WO2011007817A1 - 方向性電磁鋼板の製造方法 - Google Patents

方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
WO2011007817A1
WO2011007817A1 PCT/JP2010/061938 JP2010061938W WO2011007817A1 WO 2011007817 A1 WO2011007817 A1 WO 2011007817A1 JP 2010061938 W JP2010061938 W JP 2010061938W WO 2011007817 A1 WO2011007817 A1 WO 2011007817A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
steel strip
content
less
nitriding
Prior art date
Application number
PCT/JP2010/061938
Other languages
English (en)
French (fr)
Inventor
義行 牛神
宣憲 藤井
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to JP2010541361A priority Critical patent/JP4709950B2/ja
Priority to RU2012105470/02A priority patent/RU2508411C2/ru
Priority to EP10799875.9A priority patent/EP2455498B1/en
Priority to BR112012001161-8A priority patent/BR112012001161B1/pt
Priority to CN201080032211.3A priority patent/CN102471819B/zh
Priority to IN1442DEN2012 priority patent/IN2012DN01442A/en
Priority to KR1020127003837A priority patent/KR101351712B1/ko
Priority to PL10799875T priority patent/PL2455498T3/pl
Priority to US13/261,144 priority patent/US8409368B2/en
Publication of WO2011007817A1 publication Critical patent/WO2011007817A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Definitions

  • the present invention relates to a method for producing a grain-oriented electrical steel sheet suitable for an iron core or the like of electrical equipment.
  • Oriented electrical steel sheet is a soft magnetic material and is used for iron cores of electrical equipment such as transformers.
  • the grain-oriented electrical steel sheet contains about 7% by mass or less of Si.
  • the crystal grains of the grain-oriented electrical steel sheet are highly accumulated in ⁇ 110 ⁇ ⁇ 001> orientations by Miller index. Control of crystal grain orientation is performed by utilizing an abnormal grain growth phenomenon called secondary recrystallization.
  • the inhibitor has a function of preferentially growing crystal grains of ⁇ 110 ⁇ ⁇ 001> orientation in the primary recrystallization structure and suppressing the growth of other crystal grains.
  • An object of the present invention is to provide a method for producing a grain-oriented electrical steel sheet capable of industrially and stably producing a grain-oriented electrical steel sheet having a high magnetic flux density.
  • the method for producing a grain-oriented electrical steel sheet according to the first aspect of the present invention includes Si: 0.8 mass% to 7 mass%, acid-soluble Al: 0.01 mass% to 0.065 mass%, N: 0.0. 004% by mass to 0.012% by mass, Mn: 0.05% by mass to 1% by mass, and B: 0.0005% by mass to 0.0080% by mass, selected from the group consisting of S and Se Hot rolling of a silicon steel material containing at least one kind in a total amount of 0.003% to 0.015% by weight, a C content of 0.085% by weight or less, and the balance being Fe and inevitable impurities Performing a step of obtaining a hot-rolled steel strip, annealing the hot-rolled steel strip to obtain an annealed steel strip, and cold-rolling the cold-rolled steel strip by cold rolling at least once.
  • a step of obtaining a strip, and decarburization annealing of the cold-rolled steel strip, which has undergone primary recrystallization A step of applying an annealing separator mainly composed of MgO to the decarburized and annealed steel strip, and a step of causing secondary recrystallization by finish annealing of the decarburized and annealed steel strip. And a step of performing a nitriding treatment for increasing the N content of the decarburized and annealed steel strip between the start of the decarburized annealing and the development of secondary recrystallization in the finish annealing,
  • the step of rolling includes a step of holding the silicon steel material in a temperature range of 1000 ° C. to 800 ° C. for 300 seconds or longer, and a step of performing finish rolling after that.
  • the method for producing a grain-oriented electrical steel sheet according to the second aspect of the present invention is the method according to the first aspect, wherein when the silicon steel material does not contain Se, before the step of performing the hot rolling.
  • the method includes heating the silicon steel material to a temperature equal to or lower than a temperature T1 (° C.) represented by the following formula (1).
  • T1 14855 / (6.82-log ([Mn] ⁇ [S]))-273 (1)
  • [Mn] represents the Mn content (mass%) of the silicon steel material
  • [S] represents the S content (mass%) of the silicon steel material.
  • the method for producing a grain-oriented electrical steel sheet according to the third aspect of the present invention is the method according to the first aspect, in the case where S is not contained in the silicon steel material, before the step of performing the hot rolling.
  • the method includes heating the silicon steel material to a temperature equal to or lower than a temperature T2 (° C.) represented by the following formula (2).
  • T2 10733 / (4.08-log ([Mn] ⁇ [Se]))-273 (2)
  • [Mn] represents the Mn content (mass%) of the silicon steel material
  • [Se] represents the Se content (mass%) of the silicon steel material.
  • a method for producing a grain-oriented electrical steel sheet according to a fourth aspect of the present invention is a method according to the first aspect, in which the hot rolling is performed when the silicon steel material contains S and Se. Before, it has the process of heating the said silicon steel raw material to the temperature below T1 (degreeC) represented by Formula (1) and the temperature T2 (degreeC) represented by Formula (2), It is characterized by the above-mentioned. To do.
  • a method for producing a grain-oriented electrical steel sheet according to a fifth aspect of the present invention is the method according to any one of the first to fourth aspects, wherein the nitriding treatment is performed by changing the N content of the steel strip after nitriding [ N] is performed under a condition satisfying the following formula (3).
  • [N] indicates the N content (mass%) of the steel strip after nitriding
  • [Al] indicates the acid-soluble Al content (mass%) of the steel strip after nitriding
  • B] shows the B content (mass%) of the steel strip after the nitriding treatment
  • [Ti] shows the Ti content (mass percent) of the steel strip after the nitriding treatment.
  • the grain-oriented electrical steel sheet manufacturing method is the method according to any one of the first to fourth aspects, wherein the nitriding treatment is performed by changing the N content of the steel strip after the nitriding treatment [ N] is performed under a condition satisfying the following formula (4). [N] ⁇ 2/3 [Al] +14/11 [B] +14/47 [Ti] (4)
  • FIG. 1 is a flowchart showing a method for manufacturing a grain-oriented electrical steel sheet.
  • FIG. 2 is a diagram showing the results of the first experiment (relationship between precipitates in the hot-rolled steel strip and magnetic properties after finish annealing).
  • FIG. 3 is a diagram showing the results of the first experiment (relationship between the amount of B not precipitated as BN and the magnetic properties after finish annealing).
  • FIG. 4 is a diagram showing the results of the first experiment (relationship between hot rolling conditions and magnetic properties after finish annealing).
  • FIG. 5 is a diagram showing the results of the second experiment (relationship between precipitates in the hot-rolled steel strip and magnetic properties after finish annealing).
  • FIG. 1 is a flowchart showing a method for manufacturing a grain-oriented electrical steel sheet.
  • FIG. 2 is a diagram showing the results of the first experiment (relationship between precipitates in the hot-rolled steel strip and magnetic properties after finish annealing).
  • FIG. 3 is a
  • FIG. 6 is a diagram showing the results of the second experiment (relationship between the amount of B not precipitated as BN and the magnetic properties after finish annealing).
  • FIG. 7 is a diagram showing the results of the second experiment (relationship between hot rolling conditions and magnetic properties after finish annealing).
  • FIG. 8 is a diagram showing the results of a third experiment (relationship between precipitates in a hot-rolled steel strip and magnetic properties after finish annealing).
  • FIG. 9 is a diagram showing the results of the third experiment (relationship between the amount of B not precipitated as BN and the magnetic properties after finish annealing).
  • FIG. 10 is a diagram showing the results of the third experiment (relationship between hot rolling conditions and magnetic properties after finish annealing).
  • FIG. 11 is a diagram showing the relationship between the amount of BN deposited, the holding temperature, and the holding time.
  • FIG. 1 is a flowchart showing a method for manufacturing a grain-oriented electrical steel sheet.
  • step S1 hot rolling of a silicon steel material having a predetermined composition containing B is performed.
  • a hot-rolled steel strip is obtained by hot rolling.
  • step S2 the hot-rolled steel strip is annealed to make uniform the structure in the hot-rolled steel strip and adjust the inhibitor precipitation.
  • Annealed steel strip is obtained by annealing.
  • step S3 the annealed steel strip is cold-rolled. Cold rolling may be performed only once, or multiple times of cold rolling may be performed while intermediate annealing is performed therebetween.
  • a cold rolled steel strip is obtained by cold rolling.
  • annealing may be performed in intermediate annealing, omitting the annealing of the hot-rolled steel strip before cold rolling. That is, the annealing (step S2) may be performed on the hot-rolled steel strip, or may be performed on the steel strip before the final cold rolling after being cold-rolled once.
  • step S4 After cold rolling, decarburization annealing of the cold rolled steel strip is performed in step S4. During the decarburization annealing, primary recrystallization occurs. Moreover, a decarburized annealing steel strip is obtained by decarburization annealing. Next, in step S5, an annealing separator mainly composed of MgO (magnesia) is applied to the surface of the decarburized steel strip, and finish annealing is performed. During this final annealing, secondary recrystallization occurs, and a glass film mainly composed of forsterite is formed on the surface of the steel strip, and purification is performed.
  • MgO magnesia
  • a secondary recrystallization structure aligned in the Goss orientation is obtained.
  • a finish-annealed steel strip is obtained by finish annealing.
  • a nitriding treatment for increasing the amount of nitrogen in the steel strip is performed (step S6).
  • the silicon steel materials include Si: 0.8 mass% to 7 mass%, acid-soluble Al: 0.01 mass% to 0.065 mass%, N: 0.004 mass% to 0.012% by mass, and Mn: 0.05% by mass to 1% by mass, further containing a predetermined amount of S and / or Se, and B, and having a C content of 0.085% by mass or less Yes, and the balance is made of Fe and inevitable impurities.
  • step S1 the conditions of hot rolling (step S1) to generate precipitates in a form effective as an inhibitor in the hot rolled steel strip.
  • the present inventors by adjusting the hot rolling conditions, when B in the silicon steel material is mainly precipitated as MnS and / or MnSe as BN precipitates, the inhibitor is thermally stabilized, It has been found that the grain structure of primary recrystallization is sized.
  • the present inventors have obtained the knowledge that a grain-oriented electrical steel sheet having good magnetic properties can be stably produced, and have completed the present invention.
  • the hot rolled steel strip was annealed.
  • cold rolling was performed to obtain a cold rolled steel strip having a thickness of 0.22 mm.
  • the cold-rolled steel strip was heated at a rate of 15 ° C./s, and decarburized and annealed at a temperature of 840 ° C. to obtain a decarburized and annealed steel strip.
  • the decarburized and annealed steel strip was annealed in an ammonia-containing atmosphere to increase the nitrogen in the steel strip to 0.022% by mass.
  • the annealing separator which has MgO as a main component was apply
  • FIG. 2 shows the value (mass%) obtained by converting the amount of MnS precipitated into the amount of S
  • the vertical axis shows the value (mass%) obtained by converting the amount of precipitated BN into B.
  • the horizontal axis corresponds to the amount (mass%) of S deposited as MnS.
  • a white circle indicates that the magnetic flux density B8 is 1.88T or more, and a black square indicates that the magnetic flux density B8 is less than 1.88T.
  • the magnetic flux density B8 was low in the sample in which the amount of MnS and BN deposited was less than a certain value. This indicates that secondary recrystallization was unstable.
  • FIG. 3 shows the B content (mass%), and the vertical axis shows the value (mass%) obtained by converting the precipitation amount of BN into B.
  • a white circle indicates that the magnetic flux density B8 is 1.88T or more, and a black square indicates that the magnetic flux density B8 is less than 1.88T.
  • FIG. 3 in the sample in which the amount of B not precipitated as BN is a certain value or more, the magnetic flux density B8 is low. This indicates that secondary recrystallization was unstable.
  • FIG. 4 The horizontal axis in FIG. 4 indicates the Mn content (% by mass), and the vertical axis indicates the slab heating temperature (° C.) during hot rolling.
  • a white circle indicates that the magnetic flux density B8 is 1.88T or more, and a black square indicates that the magnetic flux density B8 is less than 1.88T.
  • the curve in FIG. 4 has shown the solution temperature T1 (degreeC) of MnS represented by following formula (1). As shown in FIG. 4, it was found that a high magnetic flux density B8 can be obtained in a sample subjected to slab heating at a temperature that is determined according to the Mn content.
  • T1 14855 / (6.82-log ([Mn] ⁇ [S]))-273 (1)
  • [Mn] represents the Mn content (mass%)
  • [S] represents the S content (mass%).
  • the present inventors investigated conditions effective for precipitation of BN.
  • Si 3.3 mass%
  • C 0.06 mass%
  • acid-soluble Al 0.027 mass%
  • N 0.006 mass%
  • Mn 0.1 mass%
  • S A silicon steel slab containing 0.007% by mass and B: 0.0014% by mass with the balance being Fe and inevitable impurities and having a thickness of 40 mm was obtained.
  • the silicon steel slab was heated at a temperature of 1200 ° C., and rough rolled at 1100 ° C. to a thickness of 15 mm. Thereafter, it was kept in a furnace at 1050 ° C. to 800 ° C. for a certain time.
  • the hot rolled steel strip was annealed.
  • cold rolling was performed to obtain a cold rolled steel strip having a thickness of 0.22 mm.
  • the cold-rolled steel strip was heated at a rate of 15 ° C./s, and decarburized and annealed at a temperature of 840 ° C. to obtain a decarburized and annealed steel strip.
  • the decarburized and annealed steel strip was annealed in an ammonia-containing atmosphere to increase the nitrogen in the steel strip to 0.022% by mass.
  • the annealing separator which has MgO as a main component was apply
  • FIG. 5 shows the value (mass%) obtained by converting the precipitation amount of MnSe into the amount of Se
  • the vertical axis shows the value (mass%) obtained by converting the precipitation amount of BN into B.
  • the horizontal axis corresponds to the amount (% by mass) of Se precipitated as MnSe.
  • a white circle indicates that the magnetic flux density B8 is 1.88T or more, and a black square indicates that the magnetic flux density B8 is less than 1.88T.
  • the magnetic flux density B8 was low in the sample in which the amount of MnSe and BN deposited was less than a certain value. This indicates that secondary recrystallization was unstable.
  • FIG. 6 shows B content (mass%), and a vertical axis
  • shaft shows the value (mass%) which converted the precipitation amount of BN into B.
  • a white circle indicates that the magnetic flux density B8 is 1.88T or more, and a black square indicates that the magnetic flux density B8 is less than 1.88T.
  • the magnetic flux density B8 was low in the sample in which the amount of B not precipitated as BN was a certain value or more. This indicates that secondary recrystallization was unstable.
  • FIG. 7 The horizontal axis in FIG. 7 represents the Mn content (% by mass), and the vertical axis represents the slab heating temperature (° C.) during hot rolling.
  • a white circle indicates that the magnetic flux density B8 is 1.88T or more, and a black square indicates that the magnetic flux density B8 is less than 1.88T.
  • the curve in FIG. 7 has shown the solution temperature T2 (degreeC) of MnSe represented by following formula (2). As shown in FIG. 7, it was found that a high magnetic flux density B8 can be obtained in a sample subjected to slab heating at a temperature determined according to the Mn content.
  • the present inventors investigated conditions effective for precipitation of BN.
  • Si 3.3% by mass
  • C 0.06% by mass
  • acid-soluble Al 0.028% by mass
  • N 0.007% by mass
  • Mn 0.1% by mass
  • Se A silicon steel slab containing 0.007% by mass and B: 0.0014% by mass with the balance being Fe and inevitable impurities and having a thickness of 40 mm was obtained.
  • the silicon steel slab was heated at a temperature of 1200 ° C., and rough rolled at 1100 ° C. to a thickness of 15 mm. Thereafter, it was kept in a furnace at 1050 ° C. to 800 ° C. for a certain time.
  • the hot rolled steel strip was annealed.
  • cold rolling was performed to obtain a cold rolled steel strip having a thickness of 0.22 mm.
  • the cold-rolled steel strip was heated at a rate of 15 ° C./s, and decarburized and annealed at a temperature of 840 ° C. to obtain a decarburized and annealed steel strip.
  • the decarburized and annealed steel strip was annealed in an ammonia-containing atmosphere to increase the nitrogen in the steel strip to 0.022% by mass.
  • the annealing separator which has MgO as a main component was apply
  • FIG. 8 shows the sum (mass%) of the value obtained by multiplying the value obtained by converting the precipitation amount of MnS into the amount of S and the value obtained by converting the precipitation amount of MnSe into the amount of Se by 0.5.
  • the vertical axis indicates the value (mass%) obtained by converting the amount of precipitated BN into B.
  • a white circle indicates that the magnetic flux density B8 is 1.88T or more, and a black square indicates that the magnetic flux density B8 is less than 1.88T.
  • the magnetic flux density B8 was low in the sample in which the amount of MnS, MnSe, and BN deposited was less than a certain value. This indicates that secondary recrystallization was unstable.
  • FIG. 9 shows the B content (mass%), and the vertical axis shows the value (mass%) obtained by converting the precipitation amount of BN into B.
  • a white circle indicates that the magnetic flux density B8 is 1.88T or more, and a black square indicates that the magnetic flux density B8 is less than 1.88T.
  • the magnetic flux density B8 was low in the sample in which the amount of B not precipitated as BN was a certain value or more. This indicates that secondary recrystallization was unstable.
  • FIG. 10 The horizontal axis in FIG. 10 indicates the Mn content (% by mass), and the vertical axis indicates the slab heating temperature (° C.) during hot rolling.
  • a white circle indicates that the magnetic flux density B8 is 1.88T or more, and a black square indicates that the magnetic flux density B8 is less than 1.88T.
  • the two curves in FIG. 10 indicate the solution temperature T1 (° C.) of MnS represented by the formula (1) and the solution temperature T2 (° C.) of MnSe represented by the formula (2).
  • T1 ° C.
  • BN is preferentially complex-precipitated with MnS and MnSe as nuclei when MnS and MnSe are present, and the precipitation nose is 800 ° C to 1000 ° C. It turned out to be.
  • the present inventors investigated conditions effective for precipitation of BN.
  • Si 3.3 mass%
  • C 0.06 mass%
  • acid-soluble Al 0.027 mass%
  • N 0.007 mass%
  • Mn 0.1 mass%
  • S A silicon steel slab containing 0.006% by mass
  • Se 0.008% by mass
  • B 0.0017% by mass, the balance being Fe and inevitable impurities, and having a thickness of 40 mm was obtained.
  • the silicon steel slab was heated at a temperature of 1200 ° C., and rough rolled at 1100 ° C. to a thickness of 15 mm. Thereafter, it was kept in a furnace at 1050 ° C. to 800 ° C. for a certain time.
  • B in a solid solution state is easily segregated at the grain boundary, and BN that is single-deposited after hot rolling is often fine.
  • These solid solution B and fine BN suppress the grain growth at the time of primary recrystallization as a strong inhibitor in a low temperature range where decarburization annealing is performed, and locally inhibit in a high temperature range where finish annealing is performed.
  • the crystal grain structure becomes a mixed grain structure. Therefore, since the primary recrystallized grains are small in the low temperature range, the magnetic flux density of the grain-oriented electrical steel sheet becomes low. In addition, since the crystal grain structure becomes a mixed grain structure in a high temperature range, secondary recrystallization becomes unstable.
  • the silicon steel material used in this embodiment is Si: 0.8 mass% to 7 mass%, acid-soluble Al: 0.01 mass% to 0.065 mass%, N: 0.004 mass% to 0.012 mass %, Mn: 0.05% by mass to 1% by mass, S and Se: 0.003% by mass to 0.015% by mass in total, and B: 0.0005% by mass to 0.0080% by mass, C content is 0.085 mass% or less, and the remainder consists of Fe and inevitable impurities.
  • Si content increases the electric resistance and decreases the iron loss.
  • Si content shall be 7 mass% or less, it is preferable that it is 4.5 mass% or less, and it is still more preferable that it is 4 mass% or less.
  • Si content shall be 0.8 mass% or more, it is preferable that it is 2 mass% or more, and it is still more preferable that it is 2.5 mass% or more.
  • C is an element effective in controlling the primary recrystallization structure, but has an adverse effect on the magnetic properties. For this reason, in this embodiment, decarburization annealing is performed (step S4) before finish annealing (step S5). However, if the C content exceeds 0.085% by mass, the time required for decarburization annealing becomes long, and the productivity in industrial production is impaired. For this reason, C content shall be 0.85 mass% or less, and it is preferable that it is 0.07 mass% or less.
  • Acid-soluble Al combines with N and precipitates as (Al, Si) N and functions as an inhibitor. Secondary recrystallization is stabilized when the content of acid-soluble Al is in the range of 0.01 mass% to 0.065 mass%. For this reason, content of acid-soluble Al shall be 0.01 mass% or more and 0.065 mass% or less. Moreover, it is preferable that content of acid-soluble Al is 0.02 mass% or more, and it is still more preferable that it is 0.025 mass% or more. Moreover, it is preferable that content of acid-soluble Al is 0.04 mass% or less, and it is still more preferable that it is 0.03 mass% or less.
  • B binds to N and precipitates together with MnS or MnSe as BN and functions as an inhibitor. Secondary recrystallization is stabilized when the B content is in the range of 0.0005 mass% to 0.0080 mass%. For this reason, B content shall be 0.0005 mass% or more and 0.0080 mass% or less. Further, the B content is preferably 0.001% or more, and more preferably 0.0015% or more. Further, the B content is preferably 0.0040% or less, and more preferably 0.0030% or less.
  • N binds to B or Al and functions as an inhibitor.
  • N content When the N content is less than 0.004% by mass, a sufficient amount of inhibitor cannot be obtained. For this reason, N content shall be 0.004 mass% or more, it is preferable that it is 0.006 mass% or more, and it is still more preferable that it is 0.007 mass% or more.
  • N content exceeds 0.012% by mass, pores called blisters are generated in the steel strip during cold rolling. For this reason, N content shall be 0.012 mass% or less, it is preferable that it is 0.010 mass% or less, and it is still more preferable that it is 0.009 mass% or less.
  • Mn, S, and Se generate MnS and MnSe that are nuclei from which BN is compositely precipitated, and the composite precipitate functions as an inhibitor. Secondary recrystallization is stabilized when the Mn content is in the range of 0.05 mass% to 1 mass%. For this reason, Mn content shall be 0.05 mass% or more and 1 mass% or less. Moreover, it is preferable that Mn content is 0.08 mass% or more, and it is still more preferable that it is 0.09 mass% or more. The Mn content is preferably 0.50% by mass or less, and more preferably 0.2% by mass or less.
  • Ti forms coarse TiN and affects the precipitation amount of BN and (Al, Si) N functioning as an inhibitor.
  • Ti content exceeds 0.004% by mass, it is difficult to obtain good magnetic properties. For this reason, it is preferable that Ti content is 0.004 mass% or less.
  • the silicon steel material may further contain one or more selected from the group consisting of Cr, Cu, Ni, P, Mo, Sn, Sb, and Bi within the following range.
  • Cr improves the oxide layer formed at the time of decarburization annealing, and is effective for forming a glass film accompanying the reaction between this oxide layer at the time of finish annealing and MgO which is the main component of the annealing separator.
  • MgO which is the main component of the annealing separator.
  • Cr content shall be 0.3 mass% or less.
  • Cu increases specific resistance and reduces iron loss. However, this effect is saturated when the Cu content exceeds 0.4% by mass. In addition, surface flaws called “copper hege” may occur during hot rolling. For this reason, Cu content was 0.4 mass% or less.
  • Ni increases specific resistance and reduces iron loss. Ni also improves the magnetic properties by controlling the metal structure of the hot-rolled steel strip. However, when the Ni content exceeds 1% by mass, secondary recrystallization becomes unstable. For this reason, Ni content shall be 1 mass% or less.
  • P increases specific resistance and reduces iron loss. However, if the P content exceeds 0.5 mass%, breakage tends to occur during cold rolling accompanying embrittlement. For this reason, P content shall be 0.5 mass% or less.
  • Mo improves surface properties during hot rolling. However, when the Mo content exceeds 0.1% by mass, this effect is saturated. For this reason, Mo content shall be 0.1 mass% or less.
  • Sn and Sb are grain boundary segregation elements. Since the silicon steel material used in this embodiment contains Al, Al may be oxidized by moisture released from the annealing separator depending on the conditions of finish annealing. In this case, the inhibitor strength varies depending on the site in the grain-oriented electrical steel sheet, and the magnetic characteristics may vary. However, when a grain boundary segregating element is contained, oxidation of Al can be suppressed. That is, Sn and Sb suppress the variation in magnetic characteristics by suppressing the oxidation of Al.
  • Bi stabilizes precipitates such as sulfides and strengthens the function as an inhibitor.
  • the Bi content exceeds 0.01% by mass, the glass film formation is adversely affected. For this reason, Bi content shall be 0.01 mass% or less.
  • the silicon steel material (slab) of the above components is manufactured by, for example, melting steel with a converter or an electric furnace, vacuum degassing the molten steel as necessary, and then performing continuous casting. Can do. Moreover, it can replace with continuous casting and can also produce even if it performs after-agglomeration partial rolling.
  • the thickness of the silicon steel slab is, for example, 150 mm to 350 mm, preferably 220 mm to 280 mm. Also, a so-called thin slab having a thickness of 30 mm to 70 mm may be produced. When a thin slab is produced, rough rolling when obtaining a hot-rolled steel strip can be omitted.
  • step S1 slab heating is performed and hot rolling (step S1) is performed.
  • BN is combined with MnS and / or MnSe, and the slab is so formed that the precipitation amounts of BN, MnS, and MnSe in the hot-rolled steel strip satisfy the following formulas (6) to (8). It is preferable to set conditions for heating and hot rolling.
  • B asBN represents the amount (mass%) of B precipitated as BN
  • S asMnS represents the amount (mass%) of S precipitated as MnS
  • Se asMnSe precipitated as MnSe. The amount (% by mass) of Se is shown.
  • MnS and MnSe function as nuclei in which BN is compositely precipitated. Therefore, in order to sufficiently precipitate BN and improve the magnetic characteristics, it is preferable to control the amount of precipitation so that the formula (8) is satisfied.
  • Equation (6) and Equation (8) are derived from FIGS. 2, 5, and 8.
  • FIG. 2 shows that when B asBN is 0.0005 mass% or more and S asMnS is 0.002 mass% or more, a good magnetic flux density with a magnetic flux density B8 of 1.88 T or more can be obtained.
  • FIG. 5 shows that when B asBN is 0.0005 mass% or more and Se asMnSe is 0.004 mass% or more, a good magnetic flux density with a magnetic flux density B8 of 1.88 T or more can be obtained.
  • FIG. 5 shows that when B asBN is 0.0005 mass% or more and Se asMnSe is 0.004 mass% or more, a good magnetic flux density with a magnetic flux density B8 of 1.88 T or more can be obtained.
  • the method of holding in the temperature range of 1000 ° C. to 800 ° C. is not particularly limited.
  • the following method is effective. First, rough rolling is performed, and the steel strip is wound into a coil shape. Next, it is held or gradually cooled by equipment such as a coil box. Thereafter, finish rolling is performed in a temperature range of 1000 ° C. to 800 ° C. while rewinding the steel strip.
  • the method for depositing MnS and / or MnSe is not particularly limited.
  • iii) When S is not contained in the silicon steel slab Temperature T2 (° C.) represented by the formula (2)
  • T1 14855 / (6.82-log ([Mn] ⁇ [S]))-273 (1)
  • T2 10733 / (4.08-log ([Mn] ⁇ [Se]))-273 (2)
  • the solution temperatures T1 and T2 substantially coincide with the upper limit of the slab heating temperature at which the magnetic flux density B8 of 1.88 T or more is obtained.
  • the slab heating is preferably performed at a temperature T1 and / or a temperature T2 or lower. Further, when the temperature of the slab heating is equal to or lower than the temperature T3 or T4, a preferable amount of MnS or MnSe precipitates during the slab heating, so that BN is complexly precipitated around these to easily form an effective inhibitor. It becomes possible.
  • step S1 After the hot rolling (step S1), the hot rolled steel strip is annealed (step S2). Next, cold rolling is performed (step S3). As described above, the cold rolling may be performed only once, or multiple times of cold rolling may be performed while performing intermediate annealing. In cold rolling, the final cold rolling rate is preferably 80% or more. This is to develop a good primary recrystallization texture.
  • step S4 decarburization annealing is performed.
  • C contained in the steel strip is removed.
  • Decarburization annealing is performed in a humid atmosphere, for example. Further, for example, it is preferable to carry out for a time such that the crystal grain size obtained by primary recrystallization is 15 ⁇ m or more in the temperature range of 770 ° C. to 950 ° C. This is to obtain good magnetic properties.
  • step S5 application of an annealing separator and finish annealing are performed (step S5). As a result, crystal grains oriented in the ⁇ 110 ⁇ ⁇ 001> orientation are preferentially grown by secondary recrystallization.
  • nitriding is performed between the start of decarburization annealing and the development of secondary recrystallization in finish annealing (step S6). This is to form an inhibitor of (Al, Si) N.
  • This nitriding treatment may be performed during decarburization annealing (step S4) or may be performed during finish annealing (step S5).
  • annealing may be performed in an atmosphere containing a gas having nitriding ability such as ammonia.
  • the nitriding treatment may be performed either in the heating zone of the continuous annealing furnace or in the soaking zone, and the nitriding treatment may be performed in a stage after the soaking zone.
  • powder having nitriding ability such as MnN may be added to the annealing separator.
  • the composition of (Al, Si) N in the steel strip after nitriding is adjusted by adjusting the degree of nitriding in nitriding (step S6).
  • the degree of nitridation so that the following formula (3) is satisfied according to the Al content and the B content, and the content of Ti unavoidably present, and the following formula (4) More preferably, control is performed so that Equations (3) and (4) show that the preferred amount of N to immobilize B as an effective BN as an inhibitor, and the preferred N to immobilize Al as an effective AlN or (Al, Si) N as an inhibitor. Shows the amount.
  • [N] represents the N content (mass%) of the steel strip after nitriding
  • [Al] represents the acid-soluble Al content (mass%) of the steel strip after nitriding
  • [B ] Shows B content (mass%) of the steel strip after nitriding
  • [Ti] shows Ti content (mass%) of the steel strip after nitriding.
  • the method of finish annealing is not particularly limited. However, in this embodiment, since the inhibitor is strengthened by BN, it is preferable that the heating rate in the temperature range of at least 1000 ° C. to 1100 ° C. is set to 15 ° C./h or less in the heating process of finish annealing. Also, instead of controlling the heating rate, it is also effective to perform isothermal annealing for 10 hours or more at a predetermined temperature in a temperature range of at least 1000 ° C. to 1100 ° C.
  • a grain-oriented electrical steel sheet having excellent magnetic properties can be manufactured stably.
  • the hot rolled steel strip was annealed at 1100 ° C.
  • cold rolling was performed to obtain a cold rolled steel strip having a thickness of 0.22 mm.
  • decarburization annealing was performed in a humid atmosphere gas at 830 ° C. for 100 seconds to obtain a decarburized annealing steel strip.
  • the decarburized and annealed steel strip was annealed in an ammonia-containing atmosphere to increase the nitrogen in the steel strip to 0.024 mass%.
  • an annealing separator containing MgO as a main component was applied, and finish annealing was performed by heating to 1200 ° C. at a rate of 15 ° C./h.
  • the magnetic characteristic (magnetic flux density B8) after finish annealing was measured.
  • the magnetic properties (magnetic flux density B8) were measured according to JIS C2556. The results are shown in Table 1.
  • the decarburized and annealed steel strip was annealed in an ammonia-containing atmosphere to increase the nitrogen in the steel strip to 0.022% by mass.
  • an annealing separator containing MgO as a main component was applied, and finish annealing was performed by heating to 1200 ° C. at a rate of 15 ° C./h.
  • the magnetic characteristic (magnetic flux density B8) was measured like the 4th experiment. The results are shown in Table 2.
  • Example No. 1 maintained at a predetermined temperature in the intermediate stage of hot rolling. 2A1-No. In 2A4, a good magnetic flux density was obtained, but Comparative Example No. 2B1-No. In 2B4, the magnetic flux density was low.
  • Example No. 1 held at a predetermined temperature for a predetermined time in an intermediate stage of hot rolling.
  • 3B-No. In 3D a good magnetic flux density was obtained.
  • 3A and no. 3E-No. In 3G the magnetic flux density was low.
  • Example No. 2 in which the N content after nitriding satisfies the relationship of the formula (3) and the relationship of the formula (4).
  • 4C a particularly good magnetic flux density was obtained.
  • Example No. 4B Example No. The magnetic flux density was slightly lower than 4C.
  • Example No. The magnetic flux density was slightly lower than 4B.
  • Example No. using a slab having an appropriate composition was used.
  • 5A-No. In 5O a good magnetic flux density was obtained, but in Comparative Example No. At 5P, the magnetic flux density was low.
  • the hot rolled steel strip was annealed at 1100 ° C.
  • cold rolling was performed to obtain a cold rolled steel strip having a thickness of 0.22 mm.
  • decarburization annealing was performed in a humid atmosphere gas at 830 ° C. for 100 seconds to obtain a decarburized annealing steel strip.
  • the decarburized and annealed steel strip was annealed in an ammonia-containing atmosphere to increase the nitrogen in the steel strip to 0.024 mass%.
  • an annealing separator containing MgO as a main component was applied, and finish annealing was performed by heating to 1200 ° C. at a rate of 15 ° C./h.
  • the magnetic characteristic (magnetic flux density B8) was measured like the 4th experiment. The results are shown in Table 6.
  • Example 6A the comparative example No. in which the slab does not contain B
  • Example 6B the magnetic flux density was low, but the slab contained an appropriate amount of B. 6B-No.
  • 6E a good magnetic flux density was obtained.
  • a hot rolled steel strip having a thickness of 2.3 mm was obtained.
  • finish rolling was performed at 1020 ° C. without annealing.
  • a hot rolled steel strip having a thickness of 2.3 mm was obtained.
  • the hot rolled steel strip was annealed at 1100 ° C.
  • cold rolling was performed to obtain a cold rolled steel strip having a thickness of 0.22 mm.
  • decarburization annealing was performed in a humid atmosphere gas at 830 ° C. for 100 seconds to obtain a decarburized annealing steel strip.
  • the decarburized and annealed steel strip was annealed in an ammonia-containing atmosphere to increase the nitrogen in the steel strip to 0.022% by mass.
  • an annealing separator containing MgO as a main component was applied, and finish annealing was performed by heating to 1200 ° C. at a rate of 15 ° C./h.
  • the magnetic characteristic (magnetic flux density B8) was measured like the 4th experiment. The results are shown in Table 7.
  • Example No. maintained at a predetermined temperature in the intermediate stage of hot rolling. 7A1-No. In 7A3, good magnetic flux density was obtained, but Comparative Example No. 7B1-No. In 7B3, the magnetic flux density was low.
  • Example No. 1 held at a predetermined temperature for a predetermined time in an intermediate stage of hot rolling.
  • 8B-No. In 8D a good magnetic flux density was obtained.
  • Comparative Example No. in which the holding temperature or holding time deviates from the scope of the present invention.
  • 8A and no. 8E-No. At 8G the magnetic flux density was low.
  • the hot rolled steel strip was annealed at 1100 ° C.
  • cold rolling was performed to obtain a cold rolled steel strip having a thickness of 0.22 mm.
  • decarburization annealing was performed in a humid atmosphere gas at 830 ° C. for 100 seconds to obtain a decarburized annealing steel strip.
  • the decarburized and annealed steel strip was annealed in an ammonia-containing atmosphere to increase the nitrogen in the steel strip to 0.015 mass% to 0.022 mass%.
  • an annealing separator containing MgO as a main component was applied, and finish annealing was performed by heating to 1200 ° C. at a rate of 15 ° C./h.
  • the magnetic characteristic (magnetic flux density B8) was measured like the 4th experiment. The results are shown in Table 9.
  • Example 9C As shown in Table 9, an example No. in which the N content after the nitriding treatment satisfies the relationship of the formula (3) and the relationship of the formula (4).
  • 9C a particularly good magnetic flux density was obtained.
  • Example 9B Example No. The magnetic flux density was slightly lower than 4C.
  • Example No. using a slab having an appropriate composition was used.
  • 10A-No. In 10O a good magnetic flux density was obtained, but in Comparative Example No. At 10P, the magnetic flux density was low.
  • the hot rolled steel strip was annealed at 1100 ° C.
  • cold rolling was performed to obtain a cold rolled steel strip having a thickness of 0.22 mm.
  • decarburization annealing was performed in a humid atmosphere gas at 830 ° C. for 100 seconds to obtain a decarburized annealing steel strip.
  • the decarburized and annealed steel strip was annealed in an ammonia-containing atmosphere to increase the nitrogen in the steel strip to 0.024 mass%.
  • an annealing separator containing MgO as a main component was applied, and finish annealing was performed by heating to 1200 ° C. at a rate of 15 ° C./h.
  • the magnetic characteristic (magnetic flux density B8) was measured like the 4th experiment. The results are shown in Table 11.
  • Example 11A the comparative example No. in which the slab does not contain B
  • Example 11A although the magnetic flux density was low, the slab contained an appropriate amount of B. 11B-No. In 11E, a good magnetic flux density was obtained.
  • a hot rolled steel strip having a thickness of 2.3 mm was obtained.
  • finish rolling was performed at 1020 ° C. without annealing.
  • a hot rolled steel strip having a thickness of 2.3 mm was obtained.
  • the hot rolled steel strip was annealed at 1100 ° C.
  • cold rolling was performed to obtain a cold rolled steel strip having a thickness of 0.22 mm.
  • decarburization annealing was performed in a humid atmosphere gas at 830 ° C. for 100 seconds to obtain a decarburized annealing steel strip.
  • the decarburized and annealed steel strip was annealed in an ammonia-containing atmosphere to increase the nitrogen in the steel strip to 0.022% by mass.
  • an annealing separator containing MgO as a main component was applied, and finish annealing was performed by heating to 1200 ° C. at a rate of 15 ° C./h.
  • the magnetic characteristic (magnetic flux density B8) was measured like the 4th experiment. The results are shown in Table 12.
  • Example No. maintained at a predetermined temperature in the intermediate stage of hot rolling. 12A1-No. In 12A4, a good magnetic flux density was obtained, but Comparative Example No. 12B1-No. In 12B4, the magnetic flux density was low.
  • Example No. 1 held at a predetermined temperature for a predetermined time in an intermediate stage of hot rolling. 13B-No. In 13D, a good magnetic flux density was obtained. However, Comparative Example No. in which the holding temperature or holding time deviates from the scope of the present invention. 13A and No. 13E-No. At 13G, the magnetic flux density was low.
  • the hot rolled steel strip was annealed at 1100 ° C.
  • cold rolling was performed to obtain a cold rolled steel strip having a thickness of 0.22 mm.
  • decarburization annealing was performed in a humid atmosphere gas at 830 ° C. for 100 seconds to obtain a decarburized annealing steel strip.
  • the decarburized and annealed steel strip was annealed in an ammonia-containing atmosphere to increase the nitrogen in the steel strip to 0.014 mass% to 0.022 mass%.
  • an annealing separator containing MgO as a main component was applied, and finish annealing was performed by heating to 1200 ° C. at a rate of 15 ° C./h.
  • the magnetic characteristic (magnetic flux density B8) was measured like the 4th experiment. The results are shown in Table 14.
  • Example No. 5 in which the N content after the nitriding treatment satisfies the relationship of the formula (3) and the relationship of the formula (4).
  • 14C a particularly good magnetic flux density was obtained.
  • the relationship of Formula (3) is satisfied, the relationship of Formula (4) is not satisfied.
  • 14B Example No. The magnetic flux density was slightly lower than 14C.
  • Example No. The magnetic flux density was slightly lower than 14B.
  • Example No. using a slab having an appropriate composition was used.
  • 15A-No. 15E, and no. 15G-No. In 15O a good magnetic flux density was obtained, but in Comparative Example No. 1, the Ni content was higher than the upper limit of the range of the present invention.
  • the magnetic flux density was low.
  • Example No. 1 Comparative Example No. About the sample of 16A, decarburization annealing was performed for 100 second in the humid atmosphere gas of 830 degreeC, and the decarburization annealing steel strip was obtained.
  • Example No. about the sample of 16B decarburization annealing was performed for 100 seconds in the humid atmosphere gas of 830 degreeC, and also it annealed in ammonia containing atmosphere, and obtained N22 content 0.022 mass% decarburization annealing steel strip. It was.
  • the decarburization annealing was performed for 100 second in the humid atmosphere gas of 860 degreeC, and the decarburization annealing steel strip whose N content is 0.022 mass% was obtained. In this way, three types of decarburized and annealed steel strips were obtained.
  • the present invention can be used, for example, in the electrical steel sheet manufacturing industry and the electrical steel sheet utilizing industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

 脱炭焼鈍(ステップS4)の開始から仕上げ焼鈍(ステップS5)における二次再結晶の発現までの間に、脱炭焼鈍鋼帯のN含有量を増加させる窒化処理(ステップS6)を行う。また、熱間圧延(ステップS1)では、珪素鋼素材を1000℃~800℃の温度域に300秒間以上保持し、その後に、仕上げ圧延を行う。

Description

方向性電磁鋼板の製造方法
 本発明は、電気機器の鉄芯等に好適な方向性電磁鋼板の製造方法に関する。
 方向性電磁鋼板は軟磁性材料であり、変圧器(トランス)等の電気機器の鉄芯等に用いられる。方向性電磁鋼板には、7質量%以下程度のSiが含有されている。方向性電磁鋼板の結晶粒は、ミラー指数で{110}<001>方位に高度に集積している。結晶粒の方位の制御は、二次再結晶とよばれる異常粒成長現象を利用して行われている。
 二次再結晶の制御には、二次再結晶前の一次再結晶により得られる組織(一次再結晶組織)の調整、及びインヒビターとよばれる微細析出物又は粒界偏析元素の調整が重要である。インヒビターは、一次再結晶組織のなかで、{110}<001>方位の結晶粒を優先的に成長させ、他の結晶粒の成長を抑制する機能を持つ。
 そして、従来、インヒビターを効果的に析出させることを目的とした種々の提案がされている。
 しかしながら、従来の技術では、高い磁束密度の方向性電磁鋼板を工業的に安定して製造することが困難である。
特公昭30-003651号公報 特公昭33―004710号公報 特公昭51―013469号公報 特公昭62―045285号公報 特開平03-002324号公報 米国特許第3905842号公報 米国特許第3905843号公報 特開平01-230721号公報 特開平01-283324号公報 特開平10-140243号公報 特開2000-129352号公報 特開平11-050153号公報 特開2001-152250号公報 特開2000-282142号公報 特開平11-335736号公報
Trans. Met. Soc. AIME, 212(1958)p769/781 日本金属学会誌27(1963)p186 鉄と鋼53(1967)p1007/1023 日本金属学会誌43(1979年)p175/181、同44(1980年)p419/424 Materials Science Forum204-206(1996)p593/598 IEEE Trans. Mag. MAG-13 p1427
 本発明は、高い磁束密度の方向性電磁鋼板を工業的に安定して製造することができる方向性電磁鋼板の製造方法を提供することを目的とする。
 本発明の第1の観点に係る方向性電磁鋼板の製造方法は、Si:0.8質量%~7質量%、酸可溶性Al:0.01質量%~0.065質量%、N:0.004質量%~0.012質量%、Mn:0.05質量%~1質量%、及びB:0.0005質量%~0.0080質量%を含有し、S及びSeからなる群から選択された少なくとも1種を総量で0.003質量%~0.015質量%含有し、C含有量が0.085質量%以下であり、残部がFe及び不可避的不純物からなる珪素鋼素材の熱間圧延を行って熱間圧延鋼帯を得る工程と、前記熱間圧延鋼帯の焼鈍を行って、焼鈍鋼帯を得る工程と、前記焼鈍鋼帯を1回以上、冷間圧延して冷間圧延鋼帯を得る工程と、前記冷間圧延鋼帯の脱炭焼鈍を行って、一次再結晶が生じた脱炭焼鈍鋼帯を得る工程と、MgOを主成分とする焼鈍分離剤を前記脱炭焼鈍鋼帯に塗布する工程と、前記脱炭焼鈍鋼帯の仕上げ焼鈍により、二次再結晶を生じさせる工程と、を有し、更に、前記脱炭焼鈍の開始から仕上げ焼鈍における二次再結晶の発現までの間に、前記脱炭焼鈍鋼帯のN含有量を増加させる窒化処理を行う工程を有し、前記熱間圧延を行う工程は、前記珪素鋼素材を1000℃~800℃の温度域に300秒間以上保持する工程と、その後に、仕上げ圧延を行う工程と、を有することを特徴とする。
 本発明の第2の観点に係る方向性電磁鋼板の製造方法は、第1の観点に係る方法において、前記珪素鋼素材にSeが含有されていない場合、前記熱間圧延を行う工程の前に、下記式(1)で表される温度T1(℃)以下の温度まで前記珪素鋼素材を加熱する工程を有することを特徴とする。
 T1=14855/(6.82-log([Mn]×[S]))-273 ・・・(1)
 ここで、[Mn]は前記珪素鋼素材のMn含有量(質量%)を示し、[S]は前記珪素鋼素材のS含有量(質量%)を示す。
 本発明の第3の観点に係る方向性電磁鋼板の製造方法は、第1の観点に係る方法において、前記珪素鋼素材にSが含有されていない場合、前記熱間圧延を行う工程の前に、下記式(2)で表される温度T2(℃)以下の温度まで前記珪素鋼素材を加熱する工程を有することを特徴とする。
 T2=10733/(4.08-log([Mn]×[Se]))-273 ・・・(2)
 ここで、[Mn]は前記珪素鋼素材のMn含有量(質量%)を示し、[Se]は前記珪素鋼素材のSe含有量(質量%)を示す。
 本発明の第4の観点に係る方向性電磁鋼板の製造方法は、第1の観点に係る方法において、前記珪素鋼素材にS及びSeが含有されている場合、前記熱間圧延を行う工程の前に、式(1)で表される温度T1(℃)以下、かつ式(2)で表される温度T2(℃)以下の温度まで前記珪素鋼素材を加熱する工程を有することを特徴とする。
 本発明の第5の観点に係る方向性電磁鋼板の製造方法は、第1~第4の観点のいずれかに係る方法において、前記窒化処理を、前記窒化処理後の鋼帯のN含有量[N]が、下記式(3)を満たす条件下で行うことを特徴とする。
 [N]≧14/27[Al]+14/11[B]+14/47[Ti] ・・・(3)
 ここで、[N]は前記窒化処理後の鋼帯のN含有量(質量%)を示し、[Al]は前記窒化処理後の鋼帯の酸可溶性Al含有量(質量%)を示し、[B]は前記窒化処理後の鋼帯のB含有量(質量%)を示し、[Ti]は前記窒化処理後の鋼帯のTi含有量(質量%)を示す。
 本発明の第6の観点に係る方向性電磁鋼板の製造方法は、第1~第4の観点のいずれかに係る方法において、前記窒化処理を、前記窒化処理後の鋼帯のN含有量[N]が、下記式(4)を満たす条件下で行うことを特徴とする。
 [N]≧2/3[Al]+14/11[B]+14/47[Ti] ・・・(4)
 本発明によれば、適切にBNをMnS及び/又はMnSeに複合析出させ、適切なインヒビターを形成することができるため、高い磁束密度を得ることができる。また、これらの工程は、工業的に安定して実行することができる。
図1は、方向性電磁鋼板の製造方法を示すフローチャートである。 図2は、第1の実験の結果(熱間圧延鋼帯中の析出物と仕上げ焼鈍後の磁気特性との関係)を示す図である。 図3は、第1の実験の結果(BNとして析出していないBの量と仕上げ焼鈍後の磁気特性との関係)を示す図である。 図4は、第1の実験の結果(熱間圧延の条件と仕上げ焼鈍後の磁気特性との関係)を示す図である。 図5は、第2の実験の結果(熱間圧延鋼帯中の析出物と仕上げ焼鈍後の磁気特性との関係)を示す図である。 図6は、第2の実験の結果(BNとして析出していないBの量と仕上げ焼鈍後の磁気特性との関係)を示す図である。 図7は、第2の実験の結果(熱間圧延の条件と仕上げ焼鈍後の磁気特性との関係)を示す図である。 図8は、第3の実験の結果(熱間圧延鋼帯中の析出物と仕上げ焼鈍後の磁気特性との関係)を示す図である。 図9は、第3の実験の結果(BNとして析出していないBの量と仕上げ焼鈍後の磁気特性との関係)を示す図である。 図10は、第3の実験の結果(熱間圧延の条件と仕上げ焼鈍後の磁気特性との関係)を示す図である。 図11は、BNの析出量と保持温度及び保持時間との関係を示す図である。
 本発明者らは、Bを含有する所定の組成の珪素鋼素材から方向性電磁鋼板を製造する場合、Bの析出形態が二次再結晶の挙動に影響するのではないかと考え、種々の実験を行った。ここで、方向性電磁鋼板の製造方法の概略について説明する。図1は、方向性電磁鋼板の製造方法を示すフローチャートである。
 先ず、図1に示すように、ステップS1において、Bを含有する所定の組成の珪素鋼素材の熱間圧延を行う。熱間圧延により、熱間圧延鋼帯が得られる。その後、ステップS2において、熱間圧延鋼帯の焼鈍を行って、熱間圧延鋼帯内の組織の均一化及びインヒビターの析出の調整を行う。焼鈍により、焼鈍鋼帯が得られる。続いて、ステップS3において、焼鈍鋼帯の冷間圧延を行う。冷間圧延は1回のみ行ってもよく、複数回の冷間圧延を、間に中間焼鈍を行いながら行ってもよい。冷間圧延により、冷間圧延鋼帯が得られる。なお、中間焼鈍を行う場合、冷間圧延前の熱延鋼帯の焼鈍を省略して、中間焼鈍において焼鈍(ステップS2)を行ってもよい。つまり、焼鈍(ステップS2)は、熱延鋼帯に対して行ってもよく、一度冷間圧延した後の最終冷間圧延前の鋼帯に対して行ってもよい。
 冷間圧延後には、ステップS4において、冷間圧延鋼帯の脱炭焼鈍を行う。この脱炭焼鈍の際に、一次再結晶が生じる。また、脱炭焼鈍により、脱炭焼鈍鋼帯が得られる。次いで、ステップS5において、MgO(マグネシア)を主成分とする焼鈍分離剤を脱炭処理鋼帯の表面に塗布して、仕上げ焼鈍を行う。この仕上げ焼鈍の際に、二次再結晶が生じ、鋼帯の表面にフォルステライトを主成分とするグラス被膜が形成され、純化が行われる。二次再結晶の結果、Goss方位に揃った二次再結晶組織が得られる。仕上げ焼鈍により、仕上げ焼鈍鋼帯が得られる。更に、脱炭焼鈍の開始から仕上げ焼鈍における二次再結晶の発現までの間には、鋼帯の窒素量を増加させる窒化処理を行っておく(ステップS6)。
 このようにして方向性電磁鋼板を得ることができる。
 また、詳細は後述するが、珪素鋼素材としては、Si:0.8質量%~7質量%、酸可溶性Al:0.01質量%~0.065質量%、N:0.004質量%~0.012質量%、及びMn:0.05質量%~1質量%を含有し、更に、所定量のS及び/又はSe、並びにBを含有し、C含有量が0.085質量%以下であり、残部がFe及び不可避的不純物からなるものを用いる。
 そして、本発明者らは、種々の実験の結果、熱間圧延(ステップS1)の条件を調整して、熱間圧延鋼帯中にインヒビターとして有効な形態の析出物を発生させることが重要であることを見出した。具体的には、本発明者らは、熱間圧延の条件の調整により、珪素鋼素材中のBが主としてBN析出物としてMnS及び/又はMnSeに複合析出すると、インヒビターが熱的に安定化し、一次再結晶の粒組織が整粒化することを見出した。そして、本発明者らは、磁気特性の良好な方向性電磁鋼板を安定して製造することができるという知見を得て、本発明を完成させた。
 ここで、本発明者らが行った実験について説明する。
 (第1の実験)
 第1の実験では、先ず、Si:3.3質量%、C:0.06質量%、酸可溶性Al:0.027質量%、N:0.008質量%、Mn:0.05質量%~0.19質量%、S:0.007質量%、及びB:0.0010質量%~0.0035質量%を含有し、残部がFe及び不可避的不純物からなる種々の珪素鋼スラブを得た。次いで、珪素鋼スラブを1100℃~1250℃の温度で加熱し、熱間圧延を行った。熱間圧延では、粗圧延を1050℃で行った後、仕上げ圧延を1000℃で行って厚さが2.3mmの熱間圧延鋼帯を得た。そして、熱間圧延鋼帯に冷却水を噴射して550℃まで冷却し、その後、大気中で冷却した。続いて、熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、15℃/sの速度で冷間圧延鋼帯を加熱し、840℃の温度で脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.022質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、仕上げ焼鈍を行った。このようにして種々の試料を作製した。
 そして、熱間圧延鋼帯中の析出物と仕上げ焼鈍後の磁気特性との関係を調査した。この結果を図2に示す。図2の横軸はMnSの析出量をSの量に換算した値(質量%)を示し、縦軸はBNの析出量をBに換算した値(質量%)を示す。横軸はMnSとして析出したSの量(質量%)に相当する。また、白丸は磁束密度B8が1.88T以上であったことを示し、黒四角は磁束密度B8が1.88T未満であったことを示している。図2に示すように、MnS及びBNの析出量が一定値未満の試料では、磁束密度B8が低かった。このことは、二次再結晶が不安定であったことを示す。
 更に、BNとして析出していないBの量と仕上げ焼鈍後の磁気特性との関係を調査した。この結果を図3に示す。図3の横軸はB含有量(質量%)を示し、縦軸はBNの析出量をBに換算した値(質量%)を示す。また、白丸は磁束密度B8が1.88T以上であったことを示し、黒四角は磁束密度B8が1.88T未満であったことを示している。図3に示すように、BNとして析出していないBの量が一定値以上である試料では、磁束密度B8が低かった。このことは、二次再結晶が不安定であったことを示す。
 更に、磁気特性が良好な試料について析出物の形態を調査した結果、MnSを核としてBNがMnSの周辺に複合析出していることが判明した。このような複合析出物が二次再結晶を安定化させるインヒビターとして有効である。
 また、熱間圧延の条件と仕上げ焼鈍後の磁気特性との関係を調査した。この結果を図4に示す。図4の横軸はMn含有量(質量%)を示し、縦軸は熱間圧延時のスラブ加熱の温度(℃)を示す。また、白丸は磁束密度B8が1.88T以上であったことを示し、黒四角は磁束密度B8が1.88T未満であったことを示している。また、図4中の曲線は、下記式(1)で表わされるMnSの溶体化温度T1(℃)を示している。図4に示すように、Mn含有量に応じて定まる温度以下でスラブ加熱を行った試料において、高い磁束密度B8が得られることが判明した。更に、この温度はMnSの溶体化温度T1とほぼ一致していることも判明した。つまり、スラブ加熱を、MnSが完全固溶しない温度域で行うことが有効であることが判明した。
 T1=14855/(6.82-log([Mn]×[S]))-273 ・・・(1)
 ここで、[Mn]はMn含有量(質量%)を示し、[S]はS含有量(質量%)を示す。
 更に、MnS及びBNの析出挙動を調査した結果、BNはMnSが存在する場合に、MnSを核として優先的に複合析出すること、及びその析出ノーズが800℃~1000℃であることが判明した。
 また、本発明者らは、BNの析出に有効な条件について調査した。この調査では、先ず、Si:3.3質量%、C:0.06質量%、酸可溶性Al:0.027質量%、N:0.006質量%、Mn:0.1質量%、S:0.007質量%、及びB:0.0014質量%を含有し、残部がFe及び不可避的不純物からなり、厚さが40mmの珪素鋼スラブを得た。次いで、珪素鋼スラブを1200℃の温度で加熱し、1100℃で粗圧延を行って厚さを15mmとした。その後、1050℃~800℃の炉に一定時間保持した。続いて、仕上げ圧延を行って2.3mmの熱間圧延鋼帯を得た。そして、熱間圧延鋼帯を室温まで水冷し、析出物の調査を行った。この結果、粗圧延と仕上げ圧延との間に、1000℃~800℃の温度域に300秒間以上保持すると、良好な複合析出物が生じることが判明した。
 (第2の実験)
 第2の実験では、先ず、Si:3.3質量%、C:0.06質量%、酸可溶性Al:0.028質量%、N:0.007質量%、Mn:0.05質量%~0.20質量%、Se:0.007質量%、及びB:0.0010質量%~0.0035質量%を含有し、残部がFe及び不可避的不純物からなる種々の珪素鋼スラブを得た。次いで、珪素鋼スラブを1100℃~1250℃の温度で加熱し、熱間圧延を行った。熱間圧延では、粗圧延を1050℃で行った後、仕上げ圧延を1000℃で行って厚さが2.3mmの熱間圧延鋼帯を得た。そして、熱間圧延鋼帯に冷却水を噴射して550℃まで冷却し、その後、大気中で冷却した。続いて、熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、15℃/sの速度で冷間圧延鋼帯を加熱し、840℃の温度で脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.022質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、仕上げ焼鈍を行った。このようにして種々の試料を作製した。
 そして、熱間圧延鋼帯中の析出物と仕上げ焼鈍後の磁気特性との関係を調査した。この結果を図5に示す。図5の横軸はMnSeの析出量をSeの量に換算した値(質量%)を示し、縦軸はBNの析出量をBに換算した値(質量%)を示す。横軸はMnSeとして析出したSeの量(質量%)に相当する。また、白丸は磁束密度B8が1.88T以上であったことを示し、黒四角は磁束密度B8が1.88T未満であったことを示している。図5に示すように、MnSe及びBNの析出量が一定値未満の試料では、磁束密度B8が低かった。このことは、二次再結晶が不安定であったことを示す。
 更に、BNとして析出していないBの量と仕上げ焼鈍後の磁気特性との関係を調査した。この結果を図6に示す。図6の横軸はB含有量(質量%)を示し、縦軸はBNの析出量をBに換算した値(質量%)を示す。また、白丸は磁束密度B8が1.88T以上であったことを示し、黒四角は磁束密度B8が1.88T未満であったことを示している。図6に示すように、BNとして析出していないBの量が一定値以上である試料では、磁束密度B8が低かった。このことは、二次再結晶が不安定であったことを示す。
 更に、磁気特性が良好な試料について析出物の形態を調査した結果、MnSeを核としてBNがMnSeの周辺に複合析出していることが判明した。このような複合析出物が二次再結晶を安定化させるインヒビターとして有効である。
 また、熱間圧延の条件と仕上げ焼鈍後の磁気特性との関係を調査した。この結果を図7に示す。図7の横軸はMn含有量(質量%)を示し、縦軸は熱間圧延時のスラブ加熱の温度(℃)を示す。また、白丸は磁束密度B8が1.88T以上であったことを示し、黒四角は磁束密度B8が1.88T未満であったことを示している。また、図7中の曲線は、下記式(2)で表わされるMnSeの溶体化温度T2(℃)を示している。図7に示すように、Mn含有量に応じて定まる温度以下でスラブ加熱を行った試料において、高い磁束密度B8が得られることが判明した。更に、この温度はMnSeの溶体化温度T2とほぼ一致していることも判明した。つまり、スラブ加熱を、MnSeが完全固溶しない温度域で行うことが有効であることが判明した。
 T2=10733/(4.08-log([Mn]×[Se]))-273 ・・・(2)
 ここで、[Se]はSe含有量(質量%)を示す。
 更に、MnSe及びBNの析出挙動を調査した結果、BNはMnSeが存在する場合に、MnSeを核として優先的に複合析出すること、及びその析出ノーズが800℃~1000℃であることが判明した。
 また、本発明者らは、BNの析出に有効な条件について調査した。この調査では、先ず、Si:3.3質量%、C:0.06質量%、酸可溶性Al:0.028質量%、N:0.007質量%、Mn:0.1質量%、Se:0.007質量%、及びB:0.0014質量%を含有し、残部がFe及び不可避的不純物からなり、厚さが40mmの珪素鋼スラブを得た。次いで、珪素鋼スラブを1200℃の温度で加熱し、1100℃で粗圧延を行って厚さを15mmとした。その後、1050℃~800℃の炉に一定時間保持した。続いて、仕上げ圧延を行って2.3mmの熱間圧延鋼帯を得た。そして、熱間圧延鋼帯を室温まで水冷し、析出物の調査を行った。この結果、粗圧延と仕上げ圧延との間に、1000℃~800℃の温度域に300秒間以上保持すると、良好な複合析出物が生じることが判明した。
 (第3の実験)
 第3の実験では、先ず、Si:3.3質量%、C:0.06質量%、酸可溶性Al:0.026質量%、N:0.009質量%、Mn:0.05質量%~0.20質量%、S:0.005質量%、Se:0.007質量%、及びB:0.0010質量%~0.0035質量%を含有し、残部がFe及び不可避的不純物からなる種々の珪素鋼スラブを得た。次いで、珪素鋼スラブを1100℃~1250℃の温度で加熱し、熱間圧延を行った。熱間圧延では、粗圧延を1050℃で行った後、仕上げ圧延を1000℃で行って厚さが2.3mmの熱間圧延鋼帯を得た。そして、熱間圧延鋼帯に冷却水を噴射して550℃まで冷却し、その後、大気中で冷却した。続いて、熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、15℃/sの速度で冷間圧延鋼帯を加熱し、840℃の温度で脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.022質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、仕上げ焼鈍を行った。このようにして種々の試料を作製した。
 そして、熱間圧延鋼帯中の析出物と仕上げ焼鈍後の磁気特性との関係を調査した。この結果を図8に示す。図8の横軸はMnSの析出量をSの量に換算した値とMnSeの析出量をSeの量に換算した値に0.5を乗じて得られる値との和(質量%)を示し、縦軸はBNの析出量をBに換算した値(質量%)を示す。また、白丸は磁束密度B8が1.88T以上であったことを示し、黒四角は磁束密度B8が1.88T未満であったことを示している。図8に示すように、MnS、MnSe及びBNの析出量が一定値未満の試料では、磁束密度B8が低かった。このことは、二次再結晶が不安定であったことを示す。
 更に、BNとして析出していないBの量と仕上げ焼鈍後の磁気特性との関係を調査した。この結果を図9に示す。図9の横軸はB含有量(質量%)を示し、縦軸はBNの析出量をBに換算した値(質量%)を示す。また、白丸は磁束密度B8が1.88T以上であったことを示し、黒四角は磁束密度B8が1.88T未満であったことを示している。図9に示すように、BNとして析出していないBの量が一定値以上である試料では、磁束密度B8が低かった。このことは、二次再結晶が不安定であったことを示す。
 更に、磁気特性が良好な試料について析出物の形態を調査した結果、MnS又はMnSeを核としてBNがMnS又はMnSeの周辺に複合析出していることが判明した。このような複合析出物が二次再結晶を安定化させるインヒビターとして有効である。
 また、熱間圧延の条件と仕上げ焼鈍後の磁気特性との関係を調査した。この結果を図10に示す。図10の横軸はMn含有量(質量%)を示し、縦軸は熱間圧延時のスラブ加熱の温度(℃)を示す。また、白丸は磁束密度B8が1.88T以上であったことを示し、黒四角は磁束密度B8が1.88T未満であったことを示している。また、図10中の2つの曲線は、式(1)で表わされるMnSの溶体化温度T1(℃)、及び式(2)で表わされるMnSeの溶体化温度T2(℃)を示している。図10に示すように、Mn含有量に応じて定まる温度以下でスラブ加熱を行った試料において、高い磁束密度B8が得られることが判明した。更に、この温度は、MnSの溶体化温度T1及びMnSeの溶体化温度T2とほぼ一致していることも判明した。つまり、スラブ加熱を、MnS及びMnSeが完全固溶しない温度域で行うことが有効であることが判明した。
 更に、MnS、MnSe及びBNの析出挙動を調査した結果、BNはMnS及びMnSeが存在する場合に、MnS及びMnSeを核として優先的に複合析出すること、及びその析出ノーズが800℃~1000℃であることが判明した。
 また、本発明者らは、BNの析出に有効な条件について調査した。この調査では、先ず、Si:3.3質量%、C:0.06質量%、酸可溶性Al:0.027質量%、N:0.007質量%、Mn:0.1質量%、S:0.006質量%、Se:0.008質量%、及びB:0.0017質量%を含有し、残部がFe及び不可避的不純物からなり、厚さが40mmの珪素鋼スラブを得た。次いで、珪素鋼スラブを1200℃の温度で加熱し、1100℃で粗圧延を行って厚さを15mmとした。その後、1050℃~800℃の炉に一定時間保持した。続いて、仕上げ圧延を行って2.3mmの熱間圧延鋼帯を得た。そして、熱間圧延鋼帯を室温まで水冷し、析出物の調査を行った。この結果、粗圧延と仕上げ圧延との間に、1000℃~800℃の温度域に300秒間以上保持すると、良好な複合析出物が生じることが判明した。
 これらの第1~第3の実験の結果から、BNの析出形態を制御することによって、安定して方向性電磁鋼板の磁気特性を向上させることができることがわかる。BがBNとしてMnS又はMnSeと複合析出しない場合に二次再結晶が不安定になって良好な磁気特性が得られない理由は今のところ明らかになっていないが、次のように考えられる。
 一般的に、固溶状態のBは粒界に偏析しやすく、熱間圧延後に単独析出したBNは微細であることが多い。これらの固溶状態のB及び微細なBNは、脱炭焼鈍が行われる低温度域では強力なインヒビターとして一次再結晶時に粒成長を抑制し、仕上げ焼鈍が行われる高温度域では局所的にインヒビターとして機能しなくなり、結晶粒組織が混粒組織となる。従って、低温度域では一次再結晶粒が小さいので、方向性電磁鋼板の磁束密度が低くなってしまう。また、高温度域では結晶粒組織が混粒組織となるため、二次再結晶が不安定になってしまう。
 次に、これらの知見に基づきなされた本発明の実施形態について説明する。
 先ず、珪素鋼素材の成分の限定理由について説明する。
 本実施形態で用いる珪素鋼素材は、Si:0.8質量%~7質量%、酸可溶性Al:0.01質量%~0.065質量%、N:0.004質量%~0.012質量%、Mn:0.05質量%~1質量%、S及びSe:総量で0.003質量%~0.015質量%、並びにB:0.0005質量%~0.0080質量%を含有し、C含有量が0.085質量%以下であり、残部がFe及び不可避的不純物からなる。
 Siは、電気抵抗を高めて鉄損を低下させる。しかし、Si含有量が7質量%を超えていると、冷間圧延が極めて困難となり、冷間圧延時に割れが生じやすくなる。このため、Si含有量は7質量%以下とし、4.5質量%以下であることが好ましく、4質量%以下であることが更に好ましい。また、Si含有量が0.8質量%未満であると、仕上げ焼鈍時にγ変態が生じ、方向性電磁鋼板の結晶方位が損なわれてしまう。このため、Si含有量は0.8質量%以上とし、2質量%以上であることが好ましく、2.5質量%以上であることが更に好ましい。
 Cは、一次再結晶組織を制御に有効な元素であるが、磁気特性に悪影響を及ぼす。このため、本実施形態では、仕上げ焼鈍(ステップS5)前に脱炭焼鈍を行う(ステップS4)。しかし、C含有量が0.085質量%を超えていると、脱炭焼鈍にかかる時間が長くなり、工業生産における生産性が損なわれてしまう。このため、C含有量は0.85質量%以下とし、0.07質量%以下であることが好ましい。
 酸可溶性Alは、Nと結合して(Al、Si)Nとして析出し、インヒビターとして機能する。酸可溶性Alの含有量が0.01質量%~0.065質量%の範囲内にある場合に二次再結晶が安定する。このため、酸可溶性Alの含有量は0.01質量%以上0.065質量%以下とする。また、酸可溶性Alの含有量は0.02質量%以上であることが好ましく、0.025質量%以上であることが更に好ましい。また、酸可溶性Alの含有量は0.04質量%以下であることが好ましく、0.03質量%以下であることが更に好ましい。
 Bは、Nと結合してBNとしてMnS又はMnSeと複合析出し、インヒビターとして機能する。B含有量が0.0005質量%~0.0080質量%の範囲内にある場合に二次再結晶が安定する。このため、B含有量は0.0005質量%以上0.0080質量%以下とする。また、B含有量は0.001%以上であることが好ましく、0.0015%以上であることが更に好ましい。また、B含有量は0.0040%以下であることが好ましく、0.0030%以下であることが更に好ましい。
 Nは、B又はAlと結合してインヒビターとして機能する。N含有量が0.004質量%未満であると、十分な量のインヒビターを得ることができない。このため、N含有量は0.004質量%以上とし、0.006質量%以上であることが好ましく、0.007質量%以上であることが更に好ましい。一方、N含有量が0.012質量%を超えていると、冷間圧延時に鋼帯中にブリスターとよばれる空孔が生じる。このため、N含有量は0.012質量%以下とし、0.010質量%以下であることが好ましく、0.009質量%以下であることが更に好ましい。
 Mn、S及びSeは、BNが複合析出する核となるMnS及びMnSeを生成し、複合析出物がインヒビターとして機能する。Mn含有量が0.05質量%~1質量%の範囲内にある場合に二次再結晶が安定する。このため、Mn含有量は0.05質量%以上1質量%以下とする。また、Mn含有量は0.08質量%以上であることが好ましく、0.09質量%以上であることが更に好ましい。また、Mn含有量は0.50質量%以下であることが好ましく、0.2質量%以下であることが更に好ましい。
 また、S及びSeの含有量が総量で0.003質量%~0.015質量%の範囲内にある場合に二次再結晶が安定する。このため、S及びSeの含有量は総量で0.003質量%以上0.015質量%以下とする。また、熱間圧延における割れの発生を防止する観点から、下記式(5)が満たされることが好ましい。なお、S又はSeのいずれかのみが珪素鋼素材に含有されていてもよく、S及びSeの双方が含有されていてもよい。S及びSeの双方が含有されている場合、BNの析出をより安定的に促進し、磁気特性を安定的に向上させることができる。
 [Mn]/([S]+[Se])≧4 ・・・(5)
 Tiは、粗大なTiNを形成して、インヒビターとして機能するBN及び(Al,Si)Nの析出量に影響を及ぼす。Ti含有量が0.004質量%を超えていると、良好な磁気特性を得にくい。このため、Ti含有量は0.004質量%以下であることが好ましい。
 珪素鋼素材に、更に、Cr、Cu、Ni、P、Mo、Sn、Sb、及びBiからなる群から選択された一種以上が下記の範囲で含有されていてもよい。
 Crは、脱炭焼鈍時に形成される酸化層を改善し、仕上げ焼鈍時におけるこの酸化層と焼鈍分離剤の主成分であるMgOとの反応に伴うグラス被膜の形成に有効である。しかし、Cr含有量が0.3質量%を超えていると、脱炭が著しく阻害される。このため、Cr含有量は0.3質量%以下とする。
 Cuは、比抵抗を高めて鉄損を低減させる。しかし、Cu含有量が0.4質量%を超えるとこの効果が飽和する。また、熱間圧延時に「カッパーヘゲ」とよばれる表面疵が生じることもある。このため、Cu含有量は0.4質量%以下とした。
 Niは、比抵抗を高めて鉄損を低減させる。また、Niは、熱間圧延鋼帯の金属組織を制御して磁気特性を向上させる。しかし、Ni含有量が1質量%を超えていると、二次再結晶が不安定になる。このため、Ni含有量は1質量%以下とする。
 Pは、比抵抗を高めて鉄損を低減させる。しかし、P含有量が0.5質量%を超えていると、脆化に伴って冷間圧延時に破断が生じやすくなる。このため、P含有量は0.5質量%以下とする。
 Moは、熱間圧延時の表面性状を改善する。しかし、Mo含有量が0.1質量%を超えるとこの効果が飽和してしまう。このため、Mo含有量は0.1質量%以下とする。
 Sn及びSbは、粒界偏析元素である。本実施形態で用いられる珪素鋼素材はAlを含有しているため、仕上げ焼鈍の条件によっては焼鈍分離剤から放出される水分によりAlが酸化される場合がある。この場合、方向性電磁鋼板内の部位によってインヒビター強度にばらつきが生じ、磁気特性もばらつくことがある。しかし、粒界偏析元素が含有されている場合には、Alの酸化を抑制することができる。つまり、Sn及びSbは、Alの酸化を抑制して磁気特性のばらつきを抑制する。但し、Sn及びSbの含有量が総量で0.30質量%を超えていると、脱炭焼鈍時に酸化層が形成されにくくなり、仕上げ焼鈍時におけるこの酸化層と焼鈍分離剤の主成分であるMgOとの反応に伴うグラス被膜の形成が不十分となる。また、脱炭が著しく阻害される。このため、Sn及びSbの含有量は総量で0.3質量%以下とする。
 Biは、硫化物等の析出物を安定化してインヒビターとしての機能を強化する。しかし、Bi含有量が0.01質量%を超えていると、グラス被膜の形成に悪影響が及ぶ。このため、Bi含有量は0.01質量%以下とする。
 次に、本実施形態における各処理について説明する。
 上記の成分の珪素鋼素材(スラブ)は、例えば、転炉又は電気炉等により鋼を溶製し、必要に応じて溶鋼を真空脱ガス処理し、次いで、連続鋳造を行うことによって作製することができる。また、連続鋳造に代えて、造塊後分塊圧延を行っても作製することができる。珪素鋼スラブの厚さは、例えば150mm~350mmとし、220mm~280mmとすることが好ましい。また、厚さが30mm~70mmの所謂薄スラブを作製してもよい。薄スラブを作製した場合は、熱間圧延鋼帯を得る際の粗圧延を省略することができる。
 珪素鋼スラブの作製後には、スラブ加熱を行い、熱間圧延(ステップS1)を行う。そして、本実施形態では、BNをMnS及び/又はMnSeと複合析出させ、熱間圧延鋼帯におけるBN、MnS、及びMnSeの析出量が下記式(6)~(8)を満たすように、スラブ加熱及び熱間圧延の条件を設定することが好ましい。
 BasBN≧0.0005 ・・・(6)
 [B]-BasBN≦0.001 ・・・(7)
 SasMnS+0.5×SeasMnSe≧0.002 ・・・(8)
 ここで、「BasBN」はBNとして析出したBの量(質量%)を示し、「SasMnS」はMnSとして析出したSの量(質量%)を示し、「SeasMnSe」はMnSeとして析出したSeの量(質量%)を示している。
 Bについては、式(6)及び式(7)が満たされるように、その析出量及び固溶量を制御することが好ましい。インヒビターの量を確保するためには、一定量以上のBNを析出させておくことが好ましい。また、固溶しているBの量が多い場合、その後の工程で不安定な微細析出物を形成して一次再結晶組織に悪影響を及ぼすことがある。
 MnS及びMnSeは、BNが複合析出する核として機能する。従って、BNを十分に析出させて磁気特性を向上させるために、式(8)が満たされるように、その析出量を制御することが好ましい。
 式(7)に表わされる条件は、図3、図6、及び図9から導き出したものである。図3、図6、及び図9から、[B]-BasBNが0.001質量%以下の場合に、磁束密度B8が1.88T以上の良好な磁束密度が得られることがわかる。
 式(6)及び式(8)に表わされる条件は、図2、図5、及び図8から導き出したものである。図2からBasBNが0.0005質量%以上、かつSasMnSが0.002質量%以上の場合に、磁束密度B8が1.88T以上の良好な磁束密度が得られることがわかる。同様に、図5からBasBNが0.0005質量%以上、かつSeasMnSeが0.004質量%以上の場合に、磁束密度B8が1.88T以上の良好な磁束密度が得られることがわかる。同様に、図8からBasBNが0.0005質量%以上、かつSeasMnSe+0.5×SeasMnSeが0.002質量%以上の場合に、磁束密度B8が1.88T以上の良好な磁束密度が得られることがわかる。そして、SasMnSが0.002質量%以上であれば、必然的に、SeasMnSe+0.5×SeasMnSeは0.002質量%以上となり、SeasMnSeが0.004質量%以上であれば、必然的に、SeasMnSe+0.5×SeasMnSeは0.002質量%以上となる。従って、SeasMnSe+0.5×SeasMnSeが0.002質量%以上であることが好ましい。
 また、熱間圧延では、十分な量のBNを析出させるために、図11に示すように、その途中に、1000℃~800℃の温度域で300秒間以上保持することが必要である。保持温度が800℃未満であると、B及びNの拡散速度が小さく、BNの析出に要する時間が長くなる。一方、保持温度が1000℃を超えていると、BNが溶けやすくなり、BNの析出量が十分でなく、高い磁束密度が得られない。また、保持時間が300秒間未満であると、B及びNが拡散する距離が短く、BNの析出量が不十分となる。
 1000℃~800℃の温度域に保持する方法は特に限定するものではない。例えば、次の方法が有効である。先ず、粗圧延を行い、鋼帯をコイル状に巻き取る。次いで、コイルボックス等の設備で保持又は徐冷する。その後、鋼帯を巻き戻しながら、1000℃~800℃の温度域で仕上げ圧延する。
 MnS及び/又はMnSeを析出させる方法も特に限定するものではない。例えば、スラブ加熱の温度を以下の条件を満たすように設定することが好ましい。
 (i)珪素鋼スラブにS及びSeが含有されている場合
  式(1)で表される温度T1(℃)以下、式(2)で表される温度T2(℃)以下
 (ii)珪素鋼スラブにSeが含有されていない場合
  式(1)で表される温度T1(℃)以下
 (iii)珪素鋼スラブにSが含有されていない場合
  式(2)で表される温度T2(℃)以下
 T1=14855/(6.82-log([Mn]×[S]))-273 ・・・(1)
 T2=10733/(4.08-log([Mn]×[Se]))-273 ・・・(2)
 このような温度でスラブ加熱を行うと、スラブ加熱時にはMnS及びMnSeが完全には固溶せず、熱間圧延中にMnS及びMnSeの析出が促進されるからである。図4、図7、及び図10からわかるように、溶体化温度T1及びT2は、1.88T以上の磁束密度B8が得られるスラブ加熱温度の上限とほぼ一致している。
 また、スラブ加熱の温度を以下の条件も満たすように設定することが更に好ましい。スラブ加熱中に、好ましい量のMnS又はMnSeを析出させるためである。
 (i)珪素鋼スラブにSeが含有されていない場合
  下記式(9)で表される温度T3(℃)以下
 (ii)珪素鋼スラブにSが含有されていない場合
  下記式(10)で表される温度T4(℃)以下
 T3=14855/(6.82-log(([Mn]-0.0034)×([S]-0.002)))-273 ・・・(9)
 T4=10733/(4.08-log(([Mn]-0.0028)×([Se]-0.004)))-273 ・・・(10)
 スラブ加熱の温度が高すぎる場合、MnS及び/又はMnSeが完全に固溶することがある。この場合、熱間圧延時にMnS及び/又はMnSeを析出させることが困難になる。従って、スラブ加熱は、温度T1及び/又は温度T2以下で行うことが好ましい。更に、スラブ加熱の温度が温度T3又はT4以下であると、好ましい量のMnS又はMnSeがスラブ加熱中に析出するため、これらの周辺にBNを複合析出させて、容易に有効なインヒビターを形成することが可能となる。
 熱間圧延(ステップS1)後には、熱間圧延鋼帯の焼鈍を行う(ステップS2)。次いで、冷間圧延を行う(ステップS3)。上記のように、冷間圧延は1回のみ行ってもよく、複数回の冷間圧延を、間に中間焼鈍を行いながら行ってもよい。冷間圧延では、最終冷間圧延率を80%以上とすることが好ましい。これは、良好な一次再結晶集合組織を発達させるためである。
 その後、脱炭焼鈍を行う(ステップS4)。この結果、鋼帯に含まれるCが除去される。脱炭焼鈍は、例えば、湿潤雰囲気中で行う。また、例えば、770℃~950℃の温度域で一次再結晶により得られる結晶粒径が15μm以上となるような時間で行うことが好ましい。これは、良好な磁気特性を得るためである。続いて、焼鈍分離剤の塗布及び仕上げ焼鈍を行う(ステップS5)。この結果、二次再結晶により{110}<001>方位を向く結晶粒が優先的に成長する。
 また、脱炭焼鈍の開始から仕上げ焼鈍における二次再結晶の発現までの間に、窒化処理を行っておく(ステップS6)。これは、(Al,Si)Nのインヒビターを形成するためである。この窒化処理は、脱炭焼鈍(ステップS4)中に行ってもよく、仕上げ焼鈍(ステップS5)中に行ってもよい。脱炭焼鈍中に行う場合、例えばアンモニア等の窒化能のあるガスを含有する雰囲気中で焼鈍を行えばよい。また、連続焼鈍炉の加熱帯又は均熱帯のいずれで窒化処理を行ってもよく、また、均熱帯よりも後の段階で窒化処理を行ってもよい。仕上げ焼鈍中に窒化処理を行う場合、例えばMnN等の窒化能のある粉末を焼鈍分離剤中に添加すればよい。
 二次再結晶をより安定的に行わせるためには、窒化処理(ステップS6)における窒化の程度を調整して、窒化処理後の鋼帯中の(Al,Si)Nの組成を調整することが望ましい。例えば、Al含有量及びB含有量、並びに不可避的に存在するTiの含有量に応じて、下記式(3)が満たされるように、窒化の程度を制御することが好ましく、下記式(4)が満たされるように制御することが更に好ましい。式(3)及び式(4)は、Bをインヒビターとして有効なBNとして固定するために好ましいNの量、並びにAlをインヒビターとして有効なAlN又は(Al,Si)Nとして固定するために好ましいNの量を示している。
 [N]≧14/27[Al]+14/11[B]+14/47[Ti] ・・・(3)
 [N]≧2/3[Al]+14/11[B]+14/47[Ti] ・・・(4)
 ここで、[N]は前記窒化処理後の鋼帯のN含有量(質量%)を示し、[Al]は窒化処理後の鋼帯の酸可溶性Al含有量(質量%)を示し、[B]は窒化処理後の鋼帯のB含有量(質量%)を示し、[Ti]は窒化処理後の鋼帯のTi含有量(質量%)を示す。
 仕上げ焼鈍(ステップS5)の方法も特に限定するものではない。但し、本実施形態では、BNによりインヒビターが強化されているので、仕上げ焼鈍の加熱過程において、少なくとも1000℃~1100℃の温度域での加熱速度を15℃/h以下とすることが好ましい。また、加熱速度の制御に代えて、少なくとも1000℃~1100℃の温度域の所定の温度で10h以上恒温焼鈍を行うことも有効である。
 このような本実施形態によれば、安定して優れた磁気特性の方向性電磁鋼板を製造することができる。
 次に、本発明者らが行った実験について説明する。これらの実験における条件等は、本発明の実施可能性及び効果を確認するために採用した例であり、本発明は、これらの例に限定されるものではない。
 (第4の実験)
 第4の実験では、Seが含有されていない場合のB含有量の影響を確認した。
 第4の実験では、先ず、Si:3.3質量%、C:0.06質量%、酸可溶性Al:0.028質量%、N:0.008質量%、Mn:0.1質量%、S:0.006質量%、及び表1に示す量のB(0質量%~0.005質量%)を含有し、残部がFe及び不可避的不純物からなるスラブを作製した。次いで、スラブを1180℃で加熱し、熱間圧延を行った。熱間圧延では、1100℃で粗圧延を行った後、950℃に300秒間、保持する焼鈍を行い、その後に、900℃で仕上げ圧延を行った。このようにして厚さが2.3mmの熱間圧延鋼帯を得た。続いて、1100℃で熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、830℃の湿潤雰囲気ガス中で100秒間、脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.024質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、15℃/hの速度で1200℃まで加熱して仕上げ焼鈍を行った。そして、仕上げ焼鈍後の磁気特性(磁束密度B8)を測定した。磁気特性(磁束密度B8)は、JIS C2556に準じて測定した。この結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、スラブがBを含まない比較例No.1Aでは、磁束密度が低かったが、スラブが適当な量のBを含む実施例No.1B~No.1Eでは、良好な磁束密度が得られた。
 (第5の実験)
 第5の実験では、Seが含有されていない場合のMn含有量及びスラブ加熱温度の影響を確認した。
 第5の実験では、先ず、Si:3.3質量%、C:0.06質量%、酸可溶性Al:0.028質量%、N:0.007質量%、S:0.007質量%、B:0.0015質量%、及び表2に示す量のMn(0.05質量%~0.2質量%)を含有し、残部がFe及び不可避的不純物からなるスラブを作製した。次いで、スラブを1200℃で加熱し、熱間圧延を行った。熱間圧延では、一部の試料(実施例No.2A1~No.2A4)では、1100℃で粗圧延を行った後、1000℃に500秒間、保持する焼鈍を行い、その後に、仕上げ圧延を行った。このようにして厚さが2.3mmの熱間圧延鋼帯を得た。また、他の一部の試料(比較例No.2B1~No.2B4)では、1100℃で粗圧延を行った後、焼鈍を行うことなく1020℃で仕上げ圧延を行った。このようにして厚さが2.3mmの熱間圧延鋼帯を得た。続いて、1100℃で熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、830℃の湿潤雰囲気ガス中で100秒間、脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.022質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、15℃/hの速度で1200℃まで加熱して仕上げ焼鈍を行った。そして、第4の実験と同様にして、磁気特性(磁束密度B8)を測定した。この結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、熱間圧延の中間段階で所定温度に保持した実施例No.2A1~No.2A4では、良好な磁束密度が得られたが、このような保持を行わなかった比較例No.2B1~No.2B4では、磁束密度が低かった。
 (第6の実験)
 第6の実験では、Seが含有されていない場合の熱間圧延での保持温度及び保持時間の影響を確認した。
 第6の実験では、先ず、Si:3.3質量%、C:0.06質量%、酸可溶性Al:0.028質量%、N:0.006質量%、Mn:0.12質量%、S:0.006質量%、及びB:0.0015質量%を含有し、残部がFe及び不可避的不純物からなるスラブを作製した。次いで、スラブを1200℃で加熱した。その後、スラブを1050℃~700℃に100秒間~500秒間、保持する焼鈍を行い、その後に、仕上げ焼鈍を行った。このようにして厚さが2.3mmの熱間圧延鋼帯を得た。続いて、1100℃で熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、830℃の湿潤雰囲気ガス中で100秒間、脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.021質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、15℃/hの速度で1200℃まで加熱して仕上げ焼鈍を行った。そして、第4の実験と同様にして、磁気特性(磁束密度B8)を測定した。この結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、熱間圧延の中間段階で所定温度に所定時間保持した実施例No.3B~No.3Dでは、良好な磁束密度が得られた。しかし、保持する温度又は保持する時間が本発明範囲から外れる比較例No.3A及びNo.3E~No.3Gでは、磁束密度が低かった。
 (第7の実験)
 第7の実験では、Seが含有されていない場合の窒化処理後のN含有量の影響を確認した。
 第7の実験では、先ず、Si:3.3質量%、C:0.06質量%、酸可溶性Al:0.028質量%、N:0.006質量%、Mn:0.15質量%、S:0.006質量%、及びB:0.002質量%を含有し、不純物であるTiの含有量が0.0014質量%であり、残部がFe及び不可避的不純物からなるスラブを作製した。次いで、スラブを1200℃で加熱した。その後、スラブを950℃に300秒間、保持する焼鈍を行い、その後に、仕上げ圧延を行った。このようにして厚さが2.3mmの熱間圧延鋼帯を得た。続いて、1100℃で熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、830℃の湿潤雰囲気ガス中で100秒間、脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.012質量%~0.022質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、15℃/hの速度で1200℃まで加熱して仕上げ焼鈍を行った。そして、第4の実験と同様にして、磁気特性(磁束密度B8)を測定した。この結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、窒化処理後のN含有量が式(3)の関係及び式(4)の関係を満たす実施例No.4Cでは、特に良好な磁束密度が得られた。一方、式(3)の関係は満たすが式(4)の関係を満たさない実施例No.4Bでは、実施例No.4Cよりも磁束密度が若干低かった。また、式(3)の関係及び式(4)の関係を満たさない実施例No.4Aでは、実施例No.4Bよりも磁束密度が若干低かった。
 (第8の実験)
 第8の実験では、Seが含有されていない場合のスラブの成分の影響を確認した。
 第8の実験では、先ず、表5に示す成分を含有し、残部がFe及び不可避的不純物からなるスラブを作製した。次いで、スラブを1200℃で加熱した。その後、スラブを950℃に300秒間、保持する焼鈍を行い、その後に、仕上げ圧延を行った。このようにして厚さが2.3mmの熱間圧延鋼帯を得た。続いて、1100℃で熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、860℃のアンモニア含有湿潤雰囲気ガス中で100秒間、脱炭焼鈍を行ってN含有量が0.023質量%の脱炭焼鈍鋼帯を得た。次いで、MgOを主成分とする焼鈍分離剤を塗布し、15℃/hの速度で1200℃まで加熱して仕上げ焼鈍を行った。そして、第4の実験と同様にして、磁気特性(磁束密度B8)を測定した。この結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、適切な組成のスラブを用いた実施例No.5A~No.5Oでは、良好な磁束密度が得られたが、S含有量が本発明範囲の下限未満の比較例No.5Pでは、磁束密度が低かった。
 (第9の実験)
 第9の実験では、Sが含有されていない場合のB含有量の影響を確認した。
 第9の実験では、先ず、Si:3.2質量%、C:0.06質量%、酸可溶性Al:0.027質量%、N:0.008質量%、Mn:0.12質量%、Se:0.008質量%、及び表6に示す量のB(0質量%~0.0043質量%)を含有し、残部がFe及び不可避的不純物からなるスラブを作製した。次いで、スラブを1180℃で加熱し、熱間圧延を行った。熱間圧延では、1100℃で粗圧延を行った後、950℃に300秒間、保持する焼鈍を行い、その後に、900℃で仕上げ圧延を行った。このようにして厚さが2.3mmの熱間圧延鋼帯を得た。続いて、1100℃で熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、830℃の湿潤雰囲気ガス中で100秒間、脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.024質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、15℃/hの速度で1200℃まで加熱して仕上げ焼鈍を行った。そして、第4の実験と同様にして、磁気特性(磁束密度B8)を測定した。この結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、スラブがBを含まない比較例No.6Aでは、磁束密度が低かったが、スラブが適当な量のBを含む実施例No.6B~No.6Eでは、良好な磁束密度が得られた。
 (第10の実験)
 第10の実験では、Sが含有されていない場合のMn含有量及びスラブ加熱温度の影響を確認した。
 第10の実験では、先ず、Si:3.3質量%、C:0.06質量%、酸可溶性Al:0.026質量%、N:0.007質量%、Se:0.009質量%、B:0.0015質量%、及び表7に示す量のMn(0.1質量%~0.21質量%)を含有し、残部がFe及び不可避的不純物からなるスラブを作製した。次いで、スラブを1200℃で加熱し、熱間圧延を行った。熱間圧延では、一部の試料(実施例No.7A1~No.7A3)では、1100℃で粗圧延を行った後、1000℃に500秒間、保持する焼鈍を行い、その後に、仕上げ圧延を行った。このようにして厚さが2.3mmの熱間圧延鋼帯を得た。また、他の一部の試料(比較例No.7B1~No.7B3)では、1100℃で粗圧延を行った後、焼鈍を行うことなく1020℃で仕上げ圧延を行った。このようにして厚さが2.3mmの熱間圧延鋼帯を得た。続いて、1100℃で熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、830℃の湿潤雰囲気ガス中で100秒間、脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.022質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、15℃/hの速度で1200℃まで加熱して仕上げ焼鈍を行った。そして、第4の実験と同様にして、磁気特性(磁束密度B8)を測定した。この結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、熱間圧延の中間段階で所定温度に保持した実施例No.7A1~No.7A3では、良好な磁束密度が得られたが、このような保持を行わなかった比較例No.7B1~No.7B3では、磁束密度が低かった。
 (第11の実験)
 第11の実験では、Sが含有されていない場合の熱間圧延での保持温度及び保持時間の影響を確認した。
 第11の実験では、先ず、Si:3.2質量%、C:0.06質量%、酸可溶性Al:0.027質量%、N:0.006質量%、Mn:0.12質量%、Se:0.008質量%、及びB:0.0017質量%を含有し、残部がFe及び不可避的不純物からなるスラブを作製した。次いで、スラブを1200℃で加熱した。その後、スラブを1050℃~700℃に100秒間~500秒間、保持する焼鈍を行い、その後に、仕上げ焼鈍を行った。このようにして厚さが2.3mmの熱間圧延鋼帯を得た。続いて、1100℃で熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、830℃の湿潤雰囲気ガス中で100秒間、脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.021質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、15℃/hの速度で1200℃まで加熱して仕上げ焼鈍を行った。そして、第4の実験と同様にして、磁気特性(磁束密度B8)を測定した。この結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 表8に示すように、熱間圧延の中間段階で所定温度に所定時間保持した実施例No.8B~No.8Dでは、良好な磁束密度が得られた。しかし、保持する温度又は保持する時間が本発明範囲から外れる比較例No.8A及びNo.8E~No.8Gでは、磁束密度が低かった。
 (第12の実験)
 第12の実験では、Sが含有されていない場合の窒化処理後のN含有量の影響を確認した。
 第12の実験では、先ず、Si:3.3質量%、C:0.06質量%、酸可溶性Al:0.027質量%、N:0.008質量%、Mn:0.12質量%、Se:0.007質量%、及びB:0.0016質量%を含有し、不純物であるTiの含有量が0.0013質量%であり、残部がFe及び不可避的不純物からなるスラブを作製した。次いで、スラブを1180℃で加熱した。その後、スラブを950℃に300秒間、保持する焼鈍を行い、その後に、仕上げ圧延を行った。このようにして厚さが2.3mmの熱間圧延鋼帯を得た。続いて、1100℃で熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、830℃の湿潤雰囲気ガス中で100秒間、脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.015質量%~0.022質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、15℃/hの速度で1200℃まで加熱して仕上げ焼鈍を行った。そして、第4の実験と同様にして、磁気特性(磁束密度B8)を測定した。この結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 表9に示すように、窒化処理後のN含有量が式(3)の関係及び式(4)の関係を満たす実施例No.9Cでは、特に良好な磁束密度が得られた。一方、式(3)の関係は満たすが式(4)の関係を満たさない実施例No.9Bでは、実施例No.4Cよりも磁束密度が若干低かった。また、式(3)の関係及び式(4)の関係を満たさない実施例No.9Aでは、実施例No.9Bよりも磁束密度が若干低かった。
 (第13の実験)
 第13の実験では、Sが含有されていない場合のスラブの成分の影響を確認した。
 第13の実験では、先ず、表10に示す成分を含有し、残部がFe及び不可避的不純物からなるスラブを作製した。次いで、スラブを1200℃で加熱した。その後、スラブを950℃に300秒間、保持する焼鈍を行い、その後に、仕上げ圧延を行った。このようにして厚さが2.3mmの熱間圧延鋼帯を得た。続いて、1100℃で熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、860℃のアンモニア含有湿潤雰囲気ガス中で100秒間、脱炭焼鈍を行ってN含有量が0.023質量%の脱炭焼鈍鋼帯を得た。次いで、MgOを主成分とする焼鈍分離剤を塗布し、15℃/hの速度で1200℃まで加熱して仕上げ焼鈍を行った。そして、第4の実験と同様にして、磁気特性(磁束密度B8)を測定した。この結果を表10に示す。
Figure JPOXMLDOC01-appb-T000010
 表10に示すように、適切な組成のスラブを用いた実施例No.10A~No.10Oでは、良好な磁束密度が得られたが、Se含有量が本発明範囲の下限未満の比較例No.10Pでは、磁束密度が低かった。
 (第14の実験)
 第14の実験では、S及びSeが含有されている場合のB含有量の影響を確認した。
 第14の実験では、先ず、Si:3.2質量%、C:0.05質量%、酸可溶性Al:0.028質量%、N:0.008質量%、Mn:0.1質量%、S:0.006質量%、Se:0.006質量%、及び表11に示す量のB(0質量%~0.0045質量%)を含有し、残部がFe及び不可避的不純物からなるスラブを作製した。次いで、スラブを1180℃で加熱し、熱間圧延を行った。熱間圧延では、1100℃で粗圧延を行った後、950℃に300秒間、保持する焼鈍を行い、その後に、900℃で仕上げ圧延を行った。このようにして厚さが2.3mmの熱間圧延鋼帯を得た。続いて、1100℃で熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、830℃の湿潤雰囲気ガス中で100秒間、脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.024質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、15℃/hの速度で1200℃まで加熱して仕上げ焼鈍を行った。そして、第4の実験と同様にして、磁気特性(磁束密度B8)を測定した。この結果を表11に示す。
Figure JPOXMLDOC01-appb-T000011
 表11に示すように、スラブがBを含まない比較例No.11Aでは、磁束密度が低かったが、スラブが適当な量のBを含む実施例No.11B~No.11Eでは、良好な磁束密度が得られた。
 (第15の実験)
 第15の実験では、S及びSeが含有されている場合のMn含有量及びスラブ加熱温度の影響を確認した。
 第15の実験では、先ず、Si:3.3質量%、C:0.06質量%、酸可溶性Al:0.027質量%、N:0.006質量%、S:0.006質量%、Se:0.004質量%、B:0.0015質量%、及び表12に示す量のMn(0.05質量%~0.2質量%)を含有し、残部がFe及び不可避的不純物からなるスラブを作製した。次いで、スラブを1200℃で加熱し、熱間圧延を行った。熱間圧延では、一部の試料(実施例No.12A1~No.12A4)では、1100℃で粗圧延を行った後、1000℃に500秒間、保持する焼鈍を行い、その後に、仕上げ圧延を行った。このようにして厚さが2.3mmの熱間圧延鋼帯を得た。また、他の一部の試料(比較例No.12B1~No.12B4)では、1100℃で粗圧延を行った後、焼鈍を行うことなく1020℃で仕上げ圧延を行った。このようにして厚さが2.3mmの熱間圧延鋼帯を得た。続いて、1100℃で熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、830℃の湿潤雰囲気ガス中で100秒間、脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.022質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、15℃/hの速度で1200℃まで加熱して仕上げ焼鈍を行った。そして、第4の実験と同様にして、磁気特性(磁束密度B8)を測定した。この結果を表12に示す。
Figure JPOXMLDOC01-appb-T000012
 表12に示すように、熱間圧延の中間段階で所定温度に保持した実施例No.12A1~No.12A4では、良好な磁束密度が得られたが、このような保持を行わなかった比較例No.12B1~No.12B4では、磁束密度が低かった。
 (第16の実験)
 第16の実験では、S及びSeが含有されている場合の熱間圧延での保持温度及び保持時間の影響を確認した。
 第16の実験では、先ず、Si:3.1質量%、C:0.06質量%、酸可溶性Al:0.026質量%、N:0.006質量%、Mn:0.12質量%、S:0.006質量%、Se:0.007質量%、B:0.0015質量%を含有するスラブを作製した。次いで、スラブを1200℃で加熱した。その後、スラブを1050℃~700℃に100秒間~500秒間、保持する焼鈍を行い、その後に、仕上げ焼鈍を行った。このようにして厚さが2.3mmの熱間圧延鋼帯を得た。続いて、1100℃で熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、830℃の湿潤雰囲気ガス中で100秒間、脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.021質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、15℃/hの速度で1200℃まで加熱して仕上げ焼鈍を行った。そして、第4の実験と同様にして、磁気特性(磁束密度B8)を測定した。この結果を表13に示す。
Figure JPOXMLDOC01-appb-T000013
 表13に示すように、熱間圧延の中間段階で所定温度に所定時間保持した実施例No.13B~No.13Dでは、良好な磁束密度が得られた。しかし、保持する温度又は保持する時間が本発明範囲から外れる比較例No.13A及びNo.13E~No.13Gでは、磁束密度が低かった。
 (第17の実験)
 第17の実験では、S及びSeが含有されている場合の窒化処理後のN含有量の影響を確認した。
 第17の実験では、先ず、Si:3.3質量%、C:0.06質量%、酸可溶性Al:0.028質量%、N:0.006質量%、Mn:0.15質量%、S:0.005質量%、Se:0.007質量%、及びB:0.002質量%を含有し、不純物であるTiの含有量が0.0014質量%であり、残部がFe及び不可避的不純物からなるスラブを作製した。次いで、スラブを1200℃で加熱した。その後、スラブを950℃に300秒間、保持する焼鈍を行い、その後に、仕上げ圧延を行った。このようにして厚さが2.3mmの熱間圧延鋼帯を得た。続いて、1100℃で熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、830℃の湿潤雰囲気ガス中で100秒間、脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。続いて、脱炭焼鈍鋼帯をアンモニア含有雰囲気中で焼鈍して鋼帯中の窒素を0.014質量%~0.022質量%まで増加させた。次いで、MgOを主成分とする焼鈍分離剤を塗布し、15℃/hの速度で1200℃まで加熱して仕上げ焼鈍を行った。そして、第4の実験と同様にして、磁気特性(磁束密度B8)を測定した。この結果を表14に示す。
Figure JPOXMLDOC01-appb-T000014
 表14に示すように、窒化処理後のN含有量が式(3)の関係及び式(4)の関係を満たす実施例No.14Cでは、特に良好な磁束密度が得られた。一方、式(3)の関係は満たすが式(4)の関係を満たさない実施例No.14Bでは、実施例No.14Cよりも磁束密度が若干低かった。また、式(3)の関係及び式(4)の関係を満たさない実施例No.14Aでは、実施例No.14Bよりも磁束密度が若干低かった。
 (第18の実験)
 第18の実験では、S及びSeが含有されている場合のスラブの成分の影響を確認した。
 第18の実験では、先ず、表15に示す成分を含有し、残部がFe及び不可避的不純物からなるスラブを作製した。次いで、スラブを1200℃で加熱した。その後、スラブを950℃に300秒間、保持する焼鈍を行い、その後に、仕上げ圧延を行った。このようにして厚さが2.3mmの熱間圧延鋼帯を得た。続いて、1100℃で熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。その後、860℃のアンモニア含有湿潤雰囲気ガス中で100秒間、脱炭焼鈍を行ってN含有量が0.023質量%の脱炭焼鈍鋼帯を得た。次いで、MgOを主成分とする焼鈍分離剤を塗布し、15℃/hの速度で1200℃まで加熱して仕上げ焼鈍を行った。そして、第4の実験と同様にして、磁気特性(磁束密度B8)を測定した。この結果を表15に示す。
Figure JPOXMLDOC01-appb-T000015
 表15に示すように、適切な組成のスラブを用いた実施例No.15A~No.15E、及びNo.15G~No.15Oでは、良好な磁束密度が得られたが、Ni含有量が本発明範囲の上限よりも高い比較例No.15F、並びにS含有量及びSe含有量が本発明範囲の下限未満の比較例No.15Pでは、磁束密度が低かった。
 (第19の実験)
 第19の実験では、S及びSeが含有されている場合の窒化処理の影響を確認した。
 第19の実験では、先ず、Si:3.2質量%、C:0.06質量%、酸可溶性Al:0.027質量%、N:0.007質量%、Mn:0.14質量%、S:0.006質量%、Se:0.005質量%、及びB:0.0015%を含有し、残部がFe及び不可避的不純物からなるスラブを作製した。次いで、スラブを1200℃で加熱し、熱間圧延を行った。熱間圧延では、粗圧延を行った後、950℃に300秒間、保持する焼鈍を行い、その後に、仕上げ圧延を行った。このようにして厚さが2.3mmの熱間圧延鋼帯を得た。続いて、1100℃で熱間圧延鋼帯の焼鈍を行った。次いで、冷間圧延を行って厚さが0.22mmの冷間圧延鋼帯を得た。
 その後、比較例No.16Aの試料については、830℃の湿潤雰囲気ガス中で100秒間、脱炭焼鈍を行って脱炭焼鈍鋼帯を得た。また、実施例No.16Bの試料については、830℃の湿潤雰囲気ガス中で100秒間、脱炭焼鈍を行い、更に、アンモニア含有雰囲気中で焼鈍してN含有量が0.022質量%の脱炭焼鈍鋼帯を得た。また、実施例No.16Cの試料については、860℃の湿潤雰囲気ガス中で100秒間、脱炭焼鈍を行ってN含有量が0.022質量%の脱炭焼鈍鋼帯を得た。このようにして、3種類の脱炭焼鈍鋼帯を得た。
 次いで、MgOを主成分とする焼鈍分離剤を塗布し、15℃/hの速度で1200℃まで加熱して仕上げ焼鈍を行った。そして、第4の実験と同様にして、磁気特性(磁束密度B8)を測定した。この結果を表16に示す。
Figure JPOXMLDOC01-appb-T000016
 表16に示すように、脱炭焼鈍後に窒化処理を行った実施例No.16B、及び脱炭焼鈍中に窒化処理を行った実施例No.16Cでは、良好な磁束密度が得られた。しかし、窒化処理を行わなかった比較例No.16Aでは、磁束密度が低かった。なお、表16中の比較例No.16Aの「窒化処理」の欄の数値は、脱炭焼鈍鋼帯の組成から得られた値である。
 本発明は、例えば、電磁鋼板製造産業及び電磁鋼板利用産業において利用することができる。

Claims (16)

  1.  Si:0.8質量%~7質量%、酸可溶性Al:0.01質量%~0.065質量%、N:0.004質量%~0.012質量%、Mn:0.05質量%~1質量%、及びB:0.0005質量%~0.0080質量%を含有し、S及びSeからなる群から選択された少なくとも1種を総量で0.003質量%~0.015質量%含有し、C含有量が0.085質量%以下であり、残部がFe及び不可避的不純物からなる珪素鋼素材の熱間圧延を行って熱間圧延鋼帯を得る工程と、
     前記熱間圧延鋼帯の焼鈍を行って、焼鈍鋼帯を得る工程と、
     前記焼鈍鋼帯を1回以上、冷間圧延して冷間圧延鋼帯を得る工程と、
     前記冷間圧延鋼帯の脱炭焼鈍を行って、一次再結晶が生じた脱炭焼鈍鋼帯を得る工程と、
     MgOを主成分とする焼鈍分離剤を前記脱炭焼鈍鋼帯に塗布する工程と、
     前記脱炭焼鈍鋼帯の仕上げ焼鈍により、二次再結晶を生じさせる工程と、
     を有し、
     更に、前記脱炭焼鈍の開始から仕上げ焼鈍における二次再結晶の発現までの間に、前記脱炭焼鈍鋼帯のN含有量を増加させる窒化処理を行う工程を有し、
     前記熱間圧延を行う工程は、
     前記珪素鋼素材を1000℃~800℃の温度域に300秒間以上保持する工程と、
     その後に、仕上げ圧延を行う工程と、
     を有することを特徴とする方向性電磁鋼板の製造方法。
  2.  前記珪素鋼素材にSeが含有されていない場合、前記熱間圧延を行う工程の前に、下記式(1)で表される温度T1(℃)以下の温度まで前記珪素鋼素材を加熱する工程を有することを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。
     T1=14855/(6.82-log([Mn]×[S]))-273 ・・・(1)
     ここで、[Mn]は前記珪素鋼素材のMn含有量(質量%)を示し、[S]は前記珪素鋼素材のS含有量(質量%)を示す。
  3.  前記珪素鋼素材にSが含有されていない場合、前記熱間圧延を行う工程の前に、下記式(2)で表される温度T2(℃)以下の温度まで前記珪素鋼素材を加熱する工程を有することを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。
     T2=10733/(4.08-log([Mn]×[Se]))-273 ・・・(2)
     ここで、[Mn]は前記珪素鋼素材のMn含有量(質量%)を示し、[Se]は前記珪素鋼素材のSe含有量(質量%)を示す。
  4.  前記珪素鋼素材にS及びSeが含有されている場合、前記熱間圧延を行う工程の前に、下記式(1)で表される温度T1(℃)以下、かつ下記式(2)で表される温度T2(℃)以下の温度まで前記珪素鋼素材を加熱する工程を有することを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。
     T1=14855/(6.82-log([Mn]×[S]))-273 ・・・(1)
     T2=10733/(4.08-log([Mn]×[Se]))-273 ・・・(2)
     ここで、[Mn]は前記珪素鋼素材のMn含有量(質量%)を示し、[S]は前記珪素鋼素材のS含有量(質量%)を示し、[Se]は前記珪素鋼素材のSe含有量(質量%)を示す。
  5.  前記窒化処理を、前記窒化処理後の鋼帯のN含有量[N]が、下記式(3)を満たす条件下で行うことを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。
     [N]≧14/27[Al]+14/11[B]+14/47[Ti] ・・・(3)
     ここで、[N]は前記窒化処理後の鋼帯のN含有量(質量%)を示し、[Al]は前記窒化処理後の鋼帯の酸可溶性Al含有量(質量%)を示し、[B]は前記窒化処理後の鋼帯のB含有量(質量%)を示し、[Ti]は前記窒化処理後の鋼帯のTi含有量(質量%)を示す。
  6.  前記窒化処理を、前記窒化処理後の鋼帯のN含有量[N]が、下記式(3)を満たす条件下で行うことを特徴とする請求項2に記載の方向性電磁鋼板の製造方法。
     [N]≧14/27[Al]+14/11[B]+14/47[Ti] ・・・(3)
     ここで、[N]は前記窒化処理後の鋼帯のN含有量(質量%)を示し、[Al]は前記窒化処理後の鋼帯の酸可溶性Al含有量(質量%)を示し、[B]は前記窒化処理後の鋼帯のB含有量(質量%)を示し、[Ti]は前記窒化処理後の鋼帯のTi含有量(質量%)を示す。
  7.  前記窒化処理を、前記窒化処理後の鋼帯のN含有量[N]が、下記式(3)を満たす条件下で行うことを特徴とする請求項3に記載の方向性電磁鋼板の製造方法。
     [N]≧14/27[Al]+14/11[B]+14/47[Ti] ・・・(3)
     ここで、[N]は前記窒化処理後の鋼帯のN含有量(質量%)を示し、[Al]は前記窒化処理後の鋼帯の酸可溶性Al含有量(質量%)を示し、[B]は前記窒化処理後の鋼帯のB含有量(質量%)を示し、[Ti]は前記窒化処理後の鋼帯のTi含有量(質量%)を示す。
  8.  前記窒化処理を、前記窒化処理後の鋼帯のN含有量[N]が、下記式(3)を満たす条件下で行うことを特徴とする請求項4に記載の方向性電磁鋼板の製造方法。
     [N]≧14/27[Al]+14/11[B]+14/47[Ti] ・・・(3)
     ここで、[N]は前記窒化処理後の鋼帯のN含有量(質量%)を示し、[Al]は前記窒化処理後の鋼帯の酸可溶性Al含有量(質量%)を示し、[B]は前記窒化処理後の鋼帯のB含有量(質量%)を示し、[Ti]は前記窒化処理後の鋼帯のTi含有量(質量%)を示す。
  9.  前記窒化処理を、前記窒化処理後の鋼帯のN含有量[N]が、下記式(4)を満たす条件下で行うことを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。
     [N]≧2/3[Al]+14/11[B]+14/47[Ti] ・・・(4)
     ここで、[N]は前記窒化処理後の鋼帯のN含有量(質量%)を示し、[Al]は前記窒化処理後の鋼帯の酸可溶性Al含有量(質量%)を示し、[B]は前記窒化処理後の鋼帯のB含有量(質量%)を示し、[Ti]は前記窒化処理後の鋼帯のTi含有量(質量%)を示す。
  10.  前記窒化処理を、前記窒化処理後の鋼帯のN含有量[N]が、下記式(4)を満たす条件下で行うことを特徴とする請求項2に記載の方向性電磁鋼板の製造方法。
     [N]≧2/3[Al]+14/11[B]+14/47[Ti] ・・・(4)
     ここで、[N]は前記窒化処理後の鋼帯のN含有量(質量%)を示し、[Al]は前記窒化処理後の鋼帯の酸可溶性Al含有量(質量%)を示し、[B]は前記窒化処理後の鋼帯のB含有量(質量%)を示し、[Ti]は前記窒化処理後の鋼帯のTi含有量(質量%)を示す。
  11.  前記窒化処理を、前記窒化処理後の鋼帯のN含有量[N]が、下記式(4)を満たす条件下で行うことを特徴とする請求項3に記載の方向性電磁鋼板の製造方法。
     [N]≧2/3[Al]+14/11[B]+14/47[Ti] ・・・(4)
     ここで、[N]は前記窒化処理後の鋼帯のN含有量(質量%)を示し、[Al]は前記窒化処理後の鋼帯の酸可溶性Al含有量(質量%)を示し、[B]は前記窒化処理後の鋼帯のB含有量(質量%)を示し、[Ti]は前記窒化処理後の鋼帯のTi含有量(質量%)を示す。
  12.  前記窒化処理を、前記窒化処理後の鋼帯のN含有量[N]が、下記式(4)を満たす条件下で行うことを特徴とする請求項4に記載の方向性電磁鋼板の製造方法。
     [N]≧2/3[Al]+14/11[B]+14/47[Ti] ・・・(4)
     ここで、[N]は前記窒化処理後の鋼帯のN含有量(質量%)を示し、[Al]は前記窒化処理後の鋼帯の酸可溶性Al含有量(質量%)を示し、[B]は前記窒化処理後の鋼帯のB含有量(質量%)を示し、[Ti]は前記窒化処理後の鋼帯のTi含有量(質量%)を示す。
  13.  前記珪素鋼素材が、更に、Cr:0.3質量%以下、Cu:0.4質量%以下、Ni:1質量%以下、P:0.5質量%以下、Mo:0.1質量%以下、Sn:0.3質量%以下、Sb:0.3質量%以下、及びBi:0.01質量%以下からなる群から選択された少なくとも1種を含有することを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。
  14.  前記珪素鋼素材が、更に、Cr:0.3質量%以下、Cu:0.4質量%以下、Ni:1質量%以下、P:0.5質量%以下、Mo:0.1質量%以下、Sn:0.3質量%以下、Sb:0.3質量%以下、及びBi:0.01質量%以下からなる群から選択された少なくとも1種を含有することを特徴とする請求項2に記載の方向性電磁鋼板の製造方法。
  15.  前記珪素鋼素材が、更に、Cr:0.3質量%以下、Cu:0.4質量%以下、Ni:1質量%以下、P:0.5質量%以下、Mo:0.1質量%以下、Sn:0.3質量%以下、Sb:0.3質量%以下、及びBi:0.01質量%以下からなる群から選択された少なくとも1種を含有することを特徴とする請求項3に記載の方向性電磁鋼板の製造方法。
  16.  前記珪素鋼素材が、更に、Cr:0.3質量%以下、Cu:0.4質量%以下、Ni:1質量%以下、P:0.5質量%以下、Mo:0.1質量%以下、Sn:0.3質量%以下、Sb:0.3質量%以下、及びBi:0.01質量%以下からなる群から選択された少なくとも1種を含有することを特徴とする請求項4に記載の方向性電磁鋼板の製造方法。
PCT/JP2010/061938 2009-07-17 2010-07-15 方向性電磁鋼板の製造方法 WO2011007817A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2010541361A JP4709950B2 (ja) 2009-07-17 2010-07-15 方向性電磁鋼板の製造方法
RU2012105470/02A RU2508411C2 (ru) 2009-07-17 2010-07-15 Способ производства текстурированной магнитной листовой стали
EP10799875.9A EP2455498B1 (en) 2009-07-17 2010-07-15 Manufacturing method of grain-oriented magnetic steel sheet
BR112012001161-8A BR112012001161B1 (pt) 2009-07-17 2010-07-15 Método de produção de uma chapa de aço elétrico com grão orientado
CN201080032211.3A CN102471819B (zh) 2009-07-17 2010-07-15 方向性电磁钢板的制造方法
IN1442DEN2012 IN2012DN01442A (ja) 2009-07-17 2010-07-15
KR1020127003837A KR101351712B1 (ko) 2009-07-17 2010-07-15 방향성 전자기 강판의 제조 방법
PL10799875T PL2455498T3 (pl) 2009-07-17 2010-07-15 Sposób wytwarzania blachy cienkiej ze stali magnetycznej o ziarnach zorientowanych
US13/261,144 US8409368B2 (en) 2009-07-17 2010-07-15 Manufacturing method of grain-oriented magnetic steel sheet

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009169011 2009-07-17
JP2009-168974 2009-07-17
JP2009168974 2009-07-17
JP2009-169011 2009-07-17
JP2010014724 2010-01-26
JP2010-014724 2010-01-26

Publications (1)

Publication Number Publication Date
WO2011007817A1 true WO2011007817A1 (ja) 2011-01-20

Family

ID=43449426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061938 WO2011007817A1 (ja) 2009-07-17 2010-07-15 方向性電磁鋼板の製造方法

Country Status (10)

Country Link
US (1) US8409368B2 (ja)
EP (1) EP2455498B1 (ja)
JP (1) JP4709950B2 (ja)
KR (1) KR101351712B1 (ja)
CN (1) CN102471819B (ja)
BR (1) BR112012001161B1 (ja)
IN (1) IN2012DN01442A (ja)
PL (1) PL2455498T3 (ja)
RU (1) RU2508411C2 (ja)
WO (1) WO2011007817A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015529285A (ja) * 2012-08-30 2015-10-05 バオシャン アイアン アンド スティール カンパニー リミテッド 高磁束密度方向性珪素鋼及びその製造方法
WO2019146694A1 (ja) 2018-01-25 2019-08-01 日本製鉄株式会社 方向性電磁鋼板
WO2019146697A1 (ja) 2018-01-25 2019-08-01 日本製鉄株式会社 方向性電磁鋼板
JP2021138984A (ja) * 2020-03-03 2021-09-16 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101351149B1 (ko) * 2009-07-13 2014-01-14 신닛테츠스미킨 카부시키카이샤 방향성 전자기 강판의 제조 방법
JP4709950B2 (ja) 2009-07-17 2011-06-29 新日本製鐵株式会社 方向性電磁鋼板の製造方法
RU2562182C2 (ru) 2011-01-12 2015-09-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Лист из электротехнической стали с ориентированной зеренной структурой и способ его получения
JP5692479B2 (ja) * 2012-12-28 2015-04-01 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP6572864B2 (ja) * 2016-10-18 2019-09-11 Jfeスチール株式会社 電磁鋼板製造用の熱延鋼板およびその製造方法
KR101947026B1 (ko) * 2016-12-22 2019-02-12 주식회사 포스코 방향성 전기강판 및 이의 제조방법
CN108754338B (zh) * 2018-05-11 2020-08-28 敬业钢铁有限公司 一种高磁感低铁损取向硅钢的生产工艺
RU2701606C1 (ru) * 2019-04-29 2019-09-30 Общество с ограниченной ответственностью "ВИЗ-Сталь" Способ производства анизотропной электротехнической стали с высокой проницаемостью

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10140243A (ja) * 1996-11-13 1998-05-26 Kawasaki Steel Corp 極めて鉄損の低い高磁束密度方向性電磁鋼板の製造方法
JP2002348611A (ja) * 2001-05-22 2002-12-04 Nippon Steel Corp 磁気特性の優れた一方向性電磁鋼板の製造方法

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113469B2 (ja) 1972-10-13 1976-04-28
US3905843A (en) 1974-01-02 1975-09-16 Gen Electric Method of producing silicon-iron sheet material with boron addition and product
US3905842A (en) 1974-01-07 1975-09-16 Gen Electric Method of producing silicon-iron sheet material with boron addition and product
AT329358B (de) 1974-06-04 1976-05-10 Voest Ag Schwingmuhle zum zerkleinern von mahlgut
JPS57207114A (en) 1981-06-16 1982-12-18 Nippon Steel Corp Manufacture of anisotropic electric steel plate
US4473416A (en) * 1982-07-08 1984-09-25 Nippon Steel Corporation Process for producing aluminum-bearing grain-oriented silicon steel strip
JPS6240315A (ja) 1985-08-15 1987-02-21 Nippon Steel Corp 磁束密度の高い一方向性珪素鋼板の製造方法
JPS6245285A (ja) 1985-08-23 1987-02-27 Hitachi Ltd 映像信号処理回路
DE3882502T2 (de) 1987-11-20 1993-11-11 Nippon Steel Corp Verfahren zur Herstellung von kornorientierten Elektrostahlblechen mit hoher Flussdichte.
JPH0686631B2 (ja) 1988-05-11 1994-11-02 新日本製鐵株式会社 磁束密度の高い一方向性電磁鋼板の製造方法
JPH0686630B2 (ja) 1987-11-20 1994-11-02 新日本製鐵株式会社 磁束密度の高い一方向性珪素鋼板の製造方法
JPH07116507B2 (ja) * 1989-02-23 1995-12-13 日本鋼管株式会社 無方向性電磁鋼板の製造方法
JPH0689404B2 (ja) 1989-03-30 1994-11-09 新日本製鐵株式会社 磁束密度の高い一方向性電磁鋼板の製造方法
US5186762A (en) 1989-03-30 1993-02-16 Nippon Steel Corporation Process for producing grain-oriented electrical steel sheet having high magnetic flux density
JP2782086B2 (ja) 1989-05-29 1998-07-30 新日本製鐵株式会社 磁気特性、皮膜特性ともに優れた一方向性電磁鋼板の製造方法
RU2041268C1 (ru) * 1991-10-25 1995-08-09 Армко Инк. Способ получения высококремнистой электротехнической стали
KR960006448B1 (ko) * 1992-08-05 1996-05-16 가와사끼 세이데쓰 가부시끼가이샤 저철손 방향성 전자강판의 제조방법
JP3240035B2 (ja) * 1994-07-22 2001-12-17 川崎製鉄株式会社 コイル全長にわたり磁気特性に優れた方向性けい素鋼板の製造方法
JP3333794B2 (ja) * 1994-09-29 2002-10-15 川崎製鉄株式会社 無方向性電磁鋼板の製造方法
RU2096516C1 (ru) * 1996-01-10 1997-11-20 Акционерное общество "Новолипецкий металлургический комбинат" Сталь кремнистая электротехническая и способ ее обработки
JP3644130B2 (ja) * 1996-05-24 2005-04-27 Jfeスチール株式会社 方向性電磁鋼板の製造方法
US5885371A (en) 1996-10-11 1999-03-23 Kawasaki Steel Corporation Method of producing grain-oriented magnetic steel sheet
CN1153227C (zh) * 1996-10-21 2004-06-09 杰富意钢铁株式会社 晶粒取向电磁钢板及其生产方法
CN1088760C (zh) * 1997-06-27 2002-08-07 浦项综合制铁株式会社 基于低温板坯加热法生产具有高磁感应强度的晶粒择优取向电工钢板的方法
JPH1150153A (ja) 1997-08-01 1999-02-23 Nippon Steel Corp 磁束密度が極めて高い方向性電磁鋼板の製造方法
KR19990088437A (ko) 1998-05-21 1999-12-27 에모또 간지 철손이매우낮은고자속밀도방향성전자강판및그제조방법
JP3357603B2 (ja) 1998-05-21 2002-12-16 川崎製鉄株式会社 極めて鉄損の低い高磁束密度方向性電磁鋼板の製造方法
JP4653266B2 (ja) 1998-10-22 2011-03-16 新日本製鐵株式会社 一方向性電磁鋼板の製造方法
JP2000282142A (ja) 1999-03-29 2000-10-10 Nippon Steel Corp 一方向性電磁鋼板の製造方法
KR100359622B1 (ko) * 1999-05-31 2002-11-07 신닛뽄세이테쯔 카부시키카이샤 고자장 철손 특성이 우수한 고자속밀도 일방향성 전자 강판 및 그의 제조방법
JP3488181B2 (ja) 1999-09-09 2004-01-19 新日本製鐵株式会社 磁気特性に優れた一方向性電磁鋼板の製造方法
EP1162280B1 (en) * 2000-06-05 2013-08-07 Nippon Steel & Sumitomo Metal Corporation Method for producing a grain-oriented electrical steel sheet excellent in magnetic properties
JP5320690B2 (ja) * 2006-05-24 2013-10-23 新日鐵住金株式会社 磁束密度の高い方向性電磁鋼板の製造方法
CN101432450B (zh) * 2006-05-24 2011-05-25 新日本制铁株式会社 高磁通密度的方向性电磁钢板的制造方法
JP5113469B2 (ja) 2006-09-29 2013-01-09 日本タングステン株式会社 炭化物粉末被覆酸化物粉末の製造方法
CN100529142C (zh) * 2007-03-29 2009-08-19 攀枝花钢铁(集团)公司 汽车梁用热轧钢板及其生产方法
CN101358273B (zh) * 2008-09-05 2010-12-01 首钢总公司 一种低温取向电工钢的生产方法
KR101351149B1 (ko) * 2009-07-13 2014-01-14 신닛테츠스미킨 카부시키카이샤 방향성 전자기 강판의 제조 방법
JP4709950B2 (ja) 2009-07-17 2011-06-29 新日本製鐵株式会社 方向性電磁鋼板の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10140243A (ja) * 1996-11-13 1998-05-26 Kawasaki Steel Corp 極めて鉄損の低い高磁束密度方向性電磁鋼板の製造方法
JP2002348611A (ja) * 2001-05-22 2002-12-04 Nippon Steel Corp 磁気特性の優れた一方向性電磁鋼板の製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015529285A (ja) * 2012-08-30 2015-10-05 バオシャン アイアン アンド スティール カンパニー リミテッド 高磁束密度方向性珪素鋼及びその製造方法
WO2019146694A1 (ja) 2018-01-25 2019-08-01 日本製鉄株式会社 方向性電磁鋼板
WO2019146697A1 (ja) 2018-01-25 2019-08-01 日本製鉄株式会社 方向性電磁鋼板
KR20200097346A (ko) 2018-01-25 2020-08-18 닛폰세이테츠 가부시키가이샤 방향성 전자 강판
JPWO2019146694A1 (ja) * 2018-01-25 2021-01-28 日本製鉄株式会社 方向性電磁鋼板
JPWO2019146697A1 (ja) * 2018-01-25 2021-01-28 日本製鉄株式会社 方向性電磁鋼板
JP7010305B2 (ja) 2018-01-25 2022-02-10 日本製鉄株式会社 方向性電磁鋼板
JP7010306B2 (ja) 2018-01-25 2022-02-10 日本製鉄株式会社 方向性電磁鋼板
US11466338B2 (en) 2018-01-25 2022-10-11 Nippon Steel Corporation Grain oriented electrical steel sheet
US11469017B2 (en) 2018-01-25 2022-10-11 Nippon Steel Corporation Grain oriented electrical steel sheet
JP2021138984A (ja) * 2020-03-03 2021-09-16 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP7338511B2 (ja) 2020-03-03 2023-09-05 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Also Published As

Publication number Publication date
JP4709950B2 (ja) 2011-06-29
EP2455498B1 (en) 2019-03-27
US8409368B2 (en) 2013-04-02
IN2012DN01442A (ja) 2015-06-05
RU2012105470A (ru) 2013-08-27
BR112012001161A2 (pt) 2016-03-01
CN102471819A (zh) 2012-05-23
BR112012001161B1 (pt) 2021-11-16
US20120111455A1 (en) 2012-05-10
EP2455498A1 (en) 2012-05-23
PL2455498T3 (pl) 2019-09-30
KR20120042980A (ko) 2012-05-03
EP2455498A4 (en) 2017-07-12
RU2508411C2 (ru) 2014-02-27
CN102471819B (zh) 2014-06-04
KR101351712B1 (ko) 2014-01-14
JPWO2011007817A1 (ja) 2012-12-27

Similar Documents

Publication Publication Date Title
JP4709950B2 (ja) 方向性電磁鋼板の製造方法
JP4709949B2 (ja) 方向性電磁鋼板の製造方法
JP6844125B2 (ja) 方向性電磁鋼板の製造方法
US8778095B2 (en) Method of manufacturing grain-oriented electrical steel sheet
WO2014013615A1 (ja) 方向性電磁鋼板の製造方法
JP4598702B2 (ja) 磁気特性が優れた高Si含有方向性電磁鋼板の製造方法
WO2012096350A1 (ja) 方向性電磁鋼板及びその製造方法
WO2011115120A1 (ja) 方向性電磁鋼板の製造方法
JP4943560B2 (ja) 方向性電磁鋼板の製造方法
JP5782527B2 (ja) 低鉄損高磁束密度方向性電気鋼板及びその製造方法
JP7507157B2 (ja) 方向性電磁鋼板およびその製造方法
WO2016199423A1 (ja) 方向性電磁鋼板およびその製造方法
WO2011102456A1 (ja) 方向性電磁鋼板の製造方法
JP4673937B2 (ja) 方向性電磁鋼板用鋼の処理方法及び方向性電磁鋼板の製造方法
CN115066508A (zh) 方向性电磁钢板的制造方法
JP2012144777A (ja) 電磁鋼板素材及び方向性電磁鋼板の製造方法
KR101263842B1 (ko) 저철손 고자속밀도 방향성 전기강판의 제조방법
KR101263841B1 (ko) 저철손 고자속밀도 방향성 전기강판의 제조방법
US20230212720A1 (en) Method for the production of high permeability grain oriented electrical steel containing chromium
JP6228956B2 (ja) 低鉄損高磁束密度方向性電気鋼板及びその製造方法
KR101263796B1 (ko) 저철손 고자속밀도 방향성 전기강판 및 이의 제조방법
KR20120074023A (ko) 저철손 고자속밀도 방향성 전기강판 및 이의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080032211.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010541361

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799875

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010799875

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13261144

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127003837

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1442/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012105470

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012001161

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012001161

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120117