WO2011087047A1 - パネル - Google Patents

パネル Download PDF

Info

Publication number
WO2011087047A1
WO2011087047A1 PCT/JP2011/050423 JP2011050423W WO2011087047A1 WO 2011087047 A1 WO2011087047 A1 WO 2011087047A1 JP 2011050423 W JP2011050423 W JP 2011050423W WO 2011087047 A1 WO2011087047 A1 WO 2011087047A1
Authority
WO
WIPO (PCT)
Prior art keywords
convex
panel
concave
portions
flat
Prior art date
Application number
PCT/JP2011/050423
Other languages
English (en)
French (fr)
Inventor
清水 信孝
半谷 公司
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to BR112012016859A priority Critical patent/BR112012016859A2/pt
Priority to US13/521,714 priority patent/US8932700B2/en
Priority to CA2786795A priority patent/CA2786795C/en
Priority to AU2011206085A priority patent/AU2011206085B2/en
Priority to KR1020127017892A priority patent/KR101284480B1/ko
Priority to EP11732917.7A priority patent/EP2525009A4/en
Priority to MX2012008095A priority patent/MX2012008095A/es
Priority to JP2011527533A priority patent/JP4932968B2/ja
Publication of WO2011087047A1 publication Critical patent/WO2011087047A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/32Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure formed of corrugated or otherwise indented sheet-like material; composed of such layers with or without layers of flat sheet-like material
    • E04C2/326Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure formed of corrugated or otherwise indented sheet-like material; composed of such layers with or without layers of flat sheet-like material with corrugations, incisions or reliefs in more than one direction of the element
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/32Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure formed of corrugated or otherwise indented sheet-like material; composed of such layers with or without layers of flat sheet-like material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24628Nonplanar uniform thickness material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24628Nonplanar uniform thickness material
    • Y10T428/24661Forming, or cooperating to form cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24628Nonplanar uniform thickness material
    • Y10T428/24669Aligned or parallel nonplanarities
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24628Nonplanar uniform thickness material
    • Y10T428/24669Aligned or parallel nonplanarities
    • Y10T428/24678Waffle-form

Definitions

  • the present invention relates to a panel, and more particularly, to a panel having a plurality of protrusions that are formed in an overall plate shape and protrude to at least one surface side.
  • a lightweight high-rigidity panel in which unevenness is provided in a staggered pattern has been proposed as an interior panel used for transportation machines such as railway vehicles, automobiles, airplanes, and ships, or building structures (for example, Patent Document 1). reference).
  • the panel described in Patent Document 1 has a shape in which unevenness is formed side by side in two vertical and horizontal directions of a flat panel, and a flat portion other than the unevenness is not linearly formed.
  • a configuration in which convex portions are arranged in two directions within the panel surface has been proposed (for example, see Patent Document 2).
  • unevenness or protrusions arranged side by side in two directions within the panel surface are formed, so that compared to flat plates with no unevenness or corrugated sheets with unevenness only in one direction. Even with the same thickness, the rigidity is high.
  • the object of the present invention is to provide a panel capable of reliably realizing high rigidity and light weight with a simple structure.
  • a panel according to an aspect of the present invention includes a plurality of protrusions protruding from a predetermined reference surface, a plurality of flat portions that are flush with the reference surface, and a plurality of recesses recessed from the reference surface.
  • the convex part and the flat part or the concave part comprises the convex part and the flat part or the concave part; when the flat part is provided, the entire circumference of each of the convex parts is surrounded by the flat part, and the whole circumference of each of the flat parts Is surrounded by the convex portion, when the concave portion is provided, the entire periphery of each of the convex portions is surrounded by the concave portion, and the entire periphery of each of the concave portions is surrounded by the convex portion.
  • the plurality of convex portions and the plurality of flat portions or the plurality of concave portions have a width direction and a length orthogonal to the width direction.
  • the convex portions When the panel according to (1) is viewed from the front, it is preferable that the convex portions have a hexagonal shape and the flat portions have a triangular shape. (4) When the panel according to (1) is viewed from the front, it is preferable that the convex portions have a hexagonal shape and the concave portions have a triangular shape. (5) When the panel according to (1) is viewed from the front, it is preferable that both the plurality of convex portions and the plurality of flat portions have a quadrangular shape. (6) When the panel according to (1) is viewed from the front, it is preferable that both the plurality of convex portions and the plurality of concave portions have a quadrangular shape.
  • the corners of the convex portions adjacent to each other are connected via a bridge having a flat top surface.
  • a convex-side inclined surface is formed on a peripheral portion of the convex portion, and a concave-side inclined surface is formed on the peripheral portion of the concave portion.
  • the inclination angle of the convex portion side inclined surface and the inclination angle of the concave portion side inclined surface are the same.
  • the plurality of convex portions and the plurality of concave portions have the same planar shape and planar dimensions.
  • the protruding dimension of the convex portion and the concave dimension of the concave portion in the direction perpendicular to the reference plane are the same. Is preferred.
  • the panel according to (1) preferably includes a frame portion along an edge of a face material including all of the convex portion and the flat portion or the concave portion.
  • the convex portion and the flat portion or the concave portion are not formed continuously in a plane.
  • the three-dimensional effect of the thickness direction of the board of a panel is acquired, and the bending rigidity and torsional rigidity of a panel can be improved. Therefore, the rigidity can be remarkably increased and the weight can be reduced by reducing the thickness.
  • the entire periphery of the flat portion is surrounded by the plurality of convex portions, so that the flat portion is not continuously formed, and The plurality of convex portions are not continuously formed with each other.
  • the concave portion since the entire periphery of the concave portion is surrounded by the plurality of convex portions, the concave portions are not continuously formed, and the plurality of convex portions are not continuously formed.
  • the convex portion and the flat portion or the concave portion act geometrically on the bending and twisting of the entire panel, and the cross-sectional performance is enhanced by the three-dimensional effect.
  • the predetermined reference surface may be a flat surface, a cylindrical surface, a spherical surface, or any other three-dimensional curved surface.
  • the panel may be formed from a flat plate having a predetermined plate thickness by an appropriate process such as pressing or bending, or may be manufactured by integral forming including a convex part and a flat part.
  • the convex portions and the flat portions or the concave portions are alternately arranged, so that two orthogonal directions (width direction and The force can be dispersed in the length direction).
  • the entire panel can resist bending and twisting acting on the panel, and the rigidity can be further increased.
  • the panel rigidity can be improved in a well-balanced manner in the opposite sides and diagonal directions of the hexagon.
  • the panel rigidity can be improved in a well-balanced manner in the directions of the opposite sides and the opposite sides of the quadrangle.
  • the panel described in (7) above since the bridge is formed between the corners of the adjacent convex portions, when a force is applied to the panel, the force is transmitted through the bridge. Thereby, compared with the case where adjacent convex parts are directly connected, stress concentration can be relieved.
  • the slopes of the convex side inclined surface and the concave side inclined surface are the same, and the convex side inclined surface and the concave side inclined surface are formed continuously.
  • This continuous inclined surface functions as a rib (reinforcing material).
  • the neutral axis is located in the middle of the panel cross section (near the reference plane). Therefore, it can be made to resist with sufficient balance with respect to both the external force from the side which the panel protrudes, and the external force from the side where the panel is dented.
  • the neutral axis is located in the vicinity of the reference plane which is the middle of the panel cross section. Therefore, it can be made to resist with sufficient balance with respect to the external force from either the side which the panel protrudes, and the side where the panel is dented. Furthermore, when the panel is formed by press working or the like, it is possible to avoid imbalances such as a change in plate thickness and residual stress due to plastic deformation by matching the drawing dimensions of the convex portion and the concave portion. Therefore, the strength and deformation performance of the panel can be stabilized.
  • the panel 1 (1A to 1E) of the present embodiment includes a housing for home appliances, a wall of a cargo container, a construction structure and interior / exterior materials, an automobile, a railway vehicle, and an aircraft. It is used for a vehicle body such as a ship, a chassis, each component, a can as a container, etc., and is formed in a whole plate shape along a predetermined reference surface F such as a flat surface or a curved surface.
  • the panel 1 may be formed by pressing from a thin metal plate such as steel, stainless steel, or aluminum alloy, or may be formed by injection molding from a thermoplastic resin.
  • the panel 1 includes a flat portion 2 along the reference plane F, and a bent portion (frame portion) 3 that is bent at a substantially right angle from the outer edge of the flat portion 2.
  • the panel 1 is provided with the bending part 3, it does not necessarily need to be provided.
  • the bent portion 3 it is possible to obtain an effect of suppressing local deformation of the edge portion of the panel 1.
  • the panel 1A of the first embodiment shown in FIG. 1 and FIG. 6A includes a plurality of convex portions 4A protruding from the reference surface F and a plurality of flat portions 5A that are flush with the reference surface F.
  • the plurality of convex portions 4A protrude on one side (perpendicular to the reference plane F: above the drawing in the drawing).
  • the flat portion 5A is composed of the flat portion 2 that remains without protruding.
  • a plurality of convex portions 4 ⁇ / b> A and a plurality of flat portions 5 ⁇ / b> A are arranged side by side along the plane portion 2.
  • the convex portion 4A When viewed from the front (when viewed from the protruding direction), the convex portion 4A has an upper surface portion 41A that is a regular hexagon, and an inclined surface portion that extends from each side of the upper surface portion 41A toward the flat surface portion 2 (reference surface F) ( Inclined surface) 42A and a regular hexagonal frustum.
  • the flat portion 5A is formed in an equilateral triangle shape by the lower edge of the inclined surface portion 42A of the three convex portions 4A. That is, the entire periphery of each of the convex portions 4A is surrounded by the flat portion 5A, and the entire periphery of each of the flat portions 5A is surrounded by the convex portions 4A.
  • the convex portions 4A and the flat portions 5A are arranged so that the adjacent flat portions 5A are not continuous with each other and the adjacent convex portions 4A are not continuous with each other.
  • the panel 1A of the present embodiment has a configuration in which the convex portions 4A and the flat portions 5A are not continuously formed in a plane. Thereby, the solid effect of the thickness direction of the board of panel 1A is acquired, and the bending rigidity and torsional rigidity of panel 1A can be improved. Therefore, the rigidity can be remarkably increased and the weight can be reduced by reducing the thickness.
  • the panel 1B of the second embodiment shown in FIGS. 2 and 6B includes a plurality of convex portions 4B protruding from the reference surface F and a concave portion 6B recessed from the reference surface F.
  • the plurality of convex portions 4B protrude to one side (perpendicular to the reference plane F; the upper side of the drawing), and the plurality of concave portions 6B are recessed to the other side (lower side of the drawing) opposite to the one side.
  • a plurality of convex portions 4 ⁇ / b> B and a plurality of concave portions 6 ⁇ / b> B are arranged along the plane portion 2.
  • the convex portion 4B is configured by a regular hexagonal frustum having an upper surface portion 41B that is a regular hexagon and an inclined surface portion 42B that is a side surface when viewed from the front (when viewed from the protruding direction).
  • the inclined surface portion 42B is formed on the peripheral portion of the convex portion 4B, extends from each side of the upper surface portion 41B toward the flat surface portion 2 (reference surface F), and is a convex portion-side inclined surface inclined with respect to the flat surface portion 2. is there.
  • the recess 6B is formed of a downward-facing regular triangular frustum having an equilateral triangular bottom surface portion 61B and an inclined surface portion 62B which is a side surface.
  • the inclined surface portion 62B is a concave-side inclined surface that is formed at the peripheral portion of the concave portion 6B, extends from each side of the bottom surface portion 61B toward the flat surface portion 2 (reference surface F), and is inclined with respect to the flat surface portion 2.
  • the entire circumference of each convex portion 4B is surrounded by six concave portions 6B.
  • the entire circumference of each recess 6B is surrounded by three protrusions 4B.
  • the inclination angle ⁇ 1 of the inclined surface portion 42B of the convex portion 4B with respect to the reference surface F and the inclination angle ⁇ 2 of the inclined surface portion 62B of the concave portion 6B with respect to the reference surface F are the same. Further, when the inclined surface portion 42B and the inclined surface portion 62B are viewed in a cross section perpendicular to the reference surface F, the inclined surface portion 42B and the inclined surface portion 62B are continuously connected linearly. That is, they are formed continuously in the same plane.
  • the panel 1B according to the present embodiment can achieve significantly higher rigidity and can achieve weight reduction due to thinning, as with the panel 1A.
  • the panel 1C of the third embodiment shown in FIGS. 3 and 6C includes a plurality of convex portions 4C protruding from the reference surface F and a plurality of flat portions 5C that are flush with the flat surface portion 2.
  • the plurality of convex portions 4C have a quadrangular shape and protrude to one side (perpendicular to the reference plane F: the upper side of the drawing).
  • the flat portion 5C is composed of the flat portion 2 that remains without protruding.
  • a plurality of convex portions 4 ⁇ / b> C and a plurality of flat portions 5 ⁇ / b> C are arranged along the plane portion 2.
  • the convex portion 4C When viewed from the front (when viewed from the protruding direction), the convex portion 4C has a square (quadrangle) upper surface portion 41C and an inclined surface portion extending from each side of the upper surface portion 41C toward the flat surface portion 2 (reference surface F). (Inclined surface) 42C and a regular quadrangular frustum.
  • the entire circumference of each flat portion 5C is surrounded by a plurality of convex portions 4C.
  • the flat portion 5C is formed in a square shape by the lower edge of the inclined surface portion 42C of the four convex portions 4C (three at the edge of the panel 1), that is, four sides that are the entire circumference of each flat portion 5C. Is surrounded by four convex portions 4C.
  • each of the convex portions 4C is surrounded by the flat portion 5C.
  • the convex portions 4C and the flat portions 5C are arranged so that the adjacent flat portions 5C are not continuous with each other and the adjacent convex portions 4C are not continuous with each other.
  • a plurality of convex portions 4C and a plurality of flat portions 5C are alternately arranged along the reference plane F along the width direction (X direction) and the length direction (Y direction) orthogonal to the width direction. Has been. That is, it is formed in a checkered pattern (checkered pattern).
  • the panel 1C of the present embodiment can achieve a significantly higher rigidity and can realize a lighter weight by being made thinner as in the case of the panel 1A.
  • the panel 1D of the fourth embodiment shown in FIGS. 4 and 6D includes a plurality of convex portions 4D that protrude from the reference surface F and a plurality of concave portions 6D that are recessed from the reference surface F.
  • the plurality of convex portions 4D protrudes to one side (perpendicular to the reference plane F; the upper side of the drawing).
  • the plurality of recesses 6D are recessed on the other side (downward in the figure) opposite to the one side.
  • a plurality of convex portions 4 ⁇ / b> D and a plurality of concave portions 6 ⁇ / b> D are arranged along the plane portion 2.
  • the convex portion 4D When viewed from the front (when viewed from the protruding direction), the convex portion 4D is configured by a regular quadrangular pyramid having an upper surface portion 41D that is a square (quadrangle) and an inclined surface portion 42D that is a side surface.
  • the inclined surface portion 42D is a convex-side inclined surface that is formed on the peripheral portion of the convex portion, extends from each side of the upper surface portion 41D toward the flat surface portion 2 (reference surface F), and is inclined with respect to the flat surface portion 2.
  • the entire circumference of each convex portion 4D is surrounded by four concave portions 6D.
  • the entire periphery of each recess 6D is surrounded by four protrusions 4B.
  • the concave portion 6D When viewed from the front (when viewed from the protruding direction), the concave portion 6D is formed of a downward regular square pyramid having a bottom surface portion 61D that is a square (quadrangle) and an inclined surface portion 62D that is a side surface.
  • the inclined surface portion 62D is a recessed-side inclined surface that is formed on the peripheral edge portion of the recessed portion 6D, extends from each side of the bottom surface portion 61D toward the flat surface portion 2 (reference surface F), and is inclined with respect to the flat surface portion 2.
  • the entire periphery of each convex portion 4D is surrounded by four concave portions 6D, while the entire periphery of each concave portion 6D is surrounded by four convex portions 4D.
  • the plurality of convex portions 4D and the plurality of concave portions 6D are alternately arranged along the width direction (X direction) and the length direction (Y direction) orthogonal to the width direction. That is, it is formed in a checkered pattern (checkered pattern). Thereby, it is comprised so that adjacent convex part 4D may not mutually continue, and adjacent recessed part 6D may not mutually continue. Further, the inclination angle ⁇ 3 of the inclined surface portion 42D of the convex portion 4D with respect to the reference surface F and the inclination angle ⁇ 4 of the inclined surface portion 62D of the concave portion 6D with respect to the reference surface F are the same.
  • the inclined surface portion 42D and the inclined surface portion 62D are viewed in a cross section perpendicular to the reference surface F, the inclined surface portion 42D and the inclined surface portion 62D are continuously connected in a straight line. That is, they are formed continuously in the same plane.
  • the panel 1D of the present embodiment can achieve a significantly higher rigidity and can realize a lighter weight by being made thinner, as with the panel 1A.
  • a panel 1E according to the fifth embodiment shown in FIGS. 5 and 6E includes a plurality of convex portions 4E protruding from the reference surface F and a plurality of concave portions 6E recessed from the reference surface F.
  • the plurality of convex portions 4E project to one side (perpendicular to the reference plane F; above the drawing surface),
  • the plurality of recesses 6E are recessed on the other side (downward in the figure) opposite to the one side.
  • a plurality of convex portions 4 ⁇ / b> E and a plurality of concave portions 6 ⁇ / b> E are arranged along the plane portion 2.
  • a bridge 51E is formed between the corners of the convex portions 4E adjacent to each other (between the corners of the concave portion 6E).
  • the bridge 51 ⁇ / b> E has a flat top portion (top top surface) 5 ⁇ / b> E that is flat, and the top flat portion 5 ⁇ / b> E is configured by the flat portion 2 that does not protrude and remains without being recessed.
  • the convex portion 4E is a flat surface from the four corners of the upper surface portion 41E having four corners that are square (quadrangle) chamfered, the inclined surface portion 42E that is a side surface, and the upper surface portion 41E.
  • the inclined surface portion 42E is formed on the peripheral portion of the convex portion 4E, extends from each side of the upper surface portion 41E toward the flat surface portion 2 (reference surface F), and is a convex portion-side inclined surface inclined with respect to the flat surface portion 2. is there.
  • the recess 6E When viewed from the front (when viewed from the protruding direction), the recess 6E has a bottom surface portion 61E whose four corners are chamfered, an inclined surface portion 62E that is a side surface, and a flat surface portion 2 (reference surface) from the four corners of the bottom surface portion 61E.
  • the inclined surface portion 62E is a concave-side inclined surface that is formed at the peripheral portion of the recessed portion 6E, extends from each side of the bottom surface portion 61E toward the flat surface portion 2 (reference surface F), and is inclined with respect to the flat surface portion 2.
  • the top flat portion 5E has a square shape with a lower end edge of the corner inclined surface 43E and an upper end edge of the corner inclined surface 63E at a corner portion where the two convex portions 4E and the two concave portions 6E located diagonally approach each other. Is formed.
  • each convex part 4E is enclosed by the four recessed parts 6E, and the perimeter of each recessed part 6E is enclosed by the four convex parts 4E, and is comprised.
  • the plurality of convex portions 4E and the plurality of concave portions 6E are alternately arranged along the width direction (X direction) and the length direction (Y direction) orthogonal to the width direction. That is, it is formed in a checkered pattern (checkered pattern).
  • panel 1E is comprised so that adjacent convex part 4E may not mutually continue, and adjacent recessed part 6E may not mutually continue.
  • the four sides that are the entire periphery of the top flat portion 5E are surrounded by the two convex portions 4E and the two concave portions 6E, and the adjacent top flat portions 5E (bridges 51E) are not connected to each other.
  • the inclination angle ⁇ 5 of the inclined surface portion 42E of the convex portion 4E with respect to the reference surface F is the same as the inclination angle ⁇ 6 of the inclined surface portion 62E of the concave portion 6E with respect to the reference surface F.
  • the inclined surface portion 42E and the inclined surface portion 62E are continuously formed in the same plane.
  • the panel 1E according to the present embodiment can achieve extremely high rigidity, and can realize light weight by thinning, similarly to the panel 1A. Further, the panels 1A to 1D of FIGS. 1 to 4 may be provided with a bridge 51E similar to the panel 1E.
  • the panel 10 (10A, 10B, 10C, 10D) according to the conventional example of the present invention will be described with reference to FIGS. 7A, 7B, 7C and 8.
  • FIG. 7A the panel 10 ⁇ / b> A is formed to have a flat plate-like flat portion 12 and a bent portion 13 that is bent at a substantially right angle from the outer edge of the flat portion 12.
  • the panel 10 ⁇ / b> B has a flat portion 12 and a bent portion 13, a plurality of convex portions 14 protruding from the flat portion 12 to one side (upward in the drawing), and a convex portion 14 in the flat portion 12.
  • the flat portion 15 is not formed.
  • the panel 10C has a flat surface portion 12, a bent portion 13, a plurality of convex portions 14 and a flat portion 15, and a plurality of concave portions 16 recessed from the flat surface portion 12 to the other side (downward in the drawing). Is formed.
  • the panel 10 ⁇ / b> D is formed to include a flat portion 12 and a bent portion 13, and a plurality of convex portions 14 ⁇ / b> D that protrude from the flat portion 12 to one side (upward in the drawing).
  • the square pyramids are planar squares, and the sides of adjacent convex portions 14D are arranged in contact with each other.
  • the FEM analysis model includes a bending model that supports the four corners and the centers of the four sides of each panel 1 and 10 and applies a load to the center of the panel, and as shown in FIG. 9B, A twist model that supports the three corners of panels 1 and 10 and applies a load to the other corners was used.
  • the height of the bent portions 3 and 13 is 15 mm, and the end edges 23 are not connected to each other.
  • the arrangement and dimensions of the unevenness of each model are shown in FIGS. 10A to 18B.
  • the model dimensions are indicated by the center thickness of the panels 1 and 10.
  • the analysis results are shown in FIGS.
  • ⁇ Analysis model The specifications and analysis conditions of the analysis model common to the examples and the comparative examples are as follows.
  • Panel size 285mm x 285mm -Panel thickness: 0.6mm (panel material is assumed to be steel)
  • Load position In the bending model, it is in the range of 20 mm ⁇ 20 mm in the center of the panel, and in the twisting model, it is one point of one corner that is not supported (indicated by a white arrow in FIG. 9).
  • ⁇ Working load 10N
  • Comparative Example 1 In Comparative Example 1, the panel 10A shown in FIG. 7A is used, and the shape of the analysis model is shown in FIG. In the graphs of the analysis results (FIGS. 19 and 20), No. Indicated as 1. In Comparative Example 2, the panel 10B shown in FIG. 7B is used, and the arrangement and dimensions of the unevenness of the analysis model are shown in FIGS. 11A and 11B. In the graphs of the analysis results (FIGS. 19 and 20), No. Indicated as 2. In Comparative Example 2, the adjacent convex portions 14 are arranged so that the center interval is 34.64 mm and the center point is a vertex of an equilateral triangle.
  • the diameter of the top surface of the truncated cone of each convex portion 14 is 24 mm, the diameter of the bottom surface of the truncated cone is 30 mm, the projecting dimension of the convex portion 14 from the plane portion 12 is 3 mm, and the truncated cone shape of the convex portion 14 is The inclination angle is 45 °.
  • the panel 10C shown in FIG. 7C is used, and the arrangement and dimensions of the unevenness of the analysis model are shown in FIGS. 12A and 12B.
  • the centers of adjacent convex portions 14 and concave portions 16 are 34.64 mm, and the center points are arranged to be the vertices of an equilateral triangle.
  • the diameter of the top surface of the truncated cone of each convex portion 14 and the concave portion 16 is 27 mm, the diameter of the bottom surface of the truncated cone is 30 mm, and the projection size of the convex portion 14 from the flat surface portion 12 and the concave size of the concave portion 16 are 1. 5 mm.
  • the distance between the top surfaces of the truncated cones of the convex portions 14 and the concave portions 16 is 3 mm, and the inclined angle of the truncated cone shapes of the convex portions 14 and the concave portions 16 is 45 °.
  • the panel 10D shown in FIG. 8 is used, and the arrangement and dimensions of the unevenness of the analysis model are shown in FIGS. 13A and 13B.
  • the center distance between adjacent convex portions 14D is 30 mm, that is, the planar dimension of each convex portion 14D is 30 mm ⁇ 30 mm, and the projecting dimension of the convex portion 14D from the planar portion 12, that is, the apex of the quadrangular pyramid The height is 3 mm.
  • Example 1 the panel 1A shown in FIGS. 1 and 6A is used, and the arrangement and dimensions of the unevenness of the analysis model are shown in FIGS. 14A and 14B.
  • the graphs of the analysis results FIGS. 19 and 20
  • the center interval between adjacent convex portions 4A is 34.64 mm
  • the center point is arranged to be the apex of an equilateral triangle
  • the top surface of the hexagonal frustum of each convex portion 4A is arranged.
  • Example 2 uses the panel 1B shown in FIGS. 2 and 6B, and the arrangement and dimensions of the unevenness of the analysis model are shown in FIGS. 15A and 15B. In the graphs of the analysis results (FIGS. 19 and 20), No. Indicated as 6.
  • the center distance between adjacent convex portions 4B is 34.64 mm
  • the center point is arranged to be the vertex of an equilateral triangle
  • the opposite side of the top surface of the hexagonal frustum of each convex portion 4B The distance of the opposite side of the hexagonal frustum bottom surface is 30 mm.
  • the triangular frustum used as each recessed part 6B was provided in the area
  • the protruding dimension of the convex part 4B from the flat part 2 is 1.5 mm
  • the concave dimension of the concave part 6B from the flat part 2 is 1.5 mm.
  • the distance between the top surface of the hexagonal frustum of the convex portion 4B and the top surface of the triangular pyramid of the concave portion 6B is 3 mm, and the inclination angles of the inclined surface portion 42B of the convex portion 4A and the inclined surface portion 62B of the concave portion 6B with respect to the reference plane F are respectively. 45 °.
  • Example 3 the panel 1C shown in FIGS. 3 and 6C is used, and the arrangement and dimensions of the unevenness of the analysis model are shown in FIGS. 16A and 16B.
  • the center interval between the adjacent convex portions 4C is 30 mm, that is, each side length of the bottom surface of the quadrangular frustum of each of the convex portions 4C having a plane square is 30 mm.
  • Each side length of the surface is 24 mm.
  • the projecting dimension of the convex part 4C from the plane part 2 is 3 mm, and the inclination angle of the inclined surface part 42C of the convex part 4C with respect to the reference plane F is 45 °.
  • the panel 1D shown in FIGS. 4 and 6D is used, and the arrangement and dimensions of the unevenness of the analysis model are shown in FIGS. 17A and 17B.
  • the center interval between adjacent convex portions 4D is 30 mm, that is, the length of each side of the bottom surface of the quadrangular frustum of each convex portion 4D having a planar square is 30 mm.
  • each side length of the surface is 27 mm
  • each side length of the bottom surface of the truncated pyramid of the recess 6D is 30 mm
  • each side length of the top surface of the quadrangular pyramid is 27 mm.
  • the protruding dimension of the convex part 4D from the flat part 2 is 1.5 mm
  • the concave dimension of the concave part 6D from the flat part 2 is 1.5 mm.
  • the distance between the top surface of the quadrangular pyramid of the convex portion 4D and the top surface of the quadrangular pyramid of the concave portion 6D is 3 mm, and the inclination angles of the inclined surface portion 42D of the convex portion 4D and the inclined surface portion 62D of the concave portion 6D with respect to the reference plane F are respectively. 45 °.
  • the planar shape and planar dimension of convex part 4D and recessed part 6D are the same. Thereby, it can be made to resist with sufficient balance with respect to both the external force from the side which the panel protrudes, and the external force from the side where the panel is dented.
  • the protrusion dimension of the convex part in the direction perpendicular to the reference plane is the same as the recess dimension of the concave part. In this case as well, it is possible to resist in a well-balanced manner against an external force from either the protruding side of the panel or the recessed side of the panel.
  • Example 5 uses the panel 1E shown in FIGS. 5 and 6E, and the arrangement and dimensions of the unevenness of the analysis model are shown in FIG. In the graphs of the analysis results (FIGS. 19 and 20), No. Indicated as 9.
  • the center interval between adjacent convex portions 4E is 30 mm, that is, each side length of the bottom surface of the quadrangular frustum of each convex portion 4E having a substantially square plane is 30 mm.
  • the length of each side of the top surface of the square pyramid is 27 mm
  • the length of each side of the bottom surface of the quadrangular pyramid of the recess 6E is 30 mm
  • the length of each side of the top surface of the quadrangular pyramid is 27 mm.
  • the protruding dimension of the convex part 4E from the flat part 2 is 1.5 mm
  • the concave dimension of the concave part 6E from the flat part 2 is 1.5 mm.
  • the distance between the top surface of the quadrangular pyramid of the convex portion 4E and the top surface of the quadrangular pyramid of the concave portion 6E is 3 mm
  • the inclination angle of the inclined surface portion 42E of the convex portion 4E and the inclined surface portion 62E of the concave portion 6E with respect to the reference plane F Are 45 °.
  • the chamfer dimension of the convex portion 4E and the concave portion 6E is 1.5 mm, that is, each diagonal side length of each flat top portion 5E of a planar square is 3 mm, and the reference plane F
  • the inclination angle of the corner inclined surface 43E and the corner inclined surface 63E is 45 °.
  • FIG. 19 and 20 show the FEM analysis results.
  • FIG. 19 is a graph showing the rigidity ratio in the bending model, and is a value obtained by dividing the vertical displacement at the panel center in the panel 10A of Comparative Example 1 by the vertical displacement at the panel center in the panels 1 and 10 of each Example and Comparative Example. It is shown.
  • FIG. 20 is a graph showing the rigidity ratio in the torsion model, and is a value obtained by dividing the vertical displacement of the load position in the panel 10A of Comparative Example 1 by the vertical displacement of the load position in the panels 1 and 10 of each Example and Comparative Example. It is shown. That is, FIGS.
  • 19 and 20 show that the bending rigidity and torsional rigidity of the panels 1A to 1E of Examples 1 to 5 and the panels 10B to 10D of Comparative Examples 2 to 4 are different from those of the panel 10A of Comparative Example 1 having no unevenness. Shows the rate of increase. 19 and 20, the vertical axis represents the rigidity ratio.
  • the bending rigidity of the panels 10B to 10D (Nos. 2, 3, and 4) of Comparative Examples 2 to 4 is 1.9 times that of the panel 10A (No. 1) of Comparative Example 1.
  • the bending rigidity of the panels 1A to 1C (Nos. 5 to 7) of Examples 1 to 3 is increased by 2.32 times, and is increased by 2.35 times to 2.75 times.
  • the bending rigidity of the panels 1D and 1E (Nos. 8 and 9) of Examples 4 and 5 increased to nearly 4.times. 3.98 times and 3.74 times that of the panel 10A of Comparative Example 1. ing.
  • the bending rigidity increases to the same level or more as the panels 10B and 10C having the conventional unevenness (Comparative Examples 2 and 3). I understood that. Furthermore, in the panels 1D and 1E of Examples 4 and 5 according to the embodiment of the present invention, it was found that the bending rigidity increased to about 1.6 to 1.9 times compared to the conventional panels 10B and 10C. .
  • the torsional rigidity of the panels 10B to 10D (Nos. 2, 3, and 4) of the comparative examples 2 to 4 is 1.18 times that of the panel 10A (No. 1) of the comparative example 1.
  • the torsional rigidity of the panels 1A to 1C (Nos. 5 to 7) of Examples 1 to 3 is increased by 1.49 times to 1.56 times.
  • the torsional rigidity of the panels 1D and 1E (Nos. 8 and 9) in Examples 4 and 5 is 3.26 times and 3.34 times that of the panel 10A in Comparative Example 1 and increases to 3 times or more. ing.
  • the torsional rigidity increases to the same extent as the panels 10B and 10C (Comparative Examples 2 and 3) having the conventional unevenness. I understood. Furthermore, it was found that in the panels 1D and 1E of Examples 4 and 5 according to the embodiment of the present invention, the torsional rigidity is increased to about 2.1 to 2.2 times as compared with the conventional panels 10B and 10C. .
  • each part of the panel 1 shown in the above embodiment are merely examples, and can be appropriately changed according to the application.
  • the effect of changing the dimensions of each part of the panel 1 from the embodiment will be described with reference to FIGS. 21A to 27B and Tables 1 to 10.
  • the dimensions of each part of the panel 1 are defined as symbols shown in FIGS. 21A to 23B.
  • 21A to 22D are the distance H between the top surface of the truncated pyramid and the top surface of the truncated pyramid, the thickness t, the side length J of the bottom surface of the truncated pyramid of the projecting portion and the recessed portion, and the reference.
  • each part dimension in FIG. 23A, 23B represents each side length J of a square frustum bottom face, and the diagonal side length K of a top flat part.
  • each rigidity ratio of bending rigidity and torsional rigidity when the inclination angle ⁇ is changed shows a comparison standard.
  • Tables 1 and 2 show the bending stiffness ratio (Table 1) and the torsional stiffness ratio (Table 2) when the inclination angle ⁇ of the convex portion and the concave portion is changed, respectively.
  • 5.7 ° to 90 °
  • the bending rigidity ratio and the torsional rigidity ratio are approximately 3 times or more, and the rigidity is remarkably improved.
  • the bending rigidity is improved.
  • the rigidity is greatly improved to 3.8 times and the torsional rigidity is 3.3 times or more. That is, in the panel of the fourth embodiment, a panel having a high rigidity ratio can be provided regardless of the inclination angle ⁇ .
  • FIG. 25 shows the respective rigidity ratios of the bending rigidity and torsional rigidity (comparative standard for a panel without unevenness).
  • Tables 3 to 8 show bending stiffness ratios (Tables 3, 5, and 7) and torsional stiffness ratios when the distance H between the convex portions of the convex portions and the concave portions and the top surface of the truncated pyramid of the concave portions is changed, respectively. (Tables 4, 6, and 8) are shown.
  • both bending rigidity and torsional rigidity are almost double in the range of H / L ⁇ 0.005 at any thickness
  • both bending rigidity and torsional rigidity are in the range of H / L ⁇ 0.01. It has improved 3 times.
  • the rigidity is improved in any relationship between the plate thickness t and the distance H.
  • the rigidity tends to be improved particularly in the range of H ⁇ t or more, that is, H / t ⁇ 1.0.
  • each rigidity ratio of bending rigidity and torsional rigidity when the diagonal side length K of the top flat part is changed ( FIGS. 26A and 26B show comparative standards for a panel without unevenness.
  • Tables 9 and 10 show the bending stiffness ratio (Table 9) and the torsional stiffness ratio (Table 10) when the diagonal side length K of the top flat portion is changed.
  • the ratio of each side length J of the bottom of the truncated pyramid of the convex part and the concave part to the panel size L (number of irregularities) 27A and 27B show the respective rigidity ratios of bending rigidity and torsional rigidity (comparative reference for a panel without unevenness) when changing the reciprocal of m).
  • Table 11 shows the bending rigidity ratio
  • Table 12 shows the torsional rigidity ratio.
  • J / L 0.5, that is, an improvement in rigidity is also observed in a checkered pattern composed of a combination of the minimum number of protrusions and recesses including two protrusions and two recesses.
  • two of the peripheral sides of the convex portion or the concave portion are the top surface of the quadrangular pyramid. You may be surrounded by the flat part from which a surface differs.
  • H / L 0.005
  • K / J 0 to 0.9
  • Example 5 Based on the panel shape of Example 5, the bending rigidity and the torsional rigidity when the diagonal side length K of the top flat part 5E and the inclination angle ⁇ of the inclined surface part 42E (62E) shown in FIG. 23B are changed are shown.
  • the ratios (comparative standards for panels without unevenness) are shown in FIGS.
  • the inclination angle ⁇ of the inclined surface portion 42E (62E) is set to the values shown in Tables 13 to 40.
  • FIG. 28 (H 3, bending) and FIG.
  • the area S1 of the upper surface portion 41E, the area S2 of the bottom surface portion 61E, and the area S3 of the top flat portion 5E are surface areas, and the area S4 of the inclined portion (the sum of the inclined surface portion 42E (62E) and the corner inclined surface 43E). Is a projected area projected on the reference plane F when the inclined surface portion 42E (62E) and the corner inclined surface 43E are projected from the upper surface.
  • the rigidity ratio varies depending on the value of the diagonal side length K of the top flat portion 5E and the inclination angle ⁇ of the inclined surface portion 42E (62E).
  • the optimal diagonal side length K and inclination angle ⁇ can be obtained in terms of design, but the characteristics of the material used for the panel, and the secondary processing when forming a panel with protrusions and recesses In order to secure the characteristics, suitable values of K and ⁇ vary.
  • the present invention is not limited to the above-described embodiment, but includes other configurations that can achieve the object of the present invention, and modifications such as those shown below are also included in the present invention.
  • the reference surface F of the panel 1 is a flat surface
  • the reference surface F is not limited to a flat surface, but may be a cylindrical surface, a spherical surface, a gently curved shape, or any other three-dimensional shape. It may be curved.
  • the shape of the panel 1 is not limited to a rectangular shape, and a panel having an arbitrary shape can be used.
  • the planar shape of the convex portion, the concave portion, and the flat portion is not limited to the above-described embodiment, and can be any shape.
  • the convex part and the concave part do not necessarily have to be formed by a protrusion on one side and a recess on the other side from the reference surface, and only the protrusion on one side or the recess on the other side results in the desired unevenness.
  • a panel having the following arrangement and dimensions can be obtained.
  • the distance H between the top surfaces of the quadrangular pyramid of the convex part and the concave part does not necessarily have to be larger than the plate thickness, and a panel having a smaller H than the plate thickness t can be used.
  • the bending radius of the plate for forming the irregularities can be appropriately set according to the material used for the panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Finishing Walls (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Panels For Use In Building Construction (AREA)
  • Exhaust Silencers (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

 このパネルは、所定の基準面から突出する複数の凸部と、前記基準面と面一をなす複数の平坦部と、前記基準面から凹む複数の凹部とのうち、前記凸部と、前記平坦部または前記凹部とを備え;前記平坦部を備える場合には、前記凸部各々の全周囲が前記平坦部によって囲まれ、かつ、前記平坦部各々の全周囲が前記凸部によって囲まれる一方、前記凹部を備える場合には、前記凸部各々の全周囲が前記凹部によって囲まれ、かつ、前記凹部各々の全周囲が前記凸部によって囲まれる。

Description

パネル
 本発明は、パネルに関し、詳しくは、全体板状に形成されるとともに少なくとも一方の面側に突出する複数の凸部を有したパネルに関する。
 本願は、2010年01月13日に、日本に出願された特願2010-004858号に基づき優先権を主張し、その内容をここに援用する。
 従来、鉄道車両や自動車、航空機、船舶などの輸送機械あるいは建築構造物などに用いられる内装パネルとして、凹凸が千鳥状に設けられた軽量型高剛性パネルが提案されている(例えば、特許文献1参照)。この特許文献1に記載のパネルは、平板状パネルの縦及び横の二方向に凹凸が並んで形成されるとともに、凹凸以外の平坦部が直線的に形成されていない形状となっている。また、自動車の触媒コンバータやマフラーなどの断熱に利用されるヒートインシュレータにおいても、パネル面内の二方向に凸部が並べて配置された構成が提案されている(例えば、特許文献2参照)。これらのパネルでは、パネル面内の二方向に並べて配置された凹凸または凸部が形成されることで、凹凸が形成されていない平板や一方向のみに凹凸が形成された波板などと比較して、同じ板厚でも剛性が高くなっている。
日本国特許第2960402号公報 日本国特開2008-180125号公報
 ところで、従来のパネルでは、平坦部が直線的に形成されないように凹凸が千鳥状に設けられているが、これらの凹凸を囲んで平坦部が連続して形成されている。これにより、この連続した平坦部がパネル全体の曲げ剛性やねじり剛性に影響し、パネルの高剛性化および軽量化を十分に図ることができないという問題がある。
 本発明は、簡単な構造で、高剛性化および軽量化を確実に実現することができるパネルの提供を目的とする。
 本発明は、上記課題を解決して係る目的を達成するために以下の手段を採用した。
 すなわち、
(1)本発明の一態様に係るパネルは、所定の基準面から突出する複数の凸部と、前記基準面と面一をなす複数の平坦部と、前記基準面から凹む複数の凹部とのうち、前記凸部と、前記平坦部または前記凹部とを備え;前記平坦部を備える場合には、前記凸部各々の全周囲が前記平坦部によって囲まれ、かつ、前記平坦部各々の全周囲が前記凸部によって囲まれる一方、前記凹部を備える場合には、前記凸部各々の全周囲が前記凹部によって囲まれ、かつ、前記凹部各々の全周囲が前記凸部によって囲まれる。
(2)上記(1)に記載のパネルは、正面視した場合に、前記複数の凸部と、前記複数の平坦部または前記複数の凹部とが、幅方向及びこの幅方向に直交する長さ方向に沿って交互に配置されていることが好ましい。
(3)上記(1)に記載のパネルは、正面視した場合に、前記各凸部が六角形状を有し、前記各平坦部が三角形状を有することが好ましい。
(4)上記(1)に記載のパネルは、正面視した場合に、前記各凸部が六角形状を有し、前記各凹部が三角形状を有することが好ましい。
(5)上記(1)に記載のパネルは、正面視した場合に、前記複数の凸部及び前記複数の平坦部の両方が四角形状を有することが好ましい。
(6)上記(1)に記載のパネルは、正面視した場合に、前記複数の凸部及び前記複数の凹部の両方が四角形状を有することが好ましい。
(7)上記(3)~(6)に記載のパネルは、互いに隣接する前記各凸部の各角部間が、平坦な頂部上面を有するブリッジを介して接続されていることが好ましい。
(8)上記(1)に記載のパネルは、前記凸部及び前記凹部を備える場合、前記凸部の周縁部分に凸部側傾斜面が形成されるとともに、前記凹部の周縁部分に凹部側傾斜面が形成され;前記凸部側傾斜面及び前記凹部側傾斜面を前記基準面に垂直な断面で見た場合に、これら凸部側傾斜面及び凹部側傾斜面が直線的に連続して繋がっており;前記凸部側傾斜面の傾斜角度と前記凹部側傾斜面の傾斜角度とが同一である;ことが好ましい。
(9)上記(1)に記載のパネルは、前記凸部及び前記凹部を備える場合、前記複数の凸部と前記複数の凹部との平面形状及び平面寸法が同一であることが好ましい。
(10)上記(1)に記載のパネルは、前記凸部及び前記凹部を備える場合、前記基準面に対して垂直方向の前記凸部の突出寸法と前記凹部の凹み寸法とが同一であることが好ましい。
(11)上記(1)に記載のパネルは、前記凸部と、前記平坦部又は前記凹部との全てを含む面材の縁に沿って枠部を備えることが好ましい。
 上記(1)に記載のパネルによれば、凸部と、平坦部、あるいは、凹部とが、平面的に連続して形成されていない構成である。これにより、パネルの板の厚み方向の立体効果が得られ、パネルの曲げ剛性やねじり剛性を向上させることができる。したがって、格段に高剛性化を図ることができるとともに、薄型化による軽量化を実現することができる。
 さらに、上記(1)に記載のパネルによれば、平坦部を備える場合には、平坦部の全周囲が複数の凸部に囲まれているので、平坦部が連続的に形成されず、かつ複数の凸部も互いに連続的に形成されていない。さらに、凹部を備える場合には、凹部の全周囲が複数の凸部に囲まれているので、凹部が連続的に形成されず、かつ複数の凸部も互いに連続的に形成されていない。この結果、パネル全体としての曲げや捻れに対して凸部と平坦部あるいは凹部とが幾何学的に作用し、立体効果によって断面性能が高まる。これにより、曲げ剛性やねじり剛性を向上させることができる。従って、平板や波板に対して従来のパネルと比較しても格段に剛性を高めることができ、これによりパネル全体の薄型化を図り、かつ軽量化も実現することができる。
 所定の基準面としては、平面でもよいし、円筒面状や球面状、その他、任意の三次元曲面状であってもよい。また、パネルは所定の板厚を有した平板からプレス加工や曲げ加工などの適宜な加工によって成形されてもよいし、凸部や平坦部を含めて一体成形によって製造されてもよい。
 上記(2)に記載のパネルによれば、パネルに力が加えられたとき、凸部と、平坦部あるいは凹部とが、それぞれ交互に並べて配置されているので、直交した二方向(幅方向及び長さ方向)に力を分散させることができる。これにより、パネルに作用する曲げや捻りに対してパネル全体で抵抗して剛性をさらに高めることができる。
 上記(3)、上記(4)に記載のパネルによれば、六角形の対辺および対角の方向にバランス良くパネル剛性を高めることができる。
 上記(5)、上記(6)に記載のパネルによれば、四角形の対辺および対角の方向にバランス良くパネル剛性を高めることができる。
 上記(7)に記載のパネルによれば、隣接する凸部の角部間にブリッジが形成されているため、パネルに力が加えられたとき、このブリッジを介して力が伝達される。これにより、隣り合う凸部同士が直接接続される場合と比較して、応力集中を緩和することができる。
 上記(8)に記載のパネルによれば、凸部側傾斜面および凹部側傾斜面の傾斜角度が同一であり、凸部側傾斜面および凹部側傾斜面が連続して形成されているので、この連続した傾斜面がリブ(補強材)として機能する。これにより、パネルの断面性能をさらに高めることができる。
 上記(9)に記載のパネルによれば、凸部と凹部との平面形状及び平面寸法が同一であるため、パネル断面の中間(基準面の近傍)に中立軸が位置する。これにより、パネルの突出している側からの外力およびパネルの凹んでいる側からの外力のいずれに対してもバランスよく抵抗させることができる。
 上記(10)に記載のパネルによれば、パネル断面の中間である基準面の近傍に中立軸が位置する。これにより、パネルの突出している側およびパネルの凹んでいる側のいずれの側からの外力に対してもバランスよく抵抗させることができる。さらに、パネルをプレス加工などで成形する場合に、凸部と凹部との絞り寸法を合わせることで、塑性変形に伴う板厚の変化や残留応力などの不均衡を避けることができる。したがって、パネルの強度や変形性能を安定させることができる。
 上記(11)に記載のパネルによれば、枠部を備えることにより、パネルの縁部の局所的な変形を抑制し、パネル剛性を向上させることが可能となる。
本発明の第1実施形態にかかるパネルを示す斜視図である。 本発明の第2実施形態にかかるパネルを示す斜視図である。 本発明の第3実施形態にかかるパネルを示す斜視図である。 本発明の第4実施形態にかかるパネルを示す斜視図である。 本発明の第5実施形態にかかるパネルを示す斜視図である。 前記第1実施形態にかかるパネルの断面図である。 前記第2実施形態にかかるパネルの断面図である。 前記第3実施形態にかかるパネルの断面図である。 前記第4実施形態にかかるパネルの断面図である。 前記第5実施形態にかかるパネルの断面図である。 従来のパネルを示す斜視図である。 従来のパネルを示す斜視図である。 従来のパネルを示す斜視図である。 従来の他のパネルを示す斜視図である。 本発明の実施例に係るFEM解析の方法を示す断面図である。 本発明の実施例に係るFEM解析の方法を示す断面図である。 前記実施例における比較例1(No.1)の正面から見た解析モデル図である。 前記実施例における比較例1(No.1)の断面から見た解析モデル図である。 前記実施例における比較例2(No.2)の正面から見た解析モデル図である。 前記実施例における比較例2(No.2)の断面から見た解析モデル図である。 前記実施例における比較例3(No.3)の正面から見た解析モデル図である。 前記実施例における比較例3(No.3)の断面から見た解析モデル図である。 前記実施例における比較例4(No.4)の正面から見た解析モデル図である。 前記実施例における比較例4(No.4)の断面から見た解析モデル図である。 前記実施例における実施例1(No.5)の正面から見た解析モデル図である。 前記実施例における実施例1(No.5)の断面から見た解析モデル図である。 前記実施例における実施例2(No.6)の正面から見た解析モデル図である。 前記実施例における実施例2(No.6)の断面から見た解析モデル図である。 前記実施例における実施例3(No.7)の正面から見た解析モデル図である。 前記実施例における実施例3(No.7)の断面から見た解析モデル図である。 前記実施例における実施例4(No.8)の正面から見た解析モデル図である。 前記実施例における実施例4(No.8)の断面から見た解析モデル図である。 前記実施例における実施例5(No.9)の正面から見た解析モデル図である。 前記実施例における実施例5(No.9)の断面から見た解析モデル図である。 前記実施例の曲げモデルにおける剛性比を示すグラフである。 前記実施例の捻りモデルにおける剛性比を示すグラフである。 本発明の変形例に係るパネルを示す斜視図である。 本発明の変形例に係るパネルを示す断面図である。 同変形例に係るパネルのバリエーションを示す斜視図である。 同変形例に係るパネルのバリエーションを示す斜視図である。 同変形例に係るパネルのバリエーションを示す斜視図である。 同変形例に係るパネルのバリエーションを示す斜視図である。 他の変形例に係るパネルを示す斜視図である。 他の変形例に係るパネルを示す拡大斜視図である。 他の変形例において凸部および凹部の傾斜面部の傾斜角度を変化させた場合の剛性比(曲げ)を示すグラフである。 他の変形例において凸部および凹部の傾斜面部の傾斜角度を変化させた場合の剛性比(捻り)を示すグラフである。 他の変形例において凸部および凹部の頂面間距離を変化させた場合の剛性比(曲げ)を示すグラフである。 他の変形例において凸部および凹部の頂面間距離を変化させた場合の剛性比(捻り)を示すグラフである。 他の変形例において頂部平坦部の対角辺長さを変化させた場合の剛性比(曲げ)を示すグラフである。 他の変形例において頂部平坦部の対角辺長さを変化させた場合の剛性比(捻り)を示すグラフである。 他の変形例においてパネルサイズに対する凸部および凹部のサイズを変化させた場合の剛性比(曲げ)を示すグラフである。 他の変形例においてパネルサイズに対する凸部および凹部のサイズを変化させた場合の剛性比(捻り)を示すグラフである。 頂部平坦部の対角辺長さを変化させた場合の剛性比(曲げ)を示すグラフである。 頂部平坦部の対角辺長さを変化させた場合の剛性比(捻り)を示すグラフである。 頂部平坦部の対角辺長さを変化させた場合の剛性比(曲げ)を示すグラフである。 頂部平坦部の対角辺長さを変化させた場合の剛性比(捻り)を示すグラフである。 凸部と凹部とをつなぐ円弧部を示す斜視図である。 円弧部の大きさを変化させた場合の剛性比(曲げ)を示すグラフである。 円弧部の大きさを変化させた場合の剛性比(捻り)を示すグラフである。
 以下、本発明の各実施形態を図面に基づいて説明する。
 図1~図6Eにおいて、本実施形態のパネル1(1A~1E)は、家電製品の筐体や、貨物用コンテナの壁体、建築用の構造体や内外装材、自動車や鉄道車両、航空機、船舶等の車体やシャーシ、各部部品、その他、容器としての缶などに利用され、平面や曲面などの所定の基準面Fに沿った全体板状に形成されている。このパネル1は、鋼、ステンレス、アルミ合金等の金属製薄板からプレス加工によって形成されてもよいし、熱可塑性樹脂から射出成形によって形成されてもよい。そして、パネル1は、基準面Fに沿った平面部2と、この平面部2の外縁から略直角に折れ曲がった折曲部(枠部)3とを有して形成されている。ここで、パネル1は折曲部3を備えているが、必ずしも備える必要はない。しかしながら、折曲部3を備えることにより、パネル1の縁部の局所的な変形を抑制するという効果を得ることが可能である。
 図1および図6Aに示す第1実施形態のパネル1Aは、基準面Fから突出する複数の凸部4Aと、基準面Fと面一をなす複数の平坦部5Aとを備えている。
 複数の凸部4Aは、一方側(基準面Fに対して垂直方向:図の紙面上方)に突出している。この平坦部5Aは、突出せずに残った平面部2で構成されている。そして、複数の凸部4A及び複数の平坦部5Aが、平面部2に沿って並べて配置されている。
 凸部4Aは、正面視した場合(突出方向から見た場合)に、正六角形である上面部41Aと、上面部41Aの各辺から平面部2(基準面F)に向かって延びる傾斜面部(傾斜面)42Aとを有した正六角錐台で構成されている。
 平坦部5Aは、3つの凸部4Aの傾斜面部42Aの下端縁によって正三角形状に形成されている。すなわち、この凸部4Aそれぞれの全周囲は平坦部5Aによって囲まれ、かつ、平坦部5Aそれぞれの全周囲は凸部4Aによって囲まれている。具体的には、平坦部5Aの全周囲である三辺が3つの凸部4Aに囲まれており、凸部4Aの全周囲である六辺が6つの平坦部5Aに囲まれている。したがって、隣り合う平坦部5A同士が互いに連続しないように、かつ、隣り合う凸部4A同士が互いに連続しないように、凸部4A及び平坦部5Aが配置されている。
 以上の構成により、本実施形態のパネル1Aは、凸部4Aと平坦部5Aとが、平面的に連続して形成されていない構成である。これにより、パネル1Aの板の厚み方向の立体効果が得られ、パネル1Aの曲げ剛性やねじり剛性を向上させることができる。したがって、格段に高剛性化を図ることができるとともに、薄型化による軽量化を実現することができる。
 図2および図6Bに示す第2実施形態のパネル1Bは、基準面Fから突出する複数の凸部4Bと、基準面Fから凹む凹部6Bとを備えている。
 複数の凸部4Bは、一方側(基準面Fに対して垂直方向;図の紙面上方)に突出し、複数の凹部6Bは、一方側とは反対の他方側(図の下方)に凹んでいる。そして、複数の凸部4B及び複数の凹部6Bが、平面部2に沿って並べて配置されている。
 凸部4Bは、正面視した場合(突出方向から見た場合)に、正六角形である上面部41Bと、側面である傾斜面部42Bとを有した正六角錐台で構成されている。この傾斜面部42Bは、凸部4Bの周縁部分に形成され、上面部41Bの各辺から平面部2(基準面F)に向かって延び、平面部2に対して傾斜した凸部側傾斜面である。
 凹部6Bは、正面視した場合に、正三角形の底面部61Bと、側面である傾斜面部62Bとを有した下向きの正三角錐台で構成されている。傾斜面部62Bは、凹部6Bの周縁部分に形成され、底面部61Bの各辺から平面部2(基準面F)に向かって延び、平面部2に対して傾斜した凹部側傾斜面である。そして、各々の凸部4Bの全周囲は、6つの凹部6Bによって囲まれている。一方、各々の凹部6Bの全周囲は、3つの凸部4Bによって囲まれている。
 上述した構成により、隣り合う凸部4B同士が互いに連続しないように、かつ、隣り合う凹部6B同士が互いに連続しないように配置されている。また、凸部4Bの傾斜面部42Bの基準面Fに対する傾斜角度α1と、凹部6Bの傾斜面部62Bの基準面Fに対する傾斜角度α2とが同一である。
 さらに、傾斜面部42Bと傾斜面部62Bとを基準面Fに垂直な断面で見た場合に、これら傾斜面部42Bと傾斜面部62Bとが直線的に連続して繋がっている。すなわち、同一平面内で連続して形成されている。
 以上の構成により、本実施形態のパネル1Bは、パネル1Aと同様に、格段に高剛性化を図ることができるとともに、薄型化による軽量化を実現することができる。
 図3および図6Cに示す第3実施形態のパネル1Cは、基準面Fから突出する複数の凸部4Cと、平面部2と同一面をなす複数の平坦部5Cとを備えている。
 複数の凸部4Cは、四角形状であり、一方側(基準面Fに対して垂直方向:図の紙面上方)に突出している。この平坦部5Cは、突出せずに残った平面部2で構成されている。そして、複数の凸部4C及び複数の平坦部5Cが、平面部2に沿って並べて配置されている。
 凸部4Cは、正面視した場合(突出方向からみた場合)に、正方形(四角形)である上面部41Cと、上面部41Cの各辺から平面部2(基準面F)に向かって延びる傾斜面部(傾斜面)42Cとを有した正四角錐台で構成されている。各々の平坦部5Cの全周囲は、複数の凸部4Cによって囲まれている。具体的には、平坦部5Cは、4つ(パネル1の縁では3つ)の凸部4Cの傾斜面部42Cの下端縁によって正方形状に形成され、すなわち平坦部5Cそれぞれの全周囲である四辺が4つの凸部4Cに囲まれている。また、凸部4Cそれぞれの全周囲は平坦部5Cによって囲まれている。
 このような構成により、隣り合う平坦部5C同士が互いに連続しないように、かつ、隣り合う凸部4Cが互いに連続しないように、凸部4C及び平坦部5Cが配置されている。
 また、幅方向(X方向)及びこの幅方向に直交する長さ方向(Y方向)に沿って、複数の凸部4Cと複数の平坦部5Cとが、基準面Fに沿って交互に並べて配置されている。すなわち、市松模様(チェッカー状)に形成されている。
 以上の構成により、本実施形態のパネル1Cは、パネル1Aと同様に、格段に高剛性化を図ることができるとともに、薄型化による軽量化を実現することができる。
 図4および図6Dに示す第4実施形態のパネル1Dは、基準面Fから突出する複数の凸部4Dと、基準面Fから凹む複数の凹部6Dとを備えている。
 複数の凸部4Dは、一方側(基準面Fに対して垂直方向;図の紙面上方)に突出し、
複数の凹部6Dは、一方側とは反対の他方側(図の下方)に凹んでいる。そして、複数の凸部4D及び複数の凹部6Dが、平面部2に沿って並べて配置されている。
 凸部4Dは、正面視した場合(突出方向から見た場合)に、正方形(四角形)である上面部41Dと、側面である傾斜面部42Dとを有した正四角錐台で構成されている。傾斜面部42Dは、凸部の周縁部分に形成され、上面部41Dの各辺から平面部2(基準面F)に向かって延び、平面部2に対して傾斜した凸部側傾斜面である。そして、各々の凸部4D全周囲は、4つの凹部6Dによって囲まれている。一方、各々の凹部6Dの全周囲は、4つの凸部4Bによって囲まれている。
 凹部6Dは、正面視した場合(突出方向から見た場合)に、正方形(四角形)である底面部61Dと、側面である傾斜面部62Dとを有した下向きの正四角錐台で構成されている。傾斜面部62Dは、凹部6Dの周縁部分に形成され、底面部61Dの各辺から平面部2(基準面F)に向かって延び、平面部2に対して傾斜した凹部側傾斜面である。そして、各々の凸部4Dの全周囲は、4つの凹部6Dにより囲まれ、一方、各々の凹部6Dの全周囲は、4つの凸部4Dにより囲まれている。
 上述した構成により、幅方向(X方向)及びこの幅方向に直交する長さ方向(Y方向)に沿って、複数の凸部4D及び複数の凹部6Dが、それぞれ交互に並べて配置されている。すなわち、市松模様(チェッカー状)に形成されている。
 これにより、隣り合う凸部4D同士が互いに連続しないように、かつ、隣り合う凹部6D同士が互いに連続しないように構成されている。また、凸部4Dの傾斜面部42Dの基準面Fに対する傾斜角度α3と、凹部6Dの傾斜面部62Dの基準面Fに対する傾斜角度α4とが同一である。さらに、傾斜面部42Dと傾斜面部62Dとを基準面Fに垂直な断面で見た場合に、これら傾斜面部42Dと傾斜面部62Dとが直線的に連続して繋がっている。すなわち、同一平面内で連続して形成されている。
 以上の構成により、本実施形態のパネル1Dは、パネル1Aと同様に、格段に高剛性化を図ることができるとともに、薄型化による軽量化を実現することができる。
 図5および図6Eに示す第5実施形態のパネル1Eは、基準面Fから突出する複数の凸部4Eと、基準面Fから凹む複数の凹部6Eとを備えている。
 複数の凸部4Eは、一方側(基準面Fに対して垂直方向;図の紙面上方)に突出し、
複数の凹部6Eは、一方側とは反対の他方側(図の下方)に凹んでいる。そして、複数の凸部4E及び複数の凹部6Eが、平面部2に沿って並べて配置されている。
 また、互いに隣接する凸部4Eの各角部間(凹部6Eの各角部間)に、ブリッジ51Eが形成されている。ブリッジ51Eは、平坦である頂部平坦部(頂部上面)5Eを有しており、この頂部平坦部5Eは、突出せずかつ凹まずに残った平面部2で構成されている。
 凸部4Eは、正面視した場合(突出方向から見た場合)に、正方形(四角形)である四隅が面取りされた上面部41Eと、側面である傾斜面部42Eと、上面部41Eの四隅から平面部2(基準面F)に向かって延びる隅部傾斜面43Eとを有した八角錐台で構成されている。この傾斜面部42Eは、凸部4Eの周辺部分に形成され、上面部41Eの各辺から平面部2(基準面F)に向かって延び、平面部2に対して傾斜した凸部側傾斜面である。
 凹部6Eは、正面視した場合(突出方向から見た場合)に、正方形の四隅が面取りされた底面部61Eと、側面である傾斜面部62Eと、底面部61Eの四隅から平面部2(基準面F)に延びる隅部傾斜面63Eとを有した下向きの八角錐台で構成されている。傾斜面部62Eは、凹部6Eの周縁部分に形成され、底面部61Eの各辺から平面部2(基準面F)に向かって延び、平面部2に対して傾斜した凹部側傾斜面である。
 頂部平坦部5Eは、対角に位置する2つの凸部4Eと2つの凹部6Eとが接近する角部に、隅部傾斜面43Eの下端縁と隅部傾斜面63Eの上端縁とによって正方形状に形成されている。
 そして、第5実施形態のパネル1Eにおいて、各々の凸部4Eの全周囲は、4つの凹部6Eによって囲まれ、各々の凹部6Eの全周囲は、4つの凸部4Eによって囲まれて構成されている。この構成により、幅方向(X方向)及びこの幅方向に直交する長さ方向(Y方向)に沿って、複数の凸部4E及び複数の凹部6Eが、それぞれ交互に並べて配置されている。すなわち、市松模様(チェッカー状)に形成されている。
 これにより、パネル1Eは、隣り合う凸部4E同士が互いに連続しないように、かつ、隣り合う凹部6E同士が互いに連続しないように構成されている。さらに、頂部平坦部5Eの全周囲である四辺が、2つの凸部4Eおよび2つの凹部6Eによって囲まれており、隣り合う頂部平坦部5E(ブリッジ51E)同士が互いに連続しない構成である。また、凸部4Eの傾斜面部42Eの基準面Fに対する傾斜角度α5と、凹部6Eの傾斜面部62Eの基準面Fに対する傾斜角度α6とが同一である。さらに、傾斜面部42Eと傾斜面部62Eとが同一平面内で連続して形成されている。
 以上の構成により、本実施形態のパネル1Eは、パネル1Aと同様に、格段に高剛性化を図ることができるとともに、薄型化による軽量化を実現することができる。
 また、図1~図4のパネル1A~1Dに、パネル1Eと同様のブリッジ51Eを備えても良い。
 ここで、本発明の従来例に係るパネル10(10A,10B,10C,10D)を図7A、図7B、図7Cおよび図8に基づいて説明する。
 図7Aにおいて、パネル10Aは、平板状の平面部12と、この平面部12の外縁から略直角に折れ曲がった折曲部13とを有して形成されている。
 図7Bにおいて、パネル10Bは、平面部12および折曲部13と、平面部12から一方側(図の紙面上方)に突出する複数の凸部14と、平面部12において凸部14が形成されていない平坦部15とを有して形成されている。
 図7Cにおいて、パネル10Cは、平面部12、折曲部13、複数の凸部14および平坦部15と、平面部12から他方側(図の下方)に凹む複数の凹部16とを有して形成されている。
 図8において、パネル10Dは、平面部12および折曲部13と、平面部12から一方側(図の紙面上方)に突出する複数の凸部14Dとを有して形成され、凸部14Dは、平面正方形状の四角錐とされ、隣り合う凸部14Dの辺同士が接して並べて配置されている。
 以下、本実施形態のパネル1と従来のパネル10とについて、パネル剛性を検討した結果について説明する。
 ここでは、前記実施形態のパネル1A~1Eを実施例とし、従来のパネル10A~10Dを比較例とし、各パネルをモデル化したFEM解析を実施してパネル剛性を算出した。なお、FEM解析モデルとしては、図9Aに示すように、各パネル1,10の4つの角および四辺の中央を支持してパネル中央に荷重を与える曲げモデルと、図9Bに示すように、各パネル1,10の3つの角を支持して他の角に荷重を与える捻りモデルとを用いた。また、各モデルのパネル1,10において、折曲部3,13の高さは15mmとし、その端縁23同士は連結されていない構成とした。また、各モデルの凹凸の配置及び寸法を図10A~図18Bに示す。なお、モデル寸法はパネル1,10の板厚中心寸法で表記している。また、解析結果を図19及び図20に示す。
〔解析モデル〕
 実施例および比較例に共通する解析モデルの諸元および解析条件は、以下の通りである。
・パネルサイズ:285mm×285mm
・パネル板厚:0.6mm(パネル材質は鋼を想定)
・荷重位置:曲げモデルでは、パネル中央の20mm×20mmの範囲とし、捻りモデルでは、支持しない1つの角の1点である(図9中に白抜き矢印で表示)。
・作用荷重:10N
〔比較例〕
 比較例1は、図7Aに示すパネル10Aを用い、解析モデルの形状を図10に示す。また、解析結果のグラフ(図19,図20)では、No.1と表記する。
 比較例2は、図7Bに示すパネル10Bを用い、解析モデルの凹凸の配置及び寸法を図11A,11Bに示す。また、解析結果のグラフ(図19,図20)では、No.2と表記する。この比較例2では、隣り合う凸部14の中心間隔が34.64mmであり、中心点が正三角形の頂点となるように配置する。各凸部14の円錐台頂面の直径が24mmであり、円錐台底面の直径が30mmであり、平面部12からの凸部14の突出寸法が3mmであり、凸部14の円錐台状の傾斜角度が45°である。
 比較例3は、図7Cに示すパネル10Cを用い、解析モデルの凹凸の配置及び寸法を図12A,12Bに示す。また、解析結果のグラフ(図19,図20)では、No.3と表記する。この比較例3では、隣り合う凸部14および凹部16の中心間隔が34.64mmであり、中心点が正三角形の頂点となるように配置する。各凸部14および凹部16の円錐台頂面の直径が27mmであり、円錐台底面の直径が30mmであり、平面部12からの凸部14の突出寸法および凹部16の凹み寸法がそれぞれ1.5mmである。また、凸部14と凹部16の円錐台頂面の距離が3mmであり、凸部14および凹部16の円錐台状の傾斜角度が45°である。
 比較例4は、図8に示すパネル10Dを用い、解析モデルの凹凸の配置及び寸法を図13A,13Bに示す。また、解析結果のグラフ(図19,図20)では、No.4と表記する。この比較例4では、隣り合う凸部14Dの中心間隔が30mmであり、つまり各凸部14Dの平面寸法が30mm×30mmであり、平面部12からの凸部14Dの突出寸法つまり四角錐の頂点の高さが3mmである。
〔実施例〕
 実施例1は、図1および図6Aに示すパネル1Aを用い、解析モデルの凹凸の配置及び寸法を図14A,14Bに示す。また、解析結果のグラフ(図19,図20)では、No.5と表記する。この実施例1のパネル1Aでは、隣り合う凸部4Aの中心間隔が34.64mmであり、中心点が正三角形の頂点となるように配置し、各凸部4Aの六角錐台の頂面の対辺の距離が24mmであり、六角錐台底面の対辺の距離が30mmであり、六角錐台の底面に囲まれた平面正三角形が各平坦部5Aである。さらに、平面部2からの凸部4Aの突出寸法が3mmであり、基準面Fに対する凸部4Aの傾斜面部42Aの傾斜角度が45°である。
 実施例2は、図2および図6Bに示すパネル1Bを用い、解析モデルの凹凸の配置及び寸法を図15A,15Bに示す。また、解析結果のグラフ(図19,図20)では、No.6と表記する。この実施例2のパネル1Bでは、隣り合う凸部4Bの中心間隔が34.64mmであり、中心点が正三角形の頂点となるように配置し、各凸部4Bの六角錐台頂面の対辺の距離が27mmであり、六角錐台底面の対辺の距離が30mmである。また、六角錐台底面に囲まれた領域に各凹部6Bとなる三角錐台を設けた。また、平面部2からの凸部4Bの突出寸法が1.5mmであり、平面部2からの凹部6Bの凹み寸法が1.5mmである。また、凸部4Bの六角錐台頂面と凹部6Bの三角錐台頂面の距離が3mmであり、基準面Fに対する凸部4Aの傾斜面部42Bおよび凹部6Bの傾斜面部62Bの傾斜角度がそれぞれ45°である。
 実施例3は、図3および図6Cに示すパネル1Cを用い、解析モデルの凹凸の配置及び寸法を図16A,16Bに示す。また、解析結果のグラフ(図19,図20)では、No.7と表記する。この実施例3のパネル1Cでは、隣り合う凸部4Cの中心間隔が30mmであり、つまり平面正方形の各凸部4Cの四角錐台底面の各辺長さが30mmであり、四角錐台の頂面の各辺長さが24mmである。さらに、平面部2からの凸部4Cの突出寸法が3mmであり、基準面Fに対する凸部4Cの傾斜面部42Cの傾斜角度が45°である。
 実施例4は、図4および図6Dに示すパネル1Dを用い、解析モデルの凹凸の配置及び寸法を図17A,17Bに示す。また、解析結果のグラフ(図19,図20)では、No.8と表記する。この実施例4のパネル1Dでは、隣り合う凸部4Dの中心間隔が30mmであり、つまり平面正方形の各凸部4Dの四角錐台の底面の各辺長さが30mmであり、四角錐台頂面の各辺長さが27mmであり、凹部6Dの四角錐台底面の各辺長さが30mmであり、四角錐台頂面の各辺長さが27mmである。さらに、平面部2からの凸部4Dの突出寸法が1.5mmであり、平面部2からの凹部6Dの凹み寸法が1.5mmである。また、凸部4Dの四角錐台頂面と凹部6Dの四角錐台頂面の距離が3mmであり、基準面Fに対する凸部4Dの傾斜面部42Dおよび凹部6Dの傾斜面部62Dの傾斜角度がそれぞれ45°である。
 本実施例4では、凸部4Dと凹部6Dとの平面形状及び平面寸法が同一である。これにより、パネルの突出している側からの外力およびパネルの凹んでいる側からの外力のいずれに対してもバランスよく抵抗させることができる。
 さらに、本実施例4では、基準面に対して垂直方向の凸部の突出寸法と凹部の凹み寸法とが同一である。この場合も、パネルの突出している側およびパネルの凹んでいる側のいずれの側からの外力に対してもバランスよく抵抗させることができる。
 実施例5は、図5および図6Eに示すパネル1Eを用い、解析モデルの凹凸の配置及び寸法を図18に示す。また、解析結果のグラフ(図19,図20)では、No.9と表記する。この実施例5のパネル1Eでは、隣り合う凸部4Eの中心間隔が30mmであり、つまり平面略正方形の各凸部4Eの四角錐台の底面の各辺長さが30mmであり、四角錐台の頂面の各辺長さを27mmとし、凹部6Eの四角錐台の底面の各辺長さが30mmであり、四角錐台の頂面の各辺長さが27mmである。さらに、平面部2からの凸部4Eの突出寸法が1.5mmであり、平面部2からの凹部6Eの凹み寸法が1.5mmである。また、凸部4Eの四角錐台の頂面と凹部6Eの四角錐台の頂面の距離が3mmであり、基準面Fに対する凸部4Eの傾斜面部42Eおよび凹部6Eの傾斜面部62Eの傾斜角度がそれぞれ45°である。また、実施例5のパネル1Eでは、凸部4Eおよび凹部6Eの面取り寸法が1.5mmであり、つまり平面正方形の各頂部平坦部5Eの各対角辺長さが3mmであり、基準面Fに対する隅部傾斜面43Eおよび隅部傾斜面63Eの傾斜角度がそれぞれ45°である。
 図19、図20にFEM解析結果を示す。図19は、曲げモデルにおける剛性比を示すグラフであり、比較例1のパネル10Aにおけるパネル中央の鉛直変位を、各実施例および比較例のパネル1,10におけるパネル中央の鉛直変位で除した値が示されている。図20は、捻りモデルにおける剛性比を示すグラフであり、比較例1のパネル10Aにおける荷重位置の鉛直変位を、各実施例および比較例のパネル1,10における荷重位置の鉛直変位で除した値が示されている。すなわち、図19、20に、凹凸を有さない比較例1のパネル10Aに対し、実施例1~5のパネル1A~1Eおよび比較例2~4のパネル10B~10Dの曲げ剛性および捻り剛性が増加した割合を示す。図19、20の縦軸は剛性比である。
 図19に示すように、比較例1のパネル10A(No.1)に対し、比較例2~4のパネル10B~10D(No.2,3,4)の曲げ剛性は、1.9倍~2.32倍だけ増加し、実施例1~3のパネル1A~1C(No.5~7)の曲げ剛性は、2.35倍~2.75倍だけ増加している。一方、実施例4、5のパネル1D,1E(No.8,9)の曲げ剛性は、比較例1のパネル10Aに対して3.98倍、3.74倍と、4倍近くまで増加している。このように、本発明の実施形態にかかる実施例1~3のパネル1A~1Cでは、従来の凹凸を有したパネル10B,10C(比較例2、3)と同程度以上に曲げ剛性が増加することが分かった。さらに、本発明の実施形態にかかる実施例4、5のパネル1D,1Eでは、従来のパネル10B,10Cと比較して1.6~1.9倍程度まで曲げ剛性が増加することが分かった。
 図20に示すように、比較例1のパネル10A(No.1)に対し、比較例2~4のパネル10B~10D(No.2,3,4)の捻り剛性は、1.18倍~1.58倍だけ増加し、実施例1~3のパネル1A~1C(No.5~7)の捻り剛性は、1.49倍~1.56倍だけ増加している。一方、実施例4、5のパネル1D,1E(No.8,9)の捻り剛性は、比較例1のパネル10Aに対して3.26倍、3.34倍と、3倍以上に増加している。このように、本発明の実施形態にかかる実施例1~3のパネル1A~1Cでは、従来の凹凸を有したパネル10B,10C(比較例2、3)と同程度に捻り剛性が増加することが分かった。さらに、本発明の実施形態にかかる実施例4、5のパネル1D,1Eでは、従来のパネル10B,10Cと比較して2.1~2.2倍程度まで捻り剛性が増加することが分かった。
 以上の実施例によって以下の知見が得られた。
 すなわち、平面部12や平坦部15が連続する比較例に比べて、平坦部5A,5C,頂部平坦部5Eが連続せず、かつ凸部4A~4E同士や凹部6B,6D,6E同士も互いに連続しない実施例1~5のパネルでは、曲げ剛性および捻り剛性を増加させることができる。特に、凸部4D,4Eと凹部6D,6Eとが市松模様に並べて配置された実施例4,5において、曲げ剛性および捻り剛性の増加率が大きく、格段に高剛性化を図ることができる。
 前記実施例で示したパネル1の各部寸法は例示に過ぎず、用途に応じて適宜に変更することができる。前記実施例からさらにパネル1の各部寸法を変更した場合の効果について、図21A~図27B、表1~10に基づいて説明する。ここで、パネル1の各部寸法は、図21A~23Bに示す記号として定義する。図21A~22Dにおける各部寸法は、凸部の四角錐台頂面と凹部の四角錐台頂面の距離H、板厚t、凸部および凹部の四角錐台底面の各辺長さJ、基準面Fに対する凸部および凹部の傾斜面部の傾斜角度θ、凹凸の数m、パネル周囲の平面部を除いたパネルサイズL、パネルサイズL’を表す。また、図23A,23Bにおける各部寸法は、四角錐台底面の各辺長さJ、頂部平坦部の対角辺長さKを表す。
 実施例4のパネル形状を基本に、表1、2に示すパネルの各部寸法を用いて、傾斜角度θを変化させた場合の曲げ剛性および捻り剛性の各剛性比(比較例1と同様に凹凸のないパネルを比較基準)を図24A,24Bに示す。ここで、表1、2は、それぞれ凸部および凹部の傾斜角度θを変化させた場合の曲げ剛性比(表1)および捻り剛性比(表2)を示す。θ=5.7°~90°の各形状において、傾斜角度θがいずれであっても、曲げ剛性および捻り剛性の向上が認められる。また、θ=10°~90°の範囲では曲げ剛性比および捻り剛性比が概ね3倍以上と顕著に剛性が向上しており、さらに、θ=45°~75°の範囲では、曲げ剛性が3.8倍、捻り剛性が3.3倍以上と大きく剛性が向上している。すなわち、本実施例4のパネルにおいて、傾斜角度θに関わらず、剛性比の高いパネルを提供することができる。
 実施例4のパネル形状を基本に、表3~8に示すパネルの各部寸法を用いて、凸部の四角錐台の頂面と凹部の四角錐台の頂面の距離Hを変化させた場合の曲げ剛性および捻り剛性の各剛性比(凹凸のないパネルを比較基準)を図25に示す。ここで、表3~8は、それぞれ凸部および凹部の凸部および凹部の四角錐台の頂面の距離Hを変化させた場合の曲げ剛性比(表3,5,7)および捻り剛性比(表4,6,8)を示し、表3~4は板厚t=0.3mm、表5~6は板厚t=0.6mm、表7~8は板厚t=1.0mmとしている。多少の増減はあるものの、いずれの板厚においてもH/L≧0.005の範囲で曲げ剛性および捻り剛性とも概ね2倍、H/L≧0.01の範囲では曲げ剛性および捻り剛性とも概ね3倍に向上している。なお、板厚tと距離Hの関係については、何れの板厚tと距離Hの関係においても剛性の向上が見られる。ここでは、概ねH≧t以上、すなわちH/t≧1.0の範囲において、特に剛性が向上する傾向が見られる。
 実施例5のパネル形状を基本に、表9、10に示すパネルの各部寸法を用いて、頂部平坦部の対角辺長さKを変化させた場合の曲げ剛性および捻り剛性の各剛性比(凹凸のないパネルを比較基準)を図26A,26Bに示す。ここで、表9、10は、それぞれ頂部平坦部の対角辺長さKを変化させた場合の曲げ剛性比(表9)および捻り剛性比(表10)を示す。K/J=0~0.9の範囲において、曲げ剛性および捻り剛性の向上が認められ、特に、K/J=0~0.6の範囲では剛性比が概ね3倍以上に顕著に剛性が向上している。
 実施例4のパネル形状を基本に、表11、12に示すパネルの各部寸法を用いて、パネルサイズLに対する凸部および凹部の四角錐台の底面の各辺長さJの比(凹凸の数mの逆数に相当)を変化させた場合の曲げ剛性および捻り剛性の各剛性比(凹凸のないパネルを比較基準)を図27A,27Bに示す。ここで、表11は、曲げ剛性比を示し、表12は、捻り剛性比を示す。なお、剛性比は、各モデルのパネルサイズが異なるため、パネルサイズL=270mm(L’=285mm)のモデルに作用荷重10Nを負荷した時の曲げ変形によるたわみ角および捻り変形による捻り角と、同等のたわみ角および捻り角となる変形域の剛性に基づき比較している。
 J/L≦0.5の範囲において、曲げ剛性および捻り剛性の向上が認められる。ここでは、J/L=0.5、すなわち凸部が2つ、凹部が2つからなる最小数の凹凸の組合せからなる市松状においても剛性に向上が見られる。すなわち、凸部または凹部の配置の特殊形態として、凸部と凹部とが相互に4辺を囲む構成以外にも、凸部または凹部の周囲辺のうち2辺は、四角錐台の頂面と面が異なる平坦部で囲まれていてもよい。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 以上のように、本実施形態のパネル1では、H/L≧0.005、H/t≧1.0、θ=5.7°~90°、K/J=0~0.9、J/L≦0.5であれば、より好適なパネルを構成することができる。
 実施例5のパネル形状を基本に、図23Bに示す頂部平坦部5Eの対角辺長さK及び傾斜面部42E(62E)の傾斜角度θを変化させた場合の曲げ剛性および捻り剛性の各剛性比(凹凸のないパネルを比較基準)を図28、29、30、31に示す。頂部平坦部5Eの対角辺長さKの値は、それぞれK=0,3,6,15,21,24,27である。また、傾斜面部42E(62E)の傾斜角度θは、表13~40に示す値としている。
 図28(H=3、曲げ)及び図29(H=3、捻り)は、図18に示す凸部の頂面と凹部の頂面の距離Hが3.0mmの場合の剛性比(曲げ)の表13(K=0)~表19(K=27)及び剛性比(捻り)の表20(K=0)~表26(K=27)のグラフである。また、図30(H=6、曲げ)及び図31(H=6、捻り)は、突出寸法(距離)Hが6.0mmの場合の剛性比(曲げ)の表27(K=0)~表33(K=27)及び剛性比(捻り)の表34(K=0)~表40(K=27)のグラフである。頂部平坦部5Eの面積S3と傾斜部(傾斜面部42E(62E)と隅部傾斜面43Eの和)の面積S4の総和を、上面部41Eの面積S1と底面部61Eの面積S2の総和で除算した値を横軸とし、縦軸を曲げ剛性および捻り剛性の各剛性比としたグラフを図28~図31に示す。ここで、上面部41Eの面積S1、底面部61Eの面積S2、頂部平坦部5Eの面積S3は表面積であり、傾斜部(傾斜面部42E(62E)と隅部傾斜面43Eの和)の面積S4は、傾斜面部42E(62E)と隅部傾斜面43Eを上面から投影したときの基準面Fに投影される投影面積である。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
 図28~図31から分かるように、頂部平坦部5Eの対角辺長さK及び傾斜面部42E(62E)の傾斜角度θの値により剛性比が変化する。設計上で最適な対角辺長さKや傾斜角度θの値を求めることができるが、パネルに利用する素材の特性、また、凸部や凹部を設けたパネルを成形する際の二次加工性の確保のため、好適なKやθの値は変わる。このように対角辺長さKや傾斜角度θの値が変化した場合でも、(頂部平坦部面積+傾斜部面積)/(上面部面積+底面部面積)の値が1.0以下では、変曲点を含む剛性比の最大値を確保することができる。したがって、パネルの素材特性や要求される二次加工性が変化しても、優れたパネル剛性を確保することができる。
 また、実施例5のパネル形状を基本としたが、実施例1~4のパネルを用いても同様の効果を得ることができる。
 実施例4のパネル形状を基本に、表41、表42に示すパネルの各部寸法を用いて、図32に示すように凹部と凸部とをつなぐ傾斜面部の交差に円弧部(半径R=r×t)を設け、板厚tに対する円弧部の半径Rの比rを変化させた場合の曲げ剛性および捻り剛性の各剛性比(比較例1と同様に凹凸のないパネルを比較基準)を図33、図34に示す。
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
 図33及び図34から分かるように、rの値を0から22まで変化させても、曲げ剛性、捻り剛性が向上しており、パネルに利用する素材の材質に応じて交差部のrを適宜設定しても、剛性が向上する効果が得られることが分かる。すなわち、平坦部を設ける代わりに円弧部を設けることにより、平坦部を設けた場合と同様の効果を得ることができる。また、円弧部の形成は加工が容易であるという利点も有している。
 なお、本発明は、前記実施形態のみに限定される構成ではなく、本発明の目的を達成できる他の構成等を含み、以下に示すような変形等も本発明に含まれる。
 例えば、前記実施形態では、パネル1の基準面Fが平面である場合を説明したが、基準面Fは平面のみに限らず、円筒面状や球面状、緩やかな湾曲状、その他任意の三次元曲面状であってもよい。さらに、パネル1の形状としても、矩形状のみに限らず、任意の形状を有したパネルが利用可能である。また、凸部や凹部、平坦部の平面形状としても、前記実施形態のみに限定されなく、任意の形状とすることができる。凸部と凹部は必ずしも基準面から一方側への突出と他方側への凹みにより形成されなくてもよく、一方側への突出のみ、または他方側への凹みのみにより、結果として目的とする凹凸の配置及び寸法を有するパネルを得ることができる。
 また、凸部および凹部の四角錐台の頂面の距離Hは、必ずしも板厚より大きくなくてもよく、板厚tよりHが小さいパネルとすることもできる。
 また、凹凸を形成するための板の折り曲げ半径は、パネルに利用する素材の材質に応じて適宜設定することができる。
 その他、本発明を実施するための最良の構成、方法などは、以上の記載で開示されているが、本発明は、これらのみに限定されない。すなわち、本発明は、主に特定の実施形態に関して特に図示され、かつ説明されているが、本発明の技術的思想および目的の範囲から逸脱することなく、以上述べた実施形態に対し、形状、材質、数量、その他の詳細な構成において、当業者が様々な変形を加えることができる。
 従って、上記に開示した形状、材質などを限定した記載は、本発明の理解を容易にするために例示的に記載したパネルであり、本発明はこれらのみに限定されない。したがって、それらの形状、材質などの限定の一部もしくは全部の限定を外した部材の名称での記載は、本発明に含まれる。
 本発明によれば、簡単な構造で、高剛性化および軽量化を確実に実現することができるパネルを提供することができる。
 1,1A,1B,1C,1D,1E…パネル
 4A,4B,4C,4D,4E…凸部
 5A,5C…平坦部
 5E…頂部平坦部(頂部上面)
 6,6B,6D,6E…凹部
 42A,42B,42C,42D,42E…傾斜面部(凸部側傾斜面)
 51E…ブリッジ
 62B,62D,62E…傾斜面部(凹部側傾斜面)
 F…基準面

Claims (11)

  1.  所定の基準面から突出する複数の凸部と、前記基準面と面一をなす複数の平坦部と、前記基準面から凹む複数の凹部とのうち、前記凸部と、前記平坦部または前記凹部とを備え;
     前記平坦部を備える場合には、前記凸部各々の全周囲が前記平坦部によって囲まれ、かつ、前記平坦部各々の全周囲が前記凸部によって囲まれる一方、
     前記凹部を備える場合には、前記凸部各々の全周囲が前記凹部によって囲まれ、かつ、前記凹部各々の全周囲が前記凸部によって囲まれる;
    ことを特徴とするパネル。
  2.  正面視した場合に、前記複数の凸部と、前記複数の平坦部または前記複数の凹部とが、幅方向及びこの幅方向に直交する長さ方向に沿って交互に配置されていることを特徴とする請求項1に記載のパネル。
  3.  正面視した場合に、前記各凸部が六角形状を有し、前記各平坦部が三角形状を有することを特徴とする請求項1に記載のパネル。
  4.  正面視した場合に、前記各凸部が六角形状を有し、前記各凹部が三角形状を有することを特徴とする請求項1に記載のパネル。
  5.  正面視した場合に、前記複数の凸部及び前記複数の平坦部の両方が四角形状を有することを特徴とする請求項1に記載のパネル。
  6.  正面視した場合に、前記複数の凸部及び前記複数の凹部の両方が四角形状を有することを特徴とする請求項1に記載のパネル。
  7.  互いに隣接する前記各凸部の各角部間が、平坦な頂部上面を有するブリッジを介して接続されていることを特徴とする請求項3から請求項6のいずれか1項に記載のパネル。
  8.  前記凸部及び前記凹部を備える場合、
     前記凸部の周縁部分に凸部側傾斜面が形成されるとともに、前記凹部の周縁部分に凹部側傾斜面が形成され;
     前記凸部側傾斜面及び前記凹部側傾斜面を前記基準面に垂直な断面で見た場合に、これら凸部側傾斜面及び凹部側傾斜面が直線的に連続して繋がっており;
     前記凸部側傾斜面の傾斜角度と前記凹部側傾斜面の傾斜角度とが同一である;
    ことを特徴とする請求項1に記載のパネル。
  9.  前記凸部及び前記凹部を備える場合、
     前記複数の凸部と前記複数の凹部との平面形状及び平面寸法が同一であることを特徴とする請求項1に記載のパネル。
  10.  前記凸部及び前記凹部を備える場合、
     前記基準面に対して垂直方向の前記凸部の突出寸法と前記凹部の凹み寸法とが同一であることを特徴とする請求項1に記載のパネル。
  11.  前記凸部と、前記平坦部又は前記凹部との全てを含む面材の縁に沿って枠部を備えることを特徴とする請求項1に記載のパネル。
PCT/JP2011/050423 2010-01-13 2011-01-13 パネル WO2011087047A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112012016859A BR112012016859A2 (pt) 2010-01-13 2011-01-13 "painel"
US13/521,714 US8932700B2 (en) 2010-01-13 2011-01-13 Panel
CA2786795A CA2786795C (en) 2010-01-13 2011-01-13 Panel
AU2011206085A AU2011206085B2 (en) 2010-01-13 2011-01-13 Panel
KR1020127017892A KR101284480B1 (ko) 2010-01-13 2011-01-13 패널
EP11732917.7A EP2525009A4 (en) 2010-01-13 2011-01-13 SIGN
MX2012008095A MX2012008095A (es) 2010-01-13 2011-01-13 Panel.
JP2011527533A JP4932968B2 (ja) 2010-01-13 2011-01-13 パネル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010004858 2010-01-13
JP2010-004858 2010-01-13

Publications (1)

Publication Number Publication Date
WO2011087047A1 true WO2011087047A1 (ja) 2011-07-21

Family

ID=44266201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050423 WO2011087047A1 (ja) 2010-01-13 2011-01-13 パネル

Country Status (12)

Country Link
US (1) US8932700B2 (ja)
EP (1) EP2525009A4 (ja)
JP (2) JP4932968B2 (ja)
KR (1) KR101284480B1 (ja)
CN (2) CN202090502U (ja)
AU (1) AU2011206085B2 (ja)
BR (1) BR112012016859A2 (ja)
CA (1) CA2786795C (ja)
MX (1) MX2012008095A (ja)
MY (1) MY161274A (ja)
TW (2) TWI411740B (ja)
WO (1) WO2011087047A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011868A1 (ja) * 2011-07-20 2013-01-24 新日鐵住金株式会社 パネル
WO2015016212A1 (ja) * 2013-07-30 2015-02-05 シャープ株式会社 表示装置、テレビ受信装置、及びキャビネット

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112012016859A2 (pt) * 2010-01-13 2023-11-21 Nippon Steel Corp "painel"
US9604428B2 (en) 2010-08-24 2017-03-28 James Walker Ventilated structural panels and method of construction with ventilated structural panels
US9091049B2 (en) * 2010-08-24 2015-07-28 James Walker Ventilated structural panels and method of construction with ventilated structural panels
US9090288B2 (en) * 2010-09-08 2015-07-28 Sumitomo Light Metal Industries, Ltd. Sheet material having a concave-convex part, and vehicle panel and laminated structure using the same
WO2015040700A1 (ja) * 2013-09-18 2015-03-26 日立機材株式会社 蓋部材及びこれを用いたフロアパネル
US10030388B2 (en) 2013-11-26 2018-07-24 Nippon Steel & Sumitomo Metal Corporation Panel having recesses and protrusions
WO2015137482A1 (ja) 2014-03-14 2015-09-17 新日鐵住金株式会社 パネル
US11220376B2 (en) * 2014-10-21 2022-01-11 Creative Plastic Concepts, Llc Container lid with surface features and connecting bridges
MX2018011414A (es) * 2016-03-23 2019-01-10 Nippon Steel & Sumitomo Metal Corp Panel interior de puerta y metodo para fabricar el panel interior de puerta.
US10286958B2 (en) 2017-07-14 2019-05-14 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicles including mesh stamped panels
US11365542B2 (en) * 2018-01-10 2022-06-21 Shuert Technology, Llc Plastic core structure manufactured through twin sheet technology
JP7145483B2 (ja) * 2018-06-26 2022-10-03 学校法人大同学園 構造部材および骨組構造
JP2020139270A (ja) * 2019-02-26 2020-09-03 日本製鉄株式会社 耐力壁及び壁面材
JP7467040B2 (ja) * 2019-07-05 2024-04-15 三菱重工業株式会社 パネル構造体及びパネル構造体の製造方法
CN111591433B (zh) * 2019-11-12 2021-10-22 中国科学院兰州化学物理研究所 一种柔性蒙皮及其制备方法和应用
USD943781S1 (en) * 2021-02-24 2022-02-15 Shenzhen Lizhijia Industrial Co., Ltd 3D wall panel
USD944420S1 (en) * 2021-04-19 2022-02-22 Shenzhen Lizhijia Industrial Co., Ltd 3D wall panel
USD947417S1 (en) * 2021-04-19 2022-03-29 Shenzhen Lizhijia Industrial Co., Ltd 3D wall panel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63187623U (ja) * 1987-05-26 1988-12-01
JPH10166481A (ja) * 1996-12-17 1998-06-23 Hideo Yugawa パネル芯材
WO2007010868A1 (ja) * 2005-07-19 2007-01-25 Kyoto University パネル、パネル片およびパネル作成方法
JP2007023661A (ja) * 2005-07-19 2007-02-01 Kyoto Univ パネルおよびパネル作成方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1000694A (en) * 1908-04-16 1911-08-15 Frederic Schaefer Removable egg-case partition.
US1154254A (en) * 1909-11-05 1915-09-21 Universal Electric Welding Co Sheet-metal panel-work.
US2086857A (en) * 1935-09-09 1937-07-13 Norman L Derby Method of making bimetallic elements
US2813652A (en) * 1953-05-28 1957-11-19 Keyes Fibre Co Tray for fragile articles
US3558394A (en) * 1969-05-19 1971-01-26 Hans Jorg Marby Method of making a three dimensional configured laminated article
DE3206163A1 (de) 1982-02-20 1983-09-01 Helmut 7812 Bad Krozingen Keck Bauelement
US4495237A (en) * 1983-06-10 1985-01-22 Patterson Fred R Pyramidal core structure
IT1265477B1 (it) 1993-12-30 1996-11-22 Dipiemme Dies And Plastic Mach Pannello strutturale in plastica, procedimento e impianto di fabbricazione.
CA2144295C (en) 1995-03-09 2005-05-24 Germain Belanger Core-board
GB2341195B (en) 1998-07-15 2002-05-01 Cyril Sloggett Stiffened sheet and profiled ductile material
JP2960402B1 (ja) 1998-07-17 1999-10-06 川崎重工業株式会社 軽量型高剛性パネル
DE10062341A1 (de) 2000-12-14 2002-06-20 Interplast Kunststoffe Gmbh Verbundplatte, vorzugsweise aus Kunststoff und Verfahren zu deren Herstellung
TWI225531B (en) * 2002-09-04 2004-12-21 Univ Brigham Young Three-dimensional grid panel
DE10252207B3 (de) 2002-11-09 2004-02-26 Bohmann, Dirk, Dr.-Ing. Formteil als Kern eines Sandwichs
JP4388558B2 (ja) 2007-01-24 2009-12-24 株式会社深井製作所 ヒートインシュレータ
JP4462327B2 (ja) * 2007-10-26 2010-05-12 株式会社デンソー 気筒特性ばらつき検出装置
US8426010B2 (en) 2008-02-26 2013-04-23 Klaus Stadthagen-Gonzalez Structural element
DE202008008440U1 (de) 2008-06-24 2008-10-09 Wischemann, Heinrich Leichtbauplatte
JP2011027248A (ja) 2009-07-01 2011-02-10 Sumitomo Light Metal Ind Ltd 凹凸部を有する板材及びその凹凸部形状の設計方法
JP2011110847A (ja) 2009-11-27 2011-06-09 Sumitomo Light Metal Ind Ltd 凹凸部を有する板材並びにこれを用いた車両パネル及び積層構造体
BR112012016859A2 (pt) * 2010-01-13 2023-11-21 Nippon Steel Corp "painel"

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63187623U (ja) * 1987-05-26 1988-12-01
JPH10166481A (ja) * 1996-12-17 1998-06-23 Hideo Yugawa パネル芯材
WO2007010868A1 (ja) * 2005-07-19 2007-01-25 Kyoto University パネル、パネル片およびパネル作成方法
JP2007023661A (ja) * 2005-07-19 2007-02-01 Kyoto Univ パネルおよびパネル作成方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011868A1 (ja) * 2011-07-20 2013-01-24 新日鐵住金株式会社 パネル
WO2015016212A1 (ja) * 2013-07-30 2015-02-05 シャープ株式会社 表示装置、テレビ受信装置、及びキャビネット
JP2015028557A (ja) * 2013-07-30 2015-02-12 シャープ株式会社 表示装置、及びテレビ受信装置

Also Published As

Publication number Publication date
TW201333359A (zh) 2013-08-16
JPWO2011087047A1 (ja) 2013-05-20
CA2786795A1 (en) 2011-07-21
BR112012016859A2 (pt) 2023-11-21
JP4932968B2 (ja) 2012-05-16
AU2011206085B2 (en) 2015-09-10
MY161274A (en) 2017-04-14
CN102127947A (zh) 2011-07-20
JP5218633B2 (ja) 2013-06-26
TW201144648A (en) 2011-12-16
CN202090502U (zh) 2011-12-28
AU2011206085A1 (en) 2012-08-02
CN102127947B (zh) 2013-05-01
US20120295065A1 (en) 2012-11-22
CA2786795C (en) 2014-07-29
MX2012008095A (es) 2012-07-30
EP2525009A4 (en) 2013-07-03
US8932700B2 (en) 2015-01-13
KR101284480B1 (ko) 2013-07-16
JP2012067595A (ja) 2012-04-05
TWI411740B (zh) 2013-10-11
KR20120098874A (ko) 2012-09-05
EP2525009A1 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JP5218633B2 (ja) パネル
JP5868858B2 (ja) 凹凸部を有する板材並びにこれを用いた車両パネル及び積層構造体
JP5722640B2 (ja) 凹凸部を有する板材並びにそれを用いた車両パネル及び積層構造体
WO2012008059A1 (ja) 凹凸部を有する板材並びにこれを用いた車両パネルおよび積層構造体
JP2011027248A (ja) 凹凸部を有する板材及びその凹凸部形状の設計方法
JP2011110847A (ja) 凹凸部を有する板材並びにこれを用いた車両パネル及び積層構造体
JP5941846B2 (ja) 凹凸部を有する板材並びにこれを用いた車両パネル及び積層構造体
JP2012096694A (ja) 凹凸部を有する板材並びにこれを用いた車両パネル及び積層構造体
JP5901542B2 (ja) 凹凸部を有する板材並びにこれを用いた車両パネル及び積層構造体
JP2011110983A (ja) 車両パネル
JP5861288B2 (ja) 車両の前部車体構造
JP5700767B2 (ja) 凹凸部を有する板材並びにこれを用いた車両パネル及び積層構造体
JP2012030261A (ja) 凹凸部を有する板材並びにこれを用いた車両パネルおよび積層構造体
JP2011110954A (ja) 車両パネル
JP2012045622A (ja) 凹凸部を有する板材並びにそれを用いた車両パネル及び積層構造体
JP2012051004A (ja) 凹凸部を有する板材並びにこれを用いた車両パネルおよび積層構造体
TWI417232B (zh) 貨物用容器
JP5381907B2 (ja) 缶体
JP5176338B2 (ja) 建築構造用折板材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011527533

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011732917

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127017892

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2786795

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13521714

Country of ref document: US

Ref document number: 2011206085

Country of ref document: AU

Ref document number: 6137/DELNP/2012

Country of ref document: IN

Ref document number: MX/A/2012/008095

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201003447

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 2011206085

Country of ref document: AU

Date of ref document: 20110113

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012016859

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012016859

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120709