WO2010026842A1 - 物品収納設備とその作動方法 - Google Patents

物品収納設備とその作動方法 Download PDF

Info

Publication number
WO2010026842A1
WO2010026842A1 PCT/JP2009/063251 JP2009063251W WO2010026842A1 WO 2010026842 A1 WO2010026842 A1 WO 2010026842A1 JP 2009063251 W JP2009063251 W JP 2009063251W WO 2010026842 A1 WO2010026842 A1 WO 2010026842A1
Authority
WO
WIPO (PCT)
Prior art keywords
pair
lifting
traveling
article
interference
Prior art date
Application number
PCT/JP2009/063251
Other languages
English (en)
French (fr)
Inventor
高川夏生
打田雅之
Original Assignee
株式会社ダイフク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008228866A external-priority patent/JP5257668B2/ja
Priority claimed from JP2008228867A external-priority patent/JP5288167B2/ja
Application filed by 株式会社ダイフク filed Critical 株式会社ダイフク
Priority to US13/062,126 priority Critical patent/US9221604B2/en
Priority to ES09811371.5T priority patent/ES2568524T3/es
Priority to CN2009801345798A priority patent/CN102143899B/zh
Priority to KR1020117004457A priority patent/KR101489718B1/ko
Priority to DK09811371.5T priority patent/DK2332859T3/en
Priority to EP09811371.5A priority patent/EP2332859B1/en
Publication of WO2010026842A1 publication Critical patent/WO2010026842A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/0407Storage devices mechanical using stacker cranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/0407Storage devices mechanical using stacker cranes
    • B65G1/0421Storage devices mechanical using stacker cranes with control for stacker crane operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • B65G1/1371Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed with data records
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/48Automatic control of crane drives for producing a single or repeated working cycle; Programme control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C15/00Safety gear
    • B66C15/04Safety gear for preventing collisions, e.g. between cranes or trolleys operating on the same track
    • B66C15/045Safety gear for preventing collisions, e.g. between cranes or trolleys operating on the same track electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/07Floor-to-roof stacking devices, e.g. "stacker cranes", "retrievers"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/07Floor-to-roof stacking devices, e.g. "stacker cranes", "retrievers"
    • B66F9/072Travelling gear therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/087Inventory or stock management, e.g. order filling, procurement or balancing against orders

Definitions

  • an article storage shelf provided with a plurality of storage units for storing articles arranged in the vertical direction and the horizontal direction, and a movement path provided along the lateral width direction on the front side of the article storage shelf is moved.
  • a pair of configured stacker cranes are provided, and each of the pair of stacker cranes is guided by a traveling carriage guided by a traveling guide rail along the moving path, and an elevating guide mast erected from the traveling carriage.
  • a lifting platform configured to move up and down and a lifting body provided on the lifting platform and including an article transfer device capable of transferring an article to the article storage unit, and each of the traveling carts of the pair of stacker cranes
  • a pair of traveling position detection means for detecting the traveling position
  • a pair of lifting position detection means for detecting the lifting position of each lifting body of the pair of stacker cranes , Based on the detection information of the pair of travel position detection means and the pair of vertical position detection means, wherein the pair of controlling the operation of the stacker crane control means and the article storage facility is provided for that operating method.
  • the goods are stored in the storage section by picking up the article to be transported from the article loading / unloading section such as a load receiving stand and the article stored in the storage section.
  • the article conveying operation of the stacker crane here means the operation of the stacker crane accompanied by the traveling operation of the traveling carriage or the raising / lowering operation of the elevating body, and the article transfer device that supports the article to be conveyed is conveyed from the conveying source.
  • the article transfer device in a state that does not support the articles is moved to the transport source by the travel operation and the lift operation After completing the empty transfer operation to move and the warehousing work, the article transfer device is set to the home position (end position in the path direction of the moving path and the lower end in the vertical direction, etc.) in preparation for the next warehousing work.
  • the origin return operation movement which moves the article transfer apparatus of the state which does not support an article to a home position is included.
  • the control means performs the warehousing operation based on the operation instruction. Or to control the operation of the stacker crane in order to perform the unloading work, the goods transport operation of the actual transport operation or the empty transport operation, the operation of picking up the goods at the transport source (the transfer operation for scooping) and the goods at the transport destination
  • the article transfer operation is carried out as an operation of wholesale (the transfer operation for wholesale).
  • the travel operation and the lift operation in the article transport operation are operations according to the travel speed pattern and the lift speed pattern determined by the positional relationship with the operation start position and the operation end position of the actual transport operation and the idle transport operation based on the operation command.
  • the quantity of articles that can be entered and exited per unit time that is, the number of operation instructions that can be processed is indicated. What has a high article processing capability is desired.
  • Various techniques have been proposed as techniques for increasing the article processing capacity in the article storage facility. As an example, a stacker that can move along a movement path provided along the width direction of the shelf on the front side of the article storage shelf. It has been proposed to provide a pair of cranes.
  • the other stacker crane If another stacker crane that is in the way is located within the planned movement range due to the article transport operation, the other stacker crane is not performing the article transport operation as the assigned stacker crane (that is, waiting)
  • the other stacker crane controls the operation of the other stacker crane so that the other stacker crane is located outside the planned movement range, and the other stacker crane performs the article transport operation as the responsible stacker crane. Then, after waiting for the article transport operation for the other stacker crane to be completed, the operation of the other stacker crane is controlled so that the other stacker crane is positioned outside the planned movement range. .
  • Patent Document 1 describes that only one common traveling guide rail provided on the moving route is provided, and a pair of stacker cranes are arranged side by side in the moving route direction on this moving guide rail. Yes. Then, the middle part of the movement path is set as a common section where both stacker cranes can travel, and the dedicated section where only one stacker crane can move on both sides in the movement path direction of the common section matches the crane alignment direction. As an avoidance operation, the other stacker crane is driven out along the traveling direction. For example, according to the description of FIG. 7 and paragraphs [0047] and [0048] of the drawing of Patent Document 1, when a driving command is issued, another part is added to the common section side portion belonging to the common section within the planned movement range.
  • the dedicated section side part belonging to the dedicated section within the planned movement range must first be moved and dedicated until the other stacker crane that gets in the way is expelled from the common section side part.
  • the article conveying operation according to the operation command can be processed as soon as possible after the operation command is issued.
  • the present invention has been made paying attention to such a point, and its object is to store articles that can avoid mutual interference between a pair of stacker cranes without performing as much as possible an avoidance operation that is inefficient. It is in providing facilities.
  • an article storage facility includes an article storage shelf having a plurality of storage units arranged in the vertical and horizontal directions, and a shelf width on the front side of the article storage shelf.
  • a pair of stacker cranes configured to move along a moving path provided along a direction, each of the pair of stacker cranes being guided by a traveling guide rail along the moving path; and the traveling
  • a lifting platform configured to be guided up and down by a lifting guide mast erected from a carriage, and a lifting body provided on the lifting platform and including an article transfer device capable of transferring articles to the article storage unit.
  • a pair of traveling position detecting means for detecting the traveling position of each traveling carriage of the pair of stacker cranes, and raising and lowering of each of the pair of stacker cranes
  • a pair of raising / lowering position detecting means for detecting the raising / lowering position
  • a control means for controlling the operation of the pair of stacker cranes based on detection information of the pair of traveling position detecting means and the pair of raising / lowering position detecting means.
  • Is configured to control the article conveying operation of the assigned stacker crane, and while controlling the article conveying operation of the assigned stacker crane, based on the detection information of the pair of travel position detecting means,
  • the respective traveling positions of the pair of traveling carts of the stacker crane are managed, and the respective traveling positions of the pair of traveling carts are It is determined at each set cycle whether or not the car crane is predicted to interfere with each other, and if the respective traveling positions of the pair of traveling carriages are the mutual approaching positions, the pair of traveling Based on the detection information of the position detection means and the pair of lift position detection means, the pair of traveling carriages and the pair of lift bodies are positioned at the non-interference positions where the pair of stacker cranes do not interfere with each other. An interference avoidance process for controlling the operation of the stacker crane is performed.
  • the control means determines whether each traveling position of the pair of traveling carts is a mutual approaching position for each set period while controlling the article conveying operation of the assigned stacker crane. It is possible to monitor whether or not the stacker crane is in the mutually approaching position while operating the article transport. And a control means performs an interference avoidance process in the mutual approach position. Therefore, if it is not a mutual approach position at the start of controlling the article transport operation of the assigned stacker crane, the article transfer operation of the assigned stacker crane is started, and at the same time, monitoring of the respective traveling positions of the pair of traveling carts is started. become.
  • the operation for avoiding the interference is performed.
  • the article conveying operation is advanced without any change. While the article conveying operation is in progress, it is monitored whether or not the respective traveling positions of the pair of traveling carriages are mutually approaching positions where the pair of stacker cranes are expected to interfere with each other. When each of the travel positions becomes the mutual approach position, the interference avoidance process is started, so that the interference of the pair of stacker cranes can be avoided.
  • the temporary braking range of each traveling carriage that moves from the current position before stopping is set.
  • the respective traveling positions of the pair of traveling carriages are determined to be mutually approaching positions.
  • the virtual braking range of each traveling vehicle that moves from the current position until the vehicle stops is overlapped in the direction of the moving path. Since it is determined that the position is the position, when the traveling carriage is traveling in the article transport operation, it is determined whether or not the position is the mutual approach position for each set period, thereby performing the article transport operation after the determination timing. Regardless of how the travel behavior (acceleration / constant speed / deceleration) changes due to the vehicle, it is determined whether or not a pair of traveling carts reliably overlap in the direction of the travel path after the discrimination timing. be able to.
  • both traveling trolleys that are running in opposite directions are separated from each other by longer than the sum of the widths of the virtual braking ranges for the respective traveling trolleys, these traveling trolleys are actually set at the set deceleration.
  • both traveling carriages stop without overlapping in the movement path direction, and therefore there is no possibility that the pair of stacker cranes interfere with each other regardless of the trend of the lifting operation by the article conveying operation.
  • both of the traveling carts are separated from each other by longer than the sum of the widths of the virtual braking ranges for the respective traveling vehicles, it is not determined that they are in the mutual approach position, and interference avoidance processing is performed. Is not performed, the lifting / lowering operation by the article conveying operation can be advanced.
  • Interference avoidance processing can be performed as there is a possibility of interference depending on the movement of the lifting operation due to the transport operation, so it is possible to determine an appropriate time to start the interference avoidance processing and perform the article transport operation Interference avoidance processing can be started at an appropriate time.
  • the virtual braking range is also applied when the traveling speed of the traveling carriage is zero, in which case the virtual braking range is a position with a width of zero, and the position is located within the opponent's virtual braking range. What is necessary is just to discriminate
  • control means is configured to perform the interference avoidance process in a form that controls the operation of only one of the pair of stacker cranes.
  • the control unit when the control unit causes the article conveying operation to be performed as the assigned stacker crane for only one of the pair of stacker cranes, the article conveying operation of the pair of stacker cranes is performed. It is preferable that the interference avoidance process is performed in a form in which the operation of the non-charged stacker crane that has not been performed is controlled.
  • the traveling position of the pair of traveling carriages becomes the mutual approach position, and the interference avoidance process is performed.
  • the non-charged stacker crane that is not performing the article transport operation is operated by the interference avoidance process, and the charge stacker crane is maintained by the article transport operation.
  • interference avoidance processing is performed for the non-charged stacker crane that does not directly contribute to the maintenance or improvement of the article processing capacity without interfering with the article transfer operation of the assigned stacker crane that directly contributes to the maintenance or improvement of the article processing capacity.
  • the control means when the control means is configured to perform the article transport operation separately as the assigned stacker crane for both the pair of stacker cranes, the article transport of the pair of stacker cranes. It is preferable that the interference avoiding process is performed in such a manner that the operation of the assigned stacker crane having a long remaining operation time is controlled.
  • the interference between stacker cranes can be avoided by operating by the interference avoidance process it can.
  • a pair of travel guide rails installed in parallel with each other in the longitudinal direction of the shelf is provided, and as the pair of stacker cranes, the travel carts are the pair of travel guide rails.
  • the travel guide rail is guided by one of the travel guide rails, and the lift guide mast is provided on the travel cart, and the travel cart is guided by the other of the pair of travel guide rails, and the lift
  • a stacker crane provided on the traveling carriage is provided with a guide mast, and the pair of lifters are arranged so that each of the pair of stacker cranes can move with respect to each other.
  • the control means is set as a separation distance in which the pair of lifting bodies can be moved without interference by the pair of stacker cranes as the interference avoidance process. It is preferable that the interference avoiding lifting process for controlling the lifting operation of the pair of lifting bodies is performed in order to move up and down to the passing lifting position separated in the lifting direction over a necessary separation distance.
  • each traveling carriage of the pair of stacker cranes travels on a pair of traveling guide rails installed in parallel with each other in the longitudinal direction of the shelf, and each lifting body is a pair of stacker cranes.
  • Each of the stacker cranes extends in the longitudinal direction of the shelf so as not to reach the lifting guide mast of the mating stacker crane so that each of the stacker cranes can move between each other. Regardless of the travel position, the front side of the article storage shelf can travel across the entire shelf width in the shelf width direction.
  • the traveling movement can be performed over the entire shelf width in the shelf width direction regardless of the position of the other stacker crane. Therefore, it becomes easy to use when providing a pair of stacker cranes to improve the article conveying capability.
  • the travel path required by one stacker crane is the longitudinal direction of the shelf.
  • the width can be made narrower than that obtained by simply doubling the travel path width for one vehicle. Therefore, the installation space when arranging a pair of stacker cranes side by side in the longitudinal direction of the shelf can be made compact.
  • the control means executes an interference avoiding lifting process as an interference avoiding process to control the lifting operation of the pair of lifting bodies.
  • T The pair of lifting bodies are moved up and down to a passing lifting position separated in the lifting direction by more than the required separation distance set as a separation distance that can be moved without passing by the pair of stacker cranes, so that the pair of stacker cranes interfere with each other.
  • the article conveying operation can be performed by traveling and moving the entire shelf width in the shelf width direction.
  • the control means reduces the setting of the traveling cart that is running after the respective traveling positions of the pair of traveling carts are in the mutual approach position in the interference avoidance lifting process. Elevating range in which the elevating body can be moved up and down by the article transporting operation within a grace period until the pair of elevating bodies are assumed to interfere with each other when the travel operation is performed in a mode of decelerating at a speed. Is determined for the lifting body of the assigned stacker crane, and when both the pair of stacker cranes are operated as the assigned stacker crane, the article transport operation is performed.
  • the pair of stackers if the maximum lifting range does not overlap each other by being separated from each other longer than the required separation distance
  • the article transport operation is performed. If the interference target range that extends on both the upper and lower sides in the up-and-down direction by the required separation distance centered on the up-and-down position does not overlap with the maximum up-and-down range of the lifting body of the assigned stacker crane, the interference-free state And when the interference avoiding lifting process determines that the interference does not occur, the interference avoiding lifting process does not control the lifting operation of the pair of lifting bodies.
  • the interference is not generated. Is determined to control the lifting operation of the pair of lifting bodies so as to perform the article conveying operation in a form of controlling the pair of lifting bodies in the interference avoiding lifting process. Is preferred.
  • the maximum lifting range which is the lifting range in which the lifting body can be raised and lowered by the article transport operation within the grace period until reaching the assumed travel position, is determined for each lifting body, and both the pair of stacker cranes are in charge of the article transport operation.
  • the maximum lifting ranges of the lifting bodies are not overlapped with each other by being separated from each other by longer than the necessary separation distance.
  • the upper limit of the maximum lifting range for the lifting body and the lower limit of the maximum lifting range for the other lifting body are separated from each other by longer than the required separation distance, and the pair of lifting bodies are closest to each other in the lifting direction.
  • interference between the pair of stacker cranes does not occur, in such a case, it is determined that the interference does not occur.
  • the interference target range having a spread on both the upper and lower sides of the direction does not overlap with the maximum lifting range of the lifting body of the assigned stacker crane, it is determined that the interference is not generated.
  • the interference target range that spreads in the up and down direction by the required separation distance around the lifting position of the lifting body of the non-serving stacker crane.
  • the lifting position of the lifting body of the non-assigned stacker crane is longer than the required separation distance from the upper limit position or the lower limit position of the maximum lifting range. Even if the pair of lifting bodies approaches as much as possible in the lifting direction, no interference occurs between the pair of stacker cranes. In such a case, it is determined that no interference occurs.
  • the control means causes the article avoiding operation to control the lifting operation of the pair of lifting bodies in the interference avoiding lifting process.
  • the ascending / descending operation of the pair of elevating bodies is based on the article conveying operation.
  • the article conveying operation is performed in such a manner that the pair of lifting bodies are controlled by the interference avoiding lifting process.
  • the lifting / lowering operation of the lifting / lowering body is controlled, and the lifting / lowering operation different from the article conveying operation is performed so that the pair of lifting / lowering bodies are positioned at the lifting / lowering position for passing.
  • JP 2007-015780 A lays one traveling guide rail along the moving route.
  • a pair of stacker cranes on which travel guide rails are movable are arranged side by side in the movement path direction.
  • Japanese Patent Laid-Open No. 07-125810 discloses another example in which a pair of stacker cranes is provided for one moving route.
  • two traveling guide rails along the moving route are spaced apart in the longitudinal direction of the shelf.
  • a stacker crane is provided for each of the travel guide rails, and each stacker crane is provided so as to be movable along each of two travel paths adjacent in the longitudinal direction of the shelf.
  • each stacker crane has no relation to the position of the other stacker crane with respect to traveling movement, and without activating the other stacker crane, Since it can move over the entire area in the width direction of the shelf, it can be expected that the article processing capacity will be greatly improved.
  • the travel paths of each stacker crane are adjacent to each other, the width of the travel path of the pair of stacker cranes Is the sum of the travel path widths of each stacker crane. Therefore, there is a disadvantage that the movement path space is increased and the installation space of the facility is increased.
  • the stacker crane that travels on the travel guide rail on the side far from the shelf in the longitudinal direction of the shelf has a longer distance to each storage unit in the article storage shelf, and therefore transfers articles between the storage unit and the stacker crane.
  • the article transfer device must be capable of transferring an article to a remote storage unit.
  • the article transfer device is used to place and support an article.
  • the slide support When the article support base to be constructed is configured with a slide fork mechanism that can be moved back and forth in the longitudinal direction of the shelf, the slide support must be configured with a long slide stroke, which complicates the structure of the article transfer device.
  • the traveling guide rail a pair of guide rails installed in parallel with a space in the longitudinal direction of the shelf is provided, and the pair of stackers
  • the traveling carriage is guided by one of the pair of traveling guide rails, the lift guide mast is provided on the traveling carriage, and the traveling carriage is the pair of traveling guide rails.
  • the pair of lifting bodies is provided on the other side so that each of the pair of stacker cranes can move with respect to each other, and a stacker crane provided with the lifting guide mast is provided on the traveling carriage.
  • the lifting plan of the other stacker crane having a portion overlapping with the lifting body of the stacker crane in the longitudinal direction of the shelf Provided in a state extending in the longitudinal direction of the shelf from the lifting guide mast so as not to reach the mast, and when the control means controls the article conveying operation of the pair of stacker cranes, Based on the detection information of the pair of lift position detection means, managing the respective travel positions of the pair of traveling carts of the pair of stacker cranes and the lift positions of the pair of lift bodies of the pair of stacker cranes, Both of the pair of lifts to raise and lower the pair of lifts to a passing lift position spaced apart in the lift direction more than the necessary separation distance set as a separation distance that can be moved by the pair of stacker cranes without interference.
  • a mutual avoiding lifting process in which the lifting and lowering operation for avoiding interference is different from the lifting action by the article conveying action, It is preferably configured to perform as a serial interference avoidance process.
  • the lifting bodies of the pair of stacker cranes are provided with a portion overlapping with the lifting body of the other stacker crane in the longitudinal direction of the shelf, so that the travel path of each stacker crane is identical in the longitudinal direction of the shelf.
  • the width can be made narrower than that obtained by simply doubling the travel path width for one vehicle. Therefore, when the pair of stacker cranes are arranged side by side in the longitudinal direction of the shelf, the movement path width of the pair of stacker cranes can be narrowed and the equipment can be made compact.
  • the lifting body has a portion overlapping the lifting and lowering body of the mating stacker crane in the longitudinal direction of the shelf, the lifting body of the stacker crane on the far side in the longitudinal direction of the shelf from the article storage shelf Compared to the case where the elevator body is configured not to have a portion overlapping in the longitudinal direction of the shelf, the article transfer device provided in the elevation body is positioned closer to the shelf side in the longitudinal direction of the shelf. The article may be transferred between the storage section and the stacker crane from a position relatively close to the storage shelf in the longitudinal direction of the shelf. Accordingly, since it is not necessary to provide a long stroke slide fork mechanism or the like in the article transfer device, the complexity of the structure of the article transfer device can be suppressed.
  • each traveling carriage of the pair of stacker cranes travels on a pair of traveling guide rails installed in parallel with each other at an interval in the longitudinal direction of the shelf, and each of the lifting bodies passes between each of the pair of stacker cranes. Since it is provided in a state extending from the lifting guide mast in the longitudinal direction of the shelf so as not to reach the lifting guide mast of the other stacker crane, each stacker crane can be moved according to the travel position of the other stacker crane. First, on the shelf front side of the article storage shelf, it can travel and move across the entire width of the shelf in the shelf width direction.
  • each stacker crane can be operated without avoiding the other stacker crane as long as the pair of lifters are positioned so as not to interfere with each other regardless of the position of the other stacker crane. Is movable across the entire width of the shelf. Accordingly, since the two stacker cranes can be individually conveyed and operated, the article processing capability is greatly improved.
  • a control means will control the article conveyance operation about the charge stacker crane in charge of article conveyance by the said operation command. Based on the detection information of the pair of travel position detection means and the pair of lift position detection means, the travel positions of the pair of travel carts of the pair of stacker cranes and the lift positions of the pair of lift bodies of the pair of stacker cranes Will manage.
  • the control means performs a mutual avoiding lifting process in which both the pair of lifting bodies are lifted and lowered by an interference avoiding lifting action different from the lifting action by the article conveying operation, and both the pair of lifting bodies are moved to the pair of stacker cranes. Is lifted up and down to a passing lifting position separated in the lifting direction more than the required separation distance set as a separation distance that can be moved without interfering with each other, so that both of the pair of lifting bodies are moved up and down by mutual avoiding lifting processing, The pair of stacker cranes can move without interfering with each other.
  • both lifting and lowering bodies are moved up and down, so both lifting and lowering bodies of the pair of stacker cranes bear the amount of lifting operation required to move up and down to the passing and lowering lifting position.
  • the pair of lifting bodies can be quickly moved up and down to the passing lifting position, and the lifting operation of each lifting body is suppressed from being greatly deviated from the article transporting operation. It can suppress that efficiency falls.
  • the control means sets the traveling carriage that is in a traveling operation to a set deceleration after the traveling positions of the pair of traveling carriages are in the mutual approach positions in the mutual avoidance raising / lowering process.
  • the lift is within a lifting range in which the lift can be raised and lowered by the article conveying operation within a grace period until the pair of lifts are assumed to interfere with each other.
  • the maximum lifting range is obtained for the lifting body of the assigned stacker crane, and when both the pair of stacker cranes are operated as the assigned stacker crane, the maximum lifting and lowering of each of the pair of lifting bodies is performed.
  • the pair of stacker clays if the ranges do not overlap each other by separating from each other longer than the required separation distance;
  • the lifting / lowering of the lifting body of the other stacker crane is determined. It is determined that the interference does not occur unless the interference target range having a spread in the ascending / descending direction with respect to the position as a center overlaps with the maximum ascending / descending range of the elevator body of the assigned stacker crane.
  • the mutual avoidance raising / lowering process may perform the article conveying operation in a form that does not control the lifting / lowering operation of the pair of lifting bodies, and If it is determined that the interference avoidance raising / lowering process is not in the mutual avoidance raising / lowering process, both of the pair of raising / lowering bodies are performed so that the pair of lifting bodies are controlled by the mutual avoidance raising / lowering process. It is preferable to be configured to control the lifting operation.
  • the maximum lifting range which is the lifting range in which the lifting body can be raised and lowered by the article transport operation within the grace period until reaching the assumed travel position, is determined for each lifting body, and both the pair of stacker cranes are in charge of the article transport operation.
  • the maximum lifting ranges of the lifting bodies are not overlapped with each other by being separated from each other by longer than the necessary separation distance.
  • the upper limit of the maximum lifting range for the lifting body and the lower limit of the maximum lifting range for the other lifting body are separated from each other by longer than the required separation distance, and the pair of lifting bodies are closest to each other in the lifting direction.
  • interference between the pair of stacker cranes does not occur, in such a case, it is determined that the interference does not occur.
  • the interference target range having a spread in the direction does not overlap with the maximum lifting range for the lifting body of the assigned stacker crane, it is determined that the interference does not occur.
  • the interference target range that extends in the ascending / descending direction around the ascending / descending distance around the ascending / descending position of the lifting / lowering body of the unassigned stacker crane is in charge. If it does not overlap with the maximum lifting range for the stacker crane lifting body, the lifting position of the non-charged stacker crane lifting body is longer than the required separation distance from the upper limit position or the lower limit position of the maximum lifting range, Even if the lifting body approaches as much as possible in the lifting direction, no interference occurs between the pair of stacker cranes. In such a case, it is determined that no interference occurs.
  • the mutual avoidance raising / lowering process causes the article conveying operation to be performed without controlling the lifting operation of the pair of lifting bodies.
  • the raising / lowering operation of the raising / lowering body is based on the article conveying operation.
  • the pair of lifting bodies are controlled by the mutual avoiding raising / lowering process. Both lifting / lowering operations are controlled, and a lifting / lowering operation different from the article conveying operation is performed so that the pair of lifting / lowering bodies are positioned at the lifting / lowering position for passing.
  • control means is configured to update and generate the traveling carriage for each set control cycle based on an article transport operation travel pattern and an article transport operation lifting pattern generated in response to the operation command.
  • Is configured to control the article conveying operation for the assigned stacker crane by commanding the target travel position for the lifter and the target lift position for the lifting body at each set control cycle, and the mutual avoiding lift
  • the processing instead of the target lifting position for the lifting body defined based on the lifting pattern for article conveyance operation, the lifting position and the lifting speed of the lifting body of the pair of stacker cranes as the processing stacker crane And a target lifting position for avoiding interference, which is updated based on the required separation distance,
  • By commanding the serial setting control every cycle to raise and lower the pair of vertically movable bodies to the low-beam vertical position, which is preferably configured to control the elevating operation of both of the pair of vertically movable bodies.
  • the control means controls the article transport operation for the assigned stacker crane by instructing the target travel position and the target lift position for each set control cycle.
  • the target travel position and the target lift position are updated and generated for each set control cycle based on the article transport operation travel pattern and the article transport operation lift pattern generated in response to the operation command, respectively. That is, if the traveling position and traveling speed of the traveling carriage at the control timing are deviated from the article transport operation traveling pattern, the target traveling position is updated and generated so as to correct the deviation.
  • the target raising / lowering position will be updated and generated so that the deviation may be corrected. Therefore, in the article transport operation, the travel operation and the lift operation are performed so as to match the travel pattern for the article transport operation and the lift pattern for the article transport operation as much as possible.
  • the control means commands a target raising / lowering position for avoiding interference for each set control cycle, thereby controlling both raising / lowering operations of the pair of raising / lowering bodies and passing the pair of raising / lowering bodies. Elevate to the lifting position.
  • the target lifting position for avoiding interference is updated and generated based on the lifting position and lifting speed of the lifting body of the pair of stacker cranes, and the necessary separation distance. In other words, depending on the lifting position and the lifting speed of both lifting bodies at the control timing, both of the pair of lifting bodies are appropriate for raising and lowering to the passing lifting position spaced apart in the lifting direction by more than the necessary separation distance.
  • the target lift position is updated and generated as a target lift position for avoiding interference. Therefore, in the lifting operation in the mutual avoidance lifting processing, the lifting / lowering operation is performed so as to approach the passing lifting / lowering position by commanding an appropriate lifting / lowering position in consideration of the lifting position and lifting speed of the lifting body at each control timing. Therefore, a useless lifting operation amount can be suppressed as much as possible as an operation amount for moving up and down to the passing lifting position.
  • the traveling operation and the raising / lowering operation are performed so as to match the traveling pattern for the article conveying operation and the lifting pattern for the article conveying operation as much as possible, so that the pair of stacker cranes can move without interfering with each other.
  • the lifting operation in the mutual avoiding lifting process as the avoiding operation for the purpose is a lifting operation different from the article conveying operation, it can be moved up and down to the passing lifting position with a minimum amount of lifting operation. Therefore, when the pair of lifting bodies are raised and lowered to the passing lifting position in the mutual avoiding lifting process, a time margin can be provided, and the pair of lifting bodies can be reliably raised and lowered to the passing lifting position.
  • control means is installed on the ground side, and the first crane control means for controlling the operation of one stacker crane of the pair of stacker cranes, and the operation of the other stacker crane. It is preferable to be provided with the 2nd crane control means to control.
  • movement of a pair of stacker cranes is controlled by the 1st crane control means and the 2nd crane control means with which the control means installed in the ground side is each, each of each stacker crane is controlled.
  • the control configuration to be provided on the vehicle can be as simple as a control configuration based on simple servo control that moves the traveling carriage and the lifting body of the stacker crane to the target position based on the target position information. Therefore, it is possible to simplify the control configuration provided for each of the pair of stacker cranes.
  • the article storage facility is formed between two article storage shelves 1 that are installed at an interval so that the direction of putting in and out the articles is opposed to each other, and the two article storage shelves 1 And a stacker crane 3 that moves along the travel path 2 (corresponding to a travel path).
  • the articles 4 that are carried in from the outside are placed and supported on both sides of the article storage shelf 1, and are unloaded from the article storage shelf 1 and carried out to the outside.
  • a loading / unloading section 5 for placing and supporting the article 4 to be mounted is provided.
  • Each article storage shelf 1 is configured by a plurality of a pair of front and rear support columns 1a standing at an interval in the width direction of the shelf, and connecting the support columns 1a adjacent in the width direction of the shelf with a plurality of upper and lower shelf plates 1b. ing.
  • the shelf board 1b is configured to place and support the article 4 in a state in which a part of the article 4 protrudes forward in the front-rear direction of the shelf.
  • the shelf board 1b is configured to place and support the plurality of articles 4 in a state where the plurality of articles 4 are arranged in the shelf width direction.
  • the storage unit 6 in the article storage shelf 1 is configured to store the article 4 in a state where the article 4 is placed and supported by the shelf board 1b.
  • a plurality of the storage units 6 are provided so as to be arranged in the vertical direction and the horizontal direction on both sides of the movement passage 2 in the longitudinal direction of the shelf (the direction orthogonal to the lateral width direction of the shelf).
  • a first stacker crane 3 a (hereinafter referred to as “unit 1 3 a”) that moves on one side in the front-rear direction of the shelf around the movement path 2 and a second unit 3 b that moves on the other side in the front-rear direction of the shelf. (Hereinafter referred to as No. 2 machine 3b).
  • Two lower rails 7 (corresponding to travel guide rails) are laid in parallel along the shelf width direction on the floor surface of the movement path 2, and the upper rail 8 is located above the movement path 2 in the width direction of the shelf. Are arranged in parallel along the line.
  • the one arranged on one side in the shelf front-rear direction is for moving the first machine 3 a along the movement path 2, and the other in the shelf front-rear direction. What is arranged on the side is for moving the No. 2 machine 3 b along the movement path 2.
  • Each of the No. 1 machine 3a and No. 2 machine 3b can reciprocate along the moving path 2 over the entire length of the article storage shelf 1 in the width direction of the shelf and the place where the loading / unloading portion 5 is provided by the guidance of the lower rail 7 and the upper rail 8. Is provided.
  • the 1st machine 3a and the 2nd machine 3b are demonstrated, the 1st machine 3a and the 2nd machine 3b are the same structurally only in the direction mutually arrange
  • the stacker crane 3 includes a traveling carriage 9 that can travel along the lower rail 7, and a lifting platform 11 that can be moved up and down along a lifting guide mast 10 erected on the traveling carriage 9.
  • the lifting platform 11 includes an article transfer device 12 that can transfer the article 4 to the storage unit 6 and the carry-in / out unit 5.
  • the lifting platform 11 and the article transfer device 12 constitute a lifting body UD.
  • the traveling carriage 9 is formed in a flat shape that is long in the width direction of the shelf, and is configured such that the traveling carriage 9 of the first car 3a and the traveling carriage 9 of the second car 3b move along the movement path 2 in a state where they can pass each other. Has been.
  • the elevator guide mast 10 of the No. 1 machine 3a is provided on the traveling carriage 9 in a state of being moved toward one side of the shelf in the longitudinal direction (the direction approaching the closer shelf), and the elevator guide mast 10 of the No. 2 machine 3b is provided in the longitudinal direction of the shelf. It is provided in the traveling cart 9 in a state where it is brought closer to the other side (direction approaching the closer shelf).
  • the lifting platform 11 of the first machine 3a is cantilevered by the lifting guide mast 10 so as not to contact the lifting guide mast 10 of the second machine 3b so as to extend in the longitudinal direction of the shelf from the lifting guide mast 10 of the first machine 3a.
  • the elevator 11 of the second machine 3b is also cantilevered by the elevator guide mast 10 in a state extending from the elevator guide mast 10 of the second machine 3b in the longitudinal direction of the shelf so as not to contact the elevator guide mast 10 of the first machine 3b. Yes.
  • first machine 3a and the second machine 3b are configured to reciprocate in the movement path 2 in a state where they can pass each other.
  • the elevating guide mast 10 is formed in a flat shape that is long in the shelf width direction, and one elevating guide mast 10 is erected on one end side of the traveling carriage 9 in the shelf width direction.
  • the lifting guide mast 10 is erected on the traveling carriage 9 at a position that is biased toward the side approaching the article storage shelf 1 from the lower rail 7 when viewed in the width direction of the shelf.
  • the lifting guide mast 10 is configured such that its upper end is higher than the lower end of the upper rail 8.
  • Two upper guide rollers 14 provided in a state of sandwiching the upper rail 7 are supported by a support body 13 extending in the longitudinal direction of the shelf at the upper end portion of the lifting guide mast 10. The contact between the two upper guide rollers 14 and the upper rail 7 restricts the movement of the stacker crane 3 in the longitudinal direction of the shelf.
  • the lifting platform 11 is fitted to two lifting rails 15 provided on the lifting guide mast 10 and is supported by the single lifting guide mast 10 so as to be vertically movable.
  • One end of a lifting / lowering chain 16 for lifting and lowering the lifting / lowering base 11 is connected to the lifting / lowering base 11.
  • the raising / lowering chain 16 is wound around an upper sprocket 17 provided at the upper part of the raising / lowering guide mast 10, and is wound around a lower sprocket 18 provided at the traveling carriage 9, and the other end thereof is taken up by the lifting platform 11. It is connected to.
  • a drive sprocket 20 that is rotationally driven by an elevating electric motor MV is provided so as to engage with the elevating chain 16.
  • the lifting platform 11 is configured to move up and down by moving the lifting chain 16 in the longitudinal direction thereof by forward and reverse rotation driving of the lifting electric motor MV.
  • other known members such as a wire can be used.
  • the traveling carriage 9 is provided with traveling wheels 21 that can rotate on the lower rail 7.
  • One of the pair of front and rear traveling wheels 21 is configured as a driving wheel 21a that is rotationally driven by a traveling electric motor MH, and the other is configured as a driven wheel 21b that can freely rotate.
  • the traveling carriage 9 of the first car 3a is provided with a first lifting laser distance meter 23 (for the second car 3b, the second lifting laser distance meter 27) that detects the lifting position of the lifting body UD in the lifting path.
  • the first elevating laser rangefinder 23 is used for distance measurement along the vertical direction toward the first elevating reflector 24 (the second elevating reflector 28 for the second machine 3b) provided on the elevating platform 11. By projecting light (laser light) and receiving the light reflected by the first lifting / lowering reflector 24, the distance to the lifting / lowering body UD is measured.
  • the first lift laser distance meter 23 is configured to detect the lift position of the lift body UD from the measured distance to the lift body UD.
  • the first lift laser distance meter 23 and the second lift laser distance meter 27 correspond to a pair of lift position detecting means.
  • the lift position detection means it is engaged with a rotation sensor that measures the rotation of a gear that is attached to the lift body UD and is engaged with the linear gear teeth provided on the lift guide mast 10 or the lift chain 16. It is possible to use a well-known sensor such as a rotation sensor that measures the rotation of the gear to be moved or a contact sensor attached to the lifting body UD.
  • the traveling carriage 9 is provided with a first traveling laser distance meter 25 (for the second machine 3b, a second traveling laser distance meter 29) that detects the traveling position of the traveling carriage 9 in the movement path 2.
  • the first traveling laser rangefinder 25 emits distance measuring light (laser light) toward the first traveling reflector 26 (second traveling reflector 30 for the second machine 3b) along the shelf width direction.
  • the first traveling laser distance meter 25 (for No. 2 machine 3b) in the horizontal direction of the shelf is measured by receiving the light reflected and reflected by the first traveling reflector 26 and measuring the elapsed time.
  • the distance between the second traveling laser distance meter 29) and the traveling carriage 9 is measured.
  • the first traveling reflector 26 is provided on the ground side at the end of the moving path 2, and its installation position is used as a reference position for detecting the traveling position of the traveling carriage 9 of the first car 3a.
  • the first travel laser distance meter 25 measures the distance from the reference position, which is the installation position of the first travel reflector 26, to the travel bogie 9 of the first car 3a, and the travel position of the travel bogie 9 of the first car 3a. Is configured to detect.
  • the second traveling reflector 30 is provided on the ground side of the end of the moving path 2 opposite to the end where the first traveling reflector 26 is provided, and the installation position thereof is set to the second machine 3b. It is set as a reference position for detecting the traveling position of the traveling carriage 9.
  • the second traveling laser distance meter 29 measures the distance from the reference position, which is the installation position of the second traveling reflector 30, to the traveling carriage 9 of the second machine 3b, and the traveling position of the traveling carriage 9 of the second machine 3b. Is configured to detect.
  • the first traveling laser distance meter 25 and the second traveling laser distance meter 29 correspond to a pair of traveling position detection means.
  • the article transfer device 12 includes a placement conveyance unit that places and conveys the article 4 in the article transfer direction along the shelf front-rear direction, and a base that supports the placement conveyance unit in a freely movable manner in the article transfer direction. And a retreat drive means for retreating the retraction position for retreating the placement transport unit toward the base in the article transfer direction and a protrusion position for projecting outward from the base 28 in the article transfer direction. I have. It is also possible to use a known structure having a robot arm having a joint as the article transfer device 12.
  • a ground side controller H is provided as a control means for controlling the operation of the first machine 3a and the second machine 3b.
  • the various control means, controllers, or other members having control functions described in this specification include a CPU, a memory, and a communication unit, and an algorithm for executing the functions described in this specification is stored. ing.
  • the ground-side controller H is configured to be communicable with each of the travel and lift laser distance meters and the travel and lift servo amplifiers provided on the stacker crane 3 side. Communication between the ground side controller H and each laser distance meter and each servo amplifier on the stacker crane 3 side is performed by wireless communication devices 19 and 22 using infrared rays.
  • the wireless communication devices 19 and 22 will be described by taking the first wireless communication device 19 that performs infrared communication between the first vehicle 3a and the ground-side controller H as an example.
  • the ground side communication unit 19a installed on the ground side and wiredly connected to the ground side controller H, and the up / down laser distance meter 23 and the traveling laser distance meter of the first unit 3a installed in the traveling carriage 9 of the first unit 3a.
  • Each of the ground side communication unit 19a and the terminal communication unit 19b includes an infrared transmitter and a receiver, and the ground side communication unit 19a has various control information such as target travel position information and target lift position information about the first unit 3a. Is transmitted to the terminal communication unit 19b by infrared rays.
  • the terminal communication unit 19b demodulates the received infrared signal and outputs various control information such as target travel position information and target lift position information to the lift servo amplifier SV1 and the travel servo amplifier SH1.
  • the terminal communication unit 19b is based on the lifting position information about the lifting body UD detected by the lifting laser distance meter 23 and the traveling position information about the traveling carriage 9 of the first machine 3a detected by the traveling laser distance meter 25.
  • the carrier signal modulated as a band signal is transmitted to the ground side communication unit 19a by infrared rays.
  • the ground side communication unit 19a demodulates the received infrared signal, and outputs to the ground side controller H the lift position information about the lift body UD of the first car 3a and the travel position information about the traveling carriage 9 of the first car 3a.
  • the two-way communication is performed between the ground side communication unit 19a and the terminal communication unit 19b, so that the ground side controller H can control the operation of the first unit 3a.
  • two-way communication is performed between the ground side communication unit 22a and the terminal communication unit 22b of the No. 2 radio communication device 22, so that the ground side controller H can control the operation of the No. 2 machine 3b.
  • the modulation / demodulation period of the wireless communication devices 19 and 22 is sufficiently shorter than the control period of the ground-side controller H.
  • the transportation source and the transportation designated by the operation instruction are issued.
  • the ground-side controller H controls the traveling operation of the traveling carriage 9 of the first unit 3a and the second unit 3b and the lifting operation of the lifting body UD. Then, the article transfer device 12 is moved on the front side of the shelf to a preset target stop position for each of the storage unit 6 and the carry-in / out unit 5.
  • the target stop position is when the article 4 is wholesaled (that is, handed over) to the storage section 6 or the loading / unloading section 5 rather than when the article 4 is dropped (that is, acquired) from the storage section 6 or the loading / unloading section 5.
  • the ground-side controller H should transfer the article 4 between the article transfer device 12 and the target storage unit 6 or the loading / unloading unit 5 with the article transfer device 12 positioned at the target stop position.
  • the operation of the exit / retreat driving means and the loading / conveying unit of the article transfer device 12 is controlled.
  • the stacker crane 3 receives the operation command, and the article transfer device up to the conveyance source designated by the operation command.
  • the transfer operation for scooping the article 4 from the transfer source is performed.
  • the article transfer device 12 performs an actual transfer operation (corresponding to an article transfer operation) in which the article 4 is placed and supported on the article 4, and when the article arrives at the transfer destination, the article 4 is unloaded to the transfer destination.
  • the transfer operation for wholesale is performed, and the warehousing work and the warehousing work are performed.
  • the command standby home position HP in this embodiment, the traveling carriage 9 is positioned at the end of the movement path 2 in the lateral width direction of the shelf, and the lifting body UD is set at the lower limit of lifting.
  • an origin return operation is performed to return to a position located at a position (see FIG. 1).
  • the ground controller H searches for a stacker crane that is not in charge of the article transport operation (hereinafter referred to as a non-charge crane). If both No. 1 unit 3a and No. 2 unit 3b are non-charge cranes, based on the transfer source position information specified by the operation command and the current position of No. 1 unit 3a and No. 2 unit 3b, The stacker crane is set as a responsible stacker crane in charge of the operation command (hereinafter referred to as a responsible crane). If either No. 1 machine 3a or No. 2 machine 3b is a non-charge crane, the non-charge crane is set as a charge crane in charge of the operation command. If both No. 1 machine 3a and No.
  • the ground-side controller H transmits the target lifting position information and the target lifting position information to the crane in charge every control cycle (10 [ms] in this embodiment). Controls the article transport operation of the crane in charge.
  • control of the article conveyance operation of the stacker crane 3 by the ground controller H will be described.
  • the ground-side controller H performs target transport position information on the traveling carts of the first car 3a and the second car 3b and the first car for each control cycle while performing the goods transport operation of the empty transport operation and the actual transport operation.
  • the article transfer device 12 In order to move the article transfer device 12 from the operation start position to the operation end position by instructing the target elevator position information about the elevator bodies of the 3a and 2 machine 3b to the 1st machine 3a and the 2nd machine 3b. 3 is controlled.
  • the operation start position is the transfer source for the operation command if the article transfer operation is an actual transfer operation, and the destination of the operation command processed most recently by the stacker crane if it is an empty transfer operation or an origin return operation. It is.
  • the operation end position is a transfer destination for the operation command if the article transfer operation is an actual transfer operation, a transfer source for the operation command if the article transfer operation is an empty transfer operation, and a home position if the origin return operation is performed. It is.
  • the travel distance DH required to move from the operation start position to the operation end position is as short as possible under the restrictions of the set travel acceleration ⁇ H, the set maximum travel speed VHmax, and the set travel deceleration ⁇ H.
  • This is a target value for the travel position for each control cycle for controlling the travel position change of the travel carriage 9 so as to change the speed according to the travel speed change pattern (see FIG. 5A). .
  • the target lift position information is a lift operation from the operation start position to the operation end position
  • the lift distance DV required to rise from the operation start position to the operation end position is set as the set increase acceleration ⁇ up
  • the speed change along the lift speed change pattern (see Fig. 5 (b).
  • the solid line is the lift speed change pattern during the lift operation) that can be increased as quickly as possible under the restrictions of the lift speed Vupmax and the set lift deceleration ⁇ up.
  • the required elevating distance DV is reduced as quickly as possible under the restrictions of the set descent acceleration ⁇ dw, the set maximum descent speed Vdwmax, and the set up / down deceleration ⁇ dw.
  • Ascending / descending speed change pattern (refer to FIG. 5 (b). Ascending / descending speed change pattern when dashing operation is performed), the elevating position change of elevating body UD is controlled for each control cycle. This is the target value for the lift position.
  • the traveling position information of the traveling carriage 9 of the first unit 3a by the first traveling laser distance meter 25 and the elevation position information of the lifting body UD of the first unit 3a by the first lifting laser distance meter 23 are obtained. It is transmitted to the ground-side controller H every control cycle via the wireless communication device 19, and the ground-side controller H causes the traveling vehicle 9 of the first car 3a to change the speed according to the traveling speed change pattern. In addition, based on the traveling position information of the traveling carriage 9 of the first car 3a and the lifting position information of the lifting body UD so that the lifting body UD of the first car 3a changes in speed according to the lifting speed change pattern.
  • the target travel position information and the target lift position information for the first car 3a are updated and generated, and the lift servo amplifier SV1 for the first car 3a and the travel are transmitted via the first car wireless communication device 19. To send to use the servo amplifier SH1.
  • the traveling position information of the traveling carriage 9 of the second machine 3b by the second traveling laser distance meter 29 and the lifting position information of the lifting body UD of the second machine 3b by the second lifting laser distance meter 27 are obtained from the second machine 3b. It is transmitted to the ground side controller H at every control cycle via the No. 2 wireless communication device 22, and the ground side controller H indicates that the traveling carriage 9 of the No. 2 machine 3b follows the above traveling speed change pattern.
  • the traveling position information of the traveling carriage 9 of the second machine 3b and the lifting position of the lifting body UD so that the speed changes, and the lifting body UD of the second machine 3b changes the speed according to the lifting speed change pattern.
  • the target travel position information and the target lift position information for the second machine 3b are updated and generated, and the lift servo amplifier SV for the second machine 3b is transmitted via the second machine wireless communication device 22. And sending to the running servo amplifier SH2.
  • the ground-side controller H includes first crane control means 31, second crane control means 32, interference avoidance control means 33, and communication control means 34 configured by a program.
  • traveling servo amplifier SH1 traveling position information of the traveling carriage 9 detected by the first traveling laser rangefinder 25 and motor rotational speed information by the rotary encoder provided in the traveling motor MH1, and in the lifting servo amplifier SV1, The lift position information of the lift body UD detected by the first lift laser distance meter 23 and the motor rotational speed information by the rotary encoder provided in the lift motor MV1 are input.
  • These servo amplifiers are operated in the position control mode, and the traveling servo amplifier SH1 is configured so that the traveling position of the traveling carriage 9 detected by the first traveling laser rangefinder 25 becomes the set target position.
  • the motor drive output for the traveling motor MH1 of the first machine 3a is controlled.
  • the lift servo amplifier SV1 is configured so that the lift position of the lift body UD detected by the first lift laser distance meter 23 is the set target position. In this manner, the motor drive output for the lift motor MV1 of the first machine 3a is controlled.
  • the first crane control means 31 Based on the target travel position information transmitted from the No. 1 machine 3a, the first crane control means 31 has a travel servo amplifier SH1 that operates in the position control mode so that the travel position of the travel carriage 9 becomes the target travel position.
  • Target travel position information as target position information is generated for each control cycle.
  • the generated target travel position information is output from the communication port controlled by the communication control means 34 to the ground side communication unit 19a of the No. 1 wireless communication device 19.
  • the traveling motor MH1 of the first car 3a is driven to rotate so that the traveling carriage 9 is located at the traveling position indicated by the target traveling position information.
  • the first crane control means 31 is a lifting servo that operates in the position control mode so that the lifting position of the lifting body UD becomes the target lifting position based on the target lifting position information transmitted from the No. 1 machine 3a.
  • Target travel position information as target position information of the amplifier SV1 is generated for each control cycle.
  • the generated target lift position information is output from the communication port controlled by the communication control means 34 to the ground side communication unit 19a of the No. 1 wireless communication device 19.
  • the lifting motor MV1 of the first machine 3a is rotationally driven so that the lifting body UD is positioned at the lifting position indicated by the target lifting position information.
  • the ground-side controller H transmits the target travel position information and the target lift position information to the travel servo amplifier SH1 and the lift servo amplifier SV1 of the No. 1 machine 3a every control cycle, so that the travel of the No. 1 machine 3a is performed.
  • the carriage 9 travels so as to be positioned at the travel position indicated by the target travel position information, and the lifting body UD of the first car 3a moves up and down so as to be positioned at the lift position indicated by the target lift position information.
  • the ground side controller H performs the traveling servo amplifier SH2 of the second machine 3b and the elevator for every control cycle.
  • the travel cart 9 of the second machine 3b travels to be located at the travel position indicated by the target travel position information, and the lift body of the second machine 3b.
  • the UD moves up and down so as to be positioned at the lift position indicated by the target lift position information.
  • the ground-side controller H sets the travel position of the traveling carriage 9 of the stacker crane 3 and the lift position of the lifting body UD in the width direction of the article placement surface in the placement transfer section of the article transfer device 12 (the path of the movement path 2).
  • the center in the direction and the traveling direction of the traveling carriage 9) is managed as the representative position P (see FIG. 10) of the stacker crane 3 as the position of the representative position P as viewed in the longitudinal direction of the shelf.
  • the horizontal direction of the shelf (traveling direction of the traveling carriage 9) is the horizontal axis (x-axis)
  • the vertical direction of the shelf (lifting direction of the lifting body UD) is the vertical axis (y-axis).
  • the traveling position of the traveling carriage 9 is managed as the x coordinate of the representative position P in the orthogonal coordinate system that is set, and the lifting position of the lifting body UD is managed as the y coordinate.
  • the origin of this virtual orthogonal coordinate system is when the traveling carriage 9 is located at one end of the moving path 2 and the lifting body UD is located at the lower limit position, that is, the stacker crane at the home position HP.
  • the coordinates of the representative position P when 3 is located are set.
  • the traveling position of the traveling carriage 9 and the ascending / descending position of the elevating body UD will be expressed using the crane center coordinates P (x, y), and the crane center coordinates of the first machine 3a will be expressed as P1 (x1, y1).
  • the crane center coordinate of Unit 3b is represented as P2 (x2, y2). That is, the traveling position of the traveling carriage 9 of the first car 3a is represented by x1, the raising / lowering position of the lifting body UD of the first car 3a is represented by y1, the traveling position of the traveling carriage 9 of the second machine 3b is x2, and the lifting body UD of the second machine 3b.
  • the raising / lowering position of can be represented by y2.
  • the crane center coordinates P (x, y) may be simply referred to as the position of the stacker crane 3.
  • the control means of the crane in charge (one of the first crane control means 31 and the second crane control means 32). Or both) is the target travel position information based on the travel speed pattern for the article transport operation determined from the operation start position and the operation end position of the article transport operation for the crane in charge, and the target lift position information based on the lift speed pattern for the article transport operation. Is written to the output buffer.
  • the interference avoidance control means 33 determines whether or not the first car 3a and the second car 3b are in a mutually approaching position where it is predicted that they will interfere with each other. In this process, when it is assumed that the traveling carriage 9 of the first car 3a and the traveling carriage 9 of the second car 3b at the current control timing are stopped at the set travel deceleration ⁇ H, the current position P1 (x1, y1 ), When there is an overlapping portion in the temporary braking range of each traveling carriage 9 moving from P2 (x2, y2), it is determined that the respective traveling positions of the pair of traveling carriages 9 are mutually approaching positions.
  • the first unit 3a carries the article at the position P1 (x1, y1) and the operating speed V1 (Vx1, Vy1).
  • the traveling carriage 9 of the No. 1 machine 3a is set at the set travel deceleration ⁇ H.
  • the vertically movable body UD of the first mobile body 3a and second mobile body 3b may interfere with each other. Therefore, depending on whether or not the No. 1 temporary braking range VBW1 and the No. 2 temporary braking range VBW2 have portions that overlap each other, there is a possibility that the No. 1 3a and No. 2 3b may interfere in the subsequent article transport operation. In this case, the interference avoidance process described later can be executed without omission. Conversely, if there is a possibility that the No. 1 machine 3a and the No. 2 machine 3b do not interfere in the subsequent article transport operation, it is premature to perform the interference avoidance process, and at this control timing, the interference avoidance process is performed. Do not execute.
  • FIGS. 7B and 7C in addition to FIG. 7A
  • the temporary braking of No. 1 machine 3a and No. 2 machine 3b respectively.
  • FIG. 7 (b) when both No. 1 machine 3a and No. 2 machine 3b carry out article conveyance operation as the cranes in charge and are running in the same direction, the temporary braking ranges of No. 1 machine 3a and No.
  • FIG. 7C when only the No. 1 machine 3a performs the article conveying operation as the responsible crane and the No. 2 machine 3b is in the standby state as the non-in charge crane, that is, when the operating speed V2 of the No. 2 machine 3b is zero.
  • Fig. 5 shows a case where the second machine 3b is located in the temporary braking range VBW1 of the first machine 3a.
  • the first crane control means 31 of the ground side controller H calculates the traveling speed Vx1 of the traveling carriage 9 of the first unit 3a from the time change rate of the detection information of the first traveling laser rangefinder 25, and the first crane 3a of the first unit 3a.
  • the lifting speed Vy1 of the lifting body UD is calculated from the time change rate of the detection information of the first traveling laser rangefinder 23, and the second crane control means 32 of the ground side controller H determines the traveling speed of the traveling carriage 9 of the second machine 3b.
  • Vx2 is calculated from the time change rate of the detection information of the second traveling laser distance meter 29, and the lifting speed Vy2 of the lifting body UD of the second machine 3b is calculated from the time change rate of the detection information of the second traveling laser distance meter 27.
  • the interference avoidance control means 33 determines whether or not it is the mutual approach position, the travel speed information of the traveling carriage 9 of the first car 3a calculated by the first crane control means 31 and the second crane control means 32. Calculate You can refer to the travel speed information of the traveling carriage 9 of No. 2 3b.
  • step # 02 If it is determined that the positions are not close to each other in # 02, it is determined that it is not necessary to perform interference avoidance processing by the interference avoidance control means 33 at that control timing, the process proceeds to # 04, and the communication control means 34 waits for the control timing.
  • step # 01 the first crane control unit 31 and the second crane control unit 32 output the target travel position information and the target lift position information about the crane in charge prepared in advance.
  • the process proceeds to # 03, and the interference avoidance control unit 33 executes interference avoidance processing.
  • the interference avoidance process a crane to be avoided is selected as necessary, and a target lifting position for the avoidance action for the avoidance operation target crane is calculated, and the first crane control means 31 and the first crane The target lift position information written in the output buffer by the crane control means 32 in # 01 is overwritten and changed. Since the amount of calculation in this interference avoidance process is an amount of calculation that can be completed by the next control timing, it can be returned to # 04 by the next control timing.
  • the communication control means 34 causes the avoidance operation target lift position information for the avoidance operation target crane in the output buffer and the other stacker also in the output buffer.
  • Target lift position information for the article transport operation for the crane 3 is output to the first machine 3a and the second machine 3b.
  • step # 11 it is determined whether or not a passing of the traveling carriage 9 occurs after the current control timing.
  • the current position P1 and operation end position P1e of No. 1 machine 3a and the current position P2 and operation end position P2e of No. 2 machine 3b are discriminated. If the order of the No. 1 machine 3a and No. 2 machine 3b in the traveling direction is switched when the article transport operation is completed, that is, if (x1-x2) ⁇ (x1e-x2e) ⁇ 0, a passing occurs. If the order of the No. 3a machine and the No. 2 machine 3b in the traveling direction does not change even when the article conveying operation is finished, that is, if (x1-x2) ⁇ (x1e-x2e)> 0, no passing occurs.
  • the operation end position of each article transport operation is the storage section 6 or the loading / unloading section 5 at a position facing each other across the movement path 2, so that the operation end positions P1e and 2 of the first machine 3a
  • the operation end position of the machine 3b overlaps as coordinates, or when the operation end position is located in a region in the coordinate plane occupied by a structure such as a motor cover provided in the traveling carriage 9 of the other crane in the standby state, etc. Since there is room for interference between Units 3a and 2b, verification processing for the presence or absence of interference between both cranes is subsequently performed in the processing of # 12 and subsequent steps.
  • the representative dimensions of each part centered on the crane center coordinate P (x, y) of the stacker crane 3 used for setting the occupation area are stored in advance, and the crane center coordinate P With respect to (x, y), for example, the occupied width (XA + XB) and the occupied height (YA + YB) in the x direction of the elevating body UD, the occupied width (XE + XD) in the x direction of the traveling carriage 9 and The occupied height (YC) in the y direction is set.
  • step # 101 it is determined whether the lifting bodies UD interfere with each other. If so, the process proceeds to # 104, and the interference determination value is set to “1”.
  • step # 102 it is determined whether or not the lifting body UD interferes with the motor cover in the traveling truck 9 of the counterpart crane. If so, the process proceeds to step # 105 and the interference determination value is set to “2”.
  • # 103 it is determined whether or not the lifting body UD interferes with the lifting guide mast 10 of the counterpart crane in the article transfer operation after the article transporting operation. If so, the process proceeds to # 106, and the interference determination value is “3. "Is set. If none of the interference modes apply, the interference judgment value is set to “0”, assuming that no interference occurs.
  • the presence / absence of interference is determined based on the interference determination value set in the interference determination process of # 13. If the interference discrimination value is “0”, the interference avoidance control means 33 does not rewrite the target travel position information and the target lift position information for the No. 1 machine 3a and No. 2 machine 3b in the output buffer to those for avoidance operation. The interference avoidance process is terminated, and the control operation of the ground controller H returns to the main routine of FIG.
  • both the first machine 3a and the second machine 3b are the cranes in charge, or one of them. It is determined whether only the crane is in charge. If both of the two units carry out the article transport operation as the responsible crane, the remaining operation time of each stacker crane 3 is calculated in # 16. That is, the longer one of the remaining travel operation time and the remaining lift operation time up to the operation end position P1e (x1e, y1e) of the first unit 3a is set as the remaining operation time of the first unit 3a.
  • the remaining travel time is the time required to travel the remaining travel distance x1e-x1 from the current position P1 (x1, y1) of Unit 1 3a to the operation end position P1e (x1e, y1e). It is calculated based on V1 (Vx1, Vy1), set travel acceleration ⁇ H, and set travel deceleration ⁇ H.
  • the remaining lifting operation time is the time required to lift and lower the remaining lifting distance y1e-y1 from the current position P1 (x1, y1) of Unit 1 3a to the operation end position P1e (x1e, y1e).
  • the remaining operation time of Unit 1 3a is compared with the remaining operation time of Unit 2 3b, and the longer responsible crane is set as the crane to be avoided.
  • the crane in charge of the short remaining conveyance time due to the article conveyance operation can advance the article conveyance operation, and the crane in charge of the long remaining operation time of the article conveyance operation is at least that of the counterpart crane in charge.
  • the apparatus waits at the eviction position calculated in # 19.
  • the ground controller H is configured to perform the interference avoidance process in such a manner that the operation of only one of the pair of stacker cranes 3 is controlled.
  • the ground-side controller H performs the article transport operation as the responsible stacker crane for only one of the pair of stacker cranes 3
  • the non-responsible stacker crane that is not performing the article transport operation of the pair of stacker cranes 3. 3 is configured to perform the interference avoidance processing in a form that controls the operation of No. 3.
  • the ground-side controller H performs the article transport operation separately as the responsible stacker crane for both the pair of stacker cranes 3, the remaining operation time of the article transport operation is long among the pair of stacker cranes 3. Interference avoidance processing is performed in a form that controls the operation of the stacker crane.
  • the crane center coordinate P of the avoidance operation target crane is positioned so as to be out of the occupation area of the opponent stacker crane 3.
  • the eviction position for the avoidance operation target crane is set.
  • No. 1 machine 3a and No. 2 machine 3b are in the positional relationship shown in FIGS. 1 and 2, and No. 1 machine 3a is operating an article transport as a responsible crane, and No. 2 machine 3b.
  • the operation end position P1e (x1e, y1e) of No. 1 unit 3a is located in the occupied area of the lifting body UD of No. 2 unit 3b in the standby state as a non-charged crane
  • No. 2 machine 3b which is a non-charged crane, is set as the avoidance operation target crane.
  • the displacement position P2m (x2m, y2m) of the second machine 3b is calculated so that the distance in the x direction between the crane center coordinate P1e at the end position and the crane center coordinate P2 of the second machine 3b is separated by “XB + XB”.
  • the avoidance operation target crane only moves in the traveling direction from the standby state, and thus P2m (x1e + 2 * XB, y2).
  • the operation end position P1e (x1e, y1e) of the No. 1 machine 3a is the operation end position P2e (x2e, y2e).
  • the displacement position P1m (x1m, y1m) of the first unit 3a is calculated so that the distance in the x direction (traveling direction of the traveling carriage 9, lateral direction of the shelf) with respect to the crane center coordinate P2e is separated by “XB + XE”.
  • the movement trajectory including the portion drawn by the dotted line in the figure is the movement trajectory when the first unit 3a does not perform the operation for avoiding interference and advances the operation by the article conveying operation to the end.
  • the ground-side controller H performs the first traveling laser distance meter 25, the second traveling laser distance meter 29, and the first lifting / lowering. Based on the detection information of the laser range finder 23 and the second lift laser range finder 27, in order to position the pair of traveling carts 9 and the pair of lifting bodies UD at non-interfering positions where the pair of stacker cranes 3 do not interfere, An interference avoidance process for controlling the operation of the pair of stacker cranes 3 is performed.
  • the kicking position calculated in # 19 is actually a position where the stacker crane 3 to be avoided can be moved, specifically, the x coordinate of the kicking position. Is within the range of the moving path 2. If the x-coordinate of the eviction position is within the range of the movement path 2, the evasion position is set as the operation end position in order to avoid the evasion operation target crane to the eviction position, and then the process exits from the interference avoidance process. Return to the main routine.
  • the first crane control means 31 or the second crane control means 32 performs the avoidance operation for the avoidance operation target crane as the target travel position information and the target lift position information at # 01 in FIG. (The target travel position information and the target lift position information to be output at the control timing in order to position the avoidance operation target crane at the eviction position) are generated.
  • This process is a process of setting a pseudo operation end position for causing the avoidance operation target crane to travel in a direction opposite to the traveling direction toward the eviction position calculated in # 19.
  • the first crane control means 31 or the second crane control means 32 performs the avoidance operation as the target travel position information and the target lift position information of the avoidance operation target crane.
  • the target travel position information and the target lift position information to be output at the control timing in order to position the avoidance operation target crane at the operation end position set in the temporary operation end position setting process).
  • the avoidance operation target crane performs a temporary article transport operation that is not based on the operation command. In this way, the avoidance operation target crane can avoid interference with the other stacker crane by moving toward the operation end position different from the initially calculated displacement position.
  • the lifting position of the lifting body UD of the No. 1 machine 3a and the lifting position of the lifting body UD of the No. 2 machine 3b are set as a separation distance in which the pair of stacker cranes 3 can move without interference. If they are not separated in the ascending / descending direction by y_CL or more, the elevators UD interfere with each other when the first machine 3a and the second machine 3b pass each other.
  • the interference avoidance control means 33 performs a postponement time T from when the traveling positions of the traveling carriages 9 of the first car 3a and the second car 3b become the mutual approaching position after the traveling position of the first car 3a and the second car 3b.
  • the maximum ascending / descending range Z in which each elevating body UD can be ascended / descended is obtained, and the maximum ascending / descending ranges Z of the traveling carriages 9 of the first car 3a and the second car 3b overlap each other by being longer than the necessary separation distance y_CL.
  • the interference target range that spreads in the up and down direction by the required separation distance y_CL around the lifting position of the lifting body UD of the non-charged crane is the maximum lifting range Z for the lifting body UD of the assigned stacker crane
  • the lifting / lowering operation of the lifting / lowering body UD after the traveling positions of the traveling carriages 9 are different from each other is different from that of the article conveying operation.
  • a and second mobile body 3b is to allow passing move without interfering with each other.
  • the necessary separation distance y_CL is set to a constant value “YA + YB” without distinguishing whether the article transfer device 12 supports the article 4 (height dimension is YB or less).
  • the crane in charge calculates the maximum lifting range Z in which the lifting body UD can move up and down within the grace period T from the current control timing.
  • the grace time T is the travel operation in a mode in which the travel cart 9 that is running after the travel positions of the travel carts 9 of the first car 3a and the second car 3b are close to each other is decelerated at the set travel deceleration ⁇ H. It is time until it becomes an interference assumption traveling position where it is assumed that a pair of raising / lowering body interferes when it is made to do.
  • the interference assumed traveling position a different position is adopted depending on how the first and second machines 3a and 3b pass.
  • the traveling carts 9 of the No. 1 machine 3a and the No. 2 machine 3b are shown in FIG.
  • Each traveling carriage when the relative traveling position relationship, that is, the x-coordinate x2 of the crane center coordinate P2 of the second machine 3b is larger by “XB + XB” than the x-coordinate x1 of the crane center coordinate P1 of the first machine 3a
  • Nine running positions are assumed interference running positions.
  • each of the first machine 3a and the second machine 3b are shifted from the arrangement order opposite to the arrangement order shown in FIGS. 1 and 2 and become the arrangement order shown in FIGS. 1 and 2, each of the first machine 3a and the second machine 3b
  • the relative position of the traveling carriage 9 shown in FIG. 11A that is, the x coordinate x1 of the crane center coordinate P1 of the first machine 3a is larger by “XA + XA” than the x coordinate x2 of the crane center coordinate P2 of the second machine 3b.
  • the traveling position of each traveling carriage 9 when the traveling position relationship is established is the interference assumed traveling position.
  • the grace time T is a time when the vehicle is operated in a mode in which the vehicle is decelerated at the set travel deceleration ⁇ H as a time from the mutual approach position to the assumed interference travel position, thereby becoming the mutual approach position.
  • the maximum lift range Z is estimated to be as large as possible, assuming a travel operation mode in which the time required to reach the interference assumed travel position is the longest among the travel operations by the article transport operation.
  • step # 23 it is determined whether or not the interference between the pair of stacker cranes 3 does not occur. That is, it is determined whether the elevator UD of the first machine 3a and the second machine 3b does not interfere even if the article conveying operation for the assigned crane proceeds as it is.
  • the interference avoidance control means 33 is: If the maximum lifting range Z1 of the lifting body UD of the No. 1 machine 3a and the maximum lifting range Z2 of the lifting body UD of the No. 2 machine 3b are separated from each other by longer than the necessary separation distance y_CL, a pair of stacker cranes It is determined that no interference occurs and no interference occurs.
  • the interference avoidance control means 33 The interference target range that extends in the up and down direction by the required separation distance y_CL centering on the lifting position of the lifting body UD of the stacker crane 3 must overlap the maximum lifting range Z for the lifting body UD of the crane in charge. For example, it is determined that no interference occurs.
  • both the No. 1 machine 3a and the No. 2 machine 3b operate to carry goods as the cranes in charge.
  • the No. 1 machine 3a is located at the position P1 (x1, y1), Maximum lift range Z1 of the lifting body UD of Unit 1 3a when operating at speed V1 (Vx1, Vy1) and Unit 2 3b operating at position P2 (x2, y2) and speed V2 (Vx2, Vy2)
  • the lower limit position yT1_min which is the lower end of the elevator, is located above the upper limit position yT2_max, which is the upper end of the maximum lift range Z2 of the lift body UD of the No. 2 machine 3b.
  • lower limit position yT2_min which is the lower end of the maximum lifting range Z2 of the lifting body UD of the No. 2 machine 3b, is the upper limit position of lifting, which is the upper end of the maximum lifting range Z1 of the lifting body UD of the No. 1 machine 3a.
  • yT1_max When located above yT1_max by more than the required separation distance y_CL (When yT2_min> yT1_max + y_CL is satisfied), it is determined that no interference occurs.
  • the lower limit lower limit position yT1_min which is the lower end of the maximum lift range Z1 of the lift body UD, is located above the target upper limit position y2 + y_CL, which is the upper end of the interference target range for the lift body UD of the second machine 3b (yT1_min > Y2 + y_CL), and although not shown, the upper limit position yT1_max, which is the upper end of the maximum lifting range Z1 of the lifting body UD of the first machine 3a, is the interference target range for the lifting body UD of the second machine 3b.
  • the target lower limit position y2-y_CL which is the lower end (yT1_max ⁇ y2-y_C If L is established), it is determined that no interference occurs.
  • step # 23 If it is determined in step # 23 that no interference has occurred, the interference avoidance control means 33 terminates the interference avoidance process without rewriting the target lift position information for the No. 1 machine 3a and No. 2 machine 3b to those for avoidance operation.
  • the control operation of the ground side controller H returns to the main routine of FIG.
  • the interference avoiding process may perform the article transport operation without controlling the lifting operation of the pair of lifting bodies UD. If it is determined in the avoidance process that no interference has occurred, the lifting / lowering operation of the pair of lifting bodies UD is controlled so that the article conveying operation is performed in the form of controlling the pair of lifting bodies UD in the interference avoidance process. Has been.
  • # 24 to # 26 are executed, and either one of the first machine 3a or the second machine 3b is set as the avoidance operation target crane. Note that the processing of # 24 to # 26 is the same as the processing of # 16 to # 18 that has already been described, and thus the description thereof is omitted.
  • the avoidance elevating position is generated by the interference avoidance control means 33 in order to generate avoidance elevating position information for elevating the elevating body UD of the target crane by the elevating operation for avoidance operation in # 28.
  • a calculation process is executed.
  • the interference avoidance control means 33 overwrites the output buffer with the avoidance raising / lowering position information about the avoidance operation target crane obtained by this calculation process as the target raising / lowering position information about the stacker crane, and then ends the interference avoidance processing.
  • the control operation of the side controller H returns to the main routine of FIG.
  • the lifting position at the current control timing of the lifting body UD of the avoidance operation target crane is close to the lifting upper limit position yT_max, which is the upper end of the maximum lifting range of the counterpart stacker crane 3, or the lower limit lifting position yT_min It is determined whether it is close to. If it is close to the lifting upper limit position yT_max, the process proceeds to # 202, and the target lifting position of the lifting body UD of the avoidance operation target crane is set to “yT_max + y_CL”. When it is close to the lower limit position yT_min, the process proceeds to # 203, and the target lifting position of the lifting body UD of the avoidance operation target crane is set to “yT_min-y_CL”.
  • the No. 1 machine 3a is operating to carry articles as the crane in charge
  • the No. 2 machine 3b is set as the avoidance operation target crane
  • the No. 1 machine 3a is located at the position P1 ( x1, y1), when operating at a speed V1 (Vx1, Vy1)
  • the lift position y2 of the lift body UD of the second machine 3b is the lift that is the upper end of the maximum lift range Z1 of the lift body UD of the first machine 3a
  • the target lifting position of the lifting body UD of the second machine 3b is set to “yT_max + y_CL”.
  • the lifting body of the No. 2 machine 3b is close to the lifting lower limit position yT1_min which is the lower end of the maximum lifting range Z1 of the lifting body UD of the No. 1 machine 3a, the lifting body of the No. 2 machine 3b
  • the target elevating position of UD is set to “yT_min-y_CL”.
  • the stacker crane 3 set as the avoidance action target performs the running action and the lifting action for avoiding interference.
  • each elevator UD is raised and lowered to a passing lifting position separated in the raising and lowering direction more than the required separation distance y_CL set as a separation distance that can be moved without passing by the No. 1 machine 3a and the No. 2 machine 3b, Interference between the first machine 3a and the second machine 3b can be avoided. That is, the ground side controller H is configured to execute the interference avoidance lifting process as the interference avoidance process.
  • the No. 1 machine 3a and the No. 2 machine 3b operate as article cranes from the operation start positions P1s and P2s to the operation end positions P1e and P2e
  • the movement trajectory including the portion drawn with a dotted line in the figure is a movement trajectory when the second machine 3b performs only the lifting / lowering operation by the article conveying operation and does not perform the lifting / lowering operation for avoiding interference.
  • the interference avoidance process including the mutual avoidance raising / lowering process executed by the interference avoidance control means 33 will be described with reference to the flowchart shown in FIG. Since # 1 to # 23 in FIG. 17 are the same as the corresponding ones in FIG. 8, they will not be described here.
  • the process proceeds to # 24, and avoidance for each lifting body UD for lifting and lowering both the lifting bodies UD by the lifting operation for avoiding operation.
  • the interference avoidance control means 33 performs a mutual avoidance lift position calculation process.
  • the required separation distance y_CL that is set as a separation distance that allows the pair of stacker cranes 3 to move without the interference between the elevator body UD of the first machine 3a and the elevator body UD of the second machine 3b.
  • both the pair of lifting bodies UD are lifted and lowered by an interference avoiding lifting action different from the lifting action by the article transporting action.
  • the ground-side controller H is configured to perform the mutual avoidance raising / lowering process.
  • a difference G12 between the upper limit elevating position yT1_max in the maximum elevating range Z1 for the elevating body UD of the No. 1 machine 3a and the lower limit elevating position yT2_min in the maximum elevating range Z2 for the elevating body UD of the No. 2 machine 3b is calculated.
  • the difference G21 between the lower limit lower limit position yT1_min in the maximum lift range Z1 for the lift body UD of the No. 1 machine 3a and the upper limit lift position yT2_max in the maximum lift range Z2 for the lift body UD of the No. 2 machine 3b is calculated.
  • # 303 G12 and G21 are compared, and in # 304 and # 305, the target lift position of each of the first car 3a and the second car 3b is calculated based on the larger lift position difference. That is, when G12 is larger than G21, it is determined as Yes in # 303, and the process proceeds to # 304, where the target lifting position of the lifting body UD of the first unit 3a is set to “yT1_max ⁇ (G12 ⁇ y_CL) / 2” Then, the target lifting position of the lifting body UD of the second machine 3b is set to “yT2_min + (G12 ⁇ y_CL) / 2”.
  • the interference avoidance control means 33 ends the mutual avoidance lift position calculation process and ends the interference avoidance process when the target lift position for each lifting body UD of the first car 3a and the second car 3b is set for the avoidance operation. Then, the control operation of the ground controller H returns to the main routine of FIG.
  • the target lift position for the lift body UD of the No. 1 machine 3a and the target lift position for the lift body UD of the No. 2 machine 3b are set, whereby both the No. 1 machine 3a and the No. 2 machine 3b are set.
  • the lifting / lowering operation of the pair of lifting bodies UD is controlled so as to ensure the necessary separation distance y_CL by the lifting / lowering operation. Therefore, the lifting operation amount for avoiding the interference that should be borne by each of the lifting bodies UD of the No. 1 unit 3a and the No. 2 unit 3b can be uniformly distributed, so that the No. 1 unit 3a and the No. 2 unit 3b are driven by a pure article transport operation.
  • the degree of deviation from the planned movement trajectory is made as small as possible, and the elevators UD are separated from each other as soon as possible after the traveling positions of the traveling carriages 9 of the first car 3a and the second car 3b become close to each other. It can be moved up and down to a passing lifting position separated by a distance higher than the distance.
  • both the No. 1 machine 3a and the No. 2 machine 3b operate to carry goods as the cranes in charge, and at this control timing, the No. 1 machine 3a has a position P1 (x1, y1), a speed V1 ( Vx1, Vy1), and when Unit 2 3b is operating at position P2 (x2, y2) and speed V2 (Vx2, Vy2), at the lower end of the maximum lift range Z1 of the elevator UD of Unit 1 3a More than the difference G21 between a certain lift lower limit position yT1_min and the lift upper limit position yT2_max which is the upper end of the maximum lift range Z2 of the lift body UD of the No.
  • the lift upper limit which is the upper end of the maximum lift range Z1 of the lift body UD of the No. 1 machine 3a
  • the difference G12 between the position yT1_max and the lift lower limit position yT2_min that is the lower end of the maximum lift range Z2 of the lift body UD of the second machine 3b is larger, the remaining amount obtained by subtracting the required separation distance y_CL from the lift position difference G12 Is the upper end of the maximum lift range Z1 of Unit 1a.
  • the position on both lower sides divided from the upper / lower upper limit position yT1_max is set as the target lifting position for the lifting body UD of the first unit 3a, and is divided into two from the lower limit position yT2_min which is the lower end of the maximum lifting range Z2 of the second unit 3b.
  • the positions above both of them are set as the target lifting position for the lifting body UD of the second machine 3b.
  • ground side controller H updates and sets the target lifting position information for each lifting body UD according to the operating state (position and operating speed) of the stacker crane 3 at that time, for each control timing, Both UDs can be accurately moved up and down to the passing up and down position, and a useless amount of lifting operation can be suppressed as much as possible.
  • the No. 1 machine 3a operates as the crane in charge from the operation start position P1s to the operation end position P1e, and the No. 2 machine 3b stops in the standby state as the non-charge crane.
  • the traveling positions of the traveling carriages 9 of the first car 3a and the second car 3b become the mutual approaching position, the lifting bodies UD of the first car 3a and the second car 3b are avoided to the passing lift position (P2n for the second car 3b).
  • movement is performed and interference with the 1st machine 3a and the 2nd machine 3b is avoided.
  • the movement trajectory including the portion depicted by the dotted line in the figure is a movement trajectory when the first car 3a performs only the lifting / lowering operation by the article conveying operation and does not perform the lifting / lowering operation for avoiding interference.
  • both the No. 1 machine 3a and the No. 2 machine 3b operate as article cranes from the operation start positions P1s and P2s to the operation end positions P1e and P2e, the No. 1 machine 3a and When the traveling position of the traveling carriage 9 of the No. 2 machine 3b becomes a mutual approaching position, both the elevator bodies UD of the No. 1 machine 3a and the No. 2 machine 3b perform the raising / lowering action different from the raising / lowering action by the article conveying action, and the raising / lowering position for passing. By moving up and down so as to be located, interference between the first machine 3a and the second machine 3b is avoided.
  • the movement trajectory including the portion drawn by the dotted line in the figure is a movement trajectory when the first car 3a and the second car 3b perform only the lifting / lowering operation by the article conveying operation and do not perform the lifting / lowering operation for avoiding interference.
  • the ground-side controller H performs the first traveling laser distance meter 25, the second traveling laser distance meter 29, and the first lifting / lowering.
  • the pair of stacker cranes 3 in order to position the pair of lifting bodies UD at the non-interfering positions where the pair of stacker cranes 3 do not interfere based on the detection information of the laser distance meter 23 for use and the second laser rangefinder 27 for raising and lowering.
  • Interference avoidance raising / lowering processing for controlling the raising / lowering operation of the raising / lowering body UD is performed.
  • the ground-side controller H manages whether it is an actual conveyance operation or an empty conveyance operation, and in the interference avoidance process, as the value of the required separation distance y_CL, the first machine 3a and the second machine 3b Different values may be used depending on the type of transport operation (depending on the presence or absence of an article).
  • the interference avoiding process is described for controlling the operation of only one of the No. 1 machine 3a or the No. 2 machine 3b.
  • both the No. 1 machine 3a and the No. 2 machine 3b are controlled. It may control the operation.
  • an inter-vehicle distance detection means for detecting an inter-vehicle distance between the traveling carriages of the pair of stacker cranes is provided on both or only one of the pair of stacker cranes.
  • the means may determine whether or not it is a mutual approach position based on the inter-vehicle distance information detected by the inter-vehicle distance detection means.
  • the control unit is configured by the ground-side controller H.
  • the present invention is not limited thereto, and the control unit is installed on the ground side and the operation start position information based on the operation command and
  • the management controller that transmits the operation end position information to the No. 1 machine 3a and the No. 2 machine 3b, and the operation of the No. 1 machine 3a based on the operation start position information and the operation end position information mounted on the No. 1 machine 3a from the management controller.
  • a first crane controller to be controlled, and a second crane controller 32 which is mounted on the second machine 3b and controls the operation of the second machine 3b based on the operation start position information and the operation end position information from the management controller.
  • the specific configuration of the control means may be changed as appropriate.
  • control unit instructs the target travel position information and the target lift position information to control the operation of the pair of stacker cranes.
  • the travel speed information and the target lifting speed information may be commanded to control the operation of the pair of stacker cranes, and various command information commanded by the control means can be applied.
  • the first and second machines 3a and 3b are caused to travel after the raising and lowering positions of the pair of raising and lowering bodies UD are previously positioned at the raising and lowering positions for passing.
  • the timing for performing the mutual avoidance raising / lowering process can be appropriately changed, such as starting the raising / lowering operation by the article conveying operation after the second machine 3b passes.
  • the present invention can be used for an article storage facility in which a stacker crane is used.
  • UD Lifting body H Control means ⁇ H Set deceleration VBW1, VBW2 Temporary braking range P1m (x1m, y1m) Non-interference position P2m (x2m, y2m) Non-interference position P2n (x2, y2n) Passing lift position, non-interference position y_CL Necessary separation distance T Grace time Z Maximum lifting range 1 Article storage shelf 2 Movement path 3 Stacker crane 4 Article 6 Storage section 7 Traveling guide rail 9 Traveling carriage 10 Lifting guide mast 11 Lifting base 12 Article transfer device 23, 27 Lifting position Detection means 25, 29 Traveling position detection means 31 First crane control means 32 Second crane control means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Structural Engineering (AREA)
  • Transportation (AREA)
  • Economics (AREA)
  • Civil Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Quality & Reliability (AREA)
  • Theoretical Computer Science (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Development Economics (AREA)
  • Finance (AREA)
  • Operations Research (AREA)
  • Accounting & Taxation (AREA)
  • Marketing (AREA)
  • Human Resources & Organizations (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Warehouses Or Storage Devices (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

 一対のスタッカークレーンの移動経路幅を極力狭くして設備のコンパクト化を図り、構成の複雑化を極力抑え、なおかつ、物品処理能力を効果的に向上させることができる物品収納設備を提供する。  制御手段が、一対の昇降体(UD)を、一対のスタッカークレーン(3a、3b)が干渉することなくすれ違い移動できる離間距離として設定される必要離間距離以上昇降方向で離間したすれ違い用昇降位置に昇降させるべく、一対の昇降体の双方を、物品搬送作動による昇降作動とは異なる干渉回避用の昇降作動にて昇降させる相互回避昇降処理を行なうように構成されている。

Description

物品収納設備とその作動方法
 本発明は、物品を収納する複数の収納部を上下方向及び左右方向に並べて備えた物品収納棚と、前記物品収納棚の前面側において棚横幅方向に沿って設けられた移動経路を移動するよう構成されたスタッカークレーンが一対設けられ、前記一対のスタッカークレーンの夫々が、前記移動経路に沿う走行案内レールによって案内される走行台車と、前記走行台車から立設された昇降案内マストによって案内されて昇降するよう構成された昇降台及びこの昇降台に設けられて前記物品収納部に物品を移載可能な物品移載装置からなる昇降体とを備え、前記一対のスタッカークレーンの夫々の走行台車の走行位置を検出する一対の走行位置検出手段と、前記一対のスタッカークレーンの夫々の昇降体の昇降位置を検出する一対の昇降位置検出手段と、前記一対の走行位置検出手段及び前記一対の昇降位置検出手段の検出情報に基づいて、前記一対のスタッカークレーンの作動を制御する制御手段とが設けられた物品収納設備とその作動方法に関する。
 上記のような物品収納設備では、スタッカークレーンを物品搬送作動させることで、荷受け台等の物品搬出入部から搬送対象の物品を掬って収納部に卸す入庫作業や、収納部に収納されている物品を掬って物品搬出入部に卸す出庫作業や、ある収納部から物品を掬って別の収納部へ物品を卸す入替作業などを行うようになっている。
 ここでいうスタッカークレーンの物品搬送作動とは、走行台車の走行作動又は昇降体の昇降作動を伴うスタッカークレーンの作動をいい、搬送対象の物品を支持した状態の物品移載装置を搬送元から搬送先まで棚前面側で移動させる実搬送作動だけでなく、例えば、搬送元にある搬送対象の物品を掬うために、物品を支持しない状態の物品移載装置を搬送元まで走行作動及び昇降作動により移動させる空搬送作動や、入庫作業を完了した後、次の入庫作業に備えて、物品移載装置を、移動経路の経路方向での端部かつ上下方向の下端などに設定されるホームポジション(原点)にて待機させるために、物品を支持しない状態の物品移載装置をホームポジションまで移動させる原点復帰作動を含むものである。
 そして、上位の管理コンピュータや作業者にて指令操作される指令入力手段等から物品単位の入庫作業又は出庫作業を指令する運転指令が指令されると、制御手段が、当該運転指令に基づく入庫作業又は出庫作業を行わせるべく、スタッカークレーンの作動を制御して、実搬送作動や空搬送作動の物品搬送作動、及び、搬送元で物品を掬う作動(掬い用移載作動)や搬送先で物品を卸す作動(卸し用移載作動)の物品移載作動を行うようになっている。
 物品搬送作動における走行作動及び昇降作動は、運転指令に基づく実搬送作動や空搬送作動の作動開始位置及び作動終了位置との位置関係により決定する走行速度パターン及び昇降速度パターンに従った作動であり、適切な走行作動及び昇降作動をすることにより、作動開始位置から作動終了位置まで極力短時間で効率よく移動できるようになっている。
 上記物品収納設備では、昨今の大量物流時代において入出庫作業時間の短縮の要請を満たすためにも、単位時間当たりに入庫及び出庫できる物品の数量、すなわち、処理できる運転指令の数の大小を示す物品処理能力が高いものが望まれる。物品収納設備における物品処理能力を高める技術としては、種々のものが提案されているが、その一例として、物品収納棚の前面側において棚横幅方向に沿って設けられた移動経路を移動自在なスタッカークレーンを一対設けることが提案されている。
 一つの移動経路に対して一対のスタッカークレーンを設ける場合、これらのスタッカークレーンの相互の干渉を回避する必要がある。そこで、従来では、運転指令が指令されると、スタッカークレーンを物品搬送作動させる前に当該物品搬送作動による予定移動範囲内に、当該物品搬送作動の邪魔となる他のスタッカークレーンが位置していないことを確認してから、スタッカークレーンの物品搬送作動を行わせるように制御していた(例えば、特許文献1参照。)。
 そして、物品搬送作動による予定移動範囲内に邪魔となる他のスタッカークレーンが位置している場合には、当該他のスタッカークレーンが、担当スタッカークレーンとして物品搬送作動を行っていなければ(つまり、待機状態であれば)、当該他のスタッカークレーンを予定移動範囲外に位置させるべく、当該他のスタッカークレーンの作動を制御し、また、当該他のスタッカークレーンが担当スタッカークレーンとして物品搬送作動を行っていれば、当該他のスタッカークレーンについての物品搬送作動が完了するまで待機した後、当該他のスタッカークレーンを予定移動範囲外に位置させるべく、当該他のスタッカークレーンの作動を制御するようにしている。
 要するに、従来の物品収納設備では、運転指令が指令されると、スタッカークレーンに物品搬送作動を行わせる前に、物品搬送作動の邪魔となる他のスタッカークレーンが存在しているか否か確認し、邪魔なスタッカークレーンが存在している場合は、当該他のスタッカークレーンを、邪魔とならない位置に回避させる回避作動を行わせるようにしていた。
 ちなみに、特許文献1には、移動経路に設けられた共通の走行案内レールが1本だけ設けられて、この移動案内レールに一対のスタッカークレーンが移動経路方向に並べて設置されたものが記載されている。そして、移動経路の中間部分を双方のスタッカークレーンが走行移動できる共通区間とし、その共通区間の移動経路方向で両側に、一方のスタッカークレーンだけが移動できる専用区間が、クレーン並び方向と一致するように設定されおり、回避作動として、相手方のスタッカークレーンを走行方向に沿って追い出すようしている。例えば、特許文献1の図面の図7及び段落〔0047〕及び〔0048〕の記載によれば、運転指令が指令されたときに、予定移動範囲のうち共通区間に属する共通区間側部分に他のスタッカークレーンが位置している場合は、予定移動範囲のうち専用区間に属する専用区間側部分については先に走行移動を済ませておき、邪魔になる他のスタッカークレーンを共通区間側部分から追い出すまで専用区間側部分の共通区間側部分に近い箇所で待機させることで、運転指令が指令されてから少しでも早い時期に、当該運転指令による物品搬送作動を処理できるようにしている。
特開2002-175117号公報
 上記従来の物品収納設備であると、運転指令が指令されると、物品搬送作動の邪魔となる他のスタッカークレーンの回避作動が完了するまで物品搬送作動の開始を遅らせる又は開始した物品搬送作動を中断させることになるので、当該運転指令の処理が遅れてしまう。したがって、物品処理能力の向上の観点から、改善の余地があった。
 また、待機状態のスタッカークレーンを回避作動させる場合、その回避作動により通過した位置に対応する収納部についての出庫作業を指令する運転指令が、その回避作動を開始した直後に発生した場合などには、仮に、回避作動をさせていなければ、当該運転指令が発生した時点で直ちにその運転指令で指令された出庫作業についての物品搬送作動を開始させることができたのであるから、当該運転指令についての物品搬送作動により、邪魔な位置から自ら立ち退くように移動することで、相手側のスタッカークレーンとの干渉も回避できていたということも生じうる。
 このように、従来の物品収納設備であると、運転指令による物品搬送作動を開始させる時点で物品搬送作動の邪魔となる他のスタッカークレーンの有無を判断し、邪魔なスタカークレーンが有れば、そのスタッカークレーンを回避作動させることを早々に決定してしまうので、その回避作動をしなくてもスタッカークレーン同士の干渉を回避できる場合にまで、スタッカークレーンを回避作動させてしまうことになり、結果的に回避作動をしなかった方が効率よく運転指令を処理できる場合があるという問題がある。
 ちなみに、上記特許文献1において、追い出し作動により通過した位置に対応する収納部についての出庫作業を指令する運転指令を、当該追い出し作動が完了した後のスタッカークレーンにて処理しようとすると、このスタッカークレーンを追い出させた相手側のスタッカークレーンと追い出されたスタッカークレーンとの双方のスタッカークレーンが担当スタッカークレーンとして物品搬送作動をすることになる。この場合、追い出されたスタッカークレーンにとっては、相手側のスタッカークレーンが邪魔になっていることになるので、この運転指令の処理は更に遅れることになる。
 本発明は、かかる点に着目してなされたものであり、その目的は、結果的に非効率となる回避作動をできるだけ行わずに、一対のスタッカークレーンの相互干渉を回避することができる物品収納設備を提供する点にある。
 この目的を達成するために、本発明に係る物品収納設備は、物品を収納する複数の収納部を上下方向及び左右方向に並べて備えた物品収納棚と、前記物品収納棚の前面側において棚横幅方向に沿って設けられた移動経路を移動するよう構成されたスタッカークレーンが一対設けられ、前記一対のスタッカークレーンの夫々が、前記移動経路に沿う走行案内レールによって案内される走行台車と、前記走行台車から立設された昇降案内マストによって案内されて昇降するよう構成された昇降台及びこの昇降台に設けられて前記物品収納部に物品を移載可能な物品移載装置からなる昇降体とを備え、前記一対のスタッカークレーンの夫々の走行台車の走行位置を検出する一対の走行位置検出手段と、前記一対のスタッカークレーンの夫々の昇降体の昇降位置を検出する一対の昇降位置検出手段と、前記一対の走行位置検出手段及び前記一対の昇降位置検出手段の検出情報に基づいて、前記一対のスタッカークレーンの作動を制御する制御手段とが設けられた物品収納設備であって、前記制御手段が、前記収納部に対する入出庫を行う物品搬送についての運転指令が指令されると、前記運転指令に基づいて、前記運転指令による物品搬送を担当する担当スタッカークレーンについての物品搬送作動を制御するように構成され、かつ、前記担当スタッカークレーンの物品搬送作動を制御する間は、前記一対の走行位置検出手段の検出情報に基づいて、前記一対のスタッカークレーンの一対の走行台車の夫々の走行位置を管理して、前記一対の走行台車の夫々の走行位置が、前記一対のスタッカークレーンが干渉することが予測される相互接近位置であるか否かを設定周期毎に判別し、前記一対の走行台車の夫々の走行位置が前記相互接近位置である場合は、前記一対の走行位置検出手段及び前記一対の昇降位置検出手段の検出情報に基づいて、前記一対の走行台車及び前記一対の昇降体を、前記一対のスタッカークレーンが干渉しない非干渉位置に位置させるべく、前記一対のスタッカークレーンの作動を制御する干渉回避処理を行なうように構成されている。
 このような構成により、制御手段は、担当スタッカークレーンの物品搬送作動を制御する間は、一対の走行台車の夫々の走行位置が相互接近位置であるか否かを設定周期毎に判別するので、スタッカークレーンを物品搬送作動させながら相互接近位置であるか否かを監視することができる。そして、制御手段は、相互接近位置であると、干渉回避処理を行なう。したがって、担当スタッカークレーンの物品搬送作動を制御し始めた時点で相互接近位置でなければ、担当スタッカークレーンの物品搬送作動が開始され、同時に、一対の走行台車の夫々の走行位置を監視し始めることになる。そして、一対の走行台車の夫々の走行位置が相互接近位置となった場合は、干渉回避処理を行なって、一対の走行台車及び一対の昇降体を、一対のスタッカークレーンが干渉しない非干渉位置に位置させることになる。
 つまり、一対の走行台車の夫々の走行位置が相互接近位置となるまでは、相手方のスタッカークレーンが、当該物品搬送作動の予定移動範囲に位置していても、干渉を回避するための作動を行わせずに物品搬送作動を進行させる。物品搬送作動を進行中には、一対の走行台車の夫々の走行位置が、一対のスタッカークレーンが干渉することが予測される相互接近位置であるか否かを監視しておき、一対の走行台車の夫々の走行位置が相互接近位置となると、干渉回避処理を開始するので、一対のスタッカークレーンが干渉することを回避できる。
 そして、物品搬送作動を開始させた後、干渉回避処理が開始されるまでは、干渉を回避するための作動を行わせないので、相手方のスタッカークレーンが待機状態である場合は、その待機状態のスタッカークレーンが早々に回避作動させられることにより待機状態でなくなることがない。したがって、干渉回避処理が開始されるまでに、別の運転指令が発生して、この運転指令についての物品搬送作動により相手方のスタッカークレーンが予定移動範囲から外れた位置に移動することも期待できる。したがって、結果的に非効率となる回避作動をできるだけ行わずに、一対のスタッカークレーンの相互干渉を回避することができる。
 本発明の実施形態においては、前記制御手段が、前記一対の走行台車の夫々を設定減速度にて停止させたと仮定した場合に停止するまでに現在位置から移動する各走行台車の仮制動範囲に重複する部分がある場合に、前記一対の走行台車の夫々の走行位置が相互接近位置であると判別するように構成されていることが好ましい。
 このような構成であると、設定減速度にて停止させたと仮定した場合に停止するまでに現在位置から移動する各走行台車の仮想制動範囲に移動経路方向で重複する部分がある場合に相互接近位置であると判別するので、物品搬送作動にて走行台車が走行作動しているときに、設定周期毎に相互接近位置であるか否かを判別することで、判別タイミングの後の物品搬送作動による走行作動の動向(加速作動・定速作動・減速作動)が如何に変化しようとも、判別タイミングの後に一対の走行台車が移動経路方向で重複部分が確実に生じる場合であるかどうかを判別することができる。
 仮想制動範囲が重複しなければ、その後の物品搬送作動による動向次第で一対のスタッカークレーンが干渉する可能性がない状態になる場合も有り得る。例えば、相互に対向する向きに走行作動している走行台車の双方が、各走行台車についての仮想制動範囲の幅の和よりも長く離れていれば、これらの走行台車が実際に設定減速度で減速した場合には、双方の走行台車が移動経路方向で重複することなく停止するので、物品搬送作動による昇降作動の動向に拘らず、一対のスタッカークレーンが干渉する可能性はない。そして、上記のように走行台車の双方が、各走行台車についての仮想制動範囲の幅の和よりも長く離れているような場合には、相互接近位置であるとは判別されず、干渉回避処理は行われないので、物品搬送作動による昇降作動を進行させることができる。
 このように、仮想制動範囲に重複する部分がある場合に相互接近位置であると判別することで、一対の走行台車の仮想制動範囲に移動経路方向で確実に重複部分が生じる場合には、物品搬送作動による昇降作動の動向如何では干渉する可能性があるとして、干渉回避処理を行なうことができるので、干渉回避処理を開始する適切な時期を判別して、物品搬送作動を行っている間の適切な時期に干渉回避処理を開始することができる。
 なお、仮想制動範囲としては、走行台車の走行速さがゼロの場合にも適用され、その場合の仮想制動範囲は幅ゼロの位置となり、その位置が相手側の仮想制動範囲内に位置する場合に重複部分があると判別すればよい。
 本発明の実施形態においては、前記制御手段が、前記一対のスタッカークレーンのうち何れか一方のみの作動を制御する形態で前記干渉回避処理を行うように構成されていることが好ましい。
 このような構成によると、一対のスタッカークレーンのうち一方のみが干渉回避処理による作動をして、他方は干渉回避処理による作動をしないので、他方のスタッカークレーンは干渉回避処理による影響を受けずに、運転指令に基づく物品搬送作動を進行させることができ、他方のスタッカークレーンについての物品搬送作動を順調に行うことができる。
 本発明の実施形態においては、前記制御手段が、前記一対のスタッカークレーンの一方のみについて前記担当スタッカークレーンとして前記物品搬送作動を行わせている場合は、前記一対のスタッカークレーンのうち前記物品搬送作動を行っていない非担当スタッカークレーンの作動を制御する形態で前記干渉回避処理を行うように構成されている事が好ましい。
 このような構成によると、一対のスタッカークレーンのうち一方のみが担当スタッカークレーンとして物品搬送作動をしている場合に、一対の走行台車の走行位置が相互接近位置となって干渉回避処理が行われると、物品搬送作動を行っていない非担当スタッカークレーンは干渉回避処理により作動し、担当スタッカークレーンは、物品搬送作動による作動を維持する。
 したがって、物品処理能力の維持乃至向上に直接に寄与する担当スタッカークレーンの物品搬送作動を邪魔することなく、同時に、物品処理能力の維持乃至向上に直接には寄与しない非担当スタッカークレーンを干渉回避処理により作動させることで、スタッカークレーン同士の干渉を回避することができる。
 このように、回避作動させるスタッカークレーンとして適切なものを選択することで、回避作動により設備の物品処理能力が低下することを防止することができる。
 本発明の実施形態によると、前記制御手段が、前記一対のスタッカークレーンの双方について前記担当スタッカークレーンとして各別に前記物品搬送作動を行わせている場合は、前記一対のスタッカークレーンのうち前記物品搬送作動の残作動時間が長い前記担当スタッカークレーンの作動を制御する形態で前記干渉回避処理を行うように構成されていることが好ましい。
 このような構成によると、一対のスタッカークレーンの双方が担当スタッカークレーンとして物品搬送作動をしている場合に、一対の走行台車の走行位置が相互接近位置となって干渉回避処理が行われると、物品搬送作動の残作動時間が長い方の担当スタッカークレーンは干渉回避処理により作動し、物品搬送作動の残作動時間が短い方の担当スタッカークレーンは、物品搬送作動による作動を維持する。
 したがって、残作動時間が比較的短いために元の物品搬送作動からの遅れを取り戻すための回復作動時間を確保し難い担当スタッカークレーンについては、物品搬送作動を邪魔することなく、同時に、残作動時間が比較的長いために元の物品搬送作動からの遅れを取り戻すための回復作動時間を確保し易い担当スタッカークレーンについては、干渉回避処理により作動させることで、スタッカークレーン同士の干渉を回避することができる。
 このように、回避作動させるスタッカークレーンとして適切なものを選択することで、回避作動により設備の物品処理能力が低下することを極力抑制することができる。
 本発明の実施形態においては、前記走行案内レールとして、棚前後方向で間隔を隔てて互いに並行に設置された一対の走行案内レールが設けられ、前記一対のスタッカークレーンとして、前記走行台車が前記一対の走行案内レールのうちの一方にて案内され、前記昇降案内マストが前記走行台車に設けられたスタッカークレーンと、前記走行台車が前記一対の走行案内レールのうちの他方にて案内され、前記昇降案内マストが前記走行台車に設けられたスタッカークレーンとが設けられ、前記一対のスタッカークレーンの夫々が互いにすれ違い移動できるように、前記一対の昇降体は、相手側のスタッカークレーンの前記昇降体と棚前後方向で重複する部分を備えかつ相手方のスタッカークレーンの前記昇降案内マストに達しないように前記昇降案内マストから棚前後方向に延びる状態で設けられ、前記制御手段が、前記干渉回避処理として、前記一対の昇降体を、前記一対のスタッカークレーンが干渉することなくすれ違い移動できる離間距離として設定される必要離間距離以上昇降方向で離間したすれ違い用昇降位置に昇降させるべく、前記一対の昇降体の昇降作動を制御する干渉回避用昇降処理を実行するように構成されていることが好ましい。
 このような特徴によると、一対のスタッカークレーンの各走行台車は、棚前後方向で間隔を隔てて互いに並行に設置された一対の走行案内レールを夫々走行し、各昇降体は、一対のスタッカークレーンの夫々が互いにすれ違い移動できるように、相手方のスタッカークレーンの昇降案内マストに達しないように昇降案内マストから棚前後方向に延びる状態で設けられているので、各スタッカークレーンは、相手側のスタッカークレーンの走行位置によらず、物品収納棚の棚前面側において、棚横幅方向で棚横幅全体に亘って走行移動することができる。
 スタッカークレーンを移動経路に一対設けたものとして、移動経路に一本の走行案内レールを敷設し、この走行案内レールを移動自在な一対のスタッカークレーンを移動経路方向に並べて設けたものがあるが、このようなものであると、相手方よりもクレーン並び方向で相手側に位置する物品収納棚の収納部との間で物品を移載するには、相手方のスタッカークレーンをその収納部よりもクレーン並び方向で相手側に位置させなければならないという制約があり、使い勝手が悪い。
 しかも、一方のスタッカークレーンの物品搬送作動に起因して他方のスタッカークレーンについての回避作動による作動量や作動時間が多く発生するため、スタッカークレーンを一対設ける割に物品処理能力は大きくは向上しない。
 その点、上記の通りの構成によれば、走行移動に関しては、相手方のスタッカークレーンの位置に関係なく、棚横幅方向で棚横幅全体に亘って走行移動することができる。したがって、一対のスタッカークレーンを設けて物品搬送能力の向上を図るに当たって、使い勝手の良いものとなる。
 しかも、これら一対のスタッカークレーンの昇降体は、相手側のスタッカークレーンの昇降体と棚前後方向で重複する部分を備えているので、一台のスタッカークレーンが必要とする走行経路が棚前後方向で一部重なることになり、2台のスタッカークレーンの移動経路として、1台分の走行経路幅を単純に倍にしたものよりも幅を狭くすることができる。したがって、一対のスタッカークレーンを棚前後方向で並べて設ける場合の設置空間をコンパクトにできる。
 そして、制御手段が、一対のスタッカークレーンの走行台車の走行位置が相互接近位置である場合は、干渉回避処理としての干渉回避用昇降処理を実行して、一対の昇降体の昇降作動を制御して。一対の昇降体を、一対のスタッカークレーンが干渉することなくすれ違い移動できる離間距離として設定される必要離間距離以上昇降方向で離間したすれ違い用昇降位置に昇降させるので、一対のスタッカークレーンを干渉させることなく、棚横幅方向で棚横幅全体に亘って走行移動させて物品搬送作動を行うことができる。
 このように、上記の構成によれば、使い勝手が良くコンパクトな物品収納設備を得ることができ、しかも、一対のスタッカークレーンを設けることにより物品処理能力を効果的に向上させることができる。
 本発明の実施形態においては、前記制御手段が、前記干渉回避用昇降処理において、前記一対の走行台車の夫々の走行位置が前記相互接近位置になってから走行作動中の前記走行台車を設定減速度にて減速させる態様で走行作動させた場合に前記一対の昇降体が干渉すると仮定される干渉仮定走行位置になるまでの猶予時間内に前記物品搬送作動により前記昇降体が昇降し得る昇降範囲である最大昇降範囲を前記担当スタッカークレーンの前記昇降体について求め、前記一対のスタッカークレーンの双方を前記担当スタッカークレーンとして前記物品搬送作動させているときは、前記一対の昇降体の夫々についての前記最大昇降範囲が相互に前記必要離間距離よりも長く離れることにより互いに重複していなければ、前記一対のスタッカークレーンの干渉が発生しない干渉不発生状態であると判別し、前記一対のスタッカークレーンの一方のみを前記担当スタッカークレーンとして前記物品搬送作動させているときは、他方の前記スタッカークレーンの前記昇降体の昇降位置を中心として前記必要離間距離だけ昇降方向の上下両側に広がりをもつ干渉対象範囲が、前記担当スタッカークレーンの前記昇降体についての前記最大昇降範囲と重複していなければ、前記干渉不発生状態であると判別するように構成され、且つ、前記干渉回避用昇降処理において前記干渉不発生状態であると判別した場合は、前記干渉回避用昇降処理では前記一対の昇降体の昇降作動を制御しない形態で前記物品搬送作動を行わせるべく、かつ、前記干渉回避用昇降処理において前記干渉不発生状態でないと判別した場合は、前記干渉回避用昇降処理で前記一対の昇降体を制御する形態で前記物品搬送作動を行わせるべく、前記一対の昇降体の昇降作動を制御するように構成されていることが好ましい。
 このような構成によると、一対の走行台車の夫々の走行位置が相互接近位置になってから、走行作動中の前記走行台車を設定減速度にて減速させる態様で走行作動させた場合に、干渉仮定走行位置になるまでの猶予時間内に物品搬送作動により昇降体が昇降し得る昇降範囲である最大昇降範囲を夫々の昇降体について求め、一対のスタッカークレーンの双方を担当スタッカークレーンとして物品搬送作動させているときは、各昇降体についての最大昇降範囲が、相互に必要離間距離よりも長く離れることにより互いに重複していなければ、一対のスタッカークレーンの干渉が発生しない干渉不発生状態であると判別する。
 つまり、物品搬送作動が進行して各走行台車が近接する状態となっても、各昇降体についての最大昇降範囲が、相互に必要離間距離よりも長く離れることにより互いに重複していなければ、一方の昇降体についての最大昇降範囲の上限、及び、他方の昇降体についての最大昇降範囲の下限が、相互に必要離間距離より長く離れており、一対の昇降体が昇降方向で最大限接近したとしても、一対のスタッカークレーンの干渉は発生しないので、そのような場合には、干渉不発生状態であると判別するのである。
 また、同様に、一対のスタッカークレーンの一方のみを担当スタッカークレーンとして物品搬送作動させているときは、他方のスタッカークレーン(非担当スタッカークレーン)の昇降体の昇降位置を中心として必要離間距離だけ昇降方向の上下両側に広がりをもつ干渉対象範囲が、担当スタッカークレーンの昇降体についての最大昇降範囲と重複していなければ、前記干渉不発生状態であると判別する。
 つまり、物品搬送作動が進行して各走行台車が近接する状態となっても、非担当スタッカークレーンの昇降体の昇降位置を中心として必要離間距離だけ昇降方向の上下両側に広がりをもつ干渉対象範囲が、担当スタッカークレーンの昇降体についての最大昇降範囲と重複していなければ、非担当スタッカークレーンの昇降体の昇降位置は、最大昇降範囲の上限位置又は下限位置から必要離間距離より長く離れており、一対の昇降体が昇降方向で最大限接近したとしても、一対のスタッカークレーンの干渉は発生しないので、そのような場合には、干渉不発生状態であると判別するのである。
 そして、制御手段は、干渉回避用昇降処理において干渉不発生状態であると判別した場合は、干渉回避用昇降処理では一対の昇降体の昇降作動を制御しない形態で物品搬送作動を行わせるので、一対の昇降体の昇降作動は、物品搬送作動によるものとなる。また、干渉回避用昇降処理において干渉不発生状態でないと判別した場合は、干渉回避用昇降処理で一対の昇降体を制御する形態で物品搬送作動を行わせるので、干渉回避用昇降処理で一対の昇降体の昇降作動が制御されて、一対の昇降体をすれ違い用昇降位置に位置させるように、物品搬送作動とは異なる昇降作動をさせることになる。
 このように、一対のスタッカークレーンの干渉が発生する可能性がないときには、干渉回避用昇降処理によって一対の昇降体の昇降作動を制御することはせず、物品搬送作動を進行させることができ、一対のスタッカークレーンの干渉が発生する可能性があるときには、干渉回避用昇降処理を行なって、物品搬送作動とは異なる昇降作動をさせる。
 したがって、必要以上に干渉回避用昇降処理が実行されて、物品搬送作動が乱されることを極力防止でき、設備の物品搬送能力が低下することを極力防止できる。
 上述された従来技術の他、一つの移動経路に対して一対のスタッカークレーンを設けたものとして、特開2007-015780号公報では、移動経路に沿った一本の走行案内レールを敷設し、この走行案内レールを移動自在な一対のスタッカークレーンを移動経路方向に並べて設けたものが提案されている。
 また、一つの移動経路に対して一対のスタッカークレーンを設けた別のものとして、特開平07-125810号公報では、移動経路に沿った2本の走行案内レールを棚前後方向で間隔を隔てて敷設し、この走行案内レールの夫々についてスタッカークレーンを設けて、各スタッカークレーンが棚前後方向で隣接する2本の走行経路の夫々に沿って移動自在に設けられたものが提案されている。
 上記特開2007-015780号公報で提案されたものであると、相手方のスタッカークレーンよりもクレーン並び方向で相手側に位置する収納部との間で物品を移載するには、相手方のスタッカークレーンをその収納部よりもクレーン並び方向で相手側に位置させるための回避作動を行わなければならないという制約があり、使い勝手が悪い。しかも、各スタッカークレーンを物品搬送作動させる棚横幅方向の範囲を広くすればするほど、上記した回避作動の発生頻度が高くなり、一方のスタッカークレーンの物品搬送作動に起因して他方のスタッカークレーンについての本来の物品搬送でない無駄な作動による作動量や作動時間が多く発生するため、スタッカークレーンを一対設ける割に物品処理能力は大きくは向上しない。
 上記特開平07-125810号公報で提案されたものであると、各スタッカークレーンは、走行移動に関しては、相手方のスタッカークレーンの位置に関係なく、また、相手のスタッカークレーンを回避作動させることなく、棚横幅方向の全域に亘って移動自在であるので、物品処理能力が大きく向上することが期待できるが、夫々のスタッカークレーンの走行経路が隣接しているので、一対のスタッカークレーンの移動経路の横幅は、各スタッカークレーンの走行経路幅を加え合わせた幅となる。したがって、移動経路スペースが大きくなり、設備の設置スペースが大きくなるという不利がある。
 さらに、棚前後方向で棚から遠い側の走行案内レールを走行するスタッカークレーンは、物品収納棚における各収納部までの距離が長くなるため、収納部とスタッカークレーンとの間で物品を移載する物品移載装置は遠くの収納部に対して物品を移載できるものでなければならず、例えば、特許文献2の図4に示されたように、物品移載装置を、物品を載置支持する物品支持台を棚前後方向に出退自在なスライドフォーク機構を用いたもので構成した場合、スライドストロークを長いもので構成しなければならず、物品移載装置の構造が複雑化する。
 このように、従来の物品収納設備では、一対のスタッカークレーンを設けた場合に、移動経路幅が広くなり設備の設置スペースが大きくなる問題や、使い勝手が悪いという問題や、一対のスタッカークレーンを設けても物品処理能力が効果的に向上しないという問題や、物品移載装置の構造が複雑化するという問題があり、これらの諸問題を一挙抜本的に解決する物品収納設備は未だ提供されていない。
 このような点を改善するために、本発明の実施形態においては、前記走行案内レールとして、棚前後方向で間隔を隔てて互いに並行に設置された一対の案内レールが設けられ、前記一対のスタッカークレーンとして、前記走行台車が前記一対の走行案内レールのうちの一方にて案内され、前記昇降案内マストが前記走行台車に設けられたスタッカークレーンと、前記走行台車が前記一対の走行案内レールのうちの他方にて案内され、前記昇降案内マストが前記走行台車に設けられたスタッカークレーンとが設けられ、前記一対のスタッカークレーンの夫々が互いにすれ違い移動できるように、前記一対の昇降体は、相手側のスタッカークレーンの前記昇降体と棚前後方向で重複する部分を備えかつ相手方のスタッカークレーンの前記昇降案内マストに達しないように前記昇降案内マストから棚前後方向に延びる状態で設けられ、前記制御手段が、前記一対のスタッカークレーンの物品搬送作動を制御する場合に、前記一対の走行位置検出手段及び前記一対の昇降位置検出手段の検出情報に基づいて、前記一対のスタッカークレーンの一対の走行台車の夫々の走行位置及び前記一対のスタッカークレーンの一対の昇降体の夫々の昇降位置を管理して、前記一対の昇降体を、前記一対のスタッカークレーンが干渉することなくすれ違い移動できる離間距離として設定される必要離間距離以上昇降方向で離間したすれ違い用昇降位置に昇降させるべく、前記一対の昇降体の双方を、前記物品搬送作動による昇降作動とは異なる干渉回避用の昇降作動にて昇降させる相互回避昇降処理を、前記干渉回避処理として行なうように構成されていることが好ましい。
 このような構成によると、一対のスタッカークレーンの昇降体は、相手側のスタッカークレーンの昇降体と棚前後方向で重複する部分を備えているので、各スタッカークレーンの走行経路が棚前後方向で一部重なることになり、2台のスタッカークレーンの移動経路として、1台分の走行経路幅を単純に倍にしたものよりも幅を狭くすることができる。したがって、一対のスタッカークレーンを棚前後方向で並べて設ける場合の一対のスタッカークレーンの移動経路幅を狭くして設備のコンパクト化を図ることができる。
 また、昇降体は相手側のスタッカークレーンの昇降体と棚前後方向で重複する部分を備えているので、物品収納棚から棚前後方向で遠い側のスタッカークレーンの昇降体は、相手側のスタッカークレーンの昇降体と棚前後方向で重複する部分を備えないように構成した場合に比べて、棚前後方向で棚側に近い位置に位置することになるので、当該昇降体が備える物品移載装置は、棚前後方向で収納棚に比較的近い位置から、収納部とスタッカークレーンとの間で物品を移載すれば済む。したがって、物品移載装置に長いストロークのスライドフォーク機構等を設けなくて済むので、物品移載装置の構造の複雑化を抑えることができる。
 さらに、一対のスタッカークレーンの各走行台車は、棚前後方向で間隔を隔てて互いに平行に設置された一対の走行案内レールを夫々走行し、各昇降体は、一対のスタッカークレーンの夫々が互いにすれ違い移動できるように、相手方のスタッカークレーンの昇降案内マストに達しないように昇降案内マストから棚前後方向に延びる状態で設けられているので、各スタッカークレーンは、相手側のスタッカークレーンの走行位置によらず、物品収納棚の棚前面側において、棚横幅方向で棚横幅全体に亘って走行移動することができる。
 したがって、走行移動に関しては、相手方のスタッカークレーンの位置に関係なく、また、一対の昇降体が干渉しない昇降位置に位置してさえすれば、相手方のスタッカークレーンを回避作動させることなく、各スタッカークレーンは棚横幅方向の全域に亘って移動自在である。したがって、2台のスタッカークレーンを各別に物品搬送作動させることができるので、物品処理能力が大きく向上する。
 そして、収納部に対する入出庫を行う物品搬送についての運転指令が指令されると、制御手段が、当該運転指令による物品搬送を担当する担当スタッカークレーンについての物品搬送作動を制御するが、その場合に、一対の走行位置検出手段及び一対の昇降位置検出手段の検出情報に基づいて、一対のスタッカークレーンの一対の走行台車の夫々の走行位置及び一対のスタッカークレーンの一対の昇降体の夫々の昇降位置を管理することになる。
 制御手段は、一対の昇降体の双方を物品搬送作動による昇降作動とは異なる干渉回避用の昇降作動にて昇降させる相互回避昇降処理を行って、一対の昇降体の双方を、一対のスタッカークレーンが干渉することなくすれ違い移動できる離間距離として設定される必要離間距離以上昇降方向で離間したすれ違い用昇降位置に昇降させるので、一対の昇降体の双方が相互回避昇降処理による昇降作動をして、一対のスタッカークレーンが干渉することなくすれ違い移動できることになる。
 これにより、一対のスタッカークレーンを干渉させることなく、棚横幅方向で棚横幅全体に亘って走行移動させて物品搬送作動を行うことができる。しかも、すれ違い用昇降位置に昇降させる場合に、双方の昇降体を昇降作動させるので、すれ違い用昇降位置に昇降するために必要な昇降作動量を一対のスタッカークレーンの昇降体の双方で負担し合うことになり、一対の昇降体を迅速にすれ違い用昇降位置に昇降させることができるとともに、各昇降体の昇降作動が物品搬送作動から大きく外れた作動となることを抑制して、物品搬送作動の効率が低下することを抑制できる。
 このように、一対のスタッカークレーンの移動経路幅を極力狭くして設備のコンパクト化を図り、構成の複雑化を極力抑え、なおかつ、物品処理能力を効果的に向上させることができる物品収納設備を得るに至った。
 本発明の実施形態において、前記制御手段が、前記相互回避昇降処理において、前記一対の走行台車の夫々の走行位置が前記相互接近位置になってから走行作動中の前記走行台車を設定減速度にて減速させる態様で走行作動させた場合に前記一対の昇降体が干渉すると仮定される干渉仮定走行位置になるまでの猶予時間内に前記物品搬送作動により前記昇降体が昇降し得る昇降範囲である最大昇降範囲を前記担当スタッカークレーンの前記昇降体について求め、前記一対のスタッカークレーンの双方を前記担当スタッカークレーンとして前記物品搬送作動させているときは、前記一対の昇降体の夫々についての前記最大昇降範囲が相互に前記必要離間距離よりも長く離れることにより互いに重複していなければ、前記一対のスタッカークレーンの干渉が発生しない干渉不発生状態であると判別し、前記一対のスタッカークレーンの一方のみを前記担当スタッカークレーンとして前記物品搬送作動させているときは、他方の前記スタッカークレーンの前記昇降体の昇降位置を中心として前記必要離間距離だけ昇降方向に広がりをもつ干渉対象範囲が、前記担当スタッカークレーンの前記昇降体についての前記最大昇降範囲と重複していなければ、前記干渉不発生状態であると判別するように構成され、且つ、
 前記相互回避昇降処理において前記干渉不発生状態であると判別した場合は、前記相互回避昇降処理では前記一対の昇降体の昇降作動を制御しない形態で前記物品搬送作動を行わせるべく、かつ、前記相互回避昇降処理において前記干渉不発生状態でないと判別した場合は、前記相互回避昇降処理で前記一対の昇降体を制御する形態で前記物品搬送作動を行わせるべく、前記一対の昇降体の双方の昇降作動を制御するように構成されていることが好ましい。
 このような構成によると、一対の走行台車の夫々の走行位置が相互接近位置になってから、走行作動中の前記走行台車を設定減速度にて減速させる態様で走行作動させた場合に、干渉仮定走行位置になるまでの猶予時間内に物品搬送作動により昇降体が昇降し得る昇降範囲である最大昇降範囲を夫々の昇降体について求め、一対のスタッカークレーンの双方を担当スタッカークレーンとして物品搬送作動させているときは、各昇降体についての最大昇降範囲が、相互に必要離間距離よりも長く離れることにより互いに重複していなければ、一対のスタッカークレーンの干渉が発生しない干渉不発生状態であると判別する。
 つまり、物品搬送作動が進行して各走行台車が近接する状態となっても、各昇降体についての最大昇降範囲が、相互に必要離間距離よりも長く離れることにより互いに重複していなければ、一方の昇降体についての最大昇降範囲の上限、及び、他方の昇降体についての最大昇降範囲の下限が、相互に必要離間距離より長く離れており、一対の昇降体が昇降方向で最大限接近したとしても、一対のスタッカークレーンの干渉は発生しないので、そのような場合には、干渉不発生状態であると判別するのである。
 また、同様に、一対のスタッカークレーンの一方のみを担当スタッカークレーンとして物品搬送作動させているときは、他方のスタッカークレーン(非担当スタッカークレーン)の昇降体の昇降位置を中心として必要離間距離だけ昇降方向に広がりをもつ干渉対象範囲が、担当スタッカークレーンの昇降体についての最大昇降範囲と重複していなければ、前記干渉不発生状態であると判別する。
 つまり、物品搬送作動が進行して各走行台車が近接する状態となっても、非担当スタッカークレーンの昇降体の昇降位置を中心として必要離間距離だけ昇降方向に広がりをもつ干渉対象範囲が、担当スタッカークレーンの昇降体についての最大昇降範囲と重複していなければ、非担当スタッカークレーンの昇降体の昇降位置は、最大昇降範囲の上限位置又は下限位置から必要離間距離より長く離れており、一対の昇降体が昇降方向で最大限接近したとしても、一対のスタッカークレーンの干渉は発生しないので、そのような場合には、干渉不発生状態であると判別するのである。
 そして、制御手段は、相互回避昇降処理において干渉不発生状態であると判別した場合は、相互回避昇降処理では一対の昇降体の昇降作動を制御しない形態で物品搬送作動を行わせるので、一対の昇降体の昇降作動は、物品搬送作動によるものとなる。また、相互回避昇降処理において干渉不発生状態でないと判別した場合は、相互回避昇降処理で一対の昇降体を制御する形態で物品搬送作動を行わせるので、相互回避昇降処理で一対の昇降体の双方の昇降作動が制御されて、一対の昇降体をすれ違い用昇降位置に位置させるように、物品搬送作動とは異なる昇降作動をさせることになる。
 このように、一対のスタッカークレーンの干渉が発生する可能性がないときには、相互回避昇降処理によって一対の昇降体の昇降作動を制御することはせず、物品搬送作動を進行させることができ、一対のスタッカークレーンの干渉が発生する可能性があるときには、相互回避昇降処理を行なって、一対の昇降体の双方を物品搬送作動とは異なる昇降作動をさせる。
 したがって、必要以上に相互回避昇降処理が実行されて、物品搬送作動が変更されることを極力防止でき、設備の物品搬送能力が低下することを極力防止できる。
 本発明による実施形態において、前記制御手段が、前記運転指令に対応して生成される物品搬送作動用走行パターン及び物品搬送作動用昇降パターンに基づいて設定制御周期毎に更新生成される前記走行台車についての目標走行位置及び前記昇降体についての目標昇降位置を前記設定制御周期毎に指令することで、前記担当スタッカークレーンについての前記物品搬送作動を制御するように構成され、かつ、前記相互回避昇降処理として、前記担当スタッカークレーンについて、前記物品搬送作動用昇降パターンに基づいて規定される前記昇降体についての前記目標昇降位置に代えて、前記一対のスタッカークレーンの前記昇降体の昇降位置及び昇降速度、並びに、前記必要離間距離に基づいて更新生成される干渉回避用の目標昇降位置を前記設定制御周期毎に指令することで、前記一対の昇降体を前記すれ違い用昇降位置に昇降させるべく、前記一対の昇降体の双方の昇降作動を制御するように構成されていることが好ましい。
 このような構成によると、制御手段は、目標走行位置及び目標昇降位置を設定制御周期毎に指令することで担当スタッカークレーンについての物品搬送作動を制御する。目標走行位置及び目標昇降位置は、夫々、運転指令に対応して生成される物品搬送作動用走行パターン及び物品搬送作動用昇降パターンに基づいて設定制御周期毎に更新生成されるものである。つまり、制御タイミングにおける走行台車の走行位置や走行速度が、物品搬送作動用走行パターンからずれたものとなっていれば、そのずれを修正するように目標走行位置が更新生成される。同様に、制御タイミングにおける昇降体の昇降位置や昇降速度が、物品搬送作動用昇降パターンからずれたものとなっていれば、そのずれを修正するように目標昇降位置が更新生成される。したがって、物品搬送作動では、物品搬送作動用走行パターン及び物品搬送作動用昇降パターンに極力適合するように走行作動及び昇降作動が行われる。
 また、制御手段は、相互回避昇降処理として、干渉回避用の目標昇降位置を設定制御周期毎に指令することで、一対の昇降体の双方の昇降作動を制御して、一対の昇降体をすれ違い用昇降位置に昇降させる。干渉回避用の目標昇降位置は、一対のスタッカークレーンの昇降体の昇降位置及び昇降速度、並びに、必要離間距離に基づいて更新生成されるものである。つまり、制御タイミングにおける双方の昇降体の昇降位置及び昇降速度に応じて、一対の昇降体の双方を互いに必要離間距離以上昇降方向で離間したすれ違い用昇降位置に昇降させるために適正な夫々についての目標昇降位置が、干渉回避用の目標昇降位置として更新生成される。したがって、相互回避昇降処理での昇降作動では、制御タイミング毎に昇降体の昇降位置及び昇降速度が考慮された適切な目標昇降位置が指令されることで、すれ違い用昇降位置に近づくように昇降作動が行われるので、すれ違い用昇降位置に昇降するための作動量として無駄な昇降作動量を極力抑制できる。
 このように、物品搬送作動では、物品搬送作動用走行パターン及び物品搬送作動用昇降パターンに極力適合するように走行作動及び昇降作動が行われ、一対のスタッカークレーンが干渉することなくすれ違い移動できるようにするための回避作動としての相互回避昇降処理での昇降作動では、物品搬送作動と異なる昇降作動となるものの、極力少ない昇降作動量によりすれ違い用昇降位置に昇降できる。したがって、相互回避昇降処理で一対の昇降体をすれ違い用昇降位置に昇降させる場合に時間余裕を持つことができ、一対の昇降体を確実にすれ違い用昇降位置に昇降させることができる。
 本発明の実施形態において、前記制御手段が、地上側に設置され、かつ、前記一対のスタッカークレーンのうち一方のスタッカークレーンの作動を制御する第1クレーン制御手段と、他方のスタッカークレーンの作動を制御する第2クレーン制御手段とを備えて構成されていることが好ましい。
 このような構成によると、地上側に設置されている制御手段が備える第1クレーン制御手段と第2クレーン制御手段とにより一対のスタッカークレーンの夫々の作動が制御されるので、各スタッカークレーンの夫々に設けるべき制御構成を、例えば、スタッカークレーンの走行台車や昇降体を目標位置情報に基づいて目標位置まで移動させる単純なサーボ制御による制御構成のように、簡単なもので済ますことができる。したがって、一対のスタッカークレーンの夫々に備えさせる制御構成の簡素化を図ることができる。
 また、これらの構成に対応するステップを有する物品搬送設備における作動方法では、上記の種々の構成に対応するメリットを得ることができる。
物品収納設備の平面図である。 物品収納棚の移動経路の横幅方向視での断面図である。 物品収納棚の移動経路の長手方向視での断面図である。 制御ブロック図である。 走行速度パターン及び昇降速度パターンの一例である。 クレーン制御のフローチャートである。 相互接近位置の説明図である。 干渉回避処理のフローチャートである。 干渉判定処理のフローチャートである。 スタッカークレーンの代表寸法を示す図である。 スタッカークレーンの干渉仮定走行位置を説明する図である。 干渉不発生状態を示す図である。 回避昇降位置算出処理のフローチャートである。 回避昇降位置算出処理による目標昇降位置の設定の一例を説明する図である。 すれ違いが発生しない場合の干渉回避処理によるスタッカークレーンの作動の様子を示す模式図である。 すれ違いが発生する場合の干渉回避処理によるスタッカークレーンの作動の様子を示す模式図である。 別実施形態による干渉回避処理のフローチャートである。 別実施形態による相互回避昇降位置算出処理のフローチャートである。 別実施形態による相互回避昇降位置算出処理による目標昇降位置の設定の一例を説明する図である。 別実施形態によるすれ違いが発生する場合の干渉回避処理によるスタッカークレーンの作動の様子を示す模式図である。
 次に本発明の実施形態について説明する。複数の実施形態が含まれるが、一つの実施形態における特徴と別の実施形態における特徴の組み合わせも本発明の範囲内に含まれる。
実施形態1
 本発明に係る物品収納設備の実施形態について、図面に基づいて説明する。この物品収納設備は、図1~図3に示すように、物品出し入れ方向が互いに対向するように間隔を隔てて設置した2つの物品収納棚1と、2つの物品収納棚1同士の間に形成された移動通路2(移動経路に相当する。)を移動するスタッカークレーン3とが設けられている。物品収納棚1の棚横幅方向(棚の長手方向)において物品収納棚1の両側部には、外部から搬入される物品4を載置支持させるとともに、物品収納棚1から出庫して外部に搬出する物品4を載置支持する搬出入部5が設けられている。
 各物品収納棚1は、前後一対の支柱1aが棚横幅方向に間隔を隔てて複数立設され、棚横幅方向に隣接する支柱1aの間を上下複数枚の棚板1bで連結して構成されている。棚板1bは、棚前後方向の前方側に物品4の一部を突出させる状態で物品4を載置支持するように構成されている。棚板1bは、棚横幅方向に複数の物品4が並ぶ状態で複数の物品4を載置支持するように構成されている。このようにして、物品収納棚1における収納部6は、棚板1bにて物品4を載置支持する状態で物品4を収納するように構成されている。収納部6は、棚前後方向(棚横幅方向とは直交する方向)で移動通路2の両側において、上下方向及び左右方向に複数並ぶように設けられている。
 スタッカークレーン3として、移動通路2を中心として、棚前後方向において一方側を移動する第1スタッカークレーン3a(以下、1号機3aと呼ぶ。)と、棚前後方向において他方側を移動する2号機3b(以下、2号機3bと呼ぶ。)とが設けられている。移動通路2の床面には、下部レール7(走行案内レールに相当する。)が棚横幅方向に沿って平行に2本敷設され、移動通路2の上方には、上部レール8が棚横幅方向に沿って平行に2本配置されている。2本の下部レール7及び上部レール8のうち、棚前後方向の一方側に配置されているものは、1号機3aを移動通路2に沿って移動させるためのものであり、棚前後方向の他方側に配置されているものは、2号機3bを移動通路2に沿って移動させるためのものである。1号機3a及び2号機3bの夫々は、下部レール7及び上部レール8の案内により棚横幅方向の物品収納棚1の全長及び搬出入部5の配設箇所に亘って移動通路2を往復移動自在に設けられている。
 以下、1号機3a及び2号機3bについて説明するが、1号機3a及び2号機3bは、移動通路2に配置される互いに向きが異なるだけで、構造的には同じである。よって、同じ構造については、1号機3aと2号機3bとを区別することなく、スタッカークレーン3と総称して説明する。
 スタッカークレーン3は、下部レール7に沿って走行自在な走行台車9と、その走行台車9に立設された昇降案内マスト10に沿って昇降自在な昇降台11とを備えている。昇降台11は、収納部6及び搬出入部5に対して物品4を移載可能な物品移載装置12を備えている。昇降台11及び物品移載装置12により昇降体UDを構成している。
 走行台車9は、棚横幅方向に長い扁平形状に形成され、1号機3aの走行台車9と2号機3bの走行台車9とが、互いにすれ違い移動可能な状態で移動通路2を移動するように構成されている。
 1号機3aの昇降案内マスト10は、棚前後方向の一方側(近い方の棚に近づく方向)に寄せた状態で走行台車9に設けられ、2号機3bの昇降案内マスト10は、棚前後方向の他方側(近い方の棚に近づく方向)に寄せた状態で走行台車9に設けられている。
 1号機3aの昇降台11は、2号機3bの昇降案内マスト10に当接しないように1号機3aの昇降案内マスト10から棚前後方向に延びる状態で昇降案内マスト10にて片持ち支持されている。2号機3bの昇降台11も、1号機3aの昇降案内マスト10に当接しないように2号機3bの昇降案内マスト10から棚前後方向に延びる状態で昇降案内マスト10にて片持ち支持されている。
 このようにして、1号機3aと2号機3bとは、互いにすれ違い移動可能な状態で移動通路2を往復移動するように構成されている。
 昇降案内マスト10は、棚横幅方向に長い扁平形状に形成され、棚横幅方向で走行台車9の一端側に1つ立設されている。昇降案内マスト10は、棚横幅方向視において、下部レール7から物品収納棚1に接近する側に偏った位置で走行台車9に立設されている。昇降案内マスト10は、その上端部が上部レール8の下端部よりも高くなるように構成されている。昇降案内マスト10の上端部分には、上部レール7を挟み込む状態で設けられた2つの上部ガイドローラ14が棚前後方向に延びる支持体13にて支持されている。この2つの上部ガイドローラ14と上部レール7との当接により、棚前後方向でのスタッカークレーン3の移動が規制されている。
 昇降台11は、昇降案内マスト10に設けられた2本の昇降用レール15に嵌合して単一の昇降案内マスト10により上下方向に昇降自在に案内支持されている。昇降台11には、昇降台11を昇降させるための昇降用チェーン16の一端部が連結されている。その昇降用チェーン16は、昇降案内マスト10の上部に設けられた上部スプロケット17に巻回され、且つ、走行台車9に設けられた下部スプロケット18に巻回されて、他端部が昇降台11に連結されている。昇降用チェーン16に対して、昇降用電動モータMVにて回転駆動される駆動スプロケット20が係合するように設けられている。昇降台11は、昇降用電動モータMVの正逆回転駆動により昇降用チェーン16をその長手方向に移動操作させて昇降するように構成されている。昇降用チェーン16に代えて、ワイヤ等の他の周知の部材を利用することも可能である。
 走行台車9には、下部レール7上を回転自在な走行車輪21が設けられている。前後一対の走行車輪21の一方は、走行用電動モータMHにて回転駆動される駆動車輪21aとして構成され、他方は遊転回転自在な従動車輪21bとして構成されている。
 1号機3aの走行台車9には、昇降経路における昇降体UDの昇降位置を検出する第1昇降用レーザ距離計23(2号機3bについては、第2昇降用レーザ距離計27)が設けられている。第1昇降用レーザ距離計23は、昇降台11に設けられた第1昇降用反射体24(2号機3bについては、第2昇降用反射体28)に向けて上下方向に沿って測距用光(レーザ光)を投光して第1昇降用反射体24にて反射された光を受光することにより、昇降体UDまでの距離を計測するように構成されている。第1昇降用レーザ距離計23は、計測した昇降体UDまでの距離から昇降体UDの昇降位置を検出するように構成されている。第1昇降用レーザ距離計23及び第2昇降用レーザ距離計27が一対の昇降位置検出手段に相当する。昇降位置検出手段としては、昇降体UDに対して取り付けられ昇降案内マスト10に設けられた直線ギア歯に対して係合するギアの回転を計測する回転センサ、又は、昇降用チェーン16と係合するギアの回転を計測する回転センサや、昇降体UDに対して取り付けられた接触センサ等の周知のセンサを利用することが可能である。
 走行台車9には、移動通路2における走行台車9の走行位置を検出する第1走行用レーザ距離計25(2号機3bについては、第2走行用レーザ距離計29)が設けられている。第1走行用レーザ距離計25は、棚横幅方向に沿って第1走行用反射体26(2号機3bについては、第2走行用反射体30)に向けて測距用光(レーザ光)を投光して第1走行用反射体26にて反射された光を受光して、経過した時間を計測することにより、棚横幅方向での第1走行用レーザ距離計25(2号機3bについては、第2走行用レーザ距離計29)と走行台車9との間の距離を計測するように構成されている。
 第1走行用反射体26は、移動通路2の端部の地上側に設けられており、その設置位置を1号機3aの走行台車9の走行位置を検出するための基準位置としている。第1走行用レーザ距離計25は、第1走行用反射体26の設置位置である基準位置から1号機3aの走行台車9までの距離を計測して、1号機3aの走行台車9の走行位置を検出するように構成されている。
 第2走行用反射体30は、移動通路2の第1走行用反射体26が設けられている端部とは反対側の端部の地上側に設けられており、その設置位置を2号機3bの走行台車9の走行位置を検出するための基準位置としている。第2走行用レーザ距離計29は、第2走行用反射体30の設置位置である基準位置から2号機3bの走行台車9までの距離を計測して、2号機3bの走行台車9の走行位置を検出するように構成されている。
 つまり、第1走行用レーザ距離計25及び第2走行用レーザ距離計29が一対の走行位置検出手段に相当する。
 物品移載装置12は、棚前後方向に沿った物品移載方向に物品4を載置搬送する載置搬送部と、この載置搬送部を物品移載方向に出退自在に支持する基台と、載置搬送部を物品移載方向で基台側に引退させる引退位置と基台28から物品移載方向で外方側に突出させる突出位置とに出退駆動させる出退駆動手段とを備えている。物品移載装置12として関節を有するロボットアームを有する周知の構造を利用することも可能である。
 図4の制御ブロック図に示すように、1号機3a及び2号機3bの作動を制御する制御手段としての地上側コントローラHが設けられている。本明細書で記載される種々の制御手段、コントローラ、又は、他の制御機能を有する部材は、CPU、メモリ、通信ユニットを有し、本明細書で記載される機能を実行するアルゴリズムが記憶されている。地上側コントローラHは、スタッカークレーン3側に設けられる走行用及び昇降用の各レーザ距離計と走行用及び昇降用の各サーボアンプと通信自在に構成されている。地上側コントローラHとスタッカークレーン3側の各レーザ距離計及び各サーボアンプとの通信は、赤外線を利用した無線通信装置19、22により行なわれる。
 無線通信装置19、22について、1号機3aと地上側コントローラHとの間で赤外線通信を行なう1号機無線通信装置19を例に説明すると、1号機無線通信装置19は、移動通路2の端部において地上側に設置されて地上側コントローラHに有線接続される地上側通信ユニット19aと、1号機3aの走行台車9に設置されて1号機3aの昇降用レーザ距離計23及び走行用レーザ距離計25並びに昇降用サーボアンプSV1及び走行用サーボアンプSH1に有線接続される端末通信ユニット19bとで構成されている。
 地上側通信ユニット19a及び端末通信ユニット19bのそれぞれは赤外線送信機及び受信機を備えており、地上側通信ユニット19aは、1号機3aについての目標走行位置情報及び目標昇降位置情報等の各種制御情報をベースバンド信号として変調をかけたキャリア信号を赤外線にて端末通信ユニット19bに送信する。端末通信ユニット19bは、受信した赤外線信号を復調して、昇降用サーボアンプSV1及び走行用サーボアンプSH1に目標走行位置情報及び目標昇降位置情報等の各種制御情報を出力する。逆に、端末通信ユニット19bは、昇降用レーザ距離計23が検出する昇降体UDについての昇降位置情報及び走行用レーザ距離計25が検出する1号機3aの走行台車9についての走行位置情報をベースバンド信号として変調をかけたキャリア信号を赤外線にて地上側通信ユニット19aに送信する。地上側通信ユニット19aは、受信した赤外線信号を復調して、地上側コントローラHに1号機3aの昇降体UDについての昇降位置情報及び1号機3aの走行台車9についての走行位置情報を出力する。
 このように、地上側通信ユニット19a及び端末通信ユニット19bとの間で双方向通信が行なわれることにより、地上側コントローラHが、1号機3aの作動を制御できるようになっている。同様に、2号機無線通信装置22の地上側通信ユニット22a及び端末通信ユニット22bとの間で双方向通信が行なわれることにより、地上側コントローラHが、2号機3bの作動を制御できるようになっている。なお、無線通信装置19、22の変復調周期は、地上側コントローラHの制御周期よりも十分短い周期となっている。
 そして、上位の管理コンピュータや作業者にて指令操作される指令入力手段等から物品単位の入庫作業又は出庫作業を指令する運転指令が指令されると、運転指令にて指定される搬送元及び搬送先としての収納部6や搬出入部5に物品移載装置12を移動させるべく、地上側コントローラHが、1号機3a及び2号機3bの走行台車9の走行作動、昇降体UDの昇降作動を制御して、収納部6や搬出入部5のそれぞれについて予め設定された目標停止位置に物品移載装置12を棚前面側で移動させるようにしている。
 ここで、目標停止位置は、収納部6や搬出入部5から物品4を掬いとる(すなわち、取得する)ときよりも、収納部6や搬出入部5に物品4を卸す(すなわち、渡す)ときの方が高い位置となるように定められている。そして、地上側コントローラHは、目標停止位置に物品移載装置12を位置させた状態で、物品移載装置12と目的の収納部6や搬出入部5との間で物品4を移載すべく、物品移載装置12の出退駆動手段及び載置搬送部の作動を制御するように構成されている。
 こうして、地上側コントローラHが運転指令に基づいてスタッカークレーン3を制御することにより、スタッカークレーン3は、運転指令が指令されると、その運転指令にて指定された搬送元まで、物品移載装置12が物品4を載置支持していない状態で移動する空搬送作動(物品搬送作動に相当する。)をし、搬送元に到着すると搬送元から物品4を掬う掬い用移載作動をした後、物品移載装置12が物品4を載置支持している状態で搬送先まで移動する実搬送作動(物品搬送作動に相当する。)をし、搬送先に到着すると搬送先に物品4を卸す卸し用移載作動をして、入庫作業や出庫作業を行うようになっている。なお、運用によっては、入庫作業が完了した後、指令待機用のホームポジションHP(本実施形態では、走行台車9が移動通路2の棚横幅方向の端部に位置し、昇降体UDが昇降下限位置に位置するポジションとしている。図1参照。)に復帰させる原点復帰作動を行う場合もある。
 地上側コントローラHは、運転指令が指令されると、物品搬送作動を担当していないスタッカークレーン(以下、非担当クレーンと呼ぶ。)を検索する。1号機3a及び2号機3bの双方が非担当クレーンであれば、当該運転指令にて指定された搬送元位置情報及び1号機3a及び2号機3bの現在位置に基づいて、搬送元に近い方のスタッカークレーンを、当該運転指令を担当する担当スタッカークレーン(以下、担当クレーンと呼ぶ。)として設定する。1号機3a及び2号機3bの何れかが非担当クレーンであれば、その非担当クレーンを、当該運転指令を担当する担当クレーンとして設定する。1号機3a及び2号機3bの双方が担当クレーンであれば、何れかのスタッカークレーンが非担当クレーンになった時点で、その非担当クレーンを、当該運転指令を担当する担当クレーンとして設定する。なお、1号機3a及び2号機3bの双方が担当クレーンである間に次々と運転指令が指令された場合は、運転指令情報を蓄積しておき、担当クレーンが発生した時点で、先に蓄積した運転指令についての担当クレーンを設定するように順次処理している。
 地上側コントローラHは、担当クレーンを設定すると、その担当クレーンに対して、制御周期(本実施形態では10[ms]としている。)毎に目標昇降位置情報及び目標昇降位置情報を送信して、当該担当クレーンの物品搬送作動を制御する。以下、地上側コントローラHによるスタッカークレーン3の物品搬送作動の制御について説明する。
 地上側コントローラHは、空搬送作動及び実搬送作動の物品搬送作動を行う間は、制御周期毎に、1号機3a及び2号機3bの夫々の走行台車についての目標走行位置情報、及び、1号機3a及び2号機3bの夫々の昇降体についての目標昇降位置情報を、1号機3a及び2号機3bに指令して、作動開始位置から作動終了位置まで物品移載装置12を移動させるべく、スタッカークレーン3の作動を制御する。
 作動開始位置は、その物品搬送作動が、実搬送作動であれば当該運転指令についての搬送元であり、空搬送作動又は原点復帰作動であればそのスタッカークレーンが直近に処理した運転指令の搬送先である。作動終了位置は、その物品搬送作動が実搬送作動であれば当該運転指令についての搬送先であり、空搬送作動であれば当該運転指令についての搬送元であり、原点復帰作動であればホームポジションである。
 目標走行位置情報は、作動開始位置から作動終了位置まで移動するのに必要な走行距離DHを、設定走行加速度αH、設定最高走行速度VHmax、設定走行減速度βHの制限のもとで極力短時間に走行できる走行速度変化パターン(図5(a)参照。)に沿った速度変化をするように、走行台車9の走行位置変化を制御するための制御周期毎の走行位置についての目標値である。
 目標昇降位置情報は、例えば、作動開始位置から作動終了位置まで上昇作動する場合であれば、作動開始位置から作動終了位置まで上昇するのに必要な昇降距離DVを、設定上昇加速度αup、設定最高上昇速度Vupmax、設定昇降減速度βupの制限のもとで極力短時間に上昇できる昇降速度変化パターン(図5(b)参照。実線が上昇作動時の昇降速度変化パターン)に沿った速度変化をするように、昇降体UDの昇降位置変化を制御するための制御周期毎の昇降位置についての目標値である。作動開始位置から作動終了位置まで下降作動する場合であれば、必要な昇降距離DVを、設定下降加速度αdw、設定最高下降速度Vdwmax、設定昇降減速度βdwの制限のもとで極力短時間に下降できる昇降速度変化パターン(図5(b)参照。鎖線が下降作動時の昇降速度変化パターン)に沿った速度変化をするように、昇降体UDの昇降位置変化を制御するための制御周期毎の昇降位置についての目標値である。
 第1走行用レーザ距離計25による1号機3aの走行台車9の走行位置情報及び第1昇降用レーザ距離計23による1号機3aの昇降体UDの昇降位置情報が、1号機3aから、1号機無線通信装置19を介して制御周期毎に地上側コントローラHに送信されるようになっており、地上側コントローラHは、1号機3aの走行台車9が上記走行速度変化パターンに沿った速度変化をするように、また、1号機3aの昇降体UDが上記昇降速度変化パターンに沿った速度変化をするように、1号機3aの走行台車9の走行位置情報及び昇降体UDの昇降位置情報に基づいて、1号機3aについての上記目標走行位置情報及び上記目標昇降位置情報を更新生成し、1号機無線通信装置19を介して1号機3aの昇降用サーボアンプSV1及び走行用サーボアンプSH1に送信する。
 同様に、第2走行用レーザ距離計29による2号機3bの走行台車9の走行位置情報及び第2昇降用レーザ距離計27による2号機3bの昇降体UDの昇降位置情報が、2号機3bから、2号機無線通信装置22を介して制御周期毎に地上側コントローラHに送信されるようになっており、地上側コントローラHは、2号機3bの走行台車9が上記走行速度変化パターンに沿った速度変化をするように、また、2号機3bの昇降体UDが上記昇降速度変化パターンに沿った速度変化をするように、2号機3bの走行台車9の走行位置情報及び昇降体UDの昇降位置情報に基づいて、2号機3bについての上記目標走行位置情報及び上記目標昇降位置情報を更新生成し、2号機無線通信装置22を介して2号機3bの昇降用サーボアンプSV2及び走行用サーボアンプSH2に送信する。
 図4に示すように、地上側コントローラHは、プログラムにより構成された第1クレーン制御手段31、第2クレーン制御手段32、干渉回避制御手段33、及び、通信制御手段34を備えている。
 走行用サーボアンプSH1には、第1走行用レーザ距離計25の検出する走行台車9の走行位置情報及び走行モータMH1が備えるロータリエンコーダによるモータ回転数情報が、また、昇降用サーボアンプSV1には、第1昇降用レーザ距離計23の検出する昇降体UDの昇降位置情報及び昇降モータMV1が備えるロータリエンコーダによるモータ回転数情報が入力されている。これらのサーボアンプは位置制御モードで動作しており、走行用サーボアンプSH1は、第1走行用レーザ距離計25の検出する走行台車9の走行位置が、設定された目標位置となるように、1号機3aの走行モータMH1に対するモータ駆動出力を制御し、同様に、昇降用サーボアンプSV1は、第1昇降用レーザ距離計23の検出する昇降体UDの昇降位置が、設定された目標位置となるように、1号機3aの昇降モータMV1に対するモータ駆動出力を制御する。
 第1クレーン制御手段31は、1号機3aから送信される目標走行位置情報に基づいて、走行台車9の走行位置が目標走行位置となるように、位置制御モードで動作する走行用サーボアンプSH1の目標位置情報としての目標走行位置情報を制御周期毎に生成する。生成された目標走行位置情報は、通信制御手段34が制御する通信ポートから1号機無線通信装置19の地上側通信ユニット19aに出力される。これにより1号機3aの走行モータMH1は、走行台車9が、目標走行位置情報の示す走行位置に位置するように回転駆動する。
 同様に、第1クレーン制御手段31は、1号機3aから送信される目標昇降位置情報に基づいて、昇降体UDの昇降位置が目標昇降位置となるように、位置制御モードで動作する昇降用サーボアンプSV1の目標位置情報としての目標走行位置情報を制御周期毎に生成する。生成された目標昇降位置情報は、通信制御手段34が制御する通信ポートから1号機無線通信装置19の地上側通信ユニット19aに出力される。これにより1号機3aの昇降モータMV1は、昇降体UDが、目標昇降位置情報の示す昇降位置に位置するように回転駆動する。
 このようにして、地上側コントローラHが制御周期毎に1号機3aの走行用サーボアンプSH1及び昇降用サーボアンプSV1に目標走行位置情報及び目標昇降位置情報を送信することで、1号機3aの走行台車9が、目標走行位置情報が示す走行位置に位置するように走行し、1号機3aの昇降体UDが、目標昇降位置情報が示す昇降位置に位置するように昇降する。
 2号機3bについての制御構成は、1号機3aについてのものと同様であるので説明を省略するが、同様に、地上側コントローラHが制御周期毎に2号機3bの走行用サーボアンプSH2及び昇降用サーボアンプSV2に目標走行位置情報及び目標昇降位置情報を送信することで、2号機3bの走行台車9が、目標走行位置情報が示す走行位置に位置するように走行し、2号機3bの昇降体UDが、目標昇降位置情報が示す昇降位置に位置するように昇降する。
 次に、地上側コントローラHの制御動作について説明する。
 地上側コントローラHは、スタッカークレーン3の走行台車9の走行位置及び昇降体UDの昇降位置を、物品移載装置12の載置搬送部における物品載置面の棚横幅方向(移動通路2の経路方向、走行台車9の走行方向)における中心をスタッカークレーン3の代表位置P(図10参照。)として、この代表位置Pの移動通路2における棚前後方向視の位置として管理している。具体的には、棚横幅方向(走行台車9の走行方向)を横軸(x軸)とし、棚上下方向(昇降体UDの昇降方向)を縦軸(y軸)とする棚前面側に仮想的に設定される直交座標系における代表位置Pのx座標として走行台車9の走行位置を管理し、y座標として昇降体UDの昇降位置を管理している。なお、この仮想直交座標系の原点は、走行台車9が移動通路2の一方側の端部に位置し、昇降体UDが昇降下限位置に位置しているとき、すなわち、ホームポジションHPにスタッカークレーン3が位置しているときの代表位置Pの座標に設定されている。
 以下、走行台車9の走行位置及び昇降体UDの昇降位置をクレーン中心座標P(x,y)を用いて表わすものとし、1号機3aのクレーン中心座標をP1(x1,y1)と表わし、2号機3bのクレーン中心座標をP2(x2,y2)と表わす。つまり、1号機3aの走行台車9の走行位置はx1、1号機3aの昇降体UDの昇降位置はy1で表わせ、2号機3bの走行台車9の走行位置はx2、2号機3bの昇降体UDの昇降位置はy2で表わせる。また、クレーン中心座標P(x,y)を、単に、スタッカークレーン3の位置と呼ぶこともある。
 図6のフローチャートに示すように、運転指令が指令されて、担当クレーンが設定されると、#01で、当該担当クレーンの制御手段(第1クレーン制御手段31及び第2クレーン制御手段32の一方又は双方)が、当該担当クレーンについての物品搬送作動の作動開始位置及び作動終了位置から定まる物品搬送作動用走行速度パターンに基づく目標走行位置情報及び物品搬送作動用昇降速度パターンに基づく目標昇降位置情報を生成して、出力バッファに書き込んでおく。
 #02で、干渉回避制御手段33が、1号機3a及び2号機3bが相互に干渉することが予測される相互接近位置であるか否かを判別する。この処理では、今回の制御タイミングにおける1号機3aの走行台車9及び2号機3bの走行台車9を設定走行減速度βHにて停止させたと仮定した場合に停止するまでに現在位置P1(x1,y1)、P2(x2,y2)から移動する各走行台車9の仮制動範囲に重複する部分がある場合に、一対の走行台車9の夫々の走行位置が相互接近位置であると判別する。
 具体的には、図7(a)に示すように、今般の制御タイミングである時刻t=t1において、1号機3aが位置P1(x1,y1)、作動速度V1(Vx1,Vy1)で物品搬送作動しており、2号機3bが位置P2(x2,y2)、作動速度V2(Vx2,Vy2)で物品搬送作動している場合に、1号機3aの走行台車9が設定走行減速度βHにて減速して仮想停止位置P1ve(x1v,y1v)に走行停止し、2号機3bの走行台車9が設定走行減速度βHにて減速して仮想停止位置P2ve(x2v,y2v)に走行停止すると仮定した場合の、1号機3a及び2号機3bの夫々の仮制動範囲である1号機仮制動範囲VBW1及び2号機仮制動範囲VBW2が、少なくとも一部において重複していると、その時刻t=t1以降の1号機3a及び2号機3bの物品搬送作動による走行作動が如何に変化しようとも、走行方向でスタッカークレーンの一部が重なる程度に接近した走行位置関係となるので、各スタッカークレーンの昇降体UDの昇降位置によっては、1号機3a及び2号機3bの昇降体UDが相互に干渉する可能性がある。したがって、1号機仮制動範囲VBW1と2号機仮制動範囲VBW2とが互いに重複する部分を有しているか否かによって、その後の物品搬送作動において1号機3a及び2号機3bが干渉する可能性がある場合は、漏れなく後述する干渉回避処理を実行することができる。逆に言うと、その後の物品搬送作動において1号機3a及び2号機3bが干渉しない可能性がある場合は、干渉回避処理を行うには時期尚早であるとして今回の制御タイミングでは、干渉回避処理を実行しない。
 1号機仮制動範囲VBW1及び2号機仮制動範囲VBW2が、少なくとも一部で重複している場合として、図7(a)のほか、図7(b)や図7(c)に示すような場合がある。図7(a)では、1号機3a及び2号機3bの双方が担当クレーンとして物品搬送作動をし、互いに対向する向きに走行作動している場合に1号機3a及び2号機3bの夫々の仮制動範囲が重なる場合を示している。図7(b)では、1号機3a及び2号機3bの双方が担当クレーンとして物品搬送作動をし、同じ向きに走行作動している場合に1号機3a及び2号機3bの夫々の仮制動範囲が重なる場合を示している。図7(c)では、1号機3aのみが担当クレーンとして物品搬送作動を行い、2号機3bが非担当クレーンとして待機状態にある場合に、つまり、2号機3bの作動速度V2がゼロである場合に1号機3aの仮制動範囲VBW1に2号機3bが位置する場合を示している。
 なお、地上側コントローラHの第1クレーン制御手段31は、1号機3aの走行台車9の走行速度Vx1を第1走行用レーザ距離計25の検出情報の時間変化率から算出し、1号機3aの昇降体UDの昇降速度Vy1を第1走行用レーザ距離計23の検出情報の時間変化率から算出し、地上側コントローラHの第2クレーン制御手段32は、2号機3bの走行台車9の走行速度Vx2を第2走行用レーザ距離計29の検出情報の時間変化率から算出し、2号機3bの昇降体UDの昇降速度Vy2を第2走行用レーザ距離計27の検出情報の時間変化率から算出するので、干渉回避制御手段33は、相互接近位置であるか否かの判別において、第1クレーン制御手段31が算出する1号機3aの走行台車9の走行速度情報や第2クレーン制御手段32が算出する2号機3bの走行台車9の走行速度情報を参照することができる。
 1号機仮制動範囲VBW1及び2号機仮制動範囲VBW2が、少なくとも一部で重複する場合は、時刻t=t1での1号機3aの走行位置x1及び2号機3bの走行位置x2の走行方向での並び順と、1号機3aの仮想停止位置P1ve(x1v,y1v)での走行位置x1v及び2号機3bの仮想停止位置P2ve(x2v,y2v)での走行位置x2vの走行方向での並び順が逆となるので、#02の処理では、時刻t=t1での1号機3aの走行位置x1と2号機3bの走行位置x2との差(x1-x2)が、1号機3aの仮想停止位置P1veの走行位置x1vと2号機3bの仮想停止位置P2veの走行位置x2vとの差(x1v-x2v)と異なる符号(正/負)であるか否かにより仮想制動範囲に重複する部分があるか否かを判別するようにしている。
 #02で相互接近位置ではないと判別されると、その制御タイミングでは干渉回避制御手段33による干渉回避処理を行わずともよいとして、#04へ移行し、通信制御手段34が、制御タイミングを待って、#01で第1クレーン制御手段31及び第2クレーン制御手段32が予め用意しておいた、担当クレーンについての目標走行位置情報及び目標昇降位置情報を出力する。
 #02で相互接近位置であると判別されると#03に移行し、干渉回避制御手段33により、干渉回避処理が実行される。詳しくは後述するが、干渉回避処理では、必要に応じて回避作動対象のクレーンが選定され、その回避作動対象クレーンについての回避作動用の目標昇降位置が算出され、第1クレーン制御手段31及び第2クレーン制御手段32が#01で出力バッファに書き込んだ目標昇降位置情報が上書き変更される。この干渉回避処理における演算量は、次の制御タイミングまでに演算処理が終了する程度の演算量であるので、次の制御タイミングまでに#04に復帰できる。そして、次の制御タイミングがくると、#05で、通信制御手段34により、出力バッファにある回避作動対象クレーンについての回避作動用の目標昇降位置情報が、また、同じく出力バッファにある他方のスタッカークレーン3についての物品搬送作動用の目標昇降位置情報が1号機3a及び2号機3bに出力される。
 干渉回避制御手段33により実行される干渉回避処理について、図8に示されたフローチャートを参照しながら説明する。
 #11で今回の制御タイミング以降に、走行台車9のすれ違いが発生するか否かが判別される。1号機3a及び2号機3bの双方が担当クレーンである場合は、1号機3aの現在位置P1及び作動終了位置P1eと2号機3bの現在位置P2及び作動終了位置P2eとから判別する。1号機3a及び2号機3bの走行方向での並び順が、物品搬送作動が終了すると入れ替わる場合、すなわち、(x1-x2)・(x1e-x2e)<0であれば、すれ違いが発生し、1号機3a及び2号機3bの走行方向での並び順が、物品搬送作動が終了しても入れ替わらない場合すなわち、(x1-x2)・(x1e-x2e)>0であればすれ違いは発生しない。
 すれ違いが発生しない場合でも、例えば、各物品搬送作動の作動終了位置が移動通路2を挟んで互いに対向する位置の収納部6や搬出入部5であるために1号機3aの作動終了位置P1eと2号機3bの作動終了位置が座標として重なるときや、待機状態の相手方クレーンの走行台車9が備えるモータカバー等の構造物が占有している座標平面における領域に作動終了位置が位置するとき等、1号機3a及び2号機3b同士が干渉する余地はあるので、引き続き#12以下の処理で両クレーンの干渉の有無を検証処理が行われる。
 #12の占有領域設定処理では、担当クレーンについてはそのスタッカークレーン3が作動終了位置に位置するときに当該スタッカークレーン3の走行台車9、昇降案内マスト10、昇降体UD等の構造物が占有する座標平面における領域が占有領域として設定され、待機状態である非担当クレーンについては、そのスタッカークレーン3が待機位置に位置するときに当該スタッカークレーン3の走行台車9、昇降案内マスト10、昇降体UD等の構造物が占有する座標平面における領域が占有領域として設定される。本実施形態では、図10に示すように、占有領域の設定に用いるスタッカークレーン3のクレーン中心座標P(x,y)を中心とする各部の代表寸法が予め記憶されており、クレーン中心座標P(x,y)を中心に、例えば、昇降体UDのx方向についての占有幅(XA+XB)及びy方向の占有高さ(YA+YB)や、走行台車9のx方向についての占有幅(XE+XD)及びy方向の占有高さ(YC)等が設定される。
 図8に戻り、#13の干渉判定処理では、#12で設定された1号機3aの占有領域と2号機3bの占有領域とに重なりがあるか否か、重なりがあるとすればどの部位かについての判定が行われ、干渉態様別に干渉判定値が設定される。すなわち、図9に示すように、#101で、昇降体UD同士が干渉するか判別され、そうであれば、#104へ移行し、干渉判定値が「1」に設定される。#102で、昇降体UDと相手方クレーンの走行台車9におけるモータカバーとが干渉するか判別され、そうであれば、#105へ移行し、干渉判定値が「2」に設定される。#103で、物品搬送作動後の物品移載作動において昇降体UDと相手方クレーンの昇降案内マスト10とが干渉するか判別され、そうであれば、#106へ移行し、干渉判定値が「3」に設定される。いずれの干渉態様にも当てはまらなければ、干渉はしないとして、干渉判定値は「0」に設定される。
 再び図8に戻り、#14で、#13の干渉判定処理で設定された干渉判定値に基づいて干渉の有無を判別する。干渉判別値が「0」でれば、干渉回避制御手段33は、出力バッファにある1号機3aや2号機3bについての目標走行位置情報及び目標昇降位置情報を回避作動用のものに書き換えることなく干渉回避処理を終了し、地上側コントローラHの制御動作は図6のメインルーチンに復帰する。
 #14で干渉判定値が「1」~「3」であれば、#15へ移行し、今回の制御タイミングにおいて、1号機3a及び2号機3bの双方が担当クレーンであるか、何れか一台だけが担当クレーンであるか判別される。2台とも担当クレーンとして物品搬送作動を行っていれば、#16で各スタッカークレーン3の残作動時間を算出する。すなわち、1号機3aの作動終了位置P1e(x1e,y1e)までの残走行作動時間及び残昇降作動時間のうち長い方を1号機3aの残作動時間とする。残走行作動時間は、1号機3aの現在位置P1(x1,y1)から作動終了位置P1e(x1e,y1e)までの残走行距離x1e-x1を走行するのに要する所要時間であり、現在作動速度V1(Vx1,Vy1)、設定走行加速度αH、設定走行減速度βHに基づいて算出する。同様に、残昇降作動時間は、1号機3aの現在位置P1(x1,y1)から作動終了位置P1e(x1e,y1e)までの残昇降距離y1e-y1を昇降するのに要する所要時間であり、現在作動速度V1(Vx1,Vy1)、設定上昇加速度αup又は設定下降加速度αdw、設定上昇減速度βup又は設定下降減速度βdwに基づいて算出する。
 2号機3bの残作動時間の算出する処理については、1号機3aの残作動時間を算出する処理と同様であるので説明を省略する。
 #17で1号機3aの残作動時間と2号機3bの残作動時間とを比較して、長いほうの担当クレーンを、回避作動対象のクレーンとして設定する。これにより、物品搬送作動による残搬送時間の短い方の担当クレーンは、物品搬送作動を進行させることができ、物品搬送作動の残作動時間が長い方の担当クレーンは、少なくとも、相手方の担当クレーンの物品搬送作動が完了してその物品搬送作動の作動終了位置から離れるまでは、#19で算出される追い出し位置にて待機することになる。
 #15で、今回の制御タイミングにおいて、1号機3a及び2号機3bの何れか一台のみが担当クレーンであれば、#18へ移行し、非担当クレーンが回避作動対象のクレーンに設定される。これにより、物品搬送作動を担当している担当クレーンは、物品搬送作動を進行させることができ、物品搬送作動を担当していない非担当クレーンは、相手方の担当クレーンの物品搬送作動の作動終了位置から、#19で算出される追い出し位置まで退避することになる。
 このように、本実施形態の物品収納設備では、地上側コントローラHが、一対のスタッカークレーン3のうち何れか一方のみの作動を制御する形態で干渉回避処理を行うように構成されている。また、地上側コントローラHが、一対のスタッカークレーン3の一方のみについて担当スタッカークレーンとして物品搬送作動を行わせている場合は、一対のスタッカークレーン3のうち物品搬送作動を行っていない非担当スタッカークレーン3の作動を制御する形態で干渉回避処理を行うように構成されている。さらに、地上側コントローラHが、一対のスタッカークレーン3の双方について担当スタッカークレーンとして各別に物品搬送作動を行わせている場合は、一対のスタッカークレーン3のうち物品搬送作動の残作動時間が長い担当スタッカークレーンの作動を制御する形態で干渉回避処理を行うように構成されている。
 #19の追い出し位置算出処理では、#13で得た干渉判定値の値に応じて、回避作動対象クレーンのクレーン中心座標Pが相手方のスタッカークレーン3の占有領域から外れた位置となるように、回避作動対象クレーンについての追い出し位置が設定される。
 具体的な例を挙げて説明すると、例えば、1号機3a及び2号機3bが図1及び図2に示す位置関係にあり、1号機3aが担当クレーンとして物品搬送作動をしており、2号機3bが非担当クレーンとして待機状態である状況で、1号機3aの作動終了位置P1e(x1e,y1e)が待機状態にある2号機3bの昇降体UDの占有領域に位置するような場合は、1号機3a及び2号機3bを図6(b)に示す状態にするべく、図15(a)に示すように、回避作動対象クレーンとして非担当クレーンである2号機3bが設定され、1号機3aの作動終了位置におけるクレーン中心座標P1eと2号機3bのクレーン中心座標P2とのx方向の距離が「XB+XB」だけ離れるように2号機3bの追い出し位置P2m(x2m,y2m)が算出される。なお、図15(a)に示すような場合、回避作動対象クレーンは待機状態から走行方向に移動するだけであるのでP2m(x1e+2*XB,y2)となる。
 また、例えば、1号機3a及び2号機3bの双方が担当クレーンとして物品搬送作動をしている状況で、1号機3aの作動終了位置P1e(x1e,y1e)が、作動終了位置P2e(x2e,y2e)での2号機3bの走行台車9の占有領域に位置するような場合は、図15(b)に示すように、1号機3aの作動終了位置におけるクレーン中心座標P1eと2号機3bの作動終了位置におけるクレーン中心座標P2eとのx方向(走行台車9の走行方向、棚横幅方向)の距離が「XB+XE」だけ離れるように1号機3aの追い出し位置P1m(x1m,y1m)が算出される。図中点線で描かれた部分を含む移動軌跡は、1号機3aが干渉回避用の作動を行わず物品搬送作動による作動を最後まで進行させた場合の移動軌跡である。
 なお、図15(b)での1号機3a及び2号機3bの物品搬送作動においては、各スタッカークレーン3の走行台車9の夫々の走行位置が相互接近距離になった時点での残作動時間が長い方のスタッカークレーン3が1号機3aであったため、1号機3aが回避作動担当クレーンとして設定されている。
 このように、地上側コントローラHは、一対の走行台車9の夫々の走行位置が相互接近位置である場合は、第1走行用レーザ距離計25及び第2走行用レーザ距離計29並びに第1昇降用レーザ距離計23及び第2昇降用レーザ距離計27の検出情報に基づいて、一対の走行台車9及び一対の昇降体UDを、一対のスタッカークレーン3が干渉しない非干渉位置に位置させるべく、一対のスタッカークレーン3の作動を制御する干渉回避処理を行なうように構成されている。
 図8に戻り、#20で、#19にて算出された追い出し位置が実際に回避作動対象のスタッカークレーン3を移動させることができる位置であるかどうか、具体的には、追い出し位置のx座標が移動通路2の範囲内であるかどうかが判別される。追い出し位置のx座標が移動通路2の範囲内であれば、回避作動対象クレーンを追い出し位置まで回避作動させるべく、追い出し位置を作動終了位置として設定した後、干渉回避処理から抜けて、図7のメインルーチンに復帰する。これにより、その後の制御タイミングでは、図6の#01で第1クレーン制御手段31又は第2クレーン制御手段32が、当該回避作動対象クレーンの目標走行位置情報及び目標昇降位置情報として、回避作動用のもの(回避作動対象クレーンを追い出し位置に位置させるために制御タイミングにおいて出力すべき目標走行位置情報及び目標昇降位置情報)を生成することになる。
 追い出し位置のx座標が移動通路2の範囲外であれば、#21へ移行し、臨時作動終了位置設定処理が実行される。この処理は、当該回避作動対象クレーンを、#19で算出された追い出し位置に向かう走行方向とは反対方向に走行させるための擬似的な作動終了位置を設定する処理である。作動終了位置が設定されることで、その後の制御タイミングでは、第1クレーン制御手段31又は第2クレーン制御手段32が、当該回避作動対象クレーンの目標走行位置情報及び目標昇降位置情報として、回避作動用のもの(回避作動対象クレーンを臨時作動終了位置設定処理で設定された作動終了位置に位置させるために制御タイミングにおいて出力すべき目標走行位置情報及び目標昇降位置情報)を生成することになる。これにより、当該回避作動対象クレーンは、運転指令によるものではない臨時の物品搬送作動を行うことになる。こうして、回避作動対象クレーンは、当初算出された追い出し位置とは異なる作動終了位置に向かって移動することで相手方のスタッカークレーンとの干渉を回避することができることになる。
 次に#11で走行台車9のすれ違いが発生すると判別された場合について説明する。すれ違いが発生すると、1号機3aの昇降体UDの昇降位置と2号機3bの昇降体UDの昇降位置が、一対のスタッカークレーン3が干渉することなくすれ違い移動できる離間距離として設定される必要離間距離y_CL以上昇降方向で離間していなければ、1号機3a及び2号機3bがすれ違う際に昇降体UD同士が干渉することになる。そこで、干渉回避制御手段33は、#22以降の処理により、1号機3a及び2号機3bの走行台車9の走行位置が相互接近位置になってから干渉仮定走行位置になるまでの猶予時間Tで各昇降体UDが昇降し得る最大昇降範囲Zを求め、1号機3a及び2号機3bの各走行台車9についての最大昇降範囲Zが相互に必要離間距離y_CLよりも長く離れることにより互いに重複していない場合や、非担当クレーンの昇降体UDの昇降位置を中心として必要離間距離y_CLだけ昇降方向の上下両側に広がりをもつ干渉対象範囲が、担当スタッカークレーンの昇降体UDについての最大昇降範囲Zと重複していない場合を除き、各走行台車9の走行位置が相互接近位置になってからの昇降体UDの昇降作動を物品搬送作動のものとは異ならせて、1号機3a及び2号機3bが相互に干渉することなくすれ違い移動できるようにしている。本実施形態では、必要離間距離y_CLとして、物品移載装置12が物品4(高さ寸法はYB以下)を支持しているかいないかを区別することなく、一定値「YA+YB」としている。以下、#22以降の処理について説明する。
 まず、#22で、担当クレーンが、今回制御タイミングから猶予時間T内に昇降体UDが昇降できる最大昇降範囲Zを算出する。猶予時間Tは、1号機3a及び2号機3bの走行台車9の夫々の走行位置が相互接近位置になってから走行作動中の走行台車9を設定走行減速度βHにて減速させる態様で走行作動させた場合に一対の昇降体が干渉すると仮定される干渉仮定走行位置になるまでの時間である。
 干渉仮定走行位置は、1号機3a及び2号機3bのすれ違いの態様によって異なる位置が採用される。例えば、1号機3a及び2号機3bが図1及び図2に示す並び順からすれ違いにより逆の並び順になる場合は、1号機3a及び2号機3bの各走行台車9が図11(b)に示す相対走行位置関係、つまり、2号機3bのクレーン中心座標P2のx座標x2が1号機3aのクレーン中心座標P1のx座標x1よりも「XB+XB」だけ大きい走行位置関係となるときの夫々の走行台車9の走行位置が干渉仮定走行位置である。
 また、1号機3a及び2号機3bが図1及び図2に示す並び順とは逆の並び順からすれ違いにより図1及び図2に示す並び順になる場合は、1号機3a及び2号機3bの各走行台車9が図11(a)に示す相対走行位置関係、つまり、1号機3aのクレーン中心座標P1のx座標x1が2号機3bのクレーン中心座標P2のx座標x2よりも「XA+XA」だけ大きい走行位置関係となるときの夫々の走行台車9の走行位置が干渉仮定走行位置である。
 猶予時間Tは、相互接近位置になってから干渉仮定走行位置になるまでの時間として設定走行減速度βHにて減速させる態様で走行作動させた場合の時間とすることで、相互接近位置になってからの物品搬送作動による走行作動のうち、干渉仮定走行位置になるまでの所要時間がもっとも長くなる走行作動態様を想定して、最大昇降範囲Zを極力大きく見積もっている。
 #23で、一対のスタッカークレーン3の干渉が発生しない干渉不発生状態であるか否かを判別する。つまり、担当クレーンについての物品搬送作動をこのまま進行しても、1号機3a及び2号機3bの昇降体UDが干渉しないかどうかを判別する。
 具体的には、地上側コントローラHが第1クレーン制御手段31及び第2クレーン制御手段32により一対のスタッカークレーンの双方を担当クレーンとして物品搬送作動させているときは、干渉回避制御手段33は、1号機3aの昇降体UDの最大昇降範囲Z1及び2号機3bの昇降体UDの最大昇降範囲Z2が、相互に必要離間距離y_CLよりも長く離れることにより互いに重複していなければ、一対のスタッカークレーンの干渉が発生しない干渉不発生状態であると判別する。また、地上側コントローラHが第1クレーン制御手段31又は第2クレーン制御手段32により一対のスタッカークレーン3の一方のみを担当クレーンとして物品搬送作動させているときは、干渉回避制御手段33は、他方のスタッカークレーン3の昇降体UDの昇降位置を中心として必要離間距離y_CLだけ昇降方向の上下両側に広がりをもつ干渉対象範囲が、担当クレーンの昇降体UDについての最大昇降範囲Zと重複していなければ、干渉不発生状態であると判別する。
 例えば、図12(a)に示すように、1号機3a及び2号機3bの双方が担当クレーンとして物品搬送作動しており、今回の制御タイミングにおいて、1号機3aが位置P1(x1,y1)、速度V1(Vx1,Vy1)で作動し、2号機3bが位置P2(x2,y2)、速度V2(Vx2,Vy2)で作動している場合の、1号機3aの昇降体UDの最大昇降範囲Z1の下端である昇降下限位置yT1_minが、2号機3bの昇降体UDの最大昇降範囲Z2の上端である昇降上限位置yT2_maxよりも、必要離間距離y_CL以上上方に位置する場合(yT1_min>yT2_max+y_CLが成立する場合)や、図示はしないが、2号機3bの昇降体UDの最大昇降範囲Z2の下端である昇降下限位置yT2_minが、1号機3aの昇降体UDの最大昇降範囲Z1の上端である昇降上限位置yT1_maxよりも、必要離間距離y_CL以上上方に位置する場合(yT2_min>yT1_max+y_CLが成立する場合)は、干渉不発生状態であると判別される。
 また、図12(b)に示すように、1号機3aのみが担当クレーンとして物品搬送作動し、2号機3bが非担当クレーンとして待機状態で停止しており、今回の制御タイミングにおいて、1号機3aが位置P1(x1,y1)、速度V1(Vx1,Vy1)で作動し、2号機3bが位置P2(x2,y2)、速度V2(0,0)で停止している場合の、1号機3aの昇降体UDの最大昇降範囲Z1の下端である昇降下限位置yT1_minが、2号機3bの昇降体UDについての干渉対象範囲の上端である対象上限位置y2+y_CLよりも上方に位置する場合(yT1_min>y2+y_CLが成立する場合)や、図示はしないが、1号機3aの昇降体UDの最大昇降範囲Z1の上端である上限位置yT1_maxが、2号機3bの昇降体UDについての干渉対象範囲の下端である対象下限位置y2-y_CLよりも下方に位置する場合(yT1_max<y2-y_CLが成立する場合)は、干渉不発生状態であると判別される。
 #23で干渉不発生状態であると判別されると、干渉回避制御手段33は1号機3aや2号機3bについての目標昇降位置情報を回避作動用のものに書き換えることなく干渉回避処理を終了し、地上側コントローラHの制御動作は図6のメインルーチンに復帰する。
 このように、地上側コントローラHは、干渉不発生状態であると判別した場合は、干渉回避処理では一対の昇降体UDの昇降作動を制御しない形態で物品搬送作動を行わせるべく、かつ、干渉回避処理において干渉不発生状態でないと判別した場合は、干渉回避処理で一対の昇降体UDを制御する形態で物品搬送作動を行わせるべく、一対の昇降体UDの昇降作動を制御するように構成されている。
 #23で干渉不発生状態であると判別されなれければ、#24~#26の処理が実行されて1号機3a又は2号機3bの何れか一方が回避作動対象クレーンに設定される。なお、#24~#26の処理は、すでに説明した#16~#18の処理と同じであるので説明を省略する。
 回避作動対象クレーンが設定されると、#28でその対象クレーンの昇降体UDを回避作動用の昇降作動で昇降させるための回避昇降位置情報を生成するべく、干渉回避制御手段33により回避昇降位置算出処理が実行される。干渉回避制御手段33は、この算出処理により得られる回避作動対象クレーンについての回避昇降位置情報を、当該スタッカークレーンについての目標昇降位置情報として出力バッファに上書きした後、干渉回避処理を終了し、地上側コントローラHの制御動作は図7のメインルーチンに復帰する。
 回避昇降位置算出処理について、図13に示すフローチャートを参照しながら説明する。#201で、回避作動対象クレーンの昇降体UDの今回の制御タイミングにおける昇降位置が、相手側のスタッカークレーン3の最大昇降範囲の上端である昇降上限位置yT_maxに近いか下端である昇降下限位置yT_minに近いかが判別される。昇降上限位置yT_maxに近い場合は、#202へ移行し、回避作動対象クレーンの昇降体UDの目標昇降位置が「yT_max+y_CL」に設定される。昇降下限位置yT_minに近い場合は、#203へ移行し、回避作動対象クレーンの昇降体UDの目標昇降位置が「yT_min-y_CL」に設定される。
 例えば、図14に示すように、1号機3aが、担当クレーンとして物品搬送作動しており、2号機3bが、回避作動対象クレーンに設定され、今回の制御タイミングにおいて、1号機3aが位置P1(x1,y1)、速度V1(Vx1,Vy1)で作動している場合に、2号機3bの昇降体UDの昇降位置y2が、1号機3aの昇降体UDの最大昇降範囲Z1の上端である昇降上端位置yT1_maxに近ければ、2号機3bの昇降体UDの目標昇降位置が「yT_max+y_CL」に設定される。また、図示はしないが、2号機3bの昇降体UDの昇降位置y2が、1号機3aの昇降体UDの最大昇降範囲Z1の下端である昇降下限位置yT1_minに近ければ、2号機3bの昇降体UDの目標昇降位置が「yT_min-y_CL」に設定される。
 このようにして、1号機3a及び2号機3bの走行台車9がすれ違うような物品搬送作動が行われる場合は、回避作動対象に設定されたスタッカークレーン3が干渉回避用の走行作動や昇降作動を行うことで、各昇降体UDを、1号機3a及び2号機3bが干渉することなくすれ違い移動できる離間距離として設定される必要離間距離y_CL以上昇降方向で離間したすれ違い用昇降位置に昇降させて、1号機3aと2号機3bとの干渉を回避できるようになっている。つまり、地上側コントローラHは、干渉回避処理として干渉回避用昇降処理を実行するように構成されている。
 例えば、図16(a)に示すように、1号機3aのみが担当クレーンとして作動開始位置P1sから作動終了位置P1eまで物品搬送作動し、2号機3bが非担当クレーンとして待機状態で停止している場合は、1号機3a及び2号機3bの走行台車9の走行位置が相互接近位置になると、非担当クレーンである2号機3bが回避作動対象クレーンに設定され、2号機3bの昇降体UDが、待機位置P2(x2,y2)からy座標だけ変化させた非干渉位置としてのすれ違い用昇降位置P2n(x2,y2n)まで回避作動用の昇降作動を行って、1号機3aと2号機3bとの干渉が回避される。
 また、図16(b)に示すように、1号機3a及び2号機3bの双方が担当クレーンとして作動開始位置P1s、P2sから作動終了位置P1e、P2eまで物品搬送作動する場合は、1号機3a及び2号機3bの走行台車9の走行位置が相互接近位置になると、残作動時間が長い2号機3bが回避作動対象クレーンに設定され、2号機3bの昇降体UDが、物品搬送作動による昇降作動とは異なる昇降作動を行って非干渉昇降位置としてのすれ違い用昇降位置に位置するように昇降作動されることで、1号機3aと2号機3bとの干渉が回避される。図中点線で描かれた部分を含む移動軌跡は、2号機3bが物品搬送作動による昇降作動のみを行い、干渉回避用の昇降作動を行わないとした場合の移動軌跡である。
実施形態2
 次に図17に示されたフローチャートを参照しながら、干渉回避制御手段33により実行される、相互回避昇降処理を含む干渉回避処理について説明する。図17の#1~#23は、図8の対応するものと同一であるので、ここでは説明されない。
 図17において、#23で干渉不発生状態であると判別されなれければ、#24へ移行し、昇降体UDの双方を回避作動用の昇降作動で昇降させるための各昇降体UDについての回避昇降位置情報を生成するべく、干渉回避制御手段33は相互回避昇降位置算出処理を実行する。
 相互回避昇降位置算出処理では、1号機3aの昇降体UDと2号機3bの昇降体UDとを、一対のスタッカークレーン3が干渉することなくすれ違い移動できる離間距離として設定される必要離間距離y_CL以上昇降方向で離間したすれ違い用昇降位置に昇降させるべく、一対の昇降体UDの双方を、物品搬送作動による昇降作動とは異なる干渉回避用の昇降作動にて昇降させる。このように、地上側コントローラHは、相互回避昇降処理を行なうように構成されている。
 相互回避昇降位置算出処理について、図18に示すフローチャートを参照しながら説明する。#301で、1号機3aの昇降体UDについての最大昇降範囲Z1における昇降上限位置yT1_maxと2号機3bの昇降体UDについての最大昇降範囲Z2における昇降下限位置yT2_minとの差G12を算出する。#302で、1号機3aの昇降体UDについての最大昇降範囲Z1における昇降下限位置yT1_minと2号機3bの昇降体UDについての最大昇降範囲Z2における昇降上限位置yT2_maxとの差G21を算出する。
 #303でG12とG21を比較し、#304及び#305では、大きいほうの昇降位置差に基づいて、1号機3a及び2号機3bの夫々の目標昇降位置を算出する。すなわち、G12のほうがG21より大きいときは#303でYesと判別され、#304に移行して、1号機3aの昇降体UDの目標昇降位置を「yT1_max-(G12-y_CL)/2」に設定し、2号機3bの昇降体UDの目標昇降位置を「yT2_min+(G12-y_CL)/2」に設定する。G21のほうがG12より大きいときは#303でNoと判別され、#305に移行して、1号機3aの昇降体UDの目標昇降位置を「yT1_min+(G21-y_CL)/2」に設定し、2号機3bの昇降体UDの目標昇降位置を「yT2_max-(G21-y_CL)/2」に設定する。こうして、干渉回避制御手段33は、1号機3a及び2号機3bの各昇降体UDについての目標昇降位置を回避作動用のものに設定すると相互回避昇降位置算出処理を終了し、干渉回避処理も終了して、地上側コントローラHの制御動作は図6のメインルーチンに復帰する。
 相互回避昇降位置算出処理で、1号機3aの昇降体UDについての目標昇降位置及び2号機3bの昇降体UDについての目標昇降位置が設定されることにより、1号機3a及び2号機3bの双方の昇降作動により必要離間距離y_CLを確保するように一対の昇降体UDの昇降作動が制御される。したがって、1号機3a及び2号機3bの各昇降体UDの夫々が負担すべき干渉回避用の昇降作動量を満遍なく配分させることができるので、1号機3a及び2号機3bが純粋な物品搬送作動による予定移動軌跡から外れる度合い極力小さくし、また、1号機3a及び2号機3bの各走行台車9の走行位置が相互接近位置となってからできる限り早い時期に、各昇降体UDを、互いに必要離間距離以上昇降方向で離間したすれ違い用昇降位置に昇降させることができる。
 例えば、図19に示すように、1号機3a及び2号機3bの双方が担当クレーンとして物品搬送作動しており、今回の制御タイミングにおいて、1号機3aが位置P1(x1,y1)、速度V1(Vx1,Vy1)で作動し、2号機3bが位置P2(x2,y2)、速度V2(Vx2,Vy2)で作動している場合に、1号機3aの昇降体UDの最大昇降範囲Z1の下端である昇降下限位置yT1_minと号機3bの昇降体UDの最大昇降範囲Z2の上端である昇降上限位置yT2_maxとの差G21よりも、1号機3aの昇降体UDの最大昇降範囲Z1の上端である昇降上限位置yT1_maxと2号機3bの昇降体UDの最大昇降範囲Z2の下端である昇降下限位置yT2_minとの差G12の方が大きいときは、昇降位置の差G12から必要離間距離y_CLを引いた残りの量を二分して、1号機3aの最大昇降範囲Z1の上端である昇降上限位置yT1_maxから二分された両だけ下方側の位置を、1号機3aの昇降体UDについての目標昇降位置とし、2号機3bの最大昇降範囲Z2の下端である昇降下限位置yT2_minから二分された両だけ上方側の位置を、2号機3bの昇降体UDについての目標昇降位置としている。
 このように、地上側コントローラHは、制御タイミング毎に、その時のスタッカークレーン3の作動状態(位置及び作動速度)に応じて各昇降体UDについての目標昇降位置情報を更新設定するので、昇降体UDの双方を精度よくにすれ違い用昇降位置まで昇降させることができ、無駄な昇降作動量を極力抑えることができる。
 例えば、図20(a)に示すように、1号機3aのみが担当クレーンとして作動開始位置P1sから作動終了位置P1eまで物品搬送作動し、2号機3bが非担当クレーンとして待機状態で停止している場合は、1号機3a及び2号機3bの走行台車9の走行位置が相互接近位置になると、1号機3a及び2号機3bの昇降体UDがすれ違い用昇降位置(2号機3bについてはP2n)まで回避作動用の昇降作動を行って、1号機3aと2号機3bとの干渉が回避される。図中点線で描かれた部分を含む移動軌跡は、1号機3aが物品搬送作動による昇降作動のみを行い、干渉回避用の昇降作動を行わないとした場合の移動軌跡である。
 また、図20(b)に示すように、1号機3a及び2号機3bの双方が担当クレーンとして作動開始位置P1s、P2sから作動終了位置P1e、P2eまで物品搬送作動する場合は、1号機3a及び2号機3bの走行台車9の走行位置が相互接近位置になると、1号機3a及び2号機3bの昇降体UDの双方が、物品搬送作動による昇降作動とは異なる昇降作動を行ってすれ違い用昇降位置に位置するように昇降作動することで、1号機3aと2号機3bとの干渉が回避される。図中点線で描かれた部分を含む移動軌跡は、1号機3aや2号機3bが物品搬送作動による昇降作動のみを行い、干渉回避用の昇降作動を行わないとした場合の移動軌跡である。
 このように、地上側コントローラHは、一対の走行台車9の夫々の走行位置が相互接近位置である場合は、第1走行用レーザ距離計25及び第2走行用レーザ距離計29並びに第1昇降用レーザ距離計23及び第2昇降用レーザ距離計27の検出情報に基づいて、一対の昇降体UDを、一対のスタッカークレーン3が干渉しない非干渉位置に位置させるべく、一対のスタッカークレーン3の昇降体UDの昇降作動を制御する干渉回避昇降処理を行なうように構成されている。
〔別実施形態〕
(1)上記実施形態において、地上側コントローラHが実搬送作動であるか空搬送作動であるかを管理し、干渉回避処理において、必要離間距離y_CLの値として、1号機3a及び2号機3bの搬送作動種別に応じて(物品の有無に応じて)異なる値を用いてもよい。
(2)上記実施形態では、干渉回避処理として、1号機3a又は2号機3bの一方のみの作動を制御するものを説明したが、干渉回避処理としては、1号機3a及び2号機3bの双方の作動を制御するものであってもよい。
(3)相互接近位置であるかどうかを判別するために、一対のスタッカークレーンの双方又は一方のみに、一対のスタッカークレーンの各走行台車同士の車間距離を検出する車間距離検出手段を設け、制御手段が、この車間距離検出手段の検出する車間距離情報に基づいて、相互接近位置であるかどうかを判別してもよい。
(4)上記実施形態では、制御手段が地上側コントローラHにて構成されたものを説明したが、これに限らず、制御手段を、地上側に設置されて運転指令に基づく作動開始位置情報及び作動終了位置情報を1号機3a及び2号機3bに送信する管理用コントローラと、1号機3aに搭載されて管理用コントローラからの作動開始位置情報及び作動終了位置情報に基づいて1号機3aの作動を制御する第1クレーンコントローラ、及び、2号機3bに搭載されて管理用コントローラからの作動開始位置情報及び作動終了位置情報に基づいて2号機3bの作動を制御する第2クレーンコントローラ32とで構成してもよく、制御手段の具体的構成は適宜変更可能である。
(5)上記実施形態では、制御手段が目標走行位置情報及び目標昇降位置情報を指令して一対のスタッカークレーンの作動を制御するものを説明したが、これに限らず、例えば、制御手段が目標走行速度情報及び目標昇降速度情報を指令して一対のスタッカークレーンの作動を制御するものであってもよく、制御手段が指令する指令情報は種々のものが適用できる。
(6)上記実施形態では、一対の走行台車の夫々の走行位置が相互接近位置である場合に、相互回避昇降処理を行うように構成されたものを説明したが、例えば、物品搬送作動を開始するときに相互回避昇降処理を行って、予め一対の昇降体UDの双方の昇降位置をすれ違い用昇降位置に位置させてから1号機3a及び2号機3bの走行作動を行わせて、1号機3a及び2号機3bがすれ違った後に物品搬送作動による昇降作動を開始させる、といったように、相互回避昇降処理を行う時期は適宜変更可能である。
 本発明は、スタッカークレーンが用いられる物品収納設備に利用可能である。
UD    昇降体
H     制御手段
βH    設定減速度
VBW1,VBW2 仮制動範囲
P1m(x1m,y1m) 非干渉位置
P2m(x2m,y2m) 非干渉位置
P2n(x2,y2n) すれ違い用昇降位置、非干渉位置
y_CL    必要離間距離
T     猶予時間
Z     最大昇降範囲
 1    物品収納棚
 2    移動経路
 3    スタッカークレーン
 4    物品
 6    収納部
 7    走行案内レール
 9    走行台車
 10   昇降案内マスト
 11   昇降台
 12   物品移載装置
 23、27 昇降位置検出手段
 25、29 走行位置検出手段
 31   第1クレーン制御手段
 32   第2クレーン制御手段

Claims (23)

  1.  物品を収納する複数の収納部を上下方向及び左右方向に並べて備えた物品収納棚と、
     前記物品収納棚の前面側において棚横幅方向に沿って設けられた移動経路を移動するよう構成されたスタッカークレーンが一対設けられ、
     前記一対のスタッカークレーンの夫々が、前記移動経路に沿う走行案内レールによって案内される走行台車と、前記走行台車から立設された昇降案内マストによって案内されて昇降するよう構成された昇降台及びこの昇降台に設けられて前記物品収納部に物品を移載可能な物品移載装置からなる昇降体とを備え、
     前記一対のスタッカークレーンの夫々の走行台車の走行位置を検出する一対の走行位置検出手段と、
     前記一対のスタッカークレーンの夫々の昇降体の昇降位置を検出する一対の昇降位置検出手段と、
     前記一対の走行位置検出手段及び前記一対の昇降位置検出手段の検出情報に基づいて、前記一対のスタッカークレーンの作動を制御する制御手段とが設けられた物品収納設備であって、
     前記制御手段が、前記収納部に対する入出庫を行う物品搬送についての運転指令が指令されると、前記運転指令に基づいて、前記運転指令による物品搬送を担当する担当スタッカークレーンについての物品搬送作動を制御するように構成され、かつ、前記担当スタッカークレーンの物品搬送作動を制御する間は、前記一対の走行位置検出手段の検出情報に基づいて、前記一対のスタッカークレーンの一対の走行台車の夫々の走行位置を管理して、前記一対の走行台車の夫々の走行位置が、前記一対のスタッカークレーンが干渉することが予測される相互接近位置であるか否かを設定周期毎に判別し、前記一対の走行台車の夫々の走行位置が前記相互接近位置である場合は、前記一対の走行位置検出手段及び前記一対の昇降位置検出手段の検出情報に基づいて、前記一対の走行台車及び前記一対の昇降体を、前記一対のスタッカークレーンが干渉しない非干渉位置に位置させるべく、前記一対のスタッカークレーンの作動を制御する干渉回避処理を行なうように構成されている物品収納設備。
  2.  前記制御手段が、前記一対の走行台車の夫々を設定減速度にて停止させたと仮定した場合に停止するまでに現在位置から移動する各走行台車の仮制動範囲に重複する部分がある場合に、前記一対の走行台車の夫々の走行位置が相互接近位置であると判別するように構成されている請求項1記載の物品収納設備。
  3.  前記制御手段が、前記一対のスタッカークレーンのうち何れか一方のみの作動を制御する形態で前記干渉回避処理を行うように構成されている請求項1又は2記載の物品収納設備。
  4.  前記制御手段が、前記一対のスタッカークレーンの一方のみについて前記担当スタッカークレーンとして前記物品搬送作動を行わせている場合は、前記一対のスタッカークレーンのうち前記物品搬送作動を行っていない非担当スタッカークレーンの作動を制御する形態で前記干渉回避処理を行うように構成されている請求項3記載の物品収納設備。
  5.  前記制御手段が、前記一対のスタッカークレーンの双方について前記担当スタッカークレーンとして各別に前記物品搬送作動を行わせている場合は、前記一対のスタッカークレーンのうち前記物品搬送作動の残作動時間が長い前記担当スタッカークレーンの作動を制御する形態で前記干渉回避処理を行うように構成されている請求項3記載の物品収納設備。
  6.  前記走行案内レールとして、棚前後方向で間隔を隔てて互いに並行に設置された一対の走行案内レールが設けられ、
     前記一対のスタッカークレーンとして、前記走行台車が前記一対の走行案内レールのうちの一方にて案内され、前記昇降案内マストが前記走行台車に設けられたスタッカークレーンと、前記走行台車が前記一対の走行案内レールのうちの他方にて案内され、前記昇降案内マストが前記走行台車に設けられたスタッカークレーンとが設けられ、
     前記一対のスタッカークレーンの夫々が互いにすれ違い移動できるように、前記一対の昇降体は、相手側のスタッカークレーンの前記昇降体と棚前後方向で重複する部分を備えかつ相手方のスタッカークレーンの前記昇降案内マストに達しないように前記昇降案内マストから棚前後方向に延びる状態で設けられ、
     前記制御手段が、前記干渉回避処理として、前記一対の昇降体を、前記一対のスタッカークレーンが干渉することなくすれ違い移動できる離間距離として設定される必要離間距離以上昇降方向で離間したすれ違い用昇降位置に昇降させるべく、前記一対の昇降体の昇降作動を制御する干渉回避用昇降処理を実行するように構成されている請求項1又は2記載の物品収納設備。
  7.  前記制御手段が、前記干渉回避用昇降処理において、前記一対の走行台車の夫々の走行位置が前記相互接近位置になってから走行作動中の前記走行台車を設定減速度にて減速させる態様で走行作動させた場合に前記一対の昇降体が干渉すると仮定される干渉仮定走行位置になるまでの猶予時間内に前記物品搬送作動により前記昇降体が昇降し得る昇降範囲である最大昇降範囲を前記担当スタッカークレーンの前記昇降体について求め、前記一対のスタッカークレーンの双方を前記担当スタッカークレーンとして前記物品搬送作動させているときは、前記一対の昇降体の夫々についての前記最大昇降範囲が相互に前記必要離間距離よりも長く離れることにより互いに重複していなければ、前記一対のスタッカークレーンの干渉が発生しない干渉不発生状態であると判別し、前記一対のスタッカークレーンの一方のみを前記担当スタッカークレーンとして前記物品搬送作動させているときは、他方の前記スタッカークレーンの前記昇降体の昇降位置を中心として前記必要離間距離だけ昇降方向の上下両側に広がりをもつ干渉対象範囲が、前記担当スタッカークレーンの前記昇降体についての前記最大昇降範囲と重複していなければ、前記干渉不発生状態であると判別するように構成され、且つ、
     前記干渉回避用昇降処理において前記干渉不発生状態であると判別した場合は、前記干渉回避用昇降処理では前記一対の昇降体の昇降作動を制御しない形態で前記物品搬送作動を行わせるべく、かつ、前記干渉回避用昇降処理において前記干渉不発生状態でないと判別した場合は、前記干渉回避用昇降処理で前記一対の昇降体を制御する形態で前記物品搬送作動を行わせるべく、前記一対の昇降体の昇降作動を制御するように構成されている請求項6記載の物品収納設備。
  8.  前記走行案内レールとして、棚前後方向で間隔を隔てて互いに並行に設置された一対の案内レールが設けられ、
     前記一対のスタッカークレーンとして、前記走行台車が前記一対の走行案内レールのうちの一方にて案内され、前記昇降案内マストが前記走行台車に設けられたスタッカークレーンと、前記走行台車が前記一対の走行案内レールのうちの他方にて案内され、前記昇降案内マストが前記走行台車に設けられたスタッカークレーンとが設けられ、
     前記一対のスタッカークレーンの夫々が互いにすれ違い移動できるように、前記一対の昇降体は、相手側のスタッカークレーンの前記昇降体と棚前後方向で重複する部分を備えかつ相手方のスタッカークレーンの前記昇降案内マストに達しないように前記昇降案内マストから棚前後方向に延びる状態で設けられ、
     前記制御手段が、
     前記一対のスタッカークレーンの物品搬送作動を制御する場合に、前記一対の走行位置検出手段及び前記一対の昇降位置検出手段の検出情報に基づいて、前記一対のスタッカークレーンの一対の走行台車の夫々の走行位置及び前記一対のスタッカークレーンの一対の昇降体の夫々の昇降位置を管理して、前記一対の昇降体を、前記一対のスタッカークレーンが干渉することなくすれ違い移動できる離間距離として設定される必要離間距離以上昇降方向で離間したすれ違い用昇降位置に昇降させるべく、前記一対の昇降体の双方を、前記物品搬送作動による昇降作動とは異なる干渉回避用の昇降作動にて昇降させる相互回避昇降処理を、前記干渉回避処理として行なうように構成されている請求項1記載の物品収納設備。
  9.  前記制御手段が、前記一対の走行台車の夫々を設定減速度にて停止させたと仮定した場合に停止するまでに現在位置から移動する各走行台車の仮想制動範囲に移動経路方向で重複する部分がある場合に、前記一対の走行台車の走行位置が前記相互接近位置であると判別するように構成されている請求項8記載の物品収納設備。
  10.  前記制御手段が、前記相互回避昇降処理において、前記一対の走行台車の夫々の走行位置が前記相互接近位置になってから走行作動中の前記走行台車を設定減速度にて減速させる態様で走行作動させた場合に前記一対の昇降体が干渉すると仮定される干渉仮定走行位置になるまでの猶予時間内に前記物品搬送作動により前記昇降体が昇降し得る昇降範囲である最大昇降範囲を前記担当スタッカークレーンの前記昇降体について求め、前記一対のスタッカークレーンの双方を前記担当スタッカークレーンとして前記物品搬送作動させているときは、前記一対の昇降体の夫々についての前記最大昇降範囲が相互に前記必要離間距離よりも長く離れることにより互いに重複していなければ、前記一対のスタッカークレーンの干渉が発生しない干渉不発生状態であると判別し、前記一対のスタッカークレーンの一方のみを前記担当スタッカークレーンとして前記物品搬送作動させているときは、他方の前記スタッカークレーンの前記昇降体の昇降位置を中心として前記必要離間距離だけ昇降方向に広がりをもつ干渉対象範囲が、前記担当スタッカークレーンの前記昇降体についての前記最大昇降範囲と重複していなければ、前記干渉不発生状態であると判別するように構成され、且つ、
     前記相互回避昇降処理において前記干渉不発生状態であると判別した場合は、前記相互回避昇降処理では前記一対の昇降体の昇降作動を制御しない形態で前記物品搬送作動を行わせるべく、かつ、前記相互回避昇降処理において前記干渉不発生状態でないと判別した場合は、前記相互回避昇降処理で前記一対の昇降体を制御する形態で前記物品搬送作動を行わせるべく、前記一対の昇降体の双方の昇降作動を制御するように構成されている請求項8又は9項記載の物品収納設備。
  11.  前記制御手段が、
     前記運転指令に対応して生成される物品搬送作動用走行パターン及び物品搬送作動用昇降パターンに基づいて設定制御周期毎に更新生成される前記走行台車についての目標走行位置及び前記昇降体についての目標昇降位置を前記設定制御周期毎に指令することで、前記担当スタッカークレーンについての前記物品搬送作動を制御するように構成され、かつ、
     前記相互回避昇降処理として、前記担当スタッカークレーンについて、前記物品搬送作動用昇降パターンに基づいて規定される前記昇降体についての前記目標昇降位置に代えて、前記一対のスタッカークレーンの前記昇降体の昇降位置及び昇降速度、並びに、前記必要離間距離に基づいて更新生成される干渉回避用の目標昇降位置を前記設定制御周期毎に指令することで、前記一対の昇降体を前記すれ違い用昇降位置に昇降させるべく、前記一対の昇降体の双方の昇降作動を制御するように構成されている請求項8又は9記載の物品収納設備。
  12.  前記制御手段が、地上側に設置され、かつ、前記一対のスタッカークレーンのうち一方のスタッカークレーンの作動を制御する第1クレーン制御手段と、他方のスタッカークレーンの作動を制御する第2クレーン制御手段とを備えて構成されている請求項8又は9記載の物品収納設備。
  13.  物品を収納する複数の収納部を上下方向及び左右方向に並べて備えた物品収納棚と、
     前記物品収納棚の前面側において棚横幅方向に沿って設けられた移動経路を移動するよう構成されたスタッカークレーンが一対設けられ、
     前記一対のスタッカークレーンの夫々が、前記移動経路に沿う走行案内レールによって案内される走行台車と、前記走行台車から立設された昇降案内マストによって案内されて昇降するよう構成された昇降台及びこの昇降台に設けられて前記物品収納部に物品を移載可能な物品移載装置からなる昇降体とを備え、
     前記一対のスタッカークレーンの夫々の走行台車の走行位置を検出する一対の走行位置検出手段と、
     前記一対のスタッカークレーンの夫々の昇降体の昇降位置を検出する一対の昇降位置検出手段と、
     前記一対の走行位置検出手段及び前記一対の昇降位置検出手段の検出情報に基づいて、前記一対のスタッカークレーンの作動を制御する制御手段とが設けられた物品収納設備の作動方法であって、
     前記収納部に対する入出庫を行う物品搬送についての運転指令を生成するステップと、
     前記運転指令に基づいて、前記運転指令による物品搬送を担当する担当スタッカークレーンについての物品搬送作動を制御するステップと、
     前記担当スタッカークレーンの物品搬送作動を制御する間は、前記一対の走行位置検出手段の検出情報に基づいて、前記一対のスタッカークレーンの一対の走行台車の夫々の走行位置を管理して、前記一対の走行台車の夫々の走行位置が、前記一対のスタッカークレーンが干渉することが予測される相互接近位置であるか否かを設定周期毎に判別するステップと、
     前記一対の走行台車の夫々の走行位置が前記相互接近位置である場合は、前記一対の走行位置検出手段及び前記一対の昇降位置検出手段の検出情報に基づいて、前記一対の走行台車及び前記一対の昇降体を、前記一対のスタッカークレーンが干渉しない非干渉位置に位置させるべく、前記一対のスタッカークレーンの作動を制御する干渉回避処理を行なうステップが含まれる物品収納設備の作動方法。
  14.  前記相互接近位置であるか否かを設定周期毎に判別するステップは、前記一対の走行台車の夫々を設定減速度にて停止させたと仮定した場合に停止するまでに現在位置から移動する各走行台車の仮制動範囲に重複する部分がある場合に、前記一対の走行台車の夫々の走行位置が相互接近位置であると判別するステップを含む請求項13記載の物品収納設備の作動方法。
  15.  前記干渉回避処理を行なうステップでは、前記一対のスタッカークレーンのうち何れか一方のみの作動が制御される形態で前記干渉回避処理が行われる請求項13又は14記載の物品収納設備の作動方法。
  16.  前記干渉回避処理を行なうステップでは、
     前記一対のスタッカークレーンの一方のみを前記担当スタッカークレーンとして前記物品搬送作動を行わせている場合は、前記一対のスタッカークレーンのうち前記物品搬送作動を行っていない非担当スタッカークレーンの作動を制御する形態で前記干渉回避処理が行われる請求項15記載の物品収納設備の作動方法。
  17.  前記干渉回避処理を行なうステップでは、
     前記一対のスタッカークレーンの双方を前記担当スタッカークレーンとして各別に前記物品搬送作動を行わせている場合は、前記一対のスタッカークレーンのうち前記物品搬送作動の残作動時間が長い前記担当スタッカークレーンの作動を制御する形態で前記干渉回避処理が行われる請求項15記載の物品収納設備の作動方法。
  18.  前記走行案内レールとして、棚前後方向で間隔を隔てて互いに並行に設置された一対の走行案内レールが設けられ、
     前記一対のスタッカークレーンとして、前記走行台車が前記一対の走行案内レールのうちの一方にて案内され、前記昇降案内マストが前記走行台車に設けられたスタッカークレーンと、前記走行台車が前記一対の走行案内レールのうちの他方にて案内され、前記昇降案内マストが前記走行台車に設けられたスタッカークレーンとが設けられ、
     前記一対のスタッカークレーンの夫々が互いにすれ違い移動できるように、前記一対の昇降体は、相手側のスタッカークレーンの前記昇降体と棚前後方向で重複する部分を備えかつ相手方のスタッカークレーンの前記昇降案内マストに達しないように前記昇降案内マストから棚前後方向に延びる状態で設けられ、
     前記干渉回避処理を行なうステップには、
     前記一対の昇降体を、前記一対のスタッカークレーンが干渉することなくすれ違い移動できる離間距離として設定される必要離間距離以上昇降方向で離間したすれ違い用昇降位置に昇降させるべく、前記一対の昇降体の昇降作動を制御する干渉回避用昇降処理を行うステップが含まれる請求項13又は14記載の物品収納設備の作動方法。
  19.  前記干渉回避用昇降処理を行うステップは、
     前記一対の走行台車の夫々の走行位置が前記相互接近位置になってから走行作動中の前記走行台車を設定減速度にて減速させる態様で走行作動させた場合に前記一対の昇降体が干渉すると仮定される干渉仮定走行位置になるまでの猶予時間内に前記物品搬送作動により前記昇降体が昇降し得る昇降範囲である最大昇降範囲を前記担当スタッカークレーンの前記昇降体について求めるステップと、
     前記一対のスタッカークレーンの双方を前記担当スタッカークレーンとして前記物品搬送作動させているときは、前記一対の昇降体の夫々についての前記最大昇降範囲が相互に前記必要離間距離よりも長く離れることにより互いに重複していなければ、前記一対のスタッカークレーンの干渉が発生しない干渉不発生状態であると判別するステップと、
     前記一対のスタッカークレーンの一方のみを前記担当スタッカークレーンとして前記物品搬送作動させているときは、他方の前記スタッカークレーンの前記昇降体の昇降位置を中心として前記必要離間距離だけ昇降方向の上下両側に広がりをもつ干渉対象範囲が、前記担当スタッカークレーンの前記昇降体についての前記最大昇降範囲と重複していなければ、前記干渉不発生状態であると判別するステップとを含み、
     前記干渉回避用昇降処理を行うステップにおいて、
     前記干渉不発生状態であると判別した場合は、前記干渉回避用昇降処理では前記一対の昇降体の昇降作動を制御しない形態で前記物品搬送作動を行わせるべく、かつ、前記干渉回避用昇降処理において前記干渉不発生状態でないと判別した場合は、前記干渉回避用昇降処理で前記一対の昇降体を制御する形態で前記物品搬送作動を行わせるべく、前記一対の昇降体の昇降作動が制御される請求項18記載の物品収納設備の作動方法。
  20.  前記走行案内レールとして、棚前後方向で間隔を隔てて互いに並行に設置された一対の案内レールが設けられ、
     前記一対のスタッカークレーンとして、前記走行台車が前記一対の走行案内レールのうちの一方にて案内され、前記昇降案内マストが前記走行台車に設けられたスタッカークレーンと、前記走行台車が前記一対の走行案内レールのうちの他方にて案内され、前記昇降案内マストが前記走行台車に設けられたスタッカークレーンとが設けられ、
     前記一対のスタッカークレーンの夫々が互いにすれ違い移動できるように、前記一対の昇降体は、相手側のスタッカークレーンの前記昇降体と棚前後方向で重複する部分を備えかつ相手方のスタッカークレーンの前記昇降案内マストに達しないように前記昇降案内マストから棚前後方向に延びる状態で設けられ、
     前記作動方法には、
     前記一対のスタッカークレーンの物品搬送作動を制御する場合に、前記一対の走行位置検出手段及び前記一対の昇降位置検出手段の検出情報に基づいて、前記一対のスタッカークレーンの一対の走行台車の夫々の走行位置及び前記一対のスタッカークレーンの一対の昇降体の夫々の昇降位置を管理するステップが含まれ、
     前記干渉回避処理を行なうステップには、
     前記一対の昇降体を、前記一対のスタッカークレーンが干渉することなくすれ違い移動できる離間距離として設定される必要離間距離以上昇降方向で離間したすれ違い用昇降位置に昇降させるべく、前記一対の昇降体の双方を、前記物品搬送作動による昇降作動とは異なる干渉回避用の昇降作動にて昇降させる相互回避昇降処理を行うステップが含まれる請求項13記載の物品収納設備の作動方法。
  21.  前記相互接近位置であるか否かを設定周期毎に判別するステップは、
     前記一対の走行台車の夫々を設定減速度にて停止させたと仮定した場合に停止するまでに現在位置から移動する各走行台車の仮想制動範囲に移動経路方向で重複する部分がある場合に、前記一対の走行台車の走行位置が前記相互接近位置であると判別するステップを含む請求項20記載の物品収納設備の作動方法。
  22.  前記相互回避昇降処理を行うステップは、
     前記一対の走行台車の夫々の走行位置が前記相互接近位置になってから走行作動中の前記走行台車を設定減速度にて減速させる態様で走行作動させた場合に前記一対の昇降体が干渉すると仮定される干渉仮定走行位置になるまでの猶予時間内に前記物品搬送作動により前記昇降体が昇降し得る昇降範囲である最大昇降範囲を前記担当スタッカークレーンの前記昇降体について求めるステップと、
     前記一対のスタッカークレーンの双方を前記担当スタッカークレーンとして前記物品搬送作動させているときは、前記一対の昇降体の夫々についての前記最大昇降範囲が相互に前記必要離間距離よりも長く離れることにより互いに重複していなければ、前記一対のスタッカークレーンの干渉が発生しない干渉不発生状態であると判別するステップと、
     前記一対のスタッカークレーンの一方のみを前記担当スタッカークレーンとして前記物品搬送作動させているときは、他方の前記スタッカークレーンの前記昇降体の昇降位置を中心として前記必要離間距離だけ昇降方向に広がりをもつ干渉対象範囲が、前記担当スタッカークレーンの前記昇降体についての前記最大昇降範囲と重複していなければ、前記干渉不発生状態であると判別するステップとを含み、
     前記相互回避昇降処理を行うステップにおいて、
     前記干渉不発生状態であると判別した場合は、前記相互回避昇降処理では前記一対の昇降体の昇降作動を制御しない形態で前記物品搬送作動を行わせるべく、かつ、前記相互回避昇降処理において前記干渉不発生状態でないと判別した場合は、前記相互回避昇降処理で前記一対の昇降体を制御する形態で前記物品搬送作動を行わせるべく、前記一対の昇降体の双方の昇降作動が制御される請求項20又は21項記載の物品収納設備の作動方法。
  23.  前記担当スタッカークレーンについての物品搬送作動を制御する前記ステップには、
     前記運転指令に対応して生成される物品搬送作動用走行パターン及び物品搬送作動用昇降パターンに基づいて設定制御周期毎に更新生成される前記走行台車についての目標走行位置及び前記昇降体についての目標昇降位置を前記設定制御周期毎に指令するステップが含まれ、かつ、
     前記相互回避昇降処理を行うステップには、
     前記担当スタッカークレーンについて、前記物品搬送作動用昇降パターンに基づいて規定される前記昇降体についての前記目標昇降位置に代えて、前記一対のスタッカークレーンの前記昇降体の昇降位置及び昇降速度、並びに、前記必要離間距離に基づいて更新生成される干渉回避用の目標昇降位置を前記設定制御周期毎に指令することで、前記一対の昇降体を前記すれ違い用昇降位置に昇降させるべく、前記一対の昇降体の双方の昇降作動を制御するステップが含まれる請求項20又は21記載の物品収納設備の作動方法。
     
     
PCT/JP2009/063251 2008-09-05 2009-07-24 物品収納設備とその作動方法 WO2010026842A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/062,126 US9221604B2 (en) 2008-09-05 2009-07-24 Article storage facility and method of operation therefor
ES09811371.5T ES2568524T3 (es) 2008-09-05 2009-07-24 Instalación para almacenamiento de artículos y procedimiento para operación de la misma
CN2009801345798A CN102143899B (zh) 2008-09-05 2009-07-24 物品收纳设备及其动作方法
KR1020117004457A KR101489718B1 (ko) 2008-09-05 2009-07-24 물품 수납 설비와 그 작동 방법
DK09811371.5T DK2332859T3 (en) 2008-09-05 2009-07-24 Article storage facility and method for operating the same
EP09811371.5A EP2332859B1 (en) 2008-09-05 2009-07-24 Article storage facility and method of operating the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-228867 2008-09-05
JP2008-228866 2008-09-05
JP2008228866A JP5257668B2 (ja) 2008-09-05 2008-09-05 物品収納設備
JP2008228867A JP5288167B2 (ja) 2008-09-05 2008-09-05 物品収納設備

Publications (1)

Publication Number Publication Date
WO2010026842A1 true WO2010026842A1 (ja) 2010-03-11

Family

ID=41797014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063251 WO2010026842A1 (ja) 2008-09-05 2009-07-24 物品収納設備とその作動方法

Country Status (8)

Country Link
US (1) US9221604B2 (ja)
EP (1) EP2332859B1 (ja)
KR (1) KR101489718B1 (ja)
CN (1) CN102143899B (ja)
DK (1) DK2332859T3 (ja)
ES (1) ES2568524T3 (ja)
TW (1) TWI462861B (ja)
WO (1) WO2010026842A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103112680A (zh) * 2013-01-31 2013-05-22 西安科技大学 立体物流***存取货物路径优化控制***及方法
CN109313736A (zh) * 2016-03-21 2019-02-05 马士基码头公司 针对集装箱装卸设备的通信布置和通信方法
US10324060B2 (en) * 2012-01-25 2019-06-18 Parker-Hannifin Corporation Analyte sensor

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5110124B2 (ja) * 2010-07-15 2012-12-26 村田機械株式会社 スタッカクレーン
CN102689762B (zh) * 2012-06-01 2014-05-21 时桂强 智能货柜及控制方法
DE102012112828A1 (de) * 2012-12-20 2014-06-26 Witron Logistik + Informatik Gmbh Lager und Lagerbediengeräte mit Passierfunktion
DE102013102994A1 (de) * 2013-03-22 2014-09-25 Witron Logistik + Informatik Gmbh Lager und lagerbediengeräte mit passierfunktion
JP6137312B2 (ja) * 2013-06-28 2017-05-31 村田機械株式会社 自動倉庫及びその運転方法
US10186442B2 (en) * 2014-06-19 2019-01-22 Murata Machinery, Ltd Carrier buffering device and storage method
JP6330714B2 (ja) * 2015-04-09 2018-05-30 株式会社ダイフク 物品搬送設備及び物品搬送設備の保守作業方法
KR102331685B1 (ko) * 2015-07-21 2021-11-25 대우조선해양 주식회사 이동형 의장 자재 자동 적치 타워
JP6531642B2 (ja) * 2015-12-24 2019-06-19 株式会社ダイフク 物品搬送設備
DK179085B1 (en) * 2016-03-21 2017-10-16 Apm Terminals Man Bv Container handling equipment controller arrangement
JP6343358B1 (ja) * 2017-01-18 2018-06-13 JB−Create株式会社 パレット及びケース自動収納ピッキングシステム
CN108127096A (zh) * 2018-02-12 2018-06-08 山东钢铁股份有限公司 一种横移台车定位方法及***
CN108706460A (zh) * 2018-05-28 2018-10-26 河南新科起重机股份有限公司 错层起重机无障碍穿越的控制方法及装置
JP6969512B2 (ja) * 2018-07-05 2021-11-24 株式会社ダイフク 物品搬送装置
JP7063295B2 (ja) * 2019-03-22 2022-05-09 株式会社ダイフク 物品搬送車
DE102019206209A1 (de) * 2019-04-30 2020-11-05 Multivac Sepp Haggenmüller Se & Co. Kg SCHALENVERSCHLIEßMASCHINE SOWIE VERFAHREN ZUR SANFTEN AUFNAHME EINER SCHALE
CN113291732B (zh) * 2021-07-26 2021-10-08 南通铭创自动化设备有限公司 医院药品运输物流设备及其***
KR102388037B1 (ko) * 2021-10-19 2022-04-20 크린팩토메이션 주식회사 웨이퍼 캐리어 보관용 다단 천장 버퍼 및 그를 포함하는 천장 버퍼 시스템
CN113998357B (zh) * 2021-10-22 2023-04-25 昆船智能技术股份有限公司 一种卷烟厂滤棒库仓储***双堆垛机调度方法及存储介质
KR102668412B1 (ko) * 2021-12-30 2024-05-22 세메스 주식회사 크래인 장치, 이의 구동 방법, 및 이를 포함하는 스토커
CN114290809B (zh) * 2021-12-31 2022-11-29 东莞市启思达智能技术有限公司 一种激光测距方法及***
TWI830396B (zh) * 2022-09-22 2024-01-21 林昭炫 升降操控系統

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07125810A (ja) 1993-11-04 1995-05-16 Ishikawajima Harima Heavy Ind Co Ltd 入出庫装置
JP2002175117A (ja) 2000-12-07 2002-06-21 Daifuku Co Ltd 移動体の走行制御方法
JP2004106945A (ja) * 2002-09-13 2004-04-08 Nippon Yusoki Co Ltd 自動倉庫
JP2005053642A (ja) * 2003-08-04 2005-03-03 Sharp Corp 自動倉庫およびクレーン制御システム
JP2007015780A (ja) 2005-07-05 2007-01-25 Daifuku Co Ltd 物品収納設備

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2840187A (en) 1955-05-26 1958-06-24 Bianca Edoardo Mobile freight elevator
DE1044712B (de) 1955-10-03 1958-11-20 Steinbock G M B H Stapler, insbesondere Gabelstapler
US3746189A (en) 1966-04-18 1973-07-17 Clark Equipment Co Automatic control system for storage systems transfer cart
US3792758A (en) 1971-11-15 1974-02-19 American Chain & Cable Co Stacker crane construction
US4113119A (en) 1977-02-10 1978-09-12 Si Handling Systems, Inc. Apparatus for loading articles onto vertically spaced horizontally disposed shelves
IT1143543B (it) 1981-04-13 1986-10-22 Comau Spa Magazzino meccanizzato
DE3533063A1 (de) 1985-09-17 1987-03-26 Dunkes S Maschinen Regalgeraet fuer ein werkzeugregal
JP2513696B2 (ja) 1987-06-16 1996-07-03 株式会社安川電機 天井走行クレ−ンの制御方法
US5226782A (en) 1990-05-07 1993-07-13 Stanley-Vidmar, Inc. Automatic storage and retrieval system
DE4202668C2 (de) 1992-01-28 1994-02-24 Mannesmann Ag Regalbediengerät
DE4238322C2 (de) 1992-11-13 2003-11-27 Wetron Logistik Gmbh Regalförderzeug
DE4242811A1 (de) 1992-12-17 1994-06-23 Grella Stahlbau Gmbh Parkanlage für Personenkraftwagen
DE9300492U1 (de) 1993-01-18 1994-05-26 Stopa Anlagenbau Gmbh & Co Kg, 77855 Achern Regalbediengerät
JPH06305514A (ja) 1993-04-27 1994-11-01 Nippon Filing Co Ltd 物品保管装置
JP3254152B2 (ja) 1996-12-10 2002-02-04 三菱重工業株式会社 クレーンの荷役経路設定方法及びその装置
JP3791643B2 (ja) * 1997-08-12 2006-06-28 村田機械株式会社 有軌道台車システム
IT1294674B1 (it) 1997-09-05 1999-04-12 Giancarlo Piccini Macchina per la movimentazione di oggetti quali materiali grezzi, semilavorati, parti finite, ed in particolare lamiere metalliche o
JP3375067B2 (ja) 1999-06-10 2003-02-10 村田機械株式会社 スタッカークレーン
JP2001163408A (ja) 1999-12-10 2001-06-19 Murata Mach Ltd スタッカークレーン
GB2394319B (en) * 2001-07-24 2005-06-22 Honda Motor Co Ltd Work transfer method and system
US6678582B2 (en) * 2002-05-30 2004-01-13 Kuka Roboter Gmbh Method and control device for avoiding collisions between cooperating robots
US7257463B2 (en) 2003-03-07 2007-08-14 Daifuku Co., Ltd. Traveling body system, automated storage and retrieval system, and method for controlling traveling body
JP2004284704A (ja) 2003-03-20 2004-10-14 Daifuku Co Ltd 物品搬送装置
JP2004284702A (ja) 2003-03-20 2004-10-14 Daifuku Co Ltd 物品搬送装置
FI20031259A (fi) 2003-09-04 2005-03-05 Fastems Oy Ab Usean hyllystöhissin järjestelmä ja menetelmä sen ohjaamiseksi
US7413069B2 (en) * 2004-02-28 2008-08-19 Applied Materials, Inc. Methods and apparatus for transferring a substrate carrier within an electronic device manufacturing facility
KR100557350B1 (ko) 2004-07-06 2006-03-03 이완영 무팔레트 화물보관시스템의 입출고용 적재대
TW200619111A (en) * 2004-12-02 2006-06-16 Murata Machinery Ltd Warehouse system
US7651306B2 (en) * 2004-12-22 2010-01-26 Applied Materials, Inc. Cartesian robot cluster tool architecture
ES2309864T3 (es) * 2005-05-31 2008-12-16 Daifuku Co., Ltd. Instalacion de transporte de articulos y metodo para hacer funcionar la instalacion.
JP4577568B2 (ja) * 2005-09-09 2010-11-10 株式会社ダイフク 物品収納設備における物品搬送装置
JP2007126258A (ja) 2005-11-04 2007-05-24 Daifuku Co Ltd 物品移載装置及び物品収納設備
JP4967318B2 (ja) 2005-11-18 2012-07-04 ムラテックオートメーション株式会社 ストッカ
JP2007323112A (ja) 2006-05-30 2007-12-13 Ishikawajima Transport Machinery Co Ltd 搬送装置の衝突防止制御装置と方法
US20080051930A1 (en) * 2006-07-10 2008-02-28 Oh Hilario L Scheduling method for processing equipment
JP4775650B2 (ja) 2006-09-05 2011-09-21 株式会社ダイフク 移動体の走行設備
JP4756371B2 (ja) * 2006-09-05 2011-08-24 株式会社ダイフク 物品収納設備
JP4306723B2 (ja) 2006-12-15 2009-08-05 村田機械株式会社 搬送台車システム
JP5278724B2 (ja) * 2007-07-26 2013-09-04 株式会社ダイフク 物品収納設備

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07125810A (ja) 1993-11-04 1995-05-16 Ishikawajima Harima Heavy Ind Co Ltd 入出庫装置
JP2002175117A (ja) 2000-12-07 2002-06-21 Daifuku Co Ltd 移動体の走行制御方法
JP2004106945A (ja) * 2002-09-13 2004-04-08 Nippon Yusoki Co Ltd 自動倉庫
JP2005053642A (ja) * 2003-08-04 2005-03-03 Sharp Corp 自動倉庫およびクレーン制御システム
JP2007015780A (ja) 2005-07-05 2007-01-25 Daifuku Co Ltd 物品収納設備

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2332859A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10324060B2 (en) * 2012-01-25 2019-06-18 Parker-Hannifin Corporation Analyte sensor
CN103112680A (zh) * 2013-01-31 2013-05-22 西安科技大学 立体物流***存取货物路径优化控制***及方法
CN109313736A (zh) * 2016-03-21 2019-02-05 马士基码头公司 针对集装箱装卸设备的通信布置和通信方法
US11756143B2 (en) 2016-03-21 2023-09-12 Apm Terminals B.V. Communication arrangement for a container handling equipment and communication method

Also Published As

Publication number Publication date
KR20110050650A (ko) 2011-05-16
US20110276175A1 (en) 2011-11-10
DK2332859T3 (en) 2016-03-29
CN102143899B (zh) 2013-12-04
TW201022105A (en) 2010-06-16
US9221604B2 (en) 2015-12-29
TWI462861B (zh) 2014-12-01
EP2332859A1 (en) 2011-06-15
EP2332859A4 (en) 2013-08-07
KR101489718B1 (ko) 2015-02-04
ES2568524T3 (es) 2016-04-29
CN102143899A (zh) 2011-08-03
EP2332859B1 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
WO2010026842A1 (ja) 物品収納設備とその作動方法
JP4273423B2 (ja) 搬送装置
JP4666213B2 (ja) 物品収納設備
JP4756371B2 (ja) 物品収納設備
JP4586990B2 (ja) 物品収納設備
JP5288167B2 (ja) 物品収納設備
JP5928926B2 (ja) 搬送システム及び搬送車システムでの排他制御方法
JP6627677B2 (ja) 物品収納設備
JP5257668B2 (ja) 物品収納設備
JP2003267518A (ja) 物流設備
JP5495081B2 (ja) 物品収納設備
JPS61217404A (ja) 自動倉庫システム
JP6844580B2 (ja) 物品搬送設備
JP6263416B2 (ja) 駐車システムにおける搬送台車の停止方法
JP3562439B2 (ja) 荷積みシステム
JP4023266B2 (ja) 走行体の走行装置
JP4844826B2 (ja) 物品収納設備
JP2001301986A (ja) 荷積みシステム
JP3562438B2 (ja) 荷積みシステム
JP7424105B2 (ja) 搬送システム
JP4399737B2 (ja) 物品移載装置
JP4096649B2 (ja) 物品搬送設備
CN115838050A (zh) 一种连杆顶升式两向穿梭车的控制***
JP2004118597A (ja) 物品搬送設備
JP2003104514A (ja) 物品保管設備

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980134579.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811371

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117004457

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009811371

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13062126

Country of ref document: US