WO2010106851A1 - 半導体用ボンディングワイヤ - Google Patents

半導体用ボンディングワイヤ Download PDF

Info

Publication number
WO2010106851A1
WO2010106851A1 PCT/JP2010/052029 JP2010052029W WO2010106851A1 WO 2010106851 A1 WO2010106851 A1 WO 2010106851A1 JP 2010052029 W JP2010052029 W JP 2010052029W WO 2010106851 A1 WO2010106851 A1 WO 2010106851A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
bonding
concentration
layer
bonding wire
Prior art date
Application number
PCT/JP2010/052029
Other languages
English (en)
French (fr)
Inventor
宇野 智裕
寺嶋 晋一
山田 隆
良 大石
大造 小田
Original Assignee
新日鉄マテリアルズ株式会社
株式会社日鉄マイクロメタル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42739517&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010106851(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 新日鉄マテリアルズ株式会社, 株式会社日鉄マイクロメタル filed Critical 新日鉄マテリアルズ株式会社
Priority to CN2010800010215A priority Critical patent/CN101925992B/zh
Priority to KR1020107016610A priority patent/KR101144406B1/ko
Priority to US12/993,401 priority patent/US8815019B2/en
Priority to JP2010525154A priority patent/JP4886899B2/ja
Publication of WO2010106851A1 publication Critical patent/WO2010106851A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/018Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of a noble metal or a noble metal alloy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/43985Methods of manufacturing wire connectors involving a specific sequence of method steps
    • H01L2224/43986Methods of manufacturing wire connectors involving a specific sequence of method steps with repetition of the same manufacturing step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45164Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45169Platinum (Pt) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45565Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/4557Plural coating layers
    • H01L2224/45572Two-layer stack coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45644Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45664Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/45686Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/4569Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4801Structure
    • H01L2224/48011Length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48471Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area being a ball bond, i.e. wedge-to-ball, reverse stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48475Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
    • H01L2224/48476Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area
    • H01L2224/48477Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding)
    • H01L2224/48478Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding) the connecting portion being a wedge bond, i.e. wedge on pre-ball
    • H01L2224/48479Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding) the connecting portion being a wedge bond, i.e. wedge on pre-ball on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48638Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48639Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48638Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48644Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48663Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/48664Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48838Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48839Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48838Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/48844Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48863Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/48864Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • H01L2224/8503Reshaping, e.g. forming the ball or the wedge of the wire connector
    • H01L2224/85035Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball"
    • H01L2224/85045Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball" using a corona discharge, e.g. electronic flame off [EFO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85053Bonding environment
    • H01L2224/85054Composition of the atmosphere
    • H01L2224/85065Composition of the atmosphere being reducing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85053Bonding environment
    • H01L2224/85054Composition of the atmosphere
    • H01L2224/85075Composition of the atmosphere being inert
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85186Translational movements connecting first outside the semiconductor or solid-state body, i.e. off-chip, reverse stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • H01L2224/85207Thermosonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85439Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85444Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85463Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/85464Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00015Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed as prior art
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01018Argon [Ar]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01045Rhodium [Rh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20751Diameter ranges larger or equal to 10 microns less than 20 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20752Diameter ranges larger or equal to 20 microns less than 30 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20753Diameter ranges larger or equal to 30 microns less than 40 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12222Shaped configuration for melting [e.g., package, etc.]

Definitions

  • the present invention relates to a bonding wire for a semiconductor used for connecting an electrode on a semiconductor element and a wiring of a circuit wiring board (lead frame, substrate, tape, etc.).
  • bonding wires having a wire diameter of about 20 to 50 ⁇ m are mainly used as bonding wires for semiconductors (hereinafter referred to as bonding wires) for bonding between electrodes on semiconductor elements and external terminals.
  • Bonding wires are generally joined by ultrasonic thermocompression bonding, and a general-purpose bonding apparatus, a capillary jig used for connection through the bonding wire, or the like is used. After the wire tip was heated and melted by arc heat input and a ball portion was formed by surface tension, this ball portion was pressure-bonded onto the electrode of the semiconductor element heated within the range of 150 to 300 ° C. The wire is directly bonded to the external lead side by ultrasonic pressure bonding.
  • the structure, materials, connection technology, etc. of semiconductor packaging have been diversified rapidly.
  • the packaging structure uses a substrate, polyimide tape, etc.
  • BGA Bit Grid Array
  • CSP Chip Scale
  • a new form such as Packaging has been put into practical use, and a bonding wire with improved loopability, joining property, mass production usability and the like is required.
  • Even in such bonding wire connection technology in addition to the current mainstream ball / wedge bonding, wedge / wedge bonding suitable for narrow pitches bonds the bonding wire directly at two locations, improving the bondability of thin wires Is required.
  • the materials used as bonding partners for bonding wires are also diversified, and copper suitable for finer wiring has been put to practical use in addition to conventional Al alloys for wiring on silicon substrates and electrode materials.
  • Ag plating, Pd plating, etc. are applied on the lead frame, and copper wiring is applied on the resin substrate, tape, etc., on which noble metal elements such as gold and alloys thereof are applied. In many cases, a film is applied. In accordance with these various bonding partners, it is required to improve the bonding property and bonding portion reliability of the bonding wire.
  • Requirement from wire bonding technology is that it is important to form a ball part having a clean surface with a true sphere at the time of ball formation and to obtain sufficient joint strength at the joint part between the ball part and the electrode. Further, in order to cope with a decrease in the bonding temperature, a thinning of the bonding wire, and the like, a bonding strength, a tensile strength, and the like at a portion where the bonding wire is wedge-connected to the wiring portion on the circuit wiring board are also required.
  • the material of the bonding wire has so far been mainly made of high purity 4N (purity> 99.99 mass%) gold.
  • high purity 4N purity> 99.99 mass% gold.
  • a small amount of alloy elements are adjusted.
  • a gold alloy wire having a purity of 2N (purity> 99%) with an additive element concentration increased to 1% or less has been put into practical use for the purpose of improving the reliability of the joint.
  • the type and concentration of the alloy element added to gold it is possible to increase the strength, control the reliability, and the like.
  • the alloying may cause adverse effects such as a decrease in bondability and an increase in electrical resistance, and it is difficult to comprehensively satisfy various characteristics required for bonding wires.
  • All the bonding wires put to practical use so far have a single layer structure. Even if the material is different from gold, copper, etc., alloy elements are uniformly contained therein, and all of the wire cross sections of the bonding wires have a single-layer structure. In some cases, a thin natural oxide film, an organic film for surface protection, or the like is formed on the wire surface of the bonding wire, but these are also limited to the extremely thin region (up to several atomic layers level) on the outermost surface.
  • Patent Document 1 In order to increase the material cost at low cost, excellent electrical conductivity, ball bonding, wedge bonding, and the like, a bonding wire using copper as a raw material has been developed, and Patent Document 1 is disclosed.
  • copper bonding wires have problems in that the bonding strength is reduced due to the oxidation of the wire surface, and that the wire surface is easily corroded when sealed with a resin. These are also the reasons why the practical application of copper bonding wires has not progressed.
  • Patent Document 2 discloses that a copper wire is connected to a copper or copper alloy lead frame in an atmosphere of 5 vol% H 2 + N 2 .
  • Non-Patent Document 1 it is reported that 5 vol% H 2 + N 2 gas is more preferable than N 2 gas for forming a ball of a copper bonding wire because oxidation of the ball surface can be suppressed.
  • 5 vol% H 2 + N 2 gas is standardized as a gas used when using copper-based bonding wires.
  • Patent Document 1 proposes a bonding wire in which copper is coated with a noble metal such as gold, silver, platinum, palladium, nickel, cobalt, chromium, titanium, or a corrosion-resistant metal.
  • Patent Document 3 describes a core material mainly composed of copper, a dissimilar metal layer made of a metal other than copper formed on the core material, and There has been proposed a bonding wire formed on the dissimilar metal layer and having a coating layer structure made of an oxidation-resistant metal having a melting point higher than that of copper.
  • Patent Document 4 has a core material containing copper as a main component, and an outer skin layer containing copper and a metal different from one or both of the core material and its component or composition on the core material.
  • a bonding wire that is a thin film having a thickness of 0.001 to 0.02 ⁇ m has been proposed.
  • Patent Document 5 proposes a bonding wire in which the outer peripheral surface of a core wire made of high-purity Au or Au alloy is covered with a coating material made of high-purity Pd or Pd alloy.
  • Patent Document 6 proposes a bonding wire in which the outer peripheral surface of a core wire made of high-purity Au or Au alloy is covered with a coating material made of high-purity Pt or Pt alloy.
  • Patent Document 7 proposes a bonding wire in which the outer peripheral surface of a core wire made of high-purity Au or Au alloy is coated with a coating material made of high-purity Ag or Ag alloy.
  • the loop control in the bonding process is stable, the bondability is improved, the deformation of the bonding wire is suppressed in the resin sealing process, and the long-term reliability of the connection part It is desired that high-density mounting such as state-of-the-art narrow pitch and three-dimensional wiring can be achieved by satisfying comprehensive characteristics such as performance.
  • a bonding wire having a multilayer structure (hereinafter referred to as a multi-layer wire) is expected to further improve characteristics and increase added value as compared to a single-layer wire.
  • a multi-layer wire is expected to further improve characteristics and increase added value as compared to a single-layer wire.
  • a noble metal or an oxidation-resistant metal it is possible to coat the surface of the wire with a noble metal or an oxidation-resistant metal as a multi-layered wire that provides high functionality.
  • Even a gold bonding wire is expected to have an effect of reducing the resin flow by coating the wire surface with a high-strength metal or alloy.
  • the bonding strength of the ball portion or the bonding wire can be increased by covering the wire surface with a high strength metal or alloy.
  • the core material mainly composed of one or more elements of Cu, Au, and Ag
  • Pd when Pd is used as the noble metal coated on the surface, oxidation suppression, adhesion to the electrode, adhesion to the sealing resin, It can be expected to satisfy the requirements comprehensively, such as cheap material costs.
  • the present inventors have evaluated in consideration of needs such as high density, miniaturization, and thinning of semiconductor mounting.
  • needs such as high density, miniaturization, and thinning of semiconductor mounting.
  • the practical use as described later is made. It turns out that many of the above problems remain.
  • Multi-layer wires with a Pd coating layer that is harder and more brittle than Cu, Au, and Ag cores have more manufacturing problems than single-layer wires during the wire mass production process or during large-scale continuous bonding. .
  • rolls and dies wear more severely than single-layered wires, resulting in quality problems due to scratches on the wire surface or increased manufacturing costs due to reduced die life Is a problem.
  • the complicated loop control in the wire bonding process causes the capillary inner wall to be rubbed by the Pd coating layer, resulting in increased capillary replacement frequency and lower productivity than the single-layer wire. It becomes.
  • the ball portion When the ball portion is formed of a multilayer wire, the occurrence of a flat ball deviated from the true sphere, irregularities on the ball surface, bubbles inside the ball, or microholes on the ball surface becomes a problem.
  • the deformation of the ball part When such an abnormal ball part is joined on the electrode, the deformation of the ball part is shifted from the center of the wire, and the deformed part deviates from the perfect circle, causing elliptical deformation, petal deformation, etc. This may cause problems such as protrusion, decrease in bonding strength, chip damage, and production management problems. Such poor initial bonding may induce a decrease in long-term reliability of the ball bonded part in a high temperature and high humidity environment.
  • One of the causes may be that impurities and gas components remain in the outer layer, in the vicinity of the boundary between the outer layer and the core material, etc. in the manufacturing process of the multilayer wire.
  • the present invention solves the above-mentioned problems of the prior art, suppresses peeling / dropping of the coating layer on the wire surface, improves workability, good ball bondability, stabilization of the loop shape, die life or capillary
  • An object of the present invention is to provide a bonding wire for a semiconductor which has improved performance such as an increase in replacement life.
  • the present inventors have found that it is effective to optimize the hydrogen concentration contained in the bonding wire. Further, it has been found that the control of the outer layer or diffusion layer thickness, the addition of alloy elements in the core material, and the like is effective.
  • the present invention has been made on the basis of the above knowledge, and has the following configuration.
  • the bonding wire for a semiconductor according to claim 1 is a core material mainly composed of any one or more elements of Cu, Au, and Ag, and an outer layer mainly composed of Pd formed on the surface of the core material
  • the bonding wire according to claim 2 is characterized in that, in claim 1, the hydrogen concentration is in a range of 0.0001 to 0.004 mass%.
  • a bonding wire according to a third aspect is the bonding wire according to the first or second aspect, wherein the hydrogen concentration is a thermal desorption gas analysis (Thermal Desorption). It is a hydrogen concentration contained in the whole wire measured by Spectrometry (TDS).
  • TDS Spectrometry
  • a bonding wire according to a fourth aspect is the bonding wire according to any one of the first to third aspects, wherein in the thermal desorption gas analysis measured at a temperature rising rate of 100 to 300 ° C / h, The hydrogen concentration detected in the temperature range of ⁇ 500 ° C. is characterized in that the ratio of the total hydrogen concentration detected in the whole temperature range is 50% or more.
  • the bonding wire according to claim 5 is characterized in that in any one of claims 1 to 4, the thickness of the outer layer is in the range of 0.01 to 0.2 ⁇ m.
  • the bonding wire according to claim 6 is the bonding wire according to any one of claims 1 to 5, wherein a thickness of a region having a Pd concentration in a range of 80 mol% with respect to the total amount of metal-based elements in the outer layer is 0.003 to 0.08 ⁇ m. It is characterized by that.
  • the bonding wire according to claim 7 has a diffusion layer having a concentration gradient between the outer layer and the core material according to any one of claims 1 to 6, and the thickness of the diffusion layer is 0.003 to 0.15 ⁇ m. It is characterized by being.
  • a bonding wire according to claim 8 is the bonding wire according to any one of claims 1 to 7, wherein the main component of the core material is Cu or Au, and contains one or more elements of Pd, Ag, and Pt,
  • the element concentration in the core material is in the range of 0.01 to 2 mol% in total.
  • the bonding wire according to claim 9 is the bonding wire according to any one of claims 1 to 8, wherein the main component of the core material is Cu, and contains at least one alloy element of Al, Sn, Zn, B, and P.
  • the alloy element concentration in the entire wire is in the range of 0.0001 to 0.05 mol% in total.
  • the bonding wire according to claim 10 is characterized in that, in claim 1, the core material has Cu as a main component and has one or more concentrated layers of Ag and Au on the surface side of the outer layer.
  • a bonding wire according to claim 11 is characterized in that, in claim 10, the concentrated layer has one or more concentration gradients of Ag and Au in the wire radial direction.
  • the bonding wire according to claim 12 is characterized in that, in claim 10, the Pd concentration at the outermost surface of the concentrated layer is in the range of 20 to 90 mol%.
  • a bonding wire according to a thirteenth aspect is characterized in that, in the tenth aspect, a Pd single metal layer is provided inside the outer layer.
  • the bonding wire according to claim 14 is characterized in that, in claim 10, the thickness of the outer layer having the concentrated layer is in the range of 0.02 to 0.4 ⁇ m.
  • the bonding wire according to claim 15 is the bonding wire according to claim 1, wherein the core material includes Cu as a main component, and an intermediate layer in which at least one of Ag and Au is concentrated is provided between the core material and the outer layer. It is characterized by that.
  • the bonding wire according to claim 16 is characterized in that, in claim 15, the intermediate layer has one or more concentration gradients of Ag and Au in the wire radial direction.
  • the bonding wire according to claim 17 is characterized in that, in claim 15, the total concentration of Ag and Au in the intermediate layer is in the range of 30 to 90 mol%.
  • the bonding wire according to claim 18 is the bonding wire according to claim 16, wherein the intermediate layer includes one or more elements of Ag and Au, Pd and Cu, and a concentration gradient of the three elements in the wire radial direction. It is characterized by including the area
  • the bonding wire according to claim 19 is characterized in that, in claim 15, the total thickness of the outer layer and the intermediate layer is in the range of 0.02 to 0.5 ⁇ m.
  • the bonding wire according to claim 20 is characterized in that, in claim 10 or 15, the total concentration of Pd, Ag and Au is in the range of 0.4 to 4 mol%.
  • the bonding wire according to claim 21 is characterized in that, in claim 10 or 15, the ratio of the total concentration of Ag and Au to the Pd concentration is in the range of 0.001 to 0.4.
  • the bonding wire having a multilayer structure of the present invention can improve both the sphericity of the ball portion and the wire workability. Moreover, stabilization of the crimping
  • Concentration profile of bonding wire for outer layer, diffusion layer and core material Concentration profile of bonding wire for outer layer and core material with surface concentrated layer Concentration profile of bonding wire for outer layer, intermediate layer, and core material with a single metal layer Concentration profile of bonding wire for outer layer, intermediate layer, and core material, with concentration gradient containing 3 or more elements
  • a bonding wire composed of a conductive metal core material and an outer layer containing Pd as a main component on the core material
  • oxidation inhibition, wedge While bondability or long-term bonding reliability can be improved, peeling of the outer layer and dropping of the outer layer and joining shape in the wire manufacturing process and complicated loop control in the wire bonding process are problematic. It has been found that the ball joint shape is not sufficiently stable.
  • the core material containing at least one element of Cu, Au, and Ag as a main component is a core material containing the element, for example, the main component is a concentration of the element of 50 mol% or more. It corresponds to the range.
  • the core material is Cu, Au, or Ag, it can be used as a core material because it can be easily connected using the current wire bonding apparatus and has high overall reliability.
  • the core material is Cu, it is most useful in terms of inexpensive material costs, suppression of oxidation by the Pd outer layer, and the like. From the viewpoint of managing the hydrogen concentration, the highest effect can be obtained when the core material is Cu.
  • containing 0.0001% mass% or more has the effect of reducing the oxidation of Cu during arc discharge, improving the sphericity of the ball part and suppressing the shrinkage nest of the ball tip part. can get. If it exceeds 0.008% mass%, bubbles are generated inside the ball, so that the shape of the bonded portion becomes unstable and the bonding strength decreases.
  • it is in the range of 0.0001 to 0.004 mm mass%, it is possible to further improve the ball bondability by suppressing the generation of pit-like microholes on the side surface of the ball, and to break the wire when drawn at high speed. It can be reduced to increase productivity.
  • the drawing speed can be increased by suppressing the decrease in strength due to peeling of the outer layer of Pd and the clogging of the drawing die due to shavings. Suppressing die wear and improving die life can stabilize quality and improve production efficiency. Even more preferably, in the range of 0.0001 to 0.001% mass%, in the ultrafine wire with a wire diameter of 18 ⁇ m or less required for narrow pitch, the disconnection failure in the wire drawing process is reduced, and the yield is increased. Productivity can be further increased by speeding up the process. With respect to the problem that holes are clogged during bonding with a narrow pitch connection and the frequency of capillary replacement increases, the concentration replacement range can improve the capillary replacement life and increase the production efficiency of the mounting process.
  • the thin Pd outer layer formed on the surface of the bonding wire by plating or the like has many different behaviors from the physical properties known for Pd bulk. It is considered that the hydrogen solubility and occlusion of the Pd thin film are different from those of the bulk. It is generally known that bulk Pd alloys have high hydrogen storage properties and can store hydrogen at 900 times the volume of Pd. However, in a thin Pd outer layer, the hydrogen solubility, proper concentration, etc. differ from the properties known for bulk Pd alloys. One of the factors is related to the fact that the structure of the outer layer, the grain size, the lattice defect density, and the like are different from the bulk, so that the hydrogen concentration depends on the manufacturing process of the bonding wire.
  • the Pd outer layer, the vicinity of the boundary between the outer layer and the core material, the core material, the outermost surface of the bonding wire, etc. can be considered.
  • the hydrogen concentration contained in the outer layer of Pd is often the highest, and this part of the hydrogen is expected to stabilize the ball formation by vaporizing some of the hydrogen when the bonding wire melts during discharge.
  • the Hydrogen contained in the interface near the boundary between the outer layer and the core material or the diffusion layer affects the adhesion between the outer layer and the core material, and affects the occurrence of defects such as peeling and scratches during wire processing.
  • the core material is Cu
  • a small amount of hydrogen contained in Cu directly affects the stability at the time of loop formation or indirectly affects the oxygen content in Cu.
  • the outermost surface refers to a region having a depth of up to 2 nm from the surface.
  • the hydrogen concentration based on the total hydrogen concentration contained in the multilayer wire is the total concentration of hydrogen contained in the Pd outer layer, the vicinity of the boundary between the outer layer and the core material, the core material, and the outermost surface of the wire.
  • the total concentration contained in the Pd outer layer is the total concentration of hydrogen contained in the Pd outer layer, the vicinity of the boundary between the outer layer and the core material, the core material, and the outermost surface of the wire.
  • the hydrogen concentration contained in the multilayer wire may be a measurement of a bonding wire that has passed for a while after manufacturing. It has been confirmed that even when left in the air, the change in the concentration of hydrogen contained in the multilayer wire with time is small.
  • the bonding wire is usually stored in a plastic container called a spool case to prevent dust from adhering to the outside air. In the normal storage state where the bonding wire is stored in the spool case, it was confirmed that the change in the hydrogen concentration was small until the air was left for about 4 months after the wire was manufactured.
  • the conditions for preparing the measurement sample also affect the measurement concentration of hydrogen, but at least the sample is ultrasonically cleaned in acetone for about 1 minute before measurement, dried with cold air and weighed Then, by using it for concentration measurement, hydrogen can be measured with sufficient accuracy for the present invention.
  • the measurement sample mass for quantification should be 2 g or more. Therefore, the hydrogen concentration according to the present invention means the hydrogen content expressed as mass% of hydrogen contained in the total mass of hydrogen contained in a certain mass of bonding wire. It is.
  • TDS analysis thermal desorption spectroscopy
  • the hydrogen concentration detected in the temperature range of 150 to 500 ° C. is detected in the total measurement temperature range.
  • a bonding wire characterized in that the ratio to the hydrogen concentration is 50% or more is desirable.
  • the total measurement temperature range preferably in the range of room temperature to 900 ° C., almost the total amount of hydrogen contained can be detected.
  • the existence state of hydrogen contained in the multilayer wire is roughly classified into diffusible hydrogen and hydride. Diffusible hydrogen is hydrogen that can freely diffuse in the metal mainly as interstitial atoms.
  • hydride is a compound of hydrogen and metal. Since hydride causes embrittlement and cracking at the time of wire deformation and induces the generation of deformed balls, it is desirable to keep the amount small. Diffusible hydrogen desorbs from the sample at a relatively low temperature.
  • the multilayer wire having a wire diameter of 15 to 100 ⁇ m was investigated as a measurement sample, it was confirmed that it could be detected in the temperature range of 150 to 350 ° C. when measured at a temperature increase rate of 100 to 300 ° C./h.
  • One hydride is detected mainly in the temperature range of 550-900 ° C.
  • the ratio of the hydrogen concentration detected in the temperature range of 150 to 500 ° C to the total hydrogen concentration detected in the entire measurement temperature range is 50% or more, which means that most of the hydrogen contained in the bonding wire sample is This corresponds to diffusible hydrogen. If the ratio is 50% or more, it is possible to promote the effect of improving the roundness of the ball shape and the workability of wire manufacturing described above. Preferably, if it is 70% or more, the effect of improving the roundness by suppressing the generation of deformed balls when a fine wire having a wire diameter of 20 ⁇ m or less is used is further enhanced.
  • the temperature range for detecting hydrogen depends on the rate of temperature increase, and the temperature range tends to shift to the higher temperature side as the rate of temperature increase increases.
  • the hydrogen concentration largely depends on the manufacturing process of the multilayer wire. It was confirmed that the multi-layer wire immediately after forming the outer Pd layer generally has a high hydrogen concentration. If the hydrogen concentration is excessively high, problems such as embrittlement of the outer layer and a decrease in adhesion with the core material in the wire manufacturing process may cause a reduction in the bonding wire manufacturing yield and quality. It is relatively easy to release diffusible hydrogen mainly contained in the multilayer wire to the outside of the wire by heat treatment. Therefore, the use of a heat treatment process is effective for adjusting the proper hydrogen concentration. In this heat treatment step, the heat treatment conditions vary depending on the wire configuration, material, and processes before and after the heat treatment, and in addition, it is required to satisfy the overall bonding performance.
  • the appropriate heat treatment conditions for adjusting the hydrogen concentration are clearly different from the heat treatment conditions of the core material alone or the Pd wire, for example, Heating at a low temperature for a relatively long time is effective. In one example, heating for 10 minutes to 2 hours in a temperature range of 150 to 300 ° C. can preferentially release excess hydrogen to stabilize the concentration of hydrogen contained in the entire multilayer wire. .
  • the heat treatment performed in the normal bonding wire manufacturing process is aimed at optimizing mechanical properties and ensuring linearity by removing processing strain, etc., so the temperature is high at about 400 to 700 ° C, and it is in the heating furnace.
  • the wire is passed at a high speed and the heating time is also several seconds.
  • the heat treatment for adjusting the hydrogen concentration of the multilayer wire is characterized by a low temperature and a long time. Specific examples of the heat treatment conditions will be described later.
  • the hydrogen concentration contained in the multilayer wire it is often effective to separately manage the hydrogen concentration in the intermediate process of manufacturing and the hydrogen concentration in the final product of wire bonding.
  • problems peculiar to a multilayer structure such as adhesion between the outer layer and the core material, film thickness of the outer layer, and uniformity of the structure.
  • a gradual reduction method is effective in which the concentration is relatively high during processing and the concentration is low in the final product.
  • excessive hydrogen contained in the wire may be released at a time, which may cause surface scratches and disconnection. If the hydrogen concentration is decreased step by step, these process problems can be solved.
  • the concentration range of 0.0001 to 0.008% mass% described above relates to a preferable hydrogen concentration in the final product, but if the hydrogen concentration of the intermediate product is in the range of 0.0002 to 0.015% mass%, stable productivity can be obtained.
  • Managing the hydrogen concentration on the basis of the distinction between the appropriate bonding concentration and the appropriate process concentration is peculiar to the multi-layer wire, and is different from the conventional single-layer wire and the metal thin wire for other uses.
  • the thickness of the outer layer is preferably in the range of 0.01 to 0.2 ⁇ m.
  • the bonding wire did not cause a non-stick defect in the wire connection process even if it was left in the atmosphere at room temperature for 60 days. This is a significant extension of the shelf life compared to the conventional shelf life of single layer Cu wire within 7 days.
  • the thickness of the outer layer is 0.01 ⁇ m or more, it is easy to stabilize the hydrogen concentration, and if the thickness exceeds 0.2 ⁇ m, there is a concern that the ball portion will be cured and chip damage may occur during bonding. Because.
  • the thickness of the outer layer is in the range of 0.02 to 0.095 ⁇ m, in addition to improving oxidation resistance, the ball bonding strength can be increased, which is advantageous for low temperature bonding and the like.
  • the thickness of the region where the Pd concentration relative to the total amount of metal elements is in the range of 80 mol% or more is preferably 0.003 to 0.08 ⁇ m.
  • the thickness of the region (high concentration Pd layer) whose concentration is in the range of 80 mol% or more is 0.003 to 0.08 ⁇ m, the hydrogen distribution can be concentrated near the surface of the bonding wire.
  • the high-concentration Pd layer having a Pd concentration in the range of 80 mol% or more has a hydrogen concentration action that distributes a large amount of hydrogen. Even if the total hydrogen concentration contained in the entire wire is low, it is possible to stably distribute low concentration hydrogen near the wire surface by managing the high concentration Pd layer. If the thickness of the high-concentration Pd layer is 0.003 ⁇ m or more, it is effective to act as hydrogen concentration, and if it exceeds 0.08 ⁇ m, the variation when a trapezoidal loop is formed increases.
  • a diffusion layer having a concentration gradient is provided between the outer layer and the core material, and the thickness of the diffusion layer is 0.003 to 0.15 ⁇ m.
  • having a diffusion layer having a concentration gradient in a thickness of 0.003 to 0.15 ⁇ m is effective in improving the linearity of the loop and stabilizing the loop shape.
  • the diffusion layer is a layer formed by mutual diffusion of metals (Cu, Au, Ag) constituting the core material and Pd of the outer layer.
  • the diffusion layer As the role of the diffusion layer, by controlling the movement of hydrogen from the outer Pd layer to the core material, the dispersion of the strength, rigidity, and structure of the core material is suppressed and homogenized, and the interface between the outer layer and the core material is reduced. It is conceivable to increase adhesion and suppress peeling, gaps, and the like due to the uneven distribution of hydrogen near the interface. That is, it can be understood that the diffusion layer improves the linearity and the stability of the loop shape by improving the homogenization of the core material and the adhesion of the interface between the outer layer and the core material.
  • the thickness of the diffusion layer is 0.003 to 0.15 ⁇ m is that when the thickness is less than 0.003 ⁇ m, the above improvement effect is small, and when it exceeds 0.15 ⁇ m, the wedge bondability is deteriorated.
  • the thickness is 0.01 to 0.1 ⁇ m, a higher effect of stabilizing the linearity and loop shape in a long span with a wire length of 5 mm or more can be obtained.
  • FIG. 1 shows an example of a metal element concentration profile in the core material (wire diameter center) direction from the wire surface in the multilayer bonding wire.
  • the wire is composed of a core material 1, an outer layer 2, and a diffusion layer 3.
  • FIG. 1 shows concentration profiles of metal elements of the main component A of the outer layer and the main component B of the core material.
  • the diffusion layer 3 is formed between the core material 1 and the outer layer 2.
  • the detection concentration of Pd is in the range of 10 to 50 mol%, judging from the viewpoints of performance such as adhesion, strength, looping property, bondability, and productivity. This is because the diffusion layer in this concentration range has a low Pd concentration, and both the outer layer and the core material play different roles. Further, the boundary between the outer layer and the core material corresponds to a portion where the detected concentration of Pd is 50 mol% or more, that is, the outer layer is a region from the portion where the total detected concentration of Pd is 50 mol% to the surface area.
  • the concentration ratio in the outer layer, the diffusion layer, the core material, etc. is a total concentration ratio of the metal elements constituting the outer layer and the core material, and C, O, N, H, Cl, S in the vicinity of the surface are used. Concentration values calculated by excluding isogas components and non-metallic elements are used.
  • a method of analyzing while digging in the depth direction from the surface of the bonding wire by sputtering or the like, or line analysis or point analysis at the wire cross section is effective.
  • the former is effective when the outer layer is thin, but it takes too much measurement time when the outer layer is thick.
  • the analysis of the latter cross section is effective when the outer layer is thick, and the advantage is that it is relatively easy to confirm the concentration distribution over the entire cross section and reproducibility at several locations. If the thickness is thin, the accuracy decreases. It is also possible to measure by increasing the thickness of the diffusion layer by obliquely polishing the bonding wire.
  • line analysis is relatively simple, but in order to improve the accuracy of analysis, it is also effective to narrow the analysis interval of line analysis or perform point analysis focusing on the area near the interface to be observed. is there.
  • the analyzers used for concentration analysis should use electron microanalysis (EPMA), energy dispersive X-ray analysis (EDX), Auger spectroscopic analysis (AES), transmission electron microscope (TEM), etc. Can do.
  • EPMA electron microanalysis
  • EDX energy dispersive X-ray analysis
  • AES Auger spectroscopic analysis
  • TEM transmission electron microscope
  • AES is effective for concentration analysis of the thinnest region because of its high spatial resolution.
  • the main component of the core material is Cu and contains at least one alloy element of Al, Sn, Zn, B, and P, and the total concentration of the alloy element in the entire wire is 0.0001 to 0.05 mol%. A range is desirable.
  • the total concentration of Cu, the main component of any one of Al, Sn, Zn, B, and P is in the range of 0.0001 to 0.03 mol%, and the Pd outer layer is above the core.
  • the total hydrogen concentration contained in the entire wire is in the range of 0.0001 to 0.008 mass%, so that the leaning property, which is a defective mode such as when forming a high loop, can be improved.
  • Multi-Tier Bonding In multi-stage connection with multiple pins (Multi-Tier Bonding), there is a concern that a leaning failure may occur in which the bonding wire collapses near the neck when forming a loop with a high loop height.
  • a multilayer wire composed of a Cu core material and a Pd outer layer contains hydrogen, leaning defects tend to increase.
  • the neck part is affected by the heat of ball melting, resulting in coarsening of recrystallized grains in the core material and hydrogen diffusion in the Pd outer layer or Cu core material. It is considered that non-uniformity is involved.
  • One or more alloy elements of Al, Sn, Zn, B, and P make the mechanical properties and structure of the core material uniform, improving the leaning property.
  • the improvement effect is small, and if it exceeds 0.05 mol%, the bonding wire is hardened, so that the peel joint strength, which is the strength evaluation of the wedge joint, decreases. It is.
  • the main component of the core material is Cu or Au, and has one or more alloy elements of Pd, Ag, and Pt, and the alloy element concentration in the entire wire is in the range of 0.05 to 2 mol% in total. It is desirable.
  • the total concentration of one or more alloy elements of Pd, Ag, and Pt in the core material, which is mainly composed of Cu or Au, is in the range of 0.01 to 2 mol%, and the upper surface of the core material is the Pd outer layer.
  • the total hydrogen concentration contained in the entire wire is in the range of 0.0001 to 0.008 mass%, so that the reliability of the bonding portion between the bonding wire and the aluminum electrode can be improved.
  • the bonding reliability test here, a high temperature and high humidity test (Pressure ⁇ ⁇ Cooker Test) is useful.
  • PCT test as a typical condition, electrical characteristics or bonding strength is evaluated after heating at 130 ° C. and 85% RH for 300 to 1000 hours.
  • the reliability may be lowered in the PCT test.
  • the reason why reliability is improved by including at least one alloy element of Pd, Ag, and Pt in the range of 0.05 to 2 mol% in the core material is to reduce the compound growth rate at the bonding interface during heating.
  • the region where the alloy element is concentrated at the bonding interface functions as a diffusion barrier against hydrogen.
  • the concentration analysis of the element contained in the core material it is preferable to use a value obtained by averaging the concentration values obtained by the above-described analysis methods such as EPMA, EDX, AES at three or more locations on the wire cross section.
  • the outer layer of the multi-layer bonding wire containing hydrogen at the hydrogen concentration With two or more layers, various functions such as bondability and loop shape can be improved.
  • the relationship between the hydrogen concentration of the multi-layer bonding wire and the characteristics has been described mainly in the case where the outer layer has a single-layer structure, but the hydrogen concentration is also controlled in the multi-layer bonding wire composed of two or more layers of the outer layer and the concentrated layer. Is valid.
  • a bonding wire composed of an outer layer and a thickened layer when the thickened layer is formed on the wire surface (referred to as a surface thickened layer), a thickened layer is formed between the core material and the outer layer.
  • the explanation will be divided into two types of cases (referred to as intermediate layers).
  • a core material mainly composed of Cu, an outer layer mainly composed of Pd on the core material, Ag or Au on the surface side of the outer layer has one or more concentrated layers, and is included in the entire wire
  • the total hydrogen concentration is preferably in the range of 0.0001 to 0.008 mass%.
  • the surface enriched layer of Ag or Au suppresses the intrusion of gas components such as hydrogen and oxygen from the wire surface, so that even in wires stored for a long period of time, the hydrogen concentration is kept almost constant, so that it can be used for wedge bonding. It is considered that good metal diffusion can be maintained.
  • the surface concentrated layer is included in a part of the outer layer. This is based on the fact that there are many overlapping functions in the surface concentrated layer and the outer layer, and as described above, the outer layer is defined as a region from the Pd concentration of 50 mol% to the surface.
  • FIG. 2 shows an example of a metal element concentration profile in the direction of the core material (wire diameter center) from the wire surface in the bonding wire provided with the outer layer having the above-described surface concentrated layer.
  • a surface concentrated layer 4 having a main component C which is one or more of Ag and Au, and a single metal layer 5 described later is formed inside the outer layer 2.
  • the element to be concentrated is one or more of Ag and Au
  • wedge bondability higher than that of other elements is improved.
  • the improvement effect is remarkable
  • a high effect of improving the wedge bondability in the mounting of the QFN (Quad Flat Non-Lead) structure where low bondability is a problem was confirmed.
  • QFN mounting since the lead part is not fixed sufficiently, bonding of bonding wires with reduced ultrasonic vibration is required.
  • QFN mounting is difficult when the outer layer of the multi-layer bonding wire is hard Pd, but the continuous connectivity is improved by forming a concentrated layer of Ag and Au on the outer layer surface side, so QFN mounting Productivity can be improved.
  • the hydrogen concentration management is more important than the case of the outer layer having no concentrated layer.
  • the concentrated layer has a function of suppressing the release of hydrogen to the outside of the wire, so that the concentration of hydrogen contained in the wire in the manufacturing process becomes high, and the above-described problems such as a decrease in ball formation caused by hydrogen It is because it is easy to occur.
  • Cu can contain a small amount of hydrogen, when the main component of the core is Cu, the relationship between the formation of the concentrated layer and the management of the hydrogen concentration is effective.
  • the surface concentrated layer is preferably a solid solution alloy of at least one of Ag and Au and Pd.
  • the region of the surface concentrated layer is defined as a region where the concentration of Ag and Au is 10 mol% or higher and higher than the surroundings. This is because the diffusion behavior at the joint and the bending of the wire during loop formation can be controlled in a high concentration region of 10 mol% or more locally. It was confirmed that the effect of stabilizing the loop shape tends to be higher in the concentrated layer than in the single metal region.
  • the concentrated layer is not an intermetallic compound but a solid solution alloy, so that even a loop shape having a large bending angle such as a short span can be stabilized.
  • the surface concentrated layer has a concentration gradient of one or more of Ag and Au.
  • the concentration pull increases the second pull strength at the wedge joint, further improving the yield during mounting.
  • This improvement effect is also effective in BGA or CSP, but in particular, the effect of increasing the second pull strength of the wedge joint in QFN mounting is higher.
  • the surface concentrated layer has a concentration gradient, which is more effective in promoting large plastic deformation of the wire required for wedge bonding, interdiffusion at the bonding interface, etc., compared to almost constant concentration alloys. it is conceivable that.
  • the gradient of the concentration gradient in the wire diameter direction is 10 mol% or more per 1 ⁇ m, the effect of increasing the second pull strength in the QFN mounting is further enhanced.
  • it is 30 mol% or more per 1 ⁇ m, the effect of enhancing the second pull strength in QFN mounting by promoting mutual diffusion at the bonding interface has been confirmed.
  • the Pd concentration at the outermost surface of the surface concentrated layer is in the range of 20 to 90 mol%.
  • the effect of reducing the variation of the loop shape in the long span or improving the bonding property of the thin wire is enhanced.
  • a problem wrinkled loop
  • This is considered to be caused by an increase in friction between the hard Pd and the inner wall of the capillary, resulting in deterioration of slidability.
  • the Pd concentration on the outermost surface is less than 90 mol%, in other words, the total concentration of Ag and Au is 10 mol% or more is that the long-span loop control is improved, and it is effective in improving the above Wrinkled Loop failure. Because. Further, by setting the total concentration of Ag and Au on the outermost surface of the concentrated layer to 10 mol% or more, the wedge bondability can be improved even for a thin wire having a wire diameter of 20 ⁇ m. On the other hand, when the Pd concentration is less than 20 mol%, that is, when the total concentration of Ag and Au is 80 mol% or more, an unmelted portion remains inside the ball, and the shear strength of the ball joint portion decreases. Preferably, when the Pd concentration is in the range of 30 to 80 mol%, a high effect such as suppression of Wrinkled-Loop defects can be obtained in an ultrafine wire having a wire diameter of 18 ⁇ m or less.
  • a Pd single metal layer inside the outer layer having the surface concentrated layer. That is, a core material mainly composed of Cu, an outer layer mainly composed of Pd on the core material, and a bonding wire for semiconductors in which the total hydrogen concentration contained in the entire wire is in the range of 0.0001 to 0.008 mass%.
  • the bonding wire for a semiconductor has a concentration layer of one or more of Ag and Au on the surface side of the outer layer, and a Pd single metal layer inside the outer layer.
  • the Pd single metal layer corresponds to a region where the Pd concentration is 97% or more in consideration of restrictions such as a concentration measurement error.
  • the position of the Pd single metal layer is preferably adjacent to the concentrated layer.
  • the wire configuration from the wire surface to the inner direction it is exemplified by Ag or Au concentrated layer / Pd single metal layer / Pd—Cu diffusion layer / core material.
  • the role of the single Pd metal layer is a barrier function that suppresses the diffusion of the core material toward the Cu surface.
  • This barrier function has effects such as segregation of Cu on the surface and suppression of oxidation, and as a result, arc discharge is stabilized and ball formation with good sphericity becomes possible.
  • the synergistic effect of the outer layer, Ag concentration on the surface, Au enriched layer, inner Pd single metal layer, hydrogen concentration management, even under severe conditions of joining small balls with thin wires The roundness and size stability of the ball joint can be improved. In particular, the improvement effect of rounding is remarkable in the case of large ball deformation where the diameter of the press-bonded ball is 3 times or more of the wire diameter.
  • a single metal layer of Pd alone is not enough.
  • the concentrated layer of Ag and Au on the surface can maintain the wedge bondability of the wire stored for a long time. It is effective to stabilize.
  • the thickness of the single Pd metal layer is preferably in the range of 0.005 to 0.1 ⁇ m. If the thickness is 0.005 ⁇ m or more, the above effect can be obtained sufficiently, and if it exceeds 0.1 ⁇ m, the melting of Pd, which is a refractory metal, becomes unstable during ball formation, and the petal-like ball joint shape becomes a problem.
  • the thickness of the outer layer having the surface concentrated layer is in the range of 0.02 to 0.4 ⁇ m.
  • the hydrogen concentration was controlled. It is possible to achieve both improvement in ball bondability, which is an effect of the outer layer. If the thickness of the outer layer is 0.02 ⁇ m or more, it is easy to obtain the above effect, and if the thickness exceeds 0.4 ⁇ m, there is a concern that the ball portion is cured and chip damage may occur during bonding. is there.
  • the second pull strength at a low temperature of the QFN mounting can be increased. More preferably, if it is in the range of 0.04 to 0.25 ⁇ m, a higher effect of increasing the ball bonding strength and second pull strength in the low temperature bonding of QFN mounting can be obtained.
  • the inner concentrated layer plays a role in the penetration of hydrogen, oxygen, etc. into the inner direction, the reduction of the solid solution of hydrogen in Cu, and the barrier function that suppresses the diffusion of Cu atoms in the surface of the core material. This is considered to be because the generation of bubbles due to hydrogen, oxygen, etc. can be suppressed during ball solidification.
  • the bondability of the ball part or the bump part can be improved as compared with other elements.
  • the wedge bondability on the bump in reverse bonding mounting is improved. Since the bump surface is oxidized while being left on the heating stage for a while after the bump formation, the problem is that the wedge bondability on the bump is lower than the normal bonding form.
  • the intermediate layer has the effect of reducing the formation of the Cu oxide film on the bump surface, and the yield and productivity in continuous bonding in reverse bonding mounting are improved. Note that reverse bonding refers to wedge bonding on a bump after ball bonding to a lead electrode.
  • the total concentration of elements to be concentrated should be 20 mol% or more on both the outer layer side and the core side. This is based on the reason that the concentration necessary for efficiently expressing the barrier function required for the intermediate layer is 20 mol% or more.
  • the intermediate layer has a concentration gradient of one or more of Ag and Au.
  • the concentration gradient in the concentrated layer can improve the leanability of reverse bonding mounting.
  • Leaning failure is a phenomenon in which a wire falls at an upright portion in the vicinity of a ball joint portion. In reverse bonding mounting, the length of the upright portion is considerably longer than that in a normal mounting form, and therefore, leaning failure is likely to occur.
  • One cause of the failure is that the upright portion is formed with a non-uniform recrystallized structure due to the thermal effect during ball formation.
  • the intermediate layer since the intermediate layer has a concentration gradient, the recrystallized structure and residual strain of the upright part affected by heat are uniform compared to the case of almost constant concentration.
  • the effect which suppresses a leaning defect is acquired.
  • the above effect can be obtained if the average gradient of the concentration gradient is 20 mol% or more per 1 ⁇ m. Preferably, if it is 60 mol% or more per 1 ⁇ m, the effect of suppressing leaning defects is enhanced.
  • the maximum total concentration of Ag and Au in the intermediate layer is in the range of 30 to 90 mol%.
  • an appropriate parameter window for wedge bonding onto the bumps is widened, and bonding is possible even in the range of low load and ultrasonic output, so that the bonding yield of reverse bonding is improved.
  • ultrasonic vibration of wedge bonding on a complicatedly shaped bump can be reduced, wire bending can be suppressed.
  • the intermediate layer has a concentration gradient, which is more effective in promoting large plastic deformation of the wire required for wedge bonding, interdiffusion at the bonding interface, etc., compared to a concentrated layer with a substantially constant concentration. it is conceivable that. This is because the above improvement effect can be obtained if the maximum concentration of Ag and Au is 30 mol% or more, and if it is 90 mol% or more, an unmelted portion remains inside the ball, and the shear strength of the ball bonded portion decreases.
  • FIG. 3 shows an example of a metal element concentration profile from the wire surface to the core material (wire diameter center) direction in a bonding wire having an outer layer having an intermediate layer. Between the outer layer 2 and the core material 1, an intermediate layer 6 having a main component D that is one or more of Ag and Au is formed.
  • FIG. 3A shows a case where the single metal layer 5 is provided inside the intermediate layer 6, and
  • FIG. 3B shows a case where the intermediate layer 6 has a concentration gradient region 8 in which three or more elements are mixed.
  • the outer layer / intermediate layer / core material is formed, and an intermediate layer is formed instead of the Pd—Cu diffusion layer which is the diffusion material of the core material and the outer layer.
  • At least one element selected from Ag and Au is essential for concentration, and one or more elements selected from Pd and Cu are other elements.
  • Examples of intermediate layers when Au is enriched are (1) concentration gradient of Pd and Au, (2) concentration gradient of Au and Cu, and (3) concentration gradient of three elements of Au, Pd, and Cu. are categorized.
  • the concentration gradient is preferably a solid solution alloy formed by mutual diffusion.
  • the configuration of the intermediate layer has at least one of (1) to (3). For example, since the intermediate layer is composed of a plurality of (1) + (2), (1) + (3), (1) + (2) + (3), the barrier function is further enhanced. Higher effects of improving the productivity of reverse bonding can be obtained. The same applies when the concentration element is Ag.
  • the intermediate layer has a coexistence region of one or more of Ag and Au and a concentration gradient of three elements of Pd and Cu.
  • the first pull strength in the vicinity of the ball in reverse bonding can be increased.
  • An example of the coexistence region of the concentration gradient of the three elements corresponds to the above (3), and the first pull strength is increased by suppressing the recrystallization of the heat affected zone near the ball.
  • the total thickness of the outer layer and the intermediate layer is preferably in the range of 0.02 to 0.5 ⁇ m. If this thickness is 0.02 ⁇ m or more, it is easy to obtain the effect of improving the continuous bonding property of reverse bonding described above. If the thickness is 0.5 ⁇ m or more, the ball portion is cured and chip damage occurs during bonding. This is because there are concerns.
  • the ball bonding strength and the second pull strength in the low temperature bonding of reverse bonding can be increased. More preferably, when the thickness is in the range of 0.13 to 0.3 ⁇ m, a high effect of increasing the wedge bonding strength on the bump can be obtained in the overhang type reverse bonding in which the chip is liable to be broken during bonding.
  • the boundary where the total concentration of Ag and Au is 20 mol% or the boundary where the Pd concentration is 50 mol% is closer to the wire center. Choose as.
  • the maximum concentration of Ag and Au in the intermediate layer is low, most of the intermediate layer is contained in the outer layer. It is difficult to set the boundary between the outer layer and the intermediate layer from the functional aspect, and it is difficult to completely separate them. Rather, confirm that the total thickness of the outer layer and the intermediate layer is an effective index in terms of the correlation with bonding performance. Yes.
  • the surface concentrated layer near the wire surface and the intermediate layer between the core material and the outer layer are mainly composed of Cu and Pd, respectively, and the elements to be concentrated are one or more of Ag and Au.
  • the content concentration of these elements in the entire wire affects the ball bonding property, bonding reliability, and the like.
  • it is a semiconductor bonding wire composed of at least one of a surface concentrated layer or an intermediate layer, an outer layer, and a core material, and the total concentration of Pd, Ag, and Au is in the range of 0.4 to 4 mol%. It is desirable. Within this concentration range, it is possible to obtain the effect of simultaneously satisfying the roundness of the ball joint in the 50 ⁇ m narrow pitch connection, the improvement of the shear strength, and the reduction of the Al splash.
  • Al splash is a phenomenon in which Al is swept to the outer periphery of a ball joint when a hard ball is joined onto an Al electrode. When Al swept out by Al splash comes into contact with an adjacent junction, an electrical short circuit is defective, which is a factor that hinders narrow pitch connection.
  • Pd, Ag, and Au contained in the outer layer, concentrated layer, and intermediate layer of the wire form a solid solution in Cu during ball solidification to form a Cu-Pd-Au alloy, a Pd-Ag-Cu alloy, and Pd, Ag and Au effectively promote the diffusion at the bonding interface, thereby effectively improving the ball bondability. It has been confirmed that the formation of such special alloys and the promotion of diffusion are promoted by the multi-layer bonding wire having the surface concentrated layer or the intermediate layer of the present invention more than the single-layer bonding wire. If the concentration is 0.4 mol% or more, it is easy to obtain the above effect, and if it exceeds 4 mol%, there is a concern that the ball portion is cured and chip damage occurs during bonding.
  • the total concentration of Pd, Ag, and Au described above is in the range of 0.4 to 4 mol%, and the ratio R of the total concentration of Ag and Au to the Pd concentration is in the range of 0.001 to 0.4.
  • the concentration ratio R of (Ag + Au) / Pd is in the above range, the effect of improving the high-temperature bonding reliability for the next-generation in-vehicle IC can be obtained.
  • the high temperature bonding reliability corresponds to, for example, suppressing a decrease in bonding strength even by heating for 1500 hours at 185 ° C., which is higher than the current accelerated test.
  • the correlation with the concentration ratio R of (Ag + Au) / Pd is stronger, and for convenience. I found it effective. The reason for this is that Pd, Ag, and Au are dissolved in Cu by melting and solidification during ball formation, and it is mainly the concentration that governs the bonding reliability of the ball part, and the thickness of each layer Depends on the definition of the layer boundary.
  • the concentration ratio R of (Ag + Au) / Pd is within an appropriate range of 0.001 to 0.4, the effect of improving the high temperature bonding reliability can be obtained. It is difficult to mass-produce a multi-layer bonding wire having a considerably thin Ag and Au concentrated layer where R is less than 0.001. When R exceeds 0.4, there is a concern that the high-temperature bonding reliability is lowered.
  • R is in the range of 0.002 to 0.3
  • mass production technology for forming the surface concentrated layer or the internal concentrated layer is facilitated, the bonding reliability is further improved, and good at 2000 ° C. at 185 ° C. More preferably, in the range of 0.01 to 0.25, the productivity is improved by simplifying the manufacturing process of the bonding wire, and the bonding reliability is further improved, which is good up to 2500 hours at 185 ° C.
  • the process of forming the outer layer, the surface concentrated layer and the intermediate layer on the surface of the core material, the structure of the outer layer, the surface concentrated layer, the intermediate layer, the diffusion layer, the core material, etc. are controlled. Processing and heat treatment processes are required.
  • the composition and thickness of the outer layer, the surface concentrated layer, the intermediate layer, and the core material, the outer layer, the surface concentrated layer and the intermediate layer are formed in the step of forming the outer layer, the surface concentrated layer and the intermediate layer described above. The management of the thickness and composition at the initial stage of formation is first important.
  • Examples of methods for forming the outer layer, the surface thickening layer, and the intermediate layer on the surface of the core include plating and vapor deposition.
  • the plating method either electrolytic plating or electroless plating can be used.
  • Electrolytic plating called strike plating or flash plating has a high plating speed and good adhesion to the substrate. Solutions used for electroless plating are classified into substitutional type and reduction type. If the film is thin, substitutional plating alone is sufficient, but when forming a thick film, reduction type plating is used after substitutional plating. It is effective to apply stepwise.
  • the electroless method is simple and easy to use, but requires more time than the electrolysis method.
  • hydrogen generated in the plating solution and the plating solution may remain in the outer layer, resulting in an increase in the concentration of hydrogen contained in the initial stage of the multilayer wire.
  • electroplating hydrogen is often generated near the surface of the bonding wire, so this hydrogen is often taken into the outer layer.
  • electrolytic plating it is possible to stably control the concentration of diffusible hydrogen introduced into the outer layer in the initial stage, so if the conditions in the manufacturing process such as processing after film formation and heat treatment are optimized, It is relatively easy to adjust the hydrogen concentration contained in the final product.
  • vapor deposition method physical adsorption such as sputtering, ion plating, and vacuum deposition, and chemical adsorption such as plasma CVD can be used. All of them are dry-type, and cleaning after film formation is unnecessary, and there is no concern about surface contamination during cleaning.
  • both the method of forming a film with a target wire diameter and the method of forming a film on a thick core material and drawing a wire multiple times to the target wire diameter are effective.
  • manufacturing, quality control and the like are simple, and the latter film formation and wire drawing are advantageous in improving the adhesion between the film and the core material.
  • Specific examples of each forming method include a method of forming a film on a core material of a target wire diameter while continuously sweeping a wire in an electrolytic plating solution, or a thick core in an electrolytic or electroless plating bath.
  • there is a method of drawing a wire to reach the final diameter after the material is immersed to form a film there is a method of drawing a wire to reach the final diameter after the material is immersed to form a film.
  • the in-line continuous plating method is exemplified by an outer layer plating step ⁇ a cleaning step ⁇ a surface concentrated layer plating step.
  • the order of forming the surface concentrated layer and the intermediate layer is reversed. In the case of the surface concentrated layer, the order is the formation of the outer layer ⁇ the formation of the surface concentrated layer. In the case of the intermediate layer, the order is the formation of the intermediate layer ⁇ the formation of the outer layer.
  • the outer layer forming step and the surface concentrated layer forming step do not necessarily have to be continuous, and include an improvement in adhesion, a heat treatment step for managing the hydrogen gas concentration, a wire drawing step, etc. It doesn't matter.
  • a heat treatment step for managing the hydrogen gas concentration a wire drawing step, etc. It doesn't matter.
  • the surface concentrated layer or the intermediate layer it is effective to use diffusion in the heat treatment step.
  • the heat treatment step to be described later it is possible to form a desired surface concentrated layer, intermediate layer, and a concentration gradient inside thereof, but if necessary, heat treatment suitable for forming the surface concentrated layer or intermediate layer. It is also necessary to select conditions.
  • the heat treatment process is one of the effective processes for controlling the hydrogen concentration.
  • removal of processing strain control of recrystallized structure, adjustment of mechanical properties, control of surface concentrated layer or intermediate layer, formation of diffusion layer, etc. are also important roles. Since it is difficult to satisfy all these functions by a single heat treatment, it is productive to carry out a plurality of times. Simply heating the wire makes it difficult to achieve the above overall function. Even if the one-time processing strain relief annealing performed at the final wire diameter in normal wire manufacturing is applied as it is, it is difficult to improve the quality and manufacturing yield by optimizing the hydrogen concentration.
  • the hydrogen concentration is reduced.
  • Low temperature heating is effective as the heat treatment for adjustment.
  • Even at a low temperature it is possible to optimize the total hydrogen concentration contained in the entire multilayer wire by releasing excessively contained diffusible hydrogen from the wire.
  • the inventors' investigations have grasped that the influence of diffusible hydrogen on the use performance is the greatest among several forms of hydrogen contained in the multilayer wire.
  • the concentration of diffusible hydrogen As a recommended condition for adjusting the concentration of diffusible hydrogen, it is desirable to adjust the temperature in the range of 100 to 400 ° C. A relatively long heating time is desirable. If heating is performed for a long time, it is effective for diffusing hydrogen contained in the wire to the surface, and there is little influence on the structure, strength, elongation, etc. of the bonding wire, so other processes can be managed. It is an advantage that it becomes easy.
  • a heating method batch-type heat treatment using a heating furnace is simple. Such batch-type heat treatment is rarely performed in the manufacturing process of the conventional single-layer wire. In general, the processing for removing strain of bonding wire is continuous annealing in which the wire is heated while continuously moving at a high temperature of 300 to 700 ° C.
  • Heat treatment for the purpose of controlling the recrystallization structure, adjusting the mechanical properties, controlling the composition of the surface concentrated layer, forming the diffusion layer, and the like is also necessary.
  • the temperature is higher than the recrystallization temperature of the wire, and the temperature is uniform in the circumferential direction in order to uniformly form the intermediate layer and the diffusion layer between the outer layer and the core material. Desired.
  • Continuous annealing in which heat treatment is performed while continuously sweeping the wire, is productive. Heat inside the furnace set at a temperature of 250-700 ° C while moving at a speed of 10-400 m / min.
  • a uniform heating method in which the furnace temperature is constant or a heating method in which a temperature gradient is provided in the furnace can be selected.
  • a method of introducing a temperature gradient locally and a method of changing the temperature in the furnace are also effective.
  • By heating while flowing an inert gas such as N 2 or Ar into the furnace oxidation of the wire surface can be suppressed.
  • the timing of this high-temperature heating can be divided into annealing in the middle of processing and finish annealing at the final diameter, and these can be selected and used properly.
  • the number of heat treatments can be one or more. By dividing the heat treatment into a plurality of times, formation of the diffusion layer, removal of processing strain, and the like are achieved individually, which is effective in improving the performance of the bonding wire.
  • the processing history before the heat treatment is related to the structure at the interface of the outer layer, the surface concentrated layer, the intermediate layer, the core material, etc., it affects the diffusion behavior in the heat treatment.
  • the composition, thickness, and the like of the final outer layer, surface concentrated layer, intermediate layer, and diffusion layer vary depending on the processing stage at which the heat treatment is performed.
  • the bonding wire created in the process of drawing the wire after intermediate annealing in the middle of processing and then finishing annealing with the final diameter compared to the process without intermediate annealing, outer layer, diffusion layer It has been confirmed that the composition and concentration gradient of the surface concentrated layer and the intermediate layer change.
  • Cu, Au, Ag used as the raw material for the bonding wire is a high-purity material with a purity of about 99.99 mass% or more, and the outer layer Pd, surface enriched layer or intermediate layer Au, Ag has a purity of 99.9 More than mass% raw materials were prepared.
  • an appropriate amount of alloy element was added in the step of melting the core material.
  • a thin wire thinned to a certain wire diameter is used as a core material, and the surface of the Pd outer layer, one or more of Au and Ag are concentrated on the wire surface by electrolytic plating, electroless plating, and vapor deposition. did.
  • the electrolytic plating solution and the electroless plating solution a plating solution commercially available for semiconductor applications was used, and the sputtering method was used for vapor deposition. The coating was performed in the order of outer layer formation ⁇ surface enriched layer formation or intermediate layer formation ⁇ outer layer formation.
  • a heat treatment step, a wire drawing step, and the like were added between the outer layer formation and the surface concentrated layer or intermediate layer formation.
  • the wire of the example of the present invention In the heat treatment of the wire of the example of the present invention, it is classified into two methods, batch-type annealing in which a thick wire is inserted into a heating furnace and heat-treated, and continuous annealing in which the fine wire is continuously swept while being heated. One or both heat treatments were utilized.
  • batch-type annealing the main purpose was to adjust the hydrogen concentration and to form a diffusion layer. Heating was performed at a temperature range of 150 to 300 ° C. for 10 minutes to 2 hours.
  • Continuous annealing was set to a temperature range of 300 to 700 ° C, and the wire sweep speed was adjusted to a range of 10 to 500 mm / min. Along with the temperature distribution, the wire sweep speed was also optimized.
  • an inert gas such as N2 or Ar was also used in the heat treatment atmosphere for the purpose of suppressing oxidation.
  • the gas flow rate was adjusted in the range of 0.0002 to 0.004 m 3 / min and used for temperature control in the furnace.
  • the timing of heat treatment was classified into three types: primary annealing immediately after the plating layer was formed, intermediate annealing in the middle of wire drawing, and finish annealing at the final diameter, and these heat treatments were appropriately combined.
  • wires with a wire diameter of 0.5-6 mm were annealed in batch mode, for intermediate annealing, wires with a wire diameter of 0.06-1 mm were annealed continuously, and for final annealing, wires with a final wire diameter were annealed in a continuous manner.
  • inert gas melting thermal conductivity method Two methods were used to measure hydrogen concentration: inert gas melting thermal conductivity method and TDS analysis.
  • the former inert gas melting thermal conductivity method uses LECO model RH402
  • the latter TDS analysis uses an Anelva quadrupole mass spectrometer M-100-QA-M or M -201-QA-TDM was used.
  • the hydrogen concentration was analyzed while separating diffusible hydrogen and hydride, the latter apparatus was mainly used.
  • the amount of hydrogen released was measured for each temperature while heating the sample from 0 to 900 ° C. at a rate of 200 ° C./h.
  • the hydrogen concentration detected at a temperature of 100 to 900 ° C. is defined as the total hydrogen concentration.
  • the ratio of the hydrogen concentration detected at a temperature of 100 to 500 ° C. to the total hydrogen concentration was determined.
  • the pumping speed of the vacuum pump of the measuring device was 2400 to 300 liters / min (N 2 gas conversion).
  • Depth analysis by AES was used to measure the film thickness on the wire surface, and surface analysis and line analysis by AES, EPMA, etc. were performed to observe element distribution, such as enrichment of grain boundaries.
  • depth analysis by AES measurement was performed in the depth direction while sputtering with Ar ions, and the unit of depth was displayed in terms of SiO 2 .
  • the concentration of the alloy element in the bonding wire was measured by ICP analysis or the like.
  • the average value of the concentration obtained by the analysis method using EPMA, EDX, AES was used at five or more points in the longitudinal section passing through the center of the wire.
  • concentration gradient of the surface concentrated layer and the intermediate layer it is expressed as A if the average gradient gradient is 30 mol% or more per 1 ⁇ m, B if it is 10 mol% or more and less than 30 mol%, and C if it is less than 10 mol%. 3. “Surface concentration layer gradient” and “intermediate layer gradient” are shown in column 3.
  • a commercially available automatic wire bonder was used to perform ball / wedge bonding.
  • a ball portion was produced at the tip of the wire by arc discharge, it was joined to the electrode film on the silicon substrate, and the other end of the wire was wedge joined to the lead terminal.
  • the standard 5 vol% H 2 + N 2 gas and pure N 2 gas were used as the shielding gas to suppress oxidation during ball formation.
  • pure N 2 gas with a purity of 5N or higher was basically used. The gas flow rate was adjusted in the range of 0.0003 to 0.005 m 3 / min.
  • Al alloy film Al-1 mass% Si-0.5 mass% Cu film, Al-0.5 mass% Cu film
  • a lead frame whose surface was Ag-plated (thickness: 1 to 4 ⁇ m) or a resin substrate having an electrode structure of Au plating / Ni plating / Cu was used as a partner for wedge bonding.
  • the workability of the bonding wire was evaluated by the number of breaks in the process of drawing from a thick wire having a wire diameter of 500 ⁇ m to 22 ⁇ m or 18 ⁇ m.
  • the sample length was 5000 m when the wire diameter was 500 ⁇ m.
  • the wire was drawn at a speed twice that of the normal drawing speed. If the number of disconnections is 0, very high productivity is expected. ⁇ , if it is 1 to 2 times, normal productivity is judged to be good. ⁇ , 3 to 6 times. If there is a slight change in the wire drawing conditions, it is necessary to make a slight change. .
  • the bonding shape of the pressure-bonded ball portion was evaluated according to the same criteria as described above for a large-sized ball portion having a wire diameter of 20 ⁇ m and an initial ball diameter / wire diameter ratio of 3.0 to 3.5.
  • the "Large ball deformability" column In the "Large ball deformability" column.
  • the ball bonding strength For the evaluation of the ball bonding strength, a sample bonded at a stage temperature of 175 ° C. was used so that the wire diameter was 23 ⁇ m and the ball diameter was in the range of 45 to 60 ⁇ m. Two types of wires were used as the evaluated bonding wires, with a period from production to bonding of 30 days and 120 days. A shear test of 20 ball joints was performed, the average value of the shear strength was measured, and the shear strength per unit area calculated using the average value of the area of the ball joint was used. If the shear strength per unit area is less than 70MPa, the bonding strength is insufficient.
  • the shear strength is less than 70MPa, it can be improved by slightly changing the joining condition if it is in the range of 70MPa to less than 90MPa. If it is within the range, it is judged that there is no problem in practical use, and since it is good if it is in the range of 110 MPa or more, it is indicated in the column of “Share strength” in Table 2 because it is good.
  • the ball part was bonded onto the electrode film, the electrode film was removed by etching, and the damage to the insulating film or the silicon chip was observed by SEM. 400 electrodes were observed. If no damage is found, ⁇ , if there are 2 or less cracks less than 5 ⁇ m, it is judged that there is no problem, ⁇ mark, if there are 2 or more cracks of 5 ⁇ m or more but less than 20 ⁇ m, it is judged as a level of concern In the case of 1 or more cracks or crater breakage of 20 ⁇ m or more, it was judged as a level of concern, and indicated by “ ⁇ ” in the “Chip Damage” column of Table 2.
  • Wedge bondability is a non-stick failure when bonding wires are bonded to lead electrodes. failure).
  • Two types of bonding wires were used: the initial state of storage after production within 7 days and the case of leaving in the atmosphere at room temperature for 60 days. The bonding wire was stored in a clean room in a spool case. Under the bonding conditions, the ultrasonic power was slightly reduced to induce non-adherence. The stage temperature was set at a low temperature of 160 ° C. to accelerate defects in the initial bonding wire, and 175 ° C. in the evaluation of the bonding wire left for 60 days. The frequency of non-sticking was evaluated by 2000 bonding.
  • trapezoidal loops were prepared with two types of general-purpose spans with a wire length of 2 mm and short spans of 0.5 mm, and 500 bonding wires were observed with a projector. Linearity, loop height variation, etc. were judged. Formation of trapezoidal loops with a short wire length of 0.5 mm requires tighter loop control to avoid contact with the tip end. If the wire length is 2mm and there are 5 or more defects such as linearity and loop height, it is judged that there is a problem and is indicated by x, the wire length is 2mm, 2 to 4 defects, and the wire length is 0.5.
  • the number of defects is 5 or more in mm, it is judged that improvement is necessary, and it is marked with ⁇ . If the wire length is 2 mm and the number of defects is 1 or less, and the wire length is 2 mm and the number of defects is 2 to 4, Since the loop shape is relatively good, it is indicated by a circle, and when the wire length is 0.5 mm and the number of defects is 1 or less, the loop shape is judged to be stable. "In the column. As one of the causes of defects, the adhesion between the interface between the core material and the outer peripheral portion is not sufficient, and characteristic variations in the cross section are assumed.
  • the first pull test which is a method of pulling the hook upward in the vicinity of the ball joint, was performed. It was confirmed that it was broken at the neck. Since the first pull strength depends on the wire diameter, loop shape, bonding conditions, etc. of the bonding wire, the first pull strength / wire tensile strength relative ratio (Rf) was used instead of the absolute value. If the Rf value is 60% or more, it is excellent because it is excellent, and if it is in the range of 50% or more and less than 60%, it is good. ⁇ mark, if less than 40%, the neck strength is insufficient and needs to be improved. X mark in Table 2 “Pull Strength” column. did.
  • peel joint strength For the evaluation of peel joint strength, a pull test of a wedge joint was used. The wire diameter was 23 ⁇ m and the span was 2 mm. This was a second pull test in which the hook hooked on the loop was moved upward at a position closer to the wedge joint than 3/4 of the wire length, and the breaking strength of the bonding wire was measured. Since the second pull strength depends on the wire diameter, loop shape, bonding conditions, etc. of the bonding wire, the relative ratio (Rp) of the second pull strength / wire tensile strength was used instead of the absolute value. If the Rp is 20% or more, the wedge bondability is good, and it is judged that there is no problem if it is marked ⁇ , 15% or more and less than 20%. If it is judged that there is a ⁇ mark, if less than 10%, there is a problem in the mass production process.
  • leaning failure which is a phenomenon in which the wire upright near the ball joint collapses, observe the wire upright from the chip horizontal direction, and the distance between the perpendicular passing through the center of the ball joint and the wire upright is the largest. Evaluation was made at certain intervals (leaning intervals). The wire length was 3 mm and the number of samples was 50. A sample having a maximum loop height of about 400 ⁇ m, which is a strict high loop, was prepared for leaning evaluation. When the above-described leaning interval was smaller than the wire diameter, the leaning was good. They are classified according to the frequency of occurrence of defects in leaning, and are marked in the “leaning” column of Table 2 with ⁇ marks when there are three or more defects, ⁇ marks when there are zero defects, and ⁇ marks between them.
  • the ball portion is bonded to the electrode film on the silicon substrate to form a bump, the ball portion is ball bonded to the lead electrode, the loop shape is controlled, and the other end of the wire is connected.
  • a wedge was bonded onto the bump.
  • Two types of chips were used: a monochip type, which is a case of a normal one-stage chip, and an overhang type in which two chips are stacked and the space under the chip is a space.
  • the chip height was 200 ⁇ m.
  • 2000 wire connections with a wire diameter of 20 ⁇ m were made, and the number of non-stick defects of wedge bonding on the bumps was evaluated.
  • the load and ultrasonic vibration were set slightly lower than the mass production conditions in the evaluation of non-sticking failure. If the number of non-sticking defects is 6 times or more, the bonding is insufficient, so that it is marked with ⁇ , if it is 3-5 times, it is marked with ⁇ , and if it is 1-2 times, it is practical by optimizing the joining conditions. Since it was judged that there was a circle, the bonding strength was sufficient if there was no peeling, so that it was marked in the column of “Continuous Joining of Reverse Bonding” in Table 4 with ⁇ .
  • the hook was moved upward at a position closer to the wedge joint than 3/4 of the wire length, and the breaking strength of the bonding wire was measured.
  • a relative ratio (Rp) of second pull strength / wire tensile strength was used. If the Rp is 20% or more, the wedge bondability is good, and it is judged that there is no problem if it is marked ⁇ , 15% or more and less than 20%. If it is judged that there is a ⁇ mark, if it is less than 10%, there is a problem in the mass production process. Therefore, a mark “X” is shown in the column “Second pull strength of reverse bonding” in Table 3.
  • the leaning property of the reverse bonding connection was evaluated by observing the wire upright part from the chip horizontal direction and measuring the distance (leaning interval) when the distance between the vertical line passing through the center of the ball joint and the wire upright part is the maximum.
  • the wire length was 3 mm and the number of samples was 300.
  • the leaning interval was smaller than the wire diameter, the leaning was good, and when the leaning interval was large, the upright part was inclined, so that the leaning was judged to be bad.
  • the loop shape is determined to be stable, and displayed as ⁇ , and if there is only one location where the variation is large, Since it is good, it is indicated by “ ⁇ ” in the case of two places, “ ⁇ ” in the case of two places, and “ ⁇ ” if there is large variation in both places, and is shown in the column of “Long span Wrinkled-Loop defect” in Table 4.
  • the aluminum splash phenomenon with narrow pitch connection was evaluated by the degree of aluminum swept around the ball joint in the direction of ultrasonic application.
  • a sample in which 200 50 ⁇ m pitch connections with a wire diameter of 20 ⁇ m and 200 40 ⁇ m pitch connections with a wire diameter of 18 ⁇ m were connected was used. If the number of aluminum splashes is remarkable is 3 or more, it needs to be improved.
  • ⁇ mark if there are 2 or less remarkable aluminum sweeps and 6 or more medium aluminum sweeps, ⁇ mark. In case of 2 to 5 medium aluminum sweeps, it is marked with ⁇ , and if it is 1 or less, it is good, so it is marked with ⁇ and in the column of “Alsplash with narrow pitch connection” in Table 4. .
  • the hook hooked on the loop was moved upward at a position closer to the wedge joint than 3/4 of the wire length, and the breaking strength of the wire was measured.
  • the relative ratio (Rp) of pull strength / wire tensile strength was used.
  • the wire diameter was 20 ⁇ m and the wire length was 3 mm.
  • the wedge bondability is good, so if it is ⁇ , if it is 30% or more and less than 40%, it is judged that there is no problem, ⁇ mark, if it is 25% or more and less than 30%, a problem occurs If it is judged that there is a ⁇ mark, if it is less than 25%, there is a problem in the mass production process, so it is indicated by a “X” mark in the “Second pull strength of QFN mounting” column in Table 4.
  • the resin-sealed sample after bonding was heated at a temperature of 185 ° C. for 1500 hours, 2000 hours, and 2500 hours, respectively, and then the electrical characteristics of 60 bonding wires were evaluated. If the ratio of bonding wire whose electrical resistance has increased to 3 times or more of the initial value is 30% or more, it is marked as x because of bonding failure, and the ratio of bonding wire whose electrical resistance has increased to 3 times or more is 5% or more and less than 30%.
  • the range it can be used for ICs whose reliability requirements are not strict, so the proportion of bonding wires whose electrical resistance has increased by more than 3 times is less than 5% and bonding wires whose electrical resistance has increased by more than 1.5 times If the ratio is 10% or more and less than 30%, there is no problem in practical use.So, if the ratio of bonding wire whose electrical resistance has increased 1.5 times or more is less than 10%, it is good. This is shown in the column of “High temperature reliability” in 4.
  • Tables 1 to 4 show evaluation results and comparative examples of semiconductor elements connected with bonding wires according to the present invention.
  • the bonding wires according to the first claim are Examples 1 to 21, 51 to 72
  • the bonding wires according to the second claim are Examples 1 to 10, 14 to 16, 18 to 20, 51 to 57, 60 to 67, 69 to 72
  • the bonding wires according to the third claim are Examples 1 to 21, 51 to 72
  • the bonding wires according to the fourth claim are Examples 1 to 4, 6 to 9, 11 to 17, 19, 20, 51 to 58, 60 to 67, 69 to 72
  • the bonding wires according to the fifth claim are Examples 1 to 14, 16, 17, 19 to 21, 51 to 56, 61 to 67, 69 to 71
  • the bonding wires according to the tenth claim are Examples 51 to 60
  • the bonding wires according to the eleventh claim are Examples 51 to 60
  • the bonding wires according to the twelfth claim are Examples 52 to 58, 60.
  • the bonding wires according to claim 13 are Examples 51 to 57, 60
  • the bonding wires according to claim 14 are Examples 51 to 58, 60
  • the bonding wires according to claim 15 are Examples 61 to 70, 16th.
  • the bonding wires according to claims are Examples 61 to 70
  • the bonding wires according to claim 17 are Examples 62, 63, 65 to 67, 69, 70
  • the bonding wires according to claim 18 are Examples 61 and 63.
  • the bonding wire according to claim 19 is the embodiment 62 to 70
  • the bonding wire according to the 20th claim is the embodiment 51 to 54
  • the bonding wire according to the 21st claim is Equivalent to Examples 52-60, 62-64, 66-70 That. Comparative examples 51 to 56 show the results when the first claim is not satisfied.
  • the multilayer wires of Examples 1 to 21 and 50 to 72 are formed on the surface of the core material according to the present invention, the core material mainly containing any one element of Cu, Au, and Ag. And the outer layer mainly composed of Pd, and the total hydrogen concentration contained in the entire wire is in the range of 0.0001 to 0.008 mass%. It was confirmed that both characteristics were satisfactory, with few wire breaks and good wire workability. On the other hand, in Comparative Examples 1, 51, 54, and Comparative Examples 2-4, 52, and 55 where the hydrogen concentration is less than 0.0001 mass%, it is difficult to achieve both ball shape and wire workability. It was.
  • Comparative Example 5 in which the outer layer is Au
  • Comparative Example 53 in which Pt is used
  • Comparative Example 56 in which Ni is used
  • Comparative Example 6 in which the core material is Pt
  • a single-layer copper wire having no outer layer have wire workability. It was confirmed that it was insufficient.
  • Examples 1 to 10, 14 to 16, 18 to 20, 51 to 57, 60 to 67, and 69 to 72 in which the hydrogen concentration is in the range of 0.0001 to 0.004 mass% generation of minute holes on the side surface of the ball It has been confirmed that the effect of suppressing is high. More preferably, in Examples 1 to 8, 14 to 16, 19, 20, 51 to 55, 60 to 65, and 69 to 72 in which the hydrogen concentration is in the range of 0.0001 to 0.002 mass%, an ultrafine wire having a wire diameter of 23 ⁇ m is used.
  • the multilayer wires of Examples 1 to 4, 6 to 9, 11 to 17, 19, 20, 51 to 58, 60 to 67, and 69 to 72 have a heating rate of 100 to 300 ° C./h according to the present invention. Bonding wire with a wire diameter of 23 ⁇ m because the ratio of the hydrogen concentration detected in the temperature range of 150 to 500 ° C to the total hydrogen concentration detected in the temperature range of TDS analysis measured at 50% or more is 50% or more. It was confirmed that the roundness of the ball press-fit shape in can be improved.
  • the wire diameter A high effect of improving the roundness of the ball press-bonded shape in the case of 18 ⁇ m was confirmed.
  • the multilayer wires of Examples 1 to 14, 16, 17, 19 to 21, and 71 have a thickness of the outer layer in the range of 0.01 to 0.2 ⁇ m according to the present invention. It was confirmed that wedge bondability could be improved. In contrast, in Example 18 in which the thickness of the outer layer exceeds 0.2 ⁇ m, chip damage has occurred. Preferably, in Examples 2, 4 to 7, 9, 10, 14, 16, 19, 20, 71, 72 in which the outer layer thickness is in the range of 0.02 to 0.095 ⁇ m, the shear strength of the ball joint can be increased. Was confirmed.
  • the thickness of the region where the Pd concentration is in the range of 80 mol% in the outer layer is 0.003 to 0.08 ⁇ m according to the present invention.
  • the effect of increasing the pull strength was confirmed.
  • the multilayer wires of Examples 1 to 11, 13, 14, and 16 to 20 have a diffusion layer having a concentration gradient between the outer layer and the core material according to the present invention, and the thickness of the diffusion layer is 0.003 to By using 0.15 ⁇ m, the loop linearity with a normal wire length of 2 mm was improved. On the other hand, in Examples 12 and 21 in which the thickness of the diffusion layer was more than 0.15 ⁇ m, it was confirmed that the wedge bondability was lowered.
  • the wire length is 5 mm, which is a long span that requires strict control, and the loop straight line A higher effect of further improving the sex was confirmed.
  • the multilayer wires of Examples 2, 5, 6, 11, and 13 include Cu as the main component of the core material according to the present invention, and one or more alloy elements of Al, Sn, Zn, B, and P. It has been confirmed that the leaning property can be improved when the alloy element concentration in the whole wire is in the range of 0.0001 to 0.05 mol% in total. On the other hand, it was confirmed that in Example 14 in which the concentration was more than 0.05 mol%, the peel bonding strength was lowered.
  • the multilayer wires of Examples 4, 8, 10, 16, and 18 are core materials in which the main component of the core material is Cu or Au and contains one or more elements of Pd, Ag, and Pt according to the present invention. It was confirmed that the PCT reliability can be improved when the element concentration in the total is in the range of 0.01 to 2 mol%. On the other hand, in Example 21 in which the concentration exceeds 2 mol%, a problem of increasing chip damage was confirmed.
  • the multilayer wires of Examples 51 to 60 are core materials mainly composed of Cu according to the present invention, and one or more of Ag and Au on the surface side of the outer layer mainly composed of Pd on the core material.
  • the total hydrogen concentration contained in the entire wire is in the range of 0.0001 to 0.008 mass%, so that the second bondability of the wire left for 90 days is good. It was confirmed that the continuous bondability was good.
  • the comparative examples 51 and 52 in which the hydrogen concentration is out of the range, the comparative example 53 in which the concentrated layer is Rh the hydrogen concentration is in the range but the concentrated In Examples 61 to 72 having no layer, the above improvement effect was confirmed to be insufficient.
  • the concentrated layer according to the present invention has good second pull strength in QFN mounting because the concentrated layer has a concentration gradient of one or more of Ag and Au. confirmed.
  • the Pd concentration on the outermost surface of the concentrated layer is in the range of 20 to 90 mol%, so that the Wrinkled Loop defect related to the loop shape in the long span It was confirmed that On the other hand, in Examples 51 and 59 in which the Pd concentration on the outermost surface is less than 20 mol% or more than 90 mol%, Wrinkled Loop failure was not improved. Preferably, in Examples 53 to 58 in which the Pd concentration is in the range of 30 to 80 mol%, a higher effect of further improving the Wrinkled Loop defect was confirmed.
  • the multilayered wires of Examples 51 to 58 and 60 have a wedge bondability after 90 days storage and a QFN, because the thickness of the outer layer having the concentrated layer according to the present invention is in the range of 0.02 to 0.4 ⁇ m. It was confirmed that it is possible to improve both the bonding property of the mounting and reduce the chip damage. On the other hand, in Example 59, it was confirmed that chip damage occurred because the thickness of the outer layer exceeded 0.4 ⁇ m.
  • the pull strength of the QFN mounting at low temperature is improved, and more preferably in the range of 0.04 to 0.25 ⁇ m.
  • 51, 54-56, and 60 a high effect of further improving the pull strength of QFN mounting at low temperature was confirmed.
  • the multilayer wires of Examples 61 to 70 are core materials mainly composed of Cu according to the present invention, an outer layer mainly composed of Pd on the core material, and Ag, Au between the core material and the outer layer. One or more of them have a thickened intermediate layer, and the total hydrogen concentration contained in the entire wire is in the range of 0.0001 to 0.008 mass%. It was confirmed that the shear strength was good.
  • the intermediate layer according to the present invention has a leaning property of reverse bonding mounting because the intermediate layer has a concentration gradient of one or more of Ag and Au. did.
  • the average gradient of the concentration gradient is 20 mol% or more per 1 ⁇ m, a higher effect of improving the leaning property was confirmed.
  • the multi-layer wires of Examples 62, 63, 65 to 67, 69, and 70 are reverse bonded because the maximum concentration of Ag and Au in the intermediate layer according to the present invention is in the range of 30 to 90 mol%. It was confirmed that the continuous bondability of wedge bonding on the bumps of the mounting was improved.
  • the multilayer wires of Examples 61, 63, and 68 are reverse bonded according to the present invention, because the intermediate layer has a coexistence region of one or more of Ag and Au and a concentration gradient of three elements of Pd and Cu. It was confirmed that the first pull strength of the mounting was improved.
  • the multi-layered wires of Examples 61 to 70 have a second pull strength in the monochip reverse bonding mounting because the total thickness of the outer layer and the intermediate layer is in the range of 0.02 to 0.5 ⁇ m according to the present invention.
  • the thickness is in the range of 0.07 to 0.4 ⁇ m
  • a higher effect of improving the second pull strength in the monochip type was confirmed.
  • Examples 63, 65, 66, 68 and 69 in which the thickness is in the range of 0.13 to 0.30 ⁇ m a high effect of improving the second pull strength in the overhang type laminated chip was confirmed.
  • the multilayer wires of Examples 51 to 54, 56 to 64, and 66 to 70 are composed of at least one of a surface concentrated layer or an intermediate layer, an outer layer, and a core material according to the present invention, and Pd, Ag, When the total concentration of Au is in the range of 0.4 to 4 mol%, the effect of reducing the Al splash at the ball joint in the 50 ⁇ m pitch connection was confirmed.
  • Examples 51, 53, 54, 56, 58, 59, 62-64, 66-70 in the range of 0.5-3 mol% Al splash at 40 ⁇ m pitch connection is reduced, more preferably In Examples 51, 54, 56, 59, 62 to 64, 66, 67, 69, and 70 in the range of 0.7 to 2.7 mol%, a higher effect of reducing the Al splash at 40 ⁇ m pitch connection was confirmed.
  • the total concentration of Pd, Ag, and Au described above according to the present invention is in the range of 0.4 to 4 mol%, and Ag with respect to the Pd concentration, It was confirmed that the decrease in bonding strength can be suppressed even by heating at 185 ° C for 1500 hours, which is the high-temperature reliability for next-generation in-vehicle ICs, because the total concentration ratio R of Au ranges from 0.001 to 0.4.
  • Examples 52 to 60, 63, 64, 66, 68, 69, and 70 in which the concentration ratio R is in the range of 0.002 to 0.3 it is more preferable that the bonding reliability is good up to 2000 h at 185 ° C.
  • Examples 53 to 58, 60, 63, 64, 66, 69, and 70 in which the concentration ratio R is in the range of 0.01 to 0.25 it is good up to 2500 h at 185 ° C., which improves the high temperature bonding reliability. High effect was confirmed.
  • core 2 outer layer 3: Diffusion layer 4: Surface concentrated layer 5: Single metal layer inside outer layer 6: Middle layer 7: Total thickness of outer and intermediate layers 8: Concentration gradient with 3 or more elements mixed A: Main component of outer layer B: Main component of core material C: Main component of surface thickening layer D: Main component of the intermediate layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Wire Bonding (AREA)

Abstract

本発明は、ボール接合性、ワイヤ加工性を両立することができ、ループ安定性、プル強度、ウェッジ接合性を高める複層ワイヤを提供することを目的とする。 Cu、Au、Agの1種以上の元素を主成分とする芯材と、前記芯材の上にPdを主成分とする外層とを有し、ワイヤ全体に含まれる総計の水素濃度が0.0001~0.008mass%の範囲であることを特徴とする半導体用ボンディングワイヤである。

Description

半導体用ボンディングワイヤ
 本発明は、半導体素子上の電極と、回路配線基板(リードフレーム、基板、テープ等)の配線とを接続するために利用される半導体用ボンディングワイヤに関するものである。
 現在、半導体素子上の電極と、外部端子との間を接合する半導体用ボンディングワイヤ(以下、ボンディングワイヤ)として、線径20~50μm程度の細線(ボンディングワイヤ)が主として使用されている。ボンディングワイヤの接合には超音波併用熱圧着方式が一般的であり、汎用ボンディング装置、ボンディングワイヤをその内部に通して接続に用いるキャピラリ冶具等が用いられる。ワイヤ先端をアーク入熱で加熱溶融し、表面張力によりボール部を形成させた後に、150~300℃の範囲内で加熱した半導体素子の電極上に、このボール部を圧着接合せしめ、その後で、直接ワイヤを外部リード側に超音波圧着により接合させる。
 近年、半導体実装の構造・材料・接続技術等は急速に多様化しており、例えば、実装構造では、現行のリードフレームを使用したQFP(Quad Flat Packaging)に加え、基板、ポリイミドテープ等を使用するBGA(Ball Grid Array)、CSP(Chip Scale
Packaging)等の新しい形態が実用化され、ループ性、接合性、量産使用性等をより向上したボンディングワイヤが求められている。そうしたボンディングワイヤの接続技術でも、現在主流のボール/ウェッジ接合の他に、狭ピッチ化に適したウェッジ/ウェッジ接合では、2ヶ所の部位で直接ボンディングワイヤを接合するため、細線の接合性の向上が求められる。
 ボンディングワイヤの接合相手となる材質も多様化しており、シリコン基板上の配線や、電極材料では、従来のAl合金に加えて、より微細配線に好適な銅が実用化されている。また、リードフレーム上には、Agメッキ、Pdメッキ等が施されており、また、樹脂基板、テープ等の上には、銅配線が施され、その上に金等の貴金属元素及びその合金の膜が施されている場合が多い。こうした種々の接合相手に応じて、ボンディングワイヤの接合性、接合部信頼性を向上することが求められる。
 ワイヤボンディング技術からの要求では、ボール形成時に真球で表面の清浄なボール部を形成し、そのボール部と電極との接合部で十分な接合強度を得ることが重要である。また、接合温度の低温化、ボンディングワイヤの細線化等に対応するためにも、回路配線基板上の配線部にボンディングワイヤをウェッジ接続した部位での接合強度、引張り強度等も必要である。
 上記要求を満足するワイヤ特性として、ボンディング工程におけるループ制御が容易であり、しかも電極部、リード部への接合性も向上しており、ボンディング以降の樹脂封止工程における過剰なワイヤ変形を抑制すること、更には、接続部の長期信頼性や過酷環境下での接合部安定性等の、総合的な特性を満足することが望まれている。
 ボンディングワイヤの素材は、これまで高純度4N系(純度>99.99mass%)の金が主に用いられている。高強度化、高接合等の特性を向上するため、微量の合金元素を調整することが行われている。最近では、接合部の信頼性を向上する目的等で、添加元素濃度を1%以下まで増加させた純度2N(純度>99%)の金合金ワイヤも実用化されている。金に添加する合金元素の種類、濃度を調整することで、高強度化、信頼性の制御等が可能である。一方で、合金化により、接合性が低下したり、電気抵抗が増加する等の弊害が生じる場合もあり、ボンディングワイヤに要求される多様な特性を総合的に満足することは難しい。
 また、金は高価であるため、材料費が安価である他種金属が所望されており、材料費が安価で、電気伝導性に優れた、銅を素材とするボンディングワイヤが開発されている。しかし、銅のボンディングワイヤでは、ワイヤ表面の酸化により接合強度が低下することや、樹脂封止されたときのワイヤ表面の腐食等が起こり易いことが問題となる。これらが銅のボンディングワイヤの実用化が進まない原因ともなっている。銀のボンディングワイヤでは、金より低価格であること、電気伝導度が上記3種の中で最も高いこと、大気中でボール形成が可能であること等が利点であり、高温の接合信頼性がAuより少し劣ること、ワイヤ表面の硫化の影響を受け易いこと等が問題である。
 これまでに実用化されたボンディングワイヤは全て単層構造であることを特徴とする。素材が金、銅等と異なっても、内部に合金元素を均一に含有しており、ボンディングワイヤのワイヤ断面でみると全てワイヤ単層構造であった。ボンディングワイヤのワイヤ表面に薄い自然酸化膜、表面保護のための有機膜等が形成されている場合もあるが、これらも最表面の極薄い領域(~数原子層レベル)に限られる。
 ボンディングワイヤに要求される多様なニーズに応えるため、ワイヤ表面に別の金属を被覆した多層構造のボンディングワイヤが提案されている。
 材料費が安価で、電気伝導性に優れ、ボール接合、ウェッジ接合等も高めるために、銅を素材とするボンディングワイヤが開発され、特許文献1等が開示されている。しかし、銅のボンディングワイヤでは、ワイヤ表面の酸化により接合強度が低下することや、樹脂封止されたときのワイヤ表面の腐食等が起こり易いことが問題となる。これらが銅のボンディングワイヤの実用化が進まない原因ともなっている。
 銅系ボンディングワイヤでは、ワイヤ先端を溶融してボール部を形成する際に、酸化を抑制するために、ガスをワイヤ先端に吹付けながらボンディングが行われる。現在は銅系ボンディングワイヤのボール形成時の雰囲気ガスとして、水素5vol%を含有する窒素ガスが一般的に使用されている。特許文献2には、銅線を銅又は銅合金リードフレームに接続する際に、5vol%H2+N2の雰囲気で接続することが開示されている。また、非特許文献1では、銅ボンディングワイヤのボール形成には、5vol%H2+N2ガスではボール表面の酸化を抑制できるため、N2ガスよりも望ましいことが報告されている。現在では銅系ボンディングワイヤを用いるときに使用されるガスとして、5vol%H2+N2ガスが標準化されている。
 銅ボンディングワイヤの表面酸化を防ぐ方法として、特許文献1には、金、銀、白金、パラジウム、ニッケル、コバルト、クロム、チタン等の貴金属や耐食性金属で銅を被覆したボンディングワイヤが提案されている。また、ボール形成性、メッキ液の劣化防止等の点から、特許文献3には、銅を主成分とする芯材、該芯材上に形成された銅以外の金属からなる異種金属層、及び該異種金属層の上に形成され、銅よりも高融点の耐酸化性金属からなる被覆層の構造をしたボンディングワイヤが提案されている。特許文献4には、銅を主成分とする芯材と、該芯材の上に芯材と成分又は組成の一方または両方の異なる金属と銅を含有する外皮層を有し、その外皮層の厚さが0.001~0.02μmの薄膜であるボンディングワイヤが提案されている。
 また、金ボンディングワイヤでも、多層構造が多く提案されている。例えば、特許文献5には、高純度Au又はAu合金からなる芯線の外周面に高純度Pd又はPd合金からなる被覆材を被覆したボンディングワイヤが提案されている。特許文献6には、高純度Au又はAu合金からなる芯線の外周面に高純度Pt又はPt合金からなる被覆材を被覆したボンディングワイヤが提案されている。特許文献7には、高純度Au又はAu合金からなる芯線の外周面に高純度Ag又はAg合金からなる被覆材を被覆したボンディングワイヤが提案されている。
 量産で使用されるボンディングワイヤのワイヤ特性として、ボンディング工程におけるループ制御が安定しており、接合性も向上しており、樹脂封止工程でボンディングワイヤの変形を抑制すること、接続部の長期信頼性等の、総合的な特性を満足することで、最先端の狭ピッチ、3次元配線等の高密度実装に対応できることが望まれている。
 ボール接合に関連して、ボール形成時に真球性の良好なボール部を形成し、そのボール部と電極との接合部で十分な接合強度を得ることが重要である。また、接合温度の低温化、ボンディングワイヤの細線化等に対応するためにも、回路配線基板上の配線部にボンディングワイヤをウェッジ接続した部位での接合強度、引張り強度等も必要である。
 こうした多層構造をしたボンディングワイヤはこれまで量産使用された報告はなく、業界として製造技術は十分には確立されていない。多層構造をしたボンディングワイヤの量産歩留まり、生産性、品質安定化等を向上するための材料設計、製造技術の開発が所望される。
特開昭62-97360号公報 特開昭63-244660号公報 特開2004-6740号公報 特開2007-12776号公報 特開平4-79236号公報 特開平4-79240号公報 特開平4-79242号公報
I. Singh, J.Y.On, L. Levine, "Enhancing finepitch, high I/O devices with copper ball bonding", th Proceedings ECTC 2005,843-847.
 従来の単層構造のボンディングワイヤ(以下、単層ワイヤと記す)では、引張り強度、接合部の強度、信頼性等を改善するのに、合金化元素の添加が有効であるが、特性向上には限界が懸念されている。多層構造をしたボンディングワイヤ(以下、複層ワイヤと記す)では、単層ワイヤよりもさらに特性を向上して付加価値を高めることが期待される。高機能化をもたらす複層ワイヤとして、例えば、銅ボンディングワイヤの表面酸化を防ぐために、ワイヤ表面に貴金属や耐酸化性の金属を被覆することが可能である。金ボンディングワイヤでも、ワイヤ表面に強度の高い金属又は合金を被覆することで、樹脂流れを低減する効果が期待される。銀ボンディングワイヤでは、ワイヤ表面に強度の高い金属又は合金を被覆することで、ボール部又はボンディングワイヤの接合強度を高めることができる。
 Cu、Au、Agの1種以上の元素を主成分とする芯材において、表面に被覆する貴金属にPdを用いると、酸化抑制、電極への接合性、封止樹脂との密着性、比較的安価な材料費等、総合的に要求を満足することが期待できる。
 半導体実装の高密度化、小型化、薄型化等のニーズを考慮して、本発明者らが評価したところ、ボンディングワイヤの表面をPdで被覆した構造の複層ワイヤでは、後述するような実用上の問題が多く残されていることが判明した。
 Pd被覆層と芯材とで機械的特性の異なる材料で構成された複層ワイヤの製造では、加工・焼鈍の工程中に、Pd被覆層の剥離、脱落等が発生することが問題となる。また、Pd被覆層と芯材との密着性が不十分であれば、複雑にループ制御するワイヤボンディング工程においても、Pd被覆層の剥離、脱落等が発生する。部分的にでも被覆層がとれて芯材が表面に露出すれば、酸化の進行、接合性の低下等の品質問題となる。
 こうした直接的な不良だけでなく、被覆層の剥離、脱落等の発生による間接的な不良、あるいは歩留まりの低下等も懸念される。例えば、複層ワイヤのワイヤ製造の途中工程で一旦発生したキズ、削れを、製品出荷時に完全に検出することは困難である。表皮層の厚さが不均一であったり、内部クラックが残留することで、ループ形成時の倒れ、垂れ、曲がり等の問題が発生する。こうした不具合は、被覆層の剥離、脱落との因果関係を直接は認識し難くても、ボンディング工程の歩留まりの低下等の原因となる。
 Cu、Au、Agを主成分とする芯材より硬く、脆化し易いPd被覆層を有する複層ワイヤでは、ワイヤ量産工程又は大量の連続ボンディング中等に、単層ワイヤより製造上のトラブル発生が多い。複層ワイヤを圧延・伸線する加工中に、ロールやダイスの磨耗が単層ワイヤより激しいことで、ワイヤ表面にキズが発生することでの品質トラブル、あるいはダイス寿命の低下による製造費用の増加が問題となる。また、ワイヤボンディング工程で複雑なループ制御することで、キャピラリの穴の内壁がPd被覆層により摩擦されることで、単層ワイヤよりもキャピラリの交換頻度が増えて生産性が低下することが問題となる。
 複層ワイヤでボール部を形成すると、真球からずれた扁平ボール、ボール表面の凹凸、ボール内部の気泡又はボール表面の微***等の発生が問題となる。こうした正常でないボール部を電極上に接合すると、ワイヤ中心からずれてボール部が変形する偏芯変形、真円からずれる形状不良として楕円変形、花弁変形等が生じることで、電極面から接合部のはみ出し、接合強度の低下、チップ損傷、生産管理上の不具合等の問題を起こす原因となる。こうした初期接合の不良は、高温高湿環境でボール接合部の長期信頼性の低下を誘発する場合もある。原因の一つとして、複層ワイヤの製造工程で、外層の内部、外層と芯材の境界近傍等に不純物、ガス成分が残留することが関係していること等が考えられる。
 Pd被覆層の剥離・脱落による品質の低下、ダイス寿命の低下、キャピラリの交換頻度の増加、ボール接合の形状不良に関しては、これまで効果的な対策は知られていない。こうした不具合は、実用化の前段階における少量評価では問題を認識することが困難であり、量産工程でppmオーダの厳しい管理を行うことにより顕在化する問題である。これまで半導体用ボンディングワイヤとして複層ワイヤの使用実績がないことから知られていなかった問題であるが、今後、複層ワイヤを量産・実用化するためには改善が期待される。
 本発明では、上述するような従来技術の問題を解決して、ワイヤ表面の被覆層の剥離・脱落の抑制、加工性の向上、良好なボール接合性、ループ形状の安定化、ダイス寿命又はキャピラリ交換寿命の増加、等の性能向上を図った半導体用ボンディングワイヤを提供することを目的とする。
 本発明者らが、上記問題を解決するために複層ワイヤを鋭意検討した結果、ボンディングワイヤに含有される水素濃度を適正化することが有効であることを見出した。更に効果的には、外層又は拡散層の膜厚、芯材の合金元素添加等の制御が有効であることを見出した。
 本発明は、前記知見の基づいてなされたものであり、以下の構成の要旨とする。
 請求項1に係る半導体用ボンディングワイヤは、Cu、Au、及びAgのいずれか1種以上の元素を主成分とする芯材と、前記芯材の表面に形成されたPdを主成分とする外層とを有する半導体用ボンディングワイヤであって、前記ワイヤ全体に含まれる総計の水素濃度が0.0001~0.008mass%の範囲であることを特徴とする。
 請求項2に係るボンディングワイヤは、請求項1において、前記水素濃度が0.0001~0.004 mass%の範囲であることを特徴とする。
 請求項3に係るボンディングワイヤは、請求項1又は2において、前記水素濃度が、昇温脱離ガス分析(Thermal Desorption
Spectrometry: TDS)により測定した前記ワイヤ全体に含まれる水素濃度であることを特徴とする。
 請求項4に係るボンディングワイヤは、請求項1~3のいずれかにおいて、前記ボンディングワイヤであって、100~300℃/hの昇温速度で測定される前記昇温脱離ガス分析において、150~500℃の温度範囲で検出される水素濃度が全温度範囲で検出される総計の水素濃度に対する比率が50%以上であることを特徴とする。
 請求項5に係るボンディングワイヤは、請求項1~4のいずれかにおいて、前記外層の厚さが0.01~0.2μmの範囲であることを特徴とする。
 請求項6に係るボンディングワイヤは、請求項1~5のいずれかにおいて、前記外層内において、金属系元素の総計に対するPd濃度が80mol%の範囲である領域の厚さが0.003~0.08μmであることを特徴とする。
 請求項7に係るボンディングワイヤは、請求項1~6のいずれかにおいて、前記外層と前記芯材との間に濃度勾配を有する拡散層を有し、前記拡散層の厚さが0.003~0.15μmであることを特徴とする。
 請求項8に係るボンディングワイヤは、請求項1~7のいずれかにおいて、前記芯材の主成分がCu又はAuで、Pd、Ag、及びPtのいずれか1種以上の元素を含有し、前記芯材に占める該元素濃度が総計で0.01~2mol%の範囲であることを特徴とする。
 請求項9に係るボンディングワイヤは、請求項1~8のいずれかにおいて、前記芯材の主成分がCuで、Al、Sn、Zn、B、及びPのいずれか1種以上の合金元素を含有し、前記ワイヤ全体に占める該合金元素濃度が総計で0.0001~0.05mol%の範囲であることを特徴とする。
 請求項10に係るボンディングワイヤは、請求項1において、前記芯材がCuを主成分とし、前記外層の表面側にAg、Auのうち1種以上の濃化層を有することを特徴とする。
 請求項11に係るボンディングワイヤは、請求項10において、前記濃化層がAg、Auのうち1種以上の濃度勾配をワイヤ径方向に有するものであることを特徴とする。
 請求項12に係るボンディングワイヤは、請求項10において、前記濃化層の最表面におけるPd濃度が20~90mol%の範囲であることを特徴とする。
 請求項13に係るボンディングワイヤは、請求項10において、前記外層の内部にPd単一金属層を有することを特徴とする。
 請求項14に係るボンディングワイヤは、請求項10において、前記濃化層を有する外層の厚さが0.02~0.4μmの範囲であることを特徴とする。
 請求項15に係るボンディングワイヤは、請求項1において、前記芯材がCuを主成分とし、前記芯材と前記外層との間にAg、Auのうち1種以上が濃化した中間層を有することを特徴とする。
 請求項16に係るボンディングワイヤは、請求項15において、前記中間層がAg、Auのうち1種以上の濃度勾配をワイヤ径方向に有するものであることを特徴とする。
 請求項17に係るボンディングワイヤは、請求項15において、前記中間層におけるAg、Auを総計した最高濃度が30~90mol%の範囲であることを特徴とする。
 請求項18に係るボンディングワイヤは、請求項16において、前記中間層が、Ag、Auのうち1種以上の元素とPdとCuとが共存し、かつ該3元素の濃度勾配をワイヤ径方向に有する領域を含むものであることを特徴とする。
 請求項19に係るボンディングワイヤは、請求項15において、前記外層と前記中間層を総計した厚さが0.02~0.5μmの範囲であることを特徴とする。
 請求項20に係るボンディングワイヤは、請求項10又は15において、Pd、Ag、Auを総計した濃度が0.4~4mol%の範囲であることを特徴とする。
 請求項21に係るボンディングワイヤは、請求項10又は15において、Pd濃度に対するAg、Auを総計した濃度の比率が0.001~0.4の範囲であることを特徴とする。
 本発明の多層構造をしたボンディングワイヤにより、ボール部の真球性の向上と、ワイヤ加工性の向上を両立することができる。また、ボール接合部における圧着形状の安定化を促進できる。また、大気に長期間放置した後の連続接合性を向上できる。また、プル強度を高められる。また、ループ直線性あるいはリーニング性を高められる。また、高温高湿試験の信頼性を向上できる。その結果、細線化、狭ピッチ化、ロングスパン化、高信頼化等、最新の半導体実装技術にも適応する、高機能の半導体用ボンディングワイヤを提供することが可能となる。
外層、拡散層、芯材のボンディングワイヤの濃度プロファイル 表面濃化層を有する外層、芯材のボンディングワイヤの濃度プロファイル 外層、中間層、芯材のボンディングワイヤの濃度プロファイルであって、単一金属層を有する場合 外層、中間層、芯材のボンディングワイヤの濃度プロファイルであって、3元素以上が混在する濃度勾配を有する場合
 半導体用ボンディングワイヤ(以下、ボンディングワイヤという)について、導電性金属からなる芯材と、該芯材の上にPdを主成分とする外層とで構成されたものを評価した結果、酸化抑制、ウェッジ接合性又は長期接合信頼性を向上できる反面、ワイヤ製造工程での伸線加工及び、ワイヤボンディング工程での複雑なループ制御等における、外層の剥離・脱落、接合形状等の発生が問題となること、ボール接合形状の安定性等が十分でないこと等が判明した。
 複層ワイヤについて、不良率をppmオーダで管理する半導体製造工程での実用化、汎用の金ボンディングワイヤ等現行の単層ワイヤを超える量産安定性、品質を安定化させること、細線のワイヤ伸線加工における歩留まり、生産性を向上すること等を総合的に満足するため、ボンディングワイヤに含有される水素に着目し、その濃度、分布を高精度に管理することが有効であることを見出した。さらに、水素濃度の効率的な制御を促進するには、外層の膜厚・構造、外層又は芯材の合金成分の添加、ワイヤ製造プロセス等の適正化が有効であることも見出した。
 Cu、Au、及びAgのいずれか1種以上の元素を主成分とする芯材と、前記芯材の上にPdを主成分とする外層とを有し、ワイヤ全体に占める水素濃度が0.0001~0.008 mass%の範囲であることを特徴とする半導体用ボンディングワイヤであれば、ボール部の真球性、表面性状を良好にすることと、ワイヤ製造工程での加工性の向上、酸化の遅延による品質を向上することで、生産性と使用性能を同時に改善することができる。Cu、Au、及びAgのいずれか1種以上の元素を主成分とする芯材とは、前記元素を含む芯材であり、例えば、前記主成分とは、該元素の濃度が50mol%以上の範囲であることに相当する。芯材がCu、Au、Agであれば、現行のワイヤボンディング装置を用いた接続が容易であり、総合的な信頼性も高いため、芯材として利用できる。好ましくは芯材がCuであれば、安価な材料費、Pd外層による酸化の抑制等、最も有用である。水素濃度の管理の観点からも、芯材がCuである場合が最も高い効果が得られる。
 上記の水素濃度の範囲に関して、0.0001 mass%以上含有することで、アーク放電時のCuの酸化を低減する作用により、ボール部の真球性を向上し、ボール先端部の引け巣を抑える効果が得られる。0.008 mass%を超えると、ボール内部に気泡が発生するため、接合部の形状が不安定になること、接合強度が低下することが問題となる。好ましくは、0.0001~0.004 mass%の範囲であれば、ボール側面におけるピット状の微***の発生を抑制することでボール接合性をさらに向上すること、また、高速で伸線加工したときの断線を低減して生産性を高めることが可能である。より好ましくは、0.0001~0.002 mass%の範囲であれば、高速伸線時の断線不良を抑えることができ、生産性を向上できる。該濃度範囲であれば、Pd外層の剥離による強度低下、また、削れ屑による伸線ダイスの目詰まり等を抑えることで、伸線速度を高められる。ダイスの磨耗を抑えてダイス寿命を向上させることで、品質の安定化、生産効率の改善も可能である。さらにより好ましくは、0.0001~0.001 mass%の範囲であれば、狭ピッチ用に必要な線径18μm以下の極細線において、伸線加工での断線不良を低減して歩留りを高めたり、伸線速度を速めることで生産性を一層高めることができる。狭ピッチ接続でボンディング中に穴が詰まりキャピラリ交換頻度が増える問題に対しても、上記濃度範囲であればキャピラリ交換寿命を向上して、実装工程の生産効率を高める効果が得られる。
 水素濃度による管理が有効であるのは、薄いPd膜で被覆された構造と深く関係することが確認された。Cu、Au、Agを主成分とする単層ワイヤの使用性能は、水素を制御しても改善されず、むしろワイヤ表面の酸化、硫化、汚染等に支配される。また、Pdを主成分とする単層ワイヤでは、水素濃度を低濃度に制御することは量産では難しく、例え水素濃度を管理しても、ワイヤ加工性、ボール接合性等は改善されなかった。
 ボンディングワイヤの表面にメッキ等により形成された薄いPd外層は、Pdのバルクで知られている物性と異なる挙動が多い。Pd薄膜の水素の溶解度、吸蔵性等もバルクとは異なると考えられる。一般的にバルク状のPd合金は、水素吸蔵性が高く、Pdの体積の900倍以上の水素を吸蔵できること等が知られている。しかし、薄いPd外層では、水素の溶解度、適正濃度等はバルク状のPd合金で知られている特性とは異なる。この要因の一つとして、外層の組織、粒径、格子欠陥密度等がバルクとは異なることにより、水素濃度が前記ボンディングワイヤの製造プロセスに依存すること等が関係している。
 水素が存在する部位を分類すると、Pd外層、外層と芯材との境界近傍、芯材、ボンディングワイヤの最表面等が考えられる。主として、Pd外層中に含有される水素濃度が最も高い場合が多く、この部位の水素は放電時にボンディングワイヤが溶融するときに一部の水素が気化してボール形成が安定化させる作用が期待される。外層と芯材との境界近傍の界面又は拡散層に含有する水素は、外層と芯材との密着性に影響して、ワイヤ加工時の剥離、キズ等の不良発生を左右する。芯材がCuである場合は、Cu中に含有する微量の水素が、ループ形成時の安定性に直接影響したり、間接的にはCu中の酸素含有量に影響することで、ボール部の硬化をもたらすと考えられる。ボンディングワイヤの最表面に吸着する水素は少ないが、ワイヤ表面の摺動抵抗を低下させることでループ形状を安定化させる効果等が期待できる。ここで、最表面とは、表面からの深さが2nmまでの領域をいう。
 前記水素濃度は、複層ワイヤに含まれる総計の水素濃度で管理することが望ましい。即ち、Pd外層、外層と芯材との境界近傍、芯材、ワイヤ最表面に含まれる水素を総計した濃度である。上述したように、水素がそれぞれの部位に含有することで使用性能が総合的に向上する効果が得られるため、総計での管理が望ましい。また、水素濃度の分析の観点からも、複層ワイヤに含まれる総計の水素濃度を測定することは分析精度が高く、実用的でもある。
 前記複層ワイヤに含まれる水素濃度は、製造後にしばらく経過したボンディングワイヤの測定でも構わない。大気中に放置されても、複層ワイヤに含まれる水素濃度の経時変化は少ないことを確認している。ボンディングワイヤは、通常はスプールケースと呼ばれるプラスチック容器に保管され、外気からのごみの付着等を予防している。ボンディングワイヤがスプールケースに収納されている通常の保管状態であれば、ワイヤ製造後の大気放置期間が約4ヶ月まで水素濃度の変化は小さいことが確認された。測定試料を準備するための条件も水素の測定濃度に影響を及ぼすものであるが、少なくとも、測定前に試料をアセトン中で超音波洗浄を約1分間施す脱脂処理を行い、冷風乾燥して秤量して濃度測定に供することで、本発明に十分な精度で水素の測定ができる。定量化のための測定試料質量は2g以上が必要であればよい。よって、本発明に係る水素濃度とは、一定質量のボンディングワイヤに含まれる水素を測定して、その総質量当たりに含まれる水素の質量%(mass%)として表わされる水素含有量を意味するものである。
 水素濃度の測定には幾つかの手法があるが、細い線の微量の水素濃度を正確に検出するためにも、融解熱伝導度法、昇温脱離ガス分析(Thermal Desorption Spectrometry、以下TDS分析と称する)等により定量測定できることを確認した。融解熱伝導度法またはTDS分析のどちらか一方で測定した結果が、本発明で説明する水素濃度の範囲であれば、使用性能との関係を満足することを確認している。融解熱伝導度法は、測定が比較的容易であるが、測定試料の調整等の外来要因の影響を受け易い。TDS分析は、昇温しながら試料から脱離するガス濃度を検出する手法であり、利点は温度によりガス量を識別できるため、ガスの存在形態等の情報も得られることである。この手法だけでは濃度の定量化が難しいため、予め分析濃度が判明している検量サンプルを標準試料として用いて水素濃度を定量化することが望ましい。前述した水素濃度の定量化には、日本鉄鋼連盟の鋼中ガス分析用管理試料JSS GS-1d(水素量:1.6mass ppm)を検量試料として同じ条件で測定して、得られた質量スペクトル強度をもとにして求めた水素濃度を用いた。
 前記ボンディングワイヤであって、100~300℃/hの昇温速度で測定される前記TDS分析において、150~500℃の温度範囲で検出される水素濃度が全測定温度範囲で検出される総計の水素濃度に対する比率が50%以上であることを特徴とするボンディングワイヤであることが望ましい。該全測定温度範囲に関して、好ましくは常温~900℃の範囲であれば、含有される水素のほぼ全量を検出できる。複層ワイヤ中に含有する水素の存在状態を大別すると、拡散性水素と水素化物に分類される。拡散性水素は、主に格子間原子として金属内を自由に拡散できる水素である。Cu、Au、Agの芯材の上がPd外層で覆われている複層ワイヤでは、主として拡散性水素が前述した使用性能との相関が強いと考えられる。一方の水素化物とは、水素と金属の化合物である。水素化物はワイヤ変形時の脆化、割れの原因となったり、異形ボール発生を誘発することになるため、少量に抑えることが望ましい。拡散性水素は、比較的低温で試料から脱離する。線径15~100μmの前記複層ワイヤを測定試料として調査したところ、100~300℃/hの昇温速度で測定すると150~350℃温度範囲で検出できることが確認された。一方の水素化物は、主として550~900℃の温度範囲で検出される。150~500℃の温度範囲で検出される水素濃度が全測定温度範囲で検出される総計の水素濃度に対する比率が50%以上であることは、ボンディングワイヤの試料中に含有する水素の大部分が拡散性水素であることに相当する。該比率が50%以上であれば、前述したボール形状の真円化、ワイヤ製造の加工性を高める効果を促進できる。好ましくは、70%以上であれば、線径が20μm以下の細線を用いたときの異形ボールの発生を抑えて真円性を向上させる効果がより一層高められる。上記の水素を検出する温度範囲は昇温速度に依存しており、昇温速度が速くなれば温度範囲は高温側にシフトする傾向にある。
 水素濃度は、複層ワイヤの製造工程に依存する部分が大きい。Pd外層を形成した直後の複層ワイヤでは、一般的に水素濃度が高い傾向であることが確認された。水素濃度が過剰に高いと、ワイヤ製造工程において外層の脆化、芯材との密着性の低下等の問題により、ボンディングワイヤの製造歩留まり、品質を低下させる原因となる。前記複層ワイヤに主に含まれる拡散性水素について、熱処理によりワイヤの外部に放出することは比較的容易である。したがって、適正な水素濃度の調整には、熱処理工程の利用が有効である。この熱処理工程では、ワイヤの構成、材質、さらに熱処理前後のプロセス等によっても熱処理条件が異なり、加えて総合的なボンディング性能を満足することも要求される。Pd外層とAu、Cu、Agの芯材で構成される複層ワイヤにおいて、水素濃度を調整するための適正な熱処理条件は、該芯材だけ又はPdワイヤの熱処理条件とは明らかに異なり、例えば、低温で比較的長時間の加熱が有効である。一例では、150~300℃の温度範囲で10分~2時間の加熱により、過剰な水素を優先的に放出させて、複層ワイヤの全体に含まれる水素濃度を安定化させることが可能である。通常のボンディングワイヤの製造工程で実施される熱処理では、機械的特性の適正化、加工歪みの除去による直線性の確保等が目的であるため、温度は400~700℃程度で高く、加熱炉内にワイヤを高速で通過させて加熱時間も数秒であることが一般的である。それに対して、複層ワイヤの水素濃度の調整のための熱処理は、低温かつ長時間であることが特徴である。熱処理条件の具体例等を後述する。
 複層ワイヤに含まれる水素濃度に関して、製造の中間工程での水素濃度とワイヤボンディングの最終製品での水素濃度とを区別して管理することも有効な場合が多い。複層ワイヤの製造工程では単層ワイヤと異なる要求が多い。例えば、外層と芯材との密着性、外層の膜厚・組織の均一性等、複層構造に特有の問題が多い。これらを総合的に改善するためには、加工時には比較的高い濃度にして、最終製品では低濃度する漸減手法が有効である。また、ワイヤ中に含まれる過剰な水素を一度に放出しようとすると、表面キズ、断線の原因ともなることも懸念される。水素濃度を段階的に減少させれば、こうしたプロセス問題も解決できる。前述した濃度範囲である0.0001~0.008 mass%は最終製品で好ましい水素濃度に関するものであるが、中間製品の水素濃度は0.0002~0.015 mass%の範囲であれば、安定した生産性が得られる。こうしたボンディング用適正濃度とプロセス適正濃度とで区別した基準で水素濃度を管理することは、複層ワイヤに特有であり、従来の単層ワイヤ、別用途の金属細線等とは異なる。
 前記外層の厚さは0.01~0.2μmの範囲であることが望ましい。Cu、Au、Agの芯材の表面がPd外層で覆われている複層ワイヤで、ワイヤ全体に含まれる総計の水素濃度が0.0001~0.008 mass%の範囲であり、前記外層の厚さが0.01~0.2μmの範囲であれば、水素濃度を上記濃度範囲に安定化させることによりボール形状、加工性を両立することができ、しかも、ワイヤ表面の耐酸化を高めることができる。生産性、経時変化の安定性を高める水素濃度管理の観点からも、Pd外層に含まれる水素を優先的に制御することが効率的である。ボンディングワイヤの保管事例として、該ボンディングワイヤでは、常温で大気中に60日間放置してもワイヤ接続工程での不着不良が発生しないことを確認した。これは、従来の単層のCuワイヤの保管寿命が7日以内であることと比較しても、保管寿命の大幅な延長である。外層の厚さが0.01μm以上であれば、水素濃度を安定化させることが容易であり、厚さが0.2μmを超えると、ボール部が硬化して接合時にチップ損傷を与えることが懸念されるためである。好ましくは、外層の厚さが0.02~0.095μmの範囲であれば、耐酸化の向上に加えて、ボール接合強度を増加させることができ、低温接合等に有利となる。
 前記外層内において、金属系元素の総計に対するPd濃度が80mol%以上の範囲である領域の厚さが0.003~0.08μmであることが望ましい。Cu、Au、Agの芯材の表面がPd外層で覆われている複層ワイヤで、ワイヤ全体に含まれる総計の水素濃度が0.0001~0.008 mass%の範囲であり、金属系元素の総計に対するPd濃度が80mol%以上の範囲である領域(高濃度Pd層)の厚さが0.003~0.08μmであることにより、水素の分布がボンディングワイヤの表面近傍に集中することができる。この効果として、ボール近傍の熱影響を受けたネック部の酸化、脆化を抑制することでプル強度を高めること、また、低ループ形成時のネック部のダメージも低減することができる。Pd濃度が80mol%以上の範囲である高濃度Pd層には、水素を多く分布させる水素濃化作用があることを確認した。ワイヤ全体に含まれる総計の水素濃度が低くても、高濃度Pd層を管理することで低濃度の水素をワイヤ表面近傍に安定して分布させることが可能である。高濃度Pd層の厚さが0.003μm以上であれば、水素濃化として作用するのに有効であり、0.08μmを超えると台形状ループを形成したときのばらつきが増加するためである。
 前記外層と芯材との間に濃度勾配を有する拡散層を有し、前記拡散層の厚さが0.003~0.15μmであることが望ましい。Cu、Au、Agの芯材の表面がPd外層で覆われている複層ワイヤで、ワイヤ全体に含まれる総計の水素濃度が0.0001~0.008 mass%の範囲であり、外層と芯材との間に濃度勾配を有する拡散層を有し、前記拡散層の厚さが0.003~0.15μmであることにより、ループの直線性の向上、ループ形状の安定化等に有効である。該拡散層とは、芯材を構成する金属(Cu、Au、Ag)と外層のPdが相互拡散して形成される層である。拡散層の役割として、Pd外層から芯材の方向への水素の移動を制御することにより、芯材の強度、剛性、組織のばらつきを抑えて均質化すること、外層と芯材との界面の密着性を高めて、水素が界面近傍に偏在することによる剥離、隙間等を抑制すること等が考えられる。即ち、拡散層が、芯材の均質化と、外層と芯材との界面の密着性とを向上させることにより、直線性、ループ形状の安定性が向上すると理解できる。拡散層の厚さが0.003~0.15μmである理由は、0.003μm未満では上記の改善効果が少なく、0.15μm超ではウェッジ接合性が低下するためである。好ましくは、0.01~0.1μmであれば、ワイヤ長が5mm以上のロングスパンでの直線性、ループ形状を安定化させるより高い効果が得られる。
 図1に、上記の複層ボンディングワイヤにおけるワイヤ表面からの芯材(ワイヤ径中心)方向への金属元素濃度プロファイルの一例を示す。該ワイヤは、芯材1、外層2、拡散層3により構成されており、図1では、外層の主成分A、芯材の主成分Bの金属元素の濃度プロファイルが示されている。拡散層3は、芯材1と外層2の間に形成されている。
 本発明の拡散層の定義では、密着性、強度、ルーピング性、接合性等の性能、又は生産性等の観点から判断して、Pdの検出濃度が10~50mol%の領域とする。この濃度域の拡散層であれば、Pd濃度が低く、外層と芯材の両者とは異なる役割を果たすためである。また、外層と芯材との境界は、Pdの検出濃度が50mol%以上の部位に相当しており、即ち、外層とはPdの検出濃度の総計が50mol%の部位から表面の領域である。
 本明細書では、外層、拡散層、芯材等における濃度について、外層と芯材を構成する金属元素を総計した濃度比率を用いており、表面近傍のC、O、N、H、Cl、S等ガス成分、非金属元素等は除外して計算した濃度値を用いている。
 外層、拡散層、芯材等の濃度分析について、ボンディングワイヤの表面からスパッタ等により深さ方向に掘り下げていきながら分析する手法、あるいはワイヤ断面でのライン分析又は点分析等が有効である。前者は、外層が薄い場合に有効であるが、厚くなると測定時間がかかり過ぎる。後者の断面での分析は、外層が厚い場合に有効であり、また、断面全体での濃度分布や、数ヶ所での再現性の確認等が比較的容易であることが利点であるが、外層が薄い場合には精度が低下する。ボンディングワイヤを斜め研磨して、拡散層の厚さを拡大させて測定することも可能である。断面では、ライン分析が比較的簡便であるが、分析の精度を向上するには、ライン分析の分析間隔を狭くしたり、界面近傍の観察したい領域に絞っての点分析を行うことも有効である。これらの濃度分析に用いる解析装置では、電子線マイクロ分析法(EPMA)、エネルギー分散型X線分析法(EDX)、オージェ分光分析法(AES)、透過型電子顕微鏡(TEM)等を利用することができる。特にAESは、空間分解能が高いことから、最表面の薄い領域の濃度分析に有効である。また、平均的な組成の調査等には、表面部から段階的に酸等に溶解していき、その溶液中に含まれる濃度から溶解部位の組成を求めること等も可能である。
 前記芯材の主成分がCuで、Al、Sn、Zn、B、及びPのいずれか1種以上の合金元素を含有し、ワイヤ全体に占める該合金元素濃度が総計で0.0001~0.05mol%の範囲であることが望ましい。Cuを主成分とし、Al、Sn、Zn、B、及びPのいずれか1種以上の合金元素を総計した濃度が総計で0.0001~0.03mol%の範囲であり、該芯材の上がPd外層で覆われている複層ワイヤで、ワイヤ全体に含まれる総計の水素濃度が0.0001~0.008mass%の範囲であることにより、高ループ形成時等の不良モードであるリーニング性を改善できる。多ピンでの多段接続(Multi-Tier Bonding)では、ループ高さの高いループ形成時にネック近傍でボンディングワイヤが倒れるリーニング不良が発生することが懸念される。Cu芯材とPd外層で構成される複層ワイヤが水素を含有する場合に、リーニング不良が増える傾向にある。ネック部は、ボール溶融の熱影響を受けることにより、芯材の再結晶粒の粗大化、Pd外層又はCu芯材での水素の拡散とが起こるため、ワイヤ内部の強度、組織等の分布に不均一性が生じること等が関与していると考えられる。Al、Sn、Zn、B、Pの1種以上の合金元素が芯材の機械的特性や組織を均一化させることで、リーニング性が向上される。ここで、該合金元素の総計濃度が0.0001mol%未満であれば改善効果が小さく、0.05mol%超ではボンディングワイヤが硬化することで、ウェッジ接合部の強度評価であるピール接合強度が低下するためである。
 前記芯材の主成分がCu又はAuで、Pd、Ag、及びPtのいずれか1種以上の合金元素を有し、ワイヤ全体に占める該合金元素濃度が総計で0.05~2mol%の範囲であることが望ましい。Cu又はAuを主成分とし、芯材に占めるPd、Ag、及びPtのいずれか1種以上の合金元素を総計した濃度が0.01~2mol%の範囲であり、該芯材の上がPd外層で覆われている複層ワイヤで、ワイヤ全体に含まれる総計の水素濃度が0.0001~0.008mass%の範囲であることにより、ボンディングワイヤとアルミ電極との接合部の信頼性を向上できる。ここでの接合信頼性の試験では、高温高湿試験(Pressure Cooker Test; PCT試験)等が有用である。PCT試験では、代表的な条件として、130℃、85%RHで300~1000h加熱後に電気特性又は接合強度を評価する。Cu又はAuの芯材とPd外層で構成される複層ワイヤが水素を含有する場合に、PCT試験で信頼性が低下する場合がある。Pd、Ag、及びPtのいずれか1種以上の合金元素を0.05~2mol%の範囲で芯材に含有させることにより信頼性が向上する理由として、加熱時の接合界面の化合物成長速度を遅くさせること、また前記合金元素が接合界面に濃化した領域が水素に対する拡散バリアとして機能することなどが作用しているためと考えられる。ここで、該合金元素の総計濃度が0.05mol%未満であれば信頼性を改善する効果が小さく、2mol%超ではボール部が硬化して接合時にチップ損傷を与えるためである。芯材に含有される元素の濃度分析に関して、ワイヤ断面の3箇所以上において、前述したEPMA、EDX、AES等の分析手法により求めた濃度値を平均した値を用いることが好ましい。
 前記水素濃度で水素を含有する複層ボンディングワイヤの外層が2層以上で構成されることにより、接合性、ループ形状など多様な機能性を向上することができる。前述した複層ボンディングワイヤの水素濃度と特性の関係について、主として外層が1層構造である場合で説明したが、外層と濃化層の2層以上からなる複層ボンディングワイヤにおいても水素濃度の管理は有効である。以下に、外層と濃化層で構成されるボンディングワイヤに関して、濃化層がワイヤ表面に形成される場合(表面濃化層と称す)と、濃化層が芯材と外層との間に形成される場合(中間層と称す)の2種類の場合に分けて説明する。
 まず、表面濃化層について説明する。Cuを主成分とする芯材、前記芯材の上にPdを主成分とする外層、前記外層の表面側にAg、Auのうち1種以上の濃化層を有し、前記ワイヤ全体に含まれる総計の水素濃度が0.0001~0.008mass%の範囲であることが望ましい。こうした外層の表面側にAg、Auのうち1種以上の濃化層(表面濃化層)の形成と水素濃度の管理とを組合せることで、長期保管されたボンディングワイヤでも良好なウェッジ接合性を得ることができる。例えば前記ボンディングワイヤを3ヵ月保管した後で接合したときの連続ボンディング性が良好であること、さらにウェッジ接合部近傍のプル強度(セカンドプル強度)は、保管前に対して80%以上の高い値を維持できることが確認された。これは、AgまたはAuの表面濃化層が水素、酸素などガス成分のワイヤ表面からの侵入を抑えることで、長期間保管されたワイヤでも水素濃度をほぼ一定に保持することでウェッジ接合での良好な金属拡散を維持できるためと考えられる。前記表面濃化層は外層の一部に含まれる。これは、表面濃化層と外層では重複する機能も多いこと、前述したように、外層とはPd濃度が50mol%以上から表面までの領域であると定義していることなどの理由に基づく。
 図2に、上記の表面濃化層を有する外層が施されたボンディングワイヤにおけるワイヤ表面からの芯材(ワイヤ径中心)方向への金属元素濃度プロファイルの一例を示す。外層2の表面には、Ag、Auのうち1種以上である主成分Cを有する表面濃化層4があり、また、外層2の内部には、後述する単一金属層5が形成されている。
 濃化する元素がAg、Auのうち1種以上であることで、他の元素よりも高いウェッジ接合性が改善される。特にその改善効果が顕著な事例として、低い接合性が問題となるQFN(Quad Flat Non-Lead)構造の実装におけるウェッジ接合性を向上させる高い効果が確認された。QFN実装ではリード部の固定が十分ではないため、超音波振動を弱めたボンディングワイヤの接合が求められる。複層ボンディングワイヤの外層が硬いPdの場合にQFN実装は困難であるのに対して、外層表面側にAg、Auの濃化層を形成することで連続接続性が改善され、QFN実装での生産性向上が可能となる。
 Pdを主成分とする外層の表面側にAg、Auのうち1種以上の濃化層を有するボンディングワイヤにおいて、前記水素濃度の管理が濃化層を持たない外層の場合よりも重要となる。この理由として、前記濃化層は水素がワイヤ外部に放出するのを抑える働きにより、製造工程でワイヤ内に含有される水素濃度が高くなり、前述した水素に起因するボール形成の低下などの問題が起こりやすいためである。さらに、Cuが水素を少量含有することが可能であるため、芯材の主成分がCuである場合に、濃化層の形成と水素濃度の管理の関係が有効である。
 前記表面濃化層は、Ag、Auのうち1種以上とPdとの固溶合金であることが望ましい。表面濃化層の領域は、Ag、Auの濃度が10mol%以上で周囲より高濃度である領域と定義する。これは、局所的に10mol%以上の高濃度の領域であれば、接合部での拡散挙動、ループ形成時のワイヤの曲折などを制御できるためである。こうしたループ形状を安定化させる効果は、単一金属領域よりも濃化層の方が高い傾向にあることが確認された。好ましくは、前記濃化層は金属間化合物ではなく固溶合金であることで、短スパンなどの曲げ角度の大きいループ形状でも安定化できる。
 表面濃化層がAg、Auのうち1種以上の濃度勾配を有することが望ましい。濃度勾配によりウェッジ接合でのセカンドプル強度が増加して、実装時の歩留がさらに向上する。この改善効果はBGAまたはCSPでも効果はあるが、特に、QFN実装でのウェッジ接合のセカンドプル強度を上昇させる効果がより高い。これは表面濃化層が濃度勾配を有することで、ほぼ一定濃度の合金と比較して、ウェッジ接合に要求されるワイヤの大塑性変形、接合界面での相互拡散などを助長する効果が高いためと考えられる。ワイヤ径方向における濃度勾配の傾きは1μm当たり10mol%以上であれば、QFN実装でのセカンドプル強度を上昇させる効果がより高められる。好ましくは1μm当たり30mol%以上であれば、接合界面での相互拡散を助長することで、QFN実装でのセカンドプル強度を高める効果が高い効果が確認された。
 表面濃化層の最表面におけるPd濃度が20~90mol%の範囲であることが望ましい。これにより、ロングスパンでのループ形状のばらつきを低減したり、細径ワイヤの接合性を向上する効果が増進される。ワイヤ表面がPdで全て覆われる場合に、4mm以上のロングスパンでのループ形成時に階段状のしわが発生する不良(Wrinkled Loop)が問題となる。これは、硬いPdとキャピラリ内壁との摩擦が増加して摺動性が悪化することが要因であると考えられる。最表面のPd濃度が90mol%未満、言い換えるとAg、Auの総計濃度が10mol%以上である理由は、ロングスパンのループ制御が改善され、なかでも上記のWrinkled Loop不良の改善に効果的であるためである。また、濃化層の最表面におけるAg、Auの総計濃度を10mol%以上にすることで、線径20μmの細線でもウェッジ接合性を向上することができる。一方、Pd濃度20mol%未満すなわちAg、Auの総計濃度が80mol%以上では、ボール内部に未溶融部が残り、ボール接合部のシェア強度が低下する。好ましくは、前記Pd濃度が30~80mol%の範囲であることにより、線径18μm以下の極細線において、Wrinkled Loop不良の抑制などの高い効果が得られる。
 表面濃化層を有する外層の内部にPd単一金属層を有することが望ましい。すなわち、Cuを主成分とする芯材、前記芯材の上にPdを主成分とする外層、ワイヤ全体に含まれる総計の水素濃度が0.0001~0.008mass%の範囲である半導体用ボンディングワイヤであって、前記外層の表面側にAg、Auのうち1種以上の濃化層、前記外層の内部にPd単一金属層を有する半導体用ボンディングワイヤであることが望ましい。これにより、真円で、サイズばらつきの少ないボール接合が可能となる。Pd単一金属層とは、濃度測定の誤差などの制約も考慮すると、Pd濃度が97%以上である領域に相当する。Pd単一金属層の位置は、前記濃化層に隣接することが望ましい。例えば、ワイヤ表面から内部方向へのワイヤ構成では、AgまたはAuの濃化層/Pd単一金属層/Pd-Cu拡散層/芯材で例示される。
 Pd単一金属層の役割は、芯材のCuの表面方向への拡散を抑制するバリア機能である。このバリア機能により、表面でのCuの偏析、酸化の抑制などの効果があり、結果としてアーク放電を安定化させて、真球性の良好なボール形成が可能となる。前記外層が、表面のAg、Auの濃化層、内部のPd単一金属層、水素濃度管理の三者の相乗効果を利用することで、細径ワイヤで小ボールを接合する厳しい条件でも、ボール接合部の真円性、サイズ安定性を向上できる。特に、圧着ボール径が線径の3倍以上となる大ボール変形の場合に真円化させる改善効果が顕著である。Pd単一金属層だけでは不十分であり、例えば、表面のAg、Auの濃化層が長期保管されたワイヤのウェッジ接合性を維持することも、アーク放電を安定化させて大ボール変形を安定化するのに有効である。Pd単一金属層の厚さは、0.005~0.1μmの範囲であることが望ましい。0.005μm以上であれば十分な上記効果が得られ、0.1μmを超えるとボール形成時に高融点金属のPdの溶融が不安定となり、花弁状のボール接合形状が問題となるためである。
 表面濃化層を有する外層の厚さが0.02~0.4μmの範囲であることが望ましい。これにより、表面濃化層を有する外層の効果である、長期保管後のウェッジ接合性およびセカンドプル強度、QFN実装での生産性およびセカンドプル強度の向上などに加えて、水素濃度が管理された外層の効果であるボール接合性の向上なども両立することが可能である。外層の厚さが0.02μm以上であれば、上記効果を得ることが容易であり、厚さが0.4μmを超えると、ボール部が硬化して接合時にチップ損傷を与えることが懸念されるためである。好ましくは、外層の厚さが0.03~0.3μmの範囲であれば、QFN実装の低温でのセカンドプル強度を増加させることができる。より好ましくは、0.04~0.25μmの範囲であれば、QFN実装の低温接合におけるボール接合強度、セカンドプル強度を増加させるより高い効果が得られる。
 次に中間層について説明する。Cuを主成分とする芯材、前記芯材の上にPdを主成分とする外層、芯材と外層との間にAg、Auのうち1種以上の中間層を有し、前記ワイヤ全体に含まれる総計の水素濃度が0.0001~0.008mass%の範囲であることが望ましい。こうした芯材と外層との間にAg、Auのうち1種以上の中間層を形成し、水素濃度の管理と組合せることで、長期間保管されたボンディングワイヤを用いたときのボール接合性が向上する。例えば前記ボンディングワイヤを4ヵ月保管された後で接合したときのボール接合部では、ボール部の内部気泡が抑制され、初期シェア強度、高湿環境での接合信頼性が向上することが確認された。これは、前記内部濃化層の役割として、水素、酸素などの内部方向への侵入、Cu中への水素の固溶の軽減および芯材のCu原子の表面方向への拡散を抑えるバリア機能により、ボール凝固時に水素、酸素などに起因する気泡の生成を抑えることができるためと考えられる。
 中間層で濃化する元素がAg、Auのうち1種以上であることで、他の元素よりもボール部またはバンプ部の接合性を向上できる。特にその改善効果が顕著な事例として、リバースボンディング実装でのバンプ上へのウェッジ接合性が向上することが確認された。バンプ形成後に加熱ステージ上にしばらく放置される間にバンプ表面が酸化されることで、バンプ上へのウェッジ接合性が通常の接合形態より低下することが問題となる。中間層は、バンプ表面でのCu酸化膜の形成を低減する効果があり、リバースボンディング実装での連続ボンディングでの歩留り、生産性が向上する。なお、リバースボンディングとは、リード電極にボール接合してから、バンプ上にウェッジ接合を行うことをいう。
 中間層の境界に関して、外層側または芯材側ともに、濃化する元素の濃度の総計が20mol%以上の領域とする。これは、中間層に求められる前記バリア機能を効率的に発現するために必要な濃度が20mol%以上であるという理由に基づく。
 中間層がAg、Auのうち1種以上の濃度勾配を有することが望ましい。濃化層内の濃度勾配は、リバースボンディング実装のリーニング性を向上することができる。リーニング不良とは、ボール接合部の近傍の直立部でワイヤが倒れる現象であり、リバースボンディング実装では、前記直立部の長さが通常の実装形態より相当長いため、リーニング不良が発生しやすい。不良原因は、直立部がボール形成時の熱影響により不均一な再結晶組織が形成されることが一因である。これに対して、中間層が濃度勾配を有することで、ほぼ一定濃度の場合と比較して、熱影響を受けた直立部の再結晶組織および残留歪みが均一であるため、リバースボンディング実装でのリーニング不良を抑制する効果が得られると考えられる。濃度勾配の平均の傾きは1μm当たり20mol%以上であれば、上記効果が得られる。好ましくは1μm当たり60mol%以上であればリーニング不良を抑制する効果が高められる。
 中間層におけるAg、Auを総計した最高濃度が30~90mol%の範囲であることが望ましい。これにより、バンプ上へのウェッジ接合における適切なパラメータウインドウが広がり、低い荷重および超音波出力の範囲でも接合が可能となるため、リバースボンディングの接合歩留が向上する。さらに複雑な形状のバンプ上でのウェッジ接合の超音波振動を低減できるため、ワイヤ曲がりを抑制することができる。これは中間層が濃度勾配を有することで、ほぼ一定濃度の濃化層と比較して、ウェッジ接合に要求されるワイヤの大塑性変形、接合界面での相互拡散などを助長する効果が高いためと考えられる。Ag、Auの最高濃度が30mol%以上であれば上記改善効果が得られ、90mol%以上ではボール内部に未溶融部が残り、ボール接合部のシェア強度が低下するためである。
 中間層の位置は、外層と芯材の間に位置することが望ましい。この位置であれば、水素とCuの相互拡散を抑えるバリア機能が向上する。図3に、中間層を有する外層を施したボンディングワイヤにおけるワイヤ表面から芯材(ワイヤ径中心)方向への金属元素濃度プロファイルの一例を示す。外層2と芯材1との間には、Ag、Auのうち1種以上である主成分Dを有する中間層6が形成されている。図3Aには、中間層6の内部に単一金属層5を有する場合、図3Bには、中間層6の内部に3元素以上が混在する濃度勾配領域8を有する場合を示す。
 ボンディングワイヤの構成では、外層/中間層/芯材となり、前述した芯材と外層の拡散層であるPd-Cu拡散層に代わり中間層が形成されている。濃化する元素はAg、Auのうち1種以上が必須であり、それ以外の元素はPd、Cuのうち1種以上である。Auが濃化する場合の中間層を例示すると、(1)PdとAuの濃度勾配、(2)AuとCuの濃度勾配、(3)Au、Pd、Cuの3元素の濃度勾配の3種に分類される。前記濃度勾配とは、相互拡散により形成された固溶合金であることが望ましい。中間層の構成は、(1)~(3)のうちいずれか1種以上を有している。例えば、中間層が(1)+(2)、(1)+(3)、(1)+(2)+(3)の複数で構成されていることで、前記のバリア機能がより高められ、リバースボンディングの生産性などを向上するより高い効果が得られる。濃化元素がAgの場合も同様である。
 すなわち、前記中間層がAg、Auのうち1種以上とPdとCuの3元素の濃度勾配の共存領域を有することが望ましい。これにより、特に、リバースボンディングにおけるボール近傍のファーストプル強度を高めることができる。3元素の濃度勾配の共存領域の一例が前記(3)に相当し、ボール近傍の熱影響部の再結晶を抑制することでファーストプル強度が上昇する。
 外層と中間層を総計した厚さが0.02~0.5μmの範囲であることが望ましい。この厚さが0.02μm以上であれば前述したリバースボンディングの連続接合性を向上する効果を得ることが容易であり、厚さが0.5μm以上では、ボール部が硬化して接合時にチップ損傷を与えることが懸念されるためである。外層2が中間層6を有する場合の濃度プロファイルを例示した図3では、外層2と中間層6を総計した厚さは矢印7で示される。好ましくは、0.07~0.4μmの範囲であれば、リバースボンディングの低温接合でのボール接合強度、セカンドプル強度を増加させることができる。より好ましくは、0.13~0.3μmの範囲であれば、接合時にチップが破壊することが懸念されるオーバーハング型のリバースボンディングにおいて、バンプ上のウェッジ接合強度を増加させる高い効果が得られる。
 ここで、外層と中間層を合計した領域と芯材との厚さに関しては、Ag、Auの総計濃度が20mol%の境界またはPd濃度が50mol%の境界のどちらかワイヤ中心に近い方を境界として選択する。中間層のAg、Auの最高濃度が低い場合には、中間層の大部分が外層に含まれる。外層と中間層との境界を機能面から設定し、完全に分離することは難しい、むしろ外層と中間層を総計した厚さは、ボンディング性能との相関でも有効な指標であることを確認している。
 以上の通り、Ag、Auの濃化する領域について、ワイヤ表面近傍の表面濃化層と、芯材と外層との間の中間層の2種類を説明した。表面濃化層と中間層のどちらの場合も、芯材、外層の主成分はそれぞれCu、Pdであり、濃化する元素はAg、Auのうち1種以上であるなど共通点は多い。これらの元素のワイヤ全体に占める含有濃度は、ボール接合性、接合信頼性などに影響を及ぼす。
 すなわち、表面濃化層または中間層の少なくともどちらか一方と、外層、芯材により構成される半導体用ボンディングワイヤであって、Pd、Ag、Auを総計した濃度が0.4~4mol%の範囲であることが望ましい。この濃度範囲であれば、50μmの狭ピッチ接続におけるボール接合部の真円化、シェア強度の向上、Alスプラッシュの低減を同時に満足する効果が得られる。Alスプラッシュとは、硬いボールをAl電極上に接合する時に、ボール接合部の外周部にAlが掃出される現象である。Alスプラッシュにより掃出されたAlが隣接する接合部と接触すると電気的ショートの不良となるため、狭ピッチ接続を阻害する要因ともなる。ワイヤの外層、濃化層および中間層に含まれるPd、Ag、Auはボール凝固時にCu中に固溶し、Cu-Pd-Au合金、Pd-Ag-Cu合金を形成すること、さらにPd、Ag、Auが接合界面での拡散を促進することで、ボール接合性の向上に有効に作用する。こうした特殊な合金の形成、拡散促進などは、本発明の表面濃化層または中間層を有する複層ボンディングワイヤの方が単層構造のボンディングワイヤよりも促進されることが確認された。上記濃度が0.4mol%以上であれば、上記効果を得ることが容易であり、4 mol%を超えると、ボール部が硬化して接合時にチップ損傷を与えることが懸念される。好ましくは0.5~3mol%の範囲であれば、40μmの狭ピッチ接続におけるAlスプラッシュの低減、低温接合強度の増加などの効果が高められる。より好ましくは0.7~2.7mol%の範囲であれば、40μmの狭ピッチ接続の生産性が向上するより高い効果が得られる。
 前述したPd、Ag、Auを総計した濃度が0.4~4mol%の範囲であり、Pd濃度に対するAg、Auを総計した濃度の比率Rが0.001~0.4の範囲であることが望ましい。この(Ag+Au)/Pdの濃度比Rが上記範囲であることにより、次世代車載IC向けの高温接合信頼性を向上する効果が得られる。ここでの高温接合信頼性とは、例えば、現行の加速試験より高温である185℃で1500hの加熱でも接合強度の低下を抑えることに相当する。接合信頼性との相関に関しては、前述した外層、濃化層および中間層などの厚さに加えて、(Ag+Au)/Pdの濃度比Rとの相関がより強く、しかも便宜的にも有効であることを見出した。この理由として、ボール形成時の溶融・凝固によりPd、Ag、AuはCu中に固溶しておりボール部の接合信頼性を支配しているのは主に濃度であること、各層の厚さは層境界の定義により変動することなどによる。
 (Ag+Au)/Pdの濃度比Rが有効であるメカニズムの詳細はまだ完全に明確とはなっていない。Ag+AuとPdとが接合部での相互拡散に相互に影響を及ぼしていること、または3元系などの特殊な金属間化合物の成長による脆化などの可能性が現時点では考えられる。Ag、Auでは、接合部のAlとの相互拡散速度およびAg-Al系またはAu-Al系の金属間化合物の成長速度がPdの場合よりも速いため、Ag、Auの総計濃度が高い場合には、Pdの拡散を遅らせる作用があると考えられる。また、Ag-Pd-Al系あるいはAu-Pd-Al系などの特殊な金属間化合物の形成によりボイドが生成することで接合強度が低下することも考えられる。
 (Ag+Au)/Pdの濃度比Rが0.001~0.4の適正な範囲にあれば、高温接合信頼性を向上する効果が得られる。Rが0.001未満となるような相当薄いAg、Auの濃化層を有する複層ボンディングワイヤを量産することは困難である。Rが0.4を超えると、高温接合信頼性が低下することが懸念される。好ましくは、Rが0.002~0.3の範囲であれば、表面濃化層または内部濃化層を形成する量産技術が容易となり、接合信頼性もさらに向上して185℃で2000hまで良好である。より好ましくは、0.01~0.25の範囲であれば、ボンディングワイヤの製造工程の簡素化などにより生産性が向上し、接合信頼性もさらに向上して185℃で2500hまで良好である。
 本発明のボンディングワイヤを製造するに当り、芯材の表面に外層、表面濃化層および中間層を形成する工程、外層、表面濃化層、中間層、拡散層、芯材等の構造を制御する加工・熱処理工程が必要となる。外層、表面濃化層、中間層、芯材の組成、厚さを制御するには、前述した外層、表面濃化層および中間層を形成する工程において、外層、表面濃化層および中間層を形成する初期段階での厚さ、組成の管理が先ずは重要である。
 外層、表面濃化層および中間層を芯材の表面に形成する方法には、メッキ法、蒸着法等がある。メッキ法では、電解メッキ、無電解メッキ法のどちらでも製造可能である。ストライクメッキ、フラッシュメッキと呼ばれる電解メッキでは、メッキ速度が速く、下地との密着性も良好である。無電解メッキに使用する溶液は、置換型と還元型に分類され、膜が薄い場合には置換型メッキのみでも十分であるが、厚い膜を形成する場合には置換型メッキの後に還元型メッキを段階的に施すことが有効である。無電解法は装置等が簡便であり、容易であるが、電解法よりも時間を要する。
 メッキ法で成膜する工程では、メッキ液中に発生する水素やメッキ液が外層内部に残留することで、結果として複層ワイヤの初期に含まれる水素濃度が高くなることがある。電解メッキでは、ボンディングワイヤの表面近傍に水素が発生する場合が多いため、この水素が外層に取り込まれる場合が多い。また、電解メッキでは初期に外層に導入される拡散性水素の濃度等を安定して制御することが可能であるため、成膜後の加工、熱処理等製造工程での条件を適正化すれば、最終製品に含まれる水素濃度を調整するのは比較的容易である。
 蒸着法では、スパッタ法、イオンプレーティング法、真空蒸着等の物理吸着と、プラズマCVD等の化学吸着とを利用することができる。いずれも乾式であり、膜形成後の洗浄が不要であり、洗浄時の表面汚染等の心配がない。
 メッキ又は蒸着を施す段階について、狙いの線径で膜を形成する手法と、太径の芯材に膜形成してから、狙いの線径まで複数回伸線する手法とのどちらも有効である。前者の最終径での膜形成では、製造、品質管理等が簡便であり、後者の膜形成と伸線の組み合わせでは、膜と芯材との密着性を向上するのに有利である。それぞれの形成法の具体例として、狙いの線径の芯材に、電解メッキ溶液の中にワイヤを連続的に掃引しながら膜形成する手法、あるいは、電解又は無電解のメッキ浴中に太い芯材を浸漬して膜を形成した後に、ワイヤを伸線して最終径に到達する手法等がある。
 表面濃化層、中間層の形成では、外層と表面濃化層または中間層を連続的に形成する方法、外層を形成した後に加工を施してから表面濃化層または中間層を形成する方法などが利用できる。インラインの連続メッキ法では、外層のメッキ工程→洗浄工程→表面濃化層のメッキ工程で例示される。表面濃化層と中間層では形成する順番が逆転している。表面濃化層の場合は、外層の形成→表面濃化層の形成の順番となる。中間層の場合は、中間層の形成→外層の形成の順番となる。ここで、外層の形成工程と表面濃化層の形成工程の間は必ずしも連続である必要はなく、密着性の向上、水素ガス濃度の管理のための熱処理工程、伸線加工工程などを加えても構わない。表面濃化層または中間層の形成では、熱処理工程での拡散を利用することが効果的である。後述する熱処理工程において、所望する表面濃化層、中間層およびその内部の濃度勾配などを形成することが可能であるが、必要であれば、表面濃化層または中間層の形成に適した熱処理条件の選定なども必要である。
 外層、表面濃化層または中間層を形成した後の加工工程では、ロール圧延、スエージング、ダイス伸線等を目的により選択、使い分ける。加工速度、圧加率又はダイス減面率等が、加工組織、転位、結晶粒界の欠陥等に間接的に影響を及ぼすことにより、ワイヤ中に含まれる水素の濃度、分布等を変えることができる。水素濃度は、外層の構造、密着性等にも影響を及ぼす。
 熱処理工程では、水素濃度を制御するのに有効なプロセスの一つである。但し、熱処理の他の目的として、加工歪みの除去、再結晶組織の制御、機械的特性の調整、表面濃化層または中間層の制御、拡散層の形成等も重要な役割である。これら全ての機能を1回の熱処理により満足することは難しいため、複数回に分けて行うことが生産的である。単純にワイヤを加熱しただけでは、上記の総合的な機能発現は困難である。通常のワイヤ製造で最終線径で行われる1回だけの加工歪取り焼鈍をそのまま適用しても、水素濃度の適正化による品質及び製造歩留りの向上は困難である。過剰な水素を含有する複層ワイヤを圧延又は伸線により加工する過程で、外層と芯材との密着性が低下して剥離が生じたり、ワイヤ表面にキズが発生したり、断線不良により歩留りが低下する等の問題が生じるためである。そこで、熱処理のタイミング、温度、速度、時間等の制御が重要である。
 特に、Pd外層とAu、Cu、Agの芯材で構成される複層ワイヤあるいは、Pd外層、AuまたはAgの表面濃化層または中間層、Cu芯材を有する複層ワイヤにおいて、水素濃度を調整するための熱処理としては、低温加熱が有効である。低温でも、過剰に含有する拡散性水素をワイヤから放出させることにより、複層ワイヤの全体に含まれるトータルの水素濃度を適正化することは十分可能である。この根拠として、本発明者らの調査により、前記複層ワイヤに含有される幾つかの水素の形態の中でも、拡散性水素が使用性能に及ぼす影響が最も大きいことを把握している。拡散性水素の濃度を調整する推奨条件として、温度は100~400℃の範囲で時間を調整することが望ましい。加熱時間は比較的長時間が望ましい。長時間の加熱であれば、ワイヤ内部に含まれる水素を表面まで拡散させるのに有効であること、また、ボンディングワイヤの組織、強度、伸び等への影響が少ないため、他のプロセスの管理が容易となること等が利点である。加熱法として、加熱炉を用いたバッチ式の熱処理が簡便である。こうしたバッチ式の熱処理は、従来の単層ワイヤの製造工程で行われることは少ない。一般的なボンディングワイヤの加工歪取り焼鈍では、300~700℃の高温で、ワイヤを連続的移動しながら加熱させる連続焼鈍である。このことからも、水素濃度の調整を目的とした熱処理の温度、時間、方法等が通常の熱処理と異なることが判る。加熱雰囲気では、N2やAr等の不活性ガスを炉内に流しながら加熱することが有効である。これによりワイヤ表面の酸化を抑制することが可能である。また、真空加熱も有効であり、0.1MPa以下で真空度を調整することにより水素の放出を促進することが可能である。熱処理のタイミングとして、外層、表面濃化層または中間層を形成した直後の焼鈍が望ましい。過剰な拡散性水素を除去することで、伸線加工の生産性向上が容易となる。また、複数回の熱処理により水素濃度を段階的に調整することも有効である。
 上記の水素濃度を調整することに主眼をおいた低温加熱だけでは、ボンディングワイヤの要求特性を全て満足することは困難である。再結晶組織の制御、機械的特性の調整、表面濃化層の組成制御、拡散層の形成等を目的とした熱処理も必要である。この熱処理の特徴として、ワイヤの再結晶温度より高温であること、外層と芯材との間に中間層、拡散層を均一に形成するために、温度が円周方向に均一であること等が求められる。ワイヤを連続的に掃引しながら熱処理を行う連続焼鈍が生産的である。温度を250~700℃の範囲に設定した炉の内部を、10~400m/minの速度で移動させながら加熱する。炉内温度を一定とする均一加熱法、又は炉内で温度傾斜をつける加熱法等を選択できる。後者では例えば、局所的に温度傾斜を導入する方法、温度を炉内で変化させる方法も有効である。N2やAr等の不活性ガスを炉内に流しながら加熱することで、ワイヤ表面の酸化を抑制することが可能である。この高温加熱のタイミングとして、加工途中での焼鈍、最終径での仕上げ焼鈍に分けられ、これらを選択、使い分けることができる。熱処理回数は1回又は複数回が可能である。熱処理を複数回に分けることで、拡散層の形成、加工歪みの除去等を個別に達成することで、ボンディングワイヤの性能向上にも有効である。
 加工と熱処理を組合せて拡散の進行度を制御することにより、所望とする膜厚、組成、構造を制御することが可能となる。熱処理する前の加工履歴は、外層、表面濃化層、中間層、芯材などの界面での組織等に関係するため、熱処理での拡散挙動にも影響を及ぼす。どの加工段階で熱処理を行うかにより、最終の外層、表面濃化層、中間層、拡散層の組成、厚さ等が変化する。一例では、加工途中に中間焼鈍を施した後に、ワイヤを伸線して、最終径で仕上げ焼鈍を施す工程で作成したボンディングワイヤでは、中間焼鈍を施さない工程と比較して、外層、拡散層、表面濃化層、中間層の組成、濃度勾配が変化することを確認している。
 芯材がCuを主成分とする複層ワイヤの場合には、ボンディング工程でボール部を形成するときのシールドガスに純N2ガス又は5vol%H2+N2ガスを用いることで、良好なボール接合性が確認された。該ボンディング方法では、標準ガスである5vol%H2+N2ガスの代わりに、安価な純N2ガスを使用することで、ランニングコストを低減して、複層ワイヤの実用化を促進することができる。
 以下、実施例について説明する。
 ボンディングワイヤの原材料として、芯材に用いるCu、Au、Agは純度が約99.99mass%以上の高純度の素材を用い、外層のPd、表面濃化層または中間層のAu、Agには純度99.9mass%以上の原料を用意した。芯材を溶解する工程で、合金元素を適量添加した。
 ある線径まで細くした細線を芯材とし、電解メッキ法、無電解メッキ法、蒸着法により、そのワイヤ表面にPd外層、Au、Agのうち1種以上の表面濃化層、中間層を形成した。最終の線径で外層を形成する場合と、ある線径で外層、表面濃化層、中間層を形成してからさらに伸線加工により最終線径まで細くする方法を利用した。電解メッキ液、無電解メッキ液は、半導体用途で市販されているメッキ液を使用し、蒸着はスパッタ法を用いた。被覆の順番では、外層の形成→表面濃化層の形成の順番、あるいは中間層の形成→外層の形成の順番で実施した。必要に応じて、外層形成と表面濃化層または中間層の形成の間に熱処理工程、伸線加工工程などを加えた。直径が約0.023~5mmのボンディングワイヤを予め準備し、そのワイヤ表面に蒸着、メッキ等により被覆し、最終径の18~30μmまで伸線して、最後に加工歪みを取り除き伸び値が5~20%の範囲になるよう熱処理を施した。伸線速度は5~200m/minの範囲で行った。必要に応じて、線径30~100μmまでダイス伸線した後に、拡散熱処理を施してから、さらに伸線加工を施した。
 本発明例のワイヤの熱処理では、太線を加熱炉に挿入して熱処理するバッチ式焼鈍と、細線を連続的に掃引しながら連続的に加熱する連続焼鈍との2方式に分類され、どちらか一方の熱処理又は両方の熱処理を利用した。バッチ式焼鈍では、水素濃度の調整、拡散層の形成等が主な目的であり、150~300℃の温度範囲で10分~2時間の加熱を行った。連続焼鈍は、300~700℃の温度範囲に設定し、ワイヤ掃引速度は10~500mm/minの範囲で調整した。温度分布と合わせて、ワイヤ掃引速度等も適正化した。両方式とも熱処理の雰囲気には、酸化を抑制する目的でN2、Ar等の不活性ガスも利用した。ガス流量は、0.0002~0.004m3/minの範囲で調整し、炉内の温度制御にも利用した。熱処理を行うタイミングに関して、メッキ層を形成した直後の一次焼鈍、伸線加工途中での中間焼鈍、最終径での仕上げ焼鈍の3種に分類し、それら熱処理を適宜組み合わせた。一次焼鈍ではバッチ式で線径0.5~6mmのワイヤを焼鈍し、中間焼鈍では連続式に線径0.06~1mmのワイヤを焼鈍し、仕上げ焼鈍では連続式に最終線径のワイヤを焼鈍した。
 水素濃度の測定には、不活性ガス融解熱伝導度法と、TDS分析の2方式を利用した。使用した測定装置に関して、前者の不活性ガス融解熱伝導度法ではLECO社製RH402型を用い、後者のTDS分析ではアネルバ社製四重極質量分析計であるM-100-QA-MまたはM-201-QA-TDMを用いた。拡散性水素と水素化物の分離を行いながら水素濃度を分析するときには、主に後者の装置を用いた。試料の加熱は、0~900℃まで200℃/hの速度で昇温しながら、放出される水素量を温度毎に測定した。100~500℃の温度で検出される水素濃度は拡散性水素の濃度に相当し、100~900℃の温度で検出される水素濃度をトータル水素濃度とする。100~500℃の温度で検出される水素濃度のトータル水素濃度に対する割合を求めた。測定装置の真空ポンプの排気速度は、2400~300リットル/min(N2ガス換算)で実施した。
 ワイヤ表面の膜厚測定にはAESによる深さ分析を用い、結晶粒界の濃化等、元素分布の観察にはAES、EPMA等による面分析、線分析を行った。AESによる深さ分析では、Arイオンでスパッタしながら深さ方向に測定して、深さの単位にはSiO2換算で表示した。ボンディングワイヤ中の合金元素の濃度は、ICP分析等により測定した。芯材に含有する元素の濃度分析に関して、ワイヤ中心を通る長手方向の断面の5箇所以上において、EPMA、EDX、AESを用いた分析手法により求めた濃度の平均値を用いた。
 表面濃化層および中間層の濃度勾配に関しては、濃度勾配の傾きの平均が1μm当たり30mol%以上であればA、10mol%以上30mol%未満であればB、10mol%未満であればCで表3の「表面濃化層の濃度勾配」、「中間層の濃度勾配」の欄に表記した。
 ボンディングワイヤの接続には、市販の自動ワイヤボンダーを使用して、ボール/ウェッジ接合を行った。アーク放電によりワイヤ先端にボール部を作製し、それをシリコン基板上の電極膜に接合し、ワイヤ他端をリード端子上にウェッジ接合した。ボール形成時の酸化を抑制するために用いるシールドガスは、標準的な5vol%H2+N2ガスと、純N2ガスを用いた。ボール形状の評価以外には、基本的には純度5N以上の純N2ガスを利用した。ガス流量は、0.0003~0.005m3/minの範囲で調整した。
 接合相手としては、シリコン基板上の電極膜の材料である、厚さ1μmのAl合金膜(Al-1mass%Si-0.5mass%Cu膜、Al-0.5mass%Cu膜)を使用した。一方、ウェッジ接合の相手には、表面にAgメッキ(厚さ:1~4μm)したリードフレーム、又はAuメッキ/Niメッキ/Cuの電極構造の樹脂基板を使用した。
 ボンディングワイヤの加工性について、線径500μmの太線から22μm又は18μmまで伸線加工する工程での断線回数で評価した。試料長さは、線径500μmの時点で5000mを伸線した。厳しい不良加速評価として、通常の伸線速度の2倍の高速で伸線した。断線回数が0回であれば非常に高い生産性が期待されるため◎印、1~2回であれば通常の生産性は良好であると判断して○印、3~6回の範囲であれば伸線条件の若干の変更は必要であるため△印、7回以上であれば生産性の低下が懸念されるため×印で、表2の「伸線加工性」の欄に表記した。
 初期ボール形状の観察では、ボール径/ワイヤ径の比率が1.8~2.3倍の範囲の通常サイズのボール部を20本採取し、光顕又はSEMで観察して、真球性、芯ずれ、ボール表面の3点を評価した。真球性の評価では、異常形状のボール発生が4個以上であれば不良であるため×印、異形が1~3個でボンディングワイヤに対するボール位置の芯ずれが顕著である個数が3個以上である場合には△印、異形が1~3個で芯ずれが1~3個であれば実用上の大きな問題はないと判断して○印、芯ずれ、異形の合計が1個以下である場合は、ボール形成は良好であるため◎印で、表2中の「真球性」の欄に表記した。
 初期ボール部の側面の観察では、30本のボール部をSEM観察して、側面に5μm以上の微***、凹凸、ピット等があるボール数が5本以上であれば不良であるため×印、粗大な凹凸が1~4本で、且つ5μm以下の気泡等の微小な凹凸が5本以上の場合には△印、粗大な凹凸はないが、微小な凹凸が2~4本の範囲では実用上は問題ないと判断して○印、微小な凹凸が1本以下である場合は、ボール表面は良好であるため◎印で、表2の「ボール側面の気泡」の欄に表記した。
 圧着ボール部の接合形状の判定では、接合されたボール部を200本観察して、形状の真円性、異常変形不良、寸法精度等を評価した。線径は23μmと18μmの2種類のボンディングワイヤを使用した。初期ボール径/ワイヤ径の比率が1.8~2.3の通常サイズのボール部を形成して評価した。真円からずれた異方性や花弁状等の不良ボール形状が5本以上であれば不良と判定し×印、真円からずれた不良ボール形状が2~4本ある場合は二つに分類して、異常変形が1本以上発生していれば量産での改善が望ましいから△印、異常変形が発生していなければ使用可能であることから○印、不良ボール形状が1本以下であれば良好であるため◎印で、表2の「圧着形状」の欄に表記した。
 大ボール変形に関して、線径は20μmで、初期ボール径/ワイヤ径の比率が3.0~3.5の大きいサイズのボール部において、上記同様の判定基準で圧着ボール部の接合形状の評価を行い、表4の「大ボール変形性」の欄に表記した。
 ボール接合強度の評価には、線径23μmでボール径45~60μmの範囲となるように、ステージ温度175℃で接合した試料を用いた。評価したボンディングワイヤは、製造からボンディングまでの期間が30日、120日の2種類のワイヤを用いた。20本のボール接合部のシェア試験を行い、そのシェア強度の平均値を測定し、ボール接合部の面積の平均値を用いて計算した、単位面積当たりのシェア強度を用いた。単位面積当たりのシェア強度が、70MPa未満であれば接合強度が不十分であるため×印、70以上90MPa未満の範囲であれば若干の接合条件の変更で改善できるため△印、90以上110MPa未満の範囲であれば実用上は問題ないと判断して○印、110MPa以上の範囲であれば良好であるため◎印で、表2の「シェア強度」の欄に表記した。
 チップへの損傷の評価では、ボール部を電極膜上に接合した後、電極膜をエッチング除去して、絶縁膜又はシリコンチップへの損傷をSEMで観察した。電極数は400箇所を観察した。損傷が認められない場合は◎印、5μm未満のクラックが2個以下の場合は問題ないレベルと判断して○印、5μm以上20μm未満のクラックが2個以上の場合は懸念されるレベルと判断して△印、20μm以上のクラック又はクレータ破壊等が1個以上の場合は懸念されるレベルと判断して×印で、表2の「チップダメージ」の欄に表記した。
 ウェッジ接合性は、リード電極にボンディングワイヤを接合したときの不着不良(non-stick
failure)の回数で評価した。ボンディングワイヤは製造後の保管が7日以内の初期状態と、常温で大気中に60日間放置したときの2種類を使用した。ボンディングワイヤは、スプールケースに入れた状態でクリーンルーム内に保管した。接合条件では、超音波出力を少し減らして不着を誘発した。ステージ温度について、初期状態のボンディングワイヤでは不良を加速するため160℃の低温、60日放置したボンディングワイヤの評価では175℃とした。2000本のボンディングにより不着発生頻度を評価した。不着数が6本以上の場合は改善が必要であるため×印、3~5本の場合には△印、1又は2本の場合にはほぼ良好であるため○印、不着がゼロの場合にはワイヤ保管寿命が良好であると判断して◎印で、表2中の「ウェッジ接合性」の欄に表示した。
 ボンディングされたループの直線性を評価するため、ワイヤ間隔(スパン)が2mmの通常スパン、5mmのロングスパンの2種でボンディングを行った。線径は23μmとする。30本のボンディングワイヤを投影機により上方から観察して、ボール側とウェッジ側との接合部を結ぶ直線に対し、ボンディングワイヤが最も離れている部位のずれを曲がり量として測定した。その曲がり量の平均が、線径の1本分未満であれば良好であると判断し◎印で表示し、2本分以上であれば不良であるため△印、その中間であれば、通常は問題とならないため○印で、表2の「ループ直線性」の欄に表記した。
 ボンディング工程でのループ形状安定性について、ワイヤ長が2mmの汎用スパンと0.5mmの短スパンの2種類で、台形ループを作製し、それぞれ500本のボンディングワイヤを投影機により観察し、ボンディングワイヤの直線性、ループ高さのバラツキ等を判定した。ワイヤ長が短い0.5mmで台形ループの形成は、チップ端への接触を回避するため、より厳しいループ制御が必要となる。ワイヤ長2mmで、直線性、ループ高さ等の不良が5本以上ある場合は、問題有りと判断して×印で表し、ワイヤ長2mmで不良が2~4本で、且つ、ワイヤ長0.5mmで不良が5本以上の場合には、改善が必要と判断して△印で表し、ワイヤ長2mmで不良が1本以下、且つ、ワイヤ長2mmで不良が2~4本の場合には、ループ形状は比較的良好であるため○印で示し、ワイヤ長0.5mmで不良が1本以下の場合にはループ形状は安定であると判断し◎印で、表2中の「ループ安定性」の欄に表した。不良原因の一つに、芯材と外周部の界面の密着性が十分でないこと、断面での特性バラツキ等が想定される。
 プル強度の評価では、ワイヤ長が2mmの汎用スパンの試料でプル試験を行った。フックの位置は、ボール接合部の近傍で上方に引っ張る手法である、ファーストプル試験を実施した。ネック部で破断していることを確認した。ファーストプル強度はボンディングワイヤの線径、ループ形状、接合条件等にも左右されるため、絶対値ではなく、ファーストプル強度/ワイヤ引張強度の相対比率(Rf)を利用した。Rfの値について、60%以上であれば優良であるため◎印、50%以上60%未満の範囲であれば良好であるため○印、40%以上50%未満であれば通常は問題ないがボンディング後の試料取り扱いに注意を要するときがあるため△印、40%未満であればネック強度が不足しており改善が必要であるため×印で、表2の「プル強度」の欄に表記した。
 ピール接合強度の評価には、ウェッジ接合部のプル試験を用いた。線径は23μm、スパンは2mmとした。これは、ワイヤ長の3/4よりもウェッジ接合部に近い位置で、ループに引っ掛けたフックを上方に移動させ、ボンディングワイヤの破断強度を測定するセカンドプル試験を行った。セカンドプル強度はボンディングワイヤの線径、ループ形状、接合条件等にも左右されるため、絶対値ではなく、セカンドプル強度/ワイヤ引張強度の相対比率(Rp)を利用した。Rpが20%以上であればウェッジ接合性は良好であるため◎印、15%以上20%未満であれば問題ないと判断し○印、10%以上15%未満であれば不具合が発生する場合があると判断して△印、10%未満であれば量産工程で問題があるため×印で、表2の「ピール接合強度」の欄に表記した。
 ボール接合近傍のワイヤ直立部が倒れる現象であるリーニング不良(リーニング性)については、チップ水平方向からワイヤ直立部を観察し、ボール接合部の中心を通る垂線とワイヤ直立部との間隔が最大であるときの間隔(リーニング間隔)で評価した。ワイヤ長は3mm、試料数は50本とした。リーニング評価には厳しい高ループである、ループ最高高さが約400μmの試料を準備した。上記のリーニング間隔がワイヤ径よりも小さい場合にはリーニングは良好、大きい場合には直立部が傾斜しているためリーニングは不良であると判断した。リーニングの不良発生頻度により分類し、不良が3本以上の場合には△印、0本の場合には◎印、その中間では○印で、表2の「リーニング性」の欄に表記した。
 PCT試験(プレッシャークッカーテスト)では、130℃、湿度85%の高温高湿環境で500時間加熱した。その後に、40本のボンディングワイヤの電気特性を評価した。電気抵抗が初期の3倍以上に上昇したボンディングワイヤの割合が30%以上の場合には接合不良のため×印、電気抵抗が3倍以上に上昇したボンディングワイヤの割合が5%以上30%未満の範囲の場合には信頼性要求が厳しくないICには使用可能なため△印、電気抵抗が3倍以上に上昇したボンディングワイヤの割合が5%未満で且つ1.5倍以上に上昇したボンディングワイヤの割合が5%以上30%未満の場合には実用上は問題ないため○印、電気抵抗が1.5倍以上に上昇したボンディングワイヤの割合が5%未満であれば良好であるため◎印で、表2の「PCT信頼性」の欄に表記した。
 リバースボンディングの接続の評価では、ボール部をシリコン基板上の電極膜に接合してバンプを形成し、ボール部をリード電極上にボール接合してから、ループ形状を制御して、ワイヤ他端を前記バンプ上にウェッジ接合した。用いたチップは、通常の1段のチップの場合であるモノチップ型と、2段の積層チップでチップ下が空間になっているオーバーハング型の2種類で評価した。チップ高さは200μmとした。連続ボンディング性の評価では、線径20μmのワイヤ接続を2000本行い、バンプ上にウェッジ接合の不着不良回数で評価した。加速評価のため、不着不良の評価では荷重、超音波振動を量産条件よりも若干低く設定した。不着不良数が6回以上であれば、接合が不十分であるため×印、3~5回であれば△印で表記し、1~2回であれば接合条件の適正化により実用性があると判断して○印、剥離がゼロであれば十分な接合強度であることから◎印で、表4中の「リバースボンディングの連続接合性」の欄に表した。
 リバースボンディングのセカンドプル強度の評価では、ワイヤ長の3/4よりもウェッジ接合部に近い位置で、フックを上方に移動させ、ボンディングワイヤの破断強度を測定した。セカンドプル強度は、セカンドプル強度/ワイヤ引張強度の相対比率(Rp)を利用した。Rpが20%以上であればウェッジ接合性は良好であるため◎印、15%以上20%未満であれば問題ないと判断し○印、10%以上15%未満であれば不具合が発生する場合があると判断して△印、10%未満であれば量産工程で問題があるため×印で、表3の「リバースボンディングのセカンドプル強度」の欄に表記した。
 リバースボンディング接続のファーストプル強度の評価では、線径20μm、ワイヤ長3mmでリバースボンディング接続された試料を用いて、ボール接合部の近傍で上方に引っ張るプル強度を40本測定した。前述したファーストプル強度/ワイヤ引張強度の相対比率(Rf)を利用した。Rfの値について、60%以上であれば優良であるため◎印、50%以上60%未満の範囲であれば良好であるため○印、40%以上50%未満であれば通常は問題ないがボンディング後の試料取り扱いに注意を要するときがあるため△印、40%未満であればネック強度が不足しており改善が必要であるため×印で、表4中の「リバースボンディングのファーストプル強度」の欄に表記した。
 リバースボンディング接続のリーニング性については、チップ水平方向からワイヤ直立部を観察し、ボール接合部の中心を通る垂線とワイヤ直立部との間隔が最大であるときの間隔(リーニング間隔)で評価した。ワイヤ長は3mm、試料数は300本とした。上記のリーニング間隔がワイヤ径よりも小さい場合にはリーニングは良好、大きい場合には直立部が傾斜しているためリーニングは不良であると判断した。リーニングの不良発生頻度により分類し、不良が7本以上の場合には×印、4-6本の場合には△印、1-3本の場合には○印、0本の場合には◎印で、表4中の「リバースボンディングのリーニング性」の欄に表した。
 ロングスパンのループ安定性については、ワイヤ長が5mmのロングスパンで、ループ高さが200~250μmとなるように台形ループを40本接続し、高さの標準偏差により評価した。線径は20μm、18μmの2種類でそれぞれ評価した。高さ測定には光学顕微鏡を使用し、位置はループの最頂点の近傍と、ループの中央部の2箇所で測定した。ループ高さの標準偏差がワイヤ径の1/2以上であれば、バラツキが大きいと判断し、1/2未満であればバラツキは小さく良好であると判断した。その基準を基に判断し、2箇所ともバラツキが小さい場合には、ループ形状が安定していると判断し、◎印で表示し、バラツキが大きい個所が1箇所である場合には、比較的良好であるため○印、2箇所の場合には△印、2箇所ともバラツキが大きい場合には×印で、表4中の「ロングスパンのWrinkled Loop不良」の欄に表した。
 狭ピッチ接続のアルミスプラッシュ現象に関して、超音波印加方向のボール接合部の周辺に掃出されているアルミの程度で評価した。線径20μmによる50μmピッチ接続、線径18μmによる40μmピッチ接続をそれぞれ200本接続した試料を用いた。アルミスプラッシュの程度が顕著であるものが3本以上であれば改善が必要であるため×印、顕著なアルミ掃出が2本以下で中程度のアルミ掃出が6本以上であれば△印、中程度のアルミ掃出が2~5本であれば○印、1本以下であれば良好であるため◎印で、、表4中の「狭ピッチ接続のAlスプラッシュ」の欄に表した。
 QFN実装の評価では、80ピンQFN基板の上に連続ボンディングを2000本行い、不着不良回数で評価した。加速評価のため、不着不良の評価では荷重、超音波振動を量産条件よりも若干低く設定した。不着不良数が6回以上であれば、接合が不十分であるため×印、3~5回であれば△印で表記し、1~2回であれば接合条件の適正化により実用性があると判断して○印、剥離がゼロであれば十分な接合強度であることから◎印で、表4中の「QFN実装の連続接合性」の欄に表した。
 QFN実装のセカンドプル強度の評価では、ワイヤ長の3/4よりもウェッジ接合部に近い位置で、ループに引っ掛けたフックを上方に移動させ、ワイヤの破断強度を測定した。プル強度/ワイヤ引張強度の相対比率(Rp)を利用した。線径20μm、ワイヤ長3mm とした。Rpが40%以上であればウェッジ接合性は良好であるため◎印、30%以上40%未満であれば問題ないと判断し○印、25%以上30%未満であれば不具合が発生する場合があると判断して△印、25%未満であれば量産工程で問題があるため×印で、表4の「QFN実装のセカンドプル強度」の欄に表記した。
 接合部の高温信頼性について、ボンディング後に樹脂封止された試料を、温度185℃で時間が1500、2000、2500hrそれぞれ加熱した後に、60本のボンディングワイヤの電気特性を評価した。電気抵抗が初期の3倍以上に上昇したボンディングワイヤの割合が30%以上の場合には接合不良のため×印、電気抵抗が3倍以上に上昇したボンディングワイヤの割合が5%以上30%未満の範囲の場合には信頼性要求が厳しくないICには使用可能なため△印、電気抵抗が3倍以上に上昇したボンディングワイヤの割合が5%未満で且つ1.5倍以上に上昇したボンディングワイヤの割合が10%以上30%未満の場合には実用上は問題ないため○印、電気抵抗が1.5倍以上に上昇したボンディングワイヤの割合が10%未満であれば良好であるため◎印で、表4中の「高温信頼性」の欄に表記した。
 表1~4には、本発明に係わるボンディングワイヤを接続した半導体素子の評価結果と比較例を表記している。
 第1請求項に係わるボンディングワイヤは実施例1~21、51~72であり、第2請求項に係るボンディングワイヤは実施例1~10、14~16、18~20、51~57、60~67、69~72、第3請求項に係わるボンディングワイヤは実施例1~21、51~72、第4請求項に係わるボンディングワイヤは実施例1~4、6~9、11~17、19、20、51~58、60~67、69~72、、第5請求項に係わるボンディングワイヤは実施例1~14、16、17、19~21、51~56、61~67、69~71、第6請求項に係わるボンディングワイヤは実施例2~12、14、16、17、20、21、第7請求項に係わるボンディングワイヤは実施例1~11、13、14、16~20、71、72、第8請求項に係わるボンディングワイヤは実施例4、8、10、16、18、第9請求項に係わるボンディングワイヤは実施例2、5、6、11、13に相当する。比較例1~7では、第1請求項を満足しない場合の結果を示す。
 第10請求項に係わるボンディングワイヤは実施例51~60であり、第11請求項に係わるボンディングワイヤは実施例51~60、第12請求項に係わるボンディングワイヤは実施例52~58、60、第13請求項に係わるボンディングワイヤは実施例51~57、60、第14請求項に係わるボンディングワイヤは実施例51~58、60、第15請求項に係わるボンディングワイヤは実施例61~70、第16請求項に係わるボンディングワイヤは実施例61~70、第17請求項に係わるボンディングワイヤは実施例62、63、65~67、69、70、第18請求項に係わるボンディングワイヤは実施例61、63、68、第19請求項に係わるボンディングワイヤは実施例62~70、第20請求項に係わるボンディングワイヤは実施例51~54、56~64、66~70、第21請求項に係わるボンディングワイヤは実施例52~60、62~64、66~70に相当する。比較例51~56では、第1請求項を満足しない場合の結果を示す。
 それぞれの請求項の代表例について、評価結果の一部を説明する。
 実施例1~21、50~72の複層ワイヤは、本発明に係る、Cu、Au、及びAgのいずれか1種上の元素を主成分とする芯材と、前記芯材の表面に形成されたPdを主成分とする外層とを有し、ワイヤ全体に含まれる総計の水素濃度が0.0001~0.008mass%の範囲であることにより、ボール形状の真球性が高いこと、加えて、伸線時の断線が少なくワイヤ加工性が良好であることの、両特性を満足できることが確認された。一方、水素濃度が0.0001mass%未満である比較例1、51、54、0.008mass%超である比較例2~4、52、55では、ボール形状とワイヤ加工性を両立することは困難であった。また、外層がAuである比較例5、Ptである比較例53、Niである比較例56、芯材がPtである比較例6、外層を持たない単層の銅ワイヤでは、ワイヤ加工性が不十分であることが確認された。
 好ましい事例として、水素濃度が0.0001~0.004mass%の範囲である実施例1~10、14~16、18~20、51~57、60~67、69~72では、ボール側面の微***の発生を抑える効果が高いことが確認された。より好ましくは、水素濃度が0.0001~0.002mass%の範囲である実施例1~8、14~16、19、20、51~55、60~65、69~72では、線径23μmの極細線の加工性を向上すること、水素濃度が0.0001~0.001mass%の範囲である実施例1~6、14、19、51~54、61~64、71では、線径18μmの極細線の加工性をさらに向上する高い効果が確認された。
 実施例1~4、6~9、11~17、19、20、51~58、60~67、69~72の複層ワイヤは、本発明に係る、100~300℃/hの昇温速度で測定されるTDS分析において、150~500℃の温度範囲で検出される水素濃度が全温度範囲で検出される総計の水素濃度に対する比率が50%以上であることにより、線径23μmのボンディングワイヤにおけるボール圧着形状の真円性が改善できることが確認された。好ましくは、前記比率が70%以上である実施例2~4、6、7、9、11、15、16、19、52~54、56、60、62~65、69~72では、線径18μmの場合のボール圧着形状の真円性を向上させる高い効果が確認された。
 実施例1~14、16、17、19~21、71の複層ワイヤは、本発明に係る、外層の厚さが0.01~0.2μmの範囲であることにより、大気中で60日放置後のウェッジ接合性を高められることが確認された。これに対し、外層の厚さが0.2μm超である実施例18では、チップ損傷が発生していた。好ましくは、外層厚さが0.02~0.095μmの範囲である実施例2、4~7、9、10、14、16、19、20、71、72では、ボール接合部のシェア強度を高められることが確認された。
 実施例2~12、14、16、17、20、21の複層ワイヤは、本発明に係る、外層内においてPd濃度が80mol%の範囲である領域の厚さが0.003~0.08μmであることにより、プル強度を高める効果が確認された。これに対し、上記厚さが0.08μm超である実施例13、18ではループ安定性が低下することが確認された。
 実施例1~11、13、14、16~20の複層ワイヤは、本発明に係る、外層と芯材の間に濃度勾配を有する拡散層を有し、前記拡散層の厚さが0.003~0.15μmであることにより、通常のワイヤ長2mmでのループ直線性が向上した。これに対し、拡散層の厚さが0.15μm超である実施例12、21では、ウエッジ接合性が低下することが確認された。好ましくは、拡散層の厚さが0.01~0.09μmである実施例2~9、11、14、16、17、19、20では、厳しい制御が求められるロングスパンであるワイヤ長5mmで、ループ直線性をさらに改善するより高い効果が確認された。
 実施例2、5、6、11、13の複層ワイヤは、本発明に係る、芯材の主成分がCuで、Al、Sn、Zn、B、Pの1種以上の合金元素を含有し、ワイヤ全体に占める該合金元素濃度が総計で0.0001~0.05mol%の範囲であることにより、リーニング性を向上できることが確認された。これに対し、上記濃度が0.05mol%超である実施例14では、ピール接合強度が低下することが確認された。
 実施例4、8、10、16、18の複層ワイヤは、本発明に係る、芯材の主成分がCu又はAuで、Pd、Ag、Ptの1種以上の元素を含有し、芯材に占める該元素濃度が総計で0.01~2mol%の範囲であることにより、PCT信頼性を向上できることが確認された。これに対し、上記濃度が2mol%超である実施例21では、チップダメージが増える問題が確認された。
 実施例51~60の複層ワイヤは、本発明に係る、Cuを主成分とする芯材、前記芯材の上にPdを主成分とする外層の表面側にAg、Auのうち1種以上の濃化層を有し、ワイヤ全体に含まれる総計の水素濃度が0.0001~0.008mass%の範囲であることにより、90日放置されたワイヤのセカンド接合性が良好であること、QFN実装での連続接合性が良好であることが確認された。一方、前記濃化層を有しても、水素濃度が前記範囲から外れている比較例51、52、前記濃化層がRhである比較例53、水素濃度が前記範囲であるが前記濃化層を有していない実施例61~72では、上記の改善効果は不十分であることが確認された。
 実施例51~60の複層ワイヤは、本発明に係る、前記濃化層がAg、Auのうち1種以上の濃度勾配を有することにより、QFN実装でのセカンドプル強度が良好であることが確認された。
 実施例52~58、60の複層ワイヤは、本発明に係る、前記濃化層の最表面におけるPd濃度が20~90mol%の範囲であることにより、ロングスパンでのループ形状に関するWrinkled Loop不良を抑制することが確認された。これに対して、最表面の前記Pd濃度が20mol%未満または90mol%超である実施例51、59では、Wrinkled
Loop不良は改善されていなかった。好ましくは、前記Pd濃度が30~80mol%の範囲である実施例53~58では、Wrinkled Loop不良をさらに改善するより高い効果が確認された。
 実施例51~57、60の複層ワイヤは、本発明に係る、最表面に濃化層を持つ外層の内部にPd単一金属層を有することにより、大ボール変形性が安定することが確認された。これに対して、実施例58、59では、外層の内部に単一金属層が存在しないため、大ボールの変形形状が不安定であることが確認された。
 実施例51~58、60の複層ワイヤは、本発明に係る、前記濃化層を有する外層の厚さが0.02~0.4μmの範囲であることにより、90日保管後のウェッジ接合性およびQFN実装の接合性を向上することと、チップダメージを低減することを両立できることが確認された。これに対して、実施例59では、外層の厚さが0.4μmを超えるため、チップダメージが発生することが確認された。好ましくは、0.03~0.3μmの範囲である実施例51、53~57、60では、低温でのQFN実装のプル強度が改善されており、より好ましくは、0.04~0.25μmの範囲である実施例51、54~56、60では低温でのQFN実装のプル強度をより改善する高い効果が確認された。
 実施例61~70の複層ワイヤは、本発明に係る、Cuを主成分とする芯材、前記芯材の上にPdを主成分とする外層、芯材と外層との間にAg、Auのうち1種以上が濃化した中間層を有し、ワイヤ全体に含まれる総計の水素濃度が0.0001~0.008mass%の範囲であることにより、120日放置されたワイヤで形成したボール接合部のシェア強度が良好であることが確認された。
 実施例61~70の複層ワイヤは、本発明に係る、前記中間層がAg、Auのうち1種以上の濃度勾配を有することにより、リバースボンディング実装のリーニング性が向上していることを確認した。好ましくは、前記濃度勾配の平均の傾きが1μm当たり20mol%以上である実施例61~67、69、70では、リーニング性を向上するより高い効果が確認された。
 実施例62、63、65~67、69、70の複層ワイヤは、本発明に係る、前記中間層におけるAg、Auを総計した最高濃度が30~90mol%の範囲であることにより、リバースボンディング実装のバンプ上のウェッジ接合の連続接合性が向上していることを確認した。
 実施例61、63、68の複層ワイヤは、本発明に係る、前記中間層がAg、Auのうち1種以上とPdとCuの3元素の濃度勾配の共存領域を有することにより、リバースボンディング実装のファーストプル強度が向上していることを確認した。
 実施例61~70の複層ワイヤは、本発明に係る、前記外層と前記中間層を総計した厚さが0.02~0.5μmの範囲であることにより、モノチップ型のリバースボンディング実装におけるセカンドプル強度が向上していることを確認した。好ましくは、前記厚さが0.07~0.4μmの範囲である実施例62~69では、上記のモノチップ型におけるセカンドプル強度を向上するより高い効果が確認された。より好ましくは前記厚さが0.13~0.30μmの範囲である実施例63、65、66、68、69では、オーバーハング型の積層チップにおけるセカンドプル強度を向上する高い効果が確認された。
 実施例51~54、56~64、66~70の複層ワイヤは、本発明に係る、表面濃化層または中間層の少なくともどちらか一方と、外層、芯材により構成され、Pd、Ag、Auを総計した濃度が0.4~4mol%の範囲であることにより、50μmピッチ接続におけるボール接合部のAlスプラッシュを低減する効果が確認された。好ましくは、0.5~3mol%の範囲である実施例51、53、54、56、58、59、62~64、66~70では、40μmピッチ接続におけるAlスプラッシュが低減していること、より好ましくは、0.7~2.7mol%の範囲である実施例51、54、56、59、62~64、66、67、69、70では、40μmピッチ接続におけるAlスプラッシュを低減するより高い効果が確認された。
 実施例52~60、62~64、66~70の複層ワイヤは、本発明に係る、前述したPd、Ag、Auを総計した濃度が0.4~4mol%の範囲であり、Pd濃度に対するAg、Auを総計した濃度の比率Rが0.001~0.4の範囲であることにより、次世代車載IC向けの高温信頼性である185℃で1500hの加熱でも接合強度の低下を抑えられることが確認された。好ましくは、前記濃度比率Rが0.002~0.3の範囲である実施例52~60、63、64、66、68、69、70では、185℃で2000hまで接合信頼性が良好であること、より好ましくは、前記濃度比率Rが0.01~0.25の範囲である実施例53~58、60、63、64、66、69、70では、185℃で2500hまで良好でり、高温接合信頼性を改善するより高い効果が確認された。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004

1: 芯
2: 外層
3: 拡散層
4: 表面濃化層
5: 外層内部の単一金属層
6: 中間層
7: 外層と中間層を総計した厚さ
8: 3元素以上が混在する濃度勾配
A: 外層の主成分
B: 芯材の主成分
C: 表面濃化層の主成分
D: 中間層の主成分

Claims (21)

  1. Cu、Au、Agの1種以上の元素を主成分とする芯材と、前記芯材の上にPdを主成分とする外層とを有する半導体用ボンディングワイヤであって、前記ワイヤ全体に含まれる総計の水素濃度が0.0001~0.008mass%の範囲であることを特徴とする半導体用ボンディングワイヤ。
  2. 前記水素濃度が0.0001~0.004mass%の範囲であることを特徴とする請求項1に記載の半導体用ボンディングワイヤ。
  3. 前記水素濃度が、昇温脱離ガス分析(Thermal
    Desorption Spectrometry: TDS)により測定した前記ボンディングワイヤに含まれる水素濃度であることを特徴とする請求項1又は2に記載の半導体用ボンディングワイヤ。
  4. 前記水素濃度の内、100~300℃/hの昇温速度で測定される昇温脱離ガス分析において、150~500℃の温度範囲で検出される水素濃度の全測定温度範囲で検出される総計の水素濃度に対する比率が50%以上であることを特徴とする請求項1~3のいずれか1項に記載の半導体用ボンディングワイヤ。
  5. 前記外層の厚さが0.01~0.2μmの範囲であることを特徴とする請求項1~4のいずれか1項に記載の半導体用ボンディングワイヤ。
  6. 前記外層内において、金属系元素の総計に対するPd濃度が80mol%以上の範囲である領域の厚さが0.003~0.08μmであることを特徴とする請求項1~5のいずれか1項に記載の半導体用ボンディングワイヤ。
  7. 前記外層と芯材の間に濃度勾配を有する拡散層を有し、前記拡散層の厚さが0.003~0.15μmであることを特徴とする請求項1~6のいずれか1項に記載の半導体用ボンディングワイヤ。
  8. 前記芯材の主成分がCu又はAuで、Pd、Ag、Ptの1種以上の元素を含有し、芯材に占める該元素濃度の総計が総計で0.01~2mol%の範囲であることを特徴とする請求項1~7のいずれか1項に記載の半導体用ボンディングワイヤ。
  9. 前記芯材の主成分がCuで、Al、Sn、Zn、B、Pの1種以上の合金元素を含有し、ワイヤ全体に占める該合金元素濃度が総計で0.0001~0.05mol%の範囲であることを特徴とする請求項1~8のいずれか1項に記載の半導体用ボンディングワイヤ。
  10. 前記芯材がCuを主成分とし、前記外層の表面側にAg、Auのうち1種以上の濃化層を有することを特徴とする請求項1に記載の半導体用ボンディングワイヤ。
  11. 前記濃化層がAg、Auのうち1種以上の濃度勾配をワイヤ径方向に有するものであることを特徴とする請求項10に記載の半導体用ボンディングワイヤ。
  12. 前記濃化層の最表面におけるPd濃度が20~90mol%の範囲であることを特徴とする請求項10に記載の半導体用ボンディングワイヤ。
  13. 前記外層の内部にPd単一金属層を有することを特徴とする請求項10に記載の半導体用ボンディングワイヤ。
  14. 前記濃化層を有する外層の厚さが0.02~0.4μmの範囲であることを特徴とする請求項10に記載の半導体用ボンディングワイヤ。
  15. 前記芯材がCuを主成分とし、前記芯材と前記外層との間にAg、Auのうち1種以上が濃化した中間層を有することを特徴とする請求項1記載の半導体用ボンディングワイヤ。
  16. 前記中間層がAg、Auのうち1種以上の濃度勾配をワイヤ径方向に有するものであることを特徴とする請求項15に記載の半導体用ボンディングワイヤ。
  17. 前記中間層におけるAg、Auを総計した最高濃度が30~90mol%の範囲であることを特徴とする請求項15に記載の半導体用ボンディングワイヤ。
  18. 前記中間層が、Ag、Auのうち1種以上の元素とPdとCuとが共存し、かつ該3元素の濃度勾配をワイヤ径方向に有する領域を含むものであることを特徴とする請求項16に記載の半導体用ボンディングワイヤ。
  19. 前記外層と前記中間層を総計した厚さが0.02~0.5μmの範囲であることを特徴とする請求項15に記載の半導体用ボンディングワイヤ。
  20. Pd、Ag、Auを総計した濃度が0.4~4mol%の範囲であることを特徴とする請求項10又は15に記載の半導体用ボンディングワイヤ。
  21. Pd濃度に対するAg、Auを総計した濃度の比率が0.001~0.4の範囲であることを特徴とする請求項10又は15に記載の半導体用ボンディングワイヤ。
PCT/JP2010/052029 2009-03-17 2010-02-12 半導体用ボンディングワイヤ WO2010106851A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2010800010215A CN101925992B (zh) 2009-03-17 2010-02-12 半导体用接合线
KR1020107016610A KR101144406B1 (ko) 2009-03-17 2010-02-12 반도체용 본딩 와이어
US12/993,401 US8815019B2 (en) 2009-03-17 2010-02-12 Bonding wire for semiconductor
JP2010525154A JP4886899B2 (ja) 2009-03-17 2010-02-12 半導体用ボンディングワイヤ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-063874 2009-03-17
JP2009063874 2009-03-17

Publications (1)

Publication Number Publication Date
WO2010106851A1 true WO2010106851A1 (ja) 2010-09-23

Family

ID=42739517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052029 WO2010106851A1 (ja) 2009-03-17 2010-02-12 半導体用ボンディングワイヤ

Country Status (5)

Country Link
US (1) US8815019B2 (ja)
JP (1) JP4886899B2 (ja)
KR (1) KR101144406B1 (ja)
CN (1) CN101925992B (ja)
WO (1) WO2010106851A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013139635A (ja) * 2012-01-02 2013-07-18 Wire technology co ltd 合金線材およびその製造方法
KR20160022864A (ko) 2013-06-20 2016-03-02 스미또모 베이크라이트 가부시키가이샤 반도체 장치
JP6002300B1 (ja) * 2015-09-02 2016-10-05 田中電子工業株式会社 ボールボンディング用パラジウム(Pd)被覆銅ワイヤ
KR20180041553A (ko) * 2016-10-14 2018-04-24 타나카 덴시 코오교오 카부시키가이샤 볼 본딩용 구리 합금선
JP2019500494A (ja) * 2015-12-02 2019-01-10 ヘレウス マテリアルズ シンガポール ピーティーイー. リミテッド 銀合金化銅ワイヤ
CN110284023A (zh) * 2019-07-22 2019-09-27 安徽广宇电子材料有限公司 一种铜合金键合丝及其制备方法和应用

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2822029A4 (en) * 2012-02-27 2015-12-23 Nippon Micrometal Corp SEMICONDUCTOR DEVICE, METHOD FOR MANUFACTURING SAME, AND CONNECTING CABLE
JP5998758B2 (ja) * 2012-08-31 2016-09-28 三菱マテリアル株式会社 荒引銅線及び巻線、並びに、荒引銅線の製造方法
JP5420783B1 (ja) * 2013-04-05 2014-02-19 田中電子工業株式会社 高速信号線用ボンディングワイヤ
CN104183503B (zh) * 2013-05-28 2017-03-01 吕传盛 无镀层钯网合金线及其制造方法
JP6254841B2 (ja) * 2013-12-17 2017-12-27 新日鉄住金マテリアルズ株式会社 半導体装置用ボンディングワイヤ
CN103745963B (zh) * 2014-01-28 2016-09-28 铭凯益电子(昆山)有限公司 铜基引线及载有铜基引线的半导体封装结构
JP6361194B2 (ja) 2014-03-14 2018-07-25 三菱マテリアル株式会社 銅鋳塊、銅線材、及び、銅鋳塊の製造方法
MY162021A (en) * 2014-03-31 2017-05-31 Nippon Micrometal Corp Bonding wire for semiconductor device use and method of production of same
SG11201608819VA (en) * 2014-04-21 2016-12-29 Nippon Steel & Sumikin Mat Co Bonding wire for semiconductor device
CN104073676B (zh) * 2014-07-15 2017-02-15 汕头市骏码凯撒有限公司 一种半导体用键合银合金丝及其制造方法
JP6516465B2 (ja) * 2014-12-17 2019-05-22 日鉄ケミカル&マテリアル株式会社 半導体装置用ボンディングワイヤ
WO2016189752A1 (ja) * 2015-05-26 2016-12-01 日鉄住金マイクロメタル株式会社 半導体装置用ボンディングワイヤ
US10137534B2 (en) 2015-06-15 2018-11-27 Nippon Micrometal Corporation Bonding wire for semiconductor device
JP5893230B1 (ja) 2015-07-23 2016-03-23 日鉄住金マイクロメタル株式会社 半導体装置用ボンディングワイヤ
TWI565841B (zh) * 2015-09-01 2017-01-11 光大應用材料科技股份有限公司 多鍍層銀線及其製法
JP6047214B1 (ja) * 2015-11-02 2016-12-21 田中電子工業株式会社 ボールボンディング用貴金属被覆銅ワイヤ
DE102016117389B4 (de) * 2015-11-20 2020-05-28 Semikron Elektronik Gmbh & Co. Kg Leistungshalbleiterchip und Verfahren zur Herstellung eines Leistungshalbleiterchips und Leistungshalbleitereinrichtung
SG10201509634UA (en) * 2015-11-23 2017-06-29 Heraeus Oriental Hitec Co Ltd Coated wire
JP6445186B2 (ja) * 2015-12-15 2018-12-26 日鉄ケミカル&マテリアル株式会社 半導体装置用ボンディングワイヤ
JP7195208B2 (ja) * 2019-04-12 2022-12-23 三菱電機株式会社 半導体装置および半導体装置の製造方法
CN114318051B (zh) * 2022-01-08 2023-06-27 烟台一诺电子材料有限公司 一种不同材质的多层环状键合丝及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05175272A (ja) * 1991-12-24 1993-07-13 Tanaka Denshi Kogyo Kk 半導体素子用のPd極細線及びそのボール形成方法
WO2002023618A1 (fr) * 2000-09-18 2002-03-21 Nippon Steel Corporation Fil de connexion de semi-conducteur et son procede de fabrication
JP2006100777A (ja) * 2004-09-02 2006-04-13 Furukawa Electric Co Ltd:The ボンディングワイヤー及びその製造方法
JP2006216929A (ja) * 2005-01-05 2006-08-17 Nippon Steel Corp 半導体装置用ボンディングワイヤ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6297360A (ja) 1985-10-24 1987-05-06 Mitsubishi Metal Corp 半導体装置のボンデイングワイヤ用表面被覆高純度銅極細線
JPS63244660A (ja) 1987-03-30 1988-10-12 Hitachi Cable Ltd 半導体装置の組立方法
JPH0479236A (ja) 1990-07-20 1992-03-12 Tanaka Denshi Kogyo Kk 半導体素子用ボンディング線
JP2813434B2 (ja) 1990-07-20 1998-10-22 田中電子工業株式会社 半導体素子用ボンディング線
JPH0479240A (ja) 1990-07-20 1992-03-12 Tanaka Denshi Kogyo Kk 半導体素子用ボンディング線
JP2004064033A (ja) 2001-10-23 2004-02-26 Sumitomo Electric Wintec Inc ボンディングワイヤー
US20040245320A1 (en) * 2001-10-23 2004-12-09 Mesato Fukagaya Bonding wire
JP4204359B2 (ja) 2002-03-26 2009-01-07 株式会社野毛電気工業 ボンディングワイヤーおよびそれを使用した集積回路デバイス
JP2006100077A (ja) * 2004-09-29 2006-04-13 Sumitomo Electric Ind Ltd 巻線用線材
JP2007012776A (ja) 2005-06-29 2007-01-18 Nippon Steel Materials Co Ltd 半導体装置用ボンディングワイヤ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05175272A (ja) * 1991-12-24 1993-07-13 Tanaka Denshi Kogyo Kk 半導体素子用のPd極細線及びそのボール形成方法
WO2002023618A1 (fr) * 2000-09-18 2002-03-21 Nippon Steel Corporation Fil de connexion de semi-conducteur et son procede de fabrication
JP2006100777A (ja) * 2004-09-02 2006-04-13 Furukawa Electric Co Ltd:The ボンディングワイヤー及びその製造方法
JP2006216929A (ja) * 2005-01-05 2006-08-17 Nippon Steel Corp 半導体装置用ボンディングワイヤ

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013139635A (ja) * 2012-01-02 2013-07-18 Wire technology co ltd 合金線材およびその製造方法
KR20160022864A (ko) 2013-06-20 2016-03-02 스미또모 베이크라이트 가부시키가이샤 반도체 장치
JP6002300B1 (ja) * 2015-09-02 2016-10-05 田中電子工業株式会社 ボールボンディング用パラジウム(Pd)被覆銅ワイヤ
TWI578422B (zh) * 2015-09-02 2017-04-11 Tanaka Electronics Ind Ball wire with palladium (Pd) coated copper wire
US10195697B2 (en) 2015-09-02 2019-02-05 Tanaka Denshi Kogyo K.K. Palladium (Pd)-coated copper wire for ball bonding
JP2019500494A (ja) * 2015-12-02 2019-01-10 ヘレウス マテリアルズ シンガポール ピーティーイー. リミテッド 銀合金化銅ワイヤ
KR20180041553A (ko) * 2016-10-14 2018-04-24 타나카 덴시 코오교오 카부시키가이샤 볼 본딩용 구리 합금선
KR102176359B1 (ko) 2016-10-14 2020-11-09 타나카 덴시 코오교오 카부시키가이샤 볼 본딩용 구리 합금선
CN110284023A (zh) * 2019-07-22 2019-09-27 安徽广宇电子材料有限公司 一种铜合金键合丝及其制备方法和应用

Also Published As

Publication number Publication date
JPWO2010106851A1 (ja) 2012-09-20
KR20100116174A (ko) 2010-10-29
CN101925992A (zh) 2010-12-22
US8815019B2 (en) 2014-08-26
CN101925992B (zh) 2012-08-22
US20110120594A1 (en) 2011-05-26
KR101144406B1 (ko) 2012-05-10
JP4886899B2 (ja) 2012-02-29

Similar Documents

Publication Publication Date Title
JP4886899B2 (ja) 半導体用ボンディングワイヤ
JP4719300B2 (ja) 半導体装置用ボンディングワイヤ
JP5550369B2 (ja) 半導体用銅ボンディングワイヤとその接合構造
JP4554724B2 (ja) 半導体装置用ボンディングワイヤ
JP5616739B2 (ja) 複層銅ボンディングワイヤの接合構造
JP5246314B2 (ja) 半導体用銅合金ボンディングワイヤ
JP4691533B2 (ja) 半導体装置用銅合金ボンディングワイヤ
JP4672373B2 (ja) 半導体装置用ボンディングワイヤ
TWI621720B (zh) Bonding wire for semiconductor device
JP5343069B2 (ja) ボンディングワイヤの接合構造
JP5393614B2 (ja) 半導体装置用ボンディングワイヤ
JP5591987B2 (ja) 半導体装置用ボンディングワイヤ
JP2010245574A (ja) 半導体装置用ボンディングワイヤ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080001021.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010525154

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107016610

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753346

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12993401

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10753346

Country of ref document: EP

Kind code of ref document: A1