WO2010104088A1 - 異材接合方法 - Google Patents

異材接合方法 Download PDF

Info

Publication number
WO2010104088A1
WO2010104088A1 PCT/JP2010/053924 JP2010053924W WO2010104088A1 WO 2010104088 A1 WO2010104088 A1 WO 2010104088A1 JP 2010053924 W JP2010053924 W JP 2010053924W WO 2010104088 A1 WO2010104088 A1 WO 2010104088A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
aluminum
steel material
steel
flux
Prior art date
Application number
PCT/JP2010/053924
Other languages
English (en)
French (fr)
Inventor
雅男 杵渕
誠二 笹部
剛 松本
康生 村井
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2010104088A1 publication Critical patent/WO2010104088A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/06Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for positioning the molten material, e.g. confining it to a desired area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/0026Arc welding or cutting specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/20Ferrous alloys and aluminium or alloys thereof

Definitions

  • the present invention relates to a dissimilar material joining method by welding dissimilar metal members of a steel material and an aluminum material in a transport field such as an automobile and a railway vehicle, a member, a part, and a structure such as a machine and an architecture.
  • the joining is necessary to ensure the joining strength. Compared to the case of only steel materials, it can significantly contribute to weight reduction and the like.
  • the aluminum material is a general term for a pure aluminum material and an aluminum alloy material.
  • the high strength steel material and 6000 series aluminum alloy material from the low-strength dissimilar materials such as conventional mild steel and pure aluminum alloy, A5000 series aluminum alloy, etc.
  • the joining object is changing to welding joining of different materials.
  • the formation conditions of brittle Fe-Al intermetallic compounds at the joints are different from those of conventional low-strength dissimilar materials, so reliable and high joint strength is obtained. In order to do so, it is necessary to devise new joining conditions.
  • the steel material When joining dissimilar materials of steel and aluminum alloy materials, the steel material has a higher melting point, higher electrical resistance and lower thermal conductivity than the aluminum alloy material, so the heat generation on the steel side increases, and the low melting point first Aluminum melts. Next, the surface of the steel material is melted, and as a result, a Fe—Al-based brittle intermetallic compound layer is formed at the interface, so that high bonding strength cannot be obtained.
  • a method for improving the strength of the welded joint by improving the composition of the flux used for fusion welding of dissimilar joints has also been proposed.
  • a flux containing a fluoride cesium fluoride, aluminum fluoride, potassium fluoride
  • the core material is coated with aluminum or an aluminum alloy to form steel (mild steel) with a flux-cored wire.
  • arc welding an aluminum material see Patent Document 4).
  • a fluoride-based flux having an effect of reducing, dissolving and removing the oxide film from the surface of the aluminum alloy material on which a strong oxide film is formed is applied to the surface of the aluminum alloy material, and mild steel and a 6000 series aluminum alloy material are applied.
  • a method of spot welding is also proposed (see Patent Document 6).
  • these fluoride fluxes are also used for fusion welding joining between aluminum alloy materials (see Patent Documents 7 and 8).
  • FCW welding method The MIG welding method and laser brazing method (hereinafter also referred to as FCW welding method) using the above-described flux-cored wire are certainly very efficient welding methods. Further, according to this FCW welding method, in the case of overlapped fillet welding, that is, the steel material arranged on the lower side with respect to the welding direction and the aluminum material arranged on the upper side are overlapped and welded together. When doing, the bead by an aluminum welding material can be formed over the welding surface of both the said steel materials and aluminum materials. For this reason, the dissimilar material joined body (joint) of high joint strength is obtained.
  • the present invention is an improvement of the FCW welding method as a dissimilar material joining method.
  • the present invention provides a dissimilar material joining method that can ensure high joint strength even when FCW welding is performed by superimposing a steel material arranged on the upper side with respect to the welding direction and an aluminum material arranged on the lower side. The purpose is to provide.
  • the gist of the dissimilar material joining method of the present invention is that the steel material arranged on the upper side and the aluminum material arranged on the lower side are overlapped with each other along the welding line.
  • a welding method for dissimilar materials wherein at least the position of the welding surface of the aluminum material along the welding line is higher than the position of the welding surface of the steel material along the welding line.
  • a bead of aluminum welding material is formed across the welding surfaces of both the steel material and the aluminum material.
  • the welding surface of the aluminum material protrudes 0.5 to 4 mm upward with respect to the welding direction.
  • S is an interval provided so that the molten aluminum welding material wraps around between the lower surface of the steel material with respect to the welding execution direction and the surface of the aluminum material facing the lower surface of the steel material
  • the steel material G is an interval provided between the end surface of the steel material and the surface of the aluminum material facing the end surface of the steel material, the surface of the aluminum material facing the lower surface of the steel material, and the end of the steel material R, which is the radius of curvature of the curved surface to which the surface of the aluminum material facing the part surface is connected, satisfies (1) S: 1.5 mm or less, G: 1 mm or less, R: less than 3 mm, or ( 2) It is preferable to adjust so as to satisfy S: 2.5 mm or less, G: 1 mm or less, and R: 3 to 5 mm.
  • the welding is performed by MIG welding or laser welding among the FCW welding methods using the flux cored wire filled with the flux inside the aluminum outer sheath in terms of increasing welding efficiency and joint strength. preferable.
  • the present inventors investigated the reason why high joint strength could not be obtained by the FCW welding method depending on the positional relationship between the steel material and the aluminum material.
  • the aluminum material is arranged on the lower side with respect to the welding direction, it becomes clear that the molten aluminum is difficult to spread on the welding surface of the steel material arranged on the upper side, so that good bonding cannot be performed. It was. Further, in this case, since the supply of flux to the steel material surface is insufficient, the effect of improving the wettability between the molten aluminum and the steel is small, and as a result, it has become clear that good bonding cannot be performed.
  • the present inventors can solve the above problems by welding in a state where the position of the welding surface of the aluminum material protrudes upward from the position of the welding surface of the steel material with respect to the welding construction direction. It has also been found that a bead of aluminum welding material can be formed over both the steel and aluminum welding surfaces.
  • FIG. 4 (a) and 4 (b) schematically show the situation of the MIG weld bead according to the positional relationship between the steel material and the aluminum material.
  • FIG. 4A shows a case where the steel material arranged on the lower side with respect to the welding direction and the aluminum material arranged on the upper side are overlapped and welded to each other.
  • FIG.4 (b) is a case where the steel materials arrange
  • the wettability of the weld surface 2a of the steel material 2 and the molten aluminum 6 can be improved, and the removal of the oxide film on the surface of the steel material 2 (weld surface 2a) is promoted.
  • the bead 6 made of the aluminum welding material can be formed over the welding surfaces of both the steel material welding surface 2a and the aluminum material welding surface 3a, and better bonding can be realized.
  • the bead 6 on the steel material welded surface 2a side is particularly difficult to be formed.
  • the bead 6 made of the aluminum welding material over both the welding surfaces of the steel material welding surface 2a and the aluminum material welding surface 3a cannot be formed, and good bonding cannot be performed.
  • FIG. 1 shows an example of the present invention.
  • a steel material 2 arranged on the upper side with respect to the welding direction indicated by the arrow 4 and an aluminum material 3 arranged on the lower side. are superimposed on each other and fillet welded.
  • FIG. 2 shows the state after the example of this invention shown in FIG. 1 is fillet welded.
  • 1 and 2 show an example in which a steel plate automobile panel 2 such as a door is partially reinforced with an aluminum alloy extruded shape 3 or the like from the back side (inside) of the panel 2.
  • a recess 3 b is provided at the end of the aluminum material 3 disposed on the lower side on the steel material 2 side, and the recess 3 b accommodates the welding surface 2 a of the steel material 2.
  • the recess 3b has a depth greater than or equal to the thickness of the steel material 2. Therefore, when the welding surface 2a of the steel material 2 is overlapped so as to be accommodated in the concave portion 3b, the welding surface 2a of the steel material 2 with respect to the welding direction 4 is equal to the difference X (mm) between the depth of the concave portion 3b and the thickness of the steel material 2. To retreat. At the same time, the welding surface 3a of the aluminum material (welding surface along the welding line 5 with the steel material 2) is X (mm) above the welding direction 4 from the position of the welding surface 2a along the welding line 5. ) Only protrudes.
  • the molten aluminum 6 (becomes a bead) from the welding surface 3 a of the upper aluminum material 3 is formed on the surface of the lower steel material 2 ( It is easy to spread on the welding surface 2a).
  • the flux supplied to the welding surface Therefore, also in the case of the FCW welding method using the flux, the flux tends to spread on the surface of the lower steel material 2 (welded surface 2a).
  • the wettability of the weld surface 2a of the steel material 2 and the molten aluminum 6 is improved, and the removal of the oxide film on the surface of the steel material 2 (weld surface 2a) is promoted.
  • the bead 6 made of the aluminum welding material is formed over both the steel material welding surface 2a and the aluminum material welding surface 3a, and as the dissimilar material joined body 1, better bonding can be realized.
  • S indicates the clearance (interval) between the bottom surface of the recess 3 b of the aluminum material 3 and the lower surface of the steel material 2 accommodated. That is, the plate gap S is between the surface of the steel material opposite to the welding execution direction (the lower surface located below the welding execution direction) and the surface of the aluminum material facing the steel material surface. Further, the interval is provided so that the molten aluminum welding material wraps around.
  • G indicates the clearance between the end surface of the recess 3 b of the aluminum material 3 and the end surface of the steel material 2 accommodated. That is, the gap G is an interval provided between the end surface of the steel material and the surface of the aluminum material facing the end surface of the steel material.
  • These plate gaps S and G are prepared for wrapping around the steel material 2 of the molten aluminum (around).
  • the joining of the molten aluminum (molten aluminum) and the aluminum material 3 is the same as a normal welded portion, the aluminum material 3 (welded surface 3a) is melted and integrated with the molten aluminum 6, and the bead 6 is solidified after solidification. Thus, a strong joint is formed.
  • the cleaning action, wettability, and adhesiveness are improved by the flux, so that the steel weld surface 2a is widely covered with the molten aluminum 6 in a close contact state. Therefore, the steel material 2 is not directly input heat from an arc described later (arc 15 in FIG. 3 described later), but is indirectly input heat through the covered aluminum molten metal. It does not melt when heated excessively.
  • a thin intermetallic compound layer of about several ⁇ m is formed at the joining interface between the steel material 2 and the aluminum melt 6 that is in close contact. This intermetallic compound layer is brittle when it is as thick as several tens of ⁇ m or more, and weld cracking occurs and the strength deteriorates. However, a thin intermetallic compound layer of about several ⁇ m is not brittle and is strong. It becomes a state.
  • the cleaning action by the flux, the wettability, and the adhesion improving action are very good is important.
  • the cleaning action, wettability, and adhesion improving action are lowered, the molten aluminum 6 cannot sufficiently cover the steel weld surface 2a.
  • the steel material welding surface 2a is excessively heated and melted to form a thick intermetallic compound layer.
  • Aluminum material welding surface protrusion method It is possible to project the aluminum material welding surface 3 a upward from the welding surface 4 a of the steel material 2 by the shape design and processing of the aluminum material. For example, in the case of an aluminum material as shown in FIG. 1, the aluminum material welding surface 3 a is partially thickened in advance, or by joining another aluminum material to the aluminum material welding surface 3 a, the thickness is partially increased. Or just meat.
  • the simplest method is to design the shape so that the original aluminum material is provided with the support flange (arm portion) of the steel material 2 and the like.
  • the aluminum material 3 is an extruded shape
  • the thin portion (concave portion) and the joint flange (arm portion) are included in the original shape and extruded, the thin portion ( The trouble of forming the (concave portion) is unnecessary.
  • a thin portion (concave portion) can be formed by simply cutting in the middle or before and after the forming process.
  • the protrusion amount X (mm) of the aluminum material welding surface 3a is appropriately selected according to the design conditions, welding method, and welding conditions of the dissimilar material joined body. That is, the protrusion amount: X (mm) is easy to spread to the lower steel material welding surface 2a of the molten aluminum 6, and easy to spread to the lower steel material welding surface 2a of the flux (improvement of wettability, steel material welding surface). It is appropriately selected based on the degree of the promotion of removal of oxide film 2a).
  • this protrusion amount: X (mm) When this protrusion amount: X (mm) is small, the molten aluminum 6 does not sufficiently spread on the steel material welding surface 2a. On the other hand, if this protrusion amount: X (mm) is too large, it is difficult to ensure the penetration into the aluminum material 3. If the welding heat input is increased too much to ensure penetration, the intermetallic compound at the bonding interface grows thick, and in the extreme case, the steel material 3 is melted, so it is difficult to ensure the bonding strength.
  • the optimum range of the protrusion amount: X (mm) varies depending on each condition, but in the field of dissimilar material joining such as the automobile body described above, it is generally in the range of 0.5 mm to 4 mm.
  • the protrusion amount: X (mm) is appropriately determined according to the plate gap S or gap G, which is the clearance between the aluminum material 3 and the steel material 2 described above, or in consideration of the plate gap S or gap G. Designed. Further, the plate gap S and the gap G, which are the clearances between the aluminum material 3 and the steel material 2, are also appropriately designed according to the relationship with the protrusion amount: X (mm).
  • FIG. 3 the positional relationship between the steel material and the aluminum material is the same as in FIG. 1, and the steel material 2 disposed on the upper side with respect to the welding execution direction from the top to the bottom illustrated in FIG. The case is shown in which fillet welded with the aluminum material 3 arranged on the lower side being overlapped with each other.
  • FIG. 3 shows an example in which, for example, the end portion of the panel manufactured from the steel plate 2 is supported from the back side (inside) of the panel by the aluminum alloy extruded shape member 3.
  • FIG. 3 differs from FIGS. 1 and 2 particularly in the shape of the aluminum material 3. That is, in FIG. 3, the aluminum material 3 has an inverted L shape, and extends in the horizontal direction to support the end portion of the steel plate panel 2, and to extend in the vertical direction. A vertical wall 3d joined to another structural member. And the flange 3c is provided below the welding surface 3a which is the upper end part of the vertical wall 3d. That is, the welding surface 3a which is the upper end part of the vertical wall 3d protrudes upward. Thereby, the welding surface 3a of the aluminum material 3 (welding surface along the welding line 5 with the steel material 2) is protruded above the welding direction 4 from the position of the welding surface 2a of the steel material 2. .
  • a concave portion 3b is provided on the upper surface of the aluminum flange 3c in order to secure a clearance (interval) for the molten aluminum to wrap around the steel material 2 (lower part).
  • the end of the recess 3b far from the aluminum material 3 has a vertical wall shape perpendicular to the bottom surface, but the side of the recess 3b in contact with the vertical wall 3d is the same as the lower surface of the flange 3c. It is connected to the vertical wall 3d so as to have a curved surface with a radius of curvature R.
  • the curvature radius R is less than 3 mm according to the curvature radius R of the curved surface connecting the surface of the aluminum material facing the end surface of the steel material and the bottom surface of the recess 3b.
  • R 0, that is, including the case where the corners are provided at right angles
  • the radius of curvature R is 3 to 5 mm, it is recommended that the plate gap S be adjusted to 2.5 mm or less and the gap G to be adjusted to 1 mm or less.
  • Arc welding method The aspect of the welding apparatus used by this invention is demonstrated using FIG. In the present invention, it is possible to use a welding apparatus and welding method (arc welding apparatus, method and conditions) by the usual FCW welding method, and this is also an advantage of the present invention.
  • FIG. 3 although the block diagram of an arc welding apparatus (consumable electrode arc welding apparatus: MIG welding apparatus) is shown, if a laser irradiation apparatus is provided in this FIG. 3, the block diagram of a laser irradiation arc welding apparatus It becomes.
  • FCW (flux-cored wire) 10 has a specific component flux described later.
  • the FCW 10 unwound from the spool 11 is fed at a predetermined feeding speed through the welding torch 13 by the rotation of a feeding roll 12 directly connected to a wire feeding motor (not shown).
  • the shielding gas 16 is supplied into the welding torch 13.
  • a welding power source device (PS) indicated by reference numeral 14 outputs a welding voltage and a welding current for performing arc welding, and outputs a feeding control signal to the wire feeding motor.
  • the arc 15 is generated between the FCW 10 and the material to be joined, and the joining is performed.
  • at least the aluminum material welding surface 3a is protruded upward with respect to the welding direction 4 from the position of the steel material welding surface 2a.
  • the molten aluminum (not shown) from the welding surface 3a of the aluminum material 3 protruded to the upper side is easy to spread on the lower steel material welding surface 2a.
  • the flux supplied to the welding surface by the FCW 10 is likely to spread to the lower steel material welding surface 2a. For this reason, the wettability between the steel material welding surface 2a and the molten aluminum is improved, and the removal of the oxide film on the steel material 2 welding surface 2a is promoted.
  • FIG. 3 illustrates the case of MIG welding, but the arc welding method of the present invention includes DC MIG welding, DC pulse MIG welding, AC MIG welding, AC pulse MIG welding, and DC / AC TIG welding. Further, plasma arc welding, combined laser irradiation arc welding using arc welding and laser irradiation at the same time can be used. Laser welding (apparatus) can also be used instead of arc welding (apparatus).
  • FCW Flux cored wire
  • FCW The flux cored wire (FCW) for joining dissimilar materials used in the present invention uses FCW in which a fluoride-based mixed flux is covered with an aluminum alloy skin in order to improve the efficiency of fusion welding.
  • FCW a general one in which a tubular aluminum alloy outer shell (hoop) is filled with a flux can be used.
  • the FCW includes a seam type having a seam (joint: gap, opening) and a seamless type having no seam in which the seam is joined by welding or the like.
  • the aluminum alloy used for the FCW shell is not particularly limited, but 4000 series aluminum alloys such as A4043 and A4047 and 5000 series aluminum alloys such as A5356 and A5183 can be used. In addition, aluminum alloys such as 3000 series and 6000 series may be used. Among these, A4043-WY, A4047-WY, A5356-WY, A5183-WY and the like defined by JIS are preferably exemplified.
  • an optimum diameter may be selected according to the welding workability including the characteristics of the wire feeder, etc., for welding work used as high-efficiency fully automatic welding or semi-automatic welding.
  • a narrow diameter of about 0.8 to 1.6 mm ⁇ which is generally used may be used.
  • the wire having a smaller wire diameter is used in the range of the wire diameter, the heat input during welding can be reduced and the welding current can be lowered.
  • scattering of the fluoride-based mixed flux itself can be prevented, welding workability can be improved, and formation of fragile intermetallic compounds can be suppressed.
  • the wire diameter exceeds 1.6 ⁇ mm, the current for obtaining a stable arc becomes excessive, the scattering of the fluoride-based mixed flux itself increases, the melting of the base material becomes excessive, and the fragile metal It may lead to the formation of compounds.
  • the filling rate of the flux into the FCW is, of course, dependent on the flux composition, but is preferably relatively small, such as about 0.1 mass% and less than 24 mass% with respect to the total mass of the FCW.
  • a lower filling rate is preferable because it prevents scattering of the flux itself and improves welding workability. If the filling rate of the flux is too small, the effect of the flux cannot be exhibited, and a sound and highly reliable welded joint cannot be obtained.
  • FCW instead of directly applying the fluoride-based mixed flux to the weld.
  • the use of the FCW improves the welding workability by preventing the dispersion of the fluoride-based mixed flux itself, and also suppresses the generation of fragile intermetallic compounds. It is essential to do.
  • the flux composition used (filled) in the FCW is a mixed flux (Noroclock) having a specific composition in which fluorides such as aluminum fluoride and potassium fluoride are mixed among fluoride-based mixed fluxes. Flux) is preferable.
  • Noroclock a mixed flux
  • chloride acts as a corrosion promoting factor for the welded portion, and consequently, the dissimilar material joint, so the flux does not contain chloride or the amount of chloride is 1 mol% or less.
  • a regulated fluoride composition is preferred.
  • the flux filling amount in the outer skin When the flux filling amount in the outer skin is small, the flux amount is not stable, and the flux filling amount (filling rate, content rate) varies depending on the part of the FCW. On the other hand, when the flux filling amount is small, mixing the flux and the aluminum alloy powder and filling the outer skin eliminates or alleviates this problem and facilitates the manufacture of the FCW itself. Therefore, it is preferable. In addition, when aluminum alloy powder is mixed and added to this flux, there are cases where spatter during welding is reduced and effects such as suppression of excessive wetting of the molten metal may be obtained.
  • a mixed flux having such a specific composition can be joined to an aluminum material. That is, if such a mixed flux is used, the surface of the material with the galvanized steel material or the aluminum material can be cleaned, and the wettability of the weld metal is improved. As a result, the bead formation is improved. Moreover, as a result of suppressing generation of a brittle Al—Fe-based intermetallic compound layer generated in the dissimilar material joint portion and a brittle Zn—Fe-based compound layer derived from galvanization, the bonding strength is improved. Of course, this effect is also exhibited in the dissimilar material joining of a bare steel material that is not galvanized and an aluminum material.
  • the thickness of the steel materials to be joined with different materials in the present invention is preferably in the range of 0.3 to 4.0 mm. If the thickness of the steel material is less than 0.3 mm, the strength and rigidity necessary for the structural member and the structural material described above cannot be secured, which is inappropriate. If the plate thickness of the steel material is too thick, it will not be possible to reduce the weight of the structural members and structural materials described above. Further, in the present invention, the shape of the steel material to be joined with the different material is not particularly limited, and a shape generally used for a structural member such as an automobile body or a steel plate, a steel shape member, and a steel pipe selected by the structural member. The shape may be appropriate.
  • high-strength structural member such as an automobile member
  • high-tensile steel high tensile having a tensile strength of 400 MPa or more, desirably 500 MPa or more
  • Low-strength steel and mild steel having a tensile strength of less than 400 MPa are generally low alloy steels, and the oxide film is made of iron oxide. Therefore, diffusion of Fe and Al is facilitated, and brittle intermetallic compounds are easily formed.
  • the plate thickness is increased to obtain the required strength, and the weight reduction is sacrificed.
  • the surface of the steel material to be joined with the different material may or may not be subjected to surface treatment except for coating with an insulating film.
  • galvanization is previously provided on the steel material surface (at least the joint surface with the aluminum material), the wettability of the flux is improved.
  • galvanization exists in the joint surface with an aluminum material, the advantage that the corrosion resistance of a dissimilar material joining body is excellent is acquired.
  • galvanization has the effect of delaying the time for the interfacial reaction layer, which is an intermetallic compound of steel and aluminum, to be formed during welding, it also has the effect of increasing joint strength.
  • the plating means is not particularly limited, and an alloying treatment may be performed after electroplating, hot dipping, or hot dipping.
  • the thickness of the galvanizing may be in the normal film thickness (average film thickness) range of 1 to 20 ⁇ m. When the thickness of the galvanized film is too thin, the galvanized film is melted and discharged from the bonded part at the initial stage of joining at the time of welding, and the effect of suppressing the formation of the interface reaction layer cannot be exhibited. On the other hand, when the thickness of the galvanized film is too thick, a large amount of heat input is required for melting and discharging zinc from the joint.
  • the aluminum material to be bonded to the different material in the present invention is not particularly limited with respect to the alloy composition and shape, and according to the required characteristics as each structural member described above, a widely used alloy composition, plate material, shape material, A forging material, a casting material, or the like is appropriately selected. However, it is desirable that the strength of the aluminum material be higher as in the case of the steel material. Therefore, Al-Mg-Si based A6000 aluminum alloy, which has high strength among aluminum materials, has a small amount of alloy elements, is excellent in weldability and recyclability, and is widely used as a structural member of this kind, is used. It is preferable to do.
  • the plate thickness of these aluminum materials used in the present invention is preferably in the range of 0.5 to 4.0 mm.
  • the thickness of the aluminum material is less than 0.5 mm, it is inappropriate because the strength as a structural material of an automobile or the like and the energy absorption at the time of a vehicle body collision are insufficient.
  • the thickness of the aluminum material exceeds 4.0 mm, it is impossible to reduce the weight of the structural member and the structural material as in the case of the steel material.
  • the surface of the aluminum material to be joined with the different material may or may not be subjected to surface treatment except for coating with an insulating film.
  • FCW welding conditions As described above, in FCW welding, in order to suppress generation of an intermetallic compound generated at the interface between an aluminum material and a steel material, it is necessary to prevent the steel material as a base material from being excessively melted. Therefore, it is preferable to select a welding condition that allows a sound joining state to be obtained with the minimum necessary base material melting (dilution) amount.
  • the welding current is 70 A or more, preferably 80 A or more and 120 A or less, more preferably 80 A or more and 110 A or less.
  • the higher the current the more the intermetallic compound at the bonding interface that is generated can adversely affect the bonding strength. Therefore, in order to suppress such an intermetallic compound, it is recommended to join at a relatively low current condition.
  • the welding voltage is 10 V or more, preferably 15 V or more and 30 V or less, more preferably 15 V or more and 20 V or less.
  • the welding speed may be appropriately determined within a range in which the base material Fe and Al are not excessively melted according to the welding current and the welding voltage. Considering the welding efficiency and the like, the welding speed is preferably 20 CPM or more, more preferably 30 CPM or more and 100 CPM or less, and further preferably 30 CPM or more and 90 CPM or less.
  • a general-purpose gas such as Ar can be used as appropriate.
  • the gas flow rate is not particularly limited, and a general flow rate can be selected.
  • Example 1 In the joint shape shown in FIG. 1, a cold-rolled steel sheet (high-tensile, thickness 1.4 mm) subjected to alloying hot-dip galvanizing (GA) having a tensile strength of 980 MPa was used as the steel material 2. Further, as the aluminum material 3, a T6 tempered extruded material (plate thickness of 2.0 mm) of a 6000 series aluminum alloy having a 0.2% proof stress of 180 MPa class was used.
  • G hot-dip galvanizing
  • Test pieces The length of the test piece is 300 mm for both the steel material 2 and the aluminum material 3.
  • a flat concave portion 3b having a length of 100 mm is provided at the end of the extruded aluminum member 3 on the steel plate 2 side.
  • the recess 3b accommodates the welding surface 2a of the steel material 2.
  • the protrusion amount X (mm) from the steel material welding surface 2a of the aluminum material welding surface 3a was variously changed by adjusting the depth of this recessed part 3b.
  • the clearance between the bottom surface of the concave portion 3b of the aluminum material 3 and the lower surface of the steel material 2 is “plate gap S”
  • the clearance between the end portion of the steel material 2 and the end portion of the concave portion 3b is “gap G”.
  • the plate gap S and gap G are shown in Table 1. In Example 1, S and G are zero in common with each example.
  • FCW is an aluminum alloy filler with a wire diameter of 1.0 mm ⁇ and an outer skin of A4047, and fluoride flux (K3 AlF6 fluoride and aluminum alloy powder of A4047 composition) is used in all FCWs. What added 10 mass% with respect to the weight was used.
  • the shield gas 16 is Ar.
  • the weldability of the joint can be evaluated by visual observation of the bead and a peeling test using chisel.
  • is a state in which the bead 6 is continuously and satisfactorily formed over both the weld surface 2a of the steel material 2 and the weld surface 3a of the aluminum material as shown in FIG. .
  • size of the bead by the side of the welding surface 2a of the steel material 2 was evaluated by (circle), (triangle
  • x indicates the case where the bead 6 is hardly formed on the welded surface 2a side of the steel material 2 or the case where the bead is extremely small.
  • x is a case where the bead 6 is largely peeled off and the joint can be regarded as broken.
  • the evaluation of the peel test with chisel is ⁇ , it is a guideline that the joint has a break strength of 200 N / mm or more, and if it is ⁇ , the joint has a break strength of less than about 100 N / mm. become.
  • each of the protrusion amounts X ranges from 0.5 mm to 4 mm (number 3 to number 8). It can be seen that the joint weldability evaluation is good. On the other hand, in each example of numbers 1, 2, and 10, the joint weldability evaluation is inferior.
  • the welding surface 3 a of the aluminum material 3 is below the welding surface 2 a of the steel material 2 with respect to the welding direction 4. is there.
  • the protrusion amount X of the welding surface 3a of the lower aluminum material 3 with respect to the welding execution direction 4 is too small and is zero. From these results, it is confirmed that the molten aluminum 6 does not sufficiently spread on the welding surface 2a of the steel material 2 when the projection amount X of the welding surface 3a of the aluminum material 3 with respect to the welding direction 4 is small.
  • the protrusion amount X is too large. From this result, when the protrusion amount X is too large, it is proved that it is difficult to ensure the melting of the molten aluminum 6 into the aluminum material 3. On the other hand, if the heat input of welding is increased too much to ensure penetration, the intermetallic compound at the bonding interface grows thick, and in extreme cases, the steel is melted, so it is still difficult to ensure the bonding strength. Become.
  • Example 2 In the same joint shape as in Example 1, the protrusion amount X is constant as shown in Table 2.
  • the plate gap S and the gap G were variously changed, and the same test piece as in Example 1 and a welding test were performed under welding conditions, and the effects of the plate gap S and the gap G were investigated.
  • the plate gap S was changed from 0.5 mm to 1.5 mm, and the gap G was changed from 0 mm to 1.5 mm.
  • Table 2 the weldability of the joint is good in each example (number 11 to number 13) in which the plate gap S is 0.5 mm to 1.5 mm. Further, in each example (number 11 to number 16) in which the gap G is 0 mm to 1 mm, the weldability of the joint is good. From these results, it can be seen that if the plate gap S and the gap G are made too large, good welding cannot be performed as is conventionally known.
  • Example 3 In the joint shape (groove shape) shown in FIG. 3, the protrusion amount X is constant as shown in Table 3.
  • the curvature radius R of the upper curved surface connecting the vertical wall 3d and the flange 3c is variously changed, and a welding test is performed under the same welding conditions as in the first embodiment. The effect of corner shape was investigated.
  • the steel material 2 is the same as that of each above-mentioned Example.
  • the material and strength of the aluminum extruded material 3 are the same, but only the cross-sectional shape of the aluminum extruded material 3 is changed as shown in FIG.
  • the aluminum extruded material 3 has a flange (arm portion) 3c having a length of 35 mm and a thickness of 4 mm, a vertical wall 3d having a length of 18 mm and a thickness of 3 mm. 5 mm.
  • the depth of the recessed part 3b is 1 mm
  • the protrusion amount X from the steel material welding surface 2a with respect to the welding construction direction 4 of the aluminum material welding surface 3a is constant with 3 mm in each example.
  • such a groove shape allows joint weldability even when the plate gap S and gap G are relatively large due to design convenience and assembly errors of the joint or the underlying structural member. Has improved. Therefore, it can be seen that such a groove shape allows a design convenience and assembly error, and allows the board gap S and the gap G to have a margin. Further, the groove shape having the curvature radius R as shown in FIG. 3 does not need to be produced by machining such as cutting.
  • the use of an aluminum alloy extruded shape has an advantage that such a shape can be realized without machining by only an extrusion designed to have a desired cross-sectional shape.
  • the dissimilar material joint that can stably secure a high joint strength.
  • the construction method is also easy and can provide the joining method using the arc welding which can perform efficient wire welding. Therefore, it is useful in the field of dissimilar joints between steel and aluminum, such as the manufacture of automobile bodies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Laser Beam Processing (AREA)

Abstract

 本発明は、溶接施工方向に対して、上側に配置された鋼材と、下側に配置されたアルミニウム材と、を互いに重ね合わせて溶接する場合でも、高い接合強度を安定的に確保できる異材接合方法を提供する。本発明では、溶接施工方向4に対して上側に配置された鋼材2と、下側に配置されたアルミニウム材3と、を互いに重ね合わせて溶接する際に、少なくとも溶接線5に沿ったアルミニウム材溶接面3aの位置を、鋼材溶接面2aの位置よりも溶接施工方向4に対して上側に突出させた状態で溶接し、鋼材2とアルミニウム材3との両方の溶接面にわたってアルミニウム溶接材料によるビード6が形成される。

Description

異材接合方法
 本発明は、自動車、鉄道車両などの輸送分野、機械、建築などの部材、部品、構造物における、鋼材とアルミニウム材との異種金属部材同士の溶接による異材接合方法に関する。
 鋼材とアルミニウム材という異種の金属部材同士の接合(異材接合体)を、前記したような部材、部品、構造物に適用するには、接合強度を確保する必要がある。鋼材のみの場合に比して、軽量化等に著しく寄与することができる。ここで、アルミニウム材とは、純アルミニウム材やアルミニウム合金材の総称である。
 しかし、鋼材とアルミニウム材とを溶接接合する場合、接合部に脆い金属間化合物が生成しやすいために、信頼性のある高強度を有する接合部(接合強度)を得ることは非常に困難であった。したがって、従来では、これら異種接合体(異種金属部材)の接合には、主としてボルトやリベット等による機械的な接合がなされているが、機械的な接合に溶接接合を併用する場合でも、接合継手の信頼性、気密性、コスト等の問題がある。また、一方では、自動車車体などの部材の軽量化のために、鋼材やアルミニウム合金材の高強度化が図られ、鋼材では高張力鋼材(ハイテン)、アルミニウム合金材では合金元素が少なくリサイクル性にも優れた高強度なA6000系アルミニウム合金材が使用される傾向にある。
 このため、異材同士の溶接接合においても、従来の軟鋼と純アルミニウム合金やA5000系アルミニウム合金などとの低強度の異材同士の溶接接合から、高張力鋼材と6000系アルミニウム合金材との高強度の異材同士の溶接接合へと、接合対象が変わってきている。これら高強度の異材同士の溶接接合では、接合部での脆いFe-Al金属間化合物の生成条件が従来の低強度の異材同士の溶接接合とは異なるため、信頼性のある高い接合強度を得るためには、新たな接合条件の工夫が必要となる。
 鋼材とアルミニウム合金材との異材同士を接合する場合、鋼材は、アルミニウム合金材と比較して融点、電気抵抗が高く、熱伝導率が小さいため、鋼側の発熱が大きくなり、まず低融点のアルミニウムが溶融する。次に鋼材の表面が溶融し、結果として界面にFe-Al系の脆い金属間化合物層が形成されるため、高い接合強度が得られない。
 そこで、従来より、これら異種接合体の溶接接合方法について多くの検討がなされてきている。例えば、接合部に脆いFe-Al金属間化合物が生成しないように、低温でロウ付けする方法が提案されている(特許文献1、2参照)。
 これに対して、より高温で接合を行う異種接合体の溶融溶接については、少なくともシリコンが3~15wt%添加されたアルミニウム合金製のソリッドワイヤを溶接ワイヤとして用い、アルミニウム合金材と、亜鉛メッキなどを表面に施した鋼材とをパルスMIG溶接によって接合する方法が提案されている(特許文献3参照)。この方法では、溶接ワイヤの溶融と共にシリコンが母材へと移行し、溶融池界面に浸透してアークの熱によって高温となり、溶融金属のぬれ性を良くすることによって、接着性を向上させている。
 更に、異種接合体の溶融溶接に用いるフラックスの組成を改善して、溶接継手強度を高めようとする方法も提案されている。例えば、フッ化物(フッ化セシウム、フッ化アルミニウム、フッ化カリウム)を含むフラックスを芯材として用い、この芯材をアルミニウム又はアルミニウム合金で被覆して形成されるフラックス入りワイヤにより、鉄鋼(軟鋼)とアルミニウム材とをアーク溶接する方法が提案されている(特許文献4参照)。
 また、フッ化カリウムとフッ化アルミニウムなど、フッ化セシウム、フッ化アルミニウム、フッ化カリウム、フッ化亜鉛の一種以上を含むフッ化物系混合フラックスを塗布して用いる種々の溶接法を用いて、鋼材とアルミニウム材とを異材接合する溶接する方法が提案されている(特許文献5参照)。これらの方法においては、上記フラックスの化学反応によって鉄鋼表面の清浄作用が促されると共に、アルミニウムから成る溶融金属のぬれ性及び接着性が良好となり、脆弱な厚い金属間化合物層の形成が阻止される。
 更に、強固な酸化皮膜が形成されているアルミニウム合金材の表面から酸化皮膜を還元、溶解除去する効果を有するフッ化物系フラックスを、アルミニウム合金材表面に塗布し、軟鋼と6000系アルミニウム合金材とをスポット溶接する方法も提案されている(特許文献6参照)。また、これらフッ化物系フラックスは、アルミニウム合金材同士の溶融溶接接合などにも用いられている(特許文献7、8参照)。
 しかし、これらのフラックスを用いた溶接方法では、高張力鋼材と6000系アルミニウム合金材など高強度の異材同士の線溶接では、高い接合強度が得られないという問題がある。このため、フラックス組成を工夫した結果、フッ化アルミニウムなどを含むフッ化物組成や、塩化物を含まないフッ化物組成としたフラックスなどの、ノコロックフラックスと称されるフラックスを活用したMIG溶接法およびレーザブレージング法も開発されている(特許文献9~12など)。そして、これらの溶接方法では、フラックスを供給するために、アルミニウム材外皮内部にフラックスを充填してなるフラックスコアードワイヤ(以下、FCW、またはフラックス入りワイヤとも言う)が活用され、施工性の向上が図られている。
日本国特開平7-148571号公報 日本国特開平10-314933号公報 日本国特開2004-223548号公報 日本国特開2003-211270号公報 日本国特開2003- 48077号公報 日本国特開2004-351507号公報 日本国特開2004-210013号公報 日本国特開2004-210023号公報 日本国特開2007-136524号公報 日本国特開2007-136525号公報 日本国特開2007-301634号公報 日本国特開2008-68290号公報
 前記したフラックス入りワイヤを活用したMIG溶接法およびレーザブレージング法(以下、FCW溶接法とも言う)は、確かに非常に効率的な溶接方法である。また、このFCW溶接法によれば、重ねすみ肉溶接などの場合、すなわち、溶接施工方向に対して下側に配置された鋼材と、上側に配置されたアルミニウム材と、を互いに重ね合わせて溶接する場合には、前記鋼材とアルミニウム材との両方の溶接面にわたって、アルミニウム溶接材料によるビードが形成できる。このため、高い接合強度の異材接合体(継手)が得られる。
 しかし、このFCW溶接法は、前記した鋼材とアルミニウム材との位置関係が逆の場合、すなわち、溶接施工方向に対して上側に配置された鋼材と、下側に配置されたアルミニウム材と、を互いに重ね合わせて溶接する場合には、後述する通り、特に鋼材側の溶接面に、アルミニウム溶接材料によるビードが形成しにくくなるという問題がある。前記したように、高い接合強度を得るためには鋼材とアルミニウム材との両方の溶接面にわたるアルミニウム溶接材料によるビードを形成する必要があるため、このような位置関係の場合には高い接合強度が得られなくなる。
 このように、溶接施工方向に対して上側に配置された鋼材と、下側に配置されたアルミニウム材と、を互いに重ね合わせる場合とは、例えば、ドアなどの鋼板製自動車パネルを、パネルの裏側(内側)からアルミニウム合金押出形材などで部分的に補強する場合などである。自動車の製造工程(自動車車体の組み立て工程)は、鋼材とアルミニウム材との位置関係は様々である。したがって、下側に配置された鋼材と、上側に配置されたアルミニウム材と、を溶接する場合に前記したように高い接合強度が得られたとしても、位置関係が逆である場合に高い接合強度が得られなければ、自動車の製造工程では採用しづらくなる。
 本発明は、このような問題に鑑み、異材接合方法として、特にFCW溶接法を改善したものである。本発明は、溶接施工方向に対して上側に配置された鋼材と、下側に配置されたアルミニウム材と、を互いに重ね合わせてFCW溶接を行う場合でも、高い接合強度を確保できる異材接合方法を提供することを目的とする。
 上記目的を達成するための、本発明の異材接合方法の要旨は、溶接施工方向に対して上側に配置された鋼材と、下側に配置されたアルミニウム材とを互いに重ね合わせ、溶接線に沿って溶接する異材接合方法であって、少なくとも前記溶接線に沿った前記アルミニウム材の溶接面の位置を、前記溶接線に沿った前記鋼材の溶接面の位置よりも前記溶接施工方向に対して上側に突出させた状態で、前記溶接線に沿って溶接することによって、前記鋼材と前記アルミニウム材との両方の溶接面にわたってアルミニウム溶接材料によるビードを形成することである。
 このとき、前記アルミニウム材の溶接面が、前記溶接施工方向に対して上側に、0.5~4mm突出することが好ましい。
 また、前記鋼材の前記溶接施工方向に対する下面と前記鋼材の前記下面と対向する前記アルミニウム材の面との間に溶融した前記アルミニウム溶接材料が回り込むように設けられた間隔であるSと、前記鋼材の端部表面と前記鋼材の端部表面と対向する前記アルミニウム材の面との間に設けられた間隔であるGと、前記鋼材の前記下面と対向する前記アルミニウム材の面および前記鋼材の端部表面と対向する前記アルミニウム材の面が接続される曲面の曲率半径であるRとが、(1)S:1.5mm以下、G:1mm以下、R:3mm未満を満足するか、又は(2)S:2.5mm以下、G:1mm以下、R:3~5mmを満足するように調整されることが好ましい。
 ここで、前記溶接が、アルミニウム材外皮内部にフラックスが充填されたフラックスコアードワイヤを用いたFCW溶接法の中でも、MIG溶接あるいはレーザ溶接により行われることが、溶接効率や接合強度を増す点で好ましい。
 本発明者らは、前記鋼材とアルミニウム材との位置関係によっては、FCW溶接法で高い接合強度が得られなくなる原因を調査した。この結果、溶接施工方向に対して下側にアルミニウム材が配置される場合には、上側に配置された鋼材の溶接面にアルミニウム溶湯が広がりにくくなるために良好な接合ができないことが明らかとなった。また、この場合には、鋼材表面へのフラックスの供給も不十分となるため、アルミ溶湯と鋼との濡れ性改善効果が小さく、結果として良好な接合ができないことも明らかとなった。
 そして本発明者らは、前記アルミニウム材の溶接面の位置を、前記鋼材の溶接面の位置よりも前記溶接施工方向に対して上側に突出させた状態で溶接すれば、前記諸問題を解決でき、鋼材とアルミニウム材との両方の溶接面にわたってアルミニウム溶接材料によるビードを形成できることも知見した。
 これによって、本発明では、溶接施工方向に対して上側に配置された鋼材と、下側に配置されたアルミニウム材と、を互いに重ね合わせて、FCW溶接法などで溶接する場合でも、高い接合強度を安定的に確保することができる。従来のFCW溶接法では、溶接施工方向に対して下側に配置された鋼材と、上側に配置されたアルミニウム材と、を互いに重ね合わせる場合には、前記した通り高い接合強度を安定的に確保することができる。したがって、鋼材とアルミニウム材との間の位置関係が変わる自動車の製造工程のような場合であっても、本発明と従来のFCW溶接法とを併用するか、または使い分けることによって、効率的な溶接が可能となる。
本発明の一実施形態を示す断面図である。 図1の溶接結果(異材接合継手)を示す断面図である。 溶接装置が含まれた、本発明の一実施形態を示す断面図である。 (a)は従来の異材接合の態様を示す断面図であり、(b)は本発明の異材接合の態様を示す断面図である。
 以下に、本発明の実施形態と、本発明の各要件の意義とを、図を用いて具体的に説明する。
鋼材とアルミニウム材との位置関係:
 まず、鋼材とアルミニウム材との位置関係による溶接の問題およびその原因を、図4を用いて詳細に説明する。図4(a)、(b)は、前記鋼材とアルミニウム材との位置関係によるMIG溶接ビードの状況を、各々模式的に示す。
 図4(a)は、溶接施工方向に対して下側に配置された鋼材と、上側に配置されたアルミニウム材と、を互いに重ね合わせて溶接する場合である。図4(b)は、本発明のように、溶接施工方向に対して上側に配置された鋼材と、下側に配置されたアルミニウム材と、を互いに重ね合わせて溶接する場合である。
 一般に、鋼材とアルミニウム材との異材溶接接合では、鋼材側が溶融すると、非常に脆い鋼-アルミの金属間化合物が大量に生成するため、良好な溶接ができない。このため、鋼材表面と、先に溶融したアルミニウム溶湯との接触部分で、薄い金属間化合物を生成させて接合することが求められる。
 図4(a)のように、矢印4で示す溶接施工方向に対して下側に鋼材2が配置される場合、上側に配置されたアルミニウム材3からのアルミニウム溶湯6(ビードとなる)が、下側の鋼材2の表面(溶接面2a)に広がりやすい。溶接面に供給されるフラックスについても、同じことが言える。したがって、後述するフラックスを活用した場合も(前記FCW溶接法による場合も)、下側の鋼材2の表面(溶接面2a)にフラックスが広がりやすい。このため、鋼材2の溶接面2aとアルミニウム溶湯6の濡れ性が改善でき、また鋼材2の表面(溶接面2a)の酸化膜除去が促進される。この結果、鋼材溶接面2aとアルミニウム材溶接面3aとの両方の溶接面にわたってアルミニウム溶接材料によるビード6を形成でき、より良好な接合が実現できる。重ねすみ肉溶接などで、溶接施工方向に対して下側に配置された鋼材と、上側に配置されたアルミニウム材と、を互いに重ね合わせて溶接する場合に、前記特許文献9~12などのFCW溶接法で高い接合強度が得られるのはこの理由による。
 これに対して、本発明の図4(b)のように、矢印4で示す溶接施工方向に対して下側にアルミニウム材3が配置される場合は、上側に配置された鋼材2側に、アルミニウム材3からのアルミニウム溶湯6が広がりにくい。フラックスを活用した場合も(前記FCW溶接法による場合も)同様であり、下側の鋼材2の表面(溶接面2a)にフラックスが広がりにくい。この結果、鋼材2表面(溶接面2a)へのフラックスの供給も不十分となるため、従来のFCW溶接法は、鋼材2の溶接面2aとアルミニウム溶湯6の濡れ性を改善できない(濡れ性改善効果が小さい)。また、鋼材2の表面(溶接面2a)の酸化膜除去も促進されないため、特に、鋼材溶接面2a側のビード6が形成されにくくなる。この結果、鋼材溶接面2aとアルミニウム材溶接面3aとの両方の溶接面にわたるアルミニウム溶接材料によるビード6を形成できず、良好な接合ができない。
本発明の特徴:
 この問題解決のための本発明の特徴を、図1、2を用いて、以下に詳細に説明する。図1は本発明例を示し、ここでは、前記図4(b)と同様に、矢印4で示す溶接施工方向に対して上側に配置された鋼材2と、下側に配置されたアルミニウム材3と、が互いに重ね合わされてすみ肉溶接される。また、図2は、図1に示す本発明例が、すみ肉溶接された後の状態を示す。この図1、2は、例えばドアなどの鋼板製自動車パネル2を、このパネル2の裏側(内側)からアルミニウム合金押出形材3などで部分的に補強する場合などの例を示している。
 図1において、下側に配置されたアルミニウム材3の鋼材2側の端部には凹部3bが設けられており、凹部3bは鋼材2の溶接面2aを収容する。この凹部3bは鋼材2の厚み以上の深さを有している。したがって、鋼材2の溶接面2aを凹部3bに収容する形で重ね合わせると、凹部3bの深さと鋼材2の厚みの差X(mm)だけ、鋼材2の溶接面2aが溶接施工方向4に対して後退する。同時に、アルミニウム材の溶接面3a(鋼材2との溶接線5に沿った溶接面)は、溶接線5に沿った溶接面2aの位置よりも、溶接施工方向4に対して上側にX(mm)だけ突出した状態となる。
 図1のように、アルミニウム材3の溶接面3aを、鋼材2の溶接面2aの位置よりも溶接施工方向4に対して上側に突出させると、鋼材2の溶接面2aと、アルミニウム材3の溶接面3aとの溶接施工方向4に対する位置関係が逆転する。すなわち、前記図4(a)のように、アルミニウム材3の、少なくとも溶接面3aは、溶接施工方向4に対して鋼材2の溶接面2aよりも上側となる。
 このため、図2に示す通り、前記図4(a)の場合と同様に、上側のアルミニウム材3の溶接面3aからのアルミニウム溶湯6(ビードとなる)が、下側の鋼材2の表面(溶接面2a)に広がりやすい。溶接面に供給されるフラックスについても同様である。したがって、フラックスを活用する前記FCW溶接法による場合も、下側の鋼材2の表面(溶接面2a)にフラックスが広がりやすい。このため、鋼材2の溶接面2aとアルミニウム溶湯6の濡れ性が改善され、また鋼材2の表面(溶接面2a)の酸化膜除去が促進される。この結果、鋼材溶接面2aとアルミニウム材溶接面3aとの両方の溶接面にわたってアルミニウム溶接材料によるビード6が形成され、異材接合体1として、より良好な接合が実現できる。
 なお、図1において、S(板隙間)は、アルミニウム材3の凹部3bの底部表面と、収容された鋼材2の下部表面とのクリアランス(間隔)を示す。すなわち、板隙間Sは、前記鋼材の前記溶接施工方向とは反対側の面(前記溶接施行方向に対して下側に位置する下面)と当該鋼材面と対向する前記アルミニウム材の面との間に、溶融したアルミニウム溶接材料が回り込むように設けられた間隔である。また、G(ギャップ)は、アルミニウム材3の凹部3bの端部表面と、収容された鋼材2の端部表面とのクリアランスを示す。すなわち、ギャップGは、前記鋼材の端部表面と前記鋼材の当該端部表面と対向するアルミニウム材の面との間に設けられた間隔である。これら板隙間S、ギャップGは、アルミニウム溶湯の鋼材2周囲へのつきまわり(回り込み)のために準備される。ここで、アルミニウム溶湯(溶融アルミ)とアルミニウム材3との接合は通常の溶接部と同様であり、アルミニウム材3(溶接面3a)が溶融してアルミニウム溶湯6と一体化し、凝固後にビード6となって、強固な接合部が形成される。
 他方、前記した通り、フラックスにより清浄作用及びぬれ性、接着性が良好になることによって、鋼材溶接面2aは、アルミニウム溶湯6により密着状態で広く被覆される。したがって、鋼材2は、後述するアーク(後述する図3のアーク15)から直接的に入熱されるのではなく、覆い被さったアルミニウム溶湯を介して間接的に入熱されるので、鋼材2がアークによって過剰に加熱されて溶融することはない。鋼材2と、密着したアルミニウム溶湯6との接合界面には、数μm程度の薄い金属間化合物層が形成される。この金属間化合物層は、数十μm程度以上と厚い場合には脆弱であり、溶接割れが発生して強度が劣化するが、数μm程度の薄い金属間化合物層は脆弱ではなく、強固な接合状態となる。
 このように、アルミニウム溶湯6と鋼材溶接面2aとの接合界面に、数μm程度の薄い金属間化合物層を形成するためには、フラックスによる清浄作用及びぬれ性、接着性良好化作用が非常に重要である。清浄作用及びぬれ性、接着性良好化作用が低下すると、アルミニウム溶湯6が鋼材溶接面2aを十分に被覆できない。その結果、アークが直接的に鋼材溶接面2aに触れることになるために、鋼材溶接面2aが過剰に加熱されて溶融し、厚い金属間化合物層が形成されることになる。逆に、例え鋼材溶接面2aが加熱されなかったとしても、アルミニウム溶湯6と鋼材溶接面2aとの密着度が低い場合には均一な金属間化合物層が形成されないためにアルミニウム溶湯6と鋼材溶接面2aとが接合されず、簡単に剥離が生じる場合もある。
アルミニウム材溶接面突出方法:
 アルミニウム材溶接面3aを、鋼材2の溶接面2aよりも、溶接施工方向4に対して上側に突出させることは、アルミニウム材の形状設計や加工によって可能である。例えば、図1に示す態様のようなアルミニウム材であれば、アルミニウム材溶接面3aを予め部分的に厚肉にしたり、アルミニウム材溶接面3aに別のアルミニウム材を接合することにより部分的に厚肉にしたりすればよい。
 ただ、異材接合体の設計条件にもよるが、図1の凹部3bなどのように、アルミニウム材3側の鋼材2と重ね合わせる端部を部分的に薄肉化する方法や、後述する図3などのように、元々のアルミニウム材に鋼材2の支持フランジ(腕部)などが設けられるよう形状設計する方法が最も簡便である。例えば、アルミニウム材3が押出形材であれば、元々の形材形状に、この薄肉部(凹部)や前記接合フランジ(腕部)を盛り込んで押出すれば、後で切削加工などにより薄肉部(凹部)を形成する手間が不要である。また、アルミニウム材3が板材であっても、成形加工の途中あるいは前後などに簡便に切削加工することによって、薄肉部(凹部)が形成可能である。
 また、アルミニウム材溶接面3aの突出量:X(mm)は、異材接合体の設計条件や、溶接方法、溶接条件に応じて適宜選択される。すなわち、突出量:X(mm)は、アルミニウム溶湯6の下側の鋼材溶接面2aへの広がりやすさや、フラックスの下側の鋼材溶接面2aへの広がりやすさ(濡れ性改善、鋼材溶接面2aの酸化膜除去促進)の程度などから、適宜選択される。
 この突出量:X(mm)が少ないと、鋼材溶接面2aにアルミニウム溶湯6が十分に広がらない。一方、この突出量:X(mm)が大きすぎると、アルミニウム材3への溶け込み確保が難しい。溶け込み確保のために、溶接入熱を上げすぎると、接合界面の金属間化合物が厚く成長してしまい、極端な場合は、鋼材3を溶融させてしまうため、接合強度の確保が難しい。この突出量:X(mm)の最適範囲は各条件によって異なるが、前記した自動車車体などの異材接合の分野では、目安として、概ね0.5mm~4mmの範囲である。
 なお、突出量:X(mm)は、当然ながら、前記したアルミニウム材3と鋼材2とのクリアランスである板隙間SやギャップGに応じて、または板隙間SやギャップGを考慮して、適宜設計される。また、これらアルミニウム材3と鋼材2とのクリアランスである板隙間SやギャップGも、この突出量:X(mm)との関係に応じて適宜設計される。
本発明の溶接施工態様:
 次に、本発明を前記FCW溶接法により溶接施工する(実施する)ための態様を、図3を用いて説明する。図3において、鋼材とアルミニウム材との位置関係は図1と同様であり、矢印4により例示される図の上から下へと向かう溶接施工方向に対して、上側に配置された鋼材2と、下側に配置されたアルミニウム材3と、を互いに重ね合わせてすみ肉溶接する場合を示している。
 この図3では、例えば、鋼板2により製造されたパネルの端部を、アルミニウム合金押出形材3により、このパネルの裏側(内側)から支持する場合の例を示している。図3は、特にアルミニウム材3の形状において、前記図1、2とは異なる。すなわち、図3において、アルミニウム材3は逆L字形状を有し、横方向に延在して鋼板製パネル2の端部を支持するフランジ(腕部)3cと、縦方向に延在して別の構造部材と接合している縦壁3dと、を備える。そして、縦壁3dの上端部である溶接面3aよりも下方において、フランジ3cが設けられている。すなわち、縦壁3dの上端部である溶接面3aが上側に突出している。これによって、アルミニウム材3の溶接面3a(鋼材2との溶接線5に沿った溶接面)を、鋼材2の溶接面2aの位置よりも、溶接施工方向4に対して上側に突出させている。
 また、アルミニウム材のフランジ3cの上面には、鋼材2の周囲(下部)へのアルミニウム溶湯のつきまわり(回り込み)のためのクリアランス(間隔)を確保するために、凹部3bが設けられている。凹部3bの、アルミニウム材3から遠い方の端部は、底面に対して直角の縦壁形状となっているが、凹部3bの、縦壁3dと接する側は、フランジ3cの下面側と同様に曲率半径Rの曲面を有するように縦壁3dと接続されている。なお、例えば後記する実施例にも示すように、前記鋼材の端部表面と対向するアルミニウム材の面と凹部3bの底面とをつなぐ曲面の曲率半径Rに応じて、曲率半径Rが3mm未満の場合(R=0の場合、すなわち角部が直角に設けられている場合を含む)には、板隙間Sを1.5mm以下、ギャップGを1mm以下とするように調整することが推奨される。また、曲率半径Rが3~5mmの場合には、板隙間Sを2.5mm以下、ギャップGを1mm以下とするように調整することが推奨される。
アーク溶接方法:
 図3を用いて、本発明で用いる溶接装置の態様を説明する。本発明では通常の前記FCW溶接法による溶接装置や溶接方法(アーク溶接の装置、方法、条件)を用いることができ、これが本発明の利点でもある。なお、図3では、アーク溶接装置(消耗電極アーク溶接装置:MIG溶接装置)の構成図が示されているが、この図3において、レーザ照射装置を設ければレーザ照射アーク溶接装置の構成図となる。
 図3において、FCW(フラックス入りワイヤ)10は、後述する特定成分のフラックスを有する。スプール11から巻き戻されたFCW10は、ワイヤ送給モータ(図示せず)に直結された送給ロール12の回転によって、溶接トーチ13を通って予め定めた送給速度で送給される。この際、シールドガス16が溶接トーチ13内に供給される。符号14で示される溶接電源装置(PS)は、アーク溶接を行うための溶接電圧及び溶接電流を出力すると共に、前記ワイヤ送給モータへ送給制御信号を出力する。
 このような溶接装置によって、FCW10と被接合材との間にアーク15が発生して接合が行われる。この際、前記した通り、少なくともアルミニウム材溶接面3aを、鋼材溶接面2aの位置よりも、溶接施工方向4に対して上側に突出させている。これにより、前記図2に示した通り、上側に突出したアルミニウム材3の溶接面3aからのアルミニウム溶湯(図示せず)が、下側の鋼材溶接面2aに広がりやすい。また、FCW10により、溶接面に供給されるフラックスも、下側の鋼材溶接面2aに広がりやすい。このため、鋼材溶接面2aとアルミニウム溶湯との濡れ性が改善され、また鋼材2溶接面2aの酸化膜除去が促進される。
 この結果、溶接施工方向4に対して上側に配置された鋼材2と、下側に配置されたアルミニウム材3と、により溶接継手を形成する場合でも、鋼材溶接面2aとアルミニウム材溶接面3aとの両方の溶接面にわたってアルミニウム溶接材料によるビードを形成できる。したがって、異材接合体1としての良好な接合が実現できる。
溶接方法:
 この図3では、MIG溶接の場合を例示しているが、本発明のアーク溶接方法としては、直流のMIG溶接、直流のパルスMIG溶接、交流MIG溶接、交流パルスMIG溶接、直流/交流TIG溶接、プラズマアーク溶接、アーク溶接とレーザ照射とを同時に使用する複合方式のレーザ照射アーク溶接等を使用することができる。また、アーク溶接(装置)の代わりに、レーザ溶接(装置)も使用できる。
フラックスコアードワイヤ:
 本発明に使用する異材接合用フラックスコアードワイヤ(FCW)は、溶融溶接の効率化のために、フッ化物系混合フラックスがアルミニウム合金外皮で被覆されたFCWを用いる。このFCWは、管状のアルミニウム合金外皮(フープ)の内部に、フラックスを充填してなる一般的なものが使用可能である。
 前記FCWには、シーム(合わせ目:隙間、開口部)を有するシーム有りタイプと、このシームが溶接等で接合された、シームが無いシームレスタイプとがあるが、いずれでもよい。前記FCWの外皮に用いるアルミニウム合金としては、特に制限はないが、A4043、A4047等の4000系アルミニウム合金やA5356、A5183等の5000系アルミニウム合金を用いることができる。この他、3000系や6000系などのアルミニウム合金が用いられても良い。この中でも、JISで規定される、A4043-WY、A4047-WY、A5356-WY、A5183-WYなどが、好適に例示される。
 前記FCWの線径は、高効率の全自動溶接若しくは半自動溶接として用いられている溶接施工用として、ワイヤ送給機の特性なども含めた溶接作業性に応じて最適な径を選定すれば良い。例えば、MIG溶接、一般的な炭酸ガスシールドアーク溶接等であれば、汎用されている0.8~1.6mmφ程度の細径であれば良い。前記線径の範囲でより小さい線径のワイヤを用いるほど、溶接を行なう際の入熱量を低くし、溶接電流を低くすることができる。この結果、フッ化物系混合フラックス自体の飛散を防止し、溶接作業性が改善でき、また、脆弱な金属間化合物生成抑制できる。ワイヤ径が1.6φmmを超えると、安定したアークを得るための電流が過大となって、フッ化物系混合フラックス自体の飛散が大きくなると共に、母材の溶融が過剰気味となり、脆弱な金属間化合物の生成につながる可能性がある。
 前記FCWへのフラックスの充填率は、フラックス組成にも勿論よるが、前記FCWの全体質量に対して0.1質量%以上かつ24質量%未満程度と、比較的少なくすることが好ましい。この充填率が低い方が、フラックス自体の飛散を防止し、溶接作業性を改善できるため好ましい。なお、フラックスの充填率が少な過ぎると、フラックスの効果が発揮できず、健全で信頼性の高い溶接継手が得られない。
 このように、本発明では、フッ化物系混合フラックスを溶接部に直接塗布するのではなく、FCWを用いることが好ましい。自動車車体の連続組み立て工程などでの使用を考慮すると、前記FCWを用いることにより、フッ化物系混合フラックス自体の飛散を防止して溶接作業性を改善すると共に、脆弱な金属間化合物の生成も抑制することが必須となる。
フラックス組成:
 本発明では、前記FCWに使用する(充填する)フラックス組成が、フッ化物系混合フラックスの中でも、特にフッ化アルミニウムとフッ化カリウムなどのフッ化物同士を混合した、特定組成の混合フラックス(ノコロックフラックス)であることが好ましい。また、溶接部に塩化物が残留すると、塩化物が、溶接部、ひいては異材接合体の腐食促進因子として作用するため、フラックスは塩化物が含まれないか、塩化物の量が1mol%以下に規制されたフッ化物組成であることが好ましい。
 外皮へのフラックス充填量が少ない場合には、フラックス量が安定せず、FCWの部位によってフラックス充填量(充填率、含有率)がばらつく問題が生じる。これに対して、特にフラックス充填量が少ない場合に、フラックスとアルミニウム合金粉末を混合して外皮に充填すると、この問題が解消されるか、または緩和されると共に、FCWの製造自体も容易になるので好ましい。また、このフラックスにアルミニウム合金粉末を混合添加すると、溶接時のスパッタが減少する他、溶融金属の過大な濡れが抑制される等の効果が得られる場合がある。
 このような特定組成の混合フラックスを使用すれば、比較的厚い溶融亜鉛めっき(合金化を含む)により被覆された鋼材でも、アルミニウム材と接合することが可能となる。すなわち、このような混合フラックスを使用すれば、亜鉛めっき鋼材やアルミニウム材との材料表面を清浄化でき、溶接金属の濡れ性が向上する結果、ビードの形成が良好となる。また、異材接合部に生成する、脆いAl-Fe系金属間化合物層や、亜鉛めっきに由来する脆いZn-Fe系化合物層の生成が抑制される結果、接合強度が向上する。勿論、この効果は、亜鉛めっきされていない裸の鋼材とアルミニウム材との異材接合でも発揮される。
鋼材:
 本発明で異材接合される鋼材の板厚は、0.3~4.0mmの範囲であることが好ましい。鋼材の板厚が0.3mm未満の場合、前記した構造部材や構造材料として必要な強度や剛性が確保できないため、不適切である。鋼材の板厚が厚すぎると、前記した構造部材や構造材料の軽量化を図れなくなる。また、本発明では、異材接合される鋼材の形状は特に限定されるものではなく、自動車車体などの構造部材に汎用される形状や、あるいは構造部材によって選択される、鋼板、鋼形材、鋼管など適宜の形状であってよい。
 ただ、自動車部材などの軽量な高強度構造部材(異材接合体)を得るためには、引張強度が400MPa以上、望ましくは500MPa以上の高張力鋼(ハイテン)が使用される。引張強度が400MPa未満の低強度鋼や軟鋼は一般に低合金鋼であることが多く、酸化皮膜が鉄酸化物からなるため、FeとAlの拡散が容易となり、脆い金属間化合物が形成しやすい。また、低強度鋼や軟鋼を使用すると、必要強度を得るために板厚が厚くなり、軽量化が犠牲となる。
亜鉛めっき:
 異材接合される鋼材の表面は、絶縁皮膜による被覆を除いて、表面処理が施されていても、施されていなくてもよい。鋼材表面(少なくともアルミニウム材との接合面)に亜鉛めっきが予め設けられている場合には、フラックスの濡れ性が向上する。また、アルミニウム材との接合面に亜鉛めっきが介在しているために、異材接合体の耐食性も優れるという利点が得られる。更に、亜鉛めっきには、溶接時に、鋼とアルミの金属間化合物である界面反応層が形成する時間を遅らせる効果があるため、接合強度を高める効果もある。
 これら亜鉛めっきとしては、純亜鉛めっき、合金亜鉛めっき、合金化亜鉛めっき等、公知の鋼材の亜鉛めっきが適用可能である。また、めっきの手段は特に限定されず、電気めっきや溶融めっき、溶融めっき後に合金化処理が行われるものであってもよい。亜鉛めっきの厚みは、通常の1~20μmの膜厚(平均膜厚)範囲でよい。亜鉛めっき皮膜の厚みが薄すぎる場合は、溶接時の接合初期に亜鉛めっき皮膜が接合部から溶融排出してしまい、界面反応層の形成を抑制できる効果を発揮できない。これに対して、亜鉛めっき皮膜の厚みが厚すぎる場合は、接合部からの亜鉛の溶融排出のために大きな入熱量が必要となる。しかし、このように入熱量が大きくなると、アルミニウム材側だけでなく、鋼材側も溶融してしまい、前記した通り、界面にFe-Al系の脆い金属間化合物層が厚く形成されるため、高い接合強度が得られない。
アルミニウム材:
 本発明で異材接合されるアルミニウム材は、合金組成や形状について特に限定されるものではなく、前記した各構造用部材としての要求特性に応じて、汎用されている合金組成、板材、形材、鍛造材、鋳造材などが適宜選択される。ただ、アルミニウム材の強度についても、上記鋼材の場合と同様に、高い方が望ましい。したがって、アルミニウム材の中でも強度が高く、合金元素量が少なく、溶接性やリサイクル性にも優れ、この種の構造用部材として汎用されている、Al-Mg-Si系のA6000系アルミニウム合金を使用することが好ましい。
 本発明で使用するこれらアルミニウム材の板厚は、0.5~4.0mmの範囲であることが好ましい。アルミニウム材の板厚が0.5mm未満の場合、自動車などの構造材料としての強度や、車体衝突時のエネルギ吸収性などが不足するため、不適切である。一方、アルミニウム材の板厚が4.0mmを越える場合は、前記した鋼材の場合と同様に、前記した構造部材や構造材料の軽量化を図れなくなる。なお、異材接合されるアルミニウム材の表面も、絶縁皮膜による被覆を除いて、表面処理が施されていても、施されていなくてもよい。
FCW溶接条件:
 前記した通り、FCW溶接において、アルミニウム材と鋼材との界面に生成する金属間化合物の生成を抑制するためには、母材である鋼材を過剰に溶融させないようにする必要がある。したがって、必要最小限の母材溶融(希釈)量で健全な接合状態が得られるような溶接条件を選択することが好ましい。
 溶接電流は70A以上であり、好ましくは80A以上かつ120A以下、より好ましくは80A以上かつ110A以下である。大電流となるほど、少なからず生成される接合界面の金属間化合物が、接合強度に悪影響をおよぼす可能性がある。したがって、こうした金属間化合物を抑制するために、比較的低い電流条件で接合することが推奨される。
 溶接電圧は10V以上であり、好ましくは15V以上かつ30V以下、より好ましくは15V以上かつ20V以下である。
 溶接速度は、上記溶接電流および溶接電圧に応じて、母材のFeおよびAlを過剰溶融させない範囲で適当に決めればよい。溶接能率なども考慮すると、溶接速度は、好ましくは20CPM以上、より好ましくは30CPM以上かつ100CPM以下、さらに好ましくは30CPM以上かつ90CPM以下である。
 シールドガス16としては、Arなど汎用されるガスが適宜使用できる。ガス流量は特に制限されず、汎用流量が選択できる。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより、下記実施例によって制限を受けるものではない。前記、後記の趣旨に適合し得る範囲で本発明に適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 前記図1や図3に示したように、溶接施工方向4に対して上側に配置された鋼材2と、下側に配置されたアルミニウム材3と、を互いに重ね合わせた試験片の継手形状を用いて、前記図3に示したFCW溶接(MIG溶接)によるすみ肉溶接試験を実施した。この際、アルミニウム材溶接面3aの溶接施工方向4に対する鋼材溶接面2aからの突出量(Xmm)、板隙間S、ギャップGを各例で変化させて試験を行い、異材接合体の溶接性への影響を調査した。この結果を表1~3に示す。
(実施例1)
 図1に示される継手形状において、鋼材2として、引張強度が980MPa級の合金化溶融亜鉛めっき(GA)を施した冷延鋼板(ハイテン、板厚1.4mm)を用いた。また、アルミニウム材3として、0.2%耐力が180MPa級の6000系アルミニウム合金のT6調質押出形材(板厚2.0mm)を用いた。
試験片:
 試験片の長さは、鋼材2、アルミニウム材3ともに300mmである。下側に配置されたアルミニウム押出形材3の鋼板2側端部には、長さ100mmの平坦な凹部3bが設けられる。この凹部3bが、鋼材2の溶接面2aを収容する。そして、この凹部3bの深さを調節することにより、アルミニウム材溶接面3aの鋼材溶接面2aからの突出量X(mm)を種々変更した。
 ここで、アルミニウム材3の凹部3bの底部表面と鋼材2の下部表面とのクリアランスを「板隙間S」、鋼材2の端部と凹部3bの端部とのクリアランスを「ギャップG」とする。板隙間SおよびギャップGを表1に示すが、この実施例1では各例とも共通してS、Gがゼロである。
溶接条件:
 MIG溶接条件、溶接電流80A、溶接電圧20V、溶接速度50cpm(cm/min)の条件とした。FCWは、各例とも共通して、線径が1.0mmφ、外皮がA4047のアルミニウム合金溶加材であり、フッ化物系フラックス(K3 AlF6 フッ化物と、A4047組成のアルミニウム合金粉末)がFCW全重量に対して10質量%添加されたものを使用した。シールドガス16はArである。
継手溶接性評価:
 継手の溶接性は、ビードの概観目視と、たがねによるはく離試験と、により評価することができる。ビードの概観目視において、「◎」は、図2のように、ビード6が鋼材2の溶接面2aとアルミニウム材の溶接面3aとの両方にわたって、連続して良好に形成されている状態である。そして、これとの比較で、特に鋼材2の溶接面2a側のビードの大きさを、良好である順に、○、△、×により評価した。ちなみに、「×」はビード6が鋼材2の溶接面2a側にほとんど形成されていない場合か、ビードが極小の場合である。
 たがねによるはく離試験では、たがね(切断用鍛造工具)の先端を溶接部(ビード6)中央付近につけた状態で、たがねの頭部を上からハンマーで1回大きな力でたたくことにより、ビード6の剥離状態(破壊状態)を調査した。そして、ビード6の全般にわたって剥離(破壊)が全く無いものを「◎」と評価した。そして、これとの比較で、ビード6の一部に生じた剥離(破壊)の大きさによって、剥離の小さい順に、○、△、×により評価した。ちなみに「×」はビード6が大きく剥離し、継手が破壊されたと見なせる場合である。ちなみに、たがねによるはく離試験の評価が◎であれば、継手の破断強度が200N/mm以上あるという目安になり、×であれば、継手の破断強度が100N/mm未満程度しかないという目安になる。
 表1から、溶接施工方向矢印4に対して下側のアルミニウム材3の溶接面3aが突出していると共に、前記突出量Xが0.5mmから4mmの範囲の各例(番号3~番号8)において、継手溶接性評価が良好であることが分かる。これに対して、番号1、2、10の各例では、継手溶接性評価が劣っている。
 番号1の例では、前記した図4(b)のように、アルミニウム材3の溶接面3aが、溶接施工方向4に対して、鋼材2の溶接面2aよりも下側になっている場合である。また、番号2の例では、溶接施工方向4に対して下側のアルミニウム材3の溶接面3aの突出量Xが小さすぎ、0となっている。これらの結果から、アルミニウム材3の溶接面3aの溶接施工方向4に対する突出量Xが少ない場合には鋼材2の溶接面2aにアルミニウム溶湯6が十分に広がらないことが裏付けられる。
 これとは逆に、番号10の例では、突出量Xが大きすぎる。この結果から、突出量Xが大きすぎる場合には、アルミニウム溶湯6のアルミニウム材3への溶け込み確保が難しいことが裏付けられる。これに対して、溶け込み確保のために溶接の入熱を上げすぎると、接合界面の金属間化合物が厚く成長してしまい、極端な場合は鋼を溶融させてしまうため、接合強度確保がやはり難しくなる。
Figure JPOXMLDOC01-appb-T000001
(実施例2)
 実施例1と同様の継手形状において、前記突出量Xは、表2の通り一定である。本実施例では、板隙間SおよびギャップGを種々変えて、実施例1と同じ試験片と、溶接条件により溶接試験を行い、これら板隙間SおよびギャップGの影響を調査した。
 板隙間Sは0.5mmから、1.5mmまで変化させ、ギャップGは0mmから、1.5mmまで変化させた。表2に示す通り、板隙間Sが0.5mmから1.5mmの各例(番号11~番号13)において、継手の溶接性が良好である。また、ギャップGが0mmから1mmの各例(番号11~番号16)において、継手の溶接性が良好である。これらの結果から、板隙間SおよびギャップGを大きくし過ぎると、従来言われるように、良好な溶接ができなくなることが分かる。
Figure JPOXMLDOC01-appb-T000002
(実施例3)
 図3に示される継手形状(開先形状)において、前記突出量Xは、表3の通り一定である。本実施例では、縦壁3dとフランジ3cとをつなぐ上側の曲面の曲率半径Rを種々変えて、前記した実施例1と同じ溶接条件にて溶接試験を行い、曲率半径Rの大きさ、すなわち角部の形状の影響を調査した。
 試験片:
 鋼材2は前記した各実施例と同様である。本実施例では、アルミニウム押出材3の材質、耐力は同じであるが、アルミニウム押出材3の断面形状のみを図3のように変更した。アルミニウム押出材3のフランジ(腕部)3cの長さは35mm、厚みは4mmであり、縦壁3dの長さは18mm、厚みは3mmであり、溶接面3a側の上部の厚み(幅)は5mmである。そして、凹部3bの深さは1mmであり、アルミニウム材溶接面3aの、溶接施工方向4に対する鋼材溶接面2aからの突出量Xは、各例とも3mmと一定である。
 表3から、表2の溶接条件と同じ板隙間SおよびギャップGであっても、曲率半径Rの選定によっては、継手溶接性が向上することが分かる。すなわち、このような開先形状によって、アルミニウム溶湯が鋼材2の端面側にもスムーズに供給されるため、板隙間SおよびギャップGに対する余裕度が向上したものと考えられる。
 言い換えると、このような開先形状によって、継手あるいは基となる構造部材の、設計上の都合や組み立て上の誤差により板隙間SおよびギャップGが比較的大きくなる場合であっても、継手溶接性が向上している。したがって、このような開先形状により、設計上の都合や組み立て上の誤差を許容でき、板隙間SおよびギャップGに余裕を持たせることができることがわかる。また、図3のように曲率半径Rを有する開先形状は、切削などの機械加工によって作製する必要はない。アルミニウム合金押出形材を用いると、所望の断面形状に設計された押出のみによって、機械加工なしでこのような形状を実現することができるという利点がある。
Figure JPOXMLDOC01-appb-T000003
 以上、本発明の実施形態について説明したが、本発明は上述の実施の形態に限られず、特許請求の範囲に記載した限りにおいて様々に変更して実施することが可能である。本出願は2009年3月11日出願の日本特許出願(特願2009-058174)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明によれば、特にFCW溶接において、上側に配置された鋼材と、下側に配置されたアルミニウム材と、を互いに重ね合わせて溶接する場合でも、高い接合強度を安定的に確保できる異材接合方法を提供できる。また、本発明によれば、施工方法も容易で、効率的な線溶接が可能なアーク溶接を活用した接合方法を提供できる。したがって、自動車車体の製造など鋼材とアルミニウム材との異材接合継手の分野に有用である。
1:異材接合継手、2:鋼材(鋼板)、2a:鋼材溶接面、3:アルミニウム材(アルミニウム合金押出形材)、3a:アルミニウム材溶接面、3b:アルミニウム材凹部、4:溶接施工方向、5:溶接線、6:ビード(アルミニウム溶湯)、10:フラックス入り溶接ワイヤ、11:スプール、12:送給ロール、13:溶接トーチ、14:溶接電源装置、15:アーク、16:シールドガス

Claims (5)

  1.  溶接施工方向に対して上側に配置された鋼材と、下側に配置されたアルミニウム材とを互いに重ね合わせ、溶接線に沿って溶接する異材接合方法であって、
     少なくとも前記溶接線に沿った前記アルミニウム材の溶接面の位置を、前記溶接線に沿った前記鋼材の溶接面の位置よりも前記溶接施工方向に対して上側に突出させた状態で、前記溶接線に沿って溶接することによって、前記鋼材と前記アルミニウム材との両方の溶接面にわたってアルミニウム溶接材料によるビードを形成することを特徴とする異材接合方法。
  2.  前記アルミニウム材の溶接面が、前記溶接施工方向に対して上側に、0.5~4mm突出する請求項1に記載の異材接合方法。
  3.  前記鋼材の前記溶接施工方向に対する下面と前記鋼材の前記下面と対向する前記アルミニウム材の面との間に溶融した前記アルミニウム溶接材料が回り込むように設けられた間隔であるSと、前記鋼材の端部表面と前記鋼材の端部表面と対向する前記アルミニウム材の面との間に設けられた間隔であるGと、前記鋼材の前記下面と対向する前記アルミニウム材の面および前記鋼材の端部表面と対向する前記アルミニウム材の面が接続される曲面の曲率半径であるRとが、S:1.5mm以下、G:1mm以下、R:3mm未満を満足するように調整される請求項2に記載の異材接合方法。
  4.  前記鋼材の前記溶接施工方向に対する下面と前記鋼材の前記下面と対向する前記アルミニウム材の面との間に溶融した前記アルミニウム溶接材料が回り込むように設けられた間隔であるSと、前記鋼材の端部表面と前記鋼材の端部表面と対向する前記アルミニウム材の面との間に設けられた間隔であるGと、前記鋼材の前記下面と対向する前記アルミニウム材の面および前記鋼材の端部表面と対向する前記アルミニウム材の面が接続される曲面の曲率半径であるRとが、S:2.5mm以下、G:1mm以下、R:3~5mmを満足するように調整される請求項2に記載の異材接合方法。
  5.  前記溶接が、アルミニウム材外皮内部にフラックスが充填されたフラックスコアードワイヤを用いて、MIG溶接あるいはレーザ溶接により行われる請求項1から4のいずれかに記載の異材接合方法。
PCT/JP2010/053924 2009-03-11 2010-03-09 異材接合方法 WO2010104088A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009058174A JP5226564B2 (ja) 2009-03-11 2009-03-11 異材接合方法
JP2009-058174 2009-03-11

Publications (1)

Publication Number Publication Date
WO2010104088A1 true WO2010104088A1 (ja) 2010-09-16

Family

ID=42728377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053924 WO2010104088A1 (ja) 2009-03-11 2010-03-09 異材接合方法

Country Status (2)

Country Link
JP (1) JP5226564B2 (ja)
WO (1) WO2010104088A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103182594A (zh) * 2011-12-31 2013-07-03 上海和达汽车配件有限公司 铝合金仪表板横梁焊接方法
CN109562490A (zh) * 2016-08-03 2019-04-02 示罗产业公司 混合焊接接头及其形成方法
CN110039209A (zh) * 2019-04-24 2019-07-23 首钢集团有限公司 一种异种金属的焊接方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120223057A1 (en) * 2011-03-02 2012-09-06 Lucian Iordache Gas tungsten arc welding using flux coated electrodes
CN105149750B (zh) * 2011-03-07 2017-05-03 株式会社神户制钢所 异种金属接合方法
CN110234463B (zh) * 2017-01-31 2021-12-21 松下知识产权经营株式会社 接合结构
JP7048355B2 (ja) * 2018-03-01 2022-04-05 株式会社神戸製鋼所 異材接合継手および異材接合方法
CN108581166B (zh) * 2018-04-10 2021-01-15 上海工程技术大学 铝/钢异种金属焊接中抑制Fe-Al金属间化合物层生成的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100978A (ja) * 1981-12-09 1983-06-15 Mitsubishi Heavy Ind Ltd アルミニウム材とステンレスとの接合方法
JP2001047244A (ja) * 1999-08-03 2001-02-20 Laser Oyo Kogaku Kenkyusho:Kk 溶融溶接方法
JP2004223548A (ja) * 2003-01-21 2004-08-12 Daihen Corp アルミニウムと鉄鋼の接合方法
JP2005144500A (ja) * 2003-11-17 2005-06-09 Nissan Motor Co Ltd 異種材料の接合方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100978A (ja) * 1981-12-09 1983-06-15 Mitsubishi Heavy Ind Ltd アルミニウム材とステンレスとの接合方法
JP2001047244A (ja) * 1999-08-03 2001-02-20 Laser Oyo Kogaku Kenkyusho:Kk 溶融溶接方法
JP2004223548A (ja) * 2003-01-21 2004-08-12 Daihen Corp アルミニウムと鉄鋼の接合方法
JP2005144500A (ja) * 2003-11-17 2005-06-09 Nissan Motor Co Ltd 異種材料の接合方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103182594A (zh) * 2011-12-31 2013-07-03 上海和达汽车配件有限公司 铝合金仪表板横梁焊接方法
CN103182594B (zh) * 2011-12-31 2015-05-27 上海和达汽车配件有限公司 铝合金仪表板横梁焊接方法
CN109562490A (zh) * 2016-08-03 2019-04-02 示罗产业公司 混合焊接接头及其形成方法
CN110039209A (zh) * 2019-04-24 2019-07-23 首钢集团有限公司 一种异种金属的焊接方法

Also Published As

Publication number Publication date
JP5226564B2 (ja) 2013-07-03
JP2010207886A (ja) 2010-09-24

Similar Documents

Publication Publication Date Title
WO2010104088A1 (ja) 異材接合方法
JP5014834B2 (ja) アルミニウム材と鋼材のmig溶接方法
KR101021397B1 (ko) 이재 접합용 플럭스 코어드 와이어, 이재 접합 방법 및 그 접합 방법을 이용한 알루미늄재 또는 알루미늄 합금재와, 강재와의 접합 이음 구조체
JP5291067B2 (ja) 異材溶接用フラックス入りワイヤ並びに異材レーザ溶接方法及び異材mig溶接方法
CN102883852B (zh) 异种材料焊接用填充焊剂焊丝、异种材料激光焊接方法以及异种材料mig焊接方法
JP5014833B2 (ja) アルミニウム材と鋼材のmig溶接方法
JP4256886B2 (ja) 異材接合用フラックスコアードワイヤおよび異材接合方法
JP5198528B2 (ja) 異材接合用溶加材及び異材接合方法
JP2008207245A (ja) 鋼材とアルミニウム材との異材接合体
JP4836234B2 (ja) 異材接合方法
JP6984646B2 (ja) レーザろう付け方法および重ね継手部材の製造方法
JP5444029B2 (ja) 複合補強部材の製造方法および複合補強部材
JP6996547B2 (ja) Migろう付け方法、重ね継手部材の製造方法、および重ね継手部材
JP5780976B2 (ja) 異材溶接用フラックス入りワイヤ及び異材溶接方法
JP2009262198A (ja) 鋼材とアルミニウム材のmig溶接継手の製造方法及び鋼材とアルミニウム材のmig溶接継手
JP4256892B2 (ja) 異材接合方法
JP2006088174A (ja) 異材接合方法
JP7048355B2 (ja) 異材接合継手および異材接合方法
JP5600652B2 (ja) 異種金属接合方法
JP5661377B2 (ja) 異材接合方法
WO2013191160A1 (ja) アルミニウム材と鋼材のmig溶接継手構造
JP5600653B2 (ja) 異種金属接合方法
JP5600619B2 (ja) 異材接合方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10750841

Country of ref document: EP

Kind code of ref document: A1