WO2010119680A1 - 連続鋳造設備 - Google Patents

連続鋳造設備 Download PDF

Info

Publication number
WO2010119680A1
WO2010119680A1 PCT/JP2010/002718 JP2010002718W WO2010119680A1 WO 2010119680 A1 WO2010119680 A1 WO 2010119680A1 JP 2010002718 W JP2010002718 W JP 2010002718W WO 2010119680 A1 WO2010119680 A1 WO 2010119680A1
Authority
WO
WIPO (PCT)
Prior art keywords
slab
roll
support
rolls
continuous casting
Prior art date
Application number
PCT/JP2010/002718
Other languages
English (en)
French (fr)
Inventor
今井俊太郎
黒木雅嗣
岡洋介
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to CN2010800160617A priority Critical patent/CN102387878B/zh
Priority to JP2011509217A priority patent/JP4880089B2/ja
Priority to BRPI1015033-1A priority patent/BRPI1015033B1/pt
Publication of WO2010119680A1 publication Critical patent/WO2010119680A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/128Accessories for subsequent treating or working cast stock in situ for removing

Definitions

  • the present invention relates to a continuous casting facility provided with a plurality of support rolls arranged to face each other across a slab passage.
  • a continuous casting facility for producing a slab from molten metal is provided with a slab passage for passing a slab drawn from a tundish through a mold, a pair of rolls arranged opposite to each other across the slab passage, and the like. .
  • a plurality of support rolls for guiding the slab are arranged side by side in the casting direction of the slab.
  • Each support roll is rotatably provided with a central axis extending in the width direction of the slab as a rotation center axis, and the slab is supported in a state in which the slab is sandwiched by these support rolls while the slab is supported in a predetermined casting direction. Pull out to transport.
  • Each support roll rotates with the movement of the slab, whereby the slab is smoothly guided.
  • the distance between the support rolls on the downstream side is set to the distance between the support rolls on the upstream side at a position where the solid fraction of the slab corresponds to 0.3 to 0.9 during continuous casting. It is also proposed to make it smaller (Patent Document 2).
  • bulging may not be sufficiently suppressed only by dividing the support roll into a plurality of divided rolls. For example, an unsupported portion where the roll does not contact the slab exists between the split rolls adjacent to each other in the slab width direction in one support roll. It was found that even if the interval between the divided rolls was made constant, the bulging amount could or might not be suppressed at the non-supported portion, and sufficient bulging suppression was not always achieved. This bulging caused central segregation, which is an internal defect of the slab, and deteriorated the slab quality.
  • the present invention has been made in view of such a point, and an object thereof is to reduce the bulging amount of a slab and suppress the center segregation of the slab.
  • a continuous casting facility is a continuous casting facility including a plurality of support rolls arranged to face each other across a passage of a slab, and each of the support rolls Has a plurality of divided rolls arranged along the width direction of the slab, and the center solid phase ratio of the slab during the continuous casting process is 0.2 or more and less than 1.0.
  • An interval between the divided rolls adjacent to each other in the width direction of the slab in the support roll is defined as an interval A (mm), and the downstream of the support roll in the casting direction.
  • the distance A and the distance B are the following formulas (1) and (2) Meet.
  • the center segregation of the slab can be suppressed by reducing the bulging amount of the slab.
  • Drawing 1 is an explanatory view showing the outline of the composition of continuous casting equipment 1 concerning this embodiment.
  • the continuous casting facility 1 includes a tundish 2 for storing molten steel, a nozzle 4 for injecting molten steel into the mold 3 from the bottom of the tundish 2, and a slab through which a slab H drawn from the mold 3 passes.
  • a pair of roll groups 6 and 7 are provided so as to face each other across the passage 5 and the slab passage 5.
  • the inner peripheral roll group 6 includes a plurality of support rolls 10 that guide the inner peripheral side of the slab H in the slab passage 5.
  • Each supporting roll 10, the center axis thereof so as to face in the width direction of the slab H, are arranged in a row along the casting direction D 1.
  • the outer peripheral side roll group 7 has a plurality of support rolls 11 for guiding the outer peripheral side of the slab H in the slab passage 5.
  • Each supporting roll 11 has its central axis so as to face in the width direction of the slab H, are arranged in a row along the casting direction D 1.
  • the support rolls 10 and 11 are attached to a roll segment device 20 as shown in FIGS.
  • the roll segment device 20 includes an inner peripheral frame 21 to which a plurality of inner peripheral support rolls 10 are attached, and an outer peripheral frame 22 to which a plurality of outer peripheral support rolls 11 are attached.
  • a support member for supporting the inner peripheral side frame 21 and the outer peripheral side frame 22 between the inner peripheral side frame 21 and the outer peripheral side frame 22 and adjusting the distance between the support rolls 10 and 11. 23 is provided.
  • the support member 23 is provided with a hydraulic cylinder 24.
  • a cylinder rod or a cylindrical body is used as the support member 23.
  • the structure which adjusts the length of the supporting member 23 by a screwing form is preferable.
  • a configuration in which the screw portion is divided into two parts, or a configuration in which the screw portion is disposed between the support member 23 and the outer frame 22 can be adopted.
  • a plurality in the width direction D 2 of the slab H for example, three split rolls 30a, 30b, are divided into 30c.
  • Each divided rolls 30 forms a substantially cylindrical shape, is inserted through the shaft 31 extending in the slab width direction D 2 in its center.
  • Each divided roll 30 and the shaft 31 may have a one-piece structure or a separate structure.
  • the shaft 31 may be divided in the axial direction by the intermediate bearing portion 33. With this configuration, the split roll 30 can rotate around the shaft 31. End bearing portions 32 are provided at both ends of the shaft 31. Further, the shaft 31 between the split rolls 30 is provided with an intermediate bearing portion 33 (see FIG. 2). When the shaft 31 is divided in the axial direction by the intermediate bearing portion 33, two bearings are arranged in the intermediate bearing portion 33.
  • the end bearing portion 32 and the intermediate bearing portion 33 are supported by the frame 21 on the inner peripheral side.
  • the distance B (mm) between the support rolls adjacent to each other in the casting direction with respect to one support roll is In a plan view as shown in FIG. 4, it is defined as the distance of the center portion of each roll.
  • the center segregation is performed by adjusting the interval between the divided rolls adjacent to each other in the width direction of the slab in one support roll to an appropriate range corresponding to the interval in the casting direction between the support rolls.
  • the suppression effect is significantly improved. That is, in order to sufficiently suppress the amount of bulging that causes center segregation, it is not sufficient to adjust the split roll arrangement one-dimensionally as in the past, and the support roll arrangement and the split roll are two-dimensionally adjusted. It turns out that the arrangement needs to be adjusted.
  • the support rolls adjacent to each other in the casting direction of the one support roll (as viewed from the one support roll described above) centered on the unsupported portion of the cast piece between the divided rolls adjacent to each other in the width direction of the cast piece.
  • Deformation of a two-dimensional flat plate (slab) in a range over a support roll adjacent to the front in the casting direction, and a support roll adjacent to the rear in the casting direction as viewed from the one support roll; was analyzed and the amount of bulging was evaluated. Then, from the relationship between the bulging amount and the center segregation, the above formula (1) was derived as a condition for sufficiently suppressing the center segregation.
  • the upper limit value in the above formula (2) is set to 680 mm.
  • 400 mm which is the lower limit in the above formula (2) was determined as the minimum interval at which the support rolls can actually be installed in the continuous casting facility.
  • the support roll (divided roll) is arranged in the continuous casting equipment of the present invention so as to satisfy the above formulas (1) and (2). For this reason, the amount of bulging of a slab can be made small and the center segregation of this slab can fully be suppressed.
  • the central solid fraction can be defined as the solid fraction of the molten portion in the center of the slab thickness direction and in the slab width direction.
  • the central solid phase ratio can be determined by heat transfer / solidification calculation.
  • As the heat transfer / solidification calculation an enthalpy method, an equivalent specific heat method, or the like is widely known, and any method may be used. For simplicity, the following equation is widely known, and this equation may be used.
  • Central solid fraction (liquidus temperature-melt temperature) / (liquidus temperature-solidus temperature)
  • the melting part temperature means the temperature of the melting part in the center part in the slab thickness direction and in the slab width direction, and can be obtained by heat transfer / solidification calculation.
  • liquidus temperature refers to, for example, “Akane and Steel, Nippon Steel Association, Vol. 55, No. 3 (19690227) S85, Japan Iron and Steel Institute”.
  • the temperature can be calculated with reference to, for example, “Hirai, Kanamaru, Mori; Gakken 19 Committee, Fifth Solidification Phenomenon Council Material, Solidification 46 (December 1968)”.
  • the split rolls 30 are arranged in a so-called zigzag shape (catch stitch shape). That is, the gaps between the divided rolls are arranged in a zigzag so that they are not aligned in a line along the casting direction.
  • segmentation which comprises the support roll 10a
  • non-supporting band length B The distance (interval) B between the support rolls 10b and 10c on both sides of 1 (hereinafter sometimes referred to as “non-supporting band length B”) satisfies the following expressions (1) and (2). Is set to Detailed description of these formulas (1) and (2) will be described later. Note that the minimum value of the non-supporting band width A is, for example, about 100 mm as a value at which the split roll 30 can be actually installed.
  • A ⁇ 0.001 ⁇ B 2 ⁇ 1.5 ⁇ B + 735 (1) 400 ⁇ B ⁇ 680 (2)
  • A is divided rolls 30a adjacent to the slab width direction D 2 in the support rolls 10a, between 30b spacing (mm)
  • B is the support roll 10b on both sides of the casting direction D 1 of the supporting roller 10a, 10c The distance between them (mm).
  • the support roll 11 on the outer peripheral side also has a plurality of, for example, three divided rolls 40 a, 40 b , and 40 c in the width direction D 2 of the slab H, like the support roll 10 on the inner peripheral side. It is divided into Each divided rolls 40 forms a substantially cylindrical shape, is inserted through the shaft 41 extending in the slab width direction D 2 in its center. Each split roll 40 and shaft 41 may have a separate structure or a separate structure. The shaft 41 may be divided in the axial direction by the intermediate bearing portion 43. With this configuration, the split roll 40 can rotate around the shaft 41. End bearing portions 42 are provided at both ends of the shaft 41. An intermediate bearing 43 is provided on the shaft 41 between the split rolls 40.
  • the shaft 41 When the shaft 41 is divided in the axial direction by the intermediate bearing portion 43, two bearings are required for the intermediate bearing portion 43.
  • the end bearing portion 42 and the intermediate bearing portion 43 are supported by the frame 22 on the outer peripheral side.
  • the planar arrangement of the divided rolls 40 is the same as the planar arrangement of the inner circumferential divided rolls 30 described in FIG. That is, the support roll 11 and the division
  • molten steel stored in the tundish 2 is injected into the mold 3 through the nozzle 4.
  • the molten steel is cooled from the outer periphery and solidified to form a slab H.
  • the slab H is drawn from the mold 3 to the slab passage 5 and is moved downstream along the casting direction D 1 while being guided by the roll groups 6 and 7.
  • the distance between the support rolls 10 and 11 in the roll groups 6 and 7 is adjusted by the roll segment device 20 so that the slab H has a predetermined thickness.
  • the slab H is further cooled while passing through the slab passage 5 and solidifies to the inside.
  • the deformation amount in the slab thickness direction (hereinafter referred to as “bulging amount”) of the two-dimensional flat plate (non-supporting band S) extending to the supporting rolls 10b and 10c is analyzed using a finite element method, and the bulging amount is calculated. evaluated. Evaluation of the bulging amount was performed in the roll group 6 at a position where the central solid phase ratio of the slab H corresponds to 0.8. This central solid phase ratio is in the range of 0.2 or more and less than 1.0.
  • This central solid fraction has been separately confirmed that when the central solid fraction of the slab H is 0.2 or more and less than 1.0, bulging of the slab H occurs and central segregation occurs. Therefore, it was set as the representative value. Further, in the non-supporting band S, the bulging amount was evaluated by changing the non-supporting band width A in a range of 400 mm or less and changing the non-supporting band length B in 450 mm, 560 mm, 600 mm, 640 mm, and 680 mm. .
  • the evaluation results of the bulging amount are shown in FIG.
  • the horizontal axis of FIG. 5 indicates the non-supporting band width A.
  • the vertical axis in FIG. 5 indicates the ratio of the bulging amount when the unsupported band width A is 0 mm and the unsupported band length B is 560 mm, and the bulging amount is defined as 1. is doing.
  • the non-support band width A of 0 mm means a case where the support roll is not divided.
  • the non-supporting band length B is 280 mm, for the sake of convenience, the non-supporting band length B is expressed as 560 mm even when the non-supporting band width A is 0 mm for comparison with the case where the support roll is divided. ing.
  • the non-supporting band width A is 0 mm and the supporting roll is not divided, there is a problem that bulging occurs due to the bending of the supporting roll as described above.
  • the case where the non-supporting band width A and the non-supporting band length B are changed the case where the non-supporting band width A is 0 mm is used as a reference when the bulging amount is the smallest.
  • the support roll could be operated without bending.
  • the relationship between the unsupported band width A and the unsupported band length B that satisfies the bulging index of 2.8 or less was obtained. That is, when the unsupported band length B was varied, the unsupported band width A at which the bulging index was 2.8 or less was determined.
  • the unsupported band width A and the unsupported band length B in this range were plotted as shown in FIG. Then, the plot in FIG. 6 was approximated by a polynomial to derive the relational expression of the above formula (1).
  • the non-supporting band length B is 680 mm or more, even if the non-supporting band width A is reduced, the non-supporting band length B is too large, so that the center segregation is entirely observed. It turned out to be worse. Further, when the non-support band width A is 0 mm (that is, when a non-divided support roll is used), the bulging index is 2.0 or more (the range above the thin dotted line in FIG. 5), and the center segregation is sufficient. It was also found that it was not possible to suppress it. Therefore, in the above formula (2), the upper limit value of the unsupported belt length B is set to 680 mm. Incidentally, 400 mm which is the lower limit in the formula (2) is determined on the basis that the actual installed smallest possible spacing of the casting direction D 1 to the adjacent support rolls 10 and 11 in a continuous casting machine 1 is 200mm ing.
  • the support rolls 10 and 11 split rolls 30 and 40
  • the bulging amount of the slab H passing through the slab passage 5 can be reduced. Therefore, the center segregation of the slab H can be sufficiently suppressed, and a high quality slab can be manufactured.
  • the apparatus of 1 aspect of this invention can also be described as follows: It is a continuous casting installation provided with two or more support rolls arrange
  • a support roll at a position where the center solid phase ratio of the slab is equal to or greater than 0.2 and less than 1.0 during continuous casting the slab is divided into a plurality of divided rolls in the direction.
  • the interval A between the adjacent divided rolls and the interval B between the adjacent support rolls in the casting direction between the divided rolls adjacent in the slab width direction satisfy the above formula (1) and the above formula (2).
  • the present invention is useful for a continuous casting facility provided with a plurality of support rolls arranged to face each other across a slab passage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

 この連続鋳造設備は、鋳片の通路を挟んで対向配置される複数の支持ロールを備えた連続鋳造設備であって、それぞれの前記支持ロールは、前記鋳片の幅方向に沿って配置された複数の分割ロールを有し、連続鋳造工程中の前記鋳片の中心固相率が0.2以上かつ1.0未満となる前記通路上の位置に配置された前記各支持ロールについて:前記支持ロール中の前記鋳片の前記幅方向で隣り合う前記分割ロール間の間隔を間隔A(mm)と定義し、前記支持ロールの鋳造方向下流側の隣の支持ロールから前記支持ロールの鋳造方向上流側の隣の支持ロールまでの距離を距離B(mm)と定義したとき、間隔A及び距離Bが、A≦0.001×B-1.5×B+735および400≦B<680を満たす。

Description

連続鋳造設備
 本発明は、鋳片通路を挟んで対向配置される支持ロールを複数備えた連続鋳造設備に関する。
 本願は、2009年4月14日に、日本に出願された特願2009-097681号に基づき優先権を主張し、その内容をここに援用する。
 溶融金属から鋳片を製造する連続鋳造設備には、タンディッシュから鋳型を通じて引き出される鋳片を通過させる鋳片通路、鋳片通路を挟んで対向配置される一対のロール群等が設けられている。ロール群には、鋳片を案内する複数の支持ロールが、鋳片の鋳造方向に並べて配置されている。各支持ロールは、鋳片の幅方向に延伸する中心軸を回転中心軸としてそれぞれ回転可能に設けられ、これらの支持ロールによって鋳片を挟んだ状態で支持しながら、鋳片を所定の鋳造方向に引き出して搬送する。各支持ロールは、鋳片の移動に伴ってそれぞれ回転し、これにより、鋳片が円滑に案内される。
 この連続鋳造設備において、鋳型より下方では、鋳片に未凝固溶鋼の静圧によるバルジングが生じることがある。特に、上述した支持ロールはその両端を軸受部で支持されているため、鋳片の幅方向の中央付近で支持ロールがたわむことにより鋳片の幅方向の中央付近のバルジング量が大きくなる。そこで従来より、バルジング量を小さくするため、支持ロールを鋳片の幅方向に複数の分割ロールに分割し、これらの分割ロール間を中間軸受部で支持した支持ロールが用いられている(特許文献1)。
 また、このバルジングを抑制するため、連続鋳造中に鋳片の固相率が0.3~0.9に相当する位置において、下流側の支持ロール間の間隔を上流側の支持ロール間の間隔よりも小さくすることも提案されている(特許文献2)。
日本国特開2007-30012号公報 日本国特開2005-193265号公報
 しかしながら、本発明者らが調べたところ、支持ロールを複数の分割ロールに分割しただけでは、バルジングを十分に抑制できない場合があることが分かった。例えば一の支持ロール中の鋳片幅方向に隣り合う分割ロール間には、ロールが鋳片と接しない非支持部分が存在する。この分割ロール間の間隔を一定にしても、非支持部分においてバルジング量を抑制できる場合とできない場合があり、必ずしも十分なバルジング抑制が達成されていないことが分かった。そして、このバルジングにより鋳片の内部欠陥である中心偏析が発生し、鋳片品質が悪化していた。
 本発明は、かかる点に鑑みてなされたものであり、鋳片のバルジング量を小さくして、この鋳片の中心偏析を抑制することを目的とする。
 前記の目的を達成するため、本発明の一態様にかかる連続鋳造設備は、鋳片の通路を挟んで対向配置される複数の支持ロールを備えた連続鋳造設備であって、それぞれの前記支持ロールは、前記鋳片の幅方向に沿って配置された複数の分割ロールを有し、連続鋳造工程中の前記鋳片の中心固相率が0.2以上かつ1.0未満となる前記通路上の位置に配置された前記各支持ロールについて:前記支持ロール中の前記鋳片の前記幅方向で隣り合う前記分割ロール間の間隔を間隔A(mm)と定義し、前記支持ロールの鋳造方向下流側の隣の支持ロールから前記支持ロールの鋳造方向上流側の隣の支持ロールまでの距離を距離B(mm)と定義したとき、間隔A及び距離Bが、下記(1)および(2)式を満たす。
  A≦0.001×B-1.5×B+735・・・・(1)
  400≦B<680・・・・(2
 本発明によれば、鋳片のバルジング量を小さくして、この鋳片の中心偏析を抑制することができる。
本実施の形態にかかる連続鋳造設備の構成の概略を示す説明図である。 ロールセグメント装置の構成を側面から見て模式的に示した説明図である。 ロールセグメント装置の構成を側面から見て模式的に示した説明図である。 分割ロールの平面配置を示した説明図である。 非支持帯幅とバルジング指数の関係を示したグラフである。 非支持帯長さと非支持帯幅の関係を示したグラフである。
 以下、本発明の実施の形態について説明する。図1は、本実施の形態にかかる連続鋳造設備1の構成の概略を示す説明図である。
 連続鋳造設備1は、図1に示すように、溶鋼を貯留するタンディッシュ2、タンディッシュ2の底部から鋳型3に溶鋼を注入するノズル4、鋳型3から引き出される鋳片Hを通過させる鋳片通路5、及び鋳片通路5を挟んで対向配置される一対のロール群6、7を備えている。
 一対のロール群6、7は、鋳片Hを鋳片通路5に沿った鋳造方向Dに案内するように、鋳片通路5の可動面側(いわゆるL面側で、以下、「内周側」と記載する場合がある)と固定面側(いわゆるF面側で、以下、「外周側」と記載する場合がある)にそれぞれ設けられている。内周側のロール群6は、鋳片通路5内の鋳片Hの内周側を案内する複数の支持ロール10を有している。各支持ロール10は、その中心軸が鋳片Hの幅方向に向くように、鋳造方向Dに沿って一列に配置されている。また、外周側のロール群7は、鋳片通路5内の鋳片Hの外周側を案内する複数の支持ロール11を有している。各支持ロール11は、その中心軸が鋳片Hの幅方向に向くように、鋳造方向Dに沿って一列に配置されている。
 支持ロール10、11は、図2及び図3に示すように、ロールセグメント装置20に取り付けられている。ロールセグメント装置20は、内周側の支持ロール10が複数取り付けられる内周側のフレーム21と、外周側の支持ロール11が複数取り付けられる外周側のフレーム22を有している。内周側のフレーム21と外周側のフレーム22との間には、これら内周側のフレーム21と外周側のフレーム22を支持し、支持ロール10、11間の間隔を調整するための支持部材23が設けられている。支持部材23には、油圧シリンダ24が設けられている。なお、支持部材23としては、例えばシリンダロッドや円筒体が用いられる。円筒体を用いる場合、支持部材23は、螺合形式によりその長さを調整する構成が好ましい。例えば、螺合部を挟んで2つに分割される構成や、もしくは支持部材23と外周側のフレーム22との間に螺合部が配置される構成などを採用できる。
 内周側の支持ロール10は、鋳片Hの幅方向Dに複数、例えば3つの分割ロール30a、30b、30cに分割されている。各分割ロール30は略円柱形状をなし、その中心には鋳片幅方向Dに延伸するシャフト31が挿通している。各分割ロール30とシャフト31は一体物の構造でもよく、別個の構造でもよい。また、シャフト31は中間軸受部33で軸方向に分割されてもよい。かかる構成により、分割ロール30はシャフト31を中心に回転可能である。シャフト31の両端部には、端部軸受部32が設けられている。また、分割ロール30間のシャフト31には、中間軸受部33(図2を参照)が設けられている。シャフト31が中間軸受部33で軸方向に分割される場合には、中間軸受部33に軸受が2個配置される。これら端部軸受部32と中間軸受部33は、内周側のフレーム21に支持されている。
 ここで、一つの支持ロールに対して上記の鋳造方向の両隣の支持ロール(つまり鋳造方向下流側の隣の支持ロール及び鋳造方向上流側の隣の支持ロール)間の距離B(mm)は、図4に示す様な平面視において、各ロールの中央部の距離と定義される。
 発明者らが鋭意研究を重ねた結果、鋳片の中心偏析を十分に抑制するためには、支持ロール間の鋳造方向の間隔を調整のみでは不十分であることを見出した。一方、上記調整に加えて、支持ロール間の鋳造方向の間隔に対応して、一の支持ロールにおいて鋳片幅方向に隣り合う分割ロール間の間隔を適切な範囲に調整することによって、中心偏析の抑制効果が著しく向上する。すなわち、中心偏析の原因となるバルジング量を十分に抑制するためには、従来のように一次元的に分割ロール配置を調整するのみでは不十分であり、二次元的に支持ロール配置および分割ロール配置を調整する必要があることが分かった。そこで、一の支持ロールにおいて鋳片幅方向に隣り合う分割ロール間の鋳片の非支持部分を中心として、この一の支持ロールの鋳造方向の両隣の支持ロール(上記一の支持ロールから見て鋳造方向の前方隣の支持ロール、および上記一の支持ロールから見て鋳造方向の後方隣の支持ロール;以下単に両隣の支持ロールとも記載する)に渡る範囲の2次元平板(鋳片)の変形を解析し、バルジング量を評価した。そして、バルジング量と中心偏析との関係から、中心偏析を十分に抑制するための条件として、上記式(1)を導出した。
 また、一の支持ロールの両隣の支持ロール間の間隔が680mm以上であると、上記式(1)を満たす場合であっても、バルジング量が大きくなり過ぎて、中心偏析を十分に抑制できないことが分かった。そこで、上記式(2)において上限値を680mmとした。
 なお、上記式(2)において下限値である400mmは、連続鋳造設備において支持ロールを実際に設置可能な最小の間隔として決定した。
 以上のように、本発明の連続鋳造設備には、上記式(1)及び式(2)を満たすように支持ロール(分割ロール)が配置されている。このため、鋳片のバルジング量を小さくして、この鋳片の中心偏析を十分に抑制することができる。
 なお、中心固相率とは、鋳片厚み方向の中心部で、かつ、鋳片幅方向の溶融部分の固相率と定義できる。
 また、中心固相率は、伝熱・凝固計算によって求めることができ、伝熱・凝固計算としては、エンタルピー法や等価比熱法などが広く知られており、いずれの方法を用いても良い。また、簡易的には、下記の式が広く知られており、この式を用いても良い。
 中心固相率=(液相線温度-溶融部温度)/(液相線温度-固相線温度)
 ここで、溶融部温度とは、鋳片厚み方向の中心部で、かつ、鋳片幅方向の溶融部分の温度を意味しており、伝熱・凝固計算によって求めることができる。また、液相線温度は、例えば、「鐵と鋼、日本鐡鋼協會々誌、Vol.55、No.3(19690227)S85、社団法人日本鉄鋼協会」を参照して、また、固相線温度は、例えば、「平居、金丸、森;学振19委、第5回凝固現象協議会資料、凝固46(1968年12月)」を参照して、それぞれ算出することができる。
 分割ロール30は、図4に示すようにいわゆる千鳥状(キャッチステッチ状)に配置されている。つまり、分割ロール間のギャップが、鋳造方向に沿って一列に整列しないように、ジグザグに配置される。そして、連続鋳造中に、ロール群6における鋳片Hの中心固相率が0.2以上かつ1.0未満に相当する位置にある支持ロール10aにおいては、支持ロール10aを構成している分割ロール30の間隔、すなわち鋳片幅方向Dに隣り合う分割ロール30a、30b間の間隔A(以下、「非支持帯幅A」という場合がある。)と、この支持ロール10aの鋳造方向Dの両隣の支持ロール10b、10c間の距離(間隔)B(以下、「非支持帯長さB」という場合がある。)が、下に再掲する式(1)及び式(2)を満たすように設定されている。これら式(1)及び式(2)の詳細な説明については後述する。なお、非支持帯幅Aの最小値は、実際に分割ロール30を設置可能な値として、例えば100mm程度である。
 A≦0.001×B-1.5×B+735・・・・(1)
 400≦B<680・・・・(2)
但し、Aは支持ロール10a中の鋳片幅方向Dに隣り合う分割ロール30a、30b間の間隔(mm)であり、Bは支持ロール10aの鋳造方向Dの両隣の支持ロール10b、10c間の間隔(mm)である。
 図2及び図3に示すように、外周側の支持ロール11も、内周側の支持ロール10と同様に、鋳片Hの幅方向Dに複数、例えば3つの分割ロール40a、40b、40cに分割されている。各分割ロール40は略円柱形状をなし、その中心には鋳片幅方向Dに延伸するシャフト41が挿通している。各分割ロール40とシャフト41は一体物の構造となる場合と別個の構造となる場合がある。またシャフト41は中間軸受部43で軸方向に分割される場合がある。かかる構成により、分割ロール40はシャフト41を中心に回転可能になっている。シャフト41の両端部には、端部軸受部42が設けられている。また、分割ロール40間のシャフト41には、中間軸受部43が設けられている。シャフト41が中間軸受部43で軸方向に分割される場合には、中間軸受部43に軸受が2個必要となる。これら端部軸受部42と中間軸受部43は、外周側のフレーム22に支持されている。なお、分割ロール40の平面配置については、図4で説明した内周側の分割ロール30の平面配置と同様であるので説明を省略する。すなわち、支持ロール11と分割ロール40は、上記式(1)及び式(2)を満たすように配置されている。
 以上のように構成された連続鋳造設備1の作用について説明する。先ず、タンディッシュ2に貯留された溶鋼がノズル4を介して鋳型3に注入される。鋳型3内では、溶鋼の外周から冷却されて凝固し、鋳片Hが形成される。鋳片Hは、鋳型3から鋳片通路5に引き出され、ロール群6、7に案内されながら、鋳造方向Dに沿って下流側に移動する。この際、ロール群6、7における支持ロール10、11間の距離は、ロールセグメント装置20により鋳片Hが所定の厚みになるように調整されている。そして、鋳片Hは、鋳片通路5を通過中にさらに冷却されて、内部まで凝固する。
 次に、上述した式(1)及び式(2)について説明する。発明者らは鋭意研究を重ねた結果、鋳片の中心偏析を十分に抑制するためには、支持ロール間の間隔を調整すると共に、一の支持ロールにおいて隣り合う分割ロール間の間隔も調整する必要があることを見出した。すなわち、中心偏析の原因となるバルジング量を十分に抑制するためには、ロール間の間隔を二次元的に調整する必要があることが分かった。
 そこで、図4に示すように、支持ロール10aにおいて鋳片幅方向Dに隣り合う分割ロール30a、30b間の鋳片Hの非支持部分を中心として、支持ロール10aの鋳造方向Dの両隣の支持ロール10b、10cまで広がる2次元平板(非支持帯S)の鋳片厚み方向の変形量(以下、「バルジング量」と記載する。)を有限要素法を用いて解析し、バルジング量を評価した。バルジング量の評価は、鋳片Hの中心固相率が0.8に相当する位置のロール群6において行った。この中心固相率は0.2以上かつ1.0未満の範囲内である。この中心固相率は、鋳片Hの中心固相率が0.2以上かつ1.0未満の範囲において、鋳片Hのバルジングが発生して中心偏析が生じることを、別途、確認していたため、その代表値として設定した。また、非支持帯Sにおいて、非支持帯幅Aを400mm以下の範囲で変化させ、非支持帯長さBを450mm、560mm、600mm、640mm、680mmで変化させて、バルジング量の評価を行った。
 かかるバルジング量の評価結果を図5に示す。図5の横軸は、非支持帯幅Aを示している。また、図5の縦軸は、非支持帯幅Aが0mm、かつ非支持帯長さBが560mmにおけるバルジング量を1とした場合のバルジング量の比率を示しており、これをバルジング指数と定義している。なお、非支持帯幅Aが0mmとは支持ロールが分割されていない場合を意味する。非支持帯長さBは280mmとなるが、支持ロールが分割されている場合と比較するために、非支持帯幅Aが0mmの場合でも、便宜上、非支持帯長さBを560mmと表記している。
 また、非支持帯幅Aが0mmで支持ロールが分割されていない場合、実際には前述の通り、支持ロールがたわむことによりバルジングが生じるという問題がある。しかし、ここでは、非支持帯幅Aおよび非支持帯長さBを変化させた場合の検討を行う際に、非支持帯幅Aが0mmの場合をバルジング量が最も少ない場合の基準とするために、支持ロールがたわむことなく操業できるものと仮定した。
 ここで、非支持帯幅Aが0mm、かつ非支持帯長さBが560mmにおけるバルジング量を基準としたのは、分割されていない支持ロール(A=0mm)を用いる場合に、通常、設定されている鋳造方向Dの支持ロール間隔が280mm程度であることに基づいている。そこで、発明者らが調べたところ、バルジング指数が2.8以下であると鋳片Hの中心偏析を十分に抑制できることが分かった。すなわち、図5中の太い点線より下の範囲が中心偏析を抑制できる範囲であることが分かった。
 そこで、バルジング指数が2.8以下の条件を満たすような非支持帯幅Aと非支持帯長さBとの関係を求めた。すなわち、非支持帯長さBを変動させた場合に、バルジング指数が2.8以下となる非支持帯幅Aをそれぞれ求めた。この範囲の非支持帯幅Aと非支持帯長さBを図6に示すようにプロットした。そして、図6中のプロットを多項式近似し、上記式(1)の関係式を導出した。
 また、図5に示すとおり、非支持帯長さBが680mm以上の場合では、非支持帯幅Aを小さくしても、非支持帯長さBが大き過ぎることにより、中心偏析が全体的に悪化することが判明した。また、非支持帯幅Aが0mm(すなわち、分割されていない支持ロールを用いた場合)では、バルジング指数が2.0以上(図5中の細い点線より上の範囲)で、中心偏析を十分に抑制できないことも、併せて分かった。そこで、上記式(2)において非支持帯長さBの上限値を680mmとした。なお、上記式(2)において下限値である400mmは、連続鋳造設備1において鋳造方向Dに隣り合う支持ロール10、11の実際に設置可能な最小の間隔が200mmであることに基づき決定されている。
 以上の実施の形態によれば、鋳片Hの中心固相率が0.8の場合を用いて説明したが、0.2以上かつ1.0未満に相当する複数位置において同様の実験を行った結果、いずれも上記と同様の結果が得られた。
 以上、述べたとおり、本発明によれば、鋳片Hの中心固相率が0.2以上かつ1.0未満に相当する位置のロール群6、7において、支持ロール10、11(分割ロール30、40)が上記式(1)及び式(2)を満たすように配置されているので、鋳片通路5を通過中の鋳片Hのバルジング量を小さくすることができる。したがって、鋳片Hの中心偏析を十分に抑制することができ、品質の高い鋳片を製造することができる。
 なお、本発明の一態様の装置は以下のようにも記載できる:鋳片通路を挟んで対向配置される支持ロールを複数備えた連続鋳造設備であって、前記支持ロールは、鋳片の幅方向に複数の分割ロールに分割され、連続鋳造中に鋳片の中心固相率が0.2以上かつ1.0未満に相当する位置の支持ロールにおいて、当該支持ロール中の鋳片幅方向に隣り合う分割ロール間の間隔Aと、前記鋳片幅方向に隣り合う分割ロール間における鋳造方向の両隣の支持ロール間の間隔Bは、上記式(1)及び上記式(2)を満たすことを特徴とする。
 本発明は、鋳片通路を挟んで対向配置される支持ロールを複数備えた連続鋳造設備に有用である。
  1  連続鋳造設備
  2  タンディッシュ
  3  鋳型
  4  ノズル
  5  鋳片通路
  6、7 ロール群
  10、11 支持ロール
  20 ロールセグメント装置
  21、22 フレーム
  23 支持部材
  24 油圧シリンダ
  30、40 分割ロール
  31、41 シャフト
  32、42 端部軸受部
  33、43 中間軸受部
  H  鋳片
  S  非支持帯

Claims (1)

  1.  鋳片の通路を挟んで対向配置される複数の支持ロールを備えた連続鋳造設備であって、
     それぞれの前記支持ロールは、前記鋳片の幅方向に沿って配置された複数の分割ロールを有し、
     連続鋳造工程中の前記鋳片の中心固相率が0.2以上かつ1.0未満となる前記通路上の位置に配置された前記各支持ロールについて:
     前記支持ロール中の前記鋳片の前記幅方向で隣り合う前記分割ロール間の間隔を間隔A(mm)と定義し、
     前記支持ロールの鋳造方向下流側の隣の支持ロールから前記支持ロールの鋳造方向上流側の隣の支持ロールまでの距離を距離B(mm)と定義したとき、間隔A及び距離Bが、
      A≦0.001×B-1.5×B+735・・・・(1)
     および
      400≦B<680・・・・(2)
     を満たすことを特徴とする連続鋳造設備。
PCT/JP2010/002718 2009-04-14 2010-04-14 連続鋳造設備 WO2010119680A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800160617A CN102387878B (zh) 2009-04-14 2010-04-14 连续铸造设备
JP2011509217A JP4880089B2 (ja) 2009-04-14 2010-04-14 連続鋳造設備
BRPI1015033-1A BRPI1015033B1 (pt) 2009-04-14 2010-04-14 máquina de lingotamento contínuo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-097681 2009-04-14
JP2009097681 2009-04-14

Publications (1)

Publication Number Publication Date
WO2010119680A1 true WO2010119680A1 (ja) 2010-10-21

Family

ID=42982353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002718 WO2010119680A1 (ja) 2009-04-14 2010-04-14 連続鋳造設備

Country Status (4)

Country Link
JP (1) JP4880089B2 (ja)
CN (1) CN102387878B (ja)
BR (1) BRPI1015033B1 (ja)
WO (1) WO2010119680A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016078083A (ja) * 2014-10-17 2016-05-16 新日鐵住金株式会社 連続鋳造用鋳片圧下装置及び連続鋳造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5522324B1 (ja) * 2012-07-31 2014-06-18 Jfeスチール株式会社 鋼の連続鋳造方法
ES2653556T3 (es) * 2013-05-02 2018-02-07 Nippon Steel & Sumitomo Metal Corporation Equipo de colada continua
CN112371937A (zh) * 2020-10-30 2021-02-19 五矿营口中板有限责任公司 一种改善超厚板坯包晶钢中心偏析的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03110049A (ja) * 1989-09-25 1991-05-10 Sumitomo Metal Ind Ltd 連続鋳造用分割ロールの軸受装置
JPH08290251A (ja) * 1995-04-20 1996-11-05 Nippon Steel Corp 鋼の連続鋳造装置および連続鋳造方法
JP2001025850A (ja) * 1999-07-15 2001-01-30 Kobe Steel Ltd 連続鋳造設備

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2721382B2 (ja) * 1989-01-31 1998-03-04 新日本製鐵株式会社 鋼鋳片の組識微細化方法
JP3002071B2 (ja) * 1992-12-28 2000-01-24 新日本製鐵株式会社 薄スラブ連鋳機におけるスプリットロール

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03110049A (ja) * 1989-09-25 1991-05-10 Sumitomo Metal Ind Ltd 連続鋳造用分割ロールの軸受装置
JPH08290251A (ja) * 1995-04-20 1996-11-05 Nippon Steel Corp 鋼の連続鋳造装置および連続鋳造方法
JP2001025850A (ja) * 1999-07-15 2001-01-30 Kobe Steel Ltd 連続鋳造設備

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016078083A (ja) * 2014-10-17 2016-05-16 新日鐵住金株式会社 連続鋳造用鋳片圧下装置及び連続鋳造方法

Also Published As

Publication number Publication date
JP4880089B2 (ja) 2012-02-22
CN102387878A (zh) 2012-03-21
CN102387878B (zh) 2013-11-27
JPWO2010119680A1 (ja) 2012-10-22
BRPI1015033A2 (pt) 2016-04-12
BRPI1015033B1 (pt) 2021-02-02

Similar Documents

Publication Publication Date Title
JP5598614B2 (ja) 連続鋳造機の二次冷却装置及び二次冷却方法
JP4880089B2 (ja) 連続鋳造設備
JP4786473B2 (ja) 表内質に優れた鋳片の製造方法
WO2013105670A1 (ja) 鋳片圧下装置
JP2010501352A (ja) 未だ凝固してないメタルストリップを案内するためのストランドガイド装置と方法
WO2016103293A1 (ja) 鋼の連続鋳造方法
JP5380968B2 (ja) 連続鋳造鋳片の製造方法
KR20110117142A (ko) 박판 열연 주조 스트립 제품 및 이를 제조하는 방법
JP6384679B2 (ja) 熱延鋼板の製造方法
US8807201B2 (en) Device and method for horizontal casting of a metal band
US9296040B2 (en) Hot rolled thin cast strip product and method for making the same
JP6439663B2 (ja) 鋼の連続鋳造方法
JP5707850B2 (ja) 連続鋳造における鋳片の軽圧下制御方法
TWI727305B (zh) 鋼之連續鑄造方法
KR101411372B1 (ko) 연속주조기용 세그먼트
JP5707849B2 (ja) 連続鋳造における鋳片の軽圧下制御方法
KR101257464B1 (ko) 조질압연기용 가이드장치
JPH02303661A (ja) 連続鋳造方法
JP6045509B2 (ja) 鋳片圧下装置
WO2023228796A1 (ja) 鋼の連続鋳造方法及び連続鋳造機
JP5920083B2 (ja) 鋼鋳片の連続鋳造方法
JPH038863B2 (ja)
JP7072388B2 (ja) 連続鋳造用鋳型
KR101344896B1 (ko) 열연코일의 에지결함 예측장치 및 그 방법
JP5915453B2 (ja) 鋼の連続鋳造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080016061.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764267

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011509217

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 7278/DELNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10764267

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1015033

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1015033

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111011