WO2010067848A1 - 封着ガラス、封着材料層付きガラス部材、および電子デバイスとその製造方法 - Google Patents

封着ガラス、封着材料層付きガラス部材、および電子デバイスとその製造方法 Download PDF

Info

Publication number
WO2010067848A1
WO2010067848A1 PCT/JP2009/070703 JP2009070703W WO2010067848A1 WO 2010067848 A1 WO2010067848 A1 WO 2010067848A1 JP 2009070703 W JP2009070703 W JP 2009070703W WO 2010067848 A1 WO2010067848 A1 WO 2010067848A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing
glass
glass substrate
region
material layer
Prior art date
Application number
PCT/JP2009/070703
Other languages
English (en)
French (fr)
Inventor
壮平 川浪
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2010542127A priority Critical patent/JP5413373B2/ja
Priority to CN200980150358.XA priority patent/CN102245525B/zh
Priority to SG2011035995A priority patent/SG171754A1/en
Priority to EP09831952A priority patent/EP2357159A1/en
Publication of WO2010067848A1 publication Critical patent/WO2010067848A1/ja
Priority to US13/115,229 priority patent/US20110223371A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2077Sealing arrangements, e.g. to prevent the leakage of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/26Sealing together parts of vessels
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing
    • Y10T428/239Complete cover or casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension

Definitions

  • the present invention relates to a glass material for laser sealing, a glass member with a sealing material layer using the same, an electronic device, and a method for manufacturing the same.
  • Flat panel display devices such as organic EL displays (Organic Electro-Luminescence Display: OELD), plasma display panels (PDP), liquid crystal display devices (LCD), etc.
  • FPD Flat panel display devices
  • OLED Organic Electro-Luminescence Display
  • PDP plasma display panels
  • LCD liquid crystal display devices
  • It has a structure in which a light emitting element is sealed with a glass package in which a glass substrate is opposed to each other and these two glass substrates are sealed (see Patent Document 1).
  • solar cells such as dye-sensitized solar cells, it has been studied to apply a glass package in which solar cell elements (photoelectric conversion elements) are sealed with two glass substrates (see Patent Document 2).
  • sealing resin or sealing glass As a sealing material for sealing between two glass substrates, sealing resin or sealing glass is used. Since organic EL (OEL) elements and the like are easily deteriorated by moisture, application of sealing glass excellent in moisture resistance and the like is being promoted. Since the sealing temperature with the sealing glass is about 400 to 600 ° C., the characteristics of the electronic element portion such as the OEL element are deteriorated when heat treatment is performed using a normal baking furnace. Therefore, a sealing glass material layer including a laser absorbing material is disposed between the sealing regions provided in the peripheral portions of the two glass substrates, and the sealing glass material layer is heated and melted by irradiating the laser beam thereto. Attempts have been made to seal (see Patent Documents 1 and 2).
  • sealing glass (glass frit) for laser sealing PbO glass powder, Bi 2 O 3 —B 2 O 3 glass powder, SnO—P 2 O 5 glass powder (see Patent Document 3), and V
  • 2 O 5 glass powder see Patent Document 1
  • Bi 2 O 3 —B 2 O 3 glass powder has a low softening point and has little influence on the environment and the human body, and is therefore a material suitable for a glass frit for laser sealing.
  • Patent Documents 4 and 5 describe Bi 2 O 3 —B 2 O 3 -based glass frit applied to heating in a firing furnace.
  • Bi 2 O 3 —B 2 O 3 glass composition it is difficult to sufficiently increase the adhesive strength to the glass substrate by laser heat treatment. This is considered to be based on the difference in the melting condition of the glass frit between the heating by the baking furnace and the laser heating.
  • soda lime glass having a large thermal expansion coefficient is applied to the glass substrate, the adhesive strength between the sealing layer formed by laser sealing and the glass substrate tends to decrease.
  • An object of the present invention is to provide a glass material for laser sealing capable of improving reproducibility with a glass substrate made of soda lime glass or non-alkali glass at the time of laser sealing, and a sealing material layer using the same.
  • An object of the present invention is to provide an electronic device and a method for manufacturing the electronic device that can enhance the sealing reliability, the mechanical reliability, and the like by increasing the adhesive strength between the glass member and the sealing layer and the glass substrate.
  • the glass material for laser sealing comprises, by mass ratio, 70 to 90% Bi 2 O 3 , 1 to 20% ZnO, 2 to 12% B 2 O 3 and 10 to 380 ppm Na 2 O. It is characterized by including the sealing glass containing. And the glass material for laser sealing contains the said sealing glass, a low expansion
  • the composition ratio of the sealing glass is expressed by mass% based on the oxide described in each component, or ppm.
  • the glass member with a sealing material layer has a sealing region, and is provided on the sealing region of the glass substrate and a glass substrate made of soda lime glass or non-alkali glass, and sealed
  • a sealing material layer comprising a fired layer of a sealing glass material containing glass, a low expansion filler, and a laser absorber, wherein the sealing glass is 70 to 90% Bi 2 O 3 by mass ratio, It is characterized by containing 1-20% ZnO, 2-12% B 2 O 3 and 10-380 ppm Na 2 O.
  • An electronic device includes an element formation region provided with an electronic element, and a first sealing region provided on an outer peripheral side of the element formation region, soda lime glass or alkali-free glass.
  • a second glass substrate made of soda lime glass, the second glass substrate having a second sealing region corresponding to the first sealing region of the first glass substrate, Formed between the first sealing region of the first glass substrate and the second sealing region of the second glass substrate with a gap provided on the element formation region,
  • a sealing layer comprising a fusion-fixed layer of a sealing glass material containing a sealing glass, a low expansion filler and a laser absorbing material, wherein the sealing glass is Bi 2 O having a mass ratio of 70 to 90%. 3 , 1-20% ZnO, 2-12% B 2 O 3 And 10 to 380 ppm of Na 2 O.
  • An electronic device manufacturing method includes an element forming region including an electronic element, and a first sealing region provided on an outer peripheral side of the element forming region, soda lime glass or A step of preparing a first glass substrate made of alkali-free glass, a second sealing region corresponding to the first sealing region of the first glass substrate, and the second sealing region A second glass substrate made of soda-lime glass is prepared, which has a sealing material layer formed of a fired layer of a sealing glass material that is formed and contains a sealing glass, a low expansion filler, and a laser absorber. A step of laminating the first glass substrate and the second glass substrate through the sealing material layer while forming a gap on the element formation region, and through the second glass substrate.
  • Irradiating the sealing material layer with laser light Melting the sealing material layer to form a sealing layer that seals between the first glass substrate and the second glass substrate, and the sealing glass has a mass ratio of 70. It is characterized in that it contains ⁇ 90% Bi 2 O 3 , 1-20% ZnO, 2-12% B 2 O 3 and 10-380 ppm Na 2 O.
  • the adhesive strength between the soda lime glass substrate and the sealing layer can be increased with good reproducibility during laser sealing.
  • the adhesive strength between the alkali-free glass substrate and the sealing layer can be improved with good reproducibility during laser sealing. Therefore, according to the electronic device and the manufacturing method thereof according to the aspect of the present invention, it is possible to improve the sealing reliability and mechanical reliability of the electronic device.
  • FIG. 4 is a cross-sectional view taken along line AA in FIG. 3.
  • FIG. 6 is a cross-sectional view taken along line AA in FIG. 5.
  • FIG. 1 is a diagram showing a configuration of an electronic device according to an embodiment of the present invention
  • FIG. 2 is a diagram showing a manufacturing process of the electronic device
  • FIGS. 3 to 6 are diagrams showing a configuration of a glass substrate used therefor.
  • An electronic device 1 shown in FIG. 1 constitutes a lighting device using a light emitting element such as an FPD such as an OELD, PDP, or LCD, or an OEL element, or a solar cell such as a dye-sensitized solar cell.
  • a light emitting element such as an FPD such as an OELD, PDP, or LCD, or an OEL element
  • a solar cell such as a dye-sensitized solar cell.
  • the electronic device 1 includes a first glass substrate (element glass substrate) 2 having an element formation region 2 a including an electronic element, and a second glass substrate (sealing glass substrate) 3.
  • the first and second glass substrates 2 and 3 are made of soda lime glass.
  • soda lime glass generally has a thermal expansion coefficient of about 85 to 90 ⁇ 10 ⁇ 7 / ° C.
  • AS manufactured by Asahi Glass Co., Ltd.
  • PD200 manufactured by Asahi Glass Co., Ltd.
  • the glass etc. which chemically strengthened these can be used.
  • an electronic element corresponding to the electronic device 1 for example, an OEL element for OELD or OEL illumination, a plasma light emitting element for PDP, a liquid crystal display element for LCD, In the case of a solar cell, a dye-sensitized photoelectric conversion unit and the like are formed.
  • Electronic elements such as light emitting elements such as OEL elements and solar cell elements such as dye-sensitized photoelectric conversion units have various known structures, and are not limited to these element structures.
  • the first glass substrate 2 has a first sealing region 2b provided on the outer peripheral side of the element formation region 2a as shown in FIGS.
  • the first sealing region 2b is set so as to surround the element formation region 2a.
  • the second glass substrate 3 has a second sealing region 3a.
  • the second sealing region 3a corresponds to the first sealing region 2b. That is, when the first glass substrate 2 and the second glass substrate 3 are disposed to face each other, the first sealing region 2b and the second sealing region 3a are set to face each other, which will be described later. Thus, it becomes the formation region of the sealing layer 4 (the formation region of the sealing material layer 5 for the second glass substrate 3).
  • the first glass substrate 2 and the second glass substrate 3 are arranged to face each other so as to form a gap on the element formation region 2a.
  • the space between the first glass substrate 2 and the second glass substrate 3 is sealed with a sealing layer 4. That is, the sealing layer 4 is sealed between the sealing region 2b of the first glass substrate 2 and the sealing region 3a of the second glass substrate 3 while providing a gap on the element formation region 2a. Is formed.
  • the electronic element formed in the element formation region 2 a is hermetically sealed with a glass panel constituted by the first glass substrate 2, the second glass substrate 3, and the sealing layer 4.
  • the sealing layer 4 is a melt obtained by melting the sealing material layer 5 formed on the sealing region 3 a of the second glass substrate 3 with the laser beam 6 and fixing the sealing material layer 5 to the sealing region 2 b of the first glass substrate 2. It consists of a fixed layer. That is, the frame-shaped sealing material layer 5 is formed in the sealing region 3a of the second glass substrate 3 used for manufacturing the electronic device 1 as shown in FIGS. The sealing material layer 5 formed in the sealing region 3 a of the second glass substrate 3 is melted and fixed to the sealing region 2 b of the first glass substrate 2 by the heat of the laser beam 6, thereby the first glass. A sealing layer 4 for sealing a space (element arrangement space) between the substrate 2 and the second glass substrate 3 is formed.
  • the sealing material layer 5 is a fired layer of a sealing glass material containing sealing glass (glass frit), a laser absorber, and a low expansion filler.
  • the glass material for sealing is obtained by blending a laser absorbing material and a low expansion filler into sealing glass as a main component.
  • the glass material for sealing may contain additives other than these as required.
  • the sealing glass (laser sealing glass material) as the main component of the sealing glass material includes 70 to 90% Bi 2 O 3 , 1 to 20% ZnO, and 2 to 12% B 2 O by mass ratio.
  • Bismuth-based glass (Bi 2 O 3 —B 2 O 3 -based glass) having a composition of 3 and 10 to 380 ppm Na 2 O is used.
  • a sealing glass for laser sealing
  • the glass itself does not absorb laser (transparent glass) in order to control the melting temperature of the glass.
  • the laser sealing step can be performed with high reliability.
  • the sealing glass (glass frit) preferably has a lower melting temperature in order to suppress thermal shock to the glass substrates 2 and 3.
  • the glass formed of three components of Bi 2 O 3 , ZnO and B 2 O 3 has characteristics such as being transparent and having a low glass transition point. It is suitable as a sealing material for low-temperature heating.
  • the adhesive strength between the glass substrates 2 and 3 and the sealing layer 4 cannot be sufficiently increased only by applying the above-described three-component sealing glass to laser sealing. This is considered to be based on the difference in the melting condition of the glass frit between the heating by the baking furnace and the laser heating.
  • the adhesive strength between the glass substrate and the glass frit is based on the residual strain due to their thermal expansion difference and the interfacial reaction between the glass substrate and the glass frit.
  • a reaction layer is formed at the interface between the glass substrate and the glass frit (sealing layer) regardless of the type of glass substrate or glass frit, and adhesion is achieved by chemical bonding.
  • Strength can be increased. In other words, since the sealing process to which heating by the baking furnace is applied has a time for forming the reaction layer at the bonding interface, it is possible to obtain sufficient bonding strength.
  • the sealing step to which laser heating is applied is performed by irradiating the laser beam 6 while scanning along the frame-shaped sealing material layer 5.
  • the sealing material layer 5 is melted in order from the portion irradiated with the laser beam 6 and is rapidly cooled and solidified when the irradiation of the laser beam 6 is completed.
  • the reaction layer formation time cannot be sufficiently obtained in the laser sealing step.
  • the glass frit formed of the three components of Bi 2 O 3 , ZnO and B 2 O 3 the adhesive strength between the glass substrates 2 and 3 and the sealing layer 4 cannot be sufficiently increased during laser sealing. .
  • Bi 2 O 3 is a component that forms a glass network, and is contained in the sealing glass in a range of 70 to 90% by mass.
  • the content of Bi 2 O 3 is less than 70% by mass, the softening temperature of the glass frit increases, and sealing at a low temperature becomes difficult.
  • the content of Bi 2 O 3 exceeds 90% by mass, it becomes difficult to vitrify, it becomes difficult to produce glass, and the thermal expansion coefficient tends to be too high.
  • ZnO is a component that lowers the thermal expansion coefficient and softening temperature, and is contained in the sealing glass in the range of 1 to 20% by mass. Vitrification becomes difficult when the content of ZnO is less than 1% by mass. If the content of ZnO exceeds 20% by mass, the stability at the time of molding a low-melting glass is lowered, devitrification is likely to occur, and a sealed glass may not be obtained. Considering the stability of glass production, the ZnO content is more preferably in the range of 7 to 12% by mass.
  • B 2 O 3 is a component that increases the range in which vitrification is possible by forming a glass skeleton, and is contained in the sealing glass in the range of 2 to 12% by mass. If the content of B 2 O 3 is less than 2% by mass, vitrification becomes difficult. If the content of B 2 O 3 exceeds 12% by mass, the softening point becomes high, and it becomes necessary to increase the output of the laser beam 6, and cracks and the like are likely to occur in the glass substrates 2 and 3. In consideration of glass stability, laser output, etc., the content of B 2 O 3 is more preferably in the range of 5 to 10% by mass.
  • Na 2 O is an adhesive strength between the glass substrates 2 and 3 made of soda-lime glass and the sealing layer 4 (a melt-fixed layer of the sealing material layer 5 containing the sealing glass, the laser absorbing material, and the low expansion filler). In the range of 10 to 380 ppm by mass in the sealing glass. When the content of Na 2 O is less than 10 ppm, the effect of improving the adhesive strength cannot be sufficiently obtained. On the other hand, when the content of Na 2 O exceeds 380 ppm, it becomes easy to react with the wiring formed on the first glass substrate 2 at the time of laser sealing.
  • the sealing region 2 b of the first glass substrate 2 wiring and the like for leading out the electrodes of the electronic elements formed in the element forming region 2 a are formed.
  • Excess Na 2 O reacts with the wiring on the first glass substrate 2 and may cause disconnection or the like in the wiring.
  • the content of Na 2 O is 10 to 100 ppm by mass. It is more preferable to set the range.
  • Li 2 O and K 2 O also function as components that form a reaction layer at the adhesive interface between the glass substrates 2 and 3 and the sealing layer 4.
  • Na 2 O contained essentially in the glass substrate composition is particularly effective. Therefore, the sealing glass of this embodiment is Na 2.
  • O is included as an essential component.
  • a part of Na 2 O may be substituted with at least one selected from Li 2 O and K 2 O.
  • the amount of substitution of Na 2 O by Li 2 O or K 2 O is preferably 50% by mass or less of the amount of Na 2 O in consideration of the formability of the reaction layer at the adhesive interface.
  • the content of Na 2 O is preferably in the range of 10 to 190 ppm by mass ratio.
  • the sealing glass formed of the above-described four components has a low glass transition point and is suitable for a low-temperature sealing material, but Al 2 O 3 , CeO 2 , SiO 2 , Ag 2 O, WO 3 , MoO 3 , Nb 2 O 3 , Ta 2 O 5 , Ga 2 O 3 , Sb 2 O 3 , Cs 2 O, CaO, SrO, BaO, P 2 O 5 , SnO x (x is 1 or 2), etc.
  • Optional components may be contained. However, if the content of the optional component is too large, the sealing glass becomes unstable and devitrification may occur, or the glass transition point and the softening point may increase. Therefore, the total content of the optional component is 10 mass. % Or less is preferable.
  • the lower limit of the total content of arbitrary components is not particularly limited. In the bismuth glass (gas frit), an effective amount of an arbitrary component can be blended based on the content of addition.
  • Al 2 O 3 , SiO 2 , CaO, SrO, BaO and the like are components that contribute to glass stabilization, and the content thereof is preferably in the range of 0 to 5% by mass.
  • Cs 2 O has an effect of lowering the softening temperature of the glass
  • CeO 2 has an effect of stabilizing the fluidity of the glass.
  • Ag 2 O, WO 3 , MoO 3 , Nb 2 O 3 , Ta 2 O 5 , Ga 2 O 3 , Sb 2 O 3 , P 2 O 5 , SnO x and the like adjust the viscosity and thermal expansion coefficient of the glass. It can be contained as a component.
  • the content of each of these components can be appropriately set within a range where the total content of arbitrary components does not exceed 10% by mass.
  • the glass material for sealing contains a low expansion filler.
  • the low expansion filler it is preferable to use at least one selected from silica, alumina, zirconia, zirconium silicate, cordierite, zirconium phosphate compound, soda lime glass and borosilicate glass.
  • Zirconium phosphate compounds include (ZrO) 2 P 2 O 7 , AZr 2 (PO 4 ) 3 (A is at least one selected from Na, K and Ca), NbZr 2 (PO 4 ) 3 , Zr 2. (WO 3 ) (PO 4 ) 2 , and composite compounds of these.
  • the low expansion filler has a lower thermal expansion coefficient than the sealing glass which is the main component of the sealing glass material.
  • the content of the low expansion filler is appropriately set so that the thermal expansion coefficient of the sealing glass approaches the thermal expansion coefficient of the glass substrates 2 and 3.
  • the low expansion filler is preferably contained in the range of 1 to 50% by volume with respect to the sealing glass material, although it depends on the thermal expansion coefficient of the sealing glass and the glass substrates 2 and 3.
  • the glass substrates 2 and 3 are formed of soda lime glass (thermal expansion coefficient: 85 to 90 ⁇ 10 ⁇ 7 / ° C.)
  • the low expansion filler is 15 to 45 relative to the sealing glass material. It is more preferable to add in a volume% range.
  • the glass material for sealing further contains a laser absorber.
  • a laser absorber As the laser absorbing material, a compound such as at least one metal selected from Fe, Cr, Mn, Co, Ni and Cu or an oxide containing the metal is used.
  • the content of the laser absorber is preferably in the range of 0.1 to 10% by volume with respect to the sealing glass material.
  • the sealing material layer 5 cannot be sufficiently melted at the time of laser irradiation.
  • the content of the laser absorbing material exceeds 10% by volume, the second glass substrate 3 is cracked or sealed due to local heat generation near the interface with the second glass substrate 3 during laser irradiation, or sealing. There is a possibility that the fluidity at the time of melting of the glass material is lowered and the adhesiveness with the first glass substrate 2 is lowered.
  • the thickness T1 of the sealing material layer 5 is set according to the required gap between the first glass substrate 2 and the second glass substrate 3, that is, the thickness T2 of the sealing layer 4.
  • the electronic device 1 and the manufacturing process thereof according to this embodiment are particularly effective when the thickness T1 of the sealing material layer 5 is 10 ⁇ m or more. Even when the sealing material layer 5 having such a thickness T1 is sealed by irradiating the laser beam 6, according to this embodiment, the adhesive strength between the glass substrates 2, 3 and the sealing layer 4, It is possible to improve the hermetic sealing property of the glass panel.
  • the thickness T1 of the sealing material layer 5 is set according to the required gap T2 between the first glass substrate 2 and the second glass substrate 3, but in that case also the sealing material layer 5
  • the cross-sectional area represented by the product of the thickness T1 and the line width W is preferably 15000 ⁇ m 2 or less.
  • the cross-sectional area of the sealing material layer 5 exceeds 15000 ⁇ m 2 , it is necessary to increase the laser output for softening and flowing the glass material for sealing and bonding it. As a result, the glass substrates 2 and 3 and the sealing layer 4 are used. Cracks and the like are likely to occur.
  • the cross-sectional area of the sealing material layer 5 is more preferably 12000 ⁇ m 2 or less.
  • the line width W of the sealing material layer 5 is appropriately set based on the thickness T1 and the cross-sectional area. If the line width W of the sealing material layer 5 is too small, the sealing layer 4 is hermetically sealed. There is a risk that the property, adhesion reliability, and the like are lowered. For this reason, the line width W of the sealing material layer 5 is preferably 400 ⁇ m or more.
  • the thickness T1 of the sealing material layer 5 is preferably set to 30 ⁇ m or less in consideration of the formability of the sealing layer 4 and the adhesion reliability. T1 is preferably 1 ⁇ m or more.
  • the sealing material layer 5 made of the glass material for sealing as described above is formed on the sealing region 3a of the second glass substrate 3 as follows, for example.
  • a sealing material paste is prepared by mixing a sealing glass material containing a sealing glass (bismuth glass frit), a laser absorber, and a low expansion filler with a vehicle.
  • a solvent such as terpineol, butyl carbitol acetate, ethyl carbitol acetate, or methyl (meth)
  • Acrylic resin such as acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-hydroxyethyl methacrylate, etc. dissolved in a solvent such as methyl ethyl ketone, terpineol, butyl carbitol acetate, ethyl carbitol acetate or the like is used. It is done.
  • the viscosity of the sealing material paste may be adjusted to the viscosity corresponding to the apparatus applied to the glass substrate 3, and can be adjusted by the ratio of the resin (binder component) and the solvent and the ratio of the sealing glass material and the vehicle.
  • a known additive may be added to the sealing material paste as a glass paste such as an antifoaming agent or a dispersing agent.
  • a known method using a rotary mixer equipped with a stirring blade, a roll mill, a ball mill, or the like can be applied.
  • the sealing material paste is applied to the sealing region 3a of the second glass substrate 3 and dried to form an application layer of the sealing material paste.
  • the sealing material paste is applied onto the second sealing region 3a by applying a printing method such as screen printing or gravure printing, or is applied along the second sealing region 3a using a dispenser or the like. To do.
  • the coating layer of the sealing material paste is dried, for example, at a temperature of 120 ° C. or more for 10 minutes or more. A drying process is implemented in order to remove the solvent in an application layer. If the solvent remains in the coating layer, the binder component may not be sufficiently removed in the subsequent firing step.
  • the sealing material layer 5 is formed by baking the coating layer of the sealing material paste described above.
  • the coating layer is heated to a temperature not higher than the glass transition point of sealing glass (glass frit), which is the main component of the sealing glass material, and the binder component in the coating layer is removed.
  • the glass material for sealing is heated to a temperature equal to or higher than the softening point of the glass frit to melt and seal the glass material for sealing.
  • the sealing material layer 5 which consists of a baking layer of the glass material for sealing is formed.
  • a second glass substrate 3 having a sealing material layer 5 and a first glass substrate 2 having an element formation region 2a including an electronic element produced separately from the second glass substrate 3 are provided.
  • the electronic device 1 such as a solar cell such as an illuminating device using a FPD such as OELD, PDP, or LCD, an OEL element, or a dye-sensitized solar cell is manufactured. That is, as shown in FIG. 2B, the first glass substrate 2 and the second glass substrate 3 are arranged such that the surface having the element formation region 2a and the surface having the sealing material layer 5 face each other. Laminate. A gap is formed on the element formation region 2 a of the first glass substrate 2 based on the thickness of the sealing material layer 5.
  • the sealing material layer 5 is irradiated with laser light 6 through the second glass substrate 3.
  • the laser beam 6 is irradiated while scanning along the frame-shaped sealing material layer 5.
  • the laser beam 6 is not particularly limited, and a laser beam from a semiconductor laser, a carbon dioxide gas laser, an excimer laser, a YAG laser, a HeNe laser, or the like is used.
  • the output of the laser beam 6 is appropriately set according to the thickness of the sealing material layer 5 and the like, but is preferably in the range of 2 to 150 W, for example. If the laser output is less than 2 W, the sealing material layer 5 may not be melted, and if it exceeds 150 W, cracks and cracks are likely to occur in the glass substrates 2 and 3.
  • the output of the laser beam is more preferably in the range of 5 to 100W.
  • the sealing material layer 5 is melted in order from the portion irradiated with the laser beam 6 scanned along the sealing material layer 5, and is rapidly cooled and solidified and fixed to the first glass substrate 2 when the irradiation of the laser beam 6 is completed. Then, by irradiating the entire circumference of the sealing material layer 5 with the laser beam 6, as shown in FIG. 2 (d), a seal that seals between the first glass substrate 2 and the second glass substrate 3 is sealed.
  • the wearing layer 4 is formed.
  • the sealing glass bismuth-based glass frit
  • the melting and solidifying step in a short time by irradiation with the laser beam 6 ( Also in the sealing step)
  • the adhesion between the glass substrate 2 and the sealing glass is improved. Therefore, the adhesive strength between the glass substrates 2 and 3 and the sealing layer 4 can be increased.
  • the reliability of the electronic device 1 depends on the hermetic sealing property by the sealing layer 4 and the adhesive strength between the glass substrates 2 and 3 and the sealing layer 4. According to this embodiment, since the hermetic sealing property and the adhesive strength can be increased, it is possible to obtain the electronic device 1 having excellent reliability.
  • the glass panel whose inside is hermetically sealed can be applied not only to the electronic device 1 but also to a sealing body (package) of an electronic component or a glass member (building material or the like) such as vacuum pair glass.
  • the above-mentioned soda-lime glass is used even when non-alkali glass having a thermal expansion coefficient of about 35 to 40 ⁇ 10 ⁇ 7 / ° C. is applied to the glass substrates 2 and 3 of the electronic device 1.
  • the same can be said for the case.
  • the preferable range of the content of Na 2 O in the glass frit is also the same.
  • alkali-free glass examples include commercially available AN100 (manufactured by Asahi Glass Co., Ltd.), EAGEL2000 (manufactured by Corning), EAGEL GX (manufactured by Corning), JADE (manufactured by Corning), # 1737 (manufactured by Corning), OA- 10 (manufactured by Nippon Electric Glass Co., Ltd.), Tempax (manufactured by Schott Corp.), etc.
  • AN100 manufactured by Asahi Glass Co., Ltd.
  • EAGEL2000 manufactured by Corning
  • EAGEL GX manufactured by Corning
  • JADE manufactured by Corning
  • # 1737 manufactured by Corning
  • OA- 10 manufactured by Nippon Electric Glass Co., Ltd.
  • Tempax manufactured by Schott Corp.
  • Example 1 It has a composition of Bi 2 O 3 82.0% by mass, B 2 O 3 6.5%, ZnO 11.0%, Al 2 O 3 0.5%, and further 18 ppm Na 2 O by mass.
  • Bismuth-based glass frit softening point: 420 ° C.
  • cordierite powder as low expansion filler
  • a laser absorber having a composition was prepared. The content of Na 2 O was analyzed by ICP. Further, 5% by mass of 45 cps ethylcellulose as a binder component was dissolved in 95% by mass of 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate to prepare a vehicle.
  • a glass material (thermal expansion coefficient: 72 ⁇ 10 ⁇ 7 / ° C.) for sealing was prepared by mixing 85% by volume of a bismuth glass frit, 10% by volume of cordierite powder, and 5% by volume of a laser absorber.
  • a sealing material paste was prepared by mixing 84% by mass of this glass material for sealing with 16% by mass of vehicle.
  • a sealing material paste is applied to the outer peripheral region of a second glass substrate (dimensions: 100 ⁇ 100 ⁇ 0.55 mmt) made of soda lime glass (thermal expansion coefficient: 87 ⁇ 10 ⁇ 7 / ° C.) by screen printing. After coating (line width W: 500 ⁇ m), it was dried at 120 ° C. for 10 minutes. This coating layer was baked under conditions of 460 ° C. ⁇ 10 minutes, thereby forming a sealing material layer having a film thickness T1 of 20 ⁇ m.
  • a first glass substrate having a second glass substrate having a sealing material layer and an element formation region (region where an OEL element is formed) (soda lime glass having the same composition and shape as the second glass substrate) Substrate).
  • the sealing material layer is irradiated with laser light (semiconductor laser) having a wavelength of 940 nm and an output of 65 W through the second glass substrate at a scanning speed of 5 mm / s to melt and rapidly solidify the sealing material layer.
  • laser light semiconductor laser
  • Example 2 Except for changing the composition of the bismuth-based glass frit (including the content of Na 2 O), the type of low expansion filler and the laser absorber, and the mixing ratio thereof to the conditions shown in Table 1, the same as in Example 1 Thus, a sealing material paste was prepared. Further, the sealing material layer is formed on the second glass substrate and the laser sealing between the first glass substrate and the second glass substrate is performed in the same manner as in Example 1 except that these sealing material pastes are used. Carried out. Thus, the electronic device in which the element formation region was sealed with the glass panel was subjected to the characteristic evaluation described later.
  • Examples 7 to 9 Change glass substrate to alkali-free glass (thermal expansion coefficient: 37 ⁇ 10 ⁇ 7 / ° C.), composition of bismuth glass frit (including Na 2 O content), types of low expansion fillers and laser absorbers A sealing material paste was prepared in the same manner as in Example 1 except that the blending ratio was changed to the conditions shown in Table 1. Further, the sealing material layer is formed on the second glass substrate and the laser sealing between the first glass substrate and the second glass substrate is performed in the same manner as in Example 1 except that these sealing material pastes are used. Carried out. Thus, the electronic device in which the element formation region was sealed with the glass panel was subjected to the characteristic evaluation described later.
  • Comparative Example 1 Although it has a composition of Bi 2 O 3 82.0%, B 2 O 3 6.5%, ZnO 11.0%, Al 2 O 3 0.5% by mass ratio, the content of Na 2 O is mass ratio
  • Example 1 Comparative Example 1
  • 500 ppm of bismuth-based glass frit preparation of a sealing glass material, preparation of a sealing material paste, formation of a sealing material layer on the second glass substrate, and the first Laser sealing of the glass substrate and the second glass substrate was performed.
  • the electronic device in which the element formation region was sealed with the glass panel was subjected to the characteristic evaluation described later.
  • Cordierite powder was prepared as a system glass frit and a low expansion filler. Further, 4% by mass of nitrocellulose as a binder component was dissolved in 96% by mass of butyl diglycol acetate to prepare a vehicle.
  • a glass material (thermal expansion coefficient: 74 ⁇ 10 ⁇ 7 / ° C.) for sealing was prepared by mixing 90% by volume of vanadium glass frit and 10% by volume of cordierite powder.
  • a sealing material paste was prepared by mixing 73% by mass of the sealing glass material with 27% by mass of the vehicle.
  • the condition of 120 ° C. ⁇ 10 minutes Dried.
  • a sealing material layer having a film thickness T1 of 20 ⁇ m was formed.
  • a first glass substrate having a second glass substrate having a sealing material layer and an element formation region (region where an OEL element is formed) (soda lime glass having the same composition and shape as the second glass substrate) Substrate).
  • the sealing material layer is irradiated with a laser beam (semiconductor laser) having a wavelength of 940 nm and an output of 40 W through the second glass substrate at a scanning speed of 5 mm / s to melt and rapidly solidify the sealing material layer.
  • a laser beam semiconductor laser
  • the measuring method of the adhesive strength of the glass substrate by the glass material for sealing is as follows. First, the case where soda lime glass is used for the glass substrate will be described. “Measurement method of strength when soda lime glass is used for glass substrate: A”
  • the sealing material paste of each example is used in the vicinity of the end of the first glass substrate having a width of 30 mm, the thickness is 60 ⁇ m, and the line width is 1 mm.
  • the sealing material layer is formed.
  • the paste coating layer is fired under conditions suitable for each.
  • the edge part of a 2nd glass substrate is arrange
  • the second glass substrate is disposed so as to alternate with the first glass substrate (the first and second glass substrates are arranged in a straight line with the sealing material layer as the center).
  • Sealing is performed by irradiating the sealing material layer with laser light having a wavelength of 940 nm at a scanning speed of 10 mm / s while pressurizing them with a load of 10 kg.
  • the output of the laser beam is a value suitable for each material.
  • One glass substrate of the adhesive strength measurement sample thus formed is fixed with a jig, and a 20 mm portion from the sealing layer of the other glass substrate is pressed at a speed of 1 mm / min, and the sealing layer is broken.
  • the load at that time is defined as the adhesive strength.
  • the sealing material paste of each example is used in the vicinity of the end of the first glass substrate having a width of 25 mm, the thickness is 10 ⁇ m, and the line width is 1 mm.
  • the sealing material layer is formed.
  • the paste coating layer is fired under conditions suitable for each.
  • the edge part of a 2nd glass substrate is arrange
  • the second glass substrate is disposed so as to alternate with the first glass substrate (the first and second glass substrates are arranged in a straight line with the sealing material layer as the center).
  • Sealing is performed by irradiating the sealing material layer with laser light having a wavelength of 940 nm at a scanning speed of 10 mm / s while pressurizing them with a load of 10 kg.
  • the output of the laser beam is a value suitable for each material.
  • the adhesive strength measurement sample thus formed was subjected to a three-point bending adhesive strength test in accordance with JIS K6856 except for the sample size, and the load when the sealing layer was broken or the glass substrate was broken was determined as the adhesive strength. And Then, the case where an alkali free glass is used for a glass substrate is demonstrated.
  • a sealing material layer having a thickness of 10 ⁇ m and a line width of 1 mm is formed in the vicinity of the end of the first glass substrate having a width of 25 mm using the sealing material paste of each example.
  • the paste coating layer is fired under conditions suitable for each.
  • the edge part of a 2nd glass substrate is arrange
  • the second glass substrate is disposed so as to alternate with the first glass substrate (the first and second glass substrates are arranged in a straight line with the sealing material layer as the center). Sealing is performed by irradiating the sealing material layer with laser light having a wavelength of 940 nm at a scanning speed of 10 mm / s while pressurizing them with a load of 10 kg.
  • the output of the laser beam is a value suitable for each material.
  • the adhesive strength measurement sample thus formed was subjected to a three-point bending adhesive strength test in accordance with JIS K6856 except for the sample size, and the load when the sealing layer was broken or the glass substrate was broken was determined as the adhesive strength. And
  • the glass panels according to Examples 1 to 6 are both excellent in appearance and airtightness and have better adhesive strength.
  • the glass panel of Comparative Example 1 using the bismuth-based glass frit having an Na 2 O amount exceeding 380 ppm it was confirmed that the wiring was disconnected although the adhesive strength was good.
  • the glass panel of the comparative example 2 using the conventional vanadium-type glass frit had low adhesive strength, and was inferior to the reliability of a glass panel (electronic device).
  • the glass panels according to Examples 7 to 9 using non-alkali glass as the glass substrate are all excellent in appearance and airtightness, and the amount of Na 2 O increases between 10 and 380 ppm. It can be seen that good adhesive strength is obtained.
  • Example 10 A glass panel (Example 10) was produced in the same manner as in Example 1 except that the shape of the sealing material layer (thickness T1, line width W, cross-sectional area based on these) was changed to the conditions shown in Table 4. . Similarly, the shape of the sealing material layer of each example shown in Table 4 was changed to produce glass panels (Examples 10 to 14), respectively. In addition, Example 11 is the same as Example 2, and Examples 12 to 14 are the same as in Example 3. In Reference Examples 1 and 2 , a sealing material layer having a cross-sectional area exceeding 15000 ⁇ m 2 is applied.
  • the sealing material layer has a cross-sectional area of 15000 ⁇ m 2 or less, whereby the sealing property and airtightness of the glass substrate can be improved with good reproducibility.
  • the cross-sectional area of the sealing material layer exceeds 15000 ⁇ m 2 , it is necessary to increase the laser output for softening and flowing the sealing glass material, and as a result, cracks are likely to occur in the sealing layer.
  • the glass material for laser sealing of the present invention can enhance the bond strength between a soda lime glass substrate, a sealing layer, and an alkali-free glass material with good reproducibility during laser sealing. It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2008-316644 filed on December 12, 2008 are cited herein as disclosure of the specification of the present invention. Incorporate.
  • SYMBOLS 1 Electronic device, 2 ... 1st glass substrate, 2a ... Element formation area, 2b ... 1st sealing area, 3 ... 2nd glass substrate, 3a ... 2nd sealing area, 4 ... Sealing layer 5 ... Sealing material layer, 6 ... Laser beam.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)
  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Hybrid Cells (AREA)

Abstract

 レーザ封着時にソーダライムガラスからなるガラス基板との接着強度を再現性よく高めることによって、電子デバイスの封着性やその信頼性を高める。  ガラス基板3は封止領域を有する。封止領域には封着ガラスと低膨張充填材とレーザ吸収材とを含有する封着用ガラス材料の焼成層からなる封着材料層5が設けられる。封着ガラスは質量割合で70~90%のBi、1~20%のZnO、2~12%のBおよび10~380ppmのNaOを含んでいる。このようなガラス基板3と電子素子を備える素子形成領域を有するガラス基板2とを積層し、封着材料層5にレーザ光6を照射して溶融させることによって、ガラス基板2、3間を封着する。

Description

封着ガラス、封着材料層付きガラス部材、および電子デバイスとその製造方法
  本発明はレーザ封着用ガラス材料、それを用いた封着材料層付きガラス部材および電子デバイスとその製造方法に関する。
 有機ELディスプレイ(Organic  Electro-Luminescence Display:OELD)、プラズマディスプレイパネル(PDP)、液晶表示装置(LCD)等の平板型ディスプレイ装置(FPD)は、発光素子を形成した素子用ガラス基板と封止用ガラス基板とを対向配置し、これら2枚のガラス基板を封着したガラスパッケージで発光素子を封止した構造を有している(特許文献1参照)。さらに、色素増感型太陽電池のような太陽電池においても、2枚のガラス基板で太陽電池素子(光電変換素子)を封止したガラスパッケージを適用することが検討されている(特許文献2参照)。
 2枚のガラス基板間を封止する封着材料としては、封着樹脂や封着ガラスが用いられている。有機EL(OEL)素子等は水分により劣化しやすいことから、耐湿性等に優れる封着ガラスの適用が進められている。封着ガラスによる封着温度は400~600℃程度であるため、通常の焼成炉を用いて加熱処理した場合にはOEL素子等の電子素子部の特性が劣化してしまう。そこで、2枚のガラス基板の周辺部に設けられた封止領域間にレーザ吸収材を含む封着用ガラス材料層を配置し、これにレーザ光を照射して封着用ガラス材料層を加熱、溶融させて封着することが試みられている(特許文献1,2参照)。
 レーザ照射による封着(レーザ封着)は電子素子部への熱的影響を抑制できる反面、従来の封着ガラス(ガラスフリット)では封着層とガラス基板との接着強度を十分に高めることが難しく、これがFPDや太陽電池等の電子デバイスの信頼性を低下させる要因となっている。レーザ封着用の封着ガラス(ガラスフリット)としては、PbO系ガラス粉末、Bi-B系ガラス粉末、SnO-P系ガラス粉末(特許文献3参照)、またV系ガラス粉末(特許文献1参照)の使用が検討されている。これらのうち、Bi-B系ガラス粉末は軟化点が低く、また環境や人体に対する影響が少ないことから、レーザ封着用のガラスフリットに好適な材料である。
 しかしながら、従来の焼成炉による加熱用のBi-B系ガラスフリットを単にレーザ封着用のガラスフリットに適用しただけでは、封着層とガラス基板との接着強度を十分に高めることができない。例えば、特許文献4,5には焼成炉での加熱に適用するBi-B系ガラスフリットが記載されている。そのようなBi-B系ガラス組成では、レーザ加熱処理でガラス基板に対する接着強度を十分に高めることが難しい。これは焼成炉による加熱とレーザ加熱とによるガラスフリットの溶融条件等の違いに基づくものと考えられる。特に、ガラス基板に熱膨張係数が大きいソーダライムガラスを適用した場合、レーザ封着による封着層とガラス基板との接着強度が低下しやすい。
 ガラス基板に熱膨張係数が小さい無アルカリガラスを適用した場合でも、ソーダライムガラスと同様に接着強度が低下しやすい。
特表2006-524419号公報 特開2008-115057号公報 特開2008-059802号公報 特開2003-128430号公報 特開2006-137637号公報
 本発明の目的は、レーザ封着時にソーダライムガラスや無アルカリガラスからなるガラス基板との接着強度を再現性よく高めることを可能にしたレーザ封着用ガラス材料とそれを用いた封着材料層付きガラス部材、さらに封着層とガラス基板との接着強度を高めることによって、封着信頼性や機械的信頼性等を高めることを可能にした電子デバイスとその製造方法を提供することにある。
 本発明の態様に係るレーザ封着用ガラス材料は、質量割合で70~90%のBi、1~20%のZnO、2~12%のBおよび10~380ppmのNaOを含む封着ガラスを含むことを特徴としている。そして、同レーザ封着用ガラス材料は、前記封着ガラスと低膨張充填材とレーザ吸収材とを含有する。なお、本発明において封着ガラスの組成割合は、各成分記載の酸化物基準の質量%、またはppmで表示する。
 本発明の態様に係る封着材料層付きガラス部材は、封止領域を有し、ソーダライムガラスまたは無アルカリガラスからなるガラス基板と、前記ガラス基板の前記封止領域上に設けられ、封着ガラスと低膨張充填材とレーザ吸収材とを含有する封着用ガラス材料の焼成層からなる封着材料層とを具備し、前記封着ガラスは質量割合で70~90%のBi、1~20%のZnO、2~12%のBおよび10~380ppmのNaOを含むことを特徴としている。
 本発明の他の態様に係る電子デバイスは、電子素子を備える素子形成領域と、前記素子形成領域の外周側に設けられた第1の封止領域とを有し、ソーダライムガラスまたは無アルカリガラスからなる第1のガラス基板と、前記第1のガラス基板の前記第1の封止領域に対応する第2の封止領域を有し、ソーダライムガラスからなる第2のガラス基板と、前記第1のガラス基板の前記第1の封止領域と前記第2のガラス基板の前記第2の封止領域との間を、前記素子形成領域上に間隙を設けつつ封止するように形成され、封着ガラスと低膨張充填材とレーザ吸収材とを含有する封着用ガラス材料の溶融固着層からなる封着層とを具備し、前記封着ガラスは質量割合で70~90%のBi、1~20%のZnO、2~12%のBおよび10~380ppmのNaOを含むことを特徴としている。
 本発明の他の態様に係る電子デバイスの製造方法は、電子素子を備える素子形成領域と、前記素子形成領域の外周側に設けられた第1の封止領域とを有し、ソーダライムガラスまたは無アルカリガラスからなる第1のガラス基板を用意する工程と、前記第1のガラス基板の前記第1の封止領域に対応する第2の封止領域と、前記第2の封止領域上に形成され、封着ガラスと低膨張充填材とレーザ吸収材とを含有する封着用ガラス材料の焼成層からなる封着材料層とを有し、ソーダライムガラスからなる第2のガラス基板を用意する工程と、前記素子形成領域上に間隙を形成しつつ、前記封着材料層を介して前記第1のガラス基板と前記第2のガラス基板とを積層する工程と、前記第2のガラス基板を通して前記封着材料層にレーザ光を照射し、前記封着材料層を溶融させて前記第1のガラス基板と前記第2のガラス基板との間を封止する封着層を形成する工程とを具備し、前記封着ガラスは質量割合で70~90%のBi、1~20%のZnO、2~12%のBおよび10~380ppmのNaOを含むことを特徴としている。
 本発明に係るレーザ封着用ガラス材料とそれを用いた封着材料層付きガラス部材によれば、レーザ封着時にソーダライムガラス基板と封着層の接着強度を再現性よく高めることができる。また、レーザ封着時に無アルカリガラス基板と封着層の接着強度を再現性よく高めることができる。従って、本発明の態様に係る電子デバイスとその製造方法によれば、電子デバイスの封着信頼性や機械的信頼性を高めることが可能になる。
本発明の実施形態による電子デバイスの構成を示す断面図である。 本発明の実施形態による電子デバイスの製造工程を示す断面図である。 図2に示す電子デバイスの製造工程で使用する第1のガラス基板を示す平面図である。 図3のA-A線に沿った断面図である。 図2に示す電子デバイスの製造工程で使用する第2のガラス基板を示す平面図である。 図5のA-A線に沿った断面図である。
 以下、本発明を実施するための形態について、図面を参照して説明する。図1は本発明の実施形態による電子デバイスの構成を示す図、図2は電子デバイスの製造工程を示す図、図3ないし図6はそれに用いるガラス基板の構成を示す図である。図1に示す電子デバイス1は、OELD、PDP、LCD等のFPD、OEL素子等の発光素子を使用した照明装置、あるいは色素増感型太陽電池のような太陽電池等を構成するものである。
 電子デバイス1は、電子素子を備える素子形成領域2aを有する第1のガラス基板(素子用ガラス基板)2と、第2のガラス基板(封止用ガラス基板)3とを具備している。第1および第2のガラス基板2、3はソーダライムガラスからなるものである。ソーダライムガラス系の各種公知の組成を適用することができる。ソーダライムガラスは一般的に85~90×10-7/℃程度の熱膨張係数を有している。例えば、ソーダライムガラスとしては、市販されているAS(旭硝子社製)、PD200(旭硝子社製)、などが使用できる。またこれらを化学強化したガラスなども使用できる。
 第1のガラス基板2の素子形成領域2aには、電子デバイス1に応じた電子素子、例えばOELDやOEL照明であればOEL素子、PDPであればプラズマ発光素子、LCDであれば液晶表示素子、太陽電池であれば色素増感型光電変換部等が形成されている。OEL素子のような発光素子や色素増感型光電変換部のような太陽電池素子等の電子素子は各種公知の構造を備えており、これら素子構造に限定されるものではない。
 第1のガラス基板2は図3および図4に示すように素子形成領域2aの外周側に設けられた第1の封止領域2bを有している。第1の封止領域2bは素子形成領域2aを囲うように設定されている。第2のガラス基板3は図5および図6に示すように第2の封止領域3aを有している。第2の封止領域3aは第1の封止領域2bに対応するものである。すなわち、第1のガラス基板2と第2のガラス基板3とを対向配置した際に、第1の封止領域2bと第2の封止領域3aとは対面するように設定されており、後述するように封着層4の形成領域(第2のガラス基板3については封着材料層5の形成領域)となる。
 第1のガラス基板2と第2のガラス基板3とは、素子形成領域2a上に間隙を形成するように対向配置されている。第1のガラス基板2と第2のガラス基板3との間の空間は封着層4で封止されている。すなわち、封着層4は第1のガラス基板2の封止領域2bと第2のガラス基板3の封止領域3aとの間を、素子形成領域2a上に間隙を設けつつ封止するように形成されている。素子形成領域2aに形成された電子素子は、第1のガラス基板2と第2のガラス基板3と封着層4とで構成されたガラスパネルで気密封止されている。
 封着層4は第2のガラス基板3の封止領域3a上に形成された封着材料層5をレーザ光6で溶融させて第1のガラス基板2の封止領域2bに固着させた溶融固着層からなるものである。すなわち、電子デバイス1の作製に用いられる第2のガラス基板3の封止領域3aには、図5および図6に示すように枠状の封着材料層5が形成されている。第2のガラス基板3の封止領域3aに形成された封着材料層5を、レーザ光6の熱で第1のガラス基板2の封止領域2bに溶融固着させることによって、第1のガラス基板2と第2のガラス基板3との間の空間(素子配置空間)を封止する封着層4が形成される。
 封着材料層5は封着ガラス(ガラスフリット)とレーザ吸収材と低膨張充填材とを含有する封着用ガラス材料の焼成層である。封着用ガラス材料は主成分としての封着ガラスにレーザ吸収材と低膨張充填材とを配合したものである。封着用ガラス材料はこれら以外の添加材を必要に応じて含有していてもよい。封着用ガラス材料の主成分としての封着ガラス(レーザ封着用ガラス材料)には、質量割合で70~90%のBi、1~20%のZnO、2~12%のBおよび10~380ppmのNaOの組成を有するビスマス系ガラス(Bi-B系ガラス)が用いられる。
 レーザ封着用の封着ガラス(ガラスフリット)には、ガラスの溶融温度を制御するためにガラス自体がレーザを吸収しない(透明なガラスである)ことが好ましい。封着ガラスに添加するレーザ吸収材の種類や量等で溶融温度を制御することによって、レーザ封着工程を信頼性よく実施することが可能となる。また、封着ガラス(ガラスフリット)はガラス基板2、3に対する熱衝撃を抑えるために溶融温度がより低温であることが好ましい。さらに、環境や人体に対する影響を考慮して、鉛やバナジウム等を含まないことが好ましい。ビスマス系ガラスフリットはこのような要求に適合するものである。
 この実施形態で用いられる封着ガラス(ガラスフリット)において、Bi、ZnOおよびBの3成分で形成されるガラスは、透明でガラス転移点が低い等の特性を有することから、低温加熱用の封着材料として適したものである。ただし、上記した3成分による封着ガラスをレーザ封着に適用しただけでは、ガラス基板2、3と封着層4との接着強度を十分に高めることができない。これは焼成炉による加熱とレーザ加熱とによるガラスフリットの溶融条件等の違いに基づくものと考えられる。
 ガラス基板とガラスフリットとの接着強度は、それらの熱膨張差による残留歪みとガラス基板とガラスフリットとの界面反応に基づくものである。一般的な焼成炉による加熱を適用した場合には、ガラス基板やガラスフリットの種類に関係なく、ガラス基板とガラスフリット(封着層)との界面に反応層が形成され、化学的結合により接着強度を高めることができる。言い換えると、焼成炉による加熱を適用した封着工程は接着界面に反応層が形成されるだけの時間があるため、十分な接着強度を得ることが可能となる。
 一方、レーザ加熱を適用した封着工程は、枠状の封着材料層5に沿ってレーザ光6を走査しながら照射することにより実施される。封着材料層5はレーザ光6が照射された部分から順に溶融し、レーザ光6の照射終了と共に急冷固化される。このように、レーザ封着工程では反応層の形成時間を十分に得ることができない。このため、Bi、ZnOおよびBの3成分で形成されるガラスフリットでは、レーザ封着時にガラス基板2、3と封着層4との接着強度を十分に高めることができない。
 レーザ加熱を適用した封着工程において、接着界面に反応層を形成するためにはガラスフリット中に拡散しやすい元素、具体的には1価の軽金属を含有させることが効果的である。特に、ガラス基板組成(ソーダライムガラス組成)にも含まれているNaOを、ビスマス系ガラスフリットに含有させることが効果的である。このような4成分系のビスマス系ガラスフリットを使用することによって、レーザ封着時におけるガラス基板2、3とビスマス系ガラスフリット(封着層4)との接着強度を高めることが可能となる。
 すなわち、Bi、ZnOおよびBの3成分で形成されるビスマス系ガラスフリットに適量のNaOを含有させることで、局所的なガラスフリットの溶融固化が短時間で行われるレーザ封着においても、ソーダライムガラスからなるガラス基板2、3とビスマス系ガラスフリットとの反応性が向上する。すなわち、レーザ封着工程においても接着界面に反応層を形成することができる。従って、レーザ封着時におけるガラス基板2、3とビスマス系ガラスフリット(封着層4)との接着強度を高めることが可能となる。
 この実施形態で用いる封着ガラス(ビスマス系ガラスフリット)において、Biはガラスの網目を形成する成分であり、封着ガラス中に70~90質量%の範囲で含有させる。Biの含有量が70質量%未満であるとガラスフリットの軟化温度が高くなり、低温での封着が困難になる。さらに、ガラスフリットを軟化させるためにはレーザ光6の出力を高くする必要が生じ、その結果としてガラス基板2、3にクラック等が発生しやすくなる。Biの含有量が90質量%を超えるとガラス化しにくくなり、ガラスの製造が困難になると共に、熱膨張係数が高くなりすぎる傾向がある。
 ZnOは熱膨張係数や軟化温度を下げる成分であり、封着ガラス中に1~20質量%の範囲で含有させる。ZnOの含有量が1質量%未満であるとガラス化が困難になる。ZnOの含有量が20質量%を超えると低融点ガラス成形時の安定性が低下し、失透が発生しやすくなって、封着ガラスが得られないおそれがある。ガラス製造の安定性等を考慮して、ZnOの含有量は7~12質量%の範囲とすることがより好ましい。
 Bはガラス骨格を形成してガラス化が可能になる範囲を広げる成分であり、封着ガラス中に2~12質量%の範囲で含有させる。Bの含有量が2質量%未満であるとガラス化が困難になる。Bの含有量が12質量%を超えると軟化点が高くなり、レーザ光6の出力を高くする必要が生じて、ガラス基板2、3にクラック等が発生しやすくなる。ガラスの安定性やレーザ出力等を考慮して、Bの含有量は5~10質量%の範囲とすることがより好ましい。
 NaOはソーダライムガラスからなるガラス基板2、3と封着層4(封着ガラスとレーザ吸収材と低膨張充填材とを含有する封着材料層5の溶融固着層)との接着強度を向上させる成分であり、封着ガラス中に質量割合で10~380ppmの範囲で含有させる。NaOの含有量が10ppm未満であると接着強度の向上効果を十分に得ることができない。一方、NaOの含有量が380ppmを超えるとレーザ封着時に第1のガラス基板2に形成された配線等と反応しやすくなる。
 すなわち、第1のガラス基板2の封止領域2bには、素子形成領域2aに形成された電子素子の電極を外部に引き出す配線等が形成されている。過剰なNaOは第1のガラス基板2上の配線と反応し、配線に断線等を発生させるおそれがある。さらに、NaOの含有量が多すぎると封着ガラスの安定性が損なわれ、失透が発生しやすくなって、封着ガラスが得られなくなるおそれがある。ガラス基板2、3と封着層4との接着強度の向上効果、配線等への影響、封着ガラスの安定性等を考慮して、NaOの含有量は質量割合で10~100ppmの範囲とすることがより好ましい。
 上述したNaOと同様に、LiOやKOもガラス基板2、3と封着層4との接着界面に反応層を形成させる成分として機能する。ただし、これらアルカリ金属酸化物のうちでも、特にガラス基板組成(ソーダライムガラス組成)中に必須に含まれているNaOが効果的であることから、この実施形態の封着ガラスはNaOを必須成分として含んでいる。NaOの一部はLiOおよびKOから選ばれる少なくとも1種で置換してもよい。LiOやKOによるNaOの置換量は、接着界面における反応層の形成性等を考慮して、NaO量の50質量%以下とすることが好ましい。LiOやKOによってNaOを置換する場合には、NaOの含有量は質量割合で10~190ppmの範囲とすることが好ましい。
 上述した4成分で形成される封着ガラスはガラス転移点が低く、低温用の封着材料に適したものであるが、Al、CeO、SiO、AgO、WO、MoO、Nb、Ta、Ga、Sb、CsO、CaO、SrO、BaO、P、SnO(xは1または2である)等の任意成分を含有していてもよい。ただし、任意成分の含有量が多すぎると封着ガラスが不安定となって失透が発生したり、ガラス転移点や軟化点が上昇するおそれがあるため、任意成分の合計含有量は10質量%以下とすることが好ましい。任意成分の合計含有量の下限値は特に限定されるものではない。ビスマス系ガラス(ガスフリット)には、添加内容に基づいて有効量の任意成分を配合することができる。
 上記した任意成分のうち、Al、SiO、CaO、SrO、BaO等はガラスの安定化に寄与する成分であり、その含有量は0~5質量%の範囲とすることが好ましい。CsOはガラスの軟化温度を下げる効果を有し、CeOはガラスの流動性を安定化させる効果を有する。AgO、WO、MoO、Nb、Ta、Ga、Sb、P、SnO等はガラスの粘性や熱膨張係数等を調整する成分として含有させることができる。これら各成分の含有量は任意成分の合計含有量が10質量%を超えない範囲内で適宜に設定することができる。
 封着用ガラス材料は低膨張充填材を含有している。低膨張充填材としては、シリカ、アルミナ、ジルコニア、珪酸ジルコニウム、コージェライト、リン酸ジルコニウム系化合物、ソーダライムガラスおよび硼珪酸ガラスから選ばれる少なくとも1種を用いることが好ましい。リン酸ジルコニウム系化合物としては、(ZrO)、AZr(PO(AはNa、KおよびCaから選ばれる少なくとも1種)、NbZr(PO、Zr(WO)(PO、これらの複合化合物が挙げられる。低膨張充填材とは封着用ガラス材料の主成分である封着ガラスより低い熱膨張係数を有するものである。
 低膨張充填材の含有量は、封着ガラスの熱膨張係数がガラス基板2、3の熱膨張係数に近づくように適宜に設定される。低膨張充填材は封着ガラスやガラス基板2、3の熱膨張係数にもよるが、封着用ガラス材料に対して1~50体積%の範囲で含有させることが好ましい。この実施形態ではガラス基板2、3をソーダライムガラス(熱膨張係数:85~90×10-7/℃)で形成しているため、低膨張充填材を封着用ガラス材料に対して15~45体積%の範囲で添加することがより好ましい。
 封着用ガラス材料はさらにレーザ吸収材を含有している。レーザ吸収材としてはFe、Cr、Mn、Co、NiおよびCuから選ばれる少なくとも1種の金属または前記金属を含む酸化物等の化合物が用いられる。レーザ吸収材の含有量は封着用ガラス材料に対して0.1~10体積%の範囲とすることが好ましい。レーザ吸収材の含有量が0.1体積%未満であると、レーザ照射時に封着材料層5を十分に溶融させることができない。レーザ吸収材の含有量が10体積%を超えると、レーザ照射時に第2のガラス基板3との界面近傍で局所的に発熱して第2のガラス基板3に割れ等が生じたり、また封着用ガラス材料の溶融時の流動性が低下して第1のガラス基板2との接着性が低下するおそれがある。
 封着材料層5の厚さT1は第1のガラス基板2と第2のガラス基板3との要求間隙、すなわち封着層4の厚さT2に応じて設定される。この実施形態の電子デバイス1およびその製造工程は、特に封着材料層5の厚さT1を10μm以上とする場合に有効である。このような厚さT1を有する封着材料層5にレーザ光6を照射して封着する場合においても、この実施形態によればガラス基板2、3と封着層4との接着強度、さらにガラスパネルの気密封止性等を向上させることが可能となる。
 封着材料層5の厚さT1は、第1のガラス基板2と第2のガラス基板3との要求間隙T2に応じて設定されるものであるが、その場合においても封着材料層5の厚さT1と線幅Wとの積で表される断面積を15000μm以下とすることが好ましい。封着材料層5の断面積が15000μmを超えると、封着用ガラス材料を軟化流動させて接着するためのレーザ出力を高くする必要が生じ、その結果としてガラス基板2、3や封着層4にクラック等が生じやすくなる。レーザ出力に起因するクラック等の抑制効果を考慮すると、封着材料層5の断面積は12000μm以下とすることがより好ましい。
 封着材料層5の線幅Wは厚さT1および断面積に基づいて適宜に設定されるものであるが、封着材料層5の線幅Wがあまり小さいと封着層4の気密封止性や接着信頼性等が低下するおそれがある。このため、封着材料層5の線幅Wは400μm以上とすることが好ましい。また、封着材料層5の厚さT1に関しては、封着層4の形成性や接着信頼性等を考慮して30μm以下とすることが好ましい。また、T1は、1μm以上とするのが好ましい。
 上述したような封着用ガラス材料からなる封着材料層5は、例えば以下のようにして第2のガラス基板3の封止領域3a上に形成される。まず、封着ガラス(ビスマス系ガラスフリット)とレーザ吸収材と低膨張充填材とを含有する封着用ガラス材料をビヒクルと混合して封着材料ペーストを調製する。
 ビヒクルとしては、例えばメチルセルロース、エチルセルロース、カルボキシメチルセルロース、オキシエチルセルロース、ベンジルセルロース、プロピルセルロース、ニトロセルロース等を、ターピネオール、ブチルカルビトールアセテート、エチルカルビトールアセテート等の溶剤に溶解したもの、あるいはメチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリテート、2-ヒドロオキシエチルメタアクリレート等のアクリル系樹脂を、メチルエチルケトン、ターピネオール、ブチルカルビトールアセテート、エチルカルビトールアセテート等の溶剤に溶解したものが用いられる。
 封着材料ペーストの粘度は、ガラス基板3に塗布する装置に対応した粘度に合わせればよく、樹脂(バインダ成分)と溶剤の割合や封着用ガラス材料とビヒクルの割合により調整することができる。封着材料ペーストには、消泡剤や分散剤のようにガラスペーストで公知の添加物を加えてもよい。封着材料ペーストの調製には、攪拌翼を備えた回転式の混合機やロールミル、ボールミル等を用いた公知の方法を適用することができる。
 第2のガラス基板3の封止領域3aに封着材料ペーストを塗布し、これを乾燥させて封着材料ペーストの塗布層を形成する。封着材料ペーストは、例えばスクリーン印刷やグラビア印刷等の印刷法を適用して第2の封止領域3a上に塗布したり、あるいはディスペンサ等を用いて第2の封止領域3aに沿って塗布する。封着材料ペーストの塗布層は、例えば120℃以上の温度で10分以上乾燥させる。乾燥工程は塗布層内の溶剤を除去するために実施するものである。塗布層内に溶剤が残留していると、その後の焼成工程でバインダ成分を十分に除去できないおそれがある。
 上記した封着材料ペーストの塗布層を焼成して封着材料層5を形成する。焼成工程は、まず塗布層を封着用ガラス材料の主成分である封着ガラス(ガラスフリット)のガラス転移点以下の温度に加熱し、塗布層内のバインダ成分を除去した後、封着ガラス(ガラスフリット)の軟化点以上の温度に加熱し、封着用ガラス材料を溶融してガラス基板3に焼き付ける。このようにして、封着用ガラス材料の焼成層からなる封着材料層5を形成する。
 次に、図2(a)示すように、封着材料層5を有する第2のガラス基板3と、それとは別に作製した電子素子を備える素子形成領域2aを有する第1のガラス基板2とを用いて、OELD、PDP、LCD等のFPD、OEL素子を用いた照明装置、色素増感型太陽電池のような太陽電池等の電子デバイス1を作製する。すなわち、図2(b)に示すように、第1のガラス基板2と第2のガラス基板3とを、素子形成領域2aを有する面と封着材料層5を有する面とが対向するように積層する。第1のガラス基板2の素子形成領域2a上には、封着材料層5の厚さに基づいて間隙が形成される。
 次いで、図2(c)に示すように、第2のガラス基板3を通して封着材料層5にレーザ光6を照射する。レーザ光6は枠状の封着材料層5に沿って走査しながら照射される。レーザ光6は特に限定されるものではなく、半導体レーザ、炭酸ガスレーザ、エキシマレーザ、YAGレーザ、HeNeレーザ等からのレーザ光が使用される。レーザ光6の出力は封着材料層5の厚さ等に応じて適宜に設定されるものであるが、例えば2~150Wの範囲とすることが好ましい。レーザ出力が2W未満であると封着材料層5を溶融できないおそれがあり、また150Wを超えるとガラス基板2、3にクラックや割れ等が生じやすくなる。レーザ光の出力は5~100Wの範囲であることがより好ましい。
 封着材料層5はそれに沿って走査されるレーザ光6が照射された部分から順に溶融し、レーザ光6の照射終了と共に急冷固化されて第1のガラス基板2に固着する。そして、封着材料層5の全周にわたってレーザ光6を照射することによって、図2(d)に示すように第1のガラス基板2と第2のガラス基板3との間を封止する封着層4を形成する。この際、封着ガラス(ビスマス系ガラスフリット)はソーダライムガラスからなるガラス基板2との反応性に優れるNaOを含んでいるため、レーザ光6の照射による短時間での溶融固化工程(封着工程)においても、ガラス基板2と封着ガラスとの接着性が向上する。従って、ガラス基板2、3と封着層4との接着強度を高めることができる。
 このようにして、第1のガラス基板2と第2のガラス基板3と封着層4とで構成したガラスパネルで、素子形成領域2aに形成された電子素子を気密封止した電子デバイス1を作製する。電子デバイス1の信頼性は封着層4による気密封止性やガラス基板2、3と封着層4との接着強度等に依存する。この実施形態によれば気密封止性や接着強度を高めることができるため、信頼性に優れる電子デバイス1を得ることが可能となる。内部を気密封止したガラスパネルは電子デバイス1に限らず、電子部品の封止体(パッケージ)、あるいは真空ペアガラスのようなガラス部材(建材等)にも応用することが可能である。
 その他の形態として、電子デバイス1のガラス基板2、3に35~40×10-7/℃程度の熱膨張係数を有した無アルカリガラスを適用した場合においても、上述のソーダライムガラスを用いた場合と同様のことが言える。ガラスフリット中のNaOの含有量の好ましい範囲も同様である。
 無アルカリガラスとしては、例えば、市販されているAN100(旭硝子社製)、EAGEL2000(コーニング社製)、EAGEL GX(コーニング社製)JADE(コーニング社製)、#1737(コーニング社製)、OA-10(日本電気硝子社製)、テンパックス(ショット社製)などが使用できる。
 次に、本発明の具体的な実施例およびその評価結果について述べる。なお、以下の説明は本発明を限定するものではく、本発明の趣旨に沿った形での改変が可能である。
(実施例1)
 質量割合でBi 82.0%、B 6.5%、ZnO 11.0%、Al 0.5%の組成を有し、さらに質量割合で18ppmのNaOを含むビスマス系ガラスフリット(軟化点:420℃)、低膨張充填材としてコージェライト粉末、質量割合でFe 35%、Cr 35%、Co 20%、MnO10%の組成を有するレーザ吸収材を用意した。NaOの含有量はICPにより分析した。さらに、バインダ成分として45cpsのエチルセルロース5質量%を、2,2,4-トリメチル-1,3ペンタンジオールモノイソブチレート95質量%に溶解してビヒクルを作製した。
 ビスマス系ガラスフリット85体積%とコージェライト粉末10体積%とレーザ吸収材5体積%とを混合して封着用ガラス材料(熱膨張係数:72×10-7/℃)を作製した。この封着用ガラス材料84質量%をビヒクル16質量%と混合して封着材料ペーストを調製した。次いで、ソーダライムガラス(熱膨張係数:87×10-7/℃)からなる第2のガラス基板(寸法:100×100×0.55mmt)の外周領域に、封着材料ペーストをスクリーン印刷法で塗布(線幅W:500μm)した後、120℃×10分の条件で乾燥した。この塗布層を460℃×10分の条件で焼成することによって、膜厚T1が20μmの封着材料層を形成した。
 次に、封着材料層を有する第2のガラス基板と素子形成領域(OEL素子を形成した領域)を有する第1のガラス基板(第2のガラス基板と同組成、同形状のソーダライムガラスからなる基板)とを積層した。次いで、第2のガラス基板を通して封着材料層に対して、波長940nm、出力65Wのレーザ光(半導体レーザ)を5mm/sの走査速度で照射し、封着材料層を溶融並びに急冷固化することによって、第1のガラス基板と第2のガラス基板とを封着した。このようにして、素子形成領域をガラスパネルで封止した電子デバイスを後述する特性評価に供した。
(実施例2~6)
 ビスマス系ガラスフリットの組成(NaOの含有量を含む)、低膨張充填材やレーザ吸収材の種類、およびこれらの配合比を表1に示す条件に変更する以外は、実施例1と同様にして封着材料ペーストを調製した。さらに、これらの封着材料ペーストを用いる以外は実施例1と同様にして、第2のガラス基板に対する封着材料層の形成および第1のガラス基板と第2のガラス基板とのレーザ封着を実施した。このようにして、素子形成領域をガラスパネルで封止した電子デバイスを後述する特性評価に供した。
(実施例7~9)
 ガラス基板を無アルカリガラス(熱膨張係数:37×10-7/℃)に変更し、ビスマス系ガラスフリットの組成(NaOの含有量を含む)、低膨張充填材やレーザ吸収材の種類、およびこれらの配合比を表1に示す条件に変更する以外は、実施例1と同様にして封着材料ペーストを調製した。さらに、これらの封着材料ペーストを用いる以外は実施例1と同様にして、第2のガラス基板に対する封着材料層の形成および第1のガラス基板と第2のガラス基板とのレーザ封着を実施した。このようにして、素子形成領域をガラスパネルで封止した電子デバイスを後述する特性評価に供した。
(比較例1)
 質量割合でBi 82.0%、B 6.5%、ZnO 11.0%、Al 0.5%の組成を有するものの、NaOを含有量が質量割合で500ppmのビスマス系ガラスフリットを用いる以外は、実施例1と同様にして、封着用ガラス材料の作製、封着材料ペーストの調製、第2のガラス基板に対する封着材料層の形成および第1のガラス基板と第2のガラス基板とのレーザ封着を実施した。このようにして、素子形成領域をガラスパネルで封止した電子デバイスを後述する特性評価に供した。
(比較例2)
 質量割合でV 44.3%、Sb 35.1%、P 19.7%、Al 0.5%、TiO 0.4%の組成を有するバナジウム系ガラスフリット、低膨張充填材としてコージェライト粉末を用意した。さらに、バインダ成分としてニトロセルロース4質量%をブチルジグリコールアセテート96質量%に溶解してビヒクルを作製した。
 バナジウム系ガラスフリット90体積%とコージェライト粉末10体積%とを混合して封着用ガラス材料(熱膨張係数:74×10-7/℃)を作製した。この封着用ガラス材料73質量%をビヒクル27質量%と混合して封着材料ペーストを調製した。次いで、実施例1と同様なソーダライムガラスからなる第2のガラス基板の外周領域に、封着材料ペーストをスクリーン印刷法で塗布(線幅W:500μm)した後、120℃×10分の条件で乾燥した。この塗布層を450℃×10分の条件で焼成することによって、膜厚T1が20μmの封着材料層を形成した。
 次に、封着材料層を有する第2のガラス基板と素子形成領域(OEL素子を形成した領域)を有する第1のガラス基板(第2のガラス基板と同組成、同形状のソーダライムガラスからなる基板)とを積層した。次いで、第2のガラス基板を通して封着材料層に対して、波長940nm、出力40Wのレーザ光(半導体レーザ)を5mm/sの走査速度で照射し、封着材料層を溶融並びに急冷固化することによって、第1のガラス基板と第2のガラス基板とを封着した。このようにして、素子形成領域をガラスパネルで封止した電子デバイスを後述する特性評価に供した。
 次に、実施例1~6および比較例1~2のガラスパネルの外観について、ガラス基板のクラックの有無と配線の断線の有無を評価した。外観は光学顕微鏡で観察して評価した。また、各ガラスパネルの気密性を測定した。気密性はヘリウムリークテストを適用して評価した。さらに、実施例1~6および比較例1~2で用いた封着用ガラス材料によるガラス基板の接着強度を以下のようにして測定した。これらの測定・評価結果を表1および表2に示す。表1および表2にはガラスパネルの製造条件を併せて示す。表1における封着ガラスの組成比は便宜的に主要成分の合計量を100質量%として示しているが、微量成分であるNaO量も封着ガラスの成分合計(100質量%)に含まれるものである。
 封着用ガラス材料によるガラス基板の接着強度の測定方法は以下の通りである。まずガラス基板にソーダライムガラスを用いた場合から説明する。
 「ガラス基板にソーダライムガラスを用いた場合の強度の測定方法:A」幅30mmの第1のガラス基板の端部近傍に各例の封着材料ペーストを用いて、厚さ60μm、線幅1mmの封着材料層を形成する。ペースト塗布層はそれぞれに適した条件で焼成する。次いで、第2のガラス基板の端部を封着材料層上に配置する。第2のガラス基板は第1のガラス基板と互い違いの状態(封着材料層を中心として第1および第2のガラス基板が直線状に並んだ状態)となるように配置する。これらを10kgの荷重で加圧しながら封着材料層に波長940nmのレーザ光を10mm/sの走査速度で照射して封着する。レーザ光の出力は各材料に適した値とする。このようにして形成した接着強度測定用サンプルの一方のガラス基板を治具で固定し、他方のガラス基板の封着層から20mmの部分を1mm/minの速度で加圧し、封着層が壊れたときの荷重を接着強度とする。
 「ガラス基板にソーダライムガラスを用いた場合の強度の測定方法:B」幅25mmの第1のガラス基板の端部近傍に各例の封着材料ペーストを用いて、厚さ10μm、線幅1mmの封着材料層を形成する。ペースト塗布層はそれぞれに適した条件で焼成する。次いで、第2のガラス基板の端部を封着材料層上に配置する。第2のガラス基板は第1のガラス基板と互い違いの状態(封着材料層を中心として第1および第2のガラス基板が直線状に並んだ状態)となるように配置する。これらを10kgの荷重で加圧しながら封着材料層に波長940nmのレーザ光を10mm/sの走査速度で照射して封着する。レーザ光の出力は各材料に適した値とする。このようにして形成した接着強度測定用サンプルをサンプルの大きさ以外JIS K6856の要領で3点曲げ接着強度試験を行い、封着層が壊れたときあるいはガラス基板が割れたときの荷重を接着強度とする。
 続いて、ガラス基板に無アルカリガラスを用いた場合について説明する。幅25mmの第1のガラス基板の端部近傍に各例の封着材料ペーストを用いて、厚さ10μm、線幅1mmの封着材料層を形成する。ペースト塗布層はそれぞれに適した条件で焼成する。次いで、第2のガラス基板の端部を封着材料層上に配置する。第2のガラス基板は第1のガラス基板と互い違いの状態(封着材料層を中心として第1および第2のガラス基板が直線状に並んだ状態)となるように配置する。これらを10kgの荷重で加圧しながら封着材料層に波長940nmのレーザ光を10mm/sの走査速度で照射して封着する。レーザ光の出力は各材料に適した値とする。このようにして形成した接着強度測定用サンプルをサンプルの大きさ以外JIS K6856の要領で3点曲げ接着強度試験を行い、封着層が壊れたときあるいはガラス基板が割れたときの荷重を接着強度とする。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1および表2から明らかなように、実施例1~6によるガラスパネルはいずれも外観や気密性に優れ、さらに良好な接着強度が得られていることが分かる。これに対して、NaO量が380ppmを超えるビスマス系ガラスフリットを用いた比較例1のガラスパネルでは、接着強度は良好であるものの、配線に断線が生じていることが確認された。さらに、従来のバナジウム系ガラスフリットを用いた比較例2のガラスパネルは接着強度が低く、ガラスパネル(電子デバイス)の信頼性に劣るものであった。
Figure JPOXMLDOC01-appb-T000003
 また表3から明らかなように、無アルカリガラスをガラス基板に使用した実施例7~9によるガラスパネルは、いずれも外観や気密性に優れ、NaO量が10~380ppmの間で増加するにつれ良好な接着強度が得られていることが分かる。
(実施例10~14、参考例1~2)
 封着材料層の形状(厚さT1、線幅W、これらに基づく断面積)を表4に示す条件に変更する以外は、実施例1と同様にしてガラスパネル(実施例10)を作製した。同様に、表4に示す各実施例の封着材料層の形状を変更して、それぞれガラスパネル(実施例10~14)を作製した。また、実施例11は実施例2と同様にして、実施例12~14は実施例3と同様にしてガラスパネルを作製したものである。参考例1、2は断面積が15000μmを超える封着材料層を適用したものである。これらガラスパネルの外観について、ガラス基板のクラックの有無と封着層のクラックの有無を評価した。外観は光学顕微鏡で観察して評価した。さらに、実施例1と同様にして気密性を評価した。これらの測定・評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4から明らかなように、封着材料層はその断面積を15000μm以下とすることによって、ガラス基板の封着性や気密性を再現性よく高めることができる。封着材料層の断面積が15000μmを超える場合には、封着用ガラス材料を軟化流動させるためのレーザ出力を高くする必要が生じ、その結果として封着層にクラックが生じやすくなる。
 本発明のレーザ封着用ガラス材料は、レーザ封着時にソーダライムガラス基板と封着層、および無アルカリガラス材料の接着強度を再現性良く高めることができる。
 なお、2008年12月12日に出願された日本特許出願2008-316644号、の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 1…電子デバイス、2…第1のガラス基板、2a…素子形成領域、2b…第1の封止領域、3…第2のガラス基板、3a…第2の封止領域、4…封着層、5…封着材料層、6…レーザ光。

Claims (18)

  1.  質量割合で70~90%のBi、1~20%のZnO、2~12%のBおよび10~380ppmのNaOを含むことを特徴とする封着ガラス。
  2.  Al、CeO、SiO、AgO、WO、MoO、Nb、Ta、Ga、Sb、CsO、CaO、SrO、BaO、PおよびSnO(xは1または2である)から選ばれる少なくとも1種を10質量%以下の範囲で含むことを特徴とする請求項1に記載の封着ガラス
  3.  請求項1または請求項2の封着ガラスと低膨張充填材とレーザ吸収材とを含有することを特徴とするレーザ封着用ガラス材料
  4.  封止領域を有し、ソーダライムガラスからなるガラス基板と、
     前記ガラス基板の前記封止領域上に設けられ、封着ガラスと低膨張充填材とレーザ吸収材とを含有する封着用ガラス材料の焼成層からなる封着材料層とを具備し、
     前記封着ガラスは、質量割合で70~90%のBi、1~20%のZnO、2~12%のBおよび10~380ppmのNaOを含むことを特徴とする封着材料層付きガラス部材。
  5.  封止領域を有し、無アルカリガラスからなるガラス基板と、
     前記ガラス基板の前記封止領域上に設けられ、封着ガラスと低膨張充填材とレーザ吸収材とを含有する封着用ガラス材料の焼成層からなる封着材料層とを具備し、
     前記封着ガラスは、質量割合で70~90%のBi、1~20%のZnO、2~12%のBおよび10~380ppmのNaOを含むことを特徴とする封着材料層付きガラス部材。
  6.  前記低膨張充填材はシリカ、アルミナ、ジルコニア、珪酸ジルコニウム、コージェライト、リン酸ジルコニウム系化合物、ソーダライムガラスおよび硼珪酸ガラスから選ばれる少なくとも1種からなり、かつ前記封着用ガラス材料は前記低膨張充填材を1~50体積%の範囲で含有することを特徴とする請求項4または請求項5に記載の封着材料層付きガラス部材。
  7.  前記レーザ吸収材はFe、Cr、Mn、Co、NiおよびCuから選ばれる少なくとも1種の金属または前記金属を含む化合物からなり、かつ前記封着用ガラス材料は前記レーザ吸収材を0.1~10体積%の範囲で含有することを特徴とする請求項4~請求項6のいずれかに記載の封着材料層付きガラス部材。
  8.  前記封着ガラスは、さらにAl、CeO、SiO、AgO、WO、MoO、Nb、Ta、Ga、Sb、CsO、CaO、SrO、BaO、PおよびSnO(xは1または2である)から選ばれる少なくとも1種を10質量%以下の範囲で含むことを特徴とする請求項4~請求項7のいずれかに記載の封着材料層付きガラス部材。
  9.  前記封着材料層は厚さと幅の積で表される断面積が15000μm以下であることを特徴とする請求項4~請求項8のいずれかに記載の封着材料層付きガラス部材。
  10.  電子素子を備える素子形成領域と、前記素子形成領域の外周側に設けられた第1の封止領域とを有し、ソーダライムガラスからなる第1のガラス基板と、
     前記第1のガラス基板の前記第1の封止領域に対応する第2の封止領域を有し、ソーダライムガラスからなる第2のガラス基板と、
     前記第1のガラス基板の前記第1の封止領域と前記第2のガラス基板の前記第2の封止領域との間を、前記素子形成領域上に間隙を設けつつ封止するように形成され、封着ガラスと低膨張充填材とレーザ吸収材とを含有する封着用ガラス材料の溶融固着層からなる封着層とを具備し、
     前記封着ガラスは、質量割合で70~90%のBi、1~20%のZnO、2~12%のBおよび10~380ppmのNaOを含むことを特徴とする電子デバイス。
  11.  電子素子を備える素子形成領域と、前記素子形成領域の外周側に設けられた第1の封止領域とを有し、無アルカリガラスからなる第1のガラス基板と、
     前記第1のガラス基板の前記第1の封止領域に対応する第2の封止領域を有し、無アルカリガラスからなる第2のガラス基板と、
     前記第1のガラス基板の前記第1の封止領域と前記第2のガラス基板の前記第2の封止領域との間を、前記素子形成領域上に間隙を設けつつ封止するように形成され、封着ガラスと低膨張充填材とレーザ吸収材とを含有する封着用ガラス材料の溶融固着層からなる封着層とを具備し、
     前記封着ガラスは、質量割合で70~90%のBi、1~20%のZnO、2~12%のBおよび10~380ppmのNaOを含むことを特徴とする電子デバイス。
  12.  前記封着ガラスは、さらにAl、CeO、SiO、AgO、WO、MoO、Nb、Ta、Ga、Sb、CsO、CaO、SrO、BaO、PおよびSnO(xは1または2である)から選ばれる少なくとも1種を10質量%以下の範囲で含むことを特徴とする請求項10または請求項11に記載の電子デバイス。
  13.  前記電子素子は有機EL素子または太陽電池素子であることを特徴とする請求項10~請求項12のいずれかに記載の電子デバイス。
  14.  電子素子を備える素子形成領域と、前記素子形成領域の外周側に設けられた第1の封止領域とを有し、ソーダライムガラスからなる第1のガラス基板を用意する工程と、
     前記第1のガラス基板の前記第1の封止領域に対応する第2の封止領域と、前記第2の封止領域上に形成され、封着ガラスと低膨張充填材とレーザ吸収材とを含有する封着用ガラス材料の焼成層からなる封着材料層とを有し、ソーダライムガラスからなる第2のガラス基板を用意する工程と、
     前記素子形成領域上に間隙を形成しつつ、前記封着材料層を介して前記第1のガラス基板と前記第2のガラス基板とを積層する工程と、
     前記第2のガラス基板を通して前記封着材料層にレーザ光を照射し、前記封着材料層を溶融させて前記第1のガラス基板と前記第2のガラス基板との間を封止する封着層を形成する工程とを具備し、
     前記封着ガラスは、質量割合で70~90%のBi、1~20%のZnO、2~12%のBおよび10~380ppmのNaOを含むことを特徴とする電子デバイスの製造方法。
  15.  電子素子を備える素子形成領域と、前記素子形成領域の外周側に設けられた第1の封止領域とを有し、無アルカリガラスからなる第1のガラス基板を用意する工程と、
     前記第1のガラス基板の前記第1の封止領域に対応する第2の封止領域と、前記第2の封止領域上に形成され、封着ガラスと低膨張充填材とレーザ吸収材とを含有する封着用ガラス材料の焼成層からなる封着材料層とを有し、無アルカリガラスからなる第2のガラス基板を用意する工程と、
     前記素子形成領域上に間隙を形成しつつ、前記封着材料層を介して前記第1のガラス基板と前記第2のガラス基板とを積層する工程と、
     前記第2のガラス基板を通して前記封着材料層にレーザ光を照射し、前記封着材料層を溶融させて前記第1のガラス基板と前記第2のガラス基板との間を封止する封着層を形成する工程とを具備し、
     前記封着ガラスは、質量割合で70~90%のBi、1~20%のZnO、2~12%のBおよび10~380ppmのNaOを含むことを特徴とする電子デバイスの製造方法。
  16.  前記封着ガラスは、さらにAl、CeO、SiO、AgO、WO、MoO、Nb、Ta、Ga、Sb、CsO、CaO、SrO、BaO、PおよびSnO(xは1または2である)から選ばれる少なくとも1種を10質量%以下の範囲で含むことを特徴とする請求項13または請求項15に記載の電子デバイスの製造方法。
  17.  前記封着材料層は厚さと幅の積で表される断面積が15000μm以下であることを特徴とする請求項14~請求項16のいずれかに記載の電子デバイスの製造方法。
  18.  前記電子素子は有機EL素子または太陽電池素子であることを特徴とする請求項14~請求項17のいずれかに記載の電子デバイスの製造方法。
PCT/JP2009/070703 2008-12-12 2009-12-10 封着ガラス、封着材料層付きガラス部材、および電子デバイスとその製造方法 WO2010067848A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010542127A JP5413373B2 (ja) 2008-12-12 2009-12-10 レーザ封着用ガラス材料、封着材料層付きガラス部材、および電子デバイスとその製造方法
CN200980150358.XA CN102245525B (zh) 2008-12-12 2009-12-10 密封玻璃、带密封材料层的玻璃构件以及电子器件及其制造方法
SG2011035995A SG171754A1 (en) 2008-12-12 2009-12-10 Sealing glass, glass member provided with sealing material layer, electronic device and process for producing it
EP09831952A EP2357159A1 (en) 2008-12-12 2009-12-10 Sealing glass, glass member having sealing material layer, and electronic device and method for producing the same
US13/115,229 US20110223371A1 (en) 2008-12-12 2011-05-25 Sealing glass, glass member provided with sealing material layer, electronic device and process for producing it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008316644 2008-12-12
JP2008-316644 2008-12-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/115,229 Continuation US20110223371A1 (en) 2008-12-12 2011-05-25 Sealing glass, glass member provided with sealing material layer, electronic device and process for producing it

Publications (1)

Publication Number Publication Date
WO2010067848A1 true WO2010067848A1 (ja) 2010-06-17

Family

ID=42242834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070703 WO2010067848A1 (ja) 2008-12-12 2009-12-10 封着ガラス、封着材料層付きガラス部材、および電子デバイスとその製造方法

Country Status (8)

Country Link
US (1) US20110223371A1 (ja)
EP (1) EP2357159A1 (ja)
JP (1) JP5413373B2 (ja)
KR (1) KR20110098894A (ja)
CN (1) CN102245525B (ja)
SG (1) SG171754A1 (ja)
TW (1) TWI526413B (ja)
WO (1) WO2010067848A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001987A1 (ja) * 2009-06-30 2011-01-06 旭硝子株式会社 封着材料層付きガラス部材とそれを用いた電子デバイスおよびその製造方法
CN102129911A (zh) * 2009-12-24 2011-07-20 乐金显示有限公司 染料敏化太阳能电池
WO2012090695A1 (ja) * 2010-12-27 2012-07-05 旭硝子株式会社 電子デバイスとその製造方法
JP2012229131A (ja) * 2011-04-25 2012-11-22 Nippon Electric Glass Co Ltd 色素増感型太陽電池用ガラス及び色素増感型太陽電池用材料
JP2013505190A (ja) * 2009-09-22 2013-02-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ デバイスを封止するためのガラスパッケージ及びガラスパッケージを含むシステム
WO2013115101A1 (ja) * 2012-01-30 2013-08-08 日立化成株式会社 電子部品及びその製法、並びにそれに用いる封止材料ペースト
US8778469B2 (en) 2010-03-19 2014-07-15 Asahi Glass Company, Limited Electronic device and method for manufacturing same

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5308718B2 (ja) 2008-05-26 2013-10-09 浜松ホトニクス株式会社 ガラス溶着方法
KR101665727B1 (ko) * 2008-06-11 2016-10-12 하마마츠 포토닉스 가부시키가이샤 유리 용착 방법
JP5535653B2 (ja) * 2008-06-23 2014-07-02 浜松ホトニクス株式会社 ガラス溶着方法
JPWO2011010489A1 (ja) * 2009-07-23 2012-12-27 旭硝子株式会社 封着材料層付きガラス部材の製造方法及び製造装置、並びに電子デバイスの製造方法
JP5481167B2 (ja) * 2009-11-12 2014-04-23 浜松ホトニクス株式会社 ガラス溶着方法
JP5481172B2 (ja) 2009-11-25 2014-04-23 浜松ホトニクス株式会社 ガラス溶着方法及びガラス層定着方法
JP5535589B2 (ja) * 2009-11-25 2014-07-02 浜松ホトニクス株式会社 ガラス溶着方法及びガラス層定着方法
JP5535590B2 (ja) 2009-11-25 2014-07-02 浜松ホトニクス株式会社 ガラス溶着方法及びガラス層定着方法
JP5525246B2 (ja) 2009-11-25 2014-06-18 浜松ホトニクス株式会社 ガラス溶着方法及びガラス層定着方法
JP5466929B2 (ja) * 2009-11-25 2014-04-09 浜松ホトニクス株式会社 ガラス溶着方法及びガラス層定着方法
JP5481173B2 (ja) * 2009-11-25 2014-04-23 浜松ホトニクス株式会社 ガラス溶着方法及びガラス層定着方法
JP5567319B2 (ja) 2009-11-25 2014-08-06 浜松ホトニクス株式会社 ガラス溶着方法及びガラス層定着方法
JP5535588B2 (ja) 2009-11-25 2014-07-02 浜松ホトニクス株式会社 ガラス溶着方法及びガラス層定着方法
WO2011158805A1 (ja) * 2010-06-14 2011-12-22 旭硝子株式会社 封着材料ペーストとそれを用いた電子デバイスの製造方法
KR101041603B1 (ko) * 2010-12-31 2011-06-15 (주)알가 진공 유리 패널 및 그 제조 방법
CN102759816B (zh) * 2012-08-02 2015-09-09 深圳市华星光电技术有限公司 具有光伏电池的液晶显示模组的制作方法及其制得的液晶显示模组
US20140190210A1 (en) * 2013-01-04 2014-07-10 Lilliputian Systems, Inc. Method for Bonding Substrates
CN103078063B (zh) * 2013-01-30 2015-12-23 四川虹视显示技术有限公司 一种oled封装结构
FR3002528B1 (fr) * 2013-02-26 2015-10-09 Saint Gobain Renfort d'orifice de vitrage
KR101866624B1 (ko) 2013-05-10 2018-06-11 코닝 인코포레이티드 저융점 유리 또는 흡수성 박막을 이용한 레이저 용접 투명 유리 시트
CN103319097A (zh) * 2013-06-26 2013-09-25 上海志感电子科技有限公司 一种低温无铅玻璃粉及其制备方法
WO2015060248A1 (ja) * 2013-10-21 2015-04-30 日本電気硝子株式会社 封着材料
KR102512044B1 (ko) 2014-10-31 2023-03-20 코닝 인코포레이티드 레이저 용접 유리 패키지 및 그 제조 방법
GB201806411D0 (en) 2018-04-19 2018-06-06 Johnson Matthey Plc Kit, particle mixture, paste and methods
US11952832B2 (en) * 2018-06-29 2024-04-09 Vkr Holding A/S Vacuum insulated glazing unit having a separation distance between a side seal and a low emissivity coating, and associated methods of manufacturing same
US11488841B2 (en) 2019-02-20 2022-11-01 Electronics And Telecommunications Research Institute Method for manufacturing semiconductor package
CN110217993B (zh) * 2019-06-26 2022-05-27 鲁米星特种玻璃科技股份有限公司 一种环保型低温封接玻璃及其制备方法
GB201910100D0 (en) * 2019-07-15 2019-08-28 Johnson Matthey Plc Composition, paste and methods
CN113336479B (zh) * 2021-05-21 2023-07-11 景德镇陶瓷大学 一种堇青石基微晶玻璃高温粘结剂及其制备方法和应用
CN114605076A (zh) * 2022-01-19 2022-06-10 安徽大学 一种低熔点无铅玻璃粉及其制备方法
CN116675435A (zh) * 2023-05-17 2023-09-01 武汉理工大学 一种玻璃粉、激光封接玻璃浆料、真空玻璃及其封接工艺

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003128430A (ja) 2001-10-22 2003-05-08 Asahi Techno Glass Corp 無鉛ガラス組成物
JP2004238273A (ja) * 2002-03-29 2004-08-26 Matsushita Electric Ind Co Ltd ビスマス系ガラス組成物、ならびにそれを封着部材として用いた磁気ヘッドおよびプラズマディスプレイパネル
JP2006137637A (ja) 2004-11-12 2006-06-01 Asahi Techno Glass Corp 低融点ガラスおよび封着用組成物ならびに封着用ペースト
JP2006524419A (ja) 2003-04-16 2006-10-26 コーニング インコーポレイテッド フリットにより密封されたガラスパッケージおよびその製造方法
JP2007031258A (ja) * 2005-06-23 2007-02-08 Asahi Techno Glass Corp 低融点ガラスおよび封着用組成物ならびに封着用ペースト
JP2008059802A (ja) 2006-08-29 2008-03-13 Univ Of Tokyo パネル体の製造方法
JP2008098147A (ja) * 2006-09-15 2008-04-24 Nippon Electric Glass Co Ltd 平面表示装置
JP2008115057A (ja) 2006-11-07 2008-05-22 Electric Power Dev Co Ltd 封止材料、ガラスパネルの製造方法および色素増感太陽電池
DE102007025465B3 (de) * 2007-05-30 2008-09-25 Schott Ag Niedrig aufschmelzendes bleifreies Lotglas und dessen Verwendung

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001022289A (ja) * 1999-07-08 2001-01-26 Hitachi Ltd 表示装置および位置合わせ装置
WO2001085631A1 (fr) * 2000-05-11 2001-11-15 Matsushita Electric Industrial Co., Ltd. Composition de verre, verre d'etancheite pour tete magnetique et tete magnetique correspondante
JP2002249339A (ja) * 2000-12-21 2002-09-06 Nippon Electric Glass Co Ltd 半導体封入用ガラス及び半導体封入用外套管
US7407902B2 (en) * 2002-03-29 2008-08-05 Matsushita Electric Industrial Co., Ltd. Bismuth glass composition, and magnetic head and plasma display panel including the same as sealing member
JP4104489B2 (ja) * 2002-05-17 2008-06-18 東芝松下ディスプレイテクノロジー株式会社 表示装置及びその製造方法
JP4518747B2 (ja) * 2003-05-08 2010-08-04 三洋電機株式会社 有機el表示装置
US7291573B2 (en) * 2004-11-12 2007-11-06 Asahi Techno Glass Corporation Low melting glass, sealing composition and sealing paste
JP5178204B2 (ja) * 2005-12-06 2013-04-10 コーニング インコーポレイテッド フリットで密封されたガラスパッケージおよびその製造方法
KR100688790B1 (ko) * 2006-01-27 2007-03-02 삼성에스디아이 주식회사 유기 전계 발광 표시장치 및 그 제조 방법
KR100781977B1 (ko) * 2006-11-02 2007-12-06 삼성전자주식회사 불휘발성 메모리 장치에서의 디코더 및 그에 의한 디코딩방법
EP2549461A1 (en) * 2010-03-19 2013-01-23 Asahi Glass Company, Limited Electronic device and method for manufacturing same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003128430A (ja) 2001-10-22 2003-05-08 Asahi Techno Glass Corp 無鉛ガラス組成物
JP2004238273A (ja) * 2002-03-29 2004-08-26 Matsushita Electric Ind Co Ltd ビスマス系ガラス組成物、ならびにそれを封着部材として用いた磁気ヘッドおよびプラズマディスプレイパネル
JP2006524419A (ja) 2003-04-16 2006-10-26 コーニング インコーポレイテッド フリットにより密封されたガラスパッケージおよびその製造方法
JP2006137637A (ja) 2004-11-12 2006-06-01 Asahi Techno Glass Corp 低融点ガラスおよび封着用組成物ならびに封着用ペースト
JP2007031258A (ja) * 2005-06-23 2007-02-08 Asahi Techno Glass Corp 低融点ガラスおよび封着用組成物ならびに封着用ペースト
JP2008059802A (ja) 2006-08-29 2008-03-13 Univ Of Tokyo パネル体の製造方法
JP2008098147A (ja) * 2006-09-15 2008-04-24 Nippon Electric Glass Co Ltd 平面表示装置
JP2008115057A (ja) 2006-11-07 2008-05-22 Electric Power Dev Co Ltd 封止材料、ガラスパネルの製造方法および色素増感太陽電池
DE102007025465B3 (de) * 2007-05-30 2008-09-25 Schott Ag Niedrig aufschmelzendes bleifreies Lotglas und dessen Verwendung

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001987A1 (ja) * 2009-06-30 2011-01-06 旭硝子株式会社 封着材料層付きガラス部材とそれを用いた電子デバイスおよびその製造方法
CN102471151B (zh) * 2009-06-30 2015-04-01 旭硝子株式会社 带密封材料层的玻璃构件以及使用该构件的电子器件及其制造方法
CN102471151A (zh) * 2009-06-30 2012-05-23 旭硝子株式会社 带密封材料层的玻璃构件以及使用该构件的电子器件及其制造方法
US8697242B2 (en) 2009-06-30 2014-04-15 Asahi Glass Company, Limited Glass member provided with sealing material layer, electronic device using it and process for producing the electronic device
JP5418594B2 (ja) * 2009-06-30 2014-02-19 旭硝子株式会社 封着材料層付きガラス部材とそれを用いた電子デバイスおよびその製造方法
JP2013505190A (ja) * 2009-09-22 2013-02-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ デバイスを封止するためのガラスパッケージ及びガラスパッケージを含むシステム
CN102129911B (zh) * 2009-12-24 2013-06-05 乐金显示有限公司 染料敏化太阳能电池
CN102129911A (zh) * 2009-12-24 2011-07-20 乐金显示有限公司 染料敏化太阳能电池
US8778469B2 (en) 2010-03-19 2014-07-15 Asahi Glass Company, Limited Electronic device and method for manufacturing same
WO2012090695A1 (ja) * 2010-12-27 2012-07-05 旭硝子株式会社 電子デバイスとその製造方法
JP2012229131A (ja) * 2011-04-25 2012-11-22 Nippon Electric Glass Co Ltd 色素増感型太陽電池用ガラス及び色素増感型太陽電池用材料
WO2013115101A1 (ja) * 2012-01-30 2013-08-08 日立化成株式会社 電子部品及びその製法、並びにそれに用いる封止材料ペースト
JP2013157161A (ja) * 2012-01-30 2013-08-15 Hitachi Chemical Co Ltd 電子部品及びその製法、並びにそれに用いる封止材料ペースト

Also Published As

Publication number Publication date
JP5413373B2 (ja) 2014-02-12
JPWO2010067848A1 (ja) 2012-05-24
TW201033152A (en) 2010-09-16
KR20110098894A (ko) 2011-09-02
CN102245525B (zh) 2014-07-23
EP2357159A1 (en) 2011-08-17
CN102245525A (zh) 2011-11-16
US20110223371A1 (en) 2011-09-15
SG171754A1 (en) 2011-07-28
TWI526413B (zh) 2016-03-21

Similar Documents

Publication Publication Date Title
JP5413373B2 (ja) レーザ封着用ガラス材料、封着材料層付きガラス部材、および電子デバイスとその製造方法
JP5673102B2 (ja) 封着材料層付きガラス部材およびそれを用いた電子デバイスとその製造方法
JP5716743B2 (ja) 封着材料ペーストとそれを用いた電子デバイスの製造方法
US8697242B2 (en) Glass member provided with sealing material layer, electronic device using it and process for producing the electronic device
WO2010055888A1 (ja) 封着材料層付きガラス部材の製造方法と電子デバイスの製造方法
JP5692218B2 (ja) 電子デバイスとその製造方法
JP5500079B2 (ja) 封着材料層付きガラス部材とその製造方法、および電子デバイスとその製造方法
JP2012041196A (ja) 封着材料層付きガラス部材とそれを用いた電子デバイスおよびその製造方法
US20150037594A1 (en) Glass composition, sealing material, and sealed package
WO2014092013A1 (ja) 封着材料、封着材料層付き基板、積層体および電子デバイス
JP2011011925A (ja) 封着材料層付きガラス部材とそれを用いた電子デバイスおよびその製造方法
JP2012014971A (ja) 電子デバイス及びその製造方法
WO2010137667A1 (ja) 封着材料層付きガラス部材とそれを用いた電子デバイスおよびその製造方法
JP5370011B2 (ja) 封着材料層付きガラス部材の製造方法と電子デバイスの製造方法
JP5516194B2 (ja) 光加熱封着用ガラス、封着材料層付きガラス部材、及び電子デバイスとその製造方法
JP2014149941A (ja) 気密封止パッケージおよびその製造方法
JP2014005177A (ja) 気密部材とその製造方法
JP2014221695A (ja) 封着パッケージ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980150358.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831952

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010542127

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117006217

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009831952

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE