WO2010143288A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2010143288A1
WO2010143288A1 PCT/JP2009/060685 JP2009060685W WO2010143288A1 WO 2010143288 A1 WO2010143288 A1 WO 2010143288A1 JP 2009060685 W JP2009060685 W JP 2009060685W WO 2010143288 A1 WO2010143288 A1 WO 2010143288A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
layer
boundary
conductivity type
diffusion
Prior art date
Application number
PCT/JP2009/060685
Other languages
English (en)
French (fr)
Inventor
明高 添野
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/060685 priority Critical patent/WO2010143288A1/ja
Priority to CN200980159805.8A priority patent/CN102804359B/zh
Priority to EP09845813.6A priority patent/EP2442355B1/en
Priority to JP2010547887A priority patent/JP4915481B2/ja
Priority to KR1020117026022A priority patent/KR101221206B1/ko
Publication of WO2010143288A1 publication Critical patent/WO2010143288A1/ja
Priority to US13/315,841 priority patent/US8362519B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0641Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region without components of the field effect type
    • H01L27/0647Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. vertical bipolar transistor and bipolar lateral transistor and resistor
    • H01L27/0652Vertical bipolar transistor in combination with diodes, or capacitors, or resistors
    • H01L27/0664Vertical bipolar transistor in combination with diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes

Definitions

  • the present invention relates to a semiconductor device in which an insulated gate bipolar transistor (IGBT) element region and a diode element region are formed on the same semiconductor substrate.
  • IGBT insulated gate bipolar transistor
  • Patent Document 1 discloses a semiconductor device in which an IGBT element region and a reflux diode element region are formed on the same semiconductor substrate.
  • a back surface layer, an N ⁇ layer, an N layer, and a P layer are sequentially stacked, and an N + layer is provided on a part of the surface of the P layer.
  • a trench gate that penetrates the P layer and the N layer and reaches the N ⁇ layer is provided from the surface side of the semiconductor substrate. The trench gate is in contact with the N + layer.
  • As the back layer a P + layer or an N + layer is formed.
  • a region where the back layer is a P + layer is an IGBT element region, and a region where the back layer is an N + layer is a diode element region.
  • carriers may move between the IGBT element region and the diode element region.
  • carriers attracted to the drift region near the interface with the body region move to the anode region side of the diode element region.
  • the carrier density in the drift region of the IGBT element region decreases, the resistance of the drift region increases, and the on-voltage during the IGBT operation increases.
  • a reverse recovery current flows in the diode element region.
  • carriers accumulated outside the diode element region move to the diode element region.
  • the reverse recovery current of the diode is increased, and element breakdown is likely to occur.
  • the IGBT element region, the diode element region, and the boundary region provided between the IGBT element region and the diode element region are formed in the same semiconductor substrate.
  • the IGBT element region includes a first conductivity type collector region, a second conductivity type first drift region provided on the surface side of the semiconductor substrate with respect to the collector region, and a surface of the semiconductor substrate with respect to the first drift region.
  • the diode element region includes a second conductivity type cathode region, a second conductivity type second drift region provided on the surface side of the semiconductor substrate with respect to the cathode region, and a surface of the semiconductor substrate with respect to the second drift region. And a second body region of the first conductivity type provided on the side.
  • the boundary region is provided in the second diffusion region, the first conductivity type first diffusion region, the first conductivity type second diffusion region provided on the surface side of the semiconductor substrate with respect to the first diffusion region, and the second diffusion region.
  • the first drift region in the IGBT element region is in contact with the first diffusion region in the boundary region, and the second drift region in the diode element region is in contact with the first diffusion region in the boundary region.
  • the first body region of the IGBT element region is in contact with the second diffusion region of the boundary region, and the second body region of the diode element region is in contact with the second diffusion region of the boundary region.
  • the second conductivity type third diffusion region is provided in the first conductivity type second diffusion region.
  • the third diffusion region in the boundary region extends until it contacts the carrier accumulation region in the IGBT element region.
  • the effect of suppressing carrier movement during the IGBT operation can be further improved.
  • the third diffusion region in the boundary region and the carrier accumulation region in the IGBT element region may be formed of the same semiconductor layer.
  • the carrier accumulation region and the third diffusion region can be formed at the same time, the labor and cost of the semiconductor device manufacturing process are not increased.
  • FIG. 1 is a cross-sectional view of a semiconductor device of Example 1.
  • FIG. FIG. 2 is a diagram schematically illustrating a state of the semiconductor device of FIG. 1 during an IGBT operation. It is a figure which shows typically the state at the time of diode operation
  • FIG. 1 is a cross-sectional view of a semiconductor device 100 according to the present embodiment.
  • FIG. 2 is a diagram schematically showing the state of the semiconductor device 100 shown in FIG. 1 during IGBT operation
  • FIG. 3 is a diagram schematically showing the state of the semiconductor device 100 shown in FIG. 1 during diode operation. is there. 2 and 3, the reference numerals of the components of the semiconductor device 100 shown in FIG. 1 are omitted.
  • a plus sign surrounded by a circle indicates a hole.
  • the semiconductor device 100 includes a semiconductor substrate 10, a back surface electrode 40, a diode surface electrode 41, and an IGBT surface electrode 42.
  • the semiconductor device 100 includes a diode element region 1, an IGBT element region 2, a boundary region 3, and a peripheral withstand voltage portion 4 formed on the semiconductor substrate 10.
  • the semiconductor substrate 10 includes a first 1N + layer 11, the first 1P + layer 12 adjacent to the 1N + layer 11, a 1N layer 13 and N laminated on the surface of the 1N + layer 11 and the 1P + layer 12 A layer 14;
  • the diode element region 1 is a region on the upper surface side of the first N + layer 11 of the semiconductor substrate 10, and a back surface electrode 40 is provided on the back surface side, and a diode is formed on the front surface side.
  • a surface electrode 41 is provided.
  • the first P layer 151 as the second body region is stacked on the surface of the N ⁇ layer 14 as the second drift region.
  • a second P + layer 171 as an anode region is provided on the surface of the first P layer 151.
  • the first N + layer 11 is used as a cathode region
  • the first N layer 13, the N ⁇ layer 14, the first P layer 151 is used as a conductive region
  • the second P + layer 171 is used as an anode region.
  • the IGBT element region 2 is a region on the upper surface side of the first P + layer 12 of the semiconductor substrate 10, and a rear surface electrode 40 is provided on the rear surface side, and an IGBT is disposed on the front surface side.
  • a surface electrode 42 is provided.
  • the second P layer 152, the second N layer 161, and the third P layer 153 are stacked on the surface of the N ⁇ layer 14.
  • a third P + layer 172 and a second N + layer 181 are provided on the surface of the third P layer 153.
  • the second N layer 161 is isolated from the N ⁇ layer 14 by the second P layer 152, and is isolated from the third P + layer 172 and the second N + layer 181 by the third P layer 153.
  • a fourth P layer 301 extending from the surface side of the semiconductor substrate 10 to the N ⁇ layer 14 is provided at the boundary between the IGBT element region 2 and the peripheral breakdown voltage portion 4. The lower end of the fourth P layer 301 extends deeper than the lower end of the second P layer 152.
  • a plurality of trench gates 19 are provided from the upper surface of semiconductor substrate 10 toward N ⁇ layer 14.
  • the depth of the lower end portion of the trench gate 19 is deeper than the lower end portion of the second P layer 152 and shallower than the lower end portion of the fourth P layer 301.
  • the trench gate 19 includes a gate insulating film 192 formed in the trench 191 and a gate electrode 193 filled therein.
  • An interlayer insulating film 32 is provided between the gate electrode 193 and the IGBT surface electrode 42.
  • the second N + layer 181 is in contact with the trench gate 19.
  • the first P + layer 12 is the collector region
  • the first N layer 13 is the buffer region
  • the N ⁇ layer 14 is the first drift region
  • the second P layer 152 and the third P layer 153 are the first body region
  • the second N The + layer 181 is used as an emitter region
  • the third P + layer 172 is used as a body contact region.
  • the second N layer 161 is used as a carrier accumulation region.
  • the boundary region 3 is an inactive region provided between the diode element region 1 and the IGBT element region 2. In the boundary region 3, no contact with the surface electrode is formed on the surface side of the semiconductor substrate 10. In the present embodiment, there is a boundary between the first N + layer 11 and the first P + layer 12 in the boundary region 3, and the first N layer 13 and the N ⁇ layer 14 are laminated on the upper layer side of the boundary. ing. In the present embodiment, the boundary region 3 is provided with a fifth P layer 302 extending from the surface side of the semiconductor substrate 10 to the N ⁇ layer 14.
  • the fifth P layer 302 extends from the front surface side to the back surface side of the semiconductor substrate 10 along the boundary between the boundary region 3 and the IGBT element region 2 and the boundary between the boundary region 3 and the diode element region 1.
  • a third N layer 162 that penetrates the fifth P layer 302 in the planar direction of the semiconductor substrate 10 (lateral direction shown in FIG. 1) is provided, and the end of the third N layer 162 on the IGBT element region 2 side is the IGBT element region. 2 extends to be in contact with the second N layer 161 provided in 2. The end of the third N layer 162 on the diode element region 1 side penetrates into part of the diode element region 1.
  • the boundary region 3 includes the N ⁇ layer 14 as the N-type first diffusion region and the P-type second diffusion region provided on the surface side of the semiconductor substrate 10 with respect to the N ⁇ layer 14.
  • a fifth P layer 302 and a third N layer 162 as an N-type third diffusion region are provided.
  • the third N layer 162 is provided in the fifth P layer 302, and the N ⁇ layer 14 and the third N layer 162 are isolated by the fifth P layer 302. Further, the third N layer 162 extends until it comes into contact with the second N layer 161 serving as an N-type carrier storage region provided in the IGBT element region 2.
  • the second N layer 161 and the third N layer 162 are formed on the semiconductor substrate 10 as the same layer.
  • the third N layer 162 can be formed simultaneously with the process of forming the second N layer 161, labor and cost in the manufacturing process are not significantly increased.
  • the semiconductor device includes 100, the IGBT element region 2, the diode element region 1, and the boundary region 3 provided between the IGBT element region 2 and the diode element region 1 on the same semiconductor substrate 10.
  • This is a reverse conducting semiconductor device.
  • the first drift region of the IGBT element region 2, the second drift region of the diode element region 1, and the first diffusion region of the boundary region 3 are formed on the semiconductor substrate 10 as the N ⁇ layer 14 which is the same layer.
  • the first drift region in the IGBT element region is in contact with the first diffusion region in the boundary region
  • the second drift region in the diode element region is in contact with the first diffusion region in the boundary region.
  • the second P layer 152 and the third P layer 153 that are the first body regions of the IGBT element region 2 are in contact with the fifth P layer 302 that is the second diffusion region of the boundary region 3, and the second body region of the diode element region 1
  • the first P layer 151 is in contact with the fifth P layer 302 which is the second diffusion region of the boundary region 3.
  • the third N layer 162 as the N-type third diffusion region provided in the boundary region 3 extends until it contacts the second N layer 161 as the N-type carrier accumulation region provided in the IGBT element region 2. .
  • holes are injected from the first P + layer 12 which is the collector region into the first N layer 13 and the N ⁇ layer 14.
  • a drift region N - - holes which are minority carriers N occur conductivity modulation in the layer 14, N - resistance of the layer 14 is low.
  • an IGBT current flows from the back surface side (collector region side) to the front surface side (emitter region side) of the semiconductor device.
  • no current flows in the diode element region 1.
  • a region having a high electron density is formed in the vicinity of the trench gate 19. Holes are further attracted to this high electron density region, and as shown in FIG. 2, in the IGBT element region 2, a region having a high hole density is formed in the N ⁇ layer 14 in the vicinity of the boundary with the second P layer 152.
  • a second N layer 161 as a carrier accumulation layer is provided between the second P layer 152 and the third P layer 153 which are body regions. Therefore, compared to the case where the second N layer 161 is not provided, the hole density in the N ⁇ layer 14 in the vicinity of the boundary with the second P layer 152 can be increased.
  • the third N layer 162 is further provided in the boundary region 3, and the third N layer 162 and the second N layer 161 provided in the IGBT element region 2 are in contact with each other. For this reason, the movement of holes indicated by broken lines in FIG. 2 can be suppressed. That is, by providing the third N layer 162 in the boundary region 3, it is possible to suppress the movement of holes through the fifth P layer 302 and the like to the second P + layer 171 in the diode element region 1. it can. Compared to the case where the third N layer 162 is not provided in the boundary region 3, the hole density in the N ⁇ layer 14 in the vicinity of the boundary with the second P layer 152 can be increased.
  • the IGBT element region 2 is switched from the on state to the off state, and the diode element region 1 is operated so that a reflux current flows.
  • the potential Va of the back surface electrode 40 is made lower than the potential Vb of the diode surface electrode 41 and the potential Vc of the IGBT surface electrode 42 (Va ⁇ Vb, Vc), as shown in FIG. Holes are injected from a certain second P + layer 171 into the N ⁇ layer 14 as the second drift region via the first P layer 151 as the second body region.
  • a diode current flows from the second P + layer 171 (anode region) to the first N + layer 11 (cathode region) via the first P layer 151, the N ⁇ layer 14, and the first N layer 13. No current flows in the IGBT element region 2.
  • the third N layer 162 is further provided in the boundary region 3, and the third N layer 162 and the second N layer 161 provided in the IGBT element region 2 are in contact with each other. For this reason, the movement of holes indicated by broken lines in FIG. 3 can be suppressed. That is, by providing the third N layer 162 in the boundary region 3, it is possible to prevent holes from moving from the diode element region 1 to the N ⁇ layer 14 in the boundary region 3 through the fifth P layer 302 and the like. can do. Compared with the case where the second N layer 161 is provided in the IGBT element region 2 and the third N layer 162 is not provided in the boundary region 3, holes may accumulate in the N ⁇ layer 14 in the boundary region 3. It is suppressed.
  • the IGBT element region is switched to the on state in a state where the return current flows in the diode element region. That is, the potential Va of the back electrode 40 is set higher than the potential Vb of the diode surface electrode 41 and the potential Vc of the IGBT surface electrode 42 (Va> Vb, Vc), and a positive voltage (positive bias) is applied to the gate electrode 193. . In this case, a reverse recovery current flows in the diode element region 1. During reverse recovery of the diode, carriers accumulated outside the diode element region 1 move to the diode element region 1.
  • the reverse recovery current can be reduced during the diode reverse recovery. Therefore, it is possible to suppress element destruction during reverse recovery of the diode.
  • the configuration of the boundary region 3 is not limited to the above embodiment.
  • the configuration of the boundary region 3 may be a configuration as shown in FIG.
  • a semiconductor device 400 shown in FIG. 4 is different from the semiconductor device 100 shown in FIG.
  • the sixth P layer 312 is formed at the same depth as the first P layer 151 in the diode element region 1 and the second P layer 152 in the IGBT element region 2.
  • a third N layer 162 is formed in the sixth P layer 312, and the third N layer 162 and the N ⁇ layer 14 are isolated by the sixth P layer 312.
  • the sixth P layer 312 is provided with a trench 39 that penetrates the sixth P layer 312 and the third N layer 162 from the surface side of the semiconductor substrate 10 and reaches the N ⁇ layer 14. Since the other configuration of the semiconductor device 400 is the same as that of the semiconductor device 100, a duplicate description is omitted.
  • the boundary region is an inactive region where a contact between the semiconductor substrate and the surface electrode is not formed, and is provided between the diode element region and the IGBT element region.
  • the semiconductor substrate is provided in the second diffusion region, the first diffusion region of the second conductivity type, the second diffusion region of the first conductivity type, and the first diffusion region by the second diffusion region. What is necessary is just to provide the 3rd diffusion area
  • the area of the “region where the contact between the semiconductor substrate and the surface electrode is not formed” provided in the boundary region is the “contact between the semiconductor substrate and the surface electrode” provided in the active region such as the diode element region or the IGBT element region. It is larger than the area of the “region where no is formed”.
  • the semiconductor substrate has a first conductivity type second diffusion region laminated on the surface side of the second conductivity type first diffusion region, and the second diffusion region has a second diffusion region.
  • a third diffusion region of the second conductivity type that is isolated from the first diffusion region by the two diffusion regions, for example, at least one of the following (a) to (c): What is necessary is just to have the structure which satisfy
  • the second diffusion region includes a lower end of the first body region of the IGBT element region (the lower end of the second P layer 152 in FIG. 1) and a lower end of the second body region of the diode element region (the first P layer in FIG. 1). This is a diffusion region (the fifth P layer 302 in FIG.
  • the second diffusion region has the same depth as the first body region (second P layer 152 in FIG. 4) of the IGBT element region and the second body region (first P layer 151 in FIG. 4) of the diode element region. This is a diffusion region formed in (6th P layer 312 in FIG. 4).
  • a trench (a trench 39 in FIG. 4) is formed which penetrates the second diffusion region (sixth P layer 312 in FIG. 4) from the surface side of the semiconductor substrate and reaches the first diffusion region (N ⁇ layer 14 in FIG. 4). Has been.
  • (C) a second conductivity type diffusion region (the first N + layer 11 in the first embodiment) which becomes the cathode region of the diode element region on the back surface side (the side not in contact with the second diffusion region) of the first diffusion region; There is a boundary with a first conductivity type diffusion region (in the first embodiment, the first P + layer 12) that becomes the collector region of the IGBT element region.
  • the third diffusion region in the boundary region and the carrier accumulation region in the IGBT element region are not in contact with each other, the path through which the carrier moves can be obtained by providing the third diffusion region in the boundary region. Can be narrowed. For this reason, it is possible to obtain the effect of reducing the on-voltage during the IGBT operation and the effect of reducing the reverse recovery current of the diode.
  • the third diffusion region does not have to be formed from the boundary between the IGBT element region and the boundary region until reaching the boundary between the diode element region and the boundary region, and is formed in a part thereof. Also good. In this case, it is preferable that the third diffusion region is formed closer to the IGBT element region.
  • the third diffusion region is formed of the same semiconductor layer as the carrier storage region of the IGBT element region. However, the third diffusion region and the carrier storage region are formed of different semiconductor layers. It may be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

 IGBT素子領域と、ダイオード素子領域と、IGBT素子領域とダイオード素子領域との間に設けられた境界領域とが同一半導体基板内に形成されている半導体装置において、IGBT素子領域の第1導電型の第1ボディ領域内に第2導電型のキャリア蓄積領域を設ける。境界領域では、第1導電型の第2拡散領域内に、キャリア蓄積領域に接するまで伸びている第2導電型の第3拡散領域を設ける。これによって、IGBT動作時には、キャリアが境界領域を通過してダイオード素子領域へ移動することを抑制し、オン電圧を低減することができる。また、ダイオード逆回復時には、キャリアが境界領域のドリフト領域に蓄積することを抑制し、逆回復電流を低減することができる。

Description

半導体装置
 本発明は、絶縁ゲート型バイポーラトランジスタ(IGBT)素子領域とダイオード素子領域とが同一半導体基板に形成された半導体装置に関する。
 特許文献1に、IGBT素子領域と還流用のダイオード素子領域とが同一半導体基板に形成された半導体装置が開示されている。半導体基板には、裏面層、N層、N層、P層が順に積層されており、P層の表面の一部にN層が設けられている。半導体基板の表面側から、P層およびN層を貫通し、N層に達するトレンチゲートが設けられている。トレンチゲートは、N層と接している。裏面層としては、P層もしくはN層が形成されている。裏面層がP層となっている領域がIGBT素子領域となり、裏面層がN層となっている領域がダイオード素子領域となる。IGBT素子領域では、ドリフト領域となるN層とボディ領域となるP層との間に設けられているN層によって、P層との界面近傍のN層に正孔が蓄積される。その結果、IGBT動作時のオン電圧が低減される。
特開2005-57235号公報
 IGBT素子領域とダイオード素子領域との境界近傍においては、IGBT素子領域とダイオード素子領域との間でキャリアが移動する場合がある。例えば、IGBT動作時には、IGBT素子領域において、ボディ領域との界面近傍のドリフト領域に引き寄せられたキャリアが、ダイオード素子領域のアノード領域側に移動する。その結果、IGBT素子領域のドリフト領域におけるキャリア密度が減少してドリフト領域の抵抗が大きくなり、IGBT動作時のオン電圧が高くなってしまう。また、ダイオード素子領域に還流電流が流れている状態でIGBT素子領域をオン状態に切換えると、ダイオード素子領域に逆回復電流が流れる。このダイオードの逆回復時には、ダイオード素子領域の外部に蓄積されたキャリアがダイオード素子領域へと移動する。その結果、ダイオードの逆回復電流が大きくなって、素子破壊が起こり易くなる。
 本発明の半導体装置では、IGBT素子領域と、ダイオード素子領域と、IGBT素子領域とダイオード素子領域との間に設けられた境界領域とが同一半導体基板内に形成されている。IGBT素子領域は、第1導電型のコレクタ領域と、コレクタ領域に対して半導体基板の表面側に設けられた第2導電型の第1ドリフト領域と、第1ドリフト領域に対して半導体基板の表面側に設けられた第1導電型の第1ボディ領域と、第1ボディ領域の表面に設けられた第2導電型のエミッタ領域と、第1ボディ領域内に設けられ、第1ボディ領域によって第1ドリフト領域およびエミッタ領域と隔離されている第2導電型のキャリア蓄積領域と、半導体基板の表面側から第1ボディ領域を貫通して第1ドリフト領域に達するトレンチゲートとを備えている。ダイオード素子領域は、第2導電型のカソード領域と、カソード領域に対して半導体基板の表面側に設けられた第2導電型の第2ドリフト領域と、第2ドリフト領域に対して半導体基板の表面側に設けられた第1導電型の第2ボディ領域とを備えている。境界領域は、第2導電型の第1拡散領域と、第1拡散領域に対して半導体基板の表面側に設けられた第1導電型の第2拡散領域と、第2拡散領域内に設けられ、第2拡散領域によって第1拡散領域と隔離されている第2導電型の第3拡散領域とを備えている。IGBT素子領域の第1ドリフト領域が境界領域の第1拡散領域に接しており、ダイオード素子領域の第2ドリフト領域が境界領域の第1拡散領域に接している。IGBT素子領域の第1ボディ領域が境界領域の第2拡散領域に接しており、ダイオード素子領域の第2ボディ領域が境界領域の第2拡散領域に接している。
 上記の半導体装置によれば、境界領域では、第1導電型の第2拡散領域内に第2導電型の第3拡散領域が設けられている。これによって、IGBT動作時には、半導体基板の裏面側から表面側に移動するキャリアが、境界領域を通過して、ダイオード素子領域へ移動することを抑制することができる。その結果、IGBT素子領域において、ボディ領域近傍のドリフト領域におけるキャリア蓄積量を高くし、オン電圧を低減させることができる。
 また、ダイオード動作時には、半導体基板の表面側から裏面側に移動するキャリアが、境界領域に移動することを抑制することができる。その結果、境界領域のドリフト領域におけるキャリア蓄積量を低くすることができる。このため、ダイオードの逆回復時には、逆回復電流を低減することができ、素子破壊が起こりにくくなる。
 上記の半導体装置では、境界領域の第3拡散領域が、IGBT素子領域のキャリア蓄積領域に接するまで伸びていることが好ましい。IGBT動作時のキャリア移動抑制効果をより向上させることができる。
 上記の半導体装置では、境界領域の第3拡散領域と、IGBT素子領域のキャリア蓄積領域とは、同一の半導体層によって形成されていてもよい。半導体装置の製造工程において、キャリア蓄積領域と第3拡散領域とを同時に形成することができるため、半導体装置の製造工程の手間やコストを増大させることがない。
実施例1の半導体装置の断面図である。 図1の半導体装置のIGBT動作時の状態を模式的に示す図である。 図1の半導体装置のダイオード動作時の状態を模式的に示す図である。 変形例の半導体装置の断面図である。
 以下、本発明の実施例1について、図面を参照しながら説明する。本実施例では、第1導電型をP型とし、第2導電型をN型とした場合を例示して説明する。図1は、本実施例に係る半導体装置100の断面図である。図2は、図1に示す半導体装置100のIGBT動作時の状態を模式的に示す図であり、図3は、図1に示す半導体装置100のダイオード動作時の状態を模式的に示す図である。図2、図3では、図1に示す半導体装置100の各構成について符号を省略している。図2、図3において、丸で囲んだプラス記号は、正孔を示している。
 半導体装置100は、半導体基板10、裏面電極40、ダイオード表面電極41、IGBT表面電極42とを備えている。半導体装置100は、半導体基板10に形成された、ダイオード素子領域1と、IGBT素子領域2と、境界領域3と、周辺耐圧部4とを備えている。半導体基板10は、第1N層11と、第1N層11に隣接する第1P層12と、第1N層11および第1P層12の表面に積層された第1N層13およびN層14とを備えている。
 図1に示すように、ダイオード素子領域1は半導体基板10の第1N層11の上面側の領域であって、その裏面側には裏面電極40が設けられており、その表面側にはダイオード表面電極41が設けられている。ダイオード素子領域1では、第2ドリフト領域としてのN層14の表面に第2ボディ領域としての第1P層151が積層されている。第1P層151の表面には、アノード領域としての第2P層171が設けられている。
 ダイオード素子領域1では、第1N層11はカソード領域、第1N層13、N層14、第1P層151は導電領域、第2P層171はアノード領域として利用される。
 図1に示すように、IGBT素子領域2は半導体基板10の第1P層12の上面側の領域であって、その裏面側には裏面電極40が設けられており、その表面側にはIGBT表面電極42が設けられている。IGBT素子領域2では、N層14の表面に第2P層152、第2N層161、第3P層153が積層されている。第3P層153の表面には、第3P層172と第2N層181が設けられている。すなわち、IGBT素子領域2では、第2N層161は、第2P層152によってN層14と隔離されており、第3P層153によって第3P層172および第2N層181と隔離されている。IGBT素子領域2と周辺耐圧部4との境界には、半導体基板10の表面側からN層14まで伸びる第4P層301が設けられている。第4P層301の下端は、第2P層152の下端よりも深くまで伸びている。
 IGBT素子領域2では、半導体基板10の上表面からN層14に向けて、複数のトレンチゲート19が設けられている。トレンチゲート19の下端部の深さは、第2P層152の下端部よりも深く、第4P層301の下端部よりも浅い。トレンチゲート19は、トレンチ191内に形成されたゲート絶縁膜192、およびその内部に充填されているゲート電極193を備えている。ゲート電極193とIGBT表面電極42との間には、層間絶縁膜32が設けられている。第2N層181はトレンチゲート19に接している。
 IGBT素子領域2では、第1P層12はコレクタ領域、第1N層13はバッファ領域、N層14は第1ドリフト領域、第2P層152および第3P層153は第1ボディ領域、第2N層181はエミッタ領域、第3P層172はボディコンタクト領域として利用される。また、第2N層161は、キャリア蓄積領域として利用される。
 境界領域3は、ダイオード素子領域1とIGBT素子領域2との間に設けられた不活性領域である。境界領域3においては、半導体基板10の表面側に表面電極とのコンタクトが形成されていない。本実施例においては、境界領域3内には、第1N層11と第1P層12との境界があり、その境界の上層側には、第1N層13、N層14が積層されている。本実施例では、境界領域3には、半導体基板10の表面側からN層14まで伸びる第5P層302が設けられている。第5P層302は、境界領域3とIGBT素子領域2との境界、および、境界領域3とダイオード素子領域1との境界に沿って、半導体基板10の表面側から裏面側へと伸びている。第5P層302を半導体基板10の平面方向(図1に示す横方向)に貫通する第3N層162が設けられており、第3N層162のIGBT素子領域2側の端部は、IGBT素子領域2に設けられた第2N層161に接するまで伸びている。第3N層162のダイオード素子領域1側の端部は、ダイオード素子領域1の一部に侵入している。上記のとおり、境界領域3は、N型の第1拡散領域としてのN層14と、N層14に対して半導体基板10の表面側に設けられたP型の第2拡散領域としての第5P層302と、N型の第3拡散領域としての第3N層162とを備えている。第3N層162は、第5P層302内に設けられており、第5P層302によって、N層14と第3N層162とは隔離されている。また、第3N層162が、IGBT素子領域2に設けられたN型のキャリア蓄積領域としての第2N層161に接するまで伸びている。
 尚、本実施例では、第2N層161と第3N層162は、同一の層として半導体基板10に形成されている。半導体装置100の製造工程において、第2N層161を形成する工程で同時に第3N層162を形成することができるため、製造工程での手間やコストが大幅に増大することがない。
 上記のとおり、半導体装置は100、IGBT素子領域2と、ダイオード素子領域1と、IGBT素子領域2とダイオード素子領域1との間に設けられた境界領域3とを同一半導体基板10に備えている逆導通型の半導体装置である。IGBT素子領域2の第1ドリフト領域、ダイオード素子領域1の第2ドリフト領域、境界領域3の第1拡散領域は、同一の層であるN層14として半導体基板10に形成されている。これによって、IGBT素子領域の第1ドリフト領域が境界領域の第1拡散領域に接しており、ダイオード素子領域の第2ドリフト領域が境界領域の第1拡散領域に接している状態となっている。IGBT素子領域2の第1ボディ領域である第2P層152および第3P層153は、境界領域3の第2拡散領域である第5P層302に接しており、ダイオード素子領域1の第2ボディ領域である第1P層151は、境界領域3の第2拡散領域である第5P層302に接している。そして、境界領域3に設けられたN型の第3拡散領域としての第3N層162が、IGBT素子領域2に設けられたN型のキャリア蓄積領域としての第2N層161に接するまで伸びている。
 次に、半導体装置100の動作について説明する。
 <IGBT動作時>
 裏面電極40の電位Vaをダイオード表面電極41の電位Vb、IGBT表面電極42の電位Vcよりも高電位とし(Va>Vb,Vc)、ゲート電極193に正電圧(正バイアス)を印加すると、IGBT素子領域2では、第1ボディ領域である第2P層152および第3P層153において、トレンチゲート19の近傍にチャネルが形成される。このチャネルを通って、多数キャリアである電子がエミッタ領域である第2N層181から第1ドリフト領域であるN層14に注入される。また、コレクタ領域である第1P層12から第1N層13及びN層14へ正孔が注入される。少数キャリアである正孔がN層14に注入されると、ドリフト領域であるN層14において伝導率変調が起こり、N層14の抵抗が低くなる。このように電子と正孔が移動することによって、半導体装置の裏面側(コレクタ領域側)から表面側(エミッタ領域側)に向かうIGBT電流が流れる。一方、ダイオード素子領域1では電流は流れない。
 上記のように、ゲート電極193に正電圧を印加すると、トレンチゲート19の近傍に電子密度が高い領域が形成される。この電子密度の高い領域にさらに正孔が引き寄せられ、図2に示すように、IGBT素子領域2では、第2P層152との境界近傍のN層14に正孔密度が高い領域が形成される。本実施例では、ボディ領域である第2P層152と第3P層153の間に、キャリア蓄積層としての第2N層161が設けられている。このため、第2N層161が設けられていない場合と比較して、第2P層152との境界近傍のN層14における正孔密度を高くすることができる。
 本実施例では、さらに、境界領域3に第3N層162が設けられており、第3N層162と、IGBT素子領域2に設けられた第2N層161とが接している。このため、図2に破線で示す正孔の移動を抑制することができる。すなわち、第3N層162が境界領域3に設けられていることによって、正孔が、第5P層302等を通過してダイオード素子領域1の第2P層171に移動することを抑制することができる。境界領域3に第3N層162が設けられていない場合と比較して、第2P層152との境界近傍のN層14における正孔密度をより高くすることができる。
 <ダイオード動作時>
 次に、IGBT素子領域2をオン状態からオフ状態に切り換え、ダイオード素子領域1を動作させて、還流電流が流れるようにする。裏面電極40の電位Vaをダイオード表面電極41の電位Vb、IGBT表面電極42の電位Vcよりも低くすると(Va<Vb,Vc)、図3に示すように、ダイオード素子領域1では、アノード領域である第2P層171から、第2ボディ領域である第1P層151を介して、第2ドリフト領域であるN層14に正孔が注入される。これによって、第2P層171(アノード領域)から第1P層151、N層14、第1N層13を介して第1N層11(カソード領域)へダイオード電流(還流電流)が流れる。IGBT素子領域2では電流は流れない。
 本実施例では、さらに、境界領域3に第3N層162が設けられており、第3N層162と、IGBT素子領域2に設けられた第2N層161とが接している。このため、図3に破線で示す正孔の移動を抑制することができる。すなわち、第3N層162が境界領域3に設けられていることによって、正孔が、第5P層302等を通過してダイオード素子領域1から境界領域3のN層14へ移動することを抑制することができる。IGBT素子領域2に第2N層161が設けられており、境界領域3に第3N層162が設けられていない場合と比較して、境界領域3のN層14に正孔が蓄積することが抑制される。
<ダイオード逆回復時>
 次に、ダイオード素子領域に還流電流が流れている状態でIGBT素子領域をオン状態に切換える。すなわち、裏面電極40の電位Vaをダイオード表面電極41の電位Vb、IGBT表面電極42の電位Vcよりも高電位とし(Va>Vb,Vc)、ゲート電極193に正電圧(正バイアス)を印加する。この場合、ダイオード素子領域1に逆回復電流が流れる。ダイオードの逆回復時には、ダイオード素子領域1の外部に蓄積されたキャリアがダイオード素子領域1へと移動する。ダイオードの逆回復時には、N層14に蓄積した正孔は、第1P層151および第2P層171の側に排出され、N層14に蓄積した電子は、第1N層13、第1N層11側に排出される。この逆回復時のキャリアの移動によって発生する電流を、逆回復電流という。逆回復電流は、N層14に蓄積したキャリア量が多いほど大きくなる。逆回復電流が大きくなり過ぎると、素子破壊が起こり易くなる。
 本実施例によれば、ダイオード動作時に、境界領域3のN層14に正孔が蓄積することが抑制されるため、ダイオード逆回復時に、逆回復電流を小さくすることができる。これによって、ダイオードの逆回復時の素子破壊を抑制することができる。
 尚、境界領域3の構成は、上記の実施例に限定されない。例えば、境界領域3の構成は、図4に示すような構成であってもよい。図4に示す半導体装置400は、図1に示す半導体装置100と、境界領域3の構成が異なっている。図4に示す境界領域3では、第6P層312は、ダイオード素子領域1の第1P層151、IGBT素子領域2の第2P層152と同じ深さに形成されている。第6P層312内には、第3N層162が形成されており、第6P層312によって、第3N層162と、N層14とは隔離されている。さらに、第6P層312には、半導体基板10の表面側から第6P層312、第3N層162を貫通し、N層14に達するトレンチ39が設けられている。半導体装置400のその他の構成については、半導体装置100と同様であるため、重複説明を省略する。
 境界領域は、半導体基板と表面電極とのコンタクトが形成されていない不活性領域であり、ダイオード素子領域とIGBT素子領域との間に設けられている。境界領域においては、半導体基板は、第2導電型の第1拡散領域と、第1導電型の第2拡散領域と、第2拡散領域内に設けられ、第2拡散領域によって第1拡散領域と隔離されている第2導電型の第3拡散領域とを備えていればよい。境界領域に設けられた、「半導体基板と表面電極とのコンタクトが形成されていない領域」の面積は、ダイオード素子領域やIGBT素子領域といった活性領域に設けられた「半導体基板と表面電極とのコンタクトが形成されていない領域」の面積と比べて、大きい。
 具体的には、境界領域においては、半導体基板は、第2導電型の第1拡散領域の表面側に、第1導電型の第2拡散領域が積層され、その第2拡散領域内に、第2拡散領域によって第1拡散領域と隔離されている第2導電型の第3拡散領域が設けられているものであって、例えば、下記の(a)~(c)のうち、少なくとも1つを満たす構成を備えていればよい。
(a)第2拡散領域は、IGBT素子領域の第1ボディ領域の下端(図1では、第2P層152の下端)およびダイオード素子領域の第2ボディ領域の下端(図1では、第1P層151の下端)よりも深い位置まで形成された拡散領域(図1では、第5P層302)である。
(b)第2拡散領域は、IGBT素子領域の第1ボディ領域(図4では、第2P層152)、ダイオード素子領域の第2ボディ領域(図4では、第1P層151)と同じ深さに形成された拡散領域(図4では、第6P層312)である。かつ、半導体基板の表面側から第2拡散領域(図4では第6P層312)を貫通し、第1拡散領域(図4ではN層14)に達するトレンチ(図4ではトレンチ39)が形成されている。
(c)第1拡散領域の裏面側(第2拡散領域と接しない側)に、ダイオード素子領域のカソード領域となる第2導電型の拡散領域(実施例1では、第1N層11)と、IGBT素子領域のコレクタ領域となる第1導電型の拡散領域(実施例1では、第1P層12)との境界がある。
 尚、境界領域の第3拡散領域と、IGBT素子領域のキャリア蓄積領域とが接していない場合であっても、第3拡散領域が境界領域に設けられていることによって、キャリアが移動する経路を狭くすることができる。このため、IGBT動作時のオン電圧低減効果や、ダイオードの逆回復電流の低減効果を得ることはできる。また、第3拡散領域は、IGBT素子領域と境界領域との境界から、ダイオード素子領域と境界領域の境界に達するまで形成されている必要はなく、その一部に形成されているものであってもよい。この場合、第3拡散領域は、よりIGBT素子領域に近い側に形成されることが好ましい。また、上記の実施例では、第3拡散領域は、IGBT素子領域のキャリア蓄積領域と同一の半導体層によって形成されていたが、第3拡散領域とキャリア蓄積領域は、別の半導体層によって形成されていてもよい。
 以上、本発明の実施例について詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
 本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。

Claims (3)

  1.  IGBT素子領域と、
     ダイオード素子領域と、
     IGBT素子領域とダイオード素子領域との間に設けられた境界領域とが同一半導体基板内に形成されている半導体装置であって、
     IGBT素子領域は、
     第1導電型のコレクタ領域と、
     コレクタ領域に対して半導体基板の表面側に設けられた第2導電型の第1ドリフト領域と、
     第1ドリフト領域に対して半導体基板の表面側に設けられた第1導電型の第1ボディ領域と、
     第1ボディ領域の表面に設けられた第2導電型のエミッタ領域と、
     第1ボディ領域内に設けられ、第1ボディ領域によって第1ドリフト領域およびエミッタ領域と隔離されている第2導電型のキャリア蓄積領域と、
     半導体基板の表面側から第1ボディ領域を貫通して第1ドリフト領域に達するトレンチゲートとを備えており、
     ダイオード素子領域は、
     第2導電型のカソード領域と、
     カソード領域に対して半導体基板の表面側に設けられた第2導電型の第2ドリフト領域と、
     第2ドリフト領域に対して半導体基板の表面側に設けられた第1導電型の第2ボディ領域とを備えており、
     境界領域は、
     第2導電型の第1拡散領域と、
     第1拡散領域に対して半導体基板の表面側に設けられた第1導電型の第2拡散領域と、
     第2拡散領域内に設けられ、第2拡散領域によって第1拡散領域と隔離されている第2導電型の第3拡散領域とを備えており、
     IGBT素子領域の第1ドリフト領域が境界領域の第1拡散領域に接しており、ダイオード素子領域の第2ドリフト領域が境界領域の第1拡散領域に接しており、
     IGBT素子領域の第1ボディ領域が境界領域の第2拡散領域に接しており、ダイオード素子領域の第2ボディ領域が境界領域の第2拡散領域に接している半導体装置。
  2.  境界領域の第3拡散領域は、IGBT素子領域のキャリア蓄積領域に接するまで伸びている請求項1に記載の半導体装置。
  3.  境界領域の第3拡散領域と、IGBT素子領域のキャリア蓄積領域とは、同一の半導体層によって形成されている請求項2に記載の半導体装置。
PCT/JP2009/060685 2009-06-11 2009-06-11 半導体装置 WO2010143288A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2009/060685 WO2010143288A1 (ja) 2009-06-11 2009-06-11 半導体装置
CN200980159805.8A CN102804359B (zh) 2009-06-11 2009-06-11 半导体装置
EP09845813.6A EP2442355B1 (en) 2009-06-11 2009-06-11 Semiconductor device
JP2010547887A JP4915481B2 (ja) 2009-06-11 2009-06-11 半導体装置
KR1020117026022A KR101221206B1 (ko) 2009-06-11 2009-06-11 반도체 장치
US13/315,841 US8362519B2 (en) 2009-06-11 2011-12-09 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/060685 WO2010143288A1 (ja) 2009-06-11 2009-06-11 半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/315,841 Continuation US8362519B2 (en) 2009-06-11 2011-12-09 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2010143288A1 true WO2010143288A1 (ja) 2010-12-16

Family

ID=43308556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060685 WO2010143288A1 (ja) 2009-06-11 2009-06-11 半導体装置

Country Status (6)

Country Link
US (1) US8362519B2 (ja)
EP (1) EP2442355B1 (ja)
JP (1) JP4915481B2 (ja)
KR (1) KR101221206B1 (ja)
CN (1) CN102804359B (ja)
WO (1) WO2010143288A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8330185B2 (en) 2009-09-14 2012-12-11 Toyota Jidosha Kabushiki Kaisha Semiconductor device having semiconductor substrate including diode region and IGBT region
JP2013021100A (ja) * 2011-07-11 2013-01-31 Toyota Motor Corp 半導体装置、及び、半導体装置の製造方法
JP2013048230A (ja) * 2011-07-27 2013-03-07 Toyota Central R&D Labs Inc ダイオード、半導体装置およびmosfet
JP2013051345A (ja) * 2011-08-31 2013-03-14 Toyota Central R&D Labs Inc ダイオード、半導体装置およびmosfet
JP2016111110A (ja) * 2014-12-03 2016-06-20 ルネサスエレクトロニクス株式会社 半導体装置
WO2017141998A1 (ja) * 2016-02-15 2017-08-24 富士電機株式会社 半導体装置
JP2019087730A (ja) * 2017-11-08 2019-06-06 富士電機株式会社 半導体装置
US10600897B2 (en) 2017-11-08 2020-03-24 Fuji Electric Co., Ltd. Semiconductor device
JP2021040071A (ja) * 2019-09-04 2021-03-11 株式会社デンソー 半導体装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012056704A1 (ja) * 2010-10-29 2012-05-03 パナソニック株式会社 半導体素子および半導体装置
JP5937413B2 (ja) * 2011-06-15 2016-06-22 株式会社デンソー 半導体装置
WO2014087499A1 (ja) * 2012-12-05 2014-06-12 トヨタ自動車株式会社 半導体装置
JPWO2014188569A1 (ja) * 2013-05-23 2017-02-23 トヨタ自動車株式会社 ダイオード内蔵igbt
US9041120B2 (en) 2013-07-25 2015-05-26 Infineon Technologies Ag Power MOS transistor with integrated gate-resistor
JP2015170654A (ja) * 2014-03-05 2015-09-28 株式会社東芝 半導体装置
JP6261494B2 (ja) * 2014-12-03 2018-01-17 三菱電機株式会社 電力用半導体装置
DE102016117723A1 (de) * 2016-09-20 2018-03-22 Infineon Technologies Ag Diodenstruktur eines Leistungshalbleiterbauelements
JP6645594B2 (ja) * 2017-02-15 2020-02-14 富士電機株式会社 半導体装置
CN109891595B (zh) * 2017-05-31 2022-05-24 富士电机株式会社 半导体装置
US10847617B2 (en) 2017-12-14 2020-11-24 Fuji Electric Co., Ltd. Semiconductor device
JP7279356B2 (ja) * 2018-12-19 2023-05-23 富士電機株式会社 半導体装置
CN110504168B (zh) * 2019-08-29 2020-08-28 电子科技大学 一种多槽栅横向高压功率器件制造方法
CN114144890A (zh) * 2020-02-12 2022-03-04 富士电机株式会社 半导体装置及其制造方法
JP7354897B2 (ja) * 2020-03-26 2023-10-03 三菱電機株式会社 半導体装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136850A (ja) * 1985-12-11 1987-06-19 Toshiba Corp 半導体装置及びその製造方法
JPH05152574A (ja) * 1991-11-29 1993-06-18 Fuji Electric Co Ltd 半導体装置
JP2002314082A (ja) * 2001-04-18 2002-10-25 Mitsubishi Electric Corp 半導体装置
JP2005057235A (ja) 2003-07-24 2005-03-03 Mitsubishi Electric Corp 絶縁ゲート型バイポーラトランジスタ及びその製造方法、並びに、インバータ回路
JP2006173296A (ja) * 2004-12-15 2006-06-29 Yaskawa Electric Corp 半導体装置とその製造方法
JP2008227237A (ja) * 2007-03-14 2008-09-25 Toyota Central R&D Labs Inc 半導体装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3015679B2 (ja) 1993-09-01 2000-03-06 株式会社東芝 半導体装置およびその製造方法
US6008520A (en) 1994-12-30 1999-12-28 Siliconix Incorporated Trench MOSFET with heavily doped delta layer to provide low on- resistance
JP3288218B2 (ja) 1995-03-14 2002-06-04 三菱電機株式会社 絶縁ゲート型半導体装置およびその製造方法
US5751024A (en) 1995-03-14 1998-05-12 Mitsubishi Denki Kabushiki Kaisha Insulated gate semiconductor device
US6001678A (en) 1995-03-14 1999-12-14 Mitsubishi Denki Kabushiki Kaisha Insulated gate semiconductor device
US6768168B1 (en) 1995-03-14 2004-07-27 Mitsubishi Denki Kabushiki Kaisha Insulated gate semiconductor device with low on voltage and manufacturing method thereof
US6040599A (en) * 1996-03-12 2000-03-21 Mitsubishi Denki Kabushiki Kaisha Insulated trench semiconductor device with particular layer structure
JPH09270513A (ja) 1996-03-29 1997-10-14 Toyota Central Res & Dev Lab Inc 絶縁ゲート型半導体装置およびその製造方法
JP3521648B2 (ja) 1996-09-30 2004-04-19 株式会社デンソー 半導体装置の製造方法
JPH10270693A (ja) 1997-03-27 1998-10-09 Toyota Central Res & Dev Lab Inc 半導体装置
JPH10294461A (ja) 1997-04-21 1998-11-04 Toyota Central Res & Dev Lab Inc 絶縁ゲート形半導体素子
JP3518427B2 (ja) 1999-07-01 2004-04-12 トヨタ自動車株式会社 半導体装置
EP1089343A3 (en) * 1999-09-30 2003-12-17 Kabushiki Kaisha Toshiba Semiconductor device with trench gate
JP4852188B2 (ja) 1999-12-06 2012-01-11 株式会社豊田中央研究所 半導体装置
KR100327323B1 (ko) 2000-05-30 2002-03-06 김덕중 래치 업이 억제된 트랜치 게이트 구조의 전력용반도체소자 및 그 제조방법
US20020179968A1 (en) 2001-05-30 2002-12-05 Frank Pfirsch Power semiconductor component, compensation component, power transistor, and method for producing power semiconductor components
JP5070668B2 (ja) 2001-09-20 2012-11-14 富士電機株式会社 半導体装置
JP4109565B2 (ja) 2003-03-31 2008-07-02 ローム株式会社 半導体装置の製造方法および半導体装置
JP4723816B2 (ja) 2003-12-24 2011-07-13 株式会社豊田中央研究所 半導体装置
JP2007103770A (ja) 2005-10-06 2007-04-19 Sanken Electric Co Ltd 絶縁ゲート型バイポーラトランジスタ
JP5011748B2 (ja) 2006-02-24 2012-08-29 株式会社デンソー 半導体装置
JP5052091B2 (ja) * 2006-10-20 2012-10-17 三菱電機株式会社 半導体装置
JP5089191B2 (ja) 2007-02-16 2012-12-05 三菱電機株式会社 半導体装置およびその製造方法
JP2008227238A (ja) * 2007-03-14 2008-09-25 Toyota Central R&D Labs Inc 半導体装置
JP5070941B2 (ja) * 2007-05-30 2012-11-14 株式会社デンソー 半導体装置
EP2003694B1 (en) * 2007-06-14 2011-11-23 Denso Corporation Semiconductor device
JP4952638B2 (ja) 2008-04-07 2012-06-13 トヨタ自動車株式会社 半導体素子と半導体装置とその駆動方法
KR20090107418A (ko) * 2008-04-08 2009-10-13 산요덴키가부시키가이샤 반도체 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136850A (ja) * 1985-12-11 1987-06-19 Toshiba Corp 半導体装置及びその製造方法
JPH05152574A (ja) * 1991-11-29 1993-06-18 Fuji Electric Co Ltd 半導体装置
JP2002314082A (ja) * 2001-04-18 2002-10-25 Mitsubishi Electric Corp 半導体装置
JP2005057235A (ja) 2003-07-24 2005-03-03 Mitsubishi Electric Corp 絶縁ゲート型バイポーラトランジスタ及びその製造方法、並びに、インバータ回路
JP2006173296A (ja) * 2004-12-15 2006-06-29 Yaskawa Electric Corp 半導体装置とその製造方法
JP2008227237A (ja) * 2007-03-14 2008-09-25 Toyota Central R&D Labs Inc 半導体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2442355A4

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8330185B2 (en) 2009-09-14 2012-12-11 Toyota Jidosha Kabushiki Kaisha Semiconductor device having semiconductor substrate including diode region and IGBT region
JP2013021100A (ja) * 2011-07-11 2013-01-31 Toyota Motor Corp 半導体装置、及び、半導体装置の製造方法
US10658503B2 (en) 2011-07-27 2020-05-19 Toyota Jidosha Kabushiki Kaisha Diode, semiconductor device, and MOSFET
US10147812B2 (en) 2011-07-27 2018-12-04 Toyota Jidosha Kabushiki Kaisha Diode, semiconductor device, and MOSFET
CN103890955A (zh) * 2011-07-27 2014-06-25 丰田自动车株式会社 半导体器件
JP2013048230A (ja) * 2011-07-27 2013-03-07 Toyota Central R&D Labs Inc ダイオード、半導体装置およびmosfet
US9520465B2 (en) 2011-07-27 2016-12-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Diode, semiconductor device, and MOSFET
JP2013051345A (ja) * 2011-08-31 2013-03-14 Toyota Central R&D Labs Inc ダイオード、半導体装置およびmosfet
JP2016111110A (ja) * 2014-12-03 2016-06-20 ルネサスエレクトロニクス株式会社 半導体装置
WO2017141998A1 (ja) * 2016-02-15 2017-08-24 富士電機株式会社 半導体装置
JPWO2017141998A1 (ja) * 2016-02-15 2018-06-07 富士電機株式会社 半導体装置
US10770453B2 (en) 2016-02-15 2020-09-08 Fuji Electric Co., Ltd. Semiconductor device having an emitter region and a contact region inside a mesa portion
US11676960B2 (en) 2016-02-15 2023-06-13 Fuji Electric Co., Ltd. Semiconductor device
JP2019087730A (ja) * 2017-11-08 2019-06-06 富士電機株式会社 半導体装置
US10600897B2 (en) 2017-11-08 2020-03-24 Fuji Electric Co., Ltd. Semiconductor device
JP7028093B2 (ja) 2017-11-08 2022-03-02 富士電機株式会社 半導体装置
JP2021040071A (ja) * 2019-09-04 2021-03-11 株式会社デンソー 半導体装置
JP7172920B2 (ja) 2019-09-04 2022-11-16 株式会社デンソー 半導体装置

Also Published As

Publication number Publication date
JPWO2010143288A1 (ja) 2012-11-22
EP2442355A4 (en) 2012-10-17
CN102804359B (zh) 2014-06-04
US8362519B2 (en) 2013-01-29
CN102804359A (zh) 2012-11-28
JP4915481B2 (ja) 2012-04-11
KR101221206B1 (ko) 2013-01-21
EP2442355A1 (en) 2012-04-18
US20120080718A1 (en) 2012-04-05
EP2442355B1 (en) 2014-04-23
KR20120024576A (ko) 2012-03-14

Similar Documents

Publication Publication Date Title
JP4915481B2 (ja) 半導体装置
JP6896673B2 (ja) 半導体装置
JP6281548B2 (ja) 半導体装置
JP6221974B2 (ja) 半導体装置
JP5924420B2 (ja) 半導体装置
JP6003961B2 (ja) 半導体装置
JP6471508B2 (ja) 半導体装置
JP2007214541A (ja) 半導体装置
JP2016082097A (ja) 半導体装置
JP7055056B2 (ja) 半導体装置および半導体装置の製造方法
JP2013235891A (ja) 半導体装置
JP2013026534A (ja) 半導体装置
CN110034184B (zh) 半导体装置
JP2015095618A (ja) 半導体装置の製造方法
JP5941214B2 (ja) 半導体装置
JP2010225816A (ja) 半導体装置
JP2017098344A (ja) 半導体装置
CN109686789B (zh) 半导体装置
JP2014135419A (ja) ダイオード及びダイオードを内蔵した半導体装置
JP2012182391A (ja) 半導体装置
JP7352437B2 (ja) 半導体装置
JP6852541B2 (ja) 半導体装置
JP5292157B2 (ja) 横型絶縁ゲートバイポーラトランジスタおよびその製造方法
JP2010251627A (ja) 横型半導体装置
WO2024029153A1 (ja) 絶縁ゲート型バイポーラトランジスタ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159805.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010547887

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845813

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009845813

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117026022

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE