WO2012040920A1 - 一种磷酸铁锂复合材料、其制备方法和应用 - Google Patents

一种磷酸铁锂复合材料、其制备方法和应用 Download PDF

Info

Publication number
WO2012040920A1
WO2012040920A1 PCT/CN2010/077468 CN2010077468W WO2012040920A1 WO 2012040920 A1 WO2012040920 A1 WO 2012040920A1 CN 2010077468 W CN2010077468 W CN 2010077468W WO 2012040920 A1 WO2012040920 A1 WO 2012040920A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron phosphate
lithium iron
lithium
phosphate composite
composite material
Prior art date
Application number
PCT/CN2010/077468
Other languages
English (en)
French (fr)
Inventor
周明杰
潘军
王要兵
Original Assignee
海洋王照明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股份有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to CN201080068206.8A priority Critical patent/CN103003193B/zh
Priority to US13/822,475 priority patent/US20130177784A1/en
Priority to PCT/CN2010/077468 priority patent/WO2012040920A1/zh
Priority to JP2013530519A priority patent/JP5778774B2/ja
Priority to EP10857683.6A priority patent/EP2623459A4/en
Publication of WO2012040920A1 publication Critical patent/WO2012040920A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • C01B25/375Phosphates of heavy metals of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of battery cathode materials, in particular to a lithium iron phosphate composite material, a preparation method thereof and an application thereof.
  • Lithium-ion batteries are a new type of green rechargeable battery developed in the 1990s. Because of its advantages of high working voltage, small volume, light weight, high specific energy, no memory effect, no pollution, small self-discharge, and long cycle life, it is considered to be an ideal energy source for development in the 21st century and is widely used. In communications, transportation, motor vehicles, military, laptops and household appliances.
  • the lithium iron phosphate battery currently used has the advantages of low cost, high temperature resistance, good cycle performance, high specific capacity, flat charging and discharging voltage curve, and the like, and has great potential for application.
  • the lithium iron phosphate composite material used in the current lithium iron phosphate battery has the following disadvantages: low conductivity, low tap density, and low charge and discharge rate.
  • the embodiments of the present invention provide a lithium iron phosphate composite material, which solves the problems of low conductivity, low charge and discharge rate, and low tap density of the current battery cathode material.
  • a lithium iron phosphate composite material is a micron-sized porous particle structure, the interior of the micron-sized porous particle structure comprises nano-scale lithium iron phosphate crystal grains and graphene, the micron-sized porous particles The outer layer of the structure is coated with nano carbon particles.
  • the mixed solution is added to an aqueous solution of an organic carbon source, and mixed at a water bath temperature of 20-80 ° C for 0.5 to 5 hours, and the pH of the mixed reaction system is controlled at 1 to 7, to obtain an organic iron source-coated nanometer iron phosphate. ;
  • the nanometer iron phosphate coated with the organic carbon source prepared above and the lithium source compound are added to the aqueous graphene oxide solution, stirred and mixed. Subsequently, it is spray-dried, calcined at 400-1000 ° C under a reducing atmosphere for 1-24 hours, and naturally cooled to obtain the lithium iron phosphate composite material.
  • the embodiment of the present invention further provides the use of the above lithium iron phosphate composite material in a lithium ion battery or a cathode material.
  • the lithium iron phosphate composite material of the embodiment of the invention has high conductivity due to strong conductive action of nano carbon particles and graphene, and thus has high charge and discharge rate; and passes through micron-sized lithium iron phosphate particles and lithium iron phosphate.
  • the two-particle structure of nanoparticles has a high tap density.
  • FIG. 1 is a scanning electron photograph of a lithium iron phosphate composite material ( ⁇ 1000) according to an embodiment of the present invention
  • FIG. 2 is a scanning electron photograph of a lithium iron phosphate composite material ( ⁇ 4000) according to an embodiment of the present invention
  • FIG. 3 is an X-ray diffraction diagram of a lithium iron phosphate composite material provided by an embodiment of the present invention.
  • FIG. 4 is a battery test result diagram of a lithium iron phosphate composite material provided by an embodiment of the present invention.
  • the embodiment of the invention provides a lithium iron phosphate composite material, wherein the lithium iron phosphate composite material is a micron-sized particle structure, and the micron-sized particle structure comprises nanometer-scale lithium iron phosphate crystal grains and graphene, and the micron-sized particle structure
  • the outer layer is coated with nano carbon particles.
  • the lithium iron phosphate composite material of the embodiment of the invention is a micron-sized particle structure, and specifically, the micron-sized particle structure is micron-sized lithium iron phosphate particles.
  • the micron-sized lithium iron phosphate particles are the basic unit constituting the positive electrode material of the embodiment of the present invention.
  • the particle size of the micron-sized lithium iron phosphate particles is preferably between 1 and 20 microns.
  • the electron micrographs of Figures 1 and 2 show that the morphology of the micron-sized lithium iron phosphate particles includes various morphologies such as an ellipsoidal shape, a spherical shape, preferably a spherical topography, and the spherical topography includes a regular or irregular spherical shape.
  • the micron-sized particle structure internally includes graphene and nano-scale lithium iron phosphate grains, and the nano-sized lithium iron phosphate grains are coated with nano carbon particles, so that the above-mentioned micron-sized particle structure is coated with carbon particles outside, and the nano-sized phosphoric acid is coated.
  • the particle size of the iron lithium crystal grains is less than 100 nm.
  • the graphene and the nano-sized lithium iron phosphate crystal grains are mixed with each other, specifically, the surface of the graphene is attached with nano-scale lithium iron phosphate crystal grains; in a specific embodiment, the surface of the graphene is wrinkled, and between the graphene and the graphene The space that accommodates most of the nano-nano-sized lithium iron phosphate grains is formed by wrinkles.
  • the lithium iron phosphate composite material of the embodiment of the invention has high electrical conductivity; in addition, since graphene is also a very excellent conductive material, the lithium iron phosphate composite of the embodiment of the invention is further greatly improved.
  • the electrical conductivity of the material; the wrinkles indicated by graphene make the gap between the nano-sized lithium iron phosphate grains attached to the surface of the graphene smaller, and some of the nano-sized lithium iron phosphate grains are in contact with each other, which greatly improves the
  • the electrical conductivity of the lithium iron phosphate composite material of the embodiment of the invention can greatly improve the charge and discharge performance of the lithium iron phosphate composite material.
  • the lithium iron phosphate composite material of the embodiment of the invention generally comprises two kinds of particles, one is micron-sized lithium iron phosphate particles, and the other is nano-scale lithium iron phosphate crystal grains inside the micron-sized lithium iron phosphate particles, the two kinds of particles It is formed by secondary granulation in the preparation method, and the tight bonding between the crystal grains and the fine particles makes the tap density of the lithium iron phosphate composite material of the embodiment of the invention greatly improved.
  • the graphene of the lithium iron phosphate composite material of the embodiment of the invention is a molecular-scale graphene monolithic or molecular-scale graphene monolithic aggregate, preferably 2-100 layers of molecular grade graphene monolithic aggregates, more preferably The molecular weight graphene monolith, the mass percentage of graphene in the lithium iron phosphate composite material is 0.1-99%.
  • the embodiment of the invention further provides a method for preparing a lithium iron phosphate composite material, comprising the following steps:
  • the iron source used for preparing the mixed solution is a compound containing Fe 3+ (iron ion) including, but not limited to, iron oxide, iron sulfate, ferric citrate, or Fe 2+ (ferrous ion).
  • Fe 3+ iron ion
  • Compounds such as ferroferric oxide, ferrous sulfate, ammonium ferrous sulfate, ferrous ferrous phosphate, ferrous phosphate, ferrous citrate, ferrous oxide, etc., are obtained by oxidation to obtain a compound containing Fe 3+ (iron ion).
  • the oxidizing agent to be used is not limited in kind, and is preferably ammonium persulfate, sodium hypochlorite, hydrogen peroxide having a mass percentage of 30%, or one or more of solid hydrogen peroxide, and the concentration of the oxidizing agent is 0.1 to 5 mol/L.
  • the source of phosphorus used is a compound containing PO 4 3- including but not limited to phosphoric acid, ammonium dihydrogen phosphate, diammonium phosphate, phosphoric acid Lithium hydride, ferrous phosphate or ammonium phosphate may be used.
  • Phosphorus pentoxide may be used, and phosphorus pentoxide may be reacted with water in an aqueous solution to form phosphoric acid.
  • the iron source used in this step can ionize iron ions or ferrous ions in a solvent, and the concentration of iron ions or ferrous ions in this step is 0.1-2.5 mol/ L; a phosphorus source (a compound containing PO 4 3- ) capable of ionizing phosphate ions, a mass percentage of a solution containing a compound of PO 4 3- is 85%; or being unable to ionize iron ions or ferrous ions or phosphates Ions, but the two compounds are capable of reacting in a solvent to form a precipitate of iron phosphate, such as a combination of iron oxide and phosphoric acid.
  • the reaction formula of this step is expressed as:
  • a nano-scale iron phosphate precipitate ie, iron phosphate nano-particles
  • the particle size of the iron phosphate nanoparticles is less than 100 nm, which is an embodiment of the present invention.
  • the first granulation in the preparation method of the lithium iron phosphate composite In this step, the molar ratio of the compound of Fe 3+ (iron ion) to the compound containing PO 4 3- (phosphate ion) was 1:1.
  • Various solvents preferably water, can be used in this step.
  • iron phosphate nanoparticles are prepared on the surface of the iron phosphate nanoparticle, so that the surface of the iron phosphate nanoparticle is charged, and the organic carbon source can be caused to polymerize on the surface.
  • the organic carbon source comprises an organic carbon source capable of polymerizing on the surface of the iron phosphate nanoparticles and capable of decomposing at a temperature of 400-1000 ° C, preferably an aniline monomer or a derivative thereof, a pyrrole monomer or a derivative thereof. And a thiophene monomer or a derivative thereof, after adding an organic carbon source, the organic carbon source is polymerized on the outer surface of the iron phosphate nanoparticle by the oxidation of ferric ions on the surface of the iron phosphate, and the organic carbon source is itself polymerized.
  • the coated iron phosphate nanoparticles are preferably fully coated.
  • the polymerization reaction will be forced to stop, so the amount of the organic carbon source added has a certain value, and the amount exceeds this value, The organic monomer will remain in the solution without reverse polymerization.
  • the fixed value is about 35% of the mass of iron phosphate.
  • the alkaline agent may be various alkaline agents, preferably ammonia, sodium hydroxide, potassium hydroxide, potassium carbonate, potassium hydrogencarbonate.
  • Etc. the acidic agent is acetic acid or hydrochloric acid.
  • the temperature of the system is controlled at 20-80 ° C, and the temperature of the reaction can be controlled by using a water bath heating method.
  • the reaction is stirred for 0.5-5 hours, after which stirring is continued for 0.5-5 hours.
  • the pH of the reaction system is 1-7, which is an acidic environment, in which the organic carbon source is more easily polymerized on the surface of the iron phosphate.
  • step c) the method for preparing graphene oxide is based on a modified hummers method (J. Am. Chem. Soc., 1958, 80 (6), 1339-1339, Preparation o f GraphiticOxide), in this step, adding graphene oxide, the functional group of the organic carbon source coated with iron phosphate and the functional group on the surface of the graphene oxide are organically reacted to connect the organic carbon source and the graphene.
  • the source compound of lithium includes, but is not limited to, one or more of lithium oxide, lithium hydroxide, lithium carbonate, lithium acetate, lithium phosphate, lithium dihydrogen phosphate, lithium fluoride, and the like, and the lithium compound ionizes lithium ions in water.
  • the concentration of the iron phosphate nanoparticles in the solution after adding the organic monomer is 0.05-1.25 mol/L (the mass of the graphene oxide is 0.1-99% of the mass of the iron phosphate); the molar amount of the lithium source compound and the molar amount of the iron phosphate The ratio is 1:1; the mixing treatment allows the mixed solution to be uniformly mixed.
  • the iron phosphate nanoparticles are coated with an organic carbon source, the organic carbon source is combined with the graphene oxide, and the lithium ions are distributed in the structure of the iron phosphate nanoparticles coated with the organic carbon source.
  • the spray drying equipment used is not required and may be a variety of spray drying equipment.
  • the spray drying process is specifically: under constant stirring conditions, the feed rate is 0.5-5 L/min, the feed temperature is 150-250 ° C, the discharge temperature is 65-85 ° C, and in spray drying, the first spray is c)
  • the obtained mixed solution is small water droplets, and the small water droplets are heated by the high temperature instantaneously to evaporate the water, and the volume becomes small, so that a plurality of iron phosphate nanoparticles are polymerized together to form a larger particle size iron phosphate base particle. It is agglomerated by a certain amount of iron phosphate nanoparticles coated with an organic carbon source.
  • the tap density of the lithium iron phosphate composite material of the embodiment of the present invention is greatly improved.
  • the reducing atmosphere may be various reducing atmospheres, preferably 10% nitrogen and 90% hydrogen, 20% argon and 80% carbon monoxide, etc., and the temperature is raised at a rate of 2 to 10 ° C / min. After high-temperature calcination, it is naturally cooled and crystallized to obtain the lithium iron phosphate composite material of the embodiment of the present invention.
  • the precursor of lithium iron phosphate composite is calcined under a reducing atmosphere, and ferric ions are reduced to divalent iron ions to form a ferrous phosphate lattice, and lithium ions are diffused into the ferrous phosphate lattice to form nanometer lithium iron phosphate. Grain.
  • the organic carbon source is decomposed into C elemental and gas, and the nano-sized lithium iron phosphate grains are coated with nano-carbon particles; the graphene oxide is reduced to graphene, which is coated with nano-carbon particles and doped with graphene.
  • the conductivity of the lithium iron phosphate composite material is greatly improved; at the same time, since the organic carbon source is calcined and decomposed into a gas, the gas diffuses outside the micron-sized lithium iron phosphate particles to form a certain channel, and a certain amount is formed on the surface of the micron-sized lithium iron phosphate particles.
  • the micropores which make the lithium iron phosphate composite charge and discharge performance significantly enhanced.
  • the embodiment of the invention further provides an application of a lithium iron phosphate composite material in a lithium ion battery or a cathode material.
  • the nanometer lithium iron phosphate crystal grains are coated with the nano carbon particles, so that the lithium iron phosphate composite material of the embodiment of the invention has high conductivity; in addition, since the graphene is also very The excellent conductive material greatly improves the electrical conductivity of the lithium iron phosphate composite material of the embodiment of the present invention.
  • the lithium iron phosphate composite material of the embodiment of the invention generally comprises two types of particles: nanometer lithium iron phosphate crystal grains and micron lithium iron phosphate particles, which are formed by secondary granulation in a preparation method, so that The tap density of the lithium iron phosphate composite material of the embodiment of the invention is greatly improved.
  • the preparation method of the lithium iron phosphate composite material of the embodiment of the invention enables the iron phosphate nanoparticle to be completely coated by the organic carbon source by the oxidation of ferric ions, thereby ensuring the nanometer lithium iron phosphate in the lithium iron phosphate composite material.
  • the crystal grains are coated with nano carbon particles, which greatly improves the electrical conductivity of the lithium iron phosphate composite material.
  • the tap density of the lithium iron phosphate composite material of the embodiment of the present invention is greatly improved by secondary granulation.
  • the preparation method of the embodiment of the invention has the advantages of simple process, convenient operation and low cost, and is suitable for industrial scale production.
  • the above iron phosphate-containing solution is continuously introduced into the aniline solution by a peristaltic pump, and the pH of the reaction system is controlled by the above aqueous ammonia solution to be 2.0 ( ⁇ 0.1) at 20 ° C.
  • the flow rate of the peristaltic pump was controlled to be 0.45 ml/min, the reaction was carried out for 3 hours, the stirring was continued for 2 hours, and the precipitate was centrifugally washed to obtain aniline-coated nanometer iron phosphate nanoparticles;
  • the method for preparing graphene oxide is based on the improved hummers method (J. Am. Chem. Soc., 1958, 80 (6), 1339-1339, Preparation of Graphitic Oxide), after preparing graphene oxide, dissolving 10 g of graphene oxide in 10 mL of water to form a graphene oxide aqueous solution having a concentration of 1 g/mL, the aqueous solution being brown;
  • 0.1 mol of aniline-coated iron phosphate nanoparticles are uniformly mixed with the above aqueous graphene oxide solution (containing 0.5 g of graphene oxide), and the content of iron phosphate nanoparticles in water is 20%, and the mixture is added to the mixed system.
  • the above-mentioned lithium iron phosphate composite precursor is placed in a tube furnace, raised from 20 ° C to 800 ° C and held for 12 h, the heating rate is 5 ° C /min, natural cooling obtained the lithium iron phosphate composite material of the embodiment of the present invention, and the tap density of the material was determined to be as high as 1.7-1.8 g/cm3.
  • Battery assembly and performance test Take the active substance, acetylene black, and polyvinylidene fluoride (PVDF) according to the ratio of 84:8:8, uniformly mix and apply on aluminum foil to make positive electrode, then The metal lithium is a negative electrode, the polypropylene film is a separator, and a mixture of 1 mol/L of LiPF6 ethylene carbonate (EC) and dimethyl carbonate (DMC) (volume ratio 1:1) is an electrolyte in an argon atmosphere.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • Figure 3 illustrates that the diffraction peak of the sample is sharp.
  • the material has a crystallized, single olivine structure. It can also be seen from the figure that no diffraction peak of carbon is observed, which may be due to a small carbon content or an amorphous state, and does not affect the crystal structure.
  • Figure 4 illustrates that the material has a discharge capacity of 150 mAh/g under 1C conditions and a good rate performance close to the theoretical capacity.
  • the method for preparing graphene oxide is based on the improved hummers method (J. Am. Chem. Soc., 1958, 80 (6), 1339-1339, Preparation of Graphitic Oxide), after preparing graphene oxide, dissolving 20 g of graphene oxide in 10 mL of water to form a graphene oxide aqueous solution having a concentration of 2 g/mL, the aqueous solution being brown;
  • the step (mixed liquid is spray-dried, the feed rate is 2L / min, the spray inlet temperature is 180 ° C, the outlet temperature is 75 ° C, the lithium iron phosphate composite precursor is obtained;
  • the lithium iron phosphate composite precursor was placed in a tube furnace, raised from 25 ° C to 600 ° C and held for 12 h, the heating rate was At 5 ° C / min, natural cooling to obtain lithium iron phosphate composite material.

Description

一种磷酸铁锂复合材料、其制备方法和应用 技术领域
本发明属于电池正极材料技术领域,尤其涉及一种磷酸铁锂复合材料、其制备方法和应用。
背景技术
锂离子电池是20世纪90年代发展起来的一种新型的绿色环保可充电电池。由于其具有工作电压高、体积小、质量轻、比能量高、无记忆效应、无污染、自放电小,循环寿命长等方面的优势,被人们认为是21世纪发展的理想能源,被广泛应用于通讯、交通、机动车辆、军事、笔记本电脑和家用电器等方面。目前使用的磷酸铁锂电池存在成本低、耐高温、循环性能好、比容量高、充放电电压曲线平坦等优点,具有较大应用的潜力。但是目前的磷酸铁锂电池使用的磷酸铁锂复合材料具有以下缺点:导电率低、振实密度低及充放电倍率低。
技术问题
有鉴于此,本发明实施例提供一种磷酸铁锂复合材料,解决现有的电池正极材料导电率不高、充放电倍率不高及振实密度低的问题。
技术解决方案
一种磷酸铁锂复合材料,该磷酸铁锂复合材料为微米级多孔状颗粒结构,该微米级多孔状颗粒结构的内部包括有纳米级磷酸铁锂晶粒以及石墨烯,该微米级多孔状颗粒结构的外层包覆有纳米碳微粒。
以及一种磷酸铁锂复合材料的制备方法,步骤如下:
按照磷元素与铁元素的摩尔比1:1,配制铁盐混合溶液;
将上述混合溶液加入有机碳源水溶液中,于20-80℃水浴温度下混合反应0.5~5小时,且混合反应体系的pH值控制在1~7,制得有机碳源包覆的纳米磷酸铁;
将上述制得的有机碳源包覆的纳米磷酸铁和锂源化合物加入氧化石墨烯水溶液,搅拌、混合, 随后喷雾干燥,形400-1000℃、还原气氛条件下煅烧1-24小时,自然冷却,得到所述磷酸铁锂复合材料。
进一步,本发明实施例的还提供上述磷酸铁锂复合材料在锂离子电池或正极材料中的应用。
有益效果
本发明实施例的磷酸铁锂复合材料由于纳米碳微粒和石墨烯的具有强导电作用,具有高导电率,也因此而具有较高的充放电倍率;通过微米级磷酸铁锂颗粒和磷酸铁锂纳米粒子的双粒子结构,具有较高的振实密度。
附图说明
图1是本发明实施例的磷酸铁锂复合材料(×1000)电镜扫描照片;
图2是本发明实施例的磷酸铁锂复合材料(×4000)电镜扫描照片;
图3是本发明实施例提供的磷酸铁锂复合材料的X衍射图;
图4是本发明实施例提供的磷酸铁锂复合材料的电池测试结果图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供一种磷酸铁锂复合材料,该磷酸铁锂复合材料为微米级颗粒结构,该微米级颗粒结构的内部包括有纳米级磷酸铁锂晶粒以及石墨烯,该微米级颗粒结构的外层包覆有纳米碳微粒。
本发明实施例的磷酸铁锂复合材料为微米级颗粒结构,具体来讲,该微米级颗粒结构为微米级磷酸铁锂颗粒。微米级磷酸铁锂颗粒是组成本发明实施例正极材料的基本单元。微米级磷酸铁锂颗粒的粒径优选在1-20微米之间。图1和图2的电镜图显示,微米级磷酸铁锂颗粒的形貌包括各种形貌,例如椭球形、球形,优选的为球形形貌,球形形貌包括规则或不规则的球形。
该微米级颗粒结构内部包括石墨烯和纳米级磷酸铁锂晶粒,该纳米级磷酸铁锂晶粒被纳米碳微粒包覆,使得上述微米级颗粒结构外面被碳颗粒包覆,该纳米级磷酸铁锂晶粒的粒径小于100纳米。石墨烯和纳米级磷酸铁锂晶粒相互混合,具体地,石墨烯表面附着纳米级磷酸铁锂晶粒;在一个具体的实施例中,石墨烯表面形成皱褶,石墨烯与石墨烯之间通过皱褶而构成容纳大部分纳米纳米级磷酸铁锂晶粒的空间。C是优良的导电材料,使得本发明实施例的磷酸铁锂复合材料具有较高的导电性能;另外,由于石墨烯也是非常优异的导电材料,进一步大大提高了本发明实施例的磷酸铁锂复合材料的导电性能;通过石墨烯表明的皱褶,使得附着在石墨烯表面的纳米级磷酸铁锂晶粒彼此之间的空隙变小,一些纳米级磷酸铁锂晶粒相互接触,这大大提高了本发明实施例的磷酸铁锂复合材料的导电性能,实现了磷酸铁锂复合材料充放电性能大大提高。
本发明实施例的磷酸铁锂复合材料总体上包括两种类的粒子,一是微米级磷酸铁锂颗粒,另一个是微米级磷酸铁锂颗粒内部的纳米级磷酸铁锂晶粒,这两种粒子是通过制备方法中二次造粒形成的,晶粒之间、微粒之间紧密结合,使得本发明实施例的磷酸铁锂复合材料的振实密度大大提高。
本发明实施例的磷酸铁锂复合材料的石墨烯为分子级石墨烯单片或者分子级石墨烯单片聚集体,优选为2-100层分子级石墨烯单片聚集体,更有选的为分子级石墨烯单片,石墨烯在磷酸铁锂复合材料中的质量百分数为0.1-99%。
本发明实施例还提供磷酸铁锂复合材料制备方法,包括如下步骤:
a),按照磷元素与铁元素的摩尔比1:1,配制铁盐混合溶液;
步骤a)中,配制混合溶液使用的铁源为含有Fe3+(铁离子)的化合物包括但不限于氧化铁、硫酸铁、柠檬酸铁,也可以为含有Fe2+(亚铁离子)的化合物如四氧化三铁、硫酸亚铁、硫酸亚铁铵、磷酸亚铁氨、磷酸亚铁、柠檬酸亚铁、氧化亚铁等通过氧化而得到含有Fe3+(铁离子)的化合物,所使用的氧化剂没有种类的限制,优选的为过硫酸铵、次氯酸钠、质量百分含量为30%的过氧化氢、固体双氧水中的一种或以上,氧化剂的浓度为0.1-5mol/L,氧化剂使用过量的氧化剂,保证所有的亚铁离子都能够被氧化成三价铁离子;使用的磷源为含有PO4 3-的化合物包括但不限于磷酸,磷酸二氢铵、磷酸氢二铵、磷酸二氢锂、磷酸亚铁氨或磷酸铵等,也可以使用五氧化二磷,五氧化二磷在水溶液中和水反应,生成磷酸。
本步骤中使用的铁源(即含有Fe3+或亚铁离子的化合物),在溶剂中能够电离出铁离子或亚铁离子,本步骤中铁离子或亚铁离子的浓度为0.1-2.5mol/L;磷源(含有PO4 3-的化合物)能够电离出磷酸根离子,含有PO4 3-的化合物的溶液的质量百分数为85%;或者不能够电离出铁离子或亚铁离子或磷酸根离子,但是两个化合物在溶剂中能够发生反应,生成磷酸铁沉淀,例如氧化铁和磷酸的组合。本步骤的反应式表示为:
Fe3+ +PO4 3- ——> FePO4;
本步骤中,在搅拌条件下,通过Fe3+ 和PO4 3-的反应,生成纳米级别的磷酸铁沉淀即磷酸铁纳米颗粒,磷酸铁纳米颗粒的粒径小于100nm,这是本发明实施例的磷酸铁锂复合材料制备方法中的第一次造粒。本步骤中,使用的Fe3+(铁离子)的化合物和含有PO4 3-(磷酸根离子)的化合物的摩尔比例为1:1。本步骤可以使用各种溶剂,优选为水。本步骤中通过反应制备得到磷酸铁纳米粒子表面带有铁离子,使得该磷酸铁纳米粒子表面带有电荷,能够引发有机碳源在其表面聚合。
b)将上述混合溶液加入有机碳源水溶液中,于20-80℃水浴温度下混合反应0.5~5小时,且混合反应体系的pH值控制在1~7,制得有机碳源包覆的纳米磷酸铁
本步骤中,该有机碳源包括能够在磷酸铁纳米颗粒表面聚合并且在400-1000℃温度下能够分解的有机碳源,优选的为苯胺单体或其衍生物、吡咯单体或其衍生物、及噻吩单体或其衍生物等,加入有机碳源后,通过磷酸铁表面三价铁离子的氧化作用,使得有机碳源在磷酸铁纳米颗粒外表面聚合,同时有机碳源自身聚合,从而包覆磷酸铁纳米颗粒,优选的是完全包覆。有机碳源在磷酸铁纳米颗粒表面的聚合使磷酸铁纳米颗粒被完全包覆以后,聚合反应将会被迫停止,所以有机碳源的加入量有一个确定值,其用量超过这个值后,多余的有机单体将会留在溶液中不会反生聚合反应,对于苯胺聚合,这个固定值是磷酸铁质量的35%左右,步骤a)中的混合溶液通过蠕动泵泵入有机碳源水溶液中,然后用碱性剂或酸性剂维持体系的PH值在1-7,该碱性剂可以为各种碱性剂,优选的为氨水、氢氧化钠、氢氧化钾、碳酸钾、碳酸氢钾等,酸性剂为醋酸或者盐酸等。同时将体系的温度控制在20-80℃,可以使用水浴加热的方式,控制反应的温度。搅拌反应0.5-5小时,之后继续搅拌0.5-5小时。本步骤中,将反应体系的PH值为1-7,属于酸性环境,在此环境下,使得有机碳源更容易在磷酸铁表面聚合。
c)将上述制得的有机碳源包覆的纳米磷酸铁和锂源化合物加入氧化石墨烯水溶液,搅拌、混合, 随后喷雾干燥,形成磷酸铁锂复合材料前躯体;
在步骤c)中,氧化石墨烯的制备方法根据改进的hummers方法(J. Am. Chem. Soc., 1958, 80 (6), 1339-1339,Preparation o f GraphiticOxide),本步骤中,加入氧化石墨烯,包覆磷酸铁的有机碳源的官能团和氧化石墨烯表面的官能团发生有机反应而使得有机碳源和石墨烯相连接在一起。锂的源化合物包括但不限于氧化锂、氢氧化锂、碳酸锂、醋酸锂、磷酸锂、磷酸二氢锂、氟化锂等中的一种或以上,锂化合物在水中,电离出锂离子。
磷酸铁纳米粒子在加入有机单体后的溶液中浓度为0.05-1.25mol/L(氧化石墨烯的质量为磷酸铁质量的0.1-99%);锂的源化合物的摩尔量和磷酸铁摩尔量之比为1:1;搅拌处理使得混合溶液混合均匀。本步骤制备得到的混合溶液中,磷酸铁纳米颗粒被有机碳源包覆,有机碳源和氧化石墨烯相结合,锂离子分布在有机碳源包覆的磷酸铁纳米颗粒的结构中。
在步骤c)中,使用的喷雾干燥设备没有要求,可以为各种喷雾干燥设备。喷雾干燥的过程具体为:不断搅拌条件下,进料速度为0.5-5L/分钟,进料温度为150-250℃,出料温度为65-85℃,喷雾干燥中,首先喷出c)中得到的混合溶液小水珠,小水珠瞬间被高温加热,使水分蒸发,体积变小,使许多磷酸铁纳米粒子聚合在一起,形成粒径更大的磷酸铁基粒,该磷酸铁基粒由一定数量的由有机碳源包覆的磷酸铁纳米颗粒聚集而成。这是本发明实施例的磷酸铁锂复合材料的第二次造粒。通过本发明实施例的一共两次造粒,使得本发明实施例的磷酸铁锂复合材料的振实密度大大提高。
d),将磷酸铁锂复合材料前躯体于400-1000℃、还原气氛条件下煅烧1-24小时,得到磷酸铁锂复合材料。
在步骤d)中,还原气氛可以为各种还原气氛,优选的例如10%氮气和90%氢气,20%氩气和80%一氧化碳等,温度升温速度为2-10℃/分钟。高温煅烧后,自然冷却,晶化得到本发明实施例的磷酸铁锂复合材料。
磷酸铁锂复合材料前躯体经过还原气氛下煅烧处理,三价铁离子被还原成二价铁离子形成磷酸亚铁晶格,同时锂离子扩散至磷酸亚铁晶格中,形成纳米级磷酸铁锂晶粒。经过高温煅烧,有机碳源被分解为C单质和气体,纳米级磷酸铁锂晶粒被纳米碳微粒包覆;氧化石墨烯被还原为石墨烯,由于纳米碳微粒包覆和石墨烯的掺杂使得磷酸铁锂复合材料的导电性大大提高;同时由于有机碳源煅烧分解成气体,气体向微米级磷酸铁锂颗粒外部扩散,形成一定的通道,并且在微米级磷酸铁锂颗粒外表形成一定数量的微孔,这使得磷酸铁锂复合材料充放电性能得到显著增强。
本发明实施例进一步提供一种磷酸铁锂复合材料在锂离子电池或正极材料中的应用。
本发明实施例的磷酸铁锂复合材料,纳米级磷酸铁锂晶粒被纳米碳微粒包覆,使得本发明实施例的磷酸铁锂复合材料具有较高的导电性能;另外,由于石墨烯也是非常优异的导电材料,大大提高了本发明实施例的磷酸铁锂复合材料的导电性能。本发明实施例的磷酸铁锂复合材料总体上包括两种类的粒子:纳米级磷酸铁锂晶粒和微米级磷酸铁锂颗粒,这两种粒子是通过制备方法中二次造粒形成的,使得本发明实施例的磷酸铁锂复合材料的振实密度大大提高。
本发明实施例的磷酸铁锂复合材料的制备方法,通过三价铁离子的氧化作用,使得磷酸铁纳米颗粒能够完全被有机碳源包覆,保证了磷酸铁锂复合材料中纳米级磷酸铁锂晶粒被纳米碳微粒包覆,实现了磷酸铁锂复合材料的导电性能的大大提高。通过二次造粒,大大提高了本发明实施例的磷酸铁锂复合材料的振实密度。本发明实施例的制备方法,流程简单、操作方便、成本低廉,适于工业化规模生产。
下面结合实施例和附图,对本发明的具体实施方式进行详细阐述:
实施例一
本发明实施例的磷酸铁锂复合材料制备方法,具体步骤如下:
1) 制备含磷酸铁的溶液
将浓度为1mol/L硝酸铁溶液和重量百分数85%的磷酸溶液,混合比例为P与Fe的摩尔比1:1,得到含有混合溶液;
2) 配制100ml浓度为3mol/L的氨水溶液;
3) 往50ml的去离子水中加入8g的苯胺单体,配制苯胺溶液;
4) 在搅拌的条件下(如500rpm/min)用蠕动泵连续同时将上述含有磷酸铁的溶液输入盛有苯胺溶液中,用上述氨水溶液控制反应体系的pH值为2.0(±0.1),在20℃温度下,控制蠕动泵的流量为0.45ml/min,反应3小时,继续搅拌2小时,将沉淀离心洗涤得到苯胺包覆的纳米磷酸铁纳米颗粒;
5) 制备氧化石墨烯水体系
氧化石墨烯的制备方法是根据改进的hummers方法,(J. Am. Chem. Soc., 1958, 80 (6), 1339-1339,Preparation of Graphitic Oxide),制备氧化石墨烯后,将10g氧化石墨烯溶解在10mL的水中,形成浓度为1g/mL的氧化石墨烯水溶液体,该水溶液呈褐色;
6) 将0.1mol的苯胺包覆的磷酸铁纳米颗粒与上述氧化石墨烯水溶液进行均匀混合(其中含氧化石墨烯0.5g),磷酸铁纳米颗粒在水中的含量为20%,并向该混合体系中加入10.2gLiAc.2H2O,充分剧烈的搅拌至均匀混合,得到混合溶液;
7) 将混合液进行喷雾干燥,进料速度为2L/min,喷雾进口温度为175℃,出口温度为70℃,得到磷酸铁锂复合材料前躯体;
8) 在Ar/H2(体积比例为90:10)气氛中,将上述磷酸铁锂复合材料前躯体放入管式炉中,从20℃升至800℃并保温12h,升温速度为5℃/min,自然冷却得到本发明实施例的磷酸铁锂复合材料,经测定该材料的振实密度高达1.7-1.8g/cm3。
电池组装及性能测试:分别取活性物质、乙炔黑、聚偏二氟乙烯(PVDF)按84:8:8的比例进行配比,均匀混合后涂覆于铝箔上制成正极片,接下来以金属锂为负极,聚丙烯薄膜为隔膜,1mol/L的LiPF6的碳酸乙烯酯(EC)和碳酸二甲酯(DMC)(体积比1:1)的混合液为电解液,在氩气气氛的手套箱中,在水分含量小于1.0ppm时按顺序组装成扣式电池,静置12个小时后待测试。
电池的充放电制度为:充电时,按电池的比容量大小及充放电倍率设定充放电电流,进行恒流充放电,待电池电压达到4.2V后,***休息10分钟。本发明实施例充电0.2C,放电电流为1C,放电时待电池电压下降到2.4V时,电路自动终止放电(1C=170mA/g),然后进入下一个循环。
请参阅图3和图4,
图3说明样品的衍射峰尖锐,对照JPCPDS(40-1499)标准卡可知,该材料具有结晶完整、单一的橄榄石结构。从图中还可以看出,未见到碳的衍射峰,原因可能是碳含量较小或处于无定型状态,且没有影响晶体结构。
图4说明:在1C条件下材料的放电容量为150mAh/g,接近理论容量具有较好的倍率性能。
实施例2
本发明实施例的磷酸铁锂复合材料制备方法,具体步骤如下:
1),制备含磷酸铁的溶液
配制浓度为1mol/L硝酸铁溶液和85%的磷酸溶液,将两溶液混合,混合比例为P与Fe的摩尔比1:1,得到含有磷酸铁的溶液;
2),配制100ml3mol/L的氨水溶液;
3),往50ml的去离子水中加入8g的苯胺单体,配制苯胺溶液;
4),在搅拌的条件下(500rpm/min)用蠕动泵连续同时将上述含有磷酸铁的溶液输入盛有苯胺溶液中,用上述氨水溶液控制反应体系的pH值为2.0(±0.1),在20℃温度下,控制蠕动泵的流量为0.45ml/min,反应3小时,继续搅拌2h小时,将沉淀离心洗涤得到苯胺包覆的纳米磷酸铁纳米颗粒;
5),制备氧化石墨烯水体系
氧化石墨烯的制备方法是根据改进的hummers方法,(J. Am. Chem. Soc., 1958, 80 (6), 1339-1339,Preparation of Graphitic Oxide),制备氧化石墨烯后,将20g氧化石墨烯溶解在10mL的水中,形成浓度为2g/mL的氧化石墨烯水溶液体,该水溶液呈褐色;
6),取0.1mol的磷酸铁纳米颗粒和10.2gLiAc.2H2O,加入至离子水,使体系变成悬浊液,剧烈搅拌至体系至均匀混合,加入上述氧化石墨烯水溶液进行均匀混合(其中含氧化石墨烯0.5g),磷酸铁在水中的固含量为20%,充分剧烈的搅拌至均匀混合,得到混合液;
7),将步骤(混合液液进行喷雾干燥,进料速度为2L/min,喷雾进口温度为180℃,出口温度为75℃,得到磷酸铁锂复合材料前躯体;
8),在Ar/H2(体积比例为90:10)的还原气氛下,将磷酸铁锂复合材料前躯体放入管式炉中,从25℃升至600℃并保温12h,升温速度为5℃/min,自然冷却得到磷酸铁锂复合材料。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种磷酸铁锂复合材料,其特征在于,所述磷酸铁锂复合材料为微米级颗粒结构,所述微米级颗粒结构的内部包括有纳米级磷酸铁锂晶粒以及石墨烯,所述微米级颗粒结构的外层包覆有纳米碳微粒。
  2. 如权利要求1所述的磷酸铁锂复合材料,其特征在于,所述微米级颗粒结构的粒径为1~20微米;所述纳米级磷酸铁锂晶粒的粒径为1~100纳米。
  3. 如权利要求1所述的磷酸铁锂复合材料,其特征在于,所述石墨烯包括分子级石墨烯单片以及由2~100层所述分子级石墨烯单片构成的石墨烯聚集片。
  4. 一种如权利要求1至3任一所述磷酸铁锂复合材料的制备方法,包括如下步骤:
    按照磷元素与铁元素的摩尔比1:1,配制铁盐混合溶液;
    将上述混合溶液加入有机碳源水溶液中,于20-80℃水浴温度下混合反应0.5~5小时,且混合反应体系的pH值控制在1~7,制得有机碳源包覆的纳米磷酸铁;
    将上述制得的有机碳源包覆的纳米磷酸铁和锂源化合物加入氧化石墨烯水溶液,搅拌、混合, 随后喷雾干燥,形成磷酸铁锂复合材料前躯体;
    将所述磷酸铁锂复合材料前躯体于400-1000℃、还原气氛条件下煅烧1-24小时,自然冷却,得到所述磷酸铁锂复合材料。
  5. 如权利要求4所述的磷酸铁锂复合材料的制备方法,其特征在于,所述有机碳源为噻吩单体或其衍生物、苯胺或其衍生物、吡咯单体或其衍生物中的至少一种。
  6. 如权利要求4所述的磷酸铁锂复合材料的制备方法,其特征在于,所述氧化石墨烯的质量为所述磷酸铁质量的0.1-99%。
  7. 如权利要求4所述的磷酸铁锂复合材料的制备方法,其特征在于,所述喷雾干燥的条件为:不断搅拌条件下,进料速度为0.5-5L/分钟,进料温度为150-250℃,出料温度为65-85℃。
  8. 如权利要求4所述的磷酸铁锂复合材料的制备方法,其特征在于,所述煅烧处理过程中,升温速度为2~10℃/min;所述还原气氛为氢气和氩气混合的还原气氛。
  9. 如权利要求4至8任一所述的磷酸铁锂复合材料的制备方法,其特征在于,当铁盐中的铁离子为二价铁离子时,在配制铁盐混合溶液过程中,还向溶液中加入0.1~5mol/L的氧化剂溶液。
  10. 如权利要求1-3任一项所述的磷酸铁锂复合材料在锂离子电池或正极材料中的应用。
PCT/CN2010/077468 2010-09-29 2010-09-29 一种磷酸铁锂复合材料、其制备方法和应用 WO2012040920A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080068206.8A CN103003193B (zh) 2010-09-29 2010-09-29 一种磷酸铁锂复合材料、其制备方法和应用
US13/822,475 US20130177784A1 (en) 2010-09-29 2010-09-29 Lithium iron phosphate composite material, production method and use thereof
PCT/CN2010/077468 WO2012040920A1 (zh) 2010-09-29 2010-09-29 一种磷酸铁锂复合材料、其制备方法和应用
JP2013530519A JP5778774B2 (ja) 2010-09-29 2010-09-29 リン酸鉄リチウム複合材料、その製造方法及び応用
EP10857683.6A EP2623459A4 (en) 2010-09-29 2010-09-29 LITHIUM-IRON PHOSPHATE COMPOSITE, PREPARATION METHOD AND USE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/077468 WO2012040920A1 (zh) 2010-09-29 2010-09-29 一种磷酸铁锂复合材料、其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2012040920A1 true WO2012040920A1 (zh) 2012-04-05

Family

ID=45891818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077468 WO2012040920A1 (zh) 2010-09-29 2010-09-29 一种磷酸铁锂复合材料、其制备方法和应用

Country Status (5)

Country Link
US (1) US20130177784A1 (zh)
EP (1) EP2623459A4 (zh)
JP (1) JP5778774B2 (zh)
CN (1) CN103003193B (zh)
WO (1) WO2012040920A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103560246A (zh) * 2013-11-25 2014-02-05 四川科能锂电有限公司 一种锂离子电池正极材料磷酸铁锂的制备方法
CN103996846A (zh) * 2014-04-14 2014-08-20 江苏中欧材料研究院有限公司 一种粒度可控的磷酸铁锂正极材料的制备方法
WO2014188996A1 (ja) * 2013-05-23 2014-11-27 東レ株式会社 ポリアニオン系正極活物質複合体粒子の製造方法およびポリアニオン系正極活物質前駆体-酸化グラファイト複合造粒体
US20150102267A1 (en) * 2012-05-14 2015-04-16 Guoguang Electric Company Limited METHOD FOR PREPARING GRAPHENE-BASED LiFePO4/C COMPOSITE MATERIAL
CN104638242A (zh) * 2015-02-06 2015-05-20 重庆特瑞电池材料股份有限公司 原位聚合包覆合成锂离子电池正极材料磷酸铁锂的方法
CN107316976A (zh) * 2017-05-27 2017-11-03 广东烛光新能源科技有限公司 一种锂离子电池正极材料及其制备方法
CN110048109A (zh) * 2019-04-25 2019-07-23 桑顿新能源科技有限公司 磷酸铁锂正极材料及其制备方法和电池
CN113381089A (zh) * 2021-06-30 2021-09-10 湖北融通高科先进材料有限公司 一种回收磷酸亚铁制备纳米磷酸铁锂材料的方法
CN113428848A (zh) * 2021-07-19 2021-09-24 四川大学 一种电池级磷酸铁的循环制备工艺
CN114314554A (zh) * 2021-12-31 2022-04-12 欣旺达电动汽车电池有限公司 磷酸铁锂/碳纳米带复合材料、制备方法及锂离子电池
CN114852985A (zh) * 2022-05-23 2022-08-05 东莞理工学院 一种磷酸铁锂正极材料的制备方法、锂离子电池
CN114927684A (zh) * 2022-06-23 2022-08-19 蜂巢能源科技股份有限公司 一种磷酸铁锂正极材料及其制备方法、锂离子电池
CN117720086A (zh) * 2024-02-07 2024-03-19 湖南裕能新能源电池材料股份有限公司 磷酸锰铁锂基材、正极材料及其制备方法及锂电池
CN117720086B (zh) * 2024-02-07 2024-05-14 湖南裕能新能源电池材料股份有限公司 磷酸锰铁锂基材、正极材料及其制备方法及锂电池

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011003125A1 (de) * 2011-01-25 2012-07-26 Chemische Fabrik Budenheim Kg Eisen(III)orthophosphat-Kohlenstoff-Komposit
KR101661896B1 (ko) * 2014-11-20 2016-10-04 주식회사 포스코 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 사용한 리튬 이차 전지
CN105702954A (zh) * 2014-11-26 2016-06-22 比亚迪股份有限公司 一种正极材料LiMn1-xFexPO4/C及其制备方法
CN105226274B (zh) * 2015-07-01 2017-09-05 合肥国轩高科动力能源有限公司 一种石墨烯均匀分散的磷酸铁锂/石墨烯复合材料的制备方法
CN107204446B (zh) * 2017-05-27 2020-04-28 广东烛光新能源科技有限公司 锂离子电池正极材料及其制备方法
CN109502567A (zh) * 2017-09-14 2019-03-22 东莞东阳光科研发有限公司 一种高压实球形磷酸铁锂、制备方法及包含其的锂离子电池
CN110620214B (zh) * 2018-06-20 2022-05-03 贝特瑞(天津)纳米材料制造有限公司 一种六氟锆酸锂和碳共包覆磷酸铁锂复合材料、其制备方法和用途
CN109280984A (zh) * 2018-07-28 2019-01-29 巢湖市瀚海渔具有限公司 一种聚三亚甲基碳酸酯改性氧化石墨烯增强聚乙烯渔网
CN109167028B (zh) * 2018-08-20 2021-05-07 合肥国轩电池材料有限公司 一种磷酸铁锂/碳复合材料的再生制备方法
CN109192953B (zh) * 2018-09-07 2021-08-17 桑顿新能源科技(长沙)有限公司 一种高倍率球形磷酸铁锂碳复合正极材料及其制备方法
CN110937586B (zh) * 2018-09-25 2023-09-22 杭州长凯能源科技有限公司 制备材料的循环经济工艺
CN109686962B (zh) * 2019-01-21 2021-04-30 新奥石墨烯技术有限公司 制备磷酸铁锂复合正极材料的方法、正极、电池
CN110407186A (zh) * 2019-08-01 2019-11-05 湖北昊瑞新能源有限公司 一种共沉淀法制备磷酸铁及磷酸铁锂材料的方法
CA3154599A1 (en) * 2019-09-17 2021-03-25 Graphmatech Ab Composite powder with iron based particles coated with graphene material
CN111217346A (zh) * 2019-11-22 2020-06-02 贵州唯特高新能源科技有限公司 一种高性能磷酸亚铁的制备方法
CN111180683A (zh) * 2019-12-25 2020-05-19 合肥国轩高科动力能源有限公司 一种高振实密度锂离子电池正极材料的制备方法
CN111430687B (zh) * 2020-03-10 2021-09-14 东莞市创明电池技术有限公司 碳包覆磷酸铁锂复合材料及其制备方法,锂离子电池
CN112331838B (zh) * 2020-12-01 2022-02-08 郑州中科新兴产业技术研究院 一种锂离子电池高容量氧化亚硅复合负极材料及其制备方法
CN112694078A (zh) * 2020-12-29 2021-04-23 陕西煤业化工技术研究院有限责任公司 一种石墨烯包覆磷酸铁锂复合材料及其制备方法
CN113659132A (zh) * 2021-07-09 2021-11-16 江苏乐能电池股份有限公司 一种高性能纳米级磷酸铁锂正极材料的制备方法
CN113651303B (zh) * 2021-08-13 2023-10-20 中南大学 一种纳米片状磷酸铁的制备方法及应用其制得的LiFePO4/C正极活性材料
CN113582152A (zh) * 2021-08-17 2021-11-02 江西省金锂科技股份有限公司 一种低成本锂离子电池正极材料磷酸铁锂的制备方法
CN113860281A (zh) * 2021-09-26 2021-12-31 桂林理工大学 一种以聚合硫酸铁为铁源制备锂离子电池正极材料磷酸铁锂的方法
CN113929070B (zh) * 2021-10-09 2022-05-17 湖北万润新能源科技股份有限公司 一种高倍率磷酸铁锂正极材料的制备方法
CN114084879B (zh) * 2021-11-22 2023-09-12 青岛九环新越新能源科技股份有限公司 磷酸铁锂及其生产方法和应用
CN114057176B (zh) * 2021-11-22 2023-09-19 青岛九环新越新能源科技股份有限公司 磷酸铁锂及其制备方法和应用
CN114275755B (zh) * 2021-12-14 2023-07-04 河源职业技术学院 一种以鸡蛋壳内膜作为模板制备磷酸铁锂的方法
CN114538421A (zh) * 2021-12-17 2022-05-27 杭州华宏通信设备有限公司 一种石墨烯改性磷酸铁锂正极材料的制备方法
CN114551880B (zh) * 2021-12-21 2023-07-14 杭州华宏通信设备有限公司 一种碳覆多孔Cr-Cu合金/磷酸铁锂正极及其制备方法
CN114335517B (zh) * 2021-12-31 2023-07-14 欣旺达电动汽车电池有限公司 碳复合磷酸铁锂正极材料、其制备方法及应用
CN114447320B (zh) * 2022-01-24 2024-01-26 贝特瑞(天津)纳米材料制造有限公司 一种引入高导电性碳材料的纳米化磷酸铁材料及制备方法
CN114583123A (zh) * 2022-02-17 2022-06-03 宜都兴发化工有限公司 磷杂碳包覆的超薄磷酸铁锂片层材料及制备方法
CN114927655B (zh) * 2022-04-29 2023-12-05 山东昭文新能源科技有限公司 一种多层包覆磷酸铁锂电极材料及其制备方法与应用
CN114604838B (zh) * 2022-05-10 2022-08-05 兰州兰石中科纳米科技有限公司 一种用于磷酸铁干燥煅烧方法
CN115275155B (zh) * 2022-08-19 2024-01-09 广东邦普循环科技有限公司 一种易加工的磷酸铁锂复合材料及其制备方法
CN115954465B (zh) * 2023-03-13 2023-06-09 河北坤天新能源股份有限公司 一种高功率硬碳复合材料及其制备方法
CN116779847B (zh) * 2023-08-11 2024-01-23 深圳海辰储能控制技术有限公司 正极极片及其制备方法、储能装置和用电装置
CN116902946B (zh) * 2023-09-14 2023-11-14 北京林立新能源有限公司 一种用铁黑制备磷酸铁的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009061685A1 (en) * 2007-11-05 2009-05-14 Nanotek Instruments, Inc. Nano graphene platelet-based composite anode compositions for lithium ion batteries
CN101478045A (zh) * 2008-01-03 2009-07-08 深圳市沃特玛电池有限公司 一种高振实密度磷酸铁锂的制备方法
CN101562248A (zh) * 2009-06-03 2009-10-21 龚思源 一种石墨烯复合的锂离子电池正极材料磷酸铁锂及其制备方法
CN101752561A (zh) * 2009-12-11 2010-06-23 中国科学院宁波材料技术与工程研究所 石墨烯改性磷酸铁锂正极活性材料及其制备方法以及锂离子二次电池
CN101800310A (zh) * 2010-04-02 2010-08-11 中国科学院苏州纳米技术与纳米仿生研究所 一种掺入石墨烯的锂离子电池正极材料的制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003301468A1 (en) * 2002-10-18 2004-05-04 Japan As Represented By President Of The University Of Kyusyu Method for preparing positive electrode material for lithium cell, and lithium cell
US8445129B2 (en) * 2005-05-27 2013-05-21 Sony Corporation Cathode active material, method of manufacturing it, cathode, and battery
JP4691711B2 (ja) * 2006-03-20 2011-06-01 独立行政法人産業技術総合研究所 リチウムマンガン系複合酸化物およびその製造方法
JP5376894B2 (ja) * 2008-10-20 2013-12-25 古河電池株式会社 オリビン構造を有する多元系リン酸型リチウム化合物粒子、その製造方法及びこれを正極材料に用いたリチウム二次電池
US8580432B2 (en) * 2008-12-04 2013-11-12 Nanotek Instruments, Inc. Nano graphene reinforced nanocomposite particles for lithium battery electrodes
KR101316413B1 (ko) * 2009-03-12 2013-10-08 더 스와치 그룹 리서치 앤 디벨롭먼트 엘티디 희생 나노입자를 포함하는 전기 전도성 나노복합체 물질 및 이에 의해 생산된 개방 다공성 나노복합체
EP2478061B1 (en) * 2009-09-18 2024-03-06 A123 Systems LLC Ferric phosphate and methods of preparation thereof
CA2784686C (en) * 2009-12-17 2018-02-20 Phostech Lithium Inc. Method for improving the electrochemical performances of an alkali metal oxyanion electrode material and alkali metal oxyanion electrode material obtained therefrom
WO2011141486A1 (de) * 2010-05-14 2011-11-17 Basf Se Verahren zur einkapselung von metallen und metalloxiden mit graphen und die verwendung dieser materialien
CN103109399B (zh) * 2010-09-10 2015-11-25 海洋王照明科技股份有限公司 一种含锂盐-石墨烯复合材料及其制备方法
US9558860B2 (en) * 2010-09-10 2017-01-31 Samsung Electronics Co., Ltd. Graphene-enhanced anode particulates for lithium ion batteries

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009061685A1 (en) * 2007-11-05 2009-05-14 Nanotek Instruments, Inc. Nano graphene platelet-based composite anode compositions for lithium ion batteries
CN101478045A (zh) * 2008-01-03 2009-07-08 深圳市沃特玛电池有限公司 一种高振实密度磷酸铁锂的制备方法
CN101562248A (zh) * 2009-06-03 2009-10-21 龚思源 一种石墨烯复合的锂离子电池正极材料磷酸铁锂及其制备方法
CN101752561A (zh) * 2009-12-11 2010-06-23 中国科学院宁波材料技术与工程研究所 石墨烯改性磷酸铁锂正极活性材料及其制备方法以及锂离子二次电池
CN101800310A (zh) * 2010-04-02 2010-08-11 中国科学院苏州纳米技术与纳米仿生研究所 一种掺入石墨烯的锂离子电池正极材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. AM. CHEM. SOC., vol. 80, no. 6, 1958, pages 1339 - 1339
See also references of EP2623459A4 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9672951B2 (en) * 2012-05-14 2017-06-06 Guoguang Electric Company Limited Method for preparing graphene-based LiFePO4/C composite material
US20150102267A1 (en) * 2012-05-14 2015-04-16 Guoguang Electric Company Limited METHOD FOR PREPARING GRAPHENE-BASED LiFePO4/C COMPOSITE MATERIAL
DE112013002485B4 (de) * 2012-05-14 2020-08-27 Guoguang Electric Company Limited Verfahren zur Herstellung von einem graphen-basierten LiFePO4/C-Verbundmaterial
US10505179B2 (en) 2013-05-23 2019-12-10 Toray Industries, Inc. Method for producing polyanionic positive electrode active material composite particles, and polyanionic positive electrode active material precursor-graphite oxide composite granulated bodies
WO2014188996A1 (ja) * 2013-05-23 2014-11-27 東レ株式会社 ポリアニオン系正極活物質複合体粒子の製造方法およびポリアニオン系正極活物質前駆体-酸化グラファイト複合造粒体
US20160164074A1 (en) * 2013-05-23 2016-06-09 Toray Industries, Inc. Method for producing polyanionic positive electrode active material composite particles, and polyanionic positive electrode active material precursor-graphite oxide composite granulated bodies
CN105229831A (zh) * 2013-05-23 2016-01-06 东丽株式会社 聚阴离子系正极活性物质复合物颗粒的制造方法和聚阴离子系正极活性物质前体-氧化石墨复合造粒物
JPWO2014188996A1 (ja) * 2013-05-23 2017-02-23 東レ株式会社 ポリアニオン系正極活物質複合体粒子の製造方法およびポリアニオン系正極活物質前駆体−酸化グラファイト複合造粒体
KR20160013902A (ko) * 2013-05-23 2016-02-05 도레이 카부시키가이샤 폴리 음이온계 정극 활물질 복합체 입자의 제조 방법 및 폴리 음이온계 정극 활물질 전구체-산화 그래파이트 복합 조립체
KR102163376B1 (ko) * 2013-05-23 2020-10-08 도레이 카부시키가이샤 폴리 음이온계 정극 활물질 복합체 입자의 제조 방법 및 폴리 음이온계 정극 활물질 전구체-산화 그래파이트 복합 조립체
TWI622217B (zh) * 2013-05-23 2018-04-21 東麗股份有限公司 聚陰離子系正極活性物質複合體粒子的製造方法及聚陰離子系正極活性物質的前驅物-氧化石墨複合造粒體
CN103560246A (zh) * 2013-11-25 2014-02-05 四川科能锂电有限公司 一种锂离子电池正极材料磷酸铁锂的制备方法
CN103996846A (zh) * 2014-04-14 2014-08-20 江苏中欧材料研究院有限公司 一种粒度可控的磷酸铁锂正极材料的制备方法
CN104638242A (zh) * 2015-02-06 2015-05-20 重庆特瑞电池材料股份有限公司 原位聚合包覆合成锂离子电池正极材料磷酸铁锂的方法
CN107316976A (zh) * 2017-05-27 2017-11-03 广东烛光新能源科技有限公司 一种锂离子电池正极材料及其制备方法
CN110048109A (zh) * 2019-04-25 2019-07-23 桑顿新能源科技有限公司 磷酸铁锂正极材料及其制备方法和电池
CN110048109B (zh) * 2019-04-25 2024-04-26 湖南桑瑞新材料有限公司 磷酸铁锂正极材料及其制备方法和电池
CN113381089A (zh) * 2021-06-30 2021-09-10 湖北融通高科先进材料有限公司 一种回收磷酸亚铁制备纳米磷酸铁锂材料的方法
CN113381089B (zh) * 2021-06-30 2022-08-30 湖北融通高科先进材料有限公司 一种回收磷酸亚铁制备纳米磷酸铁锂材料的方法
CN113428848A (zh) * 2021-07-19 2021-09-24 四川大学 一种电池级磷酸铁的循环制备工艺
CN114314554A (zh) * 2021-12-31 2022-04-12 欣旺达电动汽车电池有限公司 磷酸铁锂/碳纳米带复合材料、制备方法及锂离子电池
CN114314554B (zh) * 2021-12-31 2024-04-09 欣旺达动力科技股份有限公司 磷酸铁锂/碳纳米带复合材料、制备方法及锂离子电池
CN114852985A (zh) * 2022-05-23 2022-08-05 东莞理工学院 一种磷酸铁锂正极材料的制备方法、锂离子电池
CN114927684A (zh) * 2022-06-23 2022-08-19 蜂巢能源科技股份有限公司 一种磷酸铁锂正极材料及其制备方法、锂离子电池
CN117720086A (zh) * 2024-02-07 2024-03-19 湖南裕能新能源电池材料股份有限公司 磷酸锰铁锂基材、正极材料及其制备方法及锂电池
CN117720086B (zh) * 2024-02-07 2024-05-14 湖南裕能新能源电池材料股份有限公司 磷酸锰铁锂基材、正极材料及其制备方法及锂电池

Also Published As

Publication number Publication date
JP2013543220A (ja) 2013-11-28
JP5778774B2 (ja) 2015-09-16
US20130177784A1 (en) 2013-07-11
CN103003193A (zh) 2013-03-27
EP2623459A4 (en) 2015-10-14
CN103003193B (zh) 2014-12-10
EP2623459A1 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
WO2012040920A1 (zh) 一种磷酸铁锂复合材料、其制备方法和应用
WO2012031401A1 (zh) 一种含锂盐-石墨烯复合材料及其制备方法
WO2015188726A1 (zh) 氮掺杂石墨烯包覆纳米硫正极复合材料、其制备方法及应用
Qiao et al. One-pot synthesis of CoO/C hybrid microspheres as anode materials for lithium-ion batteries
CN108735997B (zh) 一种磷酸铁锂基复合材料、其制备方法及用途
CN102437311B (zh) 一种磷酸铁锂复合材料、其制备方法和应用
WO2015014121A1 (zh) 锂离子二次电池负极活性材料及其制备方法、锂离子二次电池负极极片和锂离子二次电池
Sun et al. Fe2O3/CNTs composites as anode materials for lithium-ion batteries
CN111129466B (zh) 一种高性能正极材料及其制备方法和在锂离子电池中的应用
CN102468515A (zh) 一种锂离子电池及其制备方法
WO2015007169A1 (zh) 锂离子电池正极材料的制备方法
WO2023142666A1 (zh) 锂离子电池预锂化剂及其制备方法和应用
Bai et al. LiFePO4/carbon nanowires with 3D nano-network structure as potential high performance cathode for lithium ion batteries
WO2022171074A1 (zh) 磷酸铁锂及其制备方法、锂离子电池
WO2011025276A2 (ko) 금속 산화물-탄소 나노복합재료의 제조방법
WO2015172621A1 (zh) 锂离子电池正极活性材料的制备方法
WO2018076474A1 (zh) 钛酸锂复合材料及包含该材料的电极极片和电池
WO2015172625A1 (zh) 锂离子电池正极活性材料的制备方法
Bai et al. Preparation and electrochemical performance of LiFePO4/C microspheres by a facile and novel co-precipitation
CN113451570A (zh) 一种mof衍生核壳结构锂离子电池负极材料及制备方法
CN115148945A (zh) 一种高镍三元正极材料的改性方法
Yu et al. Nitrogen-doped carbon stabilized LiFe0. 5Mn0. 5PO4/rGO cathode materials for high-power Li-ion batteries
CN104393265B (zh) 一种界面强耦合石墨烯-磷酸铁锂纳米复合正极材料的制备方法
Tussupbayev et al. Physical and electrochemical properties of LiCoPO4/C nanocomposites prepared by a combination of emulsion drip combustion and wet ball-milling followed by heat treatment
WO2015172627A1 (zh) 锂离子电池正极活性材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857683

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13822475

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010857683

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010857683

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013530519

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE