above the center position of the first floor and the second floor and below the center position of the second floor and the third floor, the current position of the car 11 is determined as “second floor”.
  • the floor information of the current position of the car 11 is stored in the memory 20 in accordance with the determination criteria of FIG. 5.
  • FIG. 7 is a flowchart for explaining the operation of the elevator using the elevator control apparatus according to Embodiment 1 of the present invention.
  • step S11 the emergency stop position of the car 11 measured by the car position detecting means 7 is stored in the memory 20 as a variable (A), and the process proceeds to step S12.
  • step S12 the floor information acquired in step S1 of FIG. 6 is stored in the memory 20 as the variable (B) based on the variable (A), and the process proceeds to step S13.
  • step S13 the regular floor position information of the variable (B) related to the floor information acquired in step S11 is acquired from the floor position information table and then stored in the memory 20 as the variable (C), and the process proceeds to step S14.
  • step S14 the floor position information of the exit 18 is acquired from the floor position information table and then stored in the memory 20 as a variable (D), and the process proceeds to step S15.
  • step S15 after the distance from the emergency stop position of the car 11 to the nearest floor 17 is measured, it is stored in the memory 20 as a variable (E), and the process proceeds to step S16.
  • step S16 after the distance from the emergency stop position of the car 11 to the exit 18 is measured, it is stored in the memory 20 as a variable (F), and the process proceeds to step S17.
  • step S17 it is determined which is closer to the nearest floor 17 or the exit 18 from the emergency stop position of the car 11. Specifically, it is determined whether or not the variable (E) is greater than or equal to the variable (F). If the nearest floor 17 is closer to the exit 18 and the variable (E) is less than the variable (F), the process proceeds to step S18. In step S18, the car 11 is restarted in the direction where the nearest floor 17 is located, and the process proceeds to step S19.
  • step S19 it is determined whether or not the variable (A) is greater than or equal to the variable (C) in order to determine in which direction the nearest floor 17 is located with respect to the emergency stop position of the car 11. If the variable (A) is greater than or equal to the variable (C), the process proceeds to step S20. In step S20, the car 11 is activated in the DN direction, and the operation ends. On the other hand, if the variable (A) is less than the variable (C) in step S19, the process proceeds to step S21. In step S21, the car 11 is activated in the UP direction, and the operation ends.
  • step S22 the car 11 is restarted in the direction where the exit 18 is located, and the process proceeds to step S23.
  • step S23 it is determined whether or not the variable (A) is equal to or greater than the variable (D) in order to determine in which direction the exit 18 is located with respect to the emergency stop position of the car 11.
  • the process proceeds to step S20, the car 11 is activated in the DN direction, and the operation is finished.
  • the process proceeds to step S21, the car 11 is activated in the UP direction, and the operation ends.
  • FIG. 8 is a side view of the elevator for explaining a first specific example of the operation of the elevator in which the elevator control apparatus according to Embodiment 1 of the present invention is used.
  • 21 is an intermediate position h.
  • the intermediate position h21 is a position where the car 11 and the weight 12 pass each other when the car 11 and the weight 12 are moved up and down.
  • the emergency stop position of the car 11 is closer to the exit 18 than the nearest floor 17.
  • the elevator operation proceeds from step S17 in FIG. 7 to step S22, and then proceeds to step S23.
  • step S23 in FIG. 7 the process proceeds from step S23 in FIG. 7 to step S20, and the car 11 travels in the DN direction. That is, the car 11 travels in the driving direction 22 that passes the weight 12.
  • step S ⁇ b> 23 when the emergency stop position of the car 11 is below the exit 18, the process proceeds from step S ⁇ b> 23 to step S ⁇ b> 21 in FIG. 7, and the car 11 travels in the UP direction. That is, the car 11 travels upward in a direction away from the weight 12.
  • FIG. 9 is a side view of the elevator for explaining a second specific example of the operation of the elevator in which the elevator control device according to Embodiment 1 of the present invention is used.
  • the emergency stop position of the car 11 is closer to the nearest floor 17 than the exit 18.
  • the elevator operation proceeds from step S17 in FIG. 7 to step S18, and then proceeds to step S19.
  • step S19 in FIG. 7 the process proceeds from step S19 in FIG. 7 to step S21, and the car 11 travels in the UP direction. That is, the car 11 travels in the driving direction 23 away from the weight 12.
  • step S19 when the emergency stop position of the car 11 is above the nearest floor 17, the process proceeds from step S19 to step S20 in FIG. 7, and the car 11 travels in the DN direction. That is, the car 11 travels downward in a direction passing the weight 12.
  • FIG. 10 is a side view of the elevator for explaining a third specific example of the operation of the elevator using the elevator according to the first embodiment of the present invention.
  • 24 is an escape port.
  • the exit 24 is provided at a height corresponding to the n- ⁇ floor.
  • 25 is the nearest floor. This nearest floor 25 corresponds to the n- ⁇ floor.
  • the emergency stop position of the car 11 is closer to the nearest floor 25 than the exit 24.
  • the elevator operation proceeds from step S17 in FIG. 7 to step S18, and then proceeds to step S19.
  • step S19 in FIG. 7 the process proceeds from step S19 in FIG. 7 to step S21, and the car 11 travels in the UP direction. That is, the car 11 travels in the driving direction 26 that passes the weight 12.
  • step S19 when the emergency stop position of the car 11 is above the nearest floor 25, the process proceeds from step S19 to step S20 in FIG. 7, and the car 11 travels in the DN direction. That is, the car 11 travels downward in a direction away from the weight 12.
  • the car 11 in the travel time reduction mode, the car 11 travels to the evacuation position near the emergency stop of the car 11 regardless of the emergency stop position of the car 11. That is, when an earthquake occurs, the emergency stop position of the car 11 is one above or below the intermediate position where the car 11 and the weight 12 pass each other, and the evacuation position near the emergency stop position of the car 11 is higher than the intermediate position. Even in the case of the other of the upper side and the lower side, the car 11 is caused to pass the weight 12 and travel to the evacuation position.
  • the car 11 travels to the evacuation position where the distance from the emergency stop position of the car 11 is the shortest. That is, in the travel time reduction mode, the time required for the car 11 to move to the evacuation position can be shortened compared to the safety priority mode.
  • FIG. FIG. 11 is a flowchart for explaining the operation of the elevator using the elevator control apparatus according to Embodiment 2 of the present invention.
  • symbol is attached
  • Embodiment 1 it was not considered that a fire occurred near the evacuation position.
  • the second embodiment it is considered that a fire has occurred near the evacuation position.
  • a fire sensor (not shown) is also provided as a disaster detection means. This fire sensor is provided on each floor corresponding to the elevator hall. This fire sensor has a function of detecting a fire in the vicinity of each floor landing, the exit 18 and the like.
  • step S17 The operation of the present embodiment is the same as that of the first embodiment up to step S17. If the variable (E) is less than the variable in step S17, the process proceeds to step S18. In step S18, the car 11 is restarted in the direction where there is one end, the nearest floor 17 and the like, and the process proceeds to step S31. In step S31, based on the fire detection result by the fire sensor, it is determined whether or not the nearest floor 17 or the like cannot be stopped by a fire. If no fire has occurred on the nearest floor 17 and the car 11 can be stopped, the process proceeds to step S19, and then the same operation as in the first embodiment is performed.
  • step S32 the car 11 is restarted in the direction in which the exit 18 is located, and the process proceeds to step S33.
  • step S33 the speed of the car 11 is set to a value that is higher by ⁇ than the speed during normal evacuation. Thereafter, after proceeding to step S23, the same operation as in the first embodiment is performed.
  • step S22 the car 11 is restarted in a direction where there is one end, the exit 18 and the like, and the process proceeds to step S34.
  • step S34 based on the fire detection result by the fire sensor, it is determined whether or not the exit 18 and the like cannot be stopped by a fire. If no fire has occurred at the exit 18 or the like and the car 11 can be stopped, the process proceeds to step S23, and then the same operation as in the first embodiment is performed.
  • step S35 the car 11 is restarted in the direction where the nearest floor 17 is located, and the process proceeds to step S36.
  • step S36 the speed of the car 11 is set to a value that is faster than the speed during normal evacuation by ⁇ . Thereafter, after proceeding to step S19, the same operation as in the first embodiment is performed.
  • the car 11 when a fire is detected at an evacuation position near the emergency stop position of the car 11 when the car 11 is emergency stopped when an earthquake is detected, The car 11 travels to another evacuation position in a direction opposite to the evacuation position near the emergency stop position of the car 11 at a speed higher than the speed at the time of normal evacuation. For this reason, although the distance to an evacuation position becomes long, it can shorten the time taken for the cage
  • FIG. FIG. 12 is a flow chart for explaining the operation of the elevator using the elevator control apparatus in Embodiment 3 of the present invention.
  • symbol is attached
  • Embodiment 1 the speed when the car 11 and the weight 12 pass each other is not considered.
  • consideration is given to the speed at which the car 11 and the weight 12 pass each other.
  • step S41 it is determined whether the variable (A) is equal to or greater than the center position h21.
  • step S42 a flag indicating that "the car 11 has passed the weight 12" is set, and the process proceeds to step S43.
  • step S43 it is determined whether or not a flag indicating that "the car 11 passes the weight 12" is being set. Since the “car 11 passes the weight 12” flag is set first, the process proceeds to step S44. In step S44, the speed of the car 11 is set to a value that is slower by ⁇ than the speed during normal evacuation, and the operation ends.
  • step S45 the flag indicating that “the car 11 has passed the weight 12” is cleared, and the process proceeds to step S43. In this case, since the flag indicating that “the car 11 passes the weight 12” has been reset, the operation ends without reducing the speed of the car 11 in step S44.
  • step S46 it is determined whether or not the center position h21 is greater than or equal to the variable (A). If the central position h21 is greater than or equal to the variable (A), the process proceeds to step S42, where the above-described operation is performed, the speed of the car 11 is set to a value slower by ⁇ than the speed during normal evacuation, and the operation ends. To do. On the other hand, when the central position h21 is smaller than the variable (A) in step S46, the process proceeds to step S45, where the above-described operation is performed, and the operation ends without reducing the speed of the car 11.
  • the speed of the car 11 is made slower than the speed during normal evacuation. For this reason, even when the weight 12 is detached from the guide rail (not shown) due to an earthquake or the like, the horizontal swing of the weight 12 can be minimized. That is, the car 11 can be moved to the evacuation position while preventing the weight 12 that has come off the guide rail from colliding with the car 11.
  • the case has been described in which an earthquake is detected by the earthquake sensor 2 and the car 11 is restarted after an emergency stop between the floors.
  • the disaster detection means such as a fire sensor or a submersion sensor detects a disaster to the elevator and the car 11 is suddenly stopped between the floors, it is restarted.
  • the elevator can be controlled.
  • the elevator car can be used for an elevator that travels to a predetermined evacuation position after an emergency stop of the elevator car.
  • Elevator drive motor Seismic sensor 3 Elevator control means 4 elevator operation control means, 5 speed command control means, 6 speed detection means, 7 car position detection means, 8 control operation time management means, 9 sheave, 10 main ropes, 11 baskets, 12 spindles, 13 nearest floor, 14 directly below floor, 15 Upper evacuation floor, 16 Driving direction, 17 Nearest floor, 18 Exit, 19 driving direction, 20 memory, 21 intermediate position h, 22 driving direction, 23 driving directions, 24 exits, 25 nearest floor, 26 driving directions

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Elevator Control (AREA)

Abstract

 かごが避難位置に移動するまでにかかる時間を短くすることができるエレベータの制御装置を提供する。このため、エレベータのかごの位置を検出するかご位置検出手段と、エレベータに対する災害を検出する災害検出手段と、災害が検出されたときにかごを緊急停止させた後に避難位置まで走行させる運転制御手段と、を備え、運転制御手段は、災害時に、エレベータのかごの緊急停止位置がかごと錘とを昇降させたときにかごと錘とがすれ違う中間位置よりも上側及び下側の一方となるとともに、かごの緊急停止位置近傍の避難位置が中間位置よりも上側及び下側の他方となった場合は、かごを錘とすれ違わせて避難位置まで走行させる構成とした。

Description

エレベータの制御装置
 この発明は、エレベータのかごを緊急停止させた後に所定の避難位置に走行させるエレベータの制御装置に関するものである。
 従来のエレベータは、地震時運転によりかごを所定階に休止させた後、火災時救出運転を行う際に、かごが錘とすれ違わない範囲の階床で火災時運転を行うように制御されている。例えば、建物の上層部でかごが緊急停止した場合は、上層部側に避難位置を設定し、上層階の呼びの登録だけを許可する。これに対し、建物の下層部でかごが緊急停止した場合は、下層側に避難位置を設定し、下層階の呼びの登録だけを許可する。かかるエレベータによれば、かごと錘とが衝突することを確実に防止することができる。このため、エレベータの設置された建物に取り残された者は、エレベータを利用して安全に避難することができる(例えば、特許文献1参照)。
日本特開2005-82292号公報
 しかしながら、特許文献1に記載のものにおいては、例えば、建物の上層部でかごが緊急停止した場合、上層階側の避難位置よりも下層階側の避難位置までの距離が短くても、上層階側の避難位置までかごを走行させる必要がある。このため、避難位置までの距離が長いと、かごが避難位置に移動するまでに多くの時間がかかり、避難しようとしてかごに乗り込んだ利用者に不安が募るという問題があった。
 この発明は、上述のような課題を解決するためになされたもので、その目的は、かごが避難位置に移動するまでにかかる時間を短くすることができるエレベータの制御装置を提供することである。
 この発明に係るエレベータの制御装置は、エレベータのかごの位置を検出するかご位置検出手段と、前記エレベータに対する災害を検出する災害検出手段と、前記災害が検出されたときに前記かごを緊急停止させた後に避難位置まで走行させる運転制御手段と、を備え、前記運転制御手段は、前記災害時に、前記かごの緊急停止位置が前記かごと前記錘とを昇降させたときに前記かごと前記錘とがすれ違う中間位置よりも上側及び下側の一方となるとともに、前記かごの緊急停止位置近傍の避難位置が前記中間位置よりも上側及び下側の他方となった場合は、前記かごを前記錘とすれ違わせて前記避難位置まで走行させるものである。
 この発明によれば、かごが避難位置に移動するまでにかかる時間を短くすることができる。
この発明の実施の形態1におけるエレベータの制御装置のブロック図である。 この発明の実施の形態1におけるエレベータの制御装置に安全優先モードが設定されている場合を説明するためのエレベータの側面図である。 この発明の実施の形態1におけるエレベータの制御装置に安全優先モードが設定されている場合を説明するためのエレベータの側面図である。 この発明の実施の形態1におけるエレベータの制御装置に記憶された階位置情報を説明するための図である。 この発明の実施の形態1におけるエレベータの制御装置の階数情報の考え方を説明するための図である。 この発明の実施の形態1におけるエレベータの制御装置が階数情報を記憶する動作を説明するためのフローチャートである。 この発明の実施の形態1におけるエレベータの制御装置が利用されたエレベータの動作を説明するためのフローチャートである。 この発明の実施の形態1におけるエレベータの制御装置が利用されたエレベータの動作の第1具体例を説明するためのエレベータの側面図である。 この発明の実施の形態1におけるエレベータの制御装置が利用されたエレベータの動作の第2具体例を説明するためのエレベータの側面図である。 この発明の実施の形態1におけるエレベータの制御装置が利用されたエレベータの動作の第3具体例を説明するためのエレベータの側面図である。 この発明の実施の形態2におけるエレベータの制御装置が利用されたエレベータの動作を説明するためのフローチャートである。 この発明の実施の形態3におけるエレベータの制御装置が利用されたエレベータの動作を説明するためのフローチャートである。
 この発明を実施するための形態について添付の図面に従って説明する。なお、各図中、同一又は相当する部分には同一の符号を付しており、その重複説明は適宜に簡略化ないし省略する。
実施の形態1.
 図1はこの発明の実施の形態1におけるエレベータの制御装置のブロック図である。
 1はエレベータ駆動用モータである。このエレベータ駆動用モータ1は、エレベータのかご(図1においては図示せず)と錘(図1においては図示せず)とを反対方向に昇降させる駆動力を供給する機能を備える。
 2は地震センサである。この地震センサ2は、エレベータの昇降路(図示せず)等に設けられる。この地震センサ2は、エレベータに対する災害を検出災害検出手段として機能する。即ち、地震センサ2は、エレベータが設定された建物の揺れを感知する機能を備える。
 3はエレベータ制御手段である。このエレベータ制御手段3は、エレベータの機械室(図示せず)や昇降路に設けられた制御盤からなる。このエレベータ制御手段3は、エレベータ運転制御手段4、速度指令制御手段5、速度検出手段6、かご位置検出手段7、管制運転時間管理手段8を備える。
 エレベータ運転制御手段4は、エレベータの運転を管理制御する機能を備える。速度指令制御手段5は、エレベータ運転制御手段4からの指令に基づいて、エレベータ駆動用モータ1の回転速度を制御する機能を備える。速度検出手段6は、エレベータ駆動用モータ1の実速度を検出する機能を備える。
 かご位置検出手段7は、速度検出手段6に検出されたエレベータ駆動用モータ1の実速度に基づいて、かごの位置を自動検出する機能を備える。管制運転時間管理手段8は、エレベータ運転制御手段4からの指令に基づいて、管制運転移行までの時間を管理する機能を備える。
 かかる構成のエレベータの制御装置においては、かごが通常走行しているときに、地震センサ2が建物の揺れを感知すると、エレベータ運転制御手段4が、速度指令制御手段5に対し、かごを緊急停止させるように指令を出力する。かかる指令が入力された速度指令制御手段5は、エレベータ駆動用モータ1に対し、停止指令を出力する。かかる指令が入力されたエレベータ駆動用モータ1は、減速を開始する。
 このとき、速度検出手段6に検出されたエレベータ駆動用モータ1の実速度は、速度指令制御手段5にフィードバックされる。そして、速度指令制御手段5は、フィードバックされた検出値に基づいて、最適な速度指令を出力してエレベータ駆動用モータ1の速度制御を行う。
 また、管制運転時間管理手段8は、エレベータ運転制御手段4による緊急停止の制御への移行をトリガとして、管制運転に自動復帰するまでの時間のカウントを開始する。そして、管制運転に移行するまでの時間が経過すると、エレベータ運転制御手段4は、速度指令制御手段5に対し、管制運転へ移行するように指令を出力する。
 かかる指令が入力された速度指令制御手段5は、かご位置検出手段7に検出されたかごの緊急停止位置に基づいて決定した避難位置にかごを走行させるようにエレベータ駆動用モータ1に指令を出力する。かかる指令が入力されたエレベータ駆動用モータ1は、かごを避難位置まで走行させるように駆動する。かかる駆動により、かごは避難位置に到着する。そして、かご内の利用者は、避難位置からかご外へ避難することができる。
 本実施の形態においては、避難位置を決定するモードとして、安全優先モードと走行時間短縮モードとから状況に応じたモードを設定できるようになっている。これらのモードの切換えは、スイッチの操作等で行うことができるようになっている。以下、本実施の形態における管制運転について説明する。
 まず、図2及び図3を用いて、安全優先モードが設定された場合について説明する。
 図2はこの発明の実施の形態1におけるエレベータの制御装置に安全優先モードが設定されている場合を説明するためのエレベータの側面図である。
 図2において、9は綱車である。この綱車9は、エレベータ駆動用モータ1の回転軸に取り付けられる。この綱車9には、主ロープ10が巻き掛けられる。この主ロープ10の一端に、かご11が連結される。また、主ロープ10の他端に、錘12が連結される。
 また、13は最寄階である。この最寄階13は、管制運転時にかご11を停止させることができる避難階の中で、かご11の緊急停止位置から最も近い階である。14は直下階である。15は上方避難階である。この上方避難階15は、最寄階13よりもα階上方に配置された避難階である。
 16は運転方向である。この運転方向16は、かご11が緊急停止後から運転を再開するときの走行方向である。図2に示すように、安全優先モードでは、かご11が最寄階13の直上に緊急停止した場合、かご11は錘12から離れる運転方向16にある上方避難階15に向けて走行を再開する。
 図3はこの発明の実施の形態1におけるエレベータの制御装置に安全優先モードが設定されている場合を説明するためのエレベータの側面図である。
 図3において、17は最寄階である。この最寄階17は、n+α階に相当する。18は脱出口である。図3においては、脱出口18は、n+β階に対応する高さの箇所に設けられる。しかし、脱出口18は、隣接階間に設けられることもある。この脱出口18は、エレベータ出入口以外からかご11内の利用者を救出するために設けられたものである。例えば、脱出口18は、かご11と対向する昇降路に設けられる。19は運転方向である。図3に示すように、かご11が脱出口18の直上に停止した場合、かご11は錘12から離れる運転方向19にある最寄階17に向けて走行を再開する。
 このように、安全優先モードでは、かご11は錘12から離れる運転方向19等に走行を再開する。このため、かご11と錘12とが衝突することを確実に防止することができる。即ち、かご11内に閉じ込められた利用者を安全に救出することができる。しかしながら、上方避難階15や最寄階17等の避難位置までの距離が長いと、かご11が避難位置に移動するまでに多くの時間がかかり、かご11内の利用者に不安が募ってしまう。
 これに対し、走行時間短縮モードでは、かご11が避難位置に移動するまでにかかる時間を短くすることができる。以下、本実施の形態のエレベータの制御装置の走行時間短縮モードを具体的に説明する。
 まず、図4を用いて、エレベータが設置された各階と脱出口18の高さ方向の位置について説明する。
 図4はこの発明の実施の形態1におけるエレベータの制御装置に記憶された階位置情報を説明するための図である。
 図4において、20はメモリである。このメモリ20は、エレベータ制御手段3に設けられる。このメモリ20は、E2PROM等、情報が書き換え可能で電源遮断後も記憶した情報を保持するものからなる。このメモリ20には、エレベータが設置された各階と脱出口18との高さ方向の階位置情報テーブルが記憶されている。
 ここで、各階の階位置情報は、エレベータ出入口を利用して利用者が乗降可能な位置にかご11が到着したときの位置情報である。また、脱出口18の階位置情報は、エレベータ出入口以外からかご11内の利用者を救出可能な位置にかご11が到着したときの位置情報である。
 図4においては、階位置情報として、各階等と基準階との高さの差が予め記憶されている。しかし、エレベータを学習運転させて、階位置情報を検出してメモリ20に記憶する場合もある。この場合は、速度検出手段6に検出されたエレベータ駆動用モータ1の実速度に基づいて、かご位置検出手段7が検出した値を階位置情報としてメモリ20に記憶することになる。
 次に、図5及び図6を用いて、かご11の現在位置が何階に相当するのかを示す階数情報の考え方について説明する。
 図5はこの発明の実施の形態1におけるエレベータの制御装置の階数情報の考え方を説明するための図である。図6はこの発明の実施の形態1におけるエレベータの制御装置が階数情報を記憶する動作を説明するためのフローチャートである。
 図5に示すように、特定階(n階)と上方隣接階との中央位置から特定階と下方隣接階と中央位置までの間にかご11が位置する場合、かご11の現在位置は、特定階と判断するようになっている。例えば、1階と2階との中央位置よりも上方かつ2階と3階との中央位置よりも下方にかご11が位置するときは、かご11の現在位置は、「2階」と判断される。具体的には、図6のステップS1に示すように、図5の判断基準に従い、かご11の現在位置の階数情報がメモリ20に記憶される。
 次に、図7を用いて、走行時間短縮モードに設定されたエレベータの動作を説明する。
 図7はこの発明の実施の形態1におけるエレベータの制御装置が利用されたエレベータの動作を説明するためのフローチャートである。
 まず、ステップS11では、かご位置検出手段7に測定されたかご11の緊急停止位置が変数(A)としてメモリ20に保存され、ステップS12に進む。ステップS12では、変数(A)に基づいて、図6のステップS1で取得した階数情報が変数(B)としてメモリ20に保存され、ステップS13に進む。
 ステップS13では、ステップS11で取得した階数情報に係る変数(B)の正規の階位置情報が、階位置情報テーブルから取得された後、変数(C)としてメモリ20に保存され、ステップS14に進む。ステップS14では、脱出口18の階位置情報が、階位置情報テーブルから取得された後、変数(D)としてメモリ20に保存され、ステップS15に進む。
 ステップS15では、かご11の緊急停止位置から最寄階17までの距離が計測された後、変数(E)としてメモリ20に保存され、ステップS16に進む。ステップS16では、かご11の緊急停止位置から脱出口18までの距離が計測された後、変数(F)としてメモリ20に保存され、ステップS17に進む。
 ステップS17では、かご11の緊急停止位置からは最寄階17までと脱出口18までのどちらが近いかが判断される。具体的には、変数(E)が変数(F)以上であるか否かが判断される。そして、脱出口18よりも最寄階17の方が近く、変数(E)が変数(F)未満の場合は、ステップS18に進む。ステップS18では、最寄階17がある方向へかご11が再起動され、ステップS19に進む。
 ステップS19では、かご11の緊急停止位置に対して最寄階17がどちらの方向にあるか判断するために、変数(A)が変数(C)以上か否かが判断される。変数(A)が変数(C)以上の場合は、ステップS20に進む。ステップS20では、DN方向へかご11が起動され、動作が終了する。これに対し、ステップS19で変数(A)が変数(C)未満の場合は、ステップS21に進む。ステップS21では、UP方向へかご11が起動され、動作が終了する。
 一方、ステップS17で、最寄階17よりも脱出口18の方が近く、変数(E)が変数(F)以上の場合は、ステップS22に進む。ステップS22では、脱出口18がある方向へかご11が再起動され、ステップS23に進む。ステップS23では、かご11の緊急停止位置に対して脱出口18がどちらの方向にあるか判断するために、変数(A)が変数(D)以上か否かが判断される。変数(A)が変数(D)以上の場合は、ステップS20に進み、DN方向へかご11が起動され、動作が終了する。これに対し、変数(A)が変数(D)未満の場合は、ステップS21に進み、UP方向へかご11が起動され、動作が終了する。
 次に、図8~図10を用いて、図7のフローとなる時間短縮モードが設定されているときのかご11の具体的動作を説明する。
 図8はこの発明の実施の形態1におけるエレベータの制御装置が利用されたエレベータの動作の第1具体例を説明するためのエレベータの側面図である。
 図8において、21は中間位置hである。この中間位置h21は、かご11と錘12とを昇降させたときにかご11と錘12がすれ違う位置である。図8に示すように、かご11の緊急停止位置は、最寄階17よりも脱出口18に近い。この場合、エレベータの動作は、図7のステップS17からステップS22に進んだ後、ステップS23に進む。
 そして、かご11は、中間位置h21の上方かつ脱出口18の上方で緊急停止している。この場合、図7のステップS23からステップS20に進み、かご11はDN方向へ走行する。即ち、かご11は錘12とすれ違う運転方向22に走行する。
 特に、かご11の緊急停止位置が中間位置h21よりも上側で、脱出口18が中間位置h21よりも下側となった場合、かご11は錘12と実際にすれ違って脱出口18まで下降走行する。
 これに対し、図8において、かご11の緊急停止位置が脱出口18よりも下側の場合、図7のステップS23からステップS21に進み、かご11はUP方向へ走行する。即ち、かご11は、錘12から離れる方向に上昇走行する。
 図9はこの発明の実施の形態1におけるエレベータの制御装置が利用されたエレベータの動作の第2具体例を説明するためのエレベータの側面図である。
 図9に示すように、かご11の緊急停止位置は、脱出口18よりも最寄階17に近い。この場合、エレベータの動作は、図7のステップS17からステップS18に進んだ後、ステップS19に進む。
 そして、かご11は、中間位置h21よりも上方かつ最寄階17の下方で緊急停止している。この場合、図7のステップS19からステップS21に進み、かご11はUP方向へ走行する。即ち、かご11は錘12から離れる運転方向23に走行する。
 これに対し、図9において、かご11の緊急停止位置が最寄階17よりも上側の場合、図7のステップS19からステップS20に進み、かご11はDN方向へ走行する。即ち、かご11は、錘12とすれ違う方向に下降走行する。
 特に、かご11の緊急停止位置が中間位置h21よりも上側で、最寄階17が中間位置h21よりも下側となった場合、かご11は錘12と実際にすれ違って最寄階17まで下降走行する。
 図10はこの発明の実施の形態1におけるエレベータが利用されたエレベータの動作の第3具体例を説明するためのエレベータの側面図である。
 図10において、24は脱出口である。この脱出口24は、n-β階に対応する高さの箇所に設けられる。25は最寄階である。この最寄階25は、n-α階に相当する。図10に示すように、かご11の緊急停止位置は、脱出口24よりも最寄階25に近い。この場合、エレベータの動作は、図7のステップS17からステップS18に進んだ後、ステップS19に進む。
 そして、かご11は、中間位置h21よりも下方かつ最寄階25の下方で緊急停止している。この場合、図7のステップS19からステップS21に進み、かご11はUP方向へ走行する。即ち、かご11は錘12とすれ違う運転方向26に走行する。
 特に、かご11の緊急停止位置が中間位置h21よりも下側で、最寄階25が中間位置h21よりも上側となった場合、かご11は錘12と実際にすれ違って最寄階25まで上昇走行する。
 これに対し、図10において、かご11の緊急停止位置が最寄階25よりも上側の場合、図7のステップS19からステップS20に進み、かご11はDN方向へ走行する。即ち、かご11は、錘12から離れる方向に下降走行する。
 以上で説明した実施の形態1によれば、走行時間短縮モードでは、かご11の緊急停止位置に関係なく、かご11の緊急停止近傍の避難位置までかご11を走行させる。即ち、地震発生時に、かご11の緊急停止位置がかご11と錘12とがすれ違う中間位置よりも上側及び下側の一方となるとともに、かご11の緊急停止位置近傍の避難位置が中間位置よりも上側及び下側の他方となった場合でも、かご11を錘12とすれ違わせて避難位置まで走行させる。
 このため、かご11の緊急停止位置との距離が最短である避難位置にかご11が走行する。即ち、走行時間短縮モードでは、安全優先モードに比べ、かご11が避難位置に移動するまでにかかる時間を短くすることができる。
実施の形態2.
 図11はこの発明の実施の形態2におけるエレベータの制御装置が利用されたエレベータの動作を説明するためのフローチャートである。なお、実施の形態1と同一又は相当部分には同一符号を付して説明を省略する。
 実施の形態1においては、避難位置近傍で火災が発生していることを考慮していないものであった。一方、実施の形態2においては、避難位置近傍で火災が発生していることを考慮したものである。具体的には、実施の形態2には、災害検出手段として、地震センサ2の他に、火災センサ(図示せず)も設けられる。この火災センサは、エレベータの乗場に対応した各階に設けられる。この火災センサは、各階乗場近傍や脱出口18等近傍の火災を検出する機能を備える。
 本実施の形態の動作は、ステップS17まで実施の形態1と同様である。そして、ステップS17で変数(E)が変数未満の場合は、ステップS18に進む。ステップS18では、一端、最寄階17等がある方向へかご11が再起動され、ステップS31に進む。ステップS31では、火災センサでの火災の検知結果に基づいて、最寄階17等は火災で停止できないか否かが判断される。最寄階17等で火災が発生しておらず、かご11が停止できる場合は、ステップS19に進んだ後、実施の形態1と同様の動作が行われる。
 これに対し、最寄階17等で火災が発生しており、かご11が停止できない場合は、ステップS32に進む。ステップS32では、脱出口18等がある方向にかご11が再起動され、ステップS33に進む。ステップS33では、かご11の速度が通常の避難時の速度よりもαだけ速くした値に設定される。その後、ステップS23に進んだ後、実施の形態1と同様の動作が行われる。
 一方、ステップS17で変数(E)が変数(F)以上の場合は、ステップS22に進む。ステップS22では、一端、脱出口18等がある方向へかご11が再起動され、ステップS34に進む。ステップS34では、火災センサでの火災の検知結果に基づいて、脱出口18等は火災で停止できないか否かが判断される。脱出口18等で火災が発生しておらず、かご11が停止できる場合は、ステップS23に進んだ後、実施の形態1と同様の動作が行われる。
 これに対し、脱出口18等が火災が発生しており、かご11が停止できない場合は、ステップS35に進む。ステップS35では、最寄階17等がある方向にかご11が再起動され、ステップS36に進む。ステップS36では、かご11の速度が通常の避難時の速度よりもβだけ速くした値に設定される。その後、ステップS19に進んだ後、実施の形態1と同様の動作が行われる。
 以上で説明した実施の形態2によれば、地震が感知されたときにかご11を緊急停止させた際に、かご11の緊急停止位置近傍の避難位置での火災が検出されている場合は、かご11の緊急停止位置近傍の避難位置とは逆方向にある別の避難位置に、通常の避難時の速度よりも速い速度でかご11が走行する。このため、避難位置までの距離が遠くなるものの、火災の影響を避けつつ、かご11が避難位置に移動するまでにかかる時間を短くすることができる。
実施の形態3.
 図12はこの発明の実施の形態3におけるエレベータの制御装置が利用されたエレベータの動作を説明するためのフローチャートである。なお、実施の形態1と同一又は相当部分には同一符号を付して説明を省略する。
 実施の形態1においては、かご11と錘12とがすれ違うときの速度についての考慮がなされていないものであった。一方、実施の形態3においては、かご11と錘12とがすれ違うときの速度についての考慮がなされているものである。以下、図12を用いて、実施の形態3のエレベータ制御手段3の動作を説明する。
 本実施の形態の動作は、実施の形態1の動作の後に、速度調整に関する動作を付加したものである。具体的には、ステップS20でDN方向へかご11が起動された後、ステップS41に進む。ステップS41では、変数(A)が中央の位置h21以上か否かが判断される。変数(A)が中央の位置h21以上の場合は、ステップS42に進む。ステップS42では、「かご11が錘12とすれ違う」ことを示すフラグがセットされ、ステップS43に進む。
 ステップS43では、「かご11が錘12とすれ違う」ことを示すフラグがセット中か否かが判断される。先に「かご11が錘12とすれ違う」フラグがセットされているため、ステップS44に進む。ステップS44では、かご11の速度が通常の避難時の速度よりもγだけ遅くした値に設定され、動作が終了する。
 これに対し、ステップS41で変数(A)が中央の位置hよりも小さい場合は、ステップS45に進む。ステップS45では、「かご11が錘12とすれ違う」ことを示すフラグがクリアされ、ステップS43に進む。この場合、「かご11が錘12とすれ違う」ことを示すフラグはリセットされているため、ステップS44でかご11の速度を減じることなく、動作が終了する。
 また、ステップS21でUP方向へかご11が起動された後は、ステップS46に進む。ステップS46では、中央の位置h21が変数(A)以上か否かが判断される。中央の位置h21が変数(A)以上の場合は、ステップS42に進み、上述した動作が行われ、かご11の速度が通常の避難時の速度よりもγだけ遅い値に設定され、動作が終了する。これに対し、ステップS46で中央の位置h21が変数(A)よりも小さい場合は、ステップS45に進み、上述した動作が行われ、かご11の速度を減じることなく、動作が終了する。
 以上で説明した実施の形態3によれば、かご11を錘12とすれ違わせて避難位置まで走行させる場合に、かご11の速度を通常の避難時の速度よりも遅くすることになる。このため、地震等で錘12がガイドレール(図示せず)から外れた場合であっても、錘12の水平方向の揺れを最小限に抑えることができる。即ち、ガイドレールから外れた錘12がかご11に衝突することを防止しつつ、かご11を避難位置に走行させることができる。
 なお、実施の形態1~実施の形態3においては、地震センサ2で地震を検出して、階間にかご11を緊急停止させた後に再起動する場合を説明した。しかしながら、火災センサや冠水センサ等の災害検出手段でエレベータに対する災害を検出して、階間にかご11を緊急停止させた後に再起動する場合であっても、実施の形態1~実施の形態3と同様に、エレベータを制御することができる。
 以上のように、この発明に係るエレベータの制御装置によれば、エレベータのかごを緊急停止させた後に所定の避難位置に走行させるエレベータに利用できる。
 1 エレベータ駆動用モータ、 2 地震センサ、 3 エレベータ制御手段、
 4 エレベータ運転制御手段、 5 速度指令制御手段、 6 速度検出手段
 7 かご位置検出手段、 8 管制運転時間管理手段、 9 綱車、
10 主ロープ、 11 かご、 12 錘、 13 最寄階、 14 直下階、
15 上方避難階、 16 運転方向、 17 最寄階、 18 脱出口、
19 運転方向、 20 メモリ、 21 中間位置h、 22 運転方向、
23 運転方向、 24 脱出口、 25 最寄階、 26 運転方向

Claims (5)

  1.  エレベータのかごの位置を検出するかご位置検出手段と、
     前記エレベータに対する災害を検出する災害検出手段と、
     前記災害が検出されたときに前記かごを緊急停止させた後に避難位置まで走行させる運転制御手段と、
    を備え、
     前記運転制御手段は、前記災害時に、前記かごの緊急停止位置が前記かごと前記錘とを昇降させたときに前記かごと前記錘とがすれ違う中間位置よりも上側及び下側の一方となるとともに、前記かごの緊急停止位置近傍の避難位置が前記中間位置よりも上側及び下側の他方となった場合は、前記かごを前記錘とすれ違わせて前記避難位置まで走行させることを特徴とするエレベータの制御装置。
  2.  前記運転制御手段は、前記かごの緊急停止位置が前記中間位置よりも上側となるとともに、前記かごの緊急停止位置近傍の避難位置が前記中間位置よりも下側となった場合に、前記かごを前記錘とすれ違わせて前記避難位置まで下降走行させることを特徴とする請求項1記載のエレベータの制御装置。
  3.  前記運転制御手段は、前記かごの緊急停止位置が前記中間位置よりも下側となるとともに、前記かごの緊急停止位置近傍の避難位置が前記中間位置よりも上側となった場合に、前記かごを前記錘とすれ違わせて前記避難位置まで上昇走行させることを特徴とする請求項1又は請求項2に記載のエレベータの制御装置。
  4.  前記災害検出手段は、地震を感知するとともに、前記エレベータの避難位置近傍の火災を検知し、
     前記運転制御手段は、前記地震が感知されたときに前記かごを緊急停止させた際に、前記かごの緊急停止位置近傍の避難位置での火災が検出されている場合は、前記かごの緊急停止位置近傍の避難位置とは逆方向にある別の避難位置に、通常の避難時の速度よりも速い速度で前記かごを走行させることを特徴とする請求項1~請求項3のいずれかに記載のエレベータの制御装置。
  5.  前記運転制御手段は、前記かごを前記錘とすれ違わせて前記避難位置まで走行させる場合に、前記かごの速度を通常の避難時の速度よりも遅くすることを特徴とする請求項1~請求項3のいずれかに記載のエレベータの制御装置。
PCT/JP2010/052761 2010-02-23 2010-02-23 エレベータの制御装置 WO2011104816A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800561650A CN102652102A (zh) 2010-02-23 2010-02-23 电梯控制装置
JP2012501555A JPWO2011104816A1 (ja) 2010-02-23 2010-02-23 エレベータの制御装置
PCT/JP2010/052761 WO2011104816A1 (ja) 2010-02-23 2010-02-23 エレベータの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/052761 WO2011104816A1 (ja) 2010-02-23 2010-02-23 エレベータの制御装置

Publications (1)

Publication Number Publication Date
WO2011104816A1 true WO2011104816A1 (ja) 2011-09-01

Family

ID=44506263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052761 WO2011104816A1 (ja) 2010-02-23 2010-02-23 エレベータの制御装置

Country Status (3)

Country Link
JP (1) JPWO2011104816A1 (ja)
CN (1) CN102652102A (ja)
WO (1) WO2011104816A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104355198A (zh) * 2014-11-05 2015-02-18 康力电梯股份有限公司 一种消防避险装置
JP6304446B2 (ja) * 2015-04-15 2018-04-04 三菱電機株式会社 エレベーター制御システム
CN112777434A (zh) * 2020-12-29 2021-05-11 成都市美幻科技有限公司 电梯控制方法、***、装置、介质及电子设备
CN113415689A (zh) * 2021-06-24 2021-09-21 北京房地天宇特种设备安装工程有限公司 一种电梯控制***、方法及电梯

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086108A (ja) * 1998-09-17 2000-03-28 Hitachi Building Systems Co Ltd エレベータの運転装置
JP2005206341A (ja) * 2004-01-23 2005-08-04 Mitsubishi Electric Corp エレベータ装置
JP2007091460A (ja) * 2005-08-31 2007-04-12 Mitsubishi Electric Corp エレベータ装置及びその制御方法
JP2008230778A (ja) * 2007-03-20 2008-10-02 Toshiba Elevator Co Ltd エレベータの災害時運転制御装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005082292A (ja) * 2003-09-05 2005-03-31 Mitsubishi Electric Corp エレベータの火災時救出運転装置
JP2008174380A (ja) * 2007-01-22 2008-07-31 Mitsubishi Electric Building Techno Service Co Ltd エレベータの制御装置及び制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086108A (ja) * 1998-09-17 2000-03-28 Hitachi Building Systems Co Ltd エレベータの運転装置
JP2005206341A (ja) * 2004-01-23 2005-08-04 Mitsubishi Electric Corp エレベータ装置
JP2007091460A (ja) * 2005-08-31 2007-04-12 Mitsubishi Electric Corp エレベータ装置及びその制御方法
JP2008230778A (ja) * 2007-03-20 2008-10-02 Toshiba Elevator Co Ltd エレベータの災害時運転制御装置

Also Published As

Publication number Publication date
CN102652102A (zh) 2012-08-29
JPWO2011104816A1 (ja) 2013-06-17

Similar Documents

Publication Publication Date Title
JP2012121710A (ja) エレベータ
JP6131137B2 (ja) エレベーター制御装置
WO2014112079A1 (ja) エレベーターの制御装置
JP5489303B2 (ja) エレベータの制御装置
JP2021195187A (ja) エレベータ装置およびその制御方法
JP2011230920A (ja) エレベータの点検作業用安全装置
JP2005324890A (ja) エレベータの運転制御装置
WO2011104816A1 (ja) エレベータの制御装置
JP5659085B2 (ja) エレベータ制御装置
JP5985686B1 (ja) エレベータ
JP6480840B2 (ja) エレベータ及びエレベータの管制運転方法
JP5721249B2 (ja) エレベータ制御装置
JP6404406B1 (ja) エレベータ制御装置およびエレベータ制御方法
WO2013001643A1 (ja) エレベータ装置
JP2014114157A (ja) エレベータの制御装置
WO2014141366A1 (ja) エレベータ装置
JP5052293B2 (ja) エレベーターの保守運転装置
JP2011084355A (ja) エレベータの制御装置
JP5955071B2 (ja) エレベータ乗客確認システムおよび方法
JP6304446B2 (ja) エレベーター制御システム
JP2007331902A (ja) エレベータの制御装置
JP6927105B2 (ja) エレベーター装置
JP2010047386A (ja) エレベータ制御装置
JP2007254036A (ja) エレベータの運転制御装置
WO2019106778A1 (ja) エレベーター制御装置、エレベーター、およびエレベーター制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080056165.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846483

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012501555

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10846483

Country of ref document: EP

Kind code of ref document: A1