WO2010047334A1 - オリビン構造を有する多元系リン酸リチウム化合物粒子、その製造方法及びこれを正極材料に用いたリチウム二次電池 - Google Patents

オリビン構造を有する多元系リン酸リチウム化合物粒子、その製造方法及びこれを正極材料に用いたリチウム二次電池 Download PDF

Info

Publication number
WO2010047334A1
WO2010047334A1 PCT/JP2009/068074 JP2009068074W WO2010047334A1 WO 2010047334 A1 WO2010047334 A1 WO 2010047334A1 JP 2009068074 W JP2009068074 W JP 2009068074W WO 2010047334 A1 WO2010047334 A1 WO 2010047334A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal element
formula
lithium phosphate
phosphate compound
olivine structure
Prior art date
Application number
PCT/JP2009/068074
Other languages
English (en)
French (fr)
Inventor
阿部 英俊
智統 鈴木
江黒 高志
聖志 金村
斉藤 光正
Original Assignee
古河電池株式会社
公立大学法人首都大学東京
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電池株式会社, 公立大学法人首都大学東京, 住友大阪セメント株式会社 filed Critical 古河電池株式会社
Priority to CA2741406A priority Critical patent/CA2741406C/en
Priority to KR1020117008527A priority patent/KR101300304B1/ko
Priority to EP09822031.2A priority patent/EP2360119B1/en
Priority to CN2009801415127A priority patent/CN102186770B/zh
Publication of WO2010047334A1 publication Critical patent/WO2010047334A1/ja
Priority to US13/090,303 priority patent/US8841023B2/en
Priority to US14/460,087 priority patent/US9337488B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to multi-component lithium phosphate compound particles having an olivine structure, a method for producing the same, and a lithium secondary battery using the same as a positive electrode material.
  • a lithium secondary battery using a negative electrode active material as a material capable of occluding and releasing lithium metal, a lithium alloy, or lithium ions has a high voltage and excellent reversibility.
  • lithium ion secondary batteries using a composite oxide of lithium and a transition metal as a positive electrode active material and a carbon-based material as a negative electrode active material are used in conventional lead secondary batteries and nickel-cadmium secondary batteries. In comparison, it is light in weight and has a large discharge capacity, so it is widely used as a power source for various electronic devices.
  • LiCoO 2 , LiNiO 2 , LiMnO 2 , or LiMn 2 O 4 is mainly used as a positive electrode active material for lithium ion secondary batteries that are generally used.
  • cobalt and nickel are low in reserves and are produced only in limited areas.
  • materials containing these metals are limited in terms of price and stable supply of raw materials as positive electrode active materials for lithium ion secondary batteries, for which demand is expected to increase further in the future. From the viewpoint of safety, these active materials may be problematic because of their high reactivity.
  • manganese is a relatively inexpensive material, but using a substance containing manganese as a positive electrode active material has a problem in stability of cycle characteristics.
  • lithium iron phosphate using iron which is expected to be inexpensive and stable supply, is used as a raw material.
  • Use as a positive electrode active material is proposed in Patent Documents 1 to 3, and the like.
  • lithium phosphate compounds having an olivine structure have an extremely large electric resistance compared to lithium metal oxides such as LiCoO 2 that have been conventionally used, and therefore resistance polarization increases when charging and discharging are performed.
  • resistance polarization increases when charging and discharging are performed.
  • a sufficient discharge capacity cannot be obtained and that acceptability is poor in charging.
  • the tendency was remarkable in charge / discharge of a large current.
  • lithium phosphate-based material particles having an olivine structure are miniaturized to increase the reaction area, facilitate the diffusion of lithium ions, and reduce the distance that electrons flow inside the lithium iron phosphate-based material particles. It is considered to shorten.
  • the fine particles of the lithium phosphate material having an olivine structure have a characteristic that secondary aggregation is likely to occur when mixed with a conductive material such as carbon black during electrode production. When this secondary agglomeration occurs, the lithium iron phosphate material particles and the conductive agent are in contact with each other within the agglomerated particles, so that a sufficient current collecting effect cannot be obtained and the electrical resistance is very large. There was a problem of becoming. For this reason, the active material in the central part of the aggregated particles does not cause electron conduction even when the battery is charged and discharged, and the charge and discharge capacity is reduced.
  • the fine particles have a large surface area, the amount of dissolution in the electrolytic solution tends to increase, and there is a problem in long-term stability.
  • the amount of dispersion medium required for slurry preparation during electrode production increases, and the required coating amount is difficult to obtain, cracks are likely to occur during drying, and sufficient compression is difficult.
  • carbon is used as a conductive agent, and a solution, dispersion, or suspension containing Li source, Fe source, P source, C source, and O source is sprayed into a high temperature atmosphere to form a precursor.
  • a solution, dispersion, or suspension containing Li source, Fe source, P source, C source, and O source is sprayed into a high temperature atmosphere to form a precursor.
  • carbon is uniformly dispersed on the surface of lithium iron phosphate particles by heat treatment in a reducing atmosphere or an inert atmosphere (see, for example, Patent Document 5).
  • a lithium iron-phosphorus composite oxide carbon composite obtained by coating the surface of LiFePO 4 particles with a carbonaceous material, and the carbon composite has an average particle size of 0.5 ⁇ m.
  • Those having the following physical properties are known (see, for example, Patent Document 6).
  • the oxidation-reduction potential of iron in lithium phosphate is lower than that of other elements, for example, as low as 0.2 V compared to general lithium cobaltate. Therefore, for the purpose of reducing resistance and increasing potential, one or more compounds containing a metal selected from the group consisting of iron, cobalt, manganese, nickel, copper and vanadium in phosphoric acid or a solution containing phosphoric acid; It is described that one or more compounds containing lithium are reacted and then fired to a predetermined temperature (see, for example, Patent Document 7).
  • Non-Patent Document 1 a method of replacing a part of lithium iron phosphate with cobalt has been proposed (for example, see Non-Patent Document 1).
  • Patent Document 4 since metal particles are supported on the fine particles of the lithium iron phosphate material, the metal particles are susceptible to chemical modification and have a problem in stability. Furthermore, since the particles are connected to each other, the problem of low current collection has not been sufficiently solved.
  • carbon is used as a conductive agent, and this is uniformly dispersed on the particle surface. However, even with this method, the dispersion effect is insufficient and a sufficient current collecting effect cannot be expected. .
  • Patent Document 6 since the technique described in Patent Document 6 as a method for further improving the conductivity between particles requires a high level of particle size control as a battery active material, such control is extremely difficult to control. was there.
  • patent document 7 and nonpatent literature 1 produces a precursor after mixing several types of metal salt aqueous solution or each raw material powder uniformly, and manufactures a multi-component olivine type compound by baking this. Is the method.
  • the composition control of the precursor is complicated in order to obtain a pure olivine type compound, the crystallinity is likely to increase, sufficient conductivity cannot be obtained, and the particle size control is difficult.
  • the particle surface of the olivine-type M lithium phosphate-based material (M is a metal) is considered to be amorphous because it has lower crystallinity than the bulk. For this reason, the divalent metal is oxidized by being left in the air, and changed to a trivalent phosphate having a higher resistance. As a result, a large polarization is generated at the time of initial charge, and there are problems that the neglected conditions are severe, activation becomes complicated, and resistance components remain. This problem becomes more prominent as the particle size of the active material is smaller and the surface area is larger.
  • the general formula Li Y M1 1-Z M2 Z PO 4 (where M1 is one metal element selected from the group consisting of Fe, Mn, and Co, and Y is M2 is a number satisfying the formula 0.9 ⁇ Y ⁇ 1.2, and M2 is at least one metal element selected from the group consisting of Mn, Co, Mg, Ti, and Al and a metal element other than M1 Z is a number satisfying the formula 0 ⁇ Z ⁇ 0.1), and is a multi-component lithium phosphate compound particle having an olivine structure, wherein the concentration of the metal element M2 on the particle surface is at the center of the particle
  • a multi-component lithium phosphate compound particle characterized in that the concentration is higher than the concentration, and the concentration of the metal element M2 continuously decreases from the particle surface toward the particle center.
  • the general formula Li x M1PO 4 (wherein M1 is one metal element selected from the group consisting of Fe, Mn, and Co, and X is the formula 0.9 ⁇ X M1 lithium phosphate compound having an olivine structure represented by ⁇ 1.2 and at least one general formula Li x M2PO 4 (where M2 is Mn, Co, Mg, Ti, and Al)
  • the general formula Li x M1PO 4 (wherein M1 is one metal element selected from the group consisting of Fe, Mn, and Co, and X is the formula 0.9 ⁇ X M1 lithium phosphate compound having an olivine structure represented by ⁇ 1.2 and a general formula Li x M2PO 4 (where M2 is a group consisting of Mn, Co, Mg, Ti, and Al) And a precursor of an M2 lithium phosphate compound having an olivine structure represented by the formula: 0.9 ⁇ X ⁇ 1.2.
  • the general formula Li x M1PO 4 (wherein M1 is one metal element selected from the group consisting of Fe, Mn and Co, and X is the formula 0.9 ⁇ X M1 lithium phosphate compound having an olivine structure represented by ⁇ 1.2 and at least one general formula Li x M2PO 4 (where M2 is Mn, Co, Mg, Ti, and Al)
  • a mixture of lithium phosphate and M2 phosphate satisfying the stoichiometry of M2 lithium phosphate is used as the precursor of the M2 lithium phosphate compound. Can be used.
  • the positive electrode is a multi-component lithium phosphate compound particle having the olivine structure according to claim 1.
  • a lithium secondary battery comprising at least composite particles of a multi-component lithium phosphate compound having an olivine structure according to claim 2 and carbon is provided.
  • a positive electrode active material for a lithium secondary battery can be easily produced, and the conductivity inside and between the active material particles can be improved and the movement of lithium ions can be facilitated.
  • a positive electrode active material and a lithium secondary battery excellent in rate charge / discharge performance can be obtained.
  • FIG. 1 is an explanatory view schematically showing a state in which the concentration of M2 continuously decreases from the particle surface toward the particle central part in phosphoric acid M1M2 lithium compound particles having an olivine structure.
  • FIG. 2 is an explanatory view schematically showing conventional M1M2 phosphate compound particles having an olivine structure with uniform concentrations.
  • FIG. 3 shows X-ray diffraction patterns of powder A, powder D, and powder H.
  • the multi-component lithium phosphate compound having an olivine structure is an M1 lithium phosphate compound having an olivine structure (where M1 is one metal selected from the group consisting of Fe, Mn, and Co) Element) and an M2 lithium phosphate compound having an olivine structure (where M2 is at least one metal selected from the group consisting of Mn, Co, Mg, Ti, and Al and a metal other than M1) Element) precursors and heat-treating them in an inert atmosphere or vacuum.
  • the lithium M1 lithium compound is represented by the general formula Li X M1PO 4 (where M1 is one metal element selected from the group consisting of Fe, Mn, Co, 0.9 ⁇ X ⁇ 1.2).
  • the compound M2 lithium phosphate is a compound of the general formula Li X M2PO 4 (where M2 is at least one metal selected from the group consisting of Mn, Co, Mg, Ti, Al and selected by M1) Other than metal elements, 0.9 ⁇ X ⁇ 1.2).
  • the multi-component lithium phosphate compound obtained here has a general formula Li Y M1 z M2 1-z PO 4 (where M1 is one or more metal elements selected from the group consisting of Fe, Mn, and Co, Y Is a number satisfying the formula 0.9 ⁇ Y ⁇ 1.2, M2 is at least one metal selected from the group consisting of Mn, Co, Mg, Ti, and Al, and a metal element other than selected by M1, Z is represented by the formula 0 ⁇ Z ⁇ 0.1.
  • the obtained multi-component lithium phosphate compound can be pulverized and classified to obtain positive electrode active material particles.
  • the particle diameter of the positive electrode active material particles is preferably 20 ⁇ m or less.
  • Examples of the metal species M1 include Fe, Mn, and Co, and examples of M2 include Mn, Co, Mg, Ti, and Al.
  • M1 is Fe
  • a phosphate mixture in which each stoichiometric ratio is combined, a mixture of various metal salts and phosphoric acid, or the like can be used.
  • the metal salt include (manganese sulfate, manganese (II) nitrate, manganese carbonate (II), manganese oxide (II), etc.
  • the kneading after adding various raw materials can be carried out in an aqueous or organic dispersion medium. Mix well in the medium, and the mixing can be performed by a media dispersion method such as a bead mill.
  • These mixtures are sintered after drying in an inert gas atmosphere or vacuum. Drying is performed at 100 ° C. for 2 hours, for example.
  • argon gas or nitrogen gas can be used as the inert gas.
  • the sintering can be performed at 600 ° C. for about 3 hours.
  • FIG. 1 schematically shows this state.
  • the multi-component lithium phosphate compound of the present invention in which the M2 concentration is changed has a change in crystallinity as compared with a multi-component lithium phosphate compound having an olivine structure made from a conventional homogeneous solution, It is presumed that bulk conductivity and lithium ion mobility become smooth and high rate charge / discharge performance is improved.
  • the inter-particle conductivity is also improved. High charge / discharge characteristics can be obtained. Moreover, it comes to have an effect of improving the coating property of the active material slurry at the time of manufacturing the electrode and improving the packing density.
  • carbon used here acetylene black, ketjen black, furnace black, etc. are preferable.
  • An organic compound is used as the carbon source. Examples of the organic compound include sucrose, polyvinyl alcohol, petroleum pitch, and ethylene glycol.
  • a positive electrode plate obtained by using the phosphoric acid lithium compound active material having the olivine structure is an aqueous paste in which a conductive agent, a water-soluble thickener, a binder, and water as a dispersion medium are kneaded and dispersed in the active material. Is coated on a current collector and dried.
  • the primary particle of the phosphoric acid lithium compound having an olivine structure as the positive electrode active material is preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less.
  • the conductive agent contained in the paste include conductive carbon such as acetylene black, ketjen black, furnace black, carbon fiber, and graphite, conductive polymer, and metal powder, and conductive carbon is particularly preferable. These conductive agents are preferably used in an amount of 20 parts by weight or less based on 100 parts by weight of the positive electrode active material. A more preferable use amount is 10 parts by weight or less and 1 part by weight or more.
  • water-soluble thickeners examples include carboxymethyl cellulose, methyl cellulose, hydroxyethyl cellulose, and polyethylene oxide. These water-soluble thickeners are preferably used in an amount of 0.1 to 4.0 parts by weight or less based on 100 parts by weight of the positive electrode active material. A more preferable use amount is 0.5 to 3.0 parts by weight or less. If the amount of the water-soluble thickener exceeds the above range, the battery resistance of the obtained secondary battery is increased and the rate characteristics are lowered. Conversely, if the amount is less than the above range, the aqueous paste is aggregated.
  • the water-soluble thickener may be used in the form of an aqueous solution, and in that case, it is preferably used as an aqueous solution of 0.5 to 3% by weight.
  • binder examples include a fluorine-based binder, acrylic rubber, modified acrylic rubber, styrene-butadiene rubber, acrylic polymer, vinyl polymer, or a mixture of two or more of these, It can be used as a coalescence. It is more preferable to use an acrylic polymer because oxidation resistance, sufficient adhesion with a small amount, and flexibility in the electrode plate can be obtained.
  • the blending ratio is 1 for 100 parts by weight of the positive electrode active material. The amount is preferably from 10 parts by weight to 10 parts by weight, and more preferably from 2 parts by weight to 7 parts by weight.
  • water is used as a dispersion medium.
  • an alcohol solvent for the purpose of improving the drying property of the active material layer and the wettability with the current collector, an alcohol solvent, an amine solvent, a carboxylic acid solvent, A water-soluble solvent such as a ketone solvent may be contained.
  • an aqueous paste containing a phosphate-type lithium-based material having an olivine structure, a conductive agent, a water-soluble thickener, a binder, and a dispersion medium is used for the purpose of further improving coating properties and leveling properties.
  • Leveling agents such as surfactants and water-soluble oligomers may be added.
  • the dispersion of the aqueous paste can be performed using a known disperser such as a planetary mixer, a disper mixer, a bead mill, a sand mill, an ultrasonic disperser, a homogenizer, and a hensil mixer.
  • a media dispersion method that can use a dispersion medium having a small particle diameter such as a bead mill or a sand mill is more preferable.
  • the produced paste can maintain the porosity suitable for the coating film formed by coating and drying.
  • the aqueous paste for coating of the positive electrode active material mixture thus prepared is coated on a current collector made of metal foil.
  • a metal foil such as copper, aluminum, nickel, and stainless steel is used, and among them, aluminum is preferable for the positive electrode current collector.
  • aqueous paste to current collector metal foil includes gravure coat, gravure reverse coat, roll coat, Meyer bar coat, blade coat, knife coat, air knife coat, commat coat, slot die coat, slide die coat, dip coat
  • gravure coat gravure reverse coat
  • roll coat Meyer bar coat
  • blade coat knife coat
  • air knife coat commat coat
  • slot die coat slide die coat
  • dip coat A known coating method selected from the above can be used.
  • the aqueous paste is uniformly applied so that the dry weight is in the range of 2 to 10 mg / cm 2 , more preferably 3 to 8 mg / cm 2 .
  • the drying method is not particularly limited.
  • the drying can be performed with warm air, drying with hot air, vacuum drying, a far-infrared heater, or the like, and the drying temperature can be in the range of about 30 to 130 ° C.
  • the drying is finished. Then, it is preferable to press this with a flat plate press or a roll press.
  • an active material that can be doped or dedoped with lithium may be used.
  • coke such as pyrolytic carbons, pitch coke, needle coke, petroleum coke, graphite, glassy carbon, organic polymer compound sintered body (phenol resin, furan resin, etc. are sintered at an appropriate temperature.
  • Carbon fibers such as carbon fibers and activated carbon
  • alloy materials such as metallic lithium, lithium alloys and Sn compounds
  • other polymers such as polyacetylene can also be used.
  • a negative electrode paste obtained by kneading and dispersing these negative electrode active materials, a binder, and, if necessary, a conductive additive in a dispersion medium is applied to a current collector, dried and rolled to produce a negative electrode plate.
  • a current collector for example, copper, nickel, stainless steel and the like can be used, but a copper foil is preferable.
  • the electrolytic solution is not particularly limited, but a nonaqueous electrolytic solution is preferable.
  • non-aqueous electrolyte those conventionally used for lithium secondary batteries are used without limitation.
  • LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCl, LiBr and other inorganic lithium salts LiBOB, LiB (C 6 H 5 ) 4 , LiN (SO 2 CF 3 ) 2 , LiC (SO 2 CF 3 ) 3 , at least one of organic lithium salts such as LiOSO 2 CF 3 , propylene carbonate, ethylene carbonate, butylene carbonate, ⁇ -butyrolactone, vinylene carbonate, 2-methyl- ⁇ -butyrolactone, acetyl- ⁇ -butyrolactone, ⁇ -valerolactone, etc.
  • Examples thereof include those dissolved in at least one solvent selected from chain esters such as ethers, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, propionic acid alkyl ester, meronic acid dialkyl ester, and acetic acid alkyl ester.
  • chain esters such as ethers, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, propionic acid alkyl ester, meronic acid dialkyl ester, and acetic acid alkyl ester.
  • LiBF 4 , LiPF 6, LiBOB, or a mixture thereof is preferably dissolved in at least one organic solvent.
  • the separator is not particularly limited as long as it is insoluble in the above-mentioned electrolyte component, but a single layer or a multilayer of a polyolefin-based microporous film such as polypropylene or polyethylene is used, and a multilayer is particularly preferable.
  • a non-aqueous electrolyte secondary battery can be manufactured by using the above-described positive electrode plate of the present invention and combining it with a known negative electrode for non-aqueous electrolyte, an electrolyte, a separator, and the like.
  • the shape of the battery is not particularly limited, and any shape such as a coin shape, a button shape, a laminate shape, a cylindrical shape, a square shape, or a flat shape may be used.
  • Example 1 In the following, various embodiments of the present invention will be described. In addition, this invention is not limited only to a following example.
  • M1 lithium phosphate compound having an olivine structure in which M1 is Fe was synthesized by the hydrothermal method as follows.
  • lithium M2 phosphate compound precursor having an olivine structure in which M2 is Mn was synthesized as follows.
  • the amount of Mn of the obtained product was measured using ICP emission spectroscopic analysis, it was found to contain 79.1% Mn 3 (PO 4 ) 2 . Moreover, from observation with a scanning electron microscope (SEM), the particle size of the product was 1 ⁇ m or less, and it was confirmed to be an amorphous crystal.
  • SEM scanning electron microscope
  • the amount of Li was measured for the obtained product using ICP emission spectroscopic analysis, it was found to contain 99.3% Li 3 PO 4 . Further, from observation with a scanning electron microscope (SEM), the particle size of the product was 1 ⁇ m or less, and it was confirmed that the product was a needle-like crystal.
  • SEM scanning electron microscope
  • the powder A When the powder A was analyzed with an X-ray diffractometer, it was a single-phase olivine type compound. Further, ICP emission analysis confirmed that each element had the same composition as that at the time of introduction. In the measurement of the particle size distribution by SEM, it was confirmed that the particle size was larger than that before sintering, and the primary particles were about 0.7 to 3 ⁇ m.
  • this powder B was analyzed with an X-ray diffractometer, it was a single-phase olivine type compound. Further, ICP emission spectroscopic analysis confirmed that each element had the same composition as that at the time of introduction. Further, it was confirmed by thermogravimetric analysis that the amount of carbon was 4% by weight. In the measurement of the particle size distribution by SEM, it was found that the particle size was larger than before sintering, and the primary particles were about 0.7 to 3 ⁇ m.
  • this powder C was analyzed with an X-ray diffractometer, it was a single-phase olivine type compound. Further, ICP emission spectroscopic analysis revealed that each element had the same composition as that at the time of introduction. Further, it was confirmed by thermogravimetric analysis that the total amount of carbon was 6% by weight. In the measurement of the particle size distribution by SEM, the particle size was larger than that before sintering, and the primary particles were about 0.7 to 3 ⁇ m.
  • this powder D was analyzed by an X-ray diffractometer, it was a single-phase olivine type compound. Further, it was confirmed by ICP that each element had a composition ratio represented by LiFe 0.9 Mn 0.1 PO 4 . In the particle size distribution measurement by SEM, the particle size was about 20 to 100 nm.
  • Powder E had a total carbon content of 6 wt% by thermogravimetric analysis.
  • the obtained powder was found to be a single-phase olivine type compound by an X-ray diffraction pattern. Furthermore, it was confirmed by ICP emission spectroscopic analysis that each element had a composition ratio represented by LiFe 0.9 Mn 0.1 PO 4 . The particle size distribution measured by SEM was about 20 to 100 nm. This powder was designated as powder F.
  • a solution prepared by dissolving 1 g of sucrose in ion-exchanged water was added to 10 g of powder F and sufficiently kneaded in a mortar to obtain a slurry.
  • the slurry was put into a graphite crucible, dried at 100 ° C. for 2 hours, and then put into a vacuum gas replacement furnace. Next, after sufficiently replacing with nitrogen gas, the treatment was performed at 600 ° C. for 3 hours under vacuum. Thereafter, after cooling to room temperature, the crucible was taken out and a sample inside was collected.
  • the sample was a black brittle lump, which was pulverized with a coffee mill and classified into aggregated particles of 20 ⁇ m or less with a sieve. This was designated as powder G.
  • LiFePO 4 obtained by the hydrothermal method was used as powder I.
  • a solution prepared by dissolving 1 g of sucrose in ion-exchanged water was added to 10 g of powder I, and then sufficiently kneaded in a mortar to obtain a slurry.
  • This slurry was put into a graphite crucible, dried at 100 ° C. for 2 hours, and further put into a vacuum gas replacement furnace. Next, the gas was sufficiently replaced with nitrogen gas, and then a vacuum treatment was performed at 600 ° C. for 3 hours. Then, after standing to cool to room temperature, the crucible was taken out and the sample inside was collected.
  • the sample was a black brittle mass, which was pulverized with a coffee mill and then classified into aggregated particles of 20 ⁇ m or less with a sieve. This was designated as powder J. When this was analyzed with an X-ray diffractometer, it was confirmed to be a single-phase olivine type compound. The amount of carbon was 4% by weight by thermogravimetric analysis. In the measurement of the particle size distribution by SEM, it was found that the particle size was larger than that before sintering, and the primary particles were about 0.7 to 3 ⁇ m.
  • the powder H which is a mixed powder of LiFePO 4 and LiMnPO 4 , did not show clear peak separation.
  • the powder AC had a redox peak due to Mn broadly and had a concentration gradient.
  • G no redox piece due to Mn was observed.
  • D the redox peak resulting from Mn was sharply seen.
  • acetylene black was mixed as a conductive agent so that the total carbon amount was 10% by weight.
  • the mixed powder and polyvinylidene fluoride (PVdF) as a binder are mixed at a weight ratio of 95: 5, and N-methyl-2-pyrrolidone (NMP) is added and kneaded sufficiently to obtain a positive electrode slurry. It was.
  • This positive electrode slurry was applied to an aluminum foil current collector with a thickness of 15 ⁇ m at a coating amount of 100 g / m 2 and dried at 120 ° C. for 30 minutes. Then, it was rolled to a density of 1.8 g / cc with a roll press and punched into a 2 cm 2 disk shape to obtain a positive electrode.
  • the positive electrodes made of the powders A to J are referred to as positive electrodes A to J, respectively. Each specification is summarized in Table 1 below.
  • C + AB in the chemical formula of powder C means that carbon C derived from sucrose and carbon of acetylene black (AB) exist.
  • a three-electrode cell (single electrode cell) was prepared.
  • the positive electrode A to the positive electrode J produced as the positive electrode were mixed with a lithium metal electrode as the negative electrode and the reference electrode, and ethylene-carbonate and diethyl carbonate mixed at a volume ratio of 1: 1 as the electrolyte.
  • the positive electrode A to the positive electrode C according to the present invention are particularly excellent in high rate charge / discharge performance of 5 CA or more. This is presumed to be because the Mn concentration of the binary active material of Fe and Mn is continuously changing inside the particle, so that the conductivity inside the particle is improved and the Li ion migration is smooth.
  • the positive electrode B using the powder treated with the carbon source and further the positive electrode C were able to obtain better characteristics because the conductivity between the particles was improved.
  • the positive electrode D to the positive electrode G using a binary active material having a uniform composition of Fe and Mn can obtain the effect of carbon, but at a current of 5 CA or more, the resistance including the reaction resistance is large, and the capacity reduction is remarkable. It was. It is estimated that the positive electrode H, which is a mixed positive electrode of LiFePO 4 and LiMnPO 4 , is affected by LiMnPO 4 having a large particle resistance, and the overall performance is lowered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 一般式LiM11-ZM2PO(但し、M1はFe、Mn、及びCoからなる群から選択される1種の金属元素であり、Yは式0.9≦Y≦1.2を満たす数であり、M2はMn、Co、Mg、Ti、及びAlからなる群から選択される少なくとも1種の金属元素でかつM1以外の金属元素であり、Zは式0<Z≦0.1を満たす数である)で表される、オリビン構造を有する多元系リン酸リチウム化合物粒子であって、粒子表面の金属元素M2の濃度が粒子中心部の濃度よりも高く、かつ金属元素M2の濃度が粒子表面から粒子中心部へ向かって連続的に低下していることを特徴とする多元系リン酸リチウム化合物粒子。

Description

オリビン構造を有する多元系リン酸リチウム化合物粒子、その製造方法及びこれを正極材料に用いたリチウム二次電池
 本発明は、オリビン構造を有する多元系リン酸リチウム化合物粒子及びその製造方法、これを正極材料に用いたリチウム二次電池に関する。
 リチウム金属、リチウム合金、又はリチウムイオンを吸蔵、放出可能な物質を負極活物質とするリチウム二次電池は、高い電圧と優れた可逆性を有することを特徴としている。特に、正極活物質としてリチウムと遷移金属との複合酸化物を用い、負極活物質として炭素系材料を用いたリチウムイオン二次電池は、従来の鉛二次電池やニッケル-カドミウム二次電池などに比較し、軽量で放電容量も大きいことから、様々な電子機器用電源として広く使用されている。
 現在、一般的に用いられているリチウムイオン二次電池の正極活物質としては、主にLiCoO2、LiNiO、LiMnO2、あるいはLiMn24が用いられている。しかし、コバルトやニッケルは埋蔵量が少なく、しかも限られた地域でしか産出しない。そのために、これらの金属を含む材料は、今後より一層の需要増加が見込まれるリチウムイオン二次電池の正極活物質としては、価格の面からも原料の安定供給の面からも制約されている。また、安全性の面からも、これらの活物質では反応性が高いために問題になることがある。また、マンガンは比較的安価な材料ではあるが、マンガンを含む物質を正極活物質として用いることは、サイクル特性の安定性に問題がある。
 このために、産出量が多く安価で安定な供給が見込まれる鉄を原料に用いたリン酸鉄リチウムあるいはリン酸鉄リチウムの鉄の一部を他元素で置換した材料を、リチウム二次電池の正極活物質として用いることが、特許文献1~3などで提案されている。
 しかしながら、これらのオリビン構造を有するリン酸リチウム化合物は、従来用いられてきたLiCoO2などのリチウム金属酸化物に比べて電気抵抗が非常に大きいため、充放電を行った場合に抵抗分極が増大し、十分な放電容量が得られないことや充電では受入れ性が悪いといった問題があった。特にその傾向は大電流の充放電では顕著であった。
 こうした問題を解決する方法として、オリビン構造を有するリン酸リチウム系材料の粒子を微細化して反応面積を増やし、リチウムイオンの拡散を容易にして電子がリン酸鉄リチウム系材料粒子内部を流れる距離を短くすることが考えられている。しかし、オリビン構造を有するリン酸リチウム系材料の微細粒子は、電極作製時にカーボンブラック等の導電材と混合する際に二次凝集を起こしやすいという特性を有している。この二次凝集を起こすと、凝集粒内部ではリン酸鉄リチウム系材料粒子同士、および導電剤が点で接触しているために、十分な集電効果が得られずに電気抵抗が非常に大きくなるといった問題があった。そのために凝集粒子中央部の活物質は電池の充放電を行っても電子伝導が起こらず、充放電容量が低下していた。
 更に、微細粒子は大きな表面積を持つために、電解液への溶解量が増大しやすくなり、長期安定性に問題があった。また、大きな表面積のために電極作製時のスラリー調製では必要な分散媒の量が多くなり、必要塗工量が得られ難いことや、乾燥時にひび割れが生じやすいこと、十分な圧縮が困難な為に高容量化し難い等の問題もあった。
 このため、リン酸鉄リチウム系材料の微細粒子上に、導電性であり、かつリン酸鉄リチウム系材料の酸化還元電位よりも貴な銀、炭素、白金、パラジウム等の微粒子を担持させることが提案されている(例えば、特許文献4参照)。
 また、導電剤としてカーボンを使用し、Li源と、Fe源と、P源とC源とO源を含有する溶液、分散液、懸濁液を高温雰囲気中に噴霧して前駆体とし、これを還元性雰囲気または不活性雰囲気で熱処理して、炭素をリン酸鉄リチウム系粒子表面に均一に分散する方法が提案されている(例えば、特許文献5参照)。
 また、粒子間の導電性を更に向上させる方法として、LiFePOの粒子表面を炭素質物質で被覆してなるリチウム鉄リン系複合酸化物炭素複合体で、炭素複合体が平均粒径0.5μm以下の物性を持つものが公知である(例えば、特許文献6参照)。
 さらに、リン酸リチウム中の鉄の酸化還元電位は他元素より低く、例えば一般的なコバルト酸リチウムと比較すると0.2Vも低いことが知られている。そこで、抵抗低減と電位上昇を目的として、リン酸またはリン酸を含む溶液中で鉄、コバルト、マンガン、ニッケル、銅およびバナジウムからなる群より選ばれる金属を含有する1種または複数種の化合物と、リチウムを含有する1種または複数種の化合物を反応させ、その後所定の温度に焼成することが記載されている(例えば、特許文献7参照)。
 また、Journal of Power sources 146 (2005) 580-583 等では、リン酸鉄リチウムの鉄の一部をコバルトで置換する方法が提案されている(例えば、非特許文献1参照)。
特開平9-134724号公報 特開平9-134725号公報 特開2001-085010号公報 特開2001-110414号公報 特開2005-116392号公報 特開2003-292309号公報 特開2003-157845号公報
Journal of Power sources 146 (2005) 580-583
 しかしながら、上記の特許文献4に記載の技術では、リン酸鉄リチウム系材料の微細粒子上に金属粒子を担持させるため、金属粒子は化学的な変性も受けやすく、安定性に問題があった。さらに粒子同士の接続なので低い集電性の問題も十分に解決されなかった。特許文献5の技術では、導電剤としてカーボンを使用し、これを粒子表面に均一に分散する方法であるが、この方法でも分散効果が不十分であり、十分な集電効果は期待できなかった。
 また、粒子間の導電性を更に向上させる方法としての特許文献6に記載の技術は、電池活物質として高度な粒度制御を必要とするため、そのような制御が著しく制御が困難であるといった問題があった。
 また、特許文献7及び非特許文献1の技術は、数種類の金属塩水溶液または各原料粉を均一混合してから前駆体を作製し、これを焼成することにより多元系のオリビン型化合物を製造する方法である。しかしこれらの方法では、純粋なオリビン型化合物を得るために前駆体の組成制御が複雑であり、また結晶性が高まり易く、十分な導電性が得られ難いことや、粒度制御が困難であるなどの問題点を有している。
 オリビン型リン酸Mリチウム系材料(Mは金属)の粒子表面は、バルクと比較して結晶性が低いため、アモルファス状になっていると考えられている。このため、空気中での放置により二価の金属が酸化され、より抵抗の大きな三価のリン酸塩に変化する。これにより、初充電時に大きな分極を発生するので、放置条件が厳しいことや活性化が複雑になることや、抵抗成分が残留するという問題もある。この問題は活物質の粒子径が小さく表面積が大きいほど顕著になる。
 本発明の第1の態様によると、一般式LiM11-ZM2PO(但し、M1はFe、Mn、及びCoからなる群から選択される1種の金属元素であり、Yは式0.9≦Y≦1.2を満たす数であり、M2はMn、Co、Mg、Ti、及びAlからなる群から選択される少なくとも1種の金属元素でかつM1以外の金属元素であり、Zは式0<Z≦0.1を満たす数である)で表される、オリビン構造を有する多元系リン酸リチウム化合物粒子であって、粒子表面の金属元素M2の濃度が粒子中心部の濃度よりも高く、かつ金属元素M2の濃度が粒子表面から粒子中心部へ向かって連続的に低下していることを特徴とする多元系リン酸リチウム化合物粒子が提供される。
 本発明の第2の態様によると、一般式LiM1PO(但し、M1はFe、Mn、及びCoからなる群から選択される1種の金属元素であり、Xは式0.9≦X≦1.2を満たす数である)で表されるオリビン構造を有するリン酸M1リチウム化合物と、1種以上の一般式LiM2PO(但し、M2はMn、Co、Mg、Ti、及びAlからなる群から選択される少なくとも1種の金属元素であり、Xは式0.9≦X≦1.2を満たす数である)で表されるオリビン構造を有するリン酸M2リチウム化合物の前駆体と、炭素または炭素源とを混合し、これを不活性雰囲気または真空中で熱処理することによって得られた、オリビン構造を有する多元系リン酸リチウム化合物とカーボンとの複合体粒子であって、粒子表面の金属元素M2の濃度が粒子中心部の濃度よりも高く、かつ金属元素M2の濃度が粒子表面から粒子中心部へ向かって連続的に低下している、一般式LiM11-ZM2PO(但し、M1はFe、Mn、及びCoからなる群から選択される1種の金属元素であり、Yは式0.9≦Y≦1.2を満たす数であり、M2はMn、Co、Mg、Ti、及びAlからなる群から選択される少なくとも1種の金属元素でかつM1で選択した以外の金属元素であり、Zは式0<Z≦0.1を満たす数である)で表されるオリビン構造を有する多元系リン酸リチウム化合物とカーボンとの複合体粒子が提供される。
 本発明の第3の態様によると、一般式LiM1PO(但し、M1はFe、Mn、及びCoからなる群から選択される1種の金属元素であり、Xは式0.9≦X≦1.2を満たす数である)で表されるオリビン構造を有するリン酸M1リチウム化合物と、一般式LiM2PO(但し、M2はMn、Co、Mg、Ti、及びAlからなる群から選択される少なくとも1種の金属元素であり、Xは式0.9≦X≦1.2を満たす数である)で表されるオリビン構造を有するリン酸M2リチウム化合物の前駆体とを混合する工程、及び前記混合物を不活性雰囲気または真空中で熱処理し、粒子表面付近の金属元素M2の濃度が粒子中心部の濃度よりも高く、かつ金属元素M2の濃度が粒子表面から粒子中心部へ向かって連続的に低下している、一般式LiM11-ZM2PO(但し、M1はFe、Mn、及びCoからなる群から選択される1種の金属元素であり、Yは式0.9≦Y≦1.2を満たす数であり、M2はMn、Co、Mg、Ti、及びAlからなる群から選択される少なくとも1種の金属元素でかつM1で選択した以外の金属元素であり、Zは式0<Z≦0.1を満たす数である)で表されるオリビン構造を有する多元系リン酸リチウム化合物粒子を得る工程を具備することを特徴とするオリビン構造を有する多元系リン酸リチウム化合物粒子の製造方法が提供される。
 本発明の第4の態様によると、一般式LiM1PO(但し、M1はFe、Mn、及びCoからなる群から選択される1種の金属元素であり、Xは式0.9≦X≦1.2を満たす数である)で表されるオリビン構造を有するリン酸M1リチウム化合物と、1種以上の一般式LiM2PO(但し、M2はMn、Co、Mg、Ti、及びAlからなる群から選択される少なくとも1種の金属元素であり、Xは式0.9≦X≦1.2を満たす数である)で表されるオリビン構造を有するリン酸M2リチウム化合物の前駆体と、炭素または炭素源とを混合する工程、及び前記混合物を不活性雰囲気または真空中で熱処理し、粒子表面付近の金属元素M2の濃度が粒子中心部の濃度よりも高く、かつ金属元素M2の濃度が粒子表面から粒子中心部へ向かって連続的に低下している、一般式LiM11-ZM2PO(但し、M1はFe、Mn、及びCoからなる群から選択される1種の金属元素であり、Yは式0.9≦Y≦1.2を満たす数であり、M2はMn、Co、Mg、Ti、及びAlからなる群から選択される少なくとも1種の金属元素でかつM1で選択した以外の金属元素であり、Zは式0<Z≦0.1を満たす数である)で表されるオリビン構造を有する多元系リン酸リチウム化合物とカーボンとの複合体粒子を得る工程を具備することを特徴とするオリビン構造を有する多元系リン酸リチウム化合物とカーボンとの複合体粒子の製造方法が提供される。
 以上の本発明の第3及び第4の態様に係る方法において、前記リン酸M2リチウム化合物の前駆体として、リン酸M2リチウムの化学量論を満足するリン酸リチウム及びM2リン酸塩の混合物を用いることが出来る。
 本発明の第5の態様によると、正極、負極及びリチウム塩を含む電解液を備えたリチウム二次電池において、前記正極は、請求項1に記載のオリビン構造を有する多元系リン酸リチウム化合物粒子または請求項2に記載のオリビン構造を有する多元系リン酸リチウム化合物とカーボンとの複合体粒子を少なくとも含むことを特徴とするリチウム二次電池が提供される。
 本発明によると、リチウム二次電池正極活物質を容易に製造することができ、しかも活物質粒子内部および粒子間での導電性が向上するとともにリチウムイオンの移動を円滑にすることができ、高率充放電性能に優れた正極活物質およびリチウム二次電池を得ることができる。
図1は、オリビン構造を有するリン酸M1M2リチウム化合物粒子において、M2の濃度が粒子表面から粒子中心部へ向かって連続的に低下している状態を模式的に示す説明図である。 図2は、従来の各濃度が均一なオリビン構造を有するリン酸M1M2リチウム化合物粒子を模式的に示す説明図である。 図3は、粉体A,粉体D,粉体HのX線回折パターンである。 図4は、図3の2θ=30°付近に出現するピークの拡大図である。
 本発明の一態様に係るオリビン構造を有する多元系リン酸リチウム化合物は、オリビン構造を有するリン酸M1リチウム化合物(但し、M1はFe,Mn,及びCoからなる群から選択される1種の金属元素)と、オリビン構造を有するリン酸M2リチウム化合物(但し、M2はMn,Co,Mg,Ti,及びAlからなる群から選択される少なくとも1種の金属で、かつM1で選択した以外の金属元素)の前駆体とを混合し、これを不活性雰囲気または真空中で熱処理することにより製造され得る。
 リン酸M1リチウム化合物は、一般式LiM1PO(但し、M1はFe,Mn,Coからなる群から選択される1種の金属元素、0.9≦X≦1.2)で表される化合物であり、リン酸M2リチウム化合物は、一般式LiM2PO(但し、M2はMn,Co,Mg,Ti,Alからなる群から選択される少なくとも1種の金属で、かつM1で選択した以外の金属元素、0.9≦X≦1.2)で表される化合物である。
 以上の式において、Xが0.9未満の場合には、1から大きくずれると安定した単相に成りにくいと共に、活物質として部分充電状態となり、電池設計上、またはMの原子価を2とする上で好ましくなく、1.2を超える場合は、安定した単相に成りにくいと共に、遊離のLiが増加するので水性ペーストにする場合にアルカリ度が高くなり、好ましくない。
 ここで得られる多元系リン酸リチウム化合物は、一般式LiM1M21-zPO(但し、M1はFe,Mn,及びCoからなる群から選択される1種以上の金属元素、Yは式0.9≦Y≦1.2を満たす数、M2はMn,Co,Mg,Ti,及びAlからなる群から選択される少なくとも1種の金属でかつM1で選択した以外の金属元素、Zは式0<Z≦0.1を満たす数)で表される。
 以上の式において、Yを0.9~1.2とする理由は、上記Xの場合と同様である。
 また、Zが0.1を超える場合には、容量が低下し、好ましくない。
 得られた多元系リン酸リチウム化合物を粉砕分級して、正極用活物質粒子を得ることが出来る。正極用活物質粒子の粒径は、20μm以下であることが好ましい。
 金属種M1としては、Fe、Mn、Coが挙げられ、M2としては、Mn、Co、Mg、Ti、Alを挙げることが出来る。例えば、M1がFeのときには、M2としてFeよりも酸化を受け難い元素、例えばMn,Co,Mg,Ti,Alなどを選択して得た正極用活物質粒子は、これら金属の表面濃度が高いためにFeの酸化が抑制され、活物質や電極の長期保存が可能となり、Fe成分の溶出を抑制しやすくなり、長期間安定な電池が得られるようになる。
 リン酸M2リチウム化合物前駆体としては、各化学量論比を合わせたリン酸塩混合物や各種金属塩とリン酸の混合物などを使用することができる。金属塩としては、(硫酸第一マンガン、硝酸マンガン(II)、炭酸マンガン(II)、酸化マンガン(II)等を挙げることが出来る。各種原料の投入後の混練は、水系または有機系分散媒中で十分に混合する。これらの混合はビーズミルなどのメディア分散法で行うことができる。
 これらの混合物は、乾燥後不活性ガス雰囲気または真空中で加熱して焼結する。乾燥は例えば100℃で2時間行なう。不活性ガスとしては、例えばアルゴンガス、窒素ガスを用いることが出来る。焼結は、例えば600℃で焼結時間は約3時間とすることが出来る。
 これによって、最初に合成されたオリビン構造を有するリン酸M1リチウム化合物粒子表面から、粒子中のM1が徐々にM2と置換する反応が起こり、M2濃度がオリビン構造を有するリン酸M1リチウム化合物の粒子内部の中心部へ向けて連続的に低下する現象が起こると考えられる。この状態を模式的に示したのが図1である。
 これに対して、従来の各濃度が均一なオリビンリン構造を有する多元系リン酸リチウム化合物を同じように模式的に示すと図2に示す通りである。
 このようにM2濃度が変化する本発明の多元系リン酸リチウム化合物は、従来の均一溶液から作られたオリビン構造を有する多元系リン酸リチウム化合物と比較して、結晶性が変化しており、バルクの導電性やリチウムイオン移動性が円滑となり、高率充放電性能が向上するものと推定されている。
 さらに、リン酸M2リチウム化合物前駆体と炭素または炭素源を混合し、これにオリビン構造を有するリン酸M1リチウム化合物を加え、焼結することで、粒子間の導電性も向上するため、更に良好な高率充放電特性を得ることができる。また、電極製造時の活物質スラリー塗工性の改善や充填密度向上の効果を有するようになる。ここに用いる炭素としては、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどが好ましい。また、炭素源としては、有機化合物が使用される。有機化合物としては、ショ糖、ポリビニルアルコール、石油ピッチ、エチレングリコール等を挙げることが出来る。
 上記のオリビン構造を有するリン酸型リチウム化合物の活物質を用いて得た正極板は、活物質に導電剤、水溶性増粘剤、結着剤及び分散媒としての水を混練分散した水性ペーストを、集電体上に塗布し、乾燥することにより製造される。
 正極活物質のオリビン構造を有するリン酸型リチウム化合物は、一次粒子が1μm以下であるのが好ましく、0.5μm以下がより好ましい。ペーストに含有される導電剤は、アセチレンブラック、ケッチェンブラック、ファーネスブラック、炭素繊維、グラファイトなどの導電性カーボンや、導電性ポリマー、金属粉末などがあげられるが、導電性カーボンが特に好ましい。これら導電剤は正極活物質100重量部に対して、20重量部以下で使用することが好ましい。より好ましい使用量は、10重量部以下1重量部以上である。
 水溶性増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ポリエチレンオキサイドなどである。これら水溶性増粘剤は正極活物質100重量部に対して、0.1~4.0重量部以下で使用することが好ましい。より好ましい使用量は、0.5~3.0重量部以下である。水溶性増粘剤の量が、前記範囲を超えると得られる二次電池の電池抵抗が増大してレート特性が低下し、逆に前記範囲未満であると水性ペーストが凝集してしまう。前記水溶性増粘剤は水溶液の状態で用いてもよく、その際は0.5~3重量%の水溶液にして用いることが好ましい。
 また、結着剤としては、例えばフッ素系結着剤やアクリルゴム、変性アクリルゴム、スチレン-ブタジエンゴム、アクリル系重合体、ビニル系重合体の単独或いはこれらの二種以上の混合物、または共重合体として用いることができる。より好ましいのは耐酸化性、少量で十分な密着性、極板に柔軟性が得られるためアクリル系重合体を用いることが好ましく、その配合割合は、正極活物質100重量部に対して、1重量部以上10重量部以下とすることが好ましく、更には2重量部以上7重量部以下とすることがより好ましい。
 本発明では、分散媒として水を用いるが、水の他に、活物質層の乾燥性や集電体との濡れ性を改良する目的で、アルコール系溶剤、アミン系溶剤、カルボン酸系溶剤、ケトン系溶剤などの水溶性溶剤を含んでいてもよい。
 本発明では、オリビン構造を有するリン酸型リチウム系材料、導電剤、水溶性増粘剤、結着剤、及び分散媒を含む水性ペーストに、更に、塗工性やレベリング性を改良する目的で、界面活性剤、水溶性オリゴマーなどのレベリング剤を添加してもよい。水性ペーストの分散は、プラネタリーミキサー、ディスパーミキサー、ビーズミル、サンドミル、超音波分散機、ホモジナイザー、ヘンシルミキサーなどの公知の分散機を用いて行うことができる。1μm以下の粒径のリン酸鉄リチウム系材料を好適に用いるためには、ビーズミル、サンドミル等小粒径の分散メディアを用いることが出来るメディア分散法がより好ましい。このようにして作製されたペーストは、塗布乾燥して成形された塗膜に好適な多孔性を維持できる。
 このようにして調製された正極活物質合剤の塗工用水性ペーストは、金属箔からなる集電体上に塗工する。集電体としては、銅、アルミニウム、ニッケル、ステンレスなどの金属箔が用いられ、中でも正極用集電体にはアルミニウムが好ましい。
 水性ペーストの集電体金属箔への塗工は、グラビアコート、グラビアリバースコート、ロールコート、マイヤーバーコート、ブレードコート、ナイフコート、エアーナイフコート、コンマートコート、スロットダイコート、スライドダイコート、ディップコートなどから選択した公知の塗工方法を用いることができる。
 本発明においては、乾燥重量で2~10mg/cm,より好ましくは3~8mg/cmの範囲となるように水性ペーストを均一に塗布する。乾燥方法としては特に限定されるものではないが、例えば、温風、熱風による乾燥、真空乾燥、遠赤外線ヒーターなどで乾燥することができ、乾燥温度も30~130℃程度の範囲で行うことができ、例えば、100℃の温風乾燥機内で1時間放置した後の重量変化が0.1重量%以下になった時点で乾燥終了とする。その後、これを平板プレスもしくはロールプレスでプレスすることが好ましい。
 負極には活物質としてリチウムをドープ、脱ドープできるものを使用すればよい。例えば、熱分解炭素類、ピッチコークス、ニードルコークス、石油コークスなどのコークス類、グラファイト類、ガラス状炭素類、有機高分子化合物焼結体(フェノール樹脂、フラン樹脂などを適当な温度で焼結して炭素化したもの)、炭素繊維、活性炭などの炭素繊維、或いは金属リチウム、リチウム合金やSn系化合物などの合金系材料、その他ポリアセチレン等のポリマーも使用することが出来る。
 これらの負極活物質と結着剤、必要に応じて導電助剤を分散媒に混練分散させて得られる負極ペーストを集電体に塗布し、乾燥・圧延して負極板を作製する。負極用集電体としては、例えば銅、ニッケル、ステンレスなどを用いることが出来るが、銅箔が好ましい。電解液は、特に制限されないが、非水電解液が好ましい。
 非水電解液は、従来から一般的にリチウム二次電池に使用されているものが制限なく使用される。例えば、LiClO、LiBF、LiPF、LiAsF、LiCl、LiBr等の無機リチウム塩、LiBOB、LiB(C、LiN(SOCF、LiC(SOCF、LiOSOCF等の有機リチウム塩の少なくとも一種を、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、ビニレンカーボネート、2メチル-γ-ブチロラクトン、アセチル-γ-ブチロラクトン、γ-バレロラクトン等の環状エステル類、テトラヒドロフラン、アルキルテトラヒドロフラン、ジアルキルテトラヒドロフラン、アルコキシテトラヒドロフラン、ジアルコキシテトラヒドロフラン、1,3-ジオキソラン、アルキル-1,3-ジオキソラン、1,4-ジオキソラン等の環状エーテル類、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジエチルエーテル、エチレングリコールジアルキルエーテル、ジエチレングリコールジアルキルエーテル、トリエチレングリコールジアルキルエーテル、テトラエチレングルコールジアルキルエーテル等の鎖状エーテル類、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、プロピオン酸アルキルエステル、マーロン酸ジアルキルエステル、酢酸アルキルエステル等の鎖状エステル類から選択した少なくとも一種の溶媒に溶解したものがあげられる。特に、LiBF、LiPFまたはLiBOB、或いはこれらの混合物を上記の少なくとも一種以上の有機溶媒に溶解したものが好ましい。
 また、セパレータは上記の電解液成分に不溶であれば特に限定されないが、ポリプロピレン、ポリエチレンなどのポリオレフィン系の微多孔性フイルムの単層体、或いは多層体が用いられるが、特に多層体が好ましい。上記した本発明の正極板を用い、これに非水電解液用の公知の負極、電解液、セパレータなどを組合わせることで、非水電解液二次電池を製作することが出来る。電池の形状は特に限定されるものではなく、コイン型、ボタン型、ラミネート型、円筒型、角型、扁平型など何でもよい。
(実施例1)
 以下に、本発明の種々の実施例を説明する。なお、本発明は以下の実施例のみに限定されるものではない。
 M1がFeであるオリビン構造を有するリン酸M1リチウム化合物を水熱法により、以下のように合成した。
 まず、リン酸リチウム486g、及び2価の鉄化合物としての2価の塩化鉄4水和物795gを耐圧容器に蒸留水2000mlとともに入れ、アルゴンガスで置換した後に密閉した。この耐圧容器を180℃のオイルバス中で、48時間反応させた。その後、室温まで放冷したのち、内容物を取り出し、100℃で乾燥させて粉末試料を得た。得られた粉末試料は、X線回折パターンによりリン酸鉄リチウムであることが確認された。また、走査型電子顕微鏡(SEM)による観察から、粉末試料は、20nmから200nmの粒径を有していることが確認された。
 次に、M2がMnであるオリビン構造を有するリン酸M2リチウム化合物前駆体を以下のように合成した。
 まず、2000mlのビーカー中で、72.3gの硫酸第一マンガン5水和物を500mlのイオン交換水に溶解したのち、23.1gの85%リン酸を投入して十分に攪拌した。攪拌しながら24gの水酸化ナトリウムを100mlのイオン交換水に溶解した溶液を分液漏斗に入れて30分間で滴下し、沈殿を得た。滴下量は、反応液の液性が6.5<pH<7.0の範囲に入るように調整した。結晶をろ過して採取した後、イオン交換水で十分に洗浄し、100℃で5時間の乾燥を行なった。
 得られた生成物をICP発光分光分析を用いて、そのMn量を測定したところ、79.1%のMn(POを含有していることがわかった。また、走査型電子顕微鏡(SEM)による観察から、生成物の粒径は1μm以下であり、不定形の結晶であることが確認された。
 次に、50gの水酸化リチウム1水塩を2000mlのビーカー内で200mlのイオン交換水に溶解して、攪拌しながら46gの85%リン酸を200mlのイオン交換水に溶解した溶液を分液漏斗に入れて30分間で滴下し、沈殿を得た。結晶をろ過して採取した後、イオン交換水で十分に洗浄し、100℃で5時間の乾燥を行なった。
 得られた生成物をICP発光分光分析を用いて、そのLi量を測定したところ、99.3%のLiPOを含有していることがわかった。また、走査型電子顕微鏡(SEM)による観察から、生成物の粒径は1μm以下であり、針状結晶であることが確認された。
 Mn(POとLiPOを純度換算後に、モル比でMn:Li=1:1となるように各粉体を秤量してから、乾式ボールミルによって十分に粉砕混合した。この混合粉をLiMnPO前駆体とした。
 以上のようにして得られたLiFePOとLiMnPO前駆体を、Li:Fe:Mn=1.0:0.9:0.1になるように混合した。即ち、5.12gのLiFePOと0.67gのLiMnPO前駆体を10mlのイオン交換水と混ぜて、乳鉢で十分に混合してスラリーを得た。このスラリーを黒鉛坩堝に投入して100℃で2時間の乾燥を行なった後、真空ガス置換炉に投入した。
 次いで、窒素ガスで十分に置換後真空状態にして、600℃で3時間の焼結処理を実施した。その後、これを室温まで放冷して坩堝を取出して中の試料を採取した。試料は脆い塊状であった。これをコーヒーミルで粉砕後に篩で20μm以下の凝集粒子に分級した。これを粉体Aとした。
 粉体AをX線回折装置で分析したところ、単相のオリビン型化合物であった。更にICP発光分析により、各元素が投入時の組成と同じであることを確認した。SEMによる粒度分布の測定では、焼結前と比較して粒径が大きくなり、一次粒子は約0.7から3μmであることを確認した。
(実施例2)
 実施例1で得られたものと同じLiFePOとLiMnPO前駆体を用い、Li:Fe:Mn=1.0:0.9:0.1になるように、5.12gのLiFePOと0.67gのLiMnPO前駆体を混合した。次に、0.512gのショ糖を10mlのイオン交換水に溶解した溶液を上記の混合粉と混ぜて乳鉢で十分に混合し、スラリーを得た。このスラリーを黒鉛坩堝に投入した後、100℃で2時間の乾燥を行ない、更に、真空ガス置換炉に投入した。
 次いで、窒素ガスで十分に置換した後、真空状態にして、600℃で3時間の焼結処理を実施した。その後、室温まで放冷した後、坩堝を取出して中の試料を採取した。試料は黒色の脆い塊状であった。これをコーヒーミルで粉砕後に篩で20μm以下の凝集粒子に分級した。これを粉体Bとした。
 この粉体BをX線回折装置で分析したところ、単相のオリビン型化合物であった。更にICP発光分光分析により、各元素が投入時の組成と同じであることを確認した。また、熱重量分析により、カーボン量は4重量%であることを確認した。SEMによる粒度分布の測定では、焼結前と比較して粒径が大きくなり、一次粒子は約0.7から3μmであることがわかった。
(実施例3)
 実施例1で得られたものと同じLiFePOとLiMnPO前駆体を用い、Li:Fe:Mn=1.0:0.9:0.1になるように、5.12gのLiFePOと0.67gのLiMnPO前駆体を混合し、更に0.100gのアセチレンブラックを加えた。これに0.512gのショ糖を10mlのイオン交換水に溶解した溶液を混合粉と混ぜて、乳鉢で十分に混合してスラリーとした。このスラリーを黒鉛坩堝に投入した後、100℃で2時間の乾燥を行ない、更に、真空ガス置換炉に投入した。
 次いで、窒素ガスで十分に置換した後、真空状態にして600℃で3時間の焼結処理を実施した。その後、室温まで放冷して坩堝を取出して中の試料を採取した。この試料は、黒色の脆い塊状であった。これをコーヒーミルで粉砕後に篩で20μm以下の凝集粒子に分級した。これを粉体Cとした。
 この粉体CをX線回折装置で分析したところ、単相のオリビン型化合物であった。更にICP発光分光分析により各元素が投入時の組成と同じであることが分かった。また、熱重量分析により、総カーボン量は6重量%であることを確認した。SEMによる粒度分布の測定では、焼結前と比較して粒径が大きくなり、一次粒子は約0.7から3μmであった。
(比較例1)
 65.99gのCHCOOLi、156.56gのFe(CHCOO)、17.30gのMn(CHCOO)、115.29gの85%HPOを秤量した混合物を、イオン交換水1000mlに加えて溶解させ、十分に攪拌して均一溶液とした。次に、この溶液を150℃で乾燥した後、得られた物質を電気炉に入れ、アルゴン-水素(92:8,v/v)中で400℃、8時間の焼成を行なった。その後、室温まで冷却して前駆体の塊を得た。これを再度粉砕して、また電気炉に入れ、同雰囲気中で600℃、24時間の焼成をして粉体Dを得た。
 この粉体DをX線回折装置で分析したところ、単相のオリビン型化合物であった。更にICPにより各元素がLiFe0.9Mn0.1POで表される組成比であることを確認した。SEMによる粒度分布測定では、粒径が約20から100nmであった。
 更に、上記イオン交換水に15gのショ糖を加えた溶液を上記混合物に加え、上記と同様の操作で得られた粉体を粉体Eとした。粉体Eは熱重量分析により、総カーボン量が6重量%であった。
(比較例2)
 リン酸リチウム486g、2価の鉄化合物としての2価の塩化鉄4水和物716g、および2価のマンガン化合物としての2価の塩化マンガン2水和物65gを、鉄耐圧容器(オートクレーブ)中に蒸留水2000mlとともに入れ、アルゴンガスで置換した後に密閉した。この耐圧容器を180℃のオイルバス中で48時間反応させた。その後、室温まで放冷した後、内容物を取出し、100℃で乾燥させて粉末試料を得た。
 得られた粉末は、X線回折パターンにより、単相のオリビン型化合物であることがわかった。更に、ICP発光分光分析により各元素がLiFe0.9Mn0.1POで表される組成比であることを確認した。また、SEMによる粒度分布測定では、約20から100nmであった。この粉末を粉体Fとした。
 1gのショ糖をイオン交換水に溶解した溶液を10gの粉体Fに加え、乳鉢で十分に混練してスラリーを得た。このスラリーを黒鉛坩堝に投入してから100℃で2時間の乾燥を行なった後真空ガス置換炉に投入した。次いで窒素ガスで十分に置換後、真空状態にして600℃で3時間の処理を実施した。その後室温まで放冷後に坩堝を取出して中の試料を採取した。試料は黒色の脆い塊状であり、これをコーヒーミルで粉砕後に篩で20μm以下の凝集粒子に分級した。これを粉体Gとした。X線回折装置で分析したところ、単相のオリビン型化合物であった。また熱重量分析によりカーボン量は4重量%であることを確認した。SEMによる粒度分布の測定では焼結前と比較して粒径が大きくなり、一次粒子は約0.7から3μmであった。
(比較例3)
 LiMnPO前駆体を適量のイオン交換水と混ぜて、乳鉢で十分に混合してスラリーを得た。このスラリーを黒鉛坩堝に投入した後、100℃で2時間の乾燥を行ない、更に真空ガス置換炉に投入した。窒素ガスで十分に置換した後、真空状態にして、600℃で3時間処理した。次いで、室温まで放冷した後に坩堝を取出して、中の試料を採取した。試料は脆い塊状であり、これをコーヒーミルで粉砕した後に篩で20μm以下の凝集粒子に分級した。
 これをX線回折装置で分析したところ、LiMnPOであることを確認した。更に、ICP発光分光分析によるLiとMnの定量の結果でも、略純粋なLiMnPOであることを確認した。SEMによる粒度分布の測定では、焼結前と比較して粒径が大きくなり、一次粒子は約0.7から3μmであった。
 水熱法で合成したLiFePOと上記LiMnPO粉末を、モル比で9:1の割合で混合した後、乳鉢で十分に均一分散させたものを粉体Hとした。
(比較例4)
 水熱法で得られたLiFePOを粉体Iとした。1gのショ糖をイオン交換水に溶解した溶液を10gの粉体Iに加えた後、乳鉢で十分に混練してスラリーを得た。このスラリーを黒鉛坩堝に投入した後、100℃で2時間の乾燥を行ない、更に、真空ガス置換炉に投入した。次いで、窒素ガスで十分に置換した後、真空状態にして600℃で3時間の処理を実施した。その後、室温まで放冷した後に、坩堝を取出して中の試料を採取した。
 試料は黒色の脆い塊状であり、これをコーヒーミルで粉砕した後に篩で20μm以下の凝集粒子に分級した。これを粉体Jとした。これをX線回折装置で分析したところ、単相のオリビン型化合物であることを確認した。また、熱重量分析により、カーボン量は4重量%であった。SEMによる粒度分布の測定では、焼結前と比較して粒径が大きくなり、一次粒子は約0.7から3μmであることが分かった。
(得られた各粒子の結晶学的比較)
 何れもFe:Mn=9:1の組成をもつ粉体A、粉体D、粉体HのX線回折パターンを図3に示した。図3から、何れの粉体も基本的なオリビン構造を有するリン酸型リチウム系化合物の特徴的なパターンを示した。LiFePOとLiMnPOの混合粉である粉体Hは明確なピーク分離は見られなかった。
 図4に示すように、(020)面を示す2θ=30°付近に出現するピークを拡大すると、各々の合成法によりピーク出現位置が異なることが判明した。これにより各合成法により結晶形態が変化したことが推定され、同じ組成を持つ本発明による粉体Aと従来の均一合成法による粉体Dは異なることが示唆された。
 また、粉体A-Jにサイクリックボルタンメトリーを行った結果、粉体A-CにはMnに起因するレドックスピークがブロードに見られ、濃度勾配があることが示唆されたが、粉体E~GではMnに起因するレドックスピースが見られなかった。また、粉体DではMnに起因するレドックスピークがシャープに見られた。
(正極の作製)
 実施例及び比較例で得られた各々の粉体A~Jに、導電剤としてアセチレンブラックを全炭素量が10重量%になるように混合した。混合粉末と結着剤であるポリフッ化ビニリデン(PVdF)を、重量比95:5の割合で混合し、さらにN-メチル-2-ピロリドン(NMP)を加えて十分混練して、正極スラリーを得た。
 この正極スラリーを厚さ15μmのアルミニウム箔集電体に100g/mの塗工量で塗布し、120℃で30分間乾燥した。その後、ロールプレスで1.8g/ccの密度になるように圧延加工し、2cmの円盤状に打抜いて正極とした。各粉体A~Jで作製した正極を各々正極A~Jとする。各仕様を下記表1にまとめて示した。
Figure JPOXMLDOC01-appb-T000001
 なお、上記表1において、粉体C(正極C)の化学式におけるC+ABは、ショ糖に由来する炭素Cとアセチレンブラック(AB)の炭素が存在することを意味する。
(正極の電気化学的特性確認)
 電気化学的特性を確認するために、三電極式セル(単極セル)を作製した。正極として作製した正極A~正極Jを、負極および参照電極として金属リチウム電極を使用し、電解液としてエチレン-カーボネート及びジエチルカーボネートを体積比1:1の割合で混合したものを用いた。
 電極評価として、1から5サイクルまでは0.2CAの充放電を実施し、充電終止電位4,5V、放電終止電位2.0Vとした。5サイクル目を0.2CA容量確認試験とした。次に、充放電の終止電位は前記0.2CAと同じ条件で、1CA、5CA、10CAで放電した後、放電と同じ電流で充電を行い、各率容量を確認した。尚、電位は金属Liに対する値である。下記表2にこれらの結果を示した。
Figure JPOXMLDOC01-appb-T000002
 上記表2から、本発明に係る正極A~正極Cは、特に5CA以上の高率充放電性能が優れていることが判明した。これは、FeとMnの二元系活物質のMn濃度が連続的に粒子内部で変化しているため、粒子内部の導電性が向上することと、Liイオン移動が円滑になったためと推定される。
 更にカーボン源と共に処理した粉末を使用した正極B更には正極Cは、粒子間の導電性も向上したために、より良好な特性を得ることができた。
 FeとMnが均一な組成の二元系活物質を使用した正極D~正極Gは、カーボンの効果が得られるものの、5CA以上の電流では反応抵抗を含む抵抗が大きく、容量低下が顕著に現れた。LiFePOとLiMnPOの混合正極である正極Hは、粒子の抵抗が大きいLiMnPOの影響を受け、全体的な性能が低下したものと推定される。単一系である正極Iおよび正極Jについては、低率では容量が得られやすいが、高率では容量低下が大きい問題を有していた。

Claims (7)

  1.  一般式LiM11-ZM2PO(但し、M1はFe、Mn、及びCoからなる群から選択される1種の金属元素であり、Yは式0.9≦Y≦1.2を満たす数であり、M2はMn、Co、Mg、Ti、及びAlからなる群から選択される少なくとも1種の金属元素でかつM1以外の金属元素であり、Zは式0<Z≦0.1を満たす数である)で表される、オリビン構造を有する多元系リン酸リチウム化合物粒子であって、粒子表面の金属元素M2の濃度が粒子中心部の濃度よりも高く、かつ金属元素M2の濃度が粒子表面から粒子中心部へ向かって連続的に低下していることを特徴とする多元系リン酸リチウム化合物粒子。
  2.  一般式LiM1PO(但し、M1はFe、Mn、及びCoからなる群から選択される1種の金属元素であり、Xは式0.9≦X≦1.2を満たす数である)で表されるオリビン構造を有するリン酸M1リチウム化合物と、1種以上の一般式LiM2PO(但し、M2はMn、Co、Mg、Ti、及びAlからなる群から選択される少なくとも1種の金属元素であり、Xは式0.9≦X≦1.2を満たす数である)で表されるオリビン構造を有するリン酸M2リチウム化合物の前駆体と、炭素または炭素源とを混合し、これを不活性雰囲気または真空中で熱処理することによって得られた、オリビン構造を有する多元系リン酸リチウム化合物とカーボンとの複合体粒子であって、粒子表面の金属元素M2の濃度が粒子中心部の濃度よりも高く、かつ金属元素M2の濃度が粒子表面から粒子中心部へ向かって連続的に低下している、一般式LiM11-ZM2PO(但し、M1はFe、Mn、及びCoからなる群から選択される1種の金属元素であり、Yは式0.9≦Y≦1.2を満たす数であり、M2はMn、Co、Mg、Ti、及びAlからなる群から選択される少なくとも1種の金属元素でかつM1で選択した以外の金属元素であり、Zは式0<Z≦0.1を満たす数である)で表されるオリビン構造を有する多元系リン酸リチウム化合物とカーボンとの複合体粒子。
  3.  一般式LiM1PO(但し、M1はFe、Mn、及びCoからなる群から選択される1種の金属元素であり、Xは式0.9≦X≦1.2を満たす数である)で表されるオリビン構造を有するリン酸M1リチウム化合物と、一般式LiM2PO(但し、M2はMn、Co、Mg、Ti、及びAlからなる群から選択される少なくとも1種の金属元素であり、Xは式0.9≦X≦1.2を満たす数である)で表されるオリビン構造を有するリン酸M2リチウム化合物の前駆体とを混合する工程、及び
     前記混合物を不活性雰囲気または真空中で熱処理し、粒子表面付近の金属元素M2の濃度が粒子中心部の濃度よりも高く、かつ金属元素M2の濃度が粒子表面から粒子中心部へ向かって連続的に低下している、一般式LiM11-ZM2PO(但し、M1はFe、Mn、及びCoからなる群から選択される1種の金属元素であり、Yは式0.9≦Y≦1.2を満たす数であり、M2はMn、Co、Mg、Ti、及びAlからなる群から選択される少なくとも1種の金属元素でかつM1で選択した以外の金属元素であり、Zは式0<Z≦0.1を満たす数である)で表されるオリビン構造を有する多元系リン酸リチウム化合物粒子を得る工程
     を具備することを特徴とするオリビン構造を有する多元系リン酸リチウム化合物粒子の製造方法。
  4.  前記リン酸M2リチウム化合物の前駆体が、リン酸M2リチウムの化学量論を満足するリン酸リチウム及びM2リン酸塩の混合物であることを特徴とする請求項3に記載の方法。
  5.  一般式LiM1PO(但し、M1はFe、Mn、及びCoからなる群から選択される1種の金属元素であり、Xは式0.9≦X≦1.2を満たす数である)で表されるオリビン構造を有するリン酸M1リチウム化合物と、1種以上の一般式LiM2PO(但し、M2はMn、Co、Mg、Ti、及びAlからなる群から選択される少なくとも1種の金属元素であり、Xは式0.9≦X≦1.2を満たす数である)で表されるオリビン構造を有するリン酸M2リチウム化合物の前駆体と、炭素または炭素源とを混合する工程、及び
     前記混合物を不活性雰囲気または真空中で熱処理し、粒子表面付近の金属元素M2の濃度が粒子中心部の濃度よりも高く、かつ金属元素M2の濃度が粒子表面から粒子中心部へ向かって連続的に低下している、一般式LiM11-ZM2PO(但し、M1はFe、Mn、及びCoからなる群から選択される1種の金属元素であり、Yは式0.9≦Y≦1.2を満たす数であり、M2はMn、Co、Mg、Ti、及びAlからなる群から選択される少なくとも1種の金属元素でかつM1で選択した以外の金属元素であり、Zは式0<Z≦0.1を満たす数である)で表されるオリビン構造を有する多元系リン酸リチウム化合物とカーボンとの複合体粒子を得る工程
     を具備することを特徴とするオリビン構造を有する多元系リン酸リチウム化合物とカーボンとの複合体粒子の製造方法。
  6.  前記リン酸M2リチウム化合物の前駆体が、リン酸M2リチウムの化学量論を満足するリン酸リチウム及びM2リン酸塩の混合物であることを特徴とする請求項5に記載の方法。
  7.  正極、負極及びリチウム塩を含む電解液を備えたリチウム二次電池において、前記正極は、請求項1に記載のオリビン構造を有する多元系リン酸リチウム化合物粒子または請求項2に記載のオリビン構造を有する多元系リン酸リチウム化合物とカーボンとの複合体粒子を少なくとも含むことを特徴とするリチウム二次電池。
PCT/JP2009/068074 2008-10-20 2009-10-20 オリビン構造を有する多元系リン酸リチウム化合物粒子、その製造方法及びこれを正極材料に用いたリチウム二次電池 WO2010047334A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2741406A CA2741406C (en) 2008-10-20 2009-10-20 Multi-component-system lithium phosphate compound particles having an olivine structure, manufacturing method thereof and lithium secondary battery employing the lithium phosphate compound particles as a positive electrode material
KR1020117008527A KR101300304B1 (ko) 2008-10-20 2009-10-20 올리빈 구조를 지닌 다원계 인산 리튬 화합물 입자, 그 제조방법 및 이것을 정극재료에 이용한 리튬 이차전지
EP09822031.2A EP2360119B1 (en) 2008-10-20 2009-10-20 Multi-element lithium phosphate compound particles having olivine structure, method for producing same, and lithium secondary battery using same in positive electrode material
CN2009801415127A CN102186770B (zh) 2008-10-20 2009-10-20 具有橄榄石结构的多元系磷酸锂化合物粒子、其制造方法及正极材料中用它的锂二次电池
US13/090,303 US8841023B2 (en) 2008-10-20 2011-04-20 Multi-component-system lithium phosphate compound particle having an olivine structure and lithium secondary battery employing the lithium phosphate compound particle as a positive electrode material
US14/460,087 US9337488B2 (en) 2008-10-20 2014-08-14 Method of manufacturing a multicomponent system lithium phosphate compound particle having an olivine structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008270091A JP5376894B2 (ja) 2008-10-20 2008-10-20 オリビン構造を有する多元系リン酸型リチウム化合物粒子、その製造方法及びこれを正極材料に用いたリチウム二次電池
JP2008-270091 2008-10-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/090,303 Continuation US8841023B2 (en) 2008-10-20 2011-04-20 Multi-component-system lithium phosphate compound particle having an olivine structure and lithium secondary battery employing the lithium phosphate compound particle as a positive electrode material

Publications (1)

Publication Number Publication Date
WO2010047334A1 true WO2010047334A1 (ja) 2010-04-29

Family

ID=42119371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068074 WO2010047334A1 (ja) 2008-10-20 2009-10-20 オリビン構造を有する多元系リン酸リチウム化合物粒子、その製造方法及びこれを正極材料に用いたリチウム二次電池

Country Status (7)

Country Link
US (2) US8841023B2 (ja)
EP (1) EP2360119B1 (ja)
JP (1) JP5376894B2 (ja)
KR (1) KR101300304B1 (ja)
CN (1) CN102186770B (ja)
CA (1) CA2741406C (ja)
WO (1) WO2010047334A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030350A (ja) * 2011-07-28 2013-02-07 Sony Corp 活物質およびその製造方法、電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具ならびに電子機器
WO2013073562A1 (ja) * 2011-11-15 2013-05-23 電気化学工業株式会社 複合粒子、その製造方法、二次電池用電極材料及び二次電池
WO2013073561A1 (ja) * 2011-11-15 2013-05-23 電気化学工業株式会社 複合粒子、その製造方法、二次電池用電極材料及び二次電池
JP2014216306A (ja) * 2013-04-30 2014-11-17 住友大阪セメント株式会社 電極材料と電極形成用ペースト、電極板及びリチウムイオン電池並びに電極材料の製造方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6057402B2 (ja) * 2010-03-02 2017-01-11 住友大阪セメント株式会社 電極活物質とその製造方法及びリチウムイオン電池
JP5552360B2 (ja) * 2010-05-12 2014-07-16 トヨタ自動車株式会社 複合正極活物質の製造方法、全固体電池の製造方法および複合正極活物質
CN102918686B (zh) * 2010-06-02 2015-08-12 株式会社半导体能源研究所 电力储存装置
JP5708977B2 (ja) * 2010-07-06 2015-04-30 トヨタ自動車株式会社 組電池
KR101219395B1 (ko) * 2010-07-15 2013-01-11 전자부품연구원 리튬이차전지용 양극재료 및 그의 제조방법
CN103109399B (zh) * 2010-09-10 2015-11-25 海洋王照明科技股份有限公司 一种含锂盐-石墨烯复合材料及其制备方法
JP5391337B2 (ja) * 2010-09-27 2014-01-15 パナソニック株式会社 リチウムイオン二次電池用正極活物質粒子、その正極活物質粒子を用いた正極およびリチウムイオン二次電池
WO2012040920A1 (zh) * 2010-09-29 2012-04-05 海洋王照明科技股份有限公司 一种磷酸铁锂复合材料、其制备方法和应用
JP2012185979A (ja) * 2011-03-04 2012-09-27 Sumitomo Osaka Cement Co Ltd 電極活物質の製造方法
JP5831296B2 (ja) * 2011-03-07 2015-12-09 日亜化学工業株式会社 オリビン型リチウム遷移金属酸化物およびその製造方法
JP5760524B2 (ja) * 2011-03-09 2015-08-12 株式会社Gsユアサ リチウム二次電池用正極活物質およびリチウム二次電池
JP5981101B2 (ja) * 2011-06-15 2016-08-31 株式会社東芝 非水電解質二次電池
JP2013048053A (ja) * 2011-08-29 2013-03-07 Sony Corp 活物質、電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
WO2013047495A1 (ja) 2011-09-30 2013-04-04 昭和電工株式会社 リチウム二次電池用正極活物質の製造方法
KR20130066326A (ko) * 2011-12-12 2013-06-20 어플라이드 머티어리얼스, 인코포레이티드 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2013108570A1 (ja) * 2012-01-17 2013-07-25 シャープ株式会社 正極活物質、正極及び非水系二次電池
CN103904324B (zh) * 2012-12-28 2016-02-24 河南科隆集团有限公司 锂离子电池用多元磷酸锰锂正极材料及其制备方法
HUE044345T2 (hu) * 2013-03-08 2019-10-28 Umicore Nv Jobb cellateljesítményt eredményezõ olivin elegy
JP6197540B2 (ja) * 2013-09-30 2017-09-20 Tdk株式会社 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極及びリチウムイオン二次電池
CN103904301B (zh) * 2014-02-26 2016-11-23 江苏华东锂电技术研究院有限公司 锂离子电池正极活性材料的制备方法
JP5820521B1 (ja) * 2014-09-29 2015-11-24 太平洋セメント株式会社 リチウム二次電池用正極材料及びその製造方法
US10340520B2 (en) * 2014-10-14 2019-07-02 Sila Nanotechnologies, Inc. Nanocomposite battery electrode particles with changing properties
JP6326366B2 (ja) * 2014-12-25 2018-05-16 信越化学工業株式会社 リチウムリン系複合酸化物炭素複合体及びその製造方法並びに、電気化学デバイス及びリチウムイオン二次電池
JP5888400B1 (ja) * 2014-12-26 2016-03-22 住友大阪セメント株式会社 電極材料及びその製造方法
CN107810570B (zh) * 2015-07-02 2021-07-02 尤米科尔公司 基于钴的锂金属氧化物阴极材料
US10991943B2 (en) 2016-12-02 2021-04-27 Samsung Sdi Co., Ltd. Nickel active material precursor for lithium secondary battery, method for producing nickel active material precursor, nickel active material for lithium secondary battery produced by method, and lithium secondary battery having cathode containing nickel active material
JP2018160383A (ja) * 2017-03-23 2018-10-11 住友大阪セメント株式会社 リチウムイオン二次電池用正極材料およびその製造方法、リチウムイオン二次電池用正極、リチウムイオン二次電池
CN108123122B (zh) * 2017-12-19 2020-06-19 青岛乾运高科新材料股份有限公司 Ncm622正极材料包覆改性方法
CN112701281B (zh) * 2020-12-28 2021-12-28 北京当升材料科技股份有限公司 复合橄榄石结构正极材料及其制备方法与应用
CN114572955B (zh) * 2022-03-24 2023-06-13 广东光华科技股份有限公司 电池级含铝磷酸铁及其制备方法、磷酸铁锂正极材料及其制备方法和电池

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134724A (ja) 1995-11-07 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> 非水電解質二次電池
JPH09134725A (ja) 1995-11-07 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> 非水電解質二次電池
JP2001085010A (ja) 1999-09-16 2001-03-30 Nippon Telegr & Teleph Corp <Ntt> リチウム二次電池
JP2001110414A (ja) 1999-10-04 2001-04-20 Nippon Telegr & Teleph Corp <Ntt> リチウム二次電池正極活物質およびリチウム二次電池
JP2003157845A (ja) 2001-11-22 2003-05-30 Kyushu Univ 2次電池用正極材料の製造方法、および2次電池
JP2003292309A (ja) 2002-01-31 2003-10-15 Nippon Chem Ind Co Ltd リチウム鉄リン系複合酸化物炭素複合体、その製造方法、リチウム二次電池正極活物質及びリチウム二次電池
JP2004063270A (ja) * 2002-07-29 2004-02-26 Sony Corp 正極活物質の製造方法、並びに非水電解質電池の製造方法
JP2005050684A (ja) * 2003-07-29 2005-02-24 Nippon Chem Ind Co Ltd Mn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の製造方法
JP2005116392A (ja) 2003-10-09 2005-04-28 Sumitomo Osaka Cement Co Ltd 電極材料粉体の製造方法と電極材料粉体及び電極並びにリチウム電池
WO2007034821A1 (ja) * 2005-09-21 2007-03-29 Kanto Denka Kogyo Co., Ltd. 正極活物質及びその製造方法並びに正極活物質を含む正極を有する非水電解質電池
JP2007103298A (ja) * 2005-10-07 2007-04-19 Toyota Central Res & Dev Lab Inc 正極活物質及びその製造方法、並びに水系リチウム二次電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6528033B1 (en) * 2000-01-18 2003-03-04 Valence Technology, Inc. Method of making lithium-containing materials
TW525313B (en) * 2000-04-25 2003-03-21 Sony Corp Positive electrode active material and non-aqueous electrolyte cell
JP4126862B2 (ja) * 2000-10-05 2008-07-30 ソニー株式会社 非水電解液電池及び固体電解質電池
CA2340798A1 (fr) * 2001-03-13 2002-09-13 Universite De Montreal Compositions cathodiques et leurs utilisations, notamment dans les generateurs electrochimiques
DE10117904B4 (de) * 2001-04-10 2012-11-15 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung Binäre, ternäre und quaternäre Lithiumeisenphosphate, Verfahren zu ihrer Herstellung und ihre Verwendung
CN100468833C (zh) * 2003-10-21 2009-03-11 威伦斯技术公司 磷酸锂电极活性材料前体的制造方法与产物
WO2005041327A1 (ja) * 2003-10-27 2005-05-06 Mitsui Engineering & Shipbuilding Co.,Ltd. 二次電池用正極材料、二次電池用正極材料の製造方法、および二次電池
JP2006155941A (ja) * 2004-11-25 2006-06-15 Kyushu Univ 電極活物質の製造方法
CN1305147C (zh) * 2004-12-30 2007-03-14 清华大学 锂离子电池正极材料高密度球形磷酸铁锂的制备方法
CN1299369C (zh) * 2005-01-06 2007-02-07 清华大学 一种高密度球形磷酸铁锂的制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134724A (ja) 1995-11-07 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> 非水電解質二次電池
JPH09134725A (ja) 1995-11-07 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> 非水電解質二次電池
JP2001085010A (ja) 1999-09-16 2001-03-30 Nippon Telegr & Teleph Corp <Ntt> リチウム二次電池
JP2001110414A (ja) 1999-10-04 2001-04-20 Nippon Telegr & Teleph Corp <Ntt> リチウム二次電池正極活物質およびリチウム二次電池
JP2003157845A (ja) 2001-11-22 2003-05-30 Kyushu Univ 2次電池用正極材料の製造方法、および2次電池
JP2003292309A (ja) 2002-01-31 2003-10-15 Nippon Chem Ind Co Ltd リチウム鉄リン系複合酸化物炭素複合体、その製造方法、リチウム二次電池正極活物質及びリチウム二次電池
JP2004063270A (ja) * 2002-07-29 2004-02-26 Sony Corp 正極活物質の製造方法、並びに非水電解質電池の製造方法
JP2005050684A (ja) * 2003-07-29 2005-02-24 Nippon Chem Ind Co Ltd Mn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の製造方法
JP2005116392A (ja) 2003-10-09 2005-04-28 Sumitomo Osaka Cement Co Ltd 電極材料粉体の製造方法と電極材料粉体及び電極並びにリチウム電池
WO2007034821A1 (ja) * 2005-09-21 2007-03-29 Kanto Denka Kogyo Co., Ltd. 正極活物質及びその製造方法並びに正極活物質を含む正極を有する非水電解質電池
JP2007103298A (ja) * 2005-10-07 2007-04-19 Toyota Central Res & Dev Lab Inc 正極活物質及びその製造方法、並びに水系リチウム二次電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF POWER SOURCES, vol. 146, 2005, pages 580 - 583
See also references of EP2360119A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030350A (ja) * 2011-07-28 2013-02-07 Sony Corp 活物質およびその製造方法、電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具ならびに電子機器
WO2013073562A1 (ja) * 2011-11-15 2013-05-23 電気化学工業株式会社 複合粒子、その製造方法、二次電池用電極材料及び二次電池
WO2013073561A1 (ja) * 2011-11-15 2013-05-23 電気化学工業株式会社 複合粒子、その製造方法、二次電池用電極材料及び二次電池
JPWO2013073561A1 (ja) * 2011-11-15 2015-04-02 電気化学工業株式会社 複合粒子、その製造方法、二次電池用電極材料及び二次電池
JPWO2013073562A1 (ja) * 2011-11-15 2015-04-02 電気化学工業株式会社 複合粒子、その製造方法、二次電池用電極材料及び二次電池
US10873073B2 (en) 2011-11-15 2020-12-22 Denka Company Limited Composite particles, manufacturing method thereof, electrode material for secondary battery, and secondary battery
JP2014216306A (ja) * 2013-04-30 2014-11-17 住友大阪セメント株式会社 電極材料と電極形成用ペースト、電極板及びリチウムイオン電池並びに電極材料の製造方法

Also Published As

Publication number Publication date
US20140353555A1 (en) 2014-12-04
US9337488B2 (en) 2016-05-10
EP2360119A4 (en) 2013-01-23
KR101300304B1 (ko) 2013-08-28
EP2360119A1 (en) 2011-08-24
JP2010095432A (ja) 2010-04-30
US20110195304A1 (en) 2011-08-11
JP5376894B2 (ja) 2013-12-25
KR20110088504A (ko) 2011-08-03
CN102186770B (zh) 2013-12-18
CA2741406C (en) 2014-08-19
EP2360119B1 (en) 2014-03-19
CN102186770A (zh) 2011-09-14
US8841023B2 (en) 2014-09-23
CA2741406A1 (en) 2010-04-29

Similar Documents

Publication Publication Date Title
JP5376894B2 (ja) オリビン構造を有する多元系リン酸型リチウム化合物粒子、その製造方法及びこれを正極材料に用いたリチウム二次電池
JP5651937B2 (ja) 非水系電解質二次電池用正極活物質およびその製造方法、ならびにこれを用いた非水系電解質二次電池
EP2634847B1 (en) Multilayer-structured carbon material for negative electrode of nonaqueous electrolyte secondary battery, negative electrode for nonaqueous secondary battery, lithium ion secondary battery, and method for manufacturing multilayer-structured carbon material for negative electrode of nonaqueous electrolyte secondary battery
JP6818225B2 (ja) 非水系電解質二次電池用正極活物質の製造方法
JP5108588B2 (ja) 二次電池用正極板およびその製造方法
JP5165515B2 (ja) リチウムイオン二次電池
JP5281765B2 (ja) リチウム鉄リン系複合酸化物炭素複合体の製造方法及びリチウム、鉄及びリンを含む共沈体の製造方法
JP2018045802A (ja) 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
JP2021064598A (ja) リチウムイオン二次電池用正極活物質およびその製造方法
WO2020003595A1 (ja) 非水電解質二次電池
JP2020030920A (ja) リチウムイオン二次電池用正極材料、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP6070222B2 (ja) 非水系二次電池用正極活物質及びその製造方法、並びにその正極活物質を用いた非水系二次電池用正極を有する非水系二次電池
JP2011249293A (ja) リチウム遷移金属化合物及びその製造方法、並びにリチウムイオン電池
JP2021150081A (ja) リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP2010232091A (ja) リチウムイオン電池用正極活物質の製造方法とリチウムイオン電池用正極活物質及びリチウムイオン電池用電極並びにリチウムイオン電池
WO2020026686A1 (ja) リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
JP6119123B2 (ja) 活物質材料、電池、および活物質材料の製造方法
JP5121625B2 (ja) リチウム二次電池用正極活物質の製造法、正極活物質及びリチウム二次電池
JP2020066560A (ja) 金属複合水酸化物とその製造方法、リチウムイオン二次電池用正極活物質とその製造方法、及び、それを用いたリチウムイオン二次電池
JP2012054077A (ja) 二次電池用活物質及び二次電池用活物質の製造方法、並びに、それを用いた二次電池
JP2004288501A (ja) リチウム二次電池用正極活物質、それを用いたリチウム二次電池用正極及びリチウム二次電池
WO2020026687A1 (ja) リチウムイオン二次電池用正極活物質の製造方法
WO2024070137A1 (ja) リチウムイオン二次電池用正極材料及びその製造方法、リチウムイオン二次電池用正極、ならびにリチウムイオン二次電池
JP5818086B2 (ja) 二次電池およびその製造方法
JP7308586B2 (ja) 非水系電解質二次電池用正極活物質

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980141512.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09822031

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117008527

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009822031

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2741406

Country of ref document: CA