WO2009145328A1 - 低温靭性と延性破壊停止性能に優れるラインパイプ用高強度熱延鋼板およびその製造方法 - Google Patents

低温靭性と延性破壊停止性能に優れるラインパイプ用高強度熱延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2009145328A1
WO2009145328A1 PCT/JP2009/059922 JP2009059922W WO2009145328A1 WO 2009145328 A1 WO2009145328 A1 WO 2009145328A1 JP 2009059922 W JP2009059922 W JP 2009059922W WO 2009145328 A1 WO2009145328 A1 WO 2009145328A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
rolling
hot
rolled steel
temperature
Prior art date
Application number
PCT/JP2009/059922
Other languages
English (en)
French (fr)
Inventor
横井龍雄
阿部博
吉田治
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to US12/736,903 priority Critical patent/US20110079328A1/en
Priority to EP09754836.6A priority patent/EP2295615B1/en
Priority to CN2009801194355A priority patent/CN102046829B/zh
Priority to KR1020107026490A priority patent/KR101228610B1/ko
Priority to BRPI0913046-2A priority patent/BRPI0913046A2/pt
Priority to MX2010012472A priority patent/MX2010012472A/es
Priority to JP2010514566A priority patent/JP4700765B2/ja
Publication of WO2009145328A1 publication Critical patent/WO2009145328A1/ja
Priority to US14/329,295 priority patent/US9657364B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching

Definitions

  • the present invention relates to a high-strength hot-rolled steel sheet for line pipe excellent in low-temperature toughness and ductile fracture stopping performance, and a method for producing the same.
  • steel pipes for line pipes can be classified into seamless steel pipes, UOE steel pipes, ERW steel pipes and spiral steel pipes according to their manufacturing processes, and are selected according to their use and size. Except for seamless steel pipes, all steel sheets and steel strips are formed into a tubular shape and then commercialized as a steel pipe by welding and welding. In addition, these welded steel pipes can be classified according to the type of steel plate used as the material. Hot rolled steel plates (hot coils) with relatively thin thickness are used for ERW and spiral steel tubes, and thick plate materials (plates) with thick thickness are UOE steel tubes. High The latter UF steel pipe is generally used for strength, large diameter, and thick wall applications. However, in terms of cost and delivery time, ERW pipes and spiral pipes made of the former hot-rolled steel sheet are advantageous, and demands for higher strength, larger diameter, and thicker wall are increasing.
  • the above technology is based on the premise that a plate is used as a raw material, and in order to achieve both high strength and thickening, water quenching direct quenching is a characteristic of the plate manufacturing process.
  • Method IDQ: Interrupted D irect Quench
  • HDQ hardened (strengthened) strengthening
  • Hot-rolled steel sheets which are the materials of ERW and spiral steel pipes.
  • Hot-rolled steel sheets have a winding process in the manufacturing process, and it is difficult to wind up thick materials at low temperatures due to the limited equipment capacity of the winding device (coiler). A low-temperature cooling stop is impossible. Therefore, it is difficult to ensure strength by strengthening quenching.
  • Patent Document 1 as a hot rolled steel sheet technology that achieves both high strength, thickening and low-temperature toughness, inclusions are spheroidized by adding Ca and Si during milling, and N b , T i, Mo, and N i strengthening elements and V that has a grain refinement effect are added, and a technique that combines low temperature rolling and low temperature winding is disclosed.
  • this technique has a relatively low finish rolling temperature of 790 to 830.
  • There are still problems in operational stability due to a decrease in absorbed energy due to the occurrence of heat generation and an increase in rolling load due to low temperature rolling.
  • Patent Document 2 considering the local weldability, as a technology of hot-rolled steel sheet that is excellent in strength and low temperature toughness, the PCM value is limited to suppress the increase in hardness of the welded part, and the microstructure is reduced to the basic ferrite. Furthermore, a technique for limiting the precipitation rate of Nb as a single phase is disclosed.
  • this technique also requires substantially low temperature rolling to obtain a fine structure, and there remains a problem in operational stability due to the reduction in absorbed energy due to the generation of separation and the rolling load due to low temperature rolling.
  • the ferrite area ratio of the microstructure is 1 to 5% or more than 5% to 60%, and the cross section (1 A technique for obtaining an ultra-high-strength steel sheet having excellent high-speed ductile fracture characteristics when the degree of integration of 0) is 3 or less is disclosed.
  • Patent Document 1 Special Table 2 0 0 5-5 0 3 4 8 3
  • Patent Document 2 Japanese Patent Laid-Open No. 2 0 0 4 1 3 1 5 9 5 7
  • Patent Document 3 Japanese Patent Laid-Open No. 2 0 0 5 1 1 4 6 4 0 7
  • Non-Patent Document 1 Nippon Steel Technical Report No. 3 8 0 2 0 0 4 7 0
  • the present invention not only withstands its use even in regions where severe fracture resistance is required, but also with a relatively thick plate thickness of, for example, more than half inch (12.7 mm), API 5 L-X 8
  • the purpose is to provide a hot-rolled steel sheet (hot coil) for line pipes that has both high strength above the 0 standard, low-temperature toughness and ductile fracture stopping performance, and a method for stably and inexpensively manufacturing the steel sheet. To do.
  • the present invention has been made to solve the above problems, and the gist thereof is as follows.
  • the balance is a steel plate made of Fe and inevitable impurities
  • the microstructure is a continuous cooling transformation structure, and in the continuous cooling transformation structure,
  • Precipitates containing Nb are dispersed with an average diameter of 1 to 3 nm and an average density of 3 to 30 XI 0 22 and m 3 ,
  • Granular 1 ferrite (G ranu 1 arbainiticferrite) a B and Z or quasi-polygonal ferrite
  • the precipitate containing the Ti nitride has an average equivalent circular diameter of 0.1 to 3 m, A high-strength hot-rolled steel for line pipes that is excellent in low-temperature toughness and ductile fracture stopping performance, characterized by containing a complex oxide containing C a, T i, and A 1 in an amount of 50% or more.
  • the S 1 concentration is 0.05 to 0.5.
  • the final content is within 0.005 minutes.
  • a 1 to be 2% is added, and the final content is further
  • the temperature range up to 6 50 is 2 / sec or more 5 0
  • Figure 1 shows the relationship between the diameter of precipitates containing Ti nitride and the DWT T brittle fracture surface unit.
  • the present inventors first, the tensile strength of the hot rolled steel sheet (hot Tokoiru) Temperature (F toughness (in particular reduction and DWTT ductile fracture rate of the Charpy absorbed energy (VE _ 2 0) is 8 5%
  • F toughness in particular reduction and DWTT ductile fracture rate of the Charpy absorbed energy (VE _ 2 0) is 8 5%
  • the present inventors arranged the relationship between the Charpy absorbed energy (v E — 2 () ), which is an index of ductile fracture stopping performance, and the amount of added C.
  • v E — 2 () the Charpy absorbed energy
  • v E_ 2 D the Charpy absorbed energy
  • v E_ 2 The relationship between and microstructure was investigated in detail. As a result, there was a significant correlation between v E_ 2 Q and the fraction of the microstructure containing coarse carbides such as cementite represented by parlite. In other words, when such a microstructure increased, v E_ 2 D tended to decrease. In addition, such a microstructure showed an increasing trend as the amount of C added increased. Conversely, the fraction of the continuous cooling transformation structure (Zw) relatively increased with the decrease in the fraction of the microstructure containing coarse carbides such as cementite.
  • Zw continuous cooling transformation structure
  • Continuous cooling transformation structure is the Japan Iron and Steel Institute Fundamental Study Group, Investigative Study Group / Edition; As described in the Final Report 1 of the Recent Research and Research Committee (Japan Steel Association, 1944), the polygonal ferrite generated by the diffusion mechanism is included. It is a microstructure defined by a microstructure and a metamorphic structure in the intermediate stage of martensite generated by a non-diffusing and shearing mechanism.
  • the continuous cooling transformation structure (Zw) is an optical microscope observation structure as described in the above reference 1 2 5 to 1 2 7 pages, and its microstructure is mainly Bainiticferrite ( a ° B ), Granular 1 arbainiticferrite ( ⁇ , ⁇ Non-ligona J Referay ⁇ (Q uasi — polygonalferrite) (a Q ), and a small amount of residual austenite (r r ), a microstructure that includes martensite-austenite (MA) a Q is the structure of polygonal ferrite (PF) and etched However, the shape is the same as that of PF and is clearly distinguished from PF, where the perimeter length l Q of the target crystal grain and its equivalent circle diameter is dq, and the ratio (ld / dq) is 1 qd Q ⁇ grain to meet the 3.5 is a Q.
  • the fraction of the Miku mouth structure is defined by the area fraction in the microstructure of the continuous cooling transformation structure.
  • This continuous cooling transformation structure is hardened by strengthening elements such as Mn, Nb, V, Mo, Cr, Cu, and Ni that are added to ensure strength when the C content is reduced. This is because it is improved.
  • the microstructure is a continuous cooling transformation structure, cementite is contained in the microstructure. It is estimated that Charpy absorbed energy (VE _ 2 D ), which is an index of ductile fracture stopping performance, has been improved.
  • FAT T 853 ⁇ 4 the temperature at which the ductile fracture surface ratio of the DWT T test, which is an index of low temperature toughness, becomes 85%.
  • FAT 85 did not necessarily improve even when the microstructure was a continuous cooling transformation structure. Therefore, when the fracture surface after the DWT T test was observed in detail, those with a good FATT 85 3 ⁇ 4 showed a tendency for the fracture surface unit of the cleaved fracture surface to be brittle.
  • FAT T 85 tended to be good when the fracture surface unit had an equivalent circle diameter of 30 zm or less.
  • G ranu 1 arbainiticferrite (a B ) is an organization that constitutes the continuous-cooling transformation structure or Q uasi - polyonalferrite ( ⁇ ⁇ ) of increased fraction is, the fracture unit fraction is more than 50% circle The equivalent diameter was 30 ⁇ m or less, and it was confirmed that FATT 85 3 ⁇ 4 showed a good tendency.
  • the fraction of B ainiticferrite (a ° B ) increased, the fracture surface units became coarse and FATT 85 tended to deteriorate.
  • Bainiticferrite (a ° B ), which is a structure that forms a continuous cooling transformation structure, is a plurality of regions in which crystal orientations are oriented in the same direction within the grain boundaries separated by the former austenite grain boundaries. It becomes the state divided into. This is called a packet.
  • the effective crystal grain size which is directly related, corresponds to this bucket size. That is, if the austenite grains before transformation are coarse, the bucket size also becomes coarse, the effective crystal grain size becomes coarse, and the fracture surface unit becomes coarse.
  • Granularbainiticferrit e (a B is a microstructure obtained by a more diffusive transformation than a Bainiticferrite ( B ), which is generated in a shearing manner in a relatively large unit among diffusion transformations.
  • Q uasi-po 1 ygona 1 ferrite (a Q ) is a microstructure obtained by further diffusive transformation, originally divided into a plurality of regions in which crystal orientations are oriented in the same direction within the grain boundaries separated by austenite grain boundaries.
  • the particle size corresponds to the particle size of the material itself, so it is presumed that the fracture surface unit was made finer and FA was improved by 85 3 ⁇ 4 .
  • the inventors of the present invention have found that steel components and manufacturing processes with a fractional force of 50% or more of Granu 1 arbainiticferrite (a B ) or [3 ⁇ 4Quasi — polygonalferrite (o:iller), which is a structure constituting a continuous cooling transformation structure. A more detailed study was conducted.
  • ⁇ B or Q uasi — polygonalferrite ( ⁇ .) In order to increase the fraction, it is effective to increase the austenite grain boundaries, which are the transformation nuclei of these microstructures, so it is necessary to refine the austenite grains before transformation.
  • a solution drag or pinning element such as Nb which enhances the effect of controlled rolling (TMCP).
  • TMCP controlled rolling
  • the above change in the fracture surface unit and the resulting FAT T 85 was also observed with similar Nb content. Therefore, the addition of a salt drug such as Nb or a pinning element cannot sufficiently reduce the austenite grains before transformation.
  • the defects and dispersion density of precipitates containing Ti nitride can be controlled by deoxidation control in the melting process. That is, only nitriding is performed in the order of adding A 1 after adding Ti to deoxidized molten steel with optimally adjusted S i concentration and dissolved oxygen concentration, and then adding Ca. becomes 1 0 1 to 1 0 3 111111 2 ranges dispersion density of precipitates containing things, it was found that FATT 85 3 ⁇ 4 is good.
  • precipitates containing Ti nitrides may contain more than 50% of the number of precipitates and complex oxides containing Ca, Ti and A1. I understood. Then, the optimal dispersion of these oxides, which are the precipitation nuclei of the precipitates containing Ti nitride, makes Ti nitride
  • the precipitate size and dispersion density of the precipitates included are optimized, and the austenite grain size before transformation is controlled by the pinning effect, so that the grain growth is suppressed, so that it remains fine and transformed from the austenite that is the fine grain.
  • the composite oxide containing Ca, T i, and A 1 becomes 50% or more of the total number of oxides, and these fine oxides are dispersed at a high concentration.
  • the average equivalent circle diameter of the precipitates containing Ti nitrides deposited as nucleation sites of these dispersed fine oxides is 0.1 to 3 m, and the balance between dispersion density and size is optimized, and the pinning effect It is estimated that the effect of refining the austenite grain size before transformation was maximized. It is permissible for the composite oxide to contain young thousands of Mg, Ce and Zr.
  • % for the component means “% by mass”.
  • C is an element necessary for obtaining the desired strength (strength required by the API 5 LX 80 standard) and microstructure. However, if it is less than 0.02%, the required strength cannot be obtained, and if adding more than 0.06%, not only the carbide that becomes the starting point of fracture is formed, but also the toughness is deteriorated. The local weldability is significantly degraded. Therefore, the amount of C added is set to 0.02% or more and 0.06% or less. In order to obtain uniform strength regardless of the cooling rate in cooling after rolling, 0.05% or less is desirable. 0038
  • S i has the effect of suppressing the precipitation of carbide, which is the starting point of fracture. Therefore, 0.05% or more is added. However, if over 0.5% is added, the weldability at the site deteriorates. Considering versatility from the viewpoint of on-site weldability, 0.3% or less is desirable. Furthermore, if it exceeds 0.15%, a tiger stripe-shaped scale pattern may be generated and the appearance of the surface may be impaired. Therefore, the upper limit is desirably set to 0.15%.
  • M n is a solid solution strengthening element.
  • the austenite region temperature is increased to the low temperature side, and during the cooling after the end of rolling, there is an effect that it is easy to obtain a continuous cooling transformation structure which is one of the constituent requirements of the microstructure of the present invention.
  • add 1% or more add 1% or more.
  • Mn promotes the center segregation of the continuous forged steel pieces and forms a hard phase that becomes the starting point of fracture.
  • P The lower the content of P, the more desirable it is. P The following. Furthermore, P has an adverse effect on pipe making and on-site weldability, so considering these, it is desirable that P be less than 0.015%.
  • S is an impurity and not only causes cracking during hot rolling, but too much deteriorates low temperature toughness. Therefore, it is set to 0.05% or less. Furthermore, S prays near the center of the continuous forged steel slab, forms not only the starting point of hydrogen-induced cracking by forming MnS stretched after rolling, but also of pseudo-separation such as double sheet cracking. Occurrence is also a concern. Therefore, resistance In consideration of sourness, it is desirable to be not more than 0.0 0 1%.
  • O is an element necessary to disperse many fine oxides during deoxidation of molten steel, so 0.005% or more is added, but if it is too much, it is a coarse oxide that causes fracture in steel. And causes brittle fracture and hydrogen-induced cracking to deteriorate, so the content is made 0.03% or less. Furthermore, from the viewpoint of on-site weldability, 0.02% or less is desirable.
  • a 1 is an element necessary to disperse many fine oxides during deoxidation of molten steel. In order to obtain the effect, 0.05% or more is added. On the other hand, if added excessively, the effect is lost, so the upper limit is made 0.03%.
  • N b is one of the most important elements in the present invention. Nb suppresses the recovery and recrystallization and grain growth of austenite during and after rolling by the dragging effect in the solid solution state and the pinning effect as Z or carbonitride precipitates. It has the effect of improving low-temperature toughness by reducing the fracture surface unit in the crack propagation of brittle fracture. Furthermore, in the winding process, which is a feature of the hot-rolled steel sheet manufacturing process, fine carbides are generated, and the precipitation strengthening contributes to improving the strength. In addition, Nb has the effect of delaying the a / ⁇ transformation and lowering the transformation temperature, so that the microstructure after transformation is stably transformed into a continuous cooling transformation structure even at a relatively slow cooling rate.
  • T i is one of the most important elements in the present invention.
  • Ti begins to precipitate as nitride at a high temperature immediately after solidification of the pieces obtained by continuous or ingot forming.
  • This precipitate containing Ti nitride is stable at high temperatures, and does not completely dissolve even in subsequent slab reheating, but exhibits a pinning effect and coarsens austenite grains during slab reheating. Suppress and refine the microstructure to improve low temperature toughness.
  • the nucleation of ferrite is suppressed in the rZcK transformation, and there is an effect of promoting the formation of a continuously cooled transformation structure, which is a requirement of the present invention. In order to obtain such an effect, it is necessary to add at least 0.05% Ti. On the other hand, even if added over 0.02%, the effect is saturated.
  • the amount of Ti added is less than the stoichiometric composition with N (N—144 8 XT i ⁇ 0%), the remaining Ti binds to C, and the finely precipitated Ti C is low in temperature. May deteriorate toughness.
  • Ti is also an element necessary to disperse many fine oxides during deoxidation of molten steel, and precipitates containing Ti nitride with these fine oxides as nuclei are finely crystallized. As a result, the average equivalent diameter of the precipitates containing Ti nitride is reduced and densely dispersed, so that not only the recovery of austenite during and after rolling but also the suppression of recrystallization, It also has the effect of suppressing the grain growth of ferai koji after removal.
  • Ca is an element necessary to disperse many fine oxides during deoxidation of molten steel. To obtain the effect, Ca is added in an amount of 0.005% or more. On the other hand, even if added over 0.03%, the effect is saturated, so the upper limit is made 0.03%. Also, C a is the same as REM It is an element that becomes a starting point and detoxifies by changing the form of non-metallic inclusions that degrade sour resistance.
  • N forms precipitates containing Ti nitride as described above, suppresses the coarsening of austenite grains during slab reheating, and correlates with the effective crystal grain size in later controlled rolling.
  • the low temperature toughness is improved by making the grain size finer and making the micro structure a continuous cooling transformation structure.
  • the content is less than 0.0 0 1 5%, the effect cannot be obtained.
  • the content exceeds 0.06%, ductility decreases due to aging, and formability during pipe forming decreases.
  • N b _ 9 3 Z l 4 X (N-1 4/4 8 XT 1) ⁇ 0.0 5% it is generated in the winding process.
  • the amount of precipitates containing fine Nb decreases and the strength decreases. Therefore, N — 14 Z 4 8 XT i ⁇ 0% and N b — 9 3/14 X (N-1 4/4 8 ⁇ ))> 0.0 5%.
  • the main purpose of adding these elements to the basic components is to increase the plate thickness that can be produced and to improve the properties such as the strength and toughness of the base material without impairing the excellent characteristics of the steel of the present invention. is there. Therefore, the amount of addition should be restricted by itself.
  • V produces fine carbonitrides in the winding process and contributes to strength improvement by strengthening the precipitation. However, even if more than 0.3% is added Since the effect of is saturated, it was set to 0.3% or less (excluding 0%). Also, if added at 0.04% or more, there is a concern that the on-site weldability may be lowered, so less than 0.04% is desirable.
  • Mo has the effect of improving hardenability and increasing strength.
  • Mo coexists with Nb and has the effect of strongly suppressing recrystallization of austenite during controlled rolling, miniaturizing the austenite structure and improving low-temperature toughness.
  • the effect is saturated, so it was set to 0.3% or less (excluding 0%).
  • the ductility is lowered, and there is a concern that the formability during pipe forming is lowered, so less than 0.1% is desirable.
  • C r has the effect of increasing strength. However, the effect is saturated even if added over 0.3%, so it was set to 0.3% or less (excluding 0%). Also, if added over 0.2%, there is a concern that on-site weldability may be reduced, so less than 0.2% is desirable. If V + Mo + Cr is less than 0.2%, the desired strength cannot be obtained, and the effect is saturated even if added over 0.65%. Therefore, 0.2% ⁇ V + Mo + C r ⁇ 0.65%.
  • Cu is effective in improving corrosion resistance and hydrogen-induced cracking resistance. However, since the effect is saturated even if added over 0.3%, it was set to 0.3% or less (excluding 0%). Also, if added at 0.2% or more, there is a concern that embrittlement cracks occur during hot rolling and cause surface flaws, so less than 0.2% is desirable.
  • N i is a rolled structure (especially in slabs) Hardening structures that are harmful to low temperature toughness and sour resistance are rarely formed in the center segregation zone). Therefore, low temperature toughness has the effect of improving strength without degrading the local weldability. However, even if added over 0.3%, the effect is saturated, so it was set to 0.3% or less (excluding 0%). In addition, Cu has an effect of preventing hot embrittlement, so add 13 or more of Cu as a guide.
  • B has the effect of improving hardenability and making it easier to obtain a continuously cooled transformation structure. Furthermore, B enhances the hardenability improvement effect of Mo and also has the effect of synergistically increasing the hardenability in coexistence with Nb. Therefore, add as necessary. However, if it is less than 0.0 0 0 2%, it is insufficient to obtain the effect, and if it exceeds 0 0 0 3%, slab cracking occurs.
  • R E M is an element that becomes the starting point of destruction and makes it harmless by changing the form of non-metallic inclusions that degrade sour resistance.
  • R E M is an element that becomes the starting point of destruction and makes it harmless by changing the form of non-metallic inclusions that degrade sour resistance.
  • R E M is an element that becomes the starting point of destruction and makes it harmless by changing the form of non-metallic inclusions that degrade sour resistance.
  • R E M is an element that becomes the starting point of destruction and makes it harmless by changing the form of non-metallic inclusions that degrade sour resistance.
  • 0.005% there is no effect, and if added over 0.02%, a large amount of these oxides are formed and formed as clusters and coarse inclusions. Degradation of low temperature toughness of seam and adverse effect on local weldability
  • microstructure of the steel sheet in the present invention will be described in detail.
  • precipitates containing nanometer-sized Nb are densely dispersed in the above microstructure.
  • the diameter of the precipitate containing Nb was distributed between 0.5 and 5 nm, and the average diameter was 1 to 3 nm. Met.
  • the Nb-containing precipitates were distributed at a density of 1 to 50 0 XI 0 22 pieces Zm 3 , and an average density of 3 to 30 0 X 10 2 2 pieces / m 3 was obtained. If the average diameter of the precipitates containing Nb is less than 1 nm, the precipitation strengthening ability is not fully exhibited, and if it exceeds 3 nm, it becomes over-aged and the consistency with the parent phase is lost, resulting in the effect of precipitation strengthening. Decrease.
  • the average density of the precipitate containing Nb is less than 3 ⁇ 10 22 m 3 , the density is not sufficient for precipitation strengthening, and if it exceeds 3 ⁇ 10 22 Zm 3 , the low temperature toughness deteriorates.
  • the average is the arithmetic average of the number.
  • the composition of these nano-sized precipitates is mainly Nb, but T i, V, Mo, and Cr that form carbonitrides are also included. It is allowed to be included.
  • the 3D atom probe method uses FIB (focused ion beam) device Z FB 2 0 0 OA manufactured by Hitachi, Ltd., and uses a scanning beam of any shape to form a needle shape by electrolytic polishing. The part was made to be the tip of the needle. Taking advantage of the fact that contrast is generated in crystal grains with different orientations due to the SIM (scanning ion microscope) channeling phenomenon, the position including several grain boundaries was cut with an ion beam while observing.
  • the equipment used as a three-dimensional atom probe is an OTAP manufactured by CAM ECA, and the measurement conditions are a sample position temperature of about 70 K, a total probe voltage of 10 to 15 kV, and a pulse ratio of 25%. is there. Each sample was measured three times and the average value was used as the representative value.
  • the continuous cooling transformation structure in the present invention is an example.
  • a Miku port tissue containing one or two or more of completion had MA force ⁇ where ⁇ ° ⁇ , ⁇ ⁇ and a Q do not contain coarse carbides such as cement Yui DOO If the fraction is large, it can be expected to improve the absorbed energy, which is an index of ductile fracture stopping performance.
  • a small amount of MA may also be included, but the total amount should be 3% or less.
  • the microstructure is a continuous cooling transformation structure to reduce the effective grain size.
  • ⁇ ⁇ and Z or ⁇ which is the structure that forms the continuous cooling transformation structure.
  • the fraction of these micro-structures is 50% or more, there is a direct relationship with the fracture surface unit, which is considered to be the main influencing factor of cleaved fracture propagation in brittle fracture.
  • a certain effective crystal grain size is refined and low temperature toughness is improved.
  • the average equivalent circle diameter of the precipitate containing Ti nitride is 0.1 to 3 m, and more than 50% of the number of the equivalents. It is necessary to contain a complex oxide containing C a, T i and A 1. In other words, in order to obtain Q! B and / or a Q , which are the structures constituting the continuously cooled transformation structure, at a fraction of 50% or more, it is important to refine the austenite grain size before transformation. In order to do so, the average equivalent circle diameter of precipitates containing Ti nitride is 0.1 to 3 u rn (preferably 2 // m or less) and the density is 10 'to 10 3 there needs to be / mm 2.
  • the oxides of Ca, T 1 and A 1 that form these precipitation nuclei should be optimally dispersed.
  • the precipitate size and dispersion density of the precipitates containing Ti nitride are optimized, and the austenite grain size before transformation is controlled by the pinning effect, so that the grain growth is suppressed and kept fine. 1 Stain can be refined.
  • 50% or more of the number of precipitates containing Ti nitride should contain a composite oxide containing Ca, Ti and A1. It is permissible for the composite oxide to contain young thousands of Mg, Ce and Zr. The average here is the arithmetic average of the number.
  • the primary scouring by the converter or electric furnace is not particularly limited. That is, after discharging from the blast furnace, either hot metal dephosphorization or hot metal desulfurization and other hot metal pretreatment are performed, or A cold iron source such as scrap may be melted in an electric furnace or the like.
  • the secondary scouring process after the primary scouring is one of the most important manufacturing processes of the present invention.
  • the composite oxide containing Ca, Ti and A1 is finely dispersed in the steel during the deoxidation process. It is necessary to let This can be achieved for the first time by sequentially adding strong deoxidation elements from weak deoxidation elements in the deoxidation process (weak and strong deoxidation).
  • Weak and strong sequential deoxidation is a state in which weak deoxidation element oxide is reduced by adding strong deoxidation element to molten steel in which weak deoxidation element oxide exists. Applying the phenomenon that the oxide generated from the strong deoxidation element that is added when oxygen is released in the process becomes finer, T i, A l, strong deoxidation sequentially from the weak deoxidation element S i This is a deoxidation method that maximizes these effects by adding elemental Ca and deoxidizing elements in stages. This will be described below in order.
  • the amount of Si which is a weaker deoxidizing element than T i, is adjusted so that the dissolved oxygen concentration balanced with the amount of S i is 0.02 to 0.08%.
  • the Si concentration is 0.05%. Is less than 0.08%, and if over 0.2%, the dissolved oxygen concentration equilibrium with Si is less than 0.02%.
  • the Si concentration should be 0.05% or more and 0.2% or less, and the dissolved oxygen concentration should be 0.02% or more and 0.08% or less.
  • the final content is immediately adjusted to 0.005 to Add A 1 to 0.0 2%.
  • the Ti oxide formed with the passage of time after the T i input grows and agglomerates and floats, so the A 1 is input immediately.
  • the amount of A 1 input is such that the final content is less than 0.05%, the Ti oxide grows and agglomerates and floats.
  • the input amount of A 1 is such that the final content exceeds 0.02%, the Ti oxide is completely reduced, and finally Ca, Ti and A1 are combined. Insufficient complex oxide can be obtained.
  • Ca which is a stronger deoxidizing element than T i and A 1
  • Ca is preferably added within 5 minutes so that the final content becomes 0.03% to 0.03%.
  • these elements and other insufficient alloy component elements may be added as necessary.
  • the amount of Ca is such that the final content is less than 0.005%, a composite oxide containing C a, T i, and A 1 cannot be obtained sufficiently.
  • the oxide containing T i and A 1 is completely reduced to Ca, and the effect is lost.
  • the slab forging may be sent directly to a hot rolling mill as it is at high temperature.
  • reheating in a heating furnace may be followed by hot rolling.
  • direct rolling slab HCR: HO TC harge R o 1 1 ing
  • the slab is lightly reduced according to the required specifications.
  • Segregation such as Mn increases the hardenability of the segregated part, hardens the structure, and promotes hydrogen-induced cracking combined with the presence of inclusions.
  • the light pressure at the time of final solidification is applied to suppress the flow of the concentrated molten steel to the unsolidified portion in the center caused by the movement of the concentrated molten steel due to solidification shrinkage, etc. by compensating for the solidification shrinkage. Lightly reduce the amount of reduction while controlling the amount of reduction to match the shrinkage at the final setting position of the piece. Thereby, the center segregation can be reduced.
  • the specific conditions under light pressure are as follows: the forging speed (mZm in) and the roll speed at the location corresponding to the end of solidification where the center solid phase ratio is 0.3 to 0.7 are 250 to 36 mm.
  • the rolling speed represented by the product of the rolling reduction gradient (mm / m) is in the range of 0.7 to 1. I mmZmin. 0073
  • [% N b] and [% C] indicate the contents (mass%) of N b and C in the steel material, respectively.
  • This equation is the solubility product of N b C and indicates the solution temperature of N b C. If the temperature is lower than this temperature, the coarse precipitates containing N b generated during slab production will not dissolve sufficiently, In the subsequent rolling process, recovery of austenite wrinkles by Nb, recrystallization and suppression of grain growth, and the effect of grain refinement due to the delay of the rZ ⁇ transformation cannot be obtained. In addition, fine carbides are generated in the winding process, which is a feature of the hot-rolled steel sheet manufacturing process, and the effect of increasing the strength by precipitation strengthening cannot be obtained. However, if the heating is less than 1 100, the amount of scale-off is so small that the inclusions on the surface of the slab may not be removed along with the scale by subsequent descaling. desirable.
  • the grain size of austenite cocoon becomes coarse, and the former austenite grain in the subsequent controlled rolling becomes coarse, and after transformation, a granular microstructure is not obtained, and the effective crystal grain size is reduced.
  • the improvement effect of FA ⁇ ⁇ 85 due to the refinement effect cannot be expected. More desirably, it is 1 2 3 0 or less.
  • the slab heating time is kept for 20 minutes or more after reaching the temperature in order to sufficiently dissolve the precipitate containing Nb. If it is less than 20 minutes, coarse precipitates containing Nb produced during slab production are not sufficiently dissolved, and austenity recovery during hot rolling and recrystallization and grain growth are suppressed. However, the effect of grain refinement due to the delay of ⁇ ⁇ ⁇ transformation and the formation of fine carbides in the winding process, and the effect of improving the strength due to precipitation strengthening cannot be obtained.
  • the subsequent hot rolling process is usually composed of a rough rolling process consisting of several rolling mills including a reverse rolling mill and a finishing rolling process in which 6 to 7 rolling mills are arranged in tandem.
  • the rough rolling process has the advantage that the number of passes and the amount of reduction in each pass can be set freely, but the time between passes is long, and recovery / recrystallization between passes may occur.
  • the finishing rolling process is a tandem type, the number of passes is the same as the number of rolling mills, but the time between passes is short and it is easy to obtain a controlled rolling effect. Therefore, in order to realize excellent low temperature toughness, it is necessary to design a process that fully utilizes the characteristics of these rolling processes in addition to the steel components.
  • controlled rolling in the non-recrystallization temperature range may be performed after the rough rolling process. In the case of the left, if necessary, it may wait until the temperature falls to the non-recrystallization temperature range, or cooling with a cooling device may be performed. The latter is more desirable in terms of productivity because it can reduce waiting time.
  • the sheet bar may be joined between rough rolling and finish rolling, and finish rolling may be performed continuously. At that time, wind the coarse bar once in a coil shape, store it in a cover with a heat retaining function if necessary, and rewind it again. Bonding may be performed from
  • the rolling rate at each rolling pass which is mainly rolled in the recrystallization temperature range, is not limited in the present invention.
  • the rolling reduction in each pass of rough rolling is 10% or less, sufficient strain necessary for recrystallization is not introduced, grain growth occurs only by grain boundary migration, coarse grains are formed, and low temperature toughness is reduced. Since there is a concern of deterioration, it is desirable to perform the rolling reduction of more than 10% in each rolling pass in the recrystallization temperature range.
  • the reduction ratio of each reduction path in the recrystallization temperature region is 25% or more, dislocation cell walls are formed by repeating the introduction and recovery of dislocations during reduction, particularly in the low temperature region at the later stage.
  • Dynamic recrystallization occurs from subgrain boundaries to large angle boundaries.
  • grain growth occurs in a short time.
  • the low temperature toughness deteriorates due to the growth of grains and subsequent grain formation by non-recrystallization zone rolling. Therefore, it is desirable that the rolling reduction in each rolling pass in the recrystallization temperature range is less than 25%.
  • the finish rolling process rolling is performed in the non-recrystallization temperature range, but if the temperature at the end of rough rolling does not reach the non-recrystallization temperature range, the temperature is reduced to the non-recrystallization temperature range as necessary. You may wait for the time or, if necessary, cool with a cooling device between the rough Z finish rolling stands. The latter is more desirable because it can shorten the waiting time and thus improve productivity, as well as suppressing recrystallized grain growth and improving low-temperature toughness.
  • the total rolling reduction in the non-recrystallization temperature range is less than 65%, controlled rolling Since the old austenite grains become coarse, a uniform microstructure is not obtained after transformation, and the improvement effect of FATT 85 3 3 ⁇ 4 due to the effect of refining the effective crystal grain size cannot be expected, the total of the unrecrystallized temperature range
  • the rolling reduction should be 65% or more. In order to obtain further excellent low temperature toughness, 70% or more is desirable.
  • it exceeds 85% the dislocation density that becomes the core of ferrite transformation increases due to excessive rolling, and polygonal ferrite is mixed into the microstructure, and precipitation occurs due to ferrite transformation at high temperatures.
  • the total rolling reduction in the non-recrystallization temperature region is 85% or less.
  • the finish rolling finish temperature ends at 8 30 to 8 7 O t :.
  • the finish rolling finish temperature is 8 3 at the center of the plate thickness.
  • O t End.
  • the plate surface temperature is desirably 8 30 or more.
  • it is 870 or more, even if precipitates containing Ti nitride are optimally present in the steel, the austenite grain size becomes coarse due to recrystallization, and the low temperature toughness may deteriorate.
  • the rolling pass schedule in each finish rolling stand is not particularly limited, the effect of the present invention can be obtained.
  • Et al. The rolling reduction in the final stand is preferably less than 10%.
  • the Ar 3 transformation point temperature is simply expressed in relation to the steel composition by the following calculation formula, for example.
  • Mneq Mn + Cr + Cu + Mo + NiZ2 + 10 (Nb-0.0.02) +1: In the case of adding B.
  • the cooling start temperature is not particularly limited, but if cooling is started below the Ar 3 transformation point temperature, a large amount of polygonal ferrite is contained in the microstructure, and there is a concern that the strength may decrease, so cooling starts.
  • the temperature is preferably above the A r 3 transformation temperature.
  • the cooling rate in the temperature range from the start of cooling to 65 0 is set to 2 and is Z sec or more and 50 or sec or less.
  • the cooling rate is 2 and less than ec, a large amount of polygonal ferrite is contained in the microstructure, and there is a concern that the strength may be reduced.
  • a cooling rate of 50 to more than 5 6 there is a concern about plate warpage due to thermal strain, so 5 O / sec or less.
  • the cooling rate is set to 15 t: / sec or more. Furthermore, the steel composition is changed at 2 0: / sec or more. Therefore, it is possible to improve the strength without deteriorating the low temperature toughness, so the cooling rate is desirably 2 OX: / sec or more.
  • the cooling rate in the temperature range from 6 50 to winding may be air cooling or an equivalent cooling rate.
  • the average cooling rate from 6 50 to winding up is 5 Z sec or more because the precipitate does not become over-aged due to coarsening. It is desirable.
  • the winding process which is a feature of the hot-rolled steel sheet manufacturing process, is effectively utilized.
  • the cooling stop temperature and the coiling temperature should be in the range of 5 0 0 to 6 5 0 in the following temperature range. If the cooling is stopped above 6500 ° C and then wound up, the precipitate containing Nb becomes over-aged and the precipitation strengthening does not fully develop. In addition, coarse precipitates containing Nb are formed and become the starting point of fracture, and there is a possibility that ductile fracture stopping ability, low temperature toughness and sour resistance are deteriorated.
  • the steels A to R having the chemical components shown in Table 2 were melted in a converter and subjected to secondary scouring with CAS or RH.
  • the deoxidation treatment is performed in the secondary scouring process, and as shown in Table 1, the dissolved oxygen in the molten steel is adjusted with the Si concentration before introducing T i, and then successively with T i, Al and Ca. Deoxidized .
  • These steels were either directly cast or reheated after continuous forging, and were rolled down to a sheet thickness of 20.4 mm by finish rolling following rough rolling, and wound after cooling on a runout table. However, the indication of chemical composition in the table is mass%.
  • N * means the value of N— 1 4 4 8 XT 1.
  • the ⁇ holding time '' is the holding time at the actual slab heating temperature, and ⁇ cooling between passes '' is not recrystallized, and is done for the purpose of shortening the temperature waiting time that occurs before rolling in the temperature range.
  • the total reduction rate of the unrecrystallized zone is the total reduction rate of the rolling performed in the non-recrystallization temperature range, and FT is the finish rolling finish temperature.
  • "r3 transformation point temperature” is calculated A r3 transformation point temperature, "cooling rate up to 6500” is the average cooling rate when passing through the temperature range from the cooling start temperature to 6500 “CT” indicates the coiling temperature.
  • Table 4 shows the materials of the steel sheet thus obtained. The survey method is shown below.
  • the microstructure was examined by grinding a sample cut from the end of the steel plate width direction from the 14 W or 34 W position of the plate width (W) to the cross section in the rolling direction, and etching using a Nital reagent. This was carried out with a photograph of the field of view at 1 Z 2 t of the plate thickness observed at a magnification of 200 to 500 times using an optical microscope.
  • the average equivalent circle diameter of the precipitate containing Ti nitride is the same sample as above, and the portion at 1/4 t of the plate thickness (t) from the surface of the steel plate is 100 times larger using an optical microscope.
  • a value obtained from an image processing apparatus or the like from a microstructure photograph of 20 or more fields of view observed at a magnification is adopted and defined as an average value thereof.
  • the ratio of the composite oxide containing Ca, Ti and A1 which is the nucleus of the precipitate containing Ti nitride, is the nucleus of the precipitate containing Ti nitride observed in the micrograph above. Is defined as (number of precipitates containing Ti nitride containing complex oxide as core) / (total number of precipitates containing Ti nitride observed)
  • the compound oxide composition of the nucleus is specified by analyzing one or more in each field of view, and energy dispersive X-ray spectroscopy (Energy Dispersive X-ray Spectroscope: EDS) and electron energy loss spectroscopy (E1 ectron Energy Loss Spectroscope: EELS).
  • the tensile test was carried out according to the method of JISZ 2 2 4 1 by cutting out the No. 5 test piece described in JISZ 2 2 0 1 from the C direction.
  • Shal The P-Impact test was carried out according to the method of JISZ 2 2 4 2 by cutting out a test piece described in JISZ 2 220 from the C direction at the center of the plate thickness.
  • DWT T Drop W eight Tear Test
  • a strip-shaped test piece of 300 mmL X 75 mmWX plate thickness (t) mm is cut out from the C direction, and a 5 mm press notch is applied thereto.
  • the test piece was made and carried out.
  • the HIC test was conducted according to NA CE TM 0 2 8 4.
  • microstructure is the microstructure of the part from the steel sheet surface to the thickness of 1 Z 2 t.
  • Zw is a continuous cooling transformation structure, ⁇ . It is defined as a microstructure containing one or more of ⁇ MA, Q , r r and MA.
  • PF indicates polygonal ferrite
  • Processing F indicates processed ferrite
  • P indicates perlite
  • B + a Q fraction indicates “Granularbainiticferrit e”
  • Precipitation-strengthened particle size refers to the size of precipitates containing Nb effective for precipitation strengthening, as measured by the three-dimensional atom probe method.
  • Precipitation strengthening particle density refers to the density of precipitates containing Nb, which is effective for precipitation strengthening, as measured by the three-dimensional atom probe method.
  • Average equivalent circle diameter refers to the average equivalent circle diameter of precipitates containing Ti nitride measured by the above method.
  • the “content ratio” indicates the number ratio of the precipitate containing the Ti nitride including the core complex oxide.
  • the “composite oxide composition” is the result of EELS analysis, where “ ⁇ ” is indicated when each element is detected, and “X” is indicated otherwise.
  • “Tensile test” The result shows the result of C direction JIS No. 5 test piece.
  • “F AT T 85 3 ⁇ 4 ” is a ductile fracture test in the DWT T test. Indicates the test temperature at which the area ratio is 85%.
  • “Absorbed energy v E— 20 t; ” indicates the absorbed energy obtained at 120 in the Charpy impact test.
  • “Fracture surface unit” means the average value of the fracture surface units obtained by fracture surface measurement at 5 magnifications or more by S ⁇ ⁇ at a magnification of about 100 times.
  • “Strength—V ⁇ balance” is expressed by the product of “TS” and “Absorbed energy V ⁇ — 2 o ;”.
  • “CAR” indicates the area ratio of cracks determined by the HIC test.
  • PF Polygonal ferrite
  • P Pearlite
  • B + a Q Granular bainitic ferdte ( ⁇ ⁇ ) and Quasi-polygonal ferrite (a q )
  • steel Nos. 1, 5, 6, 1 6, 1 7, 2 1, 2 2, 24, 25, 28 are 10 steels containing a predetermined amount of steel components
  • the microstructure is a continuous cooling transformation structure in which precipitates containing Nb having an average diameter of 1 to 3 nm are dispersed at an average density of 3 to 30 ⁇ 10 22 particles / m 3 , and ⁇ B and / or a Q is the average equivalent circular diameter of 0..
  • Steels other than the above are outside the scope of the present invention for the following reasons.
  • Steel No. 2 has a heating temperature outside the scope of claim 4 of the present invention, so the average diameter (precipitation strengthening particle diameter) and average density (precipitation strengthening particle density) of the precipitate containing N b are within the scope of claim 1 Since the effect of sufficient precipitation strengthening cannot be obtained, the strength-VE balance is low.
  • the heating temperature is outside the range of claim 4 of the present invention, so that the prior austenite grains become coarse, a desirable continuous cooling transformation structure cannot be obtained after transformation, and FATT 85 ° is high temperature.
  • Steel No. 1 2 is the core of the deposit containing Ti nitride because the time until the introduction of A 1 after Ti deoxidation is outside the scope of claim 4 of the present invention in the melting process. Due to insufficient oxide dispersion, the target nitride diameter of claim 1 exceeds 3 m and FATT 85 is hot. 0111
  • API 5 L 1 X 80 High-strength linepipe can be manufactured. Furthermore, the production method of the present invention makes it possible to stably produce a large amount of hot-rolled steel sheets for ERW steel pipes and spiral steel pipes at low cost. Therefore, the present invention makes it easier to lay line pipes under harsh conditions than before, and is convinced that it will greatly contribute to the construction of a line pipe network that holds the key to global energy distribution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Steel (AREA)
  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

 本発明は、API5L-X80規格以上の高強度で、且つ低温靱性と延性破壊停止性能を両立したラインパイプ用熱延鋼板(ホットコイル)及びその製造方法を提供することを目的とする。 そのため、本発明の熱延鋼板は、成分組成がC、Si、Mn、Al、N、Nb、Ti、Ca、V、Mo、Cr、Cu、Niを所定の範囲で含有し、残部Fe及び不可避的不純物からなるものであり、ミクロ組織が連続冷却変態組織であり、その連続冷却変態組織中に、Nbを含む析出物が平均径1~3 nmで且つ平均密度3~30×1022個/mで分散して含まれ、粒状ベイニティックフェライト及び/又は準ポリゴナルフェライトが分率で50%以上含まれ、さらに、Ti窒化物を含む析出物が含まれており、その平均円相当径が0.1~3μmで、且つその個数で50%以上にCaとTiとAlを含む複合酸化物が含まれるものとする。

Description

発明の名称 : 低温靭性と延性破壊停止性能に優れるライ ンパイプ用 高強度熱延鋼板およびその製造方法
技術分野
000 1
本発明は低温靭性と延性破壊停止性能に優れるライ ンパイプ用途 高強度熱延鋼板およびその製造方法に関するものである。
背景技術
0002
近年、 原油、 天然ガスなどエネルギー資源の開発域は、 北海、 シ ベリア、 北米、 サハリ ンなどの寒冷地、 また、 北海、 メキシコ湾、 黒海、 地中海、 イ ン ド洋などの深海へと、 その自然環境の苛酷な地 域に進展してきた。 また、 地球環境重視の観点から天然ガス開発が 増加すると同時に、 パイプライ ンシステムの経済性の観点から鋼材 重量の低減や操業圧力の高圧化が求められている。 これらの環境条 件の変化に対応してライ ンパイプに要求される特性はますます高度 化かつ多様化しており、 大きく分けると、 ( a ) 厚肉 高強度化、 ( b ) 高靭性化、 ( c ) 現地溶接性の向上に伴う低炭素当量 (C e q ) 化、 ( d ) 耐食性の厳格化、 ( e ) 凍土、 地震 · 断層地帯での 高変形性能の要求、 である。 また、 これらの特性は使用環境に従い 、 複合して要求されるのが普通である。
0003
さ らに、 最近の原油 · 天然ガス需要の増大を背景に、 これまで採 算性がないために開発を見送っていた遠隔地や自然環境の苛酷な地 域での開発が本格化しよう としている。 特に原油 · 天然ガスを長距 離輸送するパイプラインに使用するライ ンパイプは、 輸送効率向上 のための厚肉 · 高強度化に加えて、 寒冷地での使用に耐えうる高靭 性化が強く求められており、 これら要求特性の両立が技術的な課題 となっている。
0004
寒冷地帯でのライ ンパイプでは破壊事故が懸念される。 ライ ンパ イブの内圧による破壊様式は脆性破壊と延性破壊に大別され、 前者 の脆性破壊の伝播停止は、 D W T T ( D r o p W e i g h t T e a r T e s t ) 試験 (衝撃試験機で試験片を破断した時の延性 破面率と衝撃吸収エネルギーで低温域での鋼の靭性を評価する) に より、 後者の延性破壊の伝播停止はシャルピー衝撃試験での衝撃吸 収エネルギーにより評価できる。 特に天然ガスパイプライ ン用鋼管 では、 内圧が高く、 破裂後の減圧波の速度より もき裂の伝播速度が 速くなるため低温靭性 (耐脆性破壊性) のみでなく、 延性破壊防止 の観点から高い衝撃吸収エネルギーを求めるプロジェク トが増加し ており、 脆性破壊と延性破壊の停止特性の両立が課題となっている
0005
一方、 ライ ンパイプ用鋼管はその製造プロセスにより、 シームレ ス鋼管、 U O E鋼管、 電縫鋼管およびスパイ ラル鋼管と分類でき、 その用途、 サイズ等により選択がなされる。 シームレス鋼管を除い て、 何れも板状の鋼板 · 鋼帯を管状に成形された後に溶接により シ ームすることで鋼管として製品化している。 さ らに、 これら溶接鋼 管は素材となる鋼板の種類で分類できる。 比較的板厚の薄い熱延鋼 板 (ホッ トコイル) を用いるのは電縫鋼管およびスパイ ラル鋼管、 板厚の厚い厚板材 (プレー ト) を用いるのは U O E鋼管である。 高 強度、 大径、 厚肉な用途には後者の U〇 E鋼管を用いるのが一般的 である。 しかし、 コス ト、 納期の面で前者の熱延鋼板を素材とする 電縫鋼管およびスパイ ラル鋼管が有利であり、 その高強度化、 大径 化、 厚肉化の要求が増している。
0006
UO E鋼管においては X I 2 0規格に相当する高強度鋼管の製造 技術が開示されている (非特許文献 1参照) 。
上記技術は、 厚板 (プレー ト) を素材とすることを前提としてお り、 その高強度と厚肉化を両立させるためには、 厚板製造工程の特 徴である途中水冷停止型直接焼入れ法 ( I D Q : I n t e r r u p t e d D i r e c t Q u e n c h ) を用い高冷却速度、 低冷却 停止温度にて達成されたもので、 特に強度を担保するために焼き入 れ強化 (組織強化) が活用されているのが特徴である。
0007
しかし、 I D Qの技術は、 電縫鋼管およびスパイ ラル鋼管の素材 である熱延鋼板には適用できない。 熱延鋼板は、 その製造過程で巻 取り工程があり、 巻取り装置 (コイ ラ一) の設備能力の制約から厚 肉材を低温で巻き取ることが困難であるため、 焼き入れ強化に必要 な低温冷却停止が不可能である。 従って、 焼き入れ強化による強度 の担保は難しい。
0008
一方、 特許文献 1 には、 高強度、 厚肉化と低温靭性を両立させる 熱延鋼板の技術として、 精鍊時に C a、 S i を添加することで介在 物を球状化し、 さ らに N b、 T i 、 M o、 N i の強化元素と結晶粒 微細化効果のある Vを添加し、 低温圧延と低温巻取り を組み合わせ る技術が開示されている。 しかしながら、 この技術は、 仕上げ圧延 温度が 7 9 0〜 8 3 0 と比較的低温であるため、 セパレ一シヨ ン の発生による吸収エネルギー低下や、 低温圧延により圧延荷重が高 くなるため操業安定性に課題が残る。
0009
特許文献 2 には、 現地溶接性を考慮し、 強度、 低温靭性と共に優 れた熱延鋼板の技術として、 P C M値を限定して溶接部の硬度上昇 を抑制すると共に、 ミクロ組織をべィニティ ックフェライ ト単相と し、 さ らに N bの析出割合を限定する技術が開示されている。
しかしながら、 この技術も微細な組織を得るために実質的に低温 圧延が必要であり、 セパレーショ ンの発生による吸収エネルギー低 下や、 低温圧延により圧延荷重が高くなるため操業安定性に課題が 残る。
0010
特許文献 3 には、 ミクロ組織のフェライ ト面積率を 1〜 5 %もし くは 5 %超〜 6 0 %と し、 圧延方向を軸として圧延面から 4 5 ° 回 転させた断面の ( 1 0 0 ) の集積度が 3以下とすることで高速延性 破壊特性に優れる超高強度鋼板を得る技術が開示されている。
しかしながら、 この技術は厚板 (プレー ト) を素材とする U O E 鋼管を前提としており、 熱延鋼板を対象とした技術ではない。 先行技術文献
特許文献
001 1
特許文献 1 : 特表 2 0 0 5 - 5 0 3 4 8 3号公報
特許文献 2 : 特開 2 0 0 4 一 3 1 5 9 5 7号公報
特許文献 3 : 特開 2 0 0 5 一 1 4 6 4 0 7号公報
非特許文献
0012 非特許文献 1 : 新日鉄技報 N o . 3 8 0 2 0 0 4 7 0ベー
ン 発明の概要
発明が解決しょうとする課題
0013
本発明は、 厳しい耐破壊特性が要求される地域においてもその使 用に耐えうるだけでなく、 例えばハーフインチ ( 1 2. 7 mm) 超 の比較的厚い板厚でも、 A P I 5 L - X 8 0規格以上の高強度かつ 低温靭性と延性破壊停止性能が両立したラインパイプ用の熱延鋼板 (ホッ トコイル) およびその鋼板を安価に、 且つ安定して製造でき る方法を提供することを目的とするものである。 課題を解決するための手段
0014
本発明は、 上記課題を解決するためになされたものであり、 その 要旨は 、 以下のとおりである
( 1 ) 質量%にて、
C = 0 . 0 2 〜 0. 0 6 % 、
S i = 0 . 0 5 〜 0. 5 % 、
M n = 1 〜 2 % 、
P ≤ 0 . 0 3 %、
S ≤ 0 . 0 0 5 %、
〇 = 0 . 0 0 0 5〜 0. 0 0 3 %
A 1 = 0 . 0 0 5〜 0 . 0 3 % 、
N 0 . 0 0 1 5〜 0. 0 0 6 %
X b 0 . 0 5 〜 0. 1 2 % 、 T i = 「
0 . 0 0 o 0 0 2 % 、
C a = 0 . 0 0 0 5 0 • 0 0 3 %、
を含有し 且つ
N - 1 4 Z 4 8 X T i > 0 % 、
N b - 9 3 / 1 4 X ( N ― 1 4 / 4 8 X T i )
さ らに 、
V ≤ 0 • 3 % ( 0 %を含まない。 ) 、
M o≤ 0 . 3 % ( 0 を含まない。 ) 、
C r≤ 0 . 3 % ( 0 %を含まない。 ) 、
を含有し 、 且つ
0. 2 % ≤ V + M o + C r < 0 . 6 5 %であり
C u≤ 0 . 3 % ( 0 を含まない。 ) 、
N i ≤ 0 . 3 % ( 0 を含まない。 ) 、
を含有し 、 且つ
0. 1 % ≤ C u + N i < 0 5 %であり、
残部が F e及び不可避的不純物からなる鋼板であって、
そのミクロ組織が連続冷却変態組織であり、 該連続冷却変態組織中 に、
N bを含む析出物が平均径 1〜 3 n mで且つ平均密度 3〜 3 0 X I 022個ノ m3で分散して含まれ、
粒状べィニティ ックフェライ ト (G r a n u 1 a r b a i n i t i c f e r r i t e ) aBおよび Zまたは準ポリゴナルフェラ ィ 卜 (Q u a s i — p o l y g o n a l f e r r i t e ) 分率で 5 0 %以上含まれ、
さ らに、 T i 窒化物を含む析出物が含まれており、
該 T i 窒化物を含む析出物が平均円相当径 0. 1〜 3 mであり、 且つその個数で 5 0 %以上に C a と T i と A 1 を含む複合酸化物を 含有することを特徴とする低温靭性と延性破壊停止性能に優れるラ ィ ンパイプ用高強度熱延鋼。
0015
( 2 ) さ らに質量%にて、
B = 0 . 0 0 0 2 〜 0 . 0 0 3 %、
を含有することを特徴とする ( 1 ) に記載の低温靭性と延性破壊停 止性能に優れるライ ンパイプ用高強度熱延鋼板。
0016
( 3 ) さ らに質量%にて 、
R E M = 0 . 0 0 0 5 〜 0 . 0 2 % 、
を含有することを特徴とする ( 1 ) または ( 2 ) のいずれか 1項に 記載の低温靭性と延性破壊停止性能に優れるライ ンパイプ用高強度 熱延鋼板。
0017
( 4 ) 請求項 1 〜 3 のいずれか 1項に記載の成分を有する熱延 鋼板を得るための溶鋼を調整する際に 、 S 1 濃度が 0 . 0 5 〜 0 .
2 %、 溶存酸素濃度が 0 . 0 0 2 〜 0 0 0 8 %になるように調整
した溶鋼中に、 最終含有量が 0 . 0 0 o 〜 0 . 3 %となる範囲で T i を添加して脱酸した後、 5分以内に最終含有量が 0 . 0 0 5 〜 0
. 0 2 %となる A 1 を添加し 、 さ らに最終含有量が 0 . 0 0 0 5 〜
0 . 0 0 3 %となる C aを添加し、 その後、 不足する合金成分元素 を添加して凝固させた铸片を冷却後、 該铸片を式 ( 1 ) より算出す る S R T (V) 以上、 1 2 6 0で以下の温度域に加熱し、 さらに当 該温度域で 2 0分以上保持し、 続く熱間圧延にて未再結晶温度域の 合計圧下率を 6 5 %〜 8 5 %とする圧延を 8 3 0 〜 8 7 0での温 度域で終了した後、 6 5 0 までの温度域を 2で/ s e c以上 5 0 °C/ s e c以下の冷却速度で冷却し、 5 0 0で以上 6 5 0 以下で 巻き取ることを特徴とする低温靭性と延性破壊停止性能に優れるラ イ ンパイプ用高強度熱延鋼板の製造方法。
S R T (V.) = 6 6 7 0 / ( 2 . 2 6 — l o g ( [ % N b ) X 〔 % C ] ) ) - 2 7 3 · · · ( 1 ) ここで、 〔% N b〕 および 〔% C〕 は、 それぞれ鋼材中の N bおよ び Cの含有量 (質量%) を示す。
0018
( 5 ) 前記未再結晶温度域の圧延の前に冷却を行う ことを特徴 とする ( 4 ) に記載の低温靭性と延性破壊停止性能に優れるライ ン パイプ用高強度熱延鋼板の製造方法。
0019
( 6 ) 前記铸片を連続铸造で製造する際に、 铸片の最終凝固位 置における凝固収縮に見合うように圧下量を制御しながら軽圧下す ることを特徴とする ( 4 ) または ( 5 ) に記載の低温靭性と延性破 壊停止性能に優れるライ ンパイプ用高強度熱延鋼板の製造方法。 発明の効果
0020
本発明の熱延鋼板を電縫鋼管およびスパイ ラル鋼管用熱延鋼板に 用いることにより厳しい耐破壊特性が要求される寒冷地において、 例えばハーフイ ンチ ( 1 2 . 7 mm) 超の板厚でも A P I 5 L - X 8 0規格以上の高強度なライ ンパイプが製造可能となるばかりでな く、 本発明の製造方法により、 電縫鋼管およびスパイ ラル鋼管用熱 延鋼板を安価に大量に得られる。 図面の簡単な説明 0021
図 1 は、 T i 窒化物を含む析出物径と DWT T脆性破面単位の関 係を表す図である。 発明を実施するための形態
0022
本発明者らは、 まず、 熱延鋼板 (ホッ トコイル) の引張強度、 靭 性 (特にシャルピー吸収エネルギー ( V E _ 20 ) の低下と D W T T の延性破面率が 8 5 %となる温度 ( F AT T85 ¾) ) と鋼板のミク 口組織等との関係を調査した。 調査は、 A P I 5 L— X 8 0規格を 想定して行った。
その結果、 本発明者らは、 延性破壊停止性能の指標であるシャル ピー吸収エネルギー ( v E_2 {)) と C添加量の関係を整理すると、 ほぼ同一強度であっても、 C添加量が増加するほどシャルピー吸収 エネルギー (v E_2 D) は低下する傾向を示すことを見出した。 0023
そこで、 これら v E_2。とミクロ組織の関係を詳細に調査した。 その結果、 v E_2 Qと、 パーライ トに代表されるセメン夕イ ト等の 粗大な炭化物を含むミクロ組織の分率とにょい相関が認められた。 つまり、 そのようなミクロ組織が増加すると、 v E_2 Dが低下する 傾向が認められた。 また、 そのようなミクロ組織は C添加量の増加 と共に増加傾向を示した。 逆にセメンタイ ト等の粗大な炭化物を含 むミクロ組織の分率の減少に伴い連続冷却変態組織 ( Z w) の分率 が相対的に増加していた。
0024
連続冷却変態組織 ( Z w) とは、 日本鉄鋼協会基礎研究会べイナ ィ ト調査研究部会/編 ; 低炭素鋼のペイナイ ト組織と変態挙動に関 する最近の研究一べイナイ ト調査研究部会最終報告書一 ( 1 9 9 4 年 日本鉄鋼協会) に記載されているように、 拡散的機構により生 成するポリ ゴナルフェライ トゃパ一ライ トを含むミクロ組織と無拡 散でせん断的機構により生成するマルテンサイ トの中間段階にある 変態組織とで定義されるミクロ組織である。
0025
すなわち、 連続冷却変態組織 ( Z w) は、 光学顕微鏡観察組織と して上記参考文献 1 2 5〜 1 2 7ページにあるように、 そのミクロ 組織は主にべィニティ ックフェライ ト (B a i n i t i c f e r r i t e ) ( a ° B) 、 粒状べィニティ ックフェライ ト (G r a n u 1 a r b a i n i t i c f e r r i t e ) ( α 、 Φ不リ ゴナ Jレフエラィ 卜 (Q u a s i — p o l y g o n a l f e r r i t e ) ( aQ) から構成され、 さ らに少量の残留オーステナイ ト ( r r ) 、 マルテンサイ ト—オーステナイ ト (M a r t e n s i t e - a u s t e n i t e ) (MA) を含むミクロ組織であると定義さ れている。 aQとは、 ポリ ゴナルフェライ ト ( P F) と伺様にエツ チングにより内部構造が現出しないが、 形状がァシユキユラ一であ り P Fとは明確に区別される。 ここでは、 対象とする結晶粒の周囲 長さ l Q、 その円相当径を d qとするとそれらの比 ( l d / d q ) が 1 q d Q≥ 3. 5 を満たす粒が a Qである。
ミク口組織の分率とは上記連続冷却変態組織のミクロ組織におけ る面積分率で定義される。
0026
この連続冷却変態組織は、 C添加量を減じた場合に強度を担保す るため添加した M n、 N b、 V、 M o、 C r、 C u、 N i 等の強化 元素が焼き入れ性を向上させたために生成したものである。 ミクロ 組織が連続冷却変態組織である場合は、 ミクロ組織中にセメンタイ ト等の粗大な炭化物が含まれないために、 延性破壊停止性能の指標 であるシャルピー吸収エネルギー ( V E _ 2 D ) が向上したと推定さ れる。
0027
一方、 低温靭性の指標である DWT T試験の延性破面率が 8 5 % となる温度 (以下 F AT T85¾と称す) は C添加量との明確な相関 は認められなかった。 また、 ミクロ組織が連続冷却変態組織でも必 ずしも F AT T85 は向上しなかった。 そこで、 DWT T試験後の 破断面を詳細に観察したところ、 F A T T85 ¾が良好なものは、 脆 性破壊したへき開破面の破面単位が細かい傾向を示した。 特に、 破 面単位が円相当径で 3 0 z m以下であると F AT T85 が良好とな る傾向を示した。
0028
そこで、 発明者らは連続冷却変態組織を構成するミクロ組織と低 温靭性の指標である F AT T85¾の関係について詳細に検討した。 すると、 連続冷却変態組織を構成する組織である G r a n u 1 a r b a i n i t i c f e r r i t e ( a B ) または Q u a s i ― p o l y o n a l f e r r i t e ( α α ) の分率が増加し、 分 率が 5 0 %以上になると破面単位が円相当径で 3 0 ^m以下となり 、 F A T T85 ¾が良好な傾向を示すことが認められた。 逆に、 B a i n i t i c f e r r i t e ( a ° B) の分率が増加すると破面 単位が粗大化し F A T T85 が劣化する傾向が認められた。
0029
一般に、 連続冷却変態組織を構成する組織である B a i n i t i c f e r r i t e ( a ° B ) は、 旧オーステナイ ト粒界で分け隔 てられた粒界内で、 さらに結晶方位が同一方向を向いている複数の 領域に区分された状態となる。 これをパケッ トと言い、 破面単位と 直接関係のある有効結晶粒径はこのバケツ トサイズと対応がある。 すなわち、 変態前のオーステナイ ト粒が粗大であるとバケツ トサイ ズも粗大となり、 有効結晶粒径が粗大化し、 破面単位が粗大化して
F AT T85 ¾が劣化すると推定される。
0030
G r a n u l a r b a i n i t i c f e r r i t e ( a B は、 拡散変態の中でも比較的大きな単位でせん断的に生成する B a i n i t i c f e r r i t e ( ひ 。 B) に比べより拡散的変態で 得られるミクロ組織である。 Q u a s i - p o 1 y g o n a 1 f e r r i t e ( a Q ) は、 それよりもさらに拡散的変態で得られる ミクロ組織である。 もともとオーステナイ ト粒界で分け隔てられた 粒界内で結晶方位が同一方向を向いている複数の領域に区分された バケツ 卜ではなく、 変態後の粒そのものが多方位である G r a n u 1 a r b a i n i t i c f e r r i t e ( aB) 'た i Q u a s i — p o l y g o n a l f e r r i t e ( α α ) であるため、 破面単位と直接関係のある有効結晶粒径が、 そのものの粒径と対応 する。 このため、 破面単位が細粒化し、 F A Τ Τ 85 ¾が向上したと 推定される。
0031
発明者らは、 連続冷却変態組織を構成する組織である G r a n u 1 a r b a i n i t i c f e r r i t e ( a B ) まに【¾Q u a s i — p o l y g o n a l f e r r i t e ( o:„ ) の分率力 5 0 %以上となる鋼成分および製造プロセスについて更に詳細な検討を 行なった。
0032
G r n u l a r b a i n i t i c f e r r i t e ( α B または Q u a s i — p o l y g o n a l f e r r i t e ( α。) の分率を増加させるためには、 これらミクロ組織の変態核となるォ ーステナイ ト結晶粒界を増加させることが有効なので、 変態前のォ ーステナイ ト粒を細粒化する必要がある。 一般にオーステナイ ト粒 を細粒化するためには、 制御圧延 (TM C P ) 効果を高める N b等 のソリュート ドラッグもしくはピンニング元素の添加が有効である 。 しかし、 上記、 破面単位とそれに起因する F AT T85 の変化は 、 同じような N b含有量でも認められた。 従って、 N b等のソリュ ート ドラッグもしくはピンニング元素の添加では、 変態前のオース テナイ ト粒を十分に細粒化することはできない。
0033
より詳細にミクロ組織を調査したところ、 DWT T試験後の破面 単位と T i 窒化物を含む析出物の怪にはよい相関が認められた。 T i 窒化物を含む析出物の怪の平均円相当径が 0. l〜 3 // mである と D W T T試験後の破面単位が細粒化し、 F A T T 85 が明らかに 向上する傾向が確認された。
0034
また、 T i 窒化物を含む析出物の怪および分散密度は、 溶製工程 での脱酸制御により制御できることを見出した。 すなわち、 S i の 濃度と溶存酸素濃度を最適に調整した溶鋼に T i を添加して脱酸し た後に A 1 を添加し、 さらに C aを添加するという順序のもののみ が、 丁 1窒化物を含む析出物の分散密度で 1 01〜 1 03個 1111112 の範囲となり、 F A T T 85 ¾が良好であることを見出した。
0035
さらに、 このように最適制御が実施された場合、 T i 窒化物を含 む析出物は、 その個数で 5割以上で、 C aと T i と A 1 を含む複合 酸化物を含有することが分かった。 そして、 T i 窒化物を含む析出 物の析出核となるこれら酸化物の最適な分散により、 T i窒化物を 含む析出物の析出サイズ、 分散密度が最適化され、 変態前のオース テナイ ト粒径がそのピンニング効果により粒成長が抑制されるので 細粒のまま保たれ、 その細粒であるオーステナイ トから変態した G r a n u 1 a r b a i n i t i c f e r r i t e ( a B ) また は Q u .a s i — p o l y g o n a l f e r r i t e ( aQ) の分 率が 5 0 %以上となると低温靭性の指標である F AT T85 ¾が良好 となることを新たに知見した。
0036
これは、 上記のような脱酸制御を実施すると C aと T i と A 1 を 含む複合酸化物が、 酸化物総数の 5割以上になり、 これら微細な酸 化物が高濃度に分散する。 これら分散した微細酸化物を核生成サイ トとして析出した T i 窒化物を含む析出物の平均円相当径が 0. 1 〜 3 mとなり、 分散密度とサイズのバランスが最適化され、 ピン ニング効果が最大限に発現し、 変態前のオーステナイ ト粒径の細粒 化効果が最大限になったと推定される。 なお、 複合酸化物に若千の M g、 C e、 Z rが含まれることは許容される。
0037
続いて、 本発明の化学成分の限定理由について説明する。 ここで 成分についての%は質量%を意味する。
Cは、 目的とする強度 (A P I 5 L-X 8 0規格で要求されてい る強度) やミクロ組織を得るために必要な元素である。 ただし、 0 . 0 2 %未満では必要な強度を得ることが出来ず、 0. 0 6 %超添 加すると破壊の起点となる炭化物が多く形成されるようになり靭性 を劣化されるばかりでなく、 現地溶接性が著しく劣化する。 従って 、 Cの添加量は 0. 0 2 %以上 0. 0 6 %以下とする。 また、 圧延 後の冷却において冷却速度によらず均質な強度を得るためには 0. 0 5 %以下が望ましい。 0038
S i は、 破壊の起点となる炭化物の析出を抑制する効果がある。 そのため 0. 0 5 %以上添加する。 しかし、 0. 5 %超添加すると 現地での溶接性が劣化する。 現地溶接性の観点で汎用性を考慮する と 0. 3 %以下が望ましい。 さらに 0. 1 5 %超ではタイガース ト ライプ状のスケール模様を発生させ表面の美観が損なわれる恐れが あるので、 望ましくは、 その上限を 0. 1 5 %としたい。
0039
M nは、 固溶強化元素である。 また、 オーステナイ ト域温度を低 温側に拡大させ圧延終了後の冷却中に、 本発明ミクロ組織の構成要 件の一つである連続冷却変態組織を得やすくする効果がある。 これ ら効果を得るために 1 %以上添加する。 しかしながら、 M nは 2 % 超添加してもその効果が飽和するのでその上限を 2 %とする。 また 、 M nは連続铸造鋼片の中心偏析を助長し、 破壊の起点となる硬質 相を形成させるので 1. 8 %以下とすることが望ましい。
0040
Pは、 不純物であり低いほど望ましく、 0. 0 3 %超含有すると 連続铸造鋼片の中心部に偏祈し、 粒界破壊を起こし低温靭性を著し く低下させるので、 0. 0 3 %以下とする。 さらに Pは、 造管およ び現地での溶接性に悪影響を及ぼすのでこれらを考慮すると 0. 0 1 5 %以下が望ましい。
0041
Sは、 不純物であり熱間圧延時の割れを引き起こすばかりでなく 、 多すぎると低温靭性を劣化させる。 従って、 0. 0 0 5 %以下と する。 さらに、 Sは連続铸造鋼片の中心付近に偏祈し、 圧延後に伸 張した M n Sを形成し水素誘起割れの起点となるばかりでなく、 二 枚板割れ等の擬似セパレ一シヨ ンの発生も懸念される。 従って、 耐 サワー性を考慮すると 0 . 0 0 1 %以下が望ましい。
0042
Oは、 溶鋼脱酸時に微細な酸化物を多数分散させるために必要な 元素であるので 0 . 0 0 0 5 %以上添加するが、 多すぎると鋼中で 破壊の起点となる粗大な酸化物を形成し、 脆性破壊や水素誘起割れ を劣化させので、 0 . 0 0 3 %以下とする。 さらに、 現地溶接性の 観点からは、 0 . 0 0 2 %以下が望ましい。
0043
A 1 は、 溶鋼脱酸時に微細な酸化物を多数分散させるために必要 な元素である。 その効果を得るためには 0 . 0 0 5 %以上添加する 。 一方、 過剰に添加するとその効果が失われるため、 その上限を 0 . 0 3 %とする。
0044
N bは、 本発明において最も重要な元素の一つである。 N bは固 溶状態でのドラッギング効果および Zまたは炭窒化析出物としての ピンニング効果により、 圧延中もしくは圧延後のオーステナイ トの 回復 · 再結晶および粒成長を抑制し、 有効結晶粒径を細粒化し、 脆 性破壊のき裂伝播における破面単位を小さくすることで低温靱性を 向上させる効果を有する。 さらに、 熱延鋼板製造工程の特徴である 巻取り工程において、 微細な炭化物を生成し、 その析出強化により 強度の向上に寄与する。 加えて、 N bはァ / α変態を遅延させ、 変 態温度を低下させることで比較的遅い冷却速度においても変態後の ミクロ組織を安定的に連続冷却変態組織とする効果がある。 ただし 、 これらの効果を得るためには少なく とも 0 . 0 5 %以上の添加が 必要である。 一方、 0 . 1 2 %超添加すると、 その効果が飽和する だけでなく、 熱間圧延前の加熱工程で固溶させるのが難しくなり、 粗大な炭窒化物を形成して破壊の起点となり、 低温靭性ゃ耐サワー 性を劣化させるおそれがある。
0045
T i は、 本発明において最も重要な元素の一つである。 T i は、 連続铸造もしくはインゴッ ト铸造で得られる铸片の凝固直後の高温 で窒化物として析出を開始する。 この T i 窒化物を含む析出物は高 温で安定であり、 後のスラブ再加熱においても完全に固溶すること なく、 ピンニング効果を発揮し、 スラブ再加熱中のオーステナイ ト 粒の粗大化を抑制し、 ミクロ組織を微細化して低温靭性を改善する 。 また、 r Z cK変態においてフェライ トの核生成を抑制し、 本発明 の要件である連続冷却変態組織の生成を促進する効果がある。 この ような効果を得るためには、 少なく とも 0. 0 0 5 %以上の T i 添 加が必要である。 一方、 0. 0 2 %超添加しても、 その効果が飽和 する。
さらに、 T i 添加量が Nとの化学量論組成未満 (N— 1 4 4 8 XT i < 0 %) となると、 残存した T i が Cと結合し、 微細に析出 した T i Cが低温靭性を劣化させる恐れがある。 また、 T i は、 溶 鋼脱酸時に微細な酸化物を多数分散させるために必要な元素でもあ り、 さらに、 これら微細な酸化物を核として T i 窒化物を含む析出 物が微細に晶出または析出するため、 T i 窒化物を含む析出物の平 均円相当径を小さく し、 密に分散させる効果で圧延中もしくは圧延 後のオーステナイ トの回復 · 再結晶の抑制だけでなく、 巻取り後の フェライ 卜の粒成長も抑制する効果がある。
0046
C aは、 溶鋼脱酸時に微細な酸化物を多数分散させるために必要 な元素であり、 その効果を得るためには 0. 0 0 0 5 %以上添加す る。 一方、 0. 0 0 3 %超添加してもその効果が飽和するのでその 上限を 0. 0 0 3 %とする。 また、 C aは R E Mと同様に、 破壊の 起点となり、 耐サワー性を劣化させる非金属介在物の形態を変化さ せて無害化する元素である。
0047
Nは、 上述したように T i 窒化物を含む析出物を形成し、 スラブ 再加熱中のオーステナイ ト粒の粗大化を抑制して後の制御圧延にお ける有効結晶粒径と相関のあるオーステナイ ト粒径を細粒化し、 ミ クロ組織を連続冷却変態組織とすることで低温靭性を改善する。 た だし、 その含有量が 0. 0 0 1 5 %未満では、 その効果が得られな い。 一方、 0. 0 0 6 %超含有すると時効により延性が低下し、 造 管する際の成形性が低下する。 前述したように、 N含有量が T 1 と の化学量論組成未満 (N— 1 4 4 8 XT i < 0 %) となると残存 した T i が Cと結合し、 微細に析出した T i Cが低温靭性を劣化さ せるおそれがある。
さらに、 N b、 T i 、 Nの化学量論組成が N b _ 9 3 Z l 4 X ( N - 1 4 / 4 8 XT 1 ) ≤ 0. 0 5 %では、 巻取り工程において生 成する微細な N bを含む析出物の量が減少し、 強度が低下する。 し たがって、 N— 1 4 Z 4 8 XT i ≥ 0 %、 N b— 9 3 / 1 4 X (N - 1 4 / 4 8 ΧΤ Ϊ ) > 0. 0 5 %とした。
0048
次に V、 M o、 C r、 N i 、 C uを添加する理由について説明す る。 基本となる成分にさらにこれらの元素を添加する主たる目的は 本発明鋼の優れた特徴を損なう ことなく、 製造可能な板厚の拡大や 母材の強度 · 靭性などの特性の向上を図るためである。 したがって 、 その添加量は自ら制限されるべき性質のものである。
0049
Vは、 巻取り工程において微細な炭窒化物を生成し、 その析出強 化により強度の向上に寄与する。 ただし、 0. 3 %超添加してもそ の効果は飽和するので、 0. 3 %以下 ( 0 %を含まない) とした。 また、 0. 0 4 %以上添加すると現地溶接性を低下させる懸念があ るので、 0. 0 4 %未満が望ましい。
0050
M oは、 焼入れ性を向上させ、 強度を上昇させる効果がある。 ま た、 M oは N bと共存して制御圧延時にオーステナイ 卜の再結晶を 強力に抑制し、 オーステナイ ト組織を微細化し、 低温靱性を向上さ せる効果がある。 ただし、 0. 3 %超添加してもその効果は飽和す るので、 0. 3 %以下 ( 0 %を含まない) とした。 また、 0. 1 % 以上添加すると延性が低下し、 造管する際の成形性が低下させる懸 念があるので、 0. 1 %未満が望ましい。
0051
C r は、 強度を上昇させる効果がある。 ただし、 0. 3 %超添加 してもその効果は飽和するので、 0. 3 %以下 ( 0 %を含まない) とした。 また、 0. 2 %以上添加すると現地溶接性を低下させる懸 念があるので、 0. 2 %未満が望ましい。 また、 V + M o + C rが 0. 2 %未満では、 目的とする強度が得られず、 0. 6 5 %超添加 してもその効果は飽和する。 従って、 0. 2 %≤V + M o + C r≤ 0. 6 5 %とする。
0052
C uは、 耐食性、 耐水素誘起割れ特性の向上に効果がある。 ただ し、 0. 3 %超添加してもその効果は飽和するので、 0. 3 %以下 ( 0 %を含まない) とした。 また、 0. 2 %以上添加すると熱間圧 延時に脆化割れを生じ、 表面疵の原因となる懸念があるので、 0. 2 %未満が望ましい。
0053
N i は、 M nや C r、 M oに比較して圧延組織 (特にスラブの中 心偏析帯) 中に低温靭性、 耐サワー性に有害な硬化組織を形成する ことが少なく、 従って、 低温靭性ゃ現地溶接性を劣化させることな く強度を向上させる効果がある。 ただし、 0. 3 %超添加してもそ の効果は飽和するので、 0. 3 %以下 ( 0 %を含まない) とした。 また、 C uの熱間脆化を防止する効果があるので C u量の 1 3以 上を目安に添加する。
0054
また、 C u + N i が 0. 1 %未満では耐食性、 耐水素誘起割れ特 性や低温靭性ゃ現地溶接性を劣化させることなく強度を向上させる 効果が得られず、 0. 5 %超ではその効果は飽和する。 従って、 0 . l %≤ C u + N i ≤ 0. 5 %とする.。
0055
Bは、 焼き入れ性を向上させ、 連続冷却変態組織を得やすくする 効果がある。 さらに Bは M oの焼入れ性向上効果を高めると共に、 N bと共存して相乗的に焼入れ性を増す効果があ ¾。 従って、 必要 に応じ添加する。 ただし、 0. 0 0 0 2 %未満ではその効果を得る ために不十分であり、 0. 0 0 3 %超添加するとスラブ割れが起こ る。
0056
R E Mは、 破壊の起点となり、 耐サワー性を劣化させる非金属介 在物の形態を変化させて無害化する元素である。 ただし、 0. 0 0 0 5 %未満添加してもその効果がなく、 0. 0 2 %超添加するとそ れらの酸化物が大量に生成してクラスター、 粗大介在物して生成し 、 溶接シームの低温靭性の劣化や、 現地溶接性にも悪影響を及ぼす
0057
次に本発明における鋼板のミクロ組織ついて詳細に説明する。 鋼板の強度を得るためには上記のミクロ組織中にナノメータサイ ズの N bを含む析出物が密に分散されていることが必要である。 ま た、 延性破壊停止性能の指標である吸収エネルギーを向上させるた めにはセメン夕イ ト等の粗大な炭化物含むミクロ組織を含まないこ とが必要である。 さらに、 低温靭性を向上させるためには有効結晶 粒径を小さくする必要がある。
鋼板の強度を得るための析出強化に有効なナノメータサイズの N bを含む析出物を観察、 測定するためには透過型電子顕微鏡による 薄膜観察もしくは三次元ア トムプローブ法による測定が有効である 。 そこで本発明者らは、 三次元ア トムプローブ法にて測定を行なつ た。
0058
その結果、 析出強化により A P I 5 L - X 8 0相当の強度が得ら れた試料では、 N bを含む析出分の径は 0. 5〜 5 n mで分布し、 その平均径 l〜 3 n mであった。 その N bを含む析出物が 1〜 5 0 X I 022個 Zm3の密度で分布し、 その平均密度が 3〜 3 0 X 1 02 2個/ m3という測定結果が得られた。 N bを含む析出物の平均径が 、 1 n m未満では小さすぎて析出強化能が十分に発揮されず、 3 n m超では過時効となり、 母相との整合性が失われ析出強化の効果が 減少する。 N bを含む析出物の平均密度が 3 X 1 022個 m3未満 では析出強化に十分な密度ではなく、 3 0 X 1 022個 Zm3超では 、 低温靭性が劣化する。 ここで平均とはその個数の算術平均である これらナノメ一夕サイズの析出物の組成は、 N bを主体としてい るが、 炭窒化物を形成する T i 、 V、 M o、 C r も含まれているこ とも許容する。
0059 なお、 三次元ア トムプローブ法は、 F I B (収束イオンビーム) 装置 Z日立製作所製 F B 2 0 0 O Aを用い、 切出した試料を電解研 磨により針形状にするために任意形状走査ビームで粒界部を針先端 部になるようにした。 その試料を S I M (走査イオン顕微鏡) のチ ャネリ ング現象で方位の異なる結晶粒にコントラス トが生じること を生かし、 観察しながら数個の粒界を含む位置をイオンビームで切 断した。 三次元ァ トムプローブとして用いた装置は C AM E C A社 製 O TA Pで、 測定条件は、 試料位置温度約 7 0 K、 プローブ全電 圧 1 0〜 1 5 k V、 パルス比 2 5 %である。 各試料で三回測定して その平均値を代表値とした。
0060
次に、 延性破壊停止性能の指標である吸収エネルギーを向上させ るためにはセメンタイ ト等の粗大な炭化物を含むミクロ組織を含ま ないことが必要である。 すなわち、 本発明における連続冷却変態組 織はひ 。 い aB、 aa、 了 い MAの一種または二種以上を含むミク 口組織である力^ ここで α ° Β、 αΒおよび aQはセメン夕イ ト等の 粗大な炭化物を含まないため、 その分率が大きいと延性破壊停止性 能の指標である吸収エネルギーの向上が期待できる。 さらに少量の ァ MAは含まれても構わないが、 その合計量が 3 %以下である とよい。
0061
低温靭性を向上させるために、 有効結晶粒径を小さくするには、 ミクロ組織が連続冷却変態組織で有るだけでは不十分である。 連続 冷却変態組織を構成する組織である αΒおよび Zまたはひ 。が、 連続 冷却変態組織中で 5 0 %以上の分率を有する必要がある。 これらミ クロ組織の分率が 5 0 %以上であると、 脆性破壊におけるへき開破 壊伝播の主な影響因子と考えられている破面単位と直接的な関係の ある有効結晶粒径が細粒化し、 低温靭性が向上する。
0062
また、 上記のようなミクロ組織を得るためには、 T i窒化物を含 む析出物の平均円相当径が 0. l〜 3 mであり、 さらに、 そのう ちの個数で 5割以上に、 C aと T i と A 1 を含む複合酸化物を含有 することが必要である。 つまり、 連続冷却変態組織を構成する組織 である Q!Bおよび または aQを 5 0 %以上の分率で得るためには、 変態前のオーステナイ ト粒径を細粒化することが重要であり、 その ためには、 T i 窒化物を含む析出物の怪の平均円相当径が 0. 1〜 3 u rn (望ましくは 2 // m以下) で、 且つその密度が 1 0 '〜 1 03 個/ mm2である必要がある。
T i 窒化物を含む析出物の怪の平均円相当径と密度を制御するた めには、 これらの析出核となる C aと T 1 と A 1 の酸化物が最適に 分散するとよい。 それにより T i窒化物を含む析出物の析出サイズ 、 分散密度が最適化され、 変態前のオーステナイ ト粒径がそのピン ニング効果により粒成長が抑制し、 細粒のまま保たれるため、 ォ一 ステナイ トを細粒化できる。 結果として、 T i窒化物を含む析出物 の個数の 5割以上に、 C aと T i と A 1 を含む複合酸化物を含有す るとよいことが分かった。 なお、 複合酸化物に若千の M g、 C e、 Z rが含まれることは許容される。 また、 ここで平均とはその個数 の算術平均である。
0063
次に、 本発明の製造方法の限定理由について、 以下に詳細に述べ る。
本発明において転炉あるいは電炉による一次精練までは特に限定 するものではない。 すなわち、 高炉から出銑後に溶銑脱燐および溶 銑脱硫等の溶銑予備処理を経て転炉による精鍊を行うかもしくは、 スクラップ等の冷鉄源を電炉等で溶解すればよい。
0064
一次精鍊後の二次精鍊工程は本発明の最も重要な製造工程の一つ である。 すなわち、 目的とする組成および大きさの T i 窒化物を含 む析出物を得るためには、 脱酸工程で鋼中に C aと T i と A 1 を含 む複合酸化物を微細に分散させる必要がある。 これは、 脱酸工程で 弱脱酸元素から強脱酸元素を逐次添加すること (弱強逐次脱酸) で 初めて実現できる。
0065
弱強逐次脱酸とは、 弱脱酸元素酸化物が存在する溶鋼へ強脱酸元 素を添加することで弱脱酸元素酸化物が還元され、 遅い供給速度か つ、 過飽和度が小さい状態で酸素が放出されると添加された強脱酸 元素から生成する酸化物は微細になるという現象を適用したもので 、 弱脱酸元素である S i から順次 T i 、 A l 、 強脱酸元素である C aと段階的に脱酸元素を添加することで、 これらの効果を最大限に 発揮させる脱酸方法である。 以下に順を追って説明する。
0066
まず、 T i よりも弱脱酸元素である S i 量を調整して S i 量と平 衡する溶存酸素濃度を 0 . 0 0 2〜 0 . 0 0 8 %とする。
この溶存酸素濃度が 0 . 0 0 2 %未満では、 最終的に T i窒化物 を含む析出物のサイズを小さくするのに十分な量の C aと T i と A 1 を含む複合酸化物が得られない。 一方、 0 . 0 0 8 %超では、 生 成した複合酸化物が粗大化して T i 窒化物を含む析出物のサイズを 小さくする効果が失われる。
0067
また、 脱酸処理を行う前段階において溶存酸素濃度を安定的に調 整するためには、 S i の添加が必要であり、 S i 濃度が 0 . 0 5 % 未満では S i と平衡する溶存酸素濃度が 0. 0 0 8 %超となり、 0 . 2 %超では S i と平衡する溶存酸素濃度が 0. 0 0 2 %未満とな る、 従って、 脱酸処理を行う前段階で、 S i 濃度が 0. 0 5以上、 0. 2 %以下、 溶存酸素濃度は 0. 0 0 2 %以上、 0. 0 0 8 %以 下とする。
0068
次に、 この溶存酸素濃度の状態で最終含有量が 0. 0 0 5〜 0. 3 %となる範囲で T i を添加して脱酸した後、 直ちに最終含有量が 0. 0 0 5〜 0. 0 2 %となる A 1 を添加する。 このとき T i 投入 後時間の経過と共に生成した T i 酸化物は成長、 凝集粗大化して浮 上してしまうので A 1 の投入は直ちに行う。 ただし、 5分以内であ れば T i 酸化物の浮上がそれほど顕著ではないので A 1 の投入は T i 投入後 5分以内が望ましい。 また、 A 1 の投入量が最終含有量 0 . 0 0 5 %未満になるような量であると T i酸化物は成長、 凝集粗 大化して浮上してしまう。 一方、 A 1 の投入量が最終含有量 0. 0 2 %超になるような量であると T i 酸化物が完全に還元されてしま い、 最終的に C aと T i と A 1 を含む複合酸化物が十分に得られな い。
0069
続いて、 T i 、 A 1 より更に強脱酸元素である C aを最終含有量 が 0. 0 0 0 5〜 0. 0 0 3 %となるように望ましくは 5分以内に 投入する。 ただし、 その後、 必要に応じて、 これら元素およびこれ ら以外の不足する合金成分元素を加えてもよい。 ここで C aの投入 量が最終含有量 0. 0 0 0 5 %未満になるような量であると C aと T i と A 1 を含む複合酸化物が十分に得られない。 一方、 0. 0 0 3 %超になるように添加すると T i 、 A 1 を含む酸化物が C aに完 全に還元されてしまい、 効果が失われる。 0070
スラブ铸造は、 連続铸造もしくは薄スラブ铸造などによって得た スラブの場合には高温铸片のまま熱間圧延機に直送してもよい。 ま た、 室温まで冷却後に加熱炉にて再加熱した後に熱間圧延してもよ い。 ただし、 スラブ直送圧延 (H C R : HO T C h a r g e R o 1 1 i n g ) を行う場合は、 ァ→ α→ァ変態により、 铸造組織を 壊し、 スラブ再加熱時のオーステナイ ト粒径を小さくするために、 A r 3変態点温度未満まで冷却することが望ましい。 さらに望まし く は A r 1 変態点温度未満まで冷却するとよい。
0071
耐サワー性の観点から、 中心偏析をできるだけ低減することが好 ましい。 従って、 求められるスペックに応じてスラブ铸造に軽圧下 を行なう。
M n等の偏析は、 偏析部の焼入れ性を上げ組織を硬化させ、 介在 物の存在と相まって水素誘起割れを助長させる。
偏析を抑制するには、 連続铸造における最終凝固時の軽圧下が最 適である。 最終凝固時の軽圧下は、 凝固収縮などによる濃化溶鋼の 移動によって生じる中心部の未凝固部への濃化溶鋼の流動を、 凝固 収縮分を補償することで抑制ために施すものであり、 铸片の最終凝 固位置における凝固収縮に見合うように圧下量を制御しながら軽圧 下する。 これにより、 中心偏析を低減させることができる。
0072
軽圧下の具体的条件は、 中心固相率 0. 3〜 0. 7 となる凝固末 期に当たる位置でのロールピッチが 2 5 0〜 3 6 O mmである設備 において铸造速度 (mZm i n ) と圧下設定勾配 (mm/m) の積 で表される圧下速度が 0. 7〜 1 . I mmZm i nの範囲である。 0073 熱間圧延に際して、 スラブ再加熱温度 ( S R T ) は、 次式 ( 1 ) S R T ( ) = 6 6 7 0 / ( 2 . 2 6 — l o g ( 〔% N b〕 X 〔 % C ) ) ) - 2 7 3 · · · ( 1 ) で算出される温度以上とする。
ここで、 〔% N b〕 および 〔% C〕 は、 それぞれ鋼材中の N bお よび Cの含有量 (質量%) を示す。 この式は N b Cの溶解度積で N b Cの溶体化温度を示すもので、 この温度未満であると、 スラブ製 造時に生成した N bを含む粗大な析出物が十分に溶解せず、 後の圧 延工程において N bによるオーステナイ 卜の回復 · 再結晶および粒 成長の抑制や r Z α変態の遅延による結晶粒の細粒化効果が得られ ない。 また、 そればかりか、 熱延鋼板製造工程の特徴である巻取り 工程において微細な炭化物を生成し、 その析出強化により強度を向 上させる効果が得られない。 ただし、 1 1 0 0で未満の加熱ではス ケールオフ量が少なくスラブ表層の介在物をスケールと共に後のデ スケーリングによって除去できなくなる可能性があるので、 スラブ 再加熱温度は 1 1 0 0で以上が望ましい。
0074
一方、 1 2 6 0で超であるとオーステナイ 卜の粒径が粗大化し、 後の制御圧延における旧オーステナイ ト粒が粗大化し、 変態後にグ ラニユラ一なミクロ組織得られず、 有効結晶粒径の細粒化効果によ る F A Τ Τ85 の改善効果が期待できない。 さらに望ましくは 1 2 3 0 以下である。
0075
スラブ加熱時間は、 N bを含む析出物の溶解を十分に進行させる ために当該温度に達してから 2 0分以上保持する。 2 0分未満では 、 スラブ製造時に生成した N bを含む粗大な析出物が十分に溶解せ ず、 熱間圧延中のオーステナィ 卜の回復 · 再結晶および粒成長の抑 制や: τ Ζ α変態の遅延による結晶粒の細粒化効果や巻取り工程にお いて微細な炭化物を生成し、 その析出強化により強度を向上させる 効果が得られない。
0076
続く熱間圧延工程は、 通常、 リバース圧延機を含む数段の圧延機 からなる粗圧延工程と 6〜 7段の圧延機をタンデムに配列した仕上 げ圧延工程により構成されている。 一般的に粗圧延工程はパス数や 各パスでの圧下量が自由に設定できる利点を持つが各パス間時間が 長く、 パス間での回復 · 再結晶が進行する恐れがある。 一方、 仕上 げ圧延工程はタンデム式であるためにパス数は圧延機の数と同数と なるが各パス間時間が短く、 制御圧延効果を得やすい特徴を持つ。 従って、 優れた低温靭性を実現するためには鋼成分に加えて、 これ ら圧延工程の特徴を十分に生かした工程設計が必要となる。
0077
また、 例えば、 製品厚が 2 0 m mを超えるような場合で、 仕上げ 圧延 1 号機の嚙み込みギャップが設備制約上 5 5 m m以下となって いる場合等は、 仕上げ圧延工程のみで本発明の要件である未再結晶 温度域の合計圧下率が 6 5 %以上という条件を満たすことが出来な いので、 粗圧延工程の後段で未再結晶温度域での制御圧延を実施し ても良い。 左記の場合は必要に応じて未再結晶温度域に温度が低下 するまで時間待ちをするか、 冷却装置による冷却を行っても良い。 後者の方が時間待ちの時間を短縮できるので生産性という ことでは より望ましい。
0078
さ らに、 粗圧延と仕上げ圧延の間でシー トバーを接合し、 連続的 に仕上げ圧延をしてもよい。 その際に粗バーを一旦コィル状に巻き 、 必要に応じて保温機能を有するカバーに格納し、 再度巻き戻して から接合を行っても良い。
0079
粗圧延工程では、 主に再結晶温度域にて圧延を行うカ^ その各圧 下パスでの圧下率は、 本発明では限定しない。 ただし、 粗圧延の各 パスでの圧下率が 1 0 %以下では再結晶に必要な十分なひずみが導 入されず、 粒界移動のみによる粒成長が起こり、 粗大粒が生成し、 低温靭性が劣化する懸念があるので、 再結晶温度域において各圧下 パスで 1 0 %超の圧下率で行うことが望ましい。 同様に、 再結晶温 度領域での各圧下パスの圧下率が 2 5 %以上であると、 特に後段の 低温域では圧下中に転位の導入と回復を繰返すことによって転位セ ル壁が形成され、 亜粒界から大角粒界へと変化する動的再結晶が起 こる。 この動的再結晶粒主体のミクロ組織のような転位密度の高い 粒とそうでない粒が混在する組織では、 短時間に粒成長が起こるた め、 未再結晶域圧延前までに比較的粗大な粒に成長し、 後の未再結 晶域圧延により粒が生成してしまい低温靱性が劣化する懸念がある 。 従って、 再結晶温度域での各圧下パスでの圧下率は 2 5 %未満と することが望ましい。
0080
仕上げ圧延工程では、 未再結晶温度域での圧延を行うが、 粗圧延 終了時点での温度が未再結晶温度域まで至らない場合は必要に応じ て未再結晶温度域に温度が低下するまで時間待ちをするか、 必要に 応じて粗 Z仕上げ圧延スタンド間の冷却装置による冷却を行っても 良い。 後者の方が時間待ちの時間を短縮できるので生産性が向上す るばかりでなく、 再結晶粒の成長を抑制し、 低温靭性を改善できる ということではより望ましい。
008 1
未再結晶温度域での合計圧下率が 6 5 %未満であると制御圧延が 不十分となり旧オーステナイ ト粒が粗大化し、 変態後にグラニユラ 一なミクロ組織得られず、 有効結晶粒径の細粒化効果による F A T T 8 5 ¾の改善効果が期待できないので未再結晶温度域の合計圧下率 は 6 5 %以上とする。 さ らに優れた低温靭性を得るためには 7 0 % 以上が望ましい。 一方、 8 5 %超であると過度の圧延により フェラ イ ト変態の核となる転位密度が増大し、 ミクロ組織にポリ ゴナルフ エライ トが混入し、 また、 高温でのフェライ ト変態により、 の 析出強化が過時効となり強度が低下するとともに、 結晶回転により 変態後の集合組織の異方性が顕著になり塑性異方性が増大すると共 にセパレーショ ンの発生による吸収エネルギーの低下を招く ことが 懸念されるので未再結晶温度域の合計圧下率は 8 5 %以下とする。 0082
仕上げ圧延終了温度は、 8 3 0 〜 8 7 O t:で終了する。 特に板 厚中心部で 8 3 0で未満となると、 延性破壊破面に顕著なセパレー シヨ ンが発生し、 吸収エネルギーが著しく低下するので、 仕上げ圧 延終了温度は、 板厚中心部において 8 3 O t:以上で終了する。 また 、 板表面温度についても 8 3 0 以上とすることが望ましい。 一方 、 8 7 0で以上では、 T i 窒化物を含む析出物が鋼中に最適に存在 していても再結晶によりオーステナイ ト粒径が粗大化し、 低温靭性 が劣化する恐れがある。 また、 さ らに低温となる A r 3変態点温度 以下で仕上げ圧延を行なう と、 二相域圧延となりセパレーシヨ ンの 発生による吸収エネルギーの低下とともに、 フェライ 卜相において 、 その圧下により転位密度が増大し、 N bの析出強化が過時効とな り強度が低下する。 また、 加工フェライ ト組織は延性が低下する。 0083
仕上げ圧延の各スタン ドでの圧延パススケジュールについては特 に限定しなくても本発明の効果が得られるが、 板形状精度の観点か らは最終スタン ドにおける圧延率は 1 0 %未満が望ましい。
0084
ここで A r 3変態点温度とは、 例えば以下の計算式により鋼成分 との関係で簡易的に示される。 すなわち
A r 3 = 9 1 0— 3 1 0 X % C + 2 5 X % S i - 8 0 X%M n e
Q
ただし、 M n e q =M n + C r + C u +M o + N i Z 2 + 1 0 ( N b - 0. 0 2 )
または、 M n e q =M n + C r + C u +M o + N i Z 2 + 1 0 ( N b— 0. 0 2 ) + 1 : B添加の場合である。
0085
仕上げ圧延終了後、 冷却を開始する。 冷却開始温度は特に限定し ないが A r 3変態点温度未満より冷却を開始するとミクロ組織中に ポリゴナルフェライ トが多量に含有されるようになり、 強度の低下 が懸念されるので、 冷却開始温度は A r 3変態点温度以上が望まし い。
0086
冷却開始から 6 5 0でまでの温度域の冷却速度を 2で Z s e c以 上 5 0 / s e c以下とする。 この冷却速度が 2で e c未満で あるとミクロ組織中にポリゴナルフェライ トが多量に含有されるよ うになり、 強度の低下が懸念される。 一方、 5 0で 5 6 超の冷 却速度では熱ひずみによる板そりが懸念されることから、 5 O / s e c以下とする。
0087
また、 破断面にセパレーシヨ ンが発生することにより、 所定の吸 収エネルギーが得られない場合は、 その冷却速度を 1 5 t:/ s e c 以上とする。 さ らに、 2 0 :/ s e c以上では、 鋼成分を変更する ことなく低温靭性を劣化させずに、 強度を向上させることが可能と なるので、 冷却速度は 2 O X:/ s e c以上が望ましい。
0088
6 5 0 から巻き取りまでの温度域での冷却速度は、 空冷もしく はそれ相当の冷却速度で差し支えない。 ただし、 N b等の析出強化 の効果を最大限に享受するためには、 析出物が粗大化により過時効 とならないために 6 5 0でから巻き取るまでの平均冷却速度が 5 Z s e c以上あることが望ましい。
0089
冷却後は、 熱延鋼板製造工程の特徴である巻取り工程を効果的に 活用する。 冷却停止温度および巻き取り温度は 5 0 0で以上 6 5 0 で以下の温度域とする。 6 5 0 °C超で冷却を停止し、 その後巻き取 ると、 N bを含む析出物が過時効となり析出強化が十分に発現しな くなる。 また、 N bを含む粗大な析出物が形成され破壊の起点とな り、 延性破壊停止能、 低温靭性ゃ耐サワー性を劣化させる恐れがあ る。 一方、 5 0 0で未満で冷却を終了し、 巻き取ると、 目的の強度 を得るために極めて効果的な N bを含む微細な析出物が得られず、 目的とする強度が得られなくなる。 従って、 冷却を停止し、 巻き取 る温度域は 5 0 0で以上 6 5 0で以下とする。 実施例
0090
以下に、 実施例により本発明をさらに説明する。
表 2 に示す化学成分を有する A〜 Rの鋼は、 転炉にて溶製して、 C A Sまたは R Hで二次精練を実施した。 脱酸処理は二次精練工程 にて実施し、 表 1 に示すように T i 投入前に溶鋼の溶存酸素を S i 濃度にて調整し、 その後、 T i 、 A l 、 C aにて逐次脱酸を行った 。 これらの鋼は、 連続铸造後、 直送もしくは再加熱し、 粗圧延に続 く仕上げ圧延で 2 0. 4 mmの板厚に圧下し、 ランナウ トテーブル で冷却後に巻き取った。 ただし、 表中の化学組成についての表示は 質量%である。 また、 表 2中に記載の N *は N— 1 4 4 8 XT 1 の値を意味する。
009 1 表 1
Figure imgf000036_0001
Figure imgf000037_0001
表 2
Figure imgf000037_0002
0093
製造条件の詳細を表 3に示す。 ここで、 「成分」 とは表 2に示し た各スラブ片の記号を、 「軽圧下」 とは、 連続踌造における最終凝 固時の軽圧下操業の有無を、 「加熱温度」 とはスラブ加熱温度実績 を、 「溶体化温度」 とは
S R T (で) = 6 6 7 0 / ( 2.. 2 6 — l o g ( C % N b ) X 〔 % C ) ) ) - 2 7 3
にて算出される温度を、 「保持時間」 は実績スラブ加熱温度での 保持時間を、 「パス間冷却」 とは未再結晶.温度域圧延前で生ずる温 度待ち時間を短縮する目的でなされる圧延スタン ド間冷却の有無を 、 「未再結晶域合計圧下率」 とは未再結晶温度域で実施された圧延 の合計圧下率を、 「F T」 とは仕上げ圧延終了温度を、 「A r 3変 態点温度」 とは計算 A r 3変態点温度を、 「 6 5 0でまでの冷却速 度」 とは冷却開始温度〜 6 5 0 の温度域を通過する時の平均冷却 速度を、 「C T」 とは巻取温度を示している。
表 3
4^
Figure imgf000039_0001
0095
このようにして得られた鋼板の材質を表 4に示す。 調査方法を以 下に示す。
ミクロ組織の調査は、 鋼板板幅方向の端部から、 板幅 (W) の 1 4 Wもしくは 3 4 W位置より切出した試料を圧延方向断面に研 磨し、 ナイタール試薬を用いてエッチングし、 光学顕微鏡を用い 2 0 0〜 5 0 0倍の倍率で観察された板厚の 1 Z 2 t における視野の 写真にて行った。 また、 T i窒化物を含む析出物の平均円相当径と は上記と同一試料で、 鋼板表面から板厚 ( t ) の 1 / 4 t における 部分を、 光学顕微鏡を用い 1 0 0 0倍の倍率で観察された 2 0視野 以上のミクロ組織写真から画像処理装置等より得られる値を採用し 、 その平均値と定義される。
0096
また、 T i窒化物を含む析出物の核となる C aと T i と A 1 を含 む複合酸化物の割合は、 上記ミクロ写真で観察された T i 窒化物を 含む析出物のうち核となる複合酸化物を含むものの割合で (核とな る複合酸化物を含む T i窒化物を含む析出物の個数) / (観察され た T i 窒化物を含む析出物の総数) と定義される。 さらに、 その核 の複合酸化物組成の特定は各視野で 1個以上を分析することとし、 走査型電子顕微鏡に付加されているエネルギー分散型 X線分光 ( E n e r g y D i s p e r s i v e X— r a y S p e c t r o s c o p e : E D S ) や電子エネルギー損失分光 (E 1 e c t r o n E n e r g y L o s s S p e c t r o s c o p e : E E L S ) にて確認した。
0097
引張試験は C方向より J I S Z 2 2 0 1 に記載の 5号試験片 を切出し、 J I S Z 2 2 4 1の方法に従って実施した。 シャル ピー衝撃試験は板厚中心の C方向より J I S Z 2 2 0 2に記載 の試験片を切出し、 J I S Z 2 2 4 2の方法に従って実施した 。 DWT T (D r o p W e i g h t T e a r T e s t ) 試験 は C方向より、 3 0 0 mmL X 7 5 mmWX板厚 ( t ) mmの短冊 状の試験片を切り出し、 これに 5 mmのプレスノ ツチを施したテス トピースを作製して実施した。 H I C試験は、 NA C E TM 0 2 8 4に準拠して行った。
0098
表 4において、 「ミクロ組織」 とは、 鋼板表面から板厚の 1 Z 2 t における部分のミクロ組織である。 「 Z w」 は連続冷却変態組織 であり、 α。 い α Β , Q , r r、 MAの一種または二種以上を含む ミクロ組織と定義される。 「 P F」 はポリゴナルフェライ トを、 「 加工 F」 は加工フェライ トを、 「P」 はパーライ トを、 「ひ B + a Q の分率」 は G r a n u l a r b a i n i t i c f e r r i t e
( a B ) および Q u a s i — p o l y g o n a l f e r r i t e
( a Q) の合計の面積分率を示している。
0099
「析出強化粒子径」 とは、 三次元アトムプローブ法により測定し た析出強化に有効な N bを含む析出物のサイズを示す。 「析出強化 粒子密度」 とは、 三次元ア トムプローブ法により測定した析出強化 に有効な N bを含む析出物の密度を示す。 「平均円相当径」 とは、 上記方法で測定した T i 窒化物を含む析出物の平均円相当径を示す 。 「含有割合」 とは、 上記 T i窒化物を含む析出物のうち核となる 複合酸化物を含むものの個数割合を示す。 「複合酸化物の組成」 と は E E L Sにて分析した結果で、 各元素が検出されれば〇を、 され なければ Xとした。 「引張試験」 結果は、 C方向 J I S 5号試験片 の結果を示す。 「F AT T85 ¾」 は、 DWT T試験において延性破 面率が 8 5 %となる試験温度を示す。 「吸収エネルギー v E— 20 t; 」 は、 シャルピー衝撃試験における一 2 0でで得られる吸収エネル ギーを示す。 「破面単位」 とは、 1 0 0倍前後の倍率で S Ε Μによ る 5視野以上にて破面測定で得られた破面単位の平均値を示す。 ま た、 「強度— V Εバランス」 は 「 T S」 と 「吸収エネルギー V Ε— 2 o ; 」 の積で表される。 さらに、 「C A R」 は H I C試験によって 求められた割れの面積率を示す。
表 4
Figure imgf000043_0001
PF:ポリゴナルフェライト、 P :パ一ライト、 aB+ aQ: Granular bainitic ferdte (αβ ) および Quasi-polygonal ferrite (aq)
0101
本発明に沿うものは、 鋼番 1、 5、 6、 1 6、 1 7、 2 1、 2 2 、 2 4、 2 5、 2 8の 1 0鋼であり、 所定の量の鋼成分を含有し、 そのミクロ組織が平均径 l〜 3 n mの N bを含む析出物を平均密度 で 3〜 3 0 X 1 022個/ m3分散させた連続冷却変態組織であり、 さらに α Bおよび または a Qが体積分率で 5 0 %以上である鋼板中 に含まれる T i窒化物を含む析出物の平均円相当径が 0. 1〜 3 ^ mであり、 さらに、 そのうちの個数で 5割以上に C aと T i と A 1 を含む複合酸化物を含有することを特徴とし、 造管前の素材として X 8 0グレード相当の引張強度を有する延性破壊停止性能に優れる ラインパイプ用高強度熱延鋼板が得られている。 さらに鋼番 1、 5 、 2 1 は、 軽圧下を行ったため耐サワー性の指標である 「C A R」 が目標である 3 %以下を達成している。
0102
上記以外の鋼は、 以下の理由によって本発明の範囲外である。 鋼番 2は、 加熱温度が本発明請求項 4の範囲外であるので、 N b を含む析出物の平均径 (析出強化粒子径) 及び平均密度 (析出強化 粒子密度) が請求項 1の範囲外となり、 十分な析出強化の効果が得 られないため、 強度一 V Eバランスが低い。
0103
鋼番 3は、 加熱温度が本発明請求項 4の範囲外であるので、 旧ォ ーステナイ ト粒が粗大化し、 変態後に望ましい連続冷却変態組織が 得られず、 F A T T 85 ¾が高温である。
0104
鋼番 4は、 加熱保持時間が本発明請求項 4の範囲外であるので、 十分な析出強化の効果が得られないため、 強度一 V Eバランスが低 い。 0105
鋼番 7は、 未再結晶温度域の合計圧下率が本発明請求項 4の範囲 外であるので、 旧オーステナイ ト粒が粗大化し、 変態後に望ましい 連続冷却変態組織が得られず、 F A T T85 が高温である。
0106
鋼番 8は、 未再結晶域合計圧下率が本発明請求項 4の範囲外であ るので、 請求項 1記載の目的とするミクロ組織等が得られず、 強度 — V Εバランスが低い。
0107
鋼番 9は仕上げ圧延温度が本発明請求項 4の範囲外であるので、 請求項 1記載の目的とするミクロ組織等が得られず、 強度一 v Eバ ランスが低い。
0108
鋼番 1 0は、 冷却速度が本発明請求項 4の範囲外であるので、 請 求項 1記載の目的とするミクロ組織が得られず、 強度一 v Eバラン スが低い。
0109
鋼番 1 1 は、 C Tが本発明請求項 4の範囲外であるので、 十分な 析出強化の効果が得られないため、 強度一 V Eバランスが低い。 0110
鋼番 1 2は、 溶製工程において T i 脱酸後の A 1 を投入するまで の時間が本発明請求項 4の範囲外であるので、 T i 窒化物を含む析 出物の怪の核となる酸化物の分散が不十分なため請求項 1記載の目 的とする窒化物径が 3 m超となり、 F A T T85 が高温である。 0111
鋼番 1 3は、 溶製工程において T i 投入前の溶存酸素量と平衡溶 存酸素量が本発明請求項 4の範囲外であるので、 請求項 1記載の目 的とする窒化物径が 3 超となり、 F AT T85 ¾が高温である。 0112
鋼番 1 4は、 溶製工程において逐次脱酸元素の投入順序が本発明 請求項 4の範囲外であるので、 請求項 1記載の目的とする窒化物径 が 3 m超となり、 F A T T 85 が高温である。
0113
鋼番 1 5は、 C含有量等が本発明請求項 1の範囲外であるので目 的とするミクロ組織が得られず、 強度一 V Eバランスが低い。
0114
鋼番 1 8は、 C含有量等が本発明請求項 1 の範囲外であるので目 的とするミク口組織が得られず、 強度— V Eバランスが低い。
0115
鋼番 1 9は、 C含有量等が本発明請求項 1の範囲外であるので目 的とするミクロ組織が得られず、 強度— V Eバランスが低い。
0116
鋼番 2 0は、 C含有量等が本発明請求項 1の範囲外であるので目 的とするミクロ組織が得られず、 強度が低い。
0117
鋼番 2 3は、 溶製工程において逐次脱酸元素の投入順序が本発明 請求項 4の範囲外であるので、 請求項 1記載の目的とする窒化物径 が 3 m超となり、 F A T T 85 が高温である。
0118
鋼番 2 6は、 C a含有量が本発明請求項 1の範囲外であり請求項 1記載の目的とする窒化物径が 3 m超となり、 F AT T85 が高 温である。
0119
鋼番 2 7は、 V、 M o、 C rおよび C u、 N i の含有量が本発明 請求項 1 の範囲外であり素材として X 8 0グレー ド相当の引張強度 が得られていない。 産業上の利用可能性
0120
本発明の熱延鋼板を電縫鋼管およびスパイラル鋼管に用いること により、 厳しい耐破壊特性が要求される寒冷地において、 例えばハ ーフイ ンチ ( 1 2. 7 mm) 超の比較的厚い板厚でも、 A P I 5 L 一 X 8 0規格以上の高強度なライ ンパイプが製造可能となる。 さ ら に、 本発明の製造方法により、 電縫鋼管およびスパイ ラル鋼管用熱 延鋼板を安価に大量に安定的に製造できる。 従って、 本発明により 、 過酷な条件下でのラインパイプの敷設が従来に比べ容易となり、 世界的なエネルギー流通の鍵を握るライ ンパイプ網の構築に、 大き く貢献するものと確信する。

Claims

請 求 の 範 囲 請求項
%にて 、
C = 0. 0 2 〜 0 . 0 6 % 、
S i —― 0. 0 5 0 . 5 %、
M n = 1 〜 2 % 、
P ≤ 0. 0 3 % 、
S ≤ 0. 0 0 5 %
O = 0. 0 0 0 5 〜 0. 0 0 3 % 、
A 1 = 0. 0 0 「
Ο 0. 0 3 %、
N = 0. 0 0 1 5 〜 0. 0 0 6 % 、
N b = 0. 0 5 〜 0 . 1 2 % 、
T i = 「
0. 0 0 ο 0. 0 2 %、
C a = 0. 0 0 0 5 〜 0. 0 0 3 % 、
を含有し、 且つ
N - 1 4 / 4 8 X τ 1 ≥ 0 % 、
N b - 9 3 / 1 4 X ( Ν - 1 4 / 4 8 0 5 %であり
さ らに 、
V ≤ 0. 3 /o ( 0 %を含まない。 )
M o≤ 0. 3 ( 0 %を含まない。 )
C r≤ 0. 3 ( 0 %を含まない。 )
を含有し、 且つ
0. 2 %≤ V + Μ ο + C r ≤ 0. 6 5
C u≤ 0. 3 ( 0 %を含まない。 )
N i ≤ 0. 3 ( 0 %を含まない。 ) を含有し、 且つ
0. l %≤ C u + N i ≤ 0. 5 %であり、
残部が F e及び不可避的不純物からなる鋼板であって、 そのミクロ 組織が連続冷却変態組織であり、 該連続冷却変態組織中に、
N bを含む析出物が平均径 1〜 3 n mで且つ平均密度 3〜 3 0 X I
022個 Zm3で分散して含まれ、
粒状べィニティ ックフェライ ト (G r a n u 1 a r b a i n i t
1 c f e r r i t e ) aBおよび または準ポリ ゴナルフェライ ト (Q u a s i — p o l y g o n a l f e r r i t e ) aQ力 分 率で 5 0 %以上含まれ、
さ らに、 T i 窒化物を含む析出物が含まれており、
該 T i 窒化物を含む析出物が平均円相当径 0. l〜 3 /zmであり、 且つその個数で 5 0 %以上に C aと T i と A 1 を含む複合酸化物を 含有することを特徴とする低温靭性と延性破壊停止性能に優れるラ ィ ンパイプ用高強度熱延鋼。 請求項 2
さらに質量%にて、
B = 0. 0 0 0 2〜 0. 0 0 3 %、
を含有することを特徴とする請求項 1 に記載の低温靭性と延性破壊 停止性能に優れるライ ンパイプ用高強度熱延鋼板。 請求項 3
さらに質量%にて、
R E = 0. 0 0 0 5〜 0. 0 2 %、
を含有することを特徴とする請求項 1 または請求項 2のいずれか 1 項に記載の低温靱性と延性破壊停止性能に優れるライ ンパイプ用高 強度熱延鋼板。 請求項 4
請求項 1 〜 3 のいずれか 1 項に記載の成分を有する熱延鋼板を得 るための溶鋼を調整する際に、 S i 濃度が 0 . 0 5〜 0 . 2 %、 溶 存酸素濃度が 0 . 0 0 2〜 0 . 0 0 8 %になるように調整した溶鋼 中に、 最終含有量が 0 . 0 0 5〜 0 . 3 %となる範囲で T i を添加 して脱酸した後、 5分以内に最終含有量が 0 . 0 0 5〜 0 . 0 2 % となる A 1 を添加し、 さ らに最終含有量が 0 . 0 0 0 5〜 0 . 0 0 3 %となる C aを添加し、 その後、 不足する合金成分元素を添加し て凝固させた铸片を冷却後、 該铸片を式 ( 1 ) にて算出するスラグ 再加熱温度 ( S R T) 以上、 1 2 6 0で以下の温度域になるよう加 熱し、 さ らに当該温度域で 2 0分以上保持し、 続く熱間圧延にて未 再結晶温度域の合計圧下率を 6 5 %〜 8 5 %とする圧延を 8 3 0で 〜 8 7 0 の温度域で終了した後、 6 5 0 °Cまでの温度域を 2 s e c以上 5 0 / s e c以下の冷却速度で冷却し、 5 0 0 以上 6 5 0で以下で巻き取ることを特徴とする低温靭性と延性破壊停止 性能に優れるライ ンパイプ用高強度熱延鋼板の製造方法。
S R T (°C ) = 6 6 7 0 / ( 2 . 2 6 - 1 o g ( C % N b X 〔 % C ] ) ) - 2 7 3 · · · ( 1 ) ここで、 〔% N b〕 および 〔% C〕 は、 それぞれ鋼材中の N bお よび Cの含有量 (質量%) を示す。 請求項 5
前記未再結晶温度域の圧延の前に冷却を行う ことを特徴とする請 求項 4に記載の低温靭性と延性破壊停止性能に優れるライ ンパイプ 用高強度熱延鋼板の製造方法。 請求項 6
前記铸片を連続铸造で製造する際に、 铸片の最終凝固位置におけ る凝固収縮に見合うように圧下量を制御しながら軽圧下することを 特徴とする請求項 4または 5 に記載の低温靭性と延性破壊停止性能 に優れるライ ンパイプ用高強度熱延鋼板の製造方法。
PCT/JP2009/059922 2008-05-26 2009-05-25 低温靭性と延性破壊停止性能に優れるラインパイプ用高強度熱延鋼板およびその製造方法 WO2009145328A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US12/736,903 US20110079328A1 (en) 2008-05-26 2009-05-25 High strength hot rolled steel sheet for line pipe use excellent in low temperature toughness and ductile fracture arrest performance and method of production of same
EP09754836.6A EP2295615B1 (en) 2008-05-26 2009-05-25 High-strength hot-rolled steel sheet for line pipe excellent in low-temperature toughness and ductile-fracture-stopping performance and process for producing the same
CN2009801194355A CN102046829B (zh) 2008-05-26 2009-05-25 低温韧性和延展性破坏停止性能优异的管线管用高强度热轧钢板及其制造方法
KR1020107026490A KR101228610B1 (ko) 2008-05-26 2009-05-25 저온 인성과 연성 파괴 정지 성능이 우수한 라인 파이프용 고강도 열연 강판 및 그 제조 방법
BRPI0913046-2A BRPI0913046A2 (pt) 2008-05-26 2009-05-25 Chapa de aço laminada a quente de alta resistência para uso em oleodutos, excelente em tenacidade a baixa temperatura e performance de interrupção de fratura dúctil e método de produção da mesma
MX2010012472A MX2010012472A (es) 2008-05-26 2009-05-25 Hoja de acero laminada en caliente de alta resistencia para uso en tuberia de linea excelente en tenacidad a baja temperatura y funcionamiento de detencion de fractura ductil y proceso para producir la misma.
JP2010514566A JP4700765B2 (ja) 2008-05-26 2009-05-25 低温靭性と延性破壊停止性能に優れるラインパイプ用高強度熱延鋼板およびその製造方法
US14/329,295 US9657364B2 (en) 2008-05-26 2014-07-11 High strength hot rolled steel sheet for line pipe use excellent in low temperature toughness and ductile fracture arrest performance and method of production of same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008137195 2008-05-26
JP2008-137195 2008-05-26
JP2009-077146 2009-03-26
JP2009077146 2009-03-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/736,903 A-371-Of-International US20110079328A1 (en) 2008-05-26 2009-05-25 High strength hot rolled steel sheet for line pipe use excellent in low temperature toughness and ductile fracture arrest performance and method of production of same
US14/329,295 Division US9657364B2 (en) 2008-05-26 2014-07-11 High strength hot rolled steel sheet for line pipe use excellent in low temperature toughness and ductile fracture arrest performance and method of production of same

Publications (1)

Publication Number Publication Date
WO2009145328A1 true WO2009145328A1 (ja) 2009-12-03

Family

ID=41377195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059922 WO2009145328A1 (ja) 2008-05-26 2009-05-25 低温靭性と延性破壊停止性能に優れるラインパイプ用高強度熱延鋼板およびその製造方法

Country Status (9)

Country Link
US (2) US20110079328A1 (ja)
EP (1) EP2295615B1 (ja)
JP (1) JP4700765B2 (ja)
KR (1) KR101228610B1 (ja)
CN (1) CN102046829B (ja)
BR (1) BRPI0913046A2 (ja)
MX (1) MX2010012472A (ja)
TW (1) TWI393791B (ja)
WO (1) WO2009145328A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072421A (ja) * 2010-09-28 2012-04-12 Sumitomo Metal Ind Ltd 氷海構造物用鋼板
JP2012188731A (ja) * 2011-02-24 2012-10-04 Jfe Steel Corp 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
WO2013011791A1 (ja) * 2011-07-20 2013-01-24 Jfeスチール株式会社 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
JP2013124398A (ja) * 2011-12-15 2013-06-24 Jfe Steel Corp 高強度耐サワーラインパイプ用鋼板及びその素材
WO2013099192A1 (ja) * 2011-12-27 2013-07-04 Jfeスチール株式会社 高張力熱延鋼板及びその製造方法
JP2013147733A (ja) * 2011-12-21 2013-08-01 Jfe Steel Corp 強度−伸びバランスに優れた高張力鋼板およびその製造方法
JP2015515541A (ja) * 2012-03-08 2015-05-28 バオシャン アイアン アンド スティール カンパニー リミテッド 磁気特性に優れた無方向性電磁鋼板及びそのカルシウム処理方法
JP2015203124A (ja) * 2014-04-11 2015-11-16 新日鐵住金株式会社 熱延鋼板およびその製造方法
US9200342B2 (en) 2010-06-30 2015-12-01 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and manufacturing method thereof
KR20160030218A (ko) * 2013-07-03 2016-03-16 티센크루프 스틸 유럽 악티엔게젤샤프트 강 스트립의 열간 압연을 위한 설비 및 방법
JP2016084539A (ja) * 2011-03-30 2016-05-19 新日鐵住金株式会社 ラインパイプ用電縫鋼管及びその製造方法
WO2017221690A1 (ja) * 2016-06-22 2017-12-28 Jfeスチール株式会社 厚肉高強度ラインパイプ用熱延鋼板、ならびに、厚肉高強度ラインパイプ用溶接鋼管およびその製造方法
JP2022510199A (ja) * 2018-11-29 2022-01-26 ポスコ 低温靭性と延伸率に優れ降伏比が小さい厚物高強度ラインパイプ用鋼材及びその製造方法
WO2023281808A1 (ja) * 2021-07-08 2023-01-12 日本製鉄株式会社 熱延鋼板

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2441854B1 (en) * 2009-06-11 2017-09-27 Nippon Steel & Sumitomo Metal Corporation High strength steel pipe and method for producing same
WO2011135700A1 (ja) * 2010-04-28 2011-11-03 住友金属工業株式会社 動的強度に優れた複相熱延鋼板およびその製造方法
PL2610357T3 (pl) * 2010-08-23 2020-05-18 Nippon Steel Corporation Blacha stalowa cienka walcowana na zimno i sposób jej wytwarzania
JP5029748B2 (ja) * 2010-09-17 2012-09-19 Jfeスチール株式会社 靭性に優れた高強度熱延鋼板およびその製造方法
BR112013028960B1 (pt) * 2011-05-13 2019-06-25 Nippon Steel & Sumitomo Metal Corporation Artigo estampado a quente, método de produção de artigo estampado a quente, membro de absorção de energia, e método de produção do membro de absorção de energia
JP5883257B2 (ja) * 2011-09-13 2016-03-09 株式会社神戸製鋼所 母材および溶接熱影響部の靭性に優れた鋼材、およびその製造方法
RU2553172C1 (ru) * 2011-09-27 2015-06-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Горячий рулон для применения в трубопроводе и способ его изготовления
CN102534429A (zh) * 2012-02-29 2012-07-04 首钢总公司 高强度低屈强比x90热轧钢板及其生产方法
CN102534430A (zh) * 2012-03-02 2012-07-04 中国石油集团渤海石油装备制造有限公司 一种x90钢管件及其制造方法
CN102676949B (zh) * 2012-03-08 2014-03-19 江苏沙钢集团有限公司 煤浆输送管用热轧钢板及其制造方法
RU2613824C2 (ru) * 2012-04-13 2017-03-21 ДжФЕ СТИЛ КОРПОРЕЙШН Высокопрочные толстостенные стальные трубы, сваренные электрической контактной сваркой, с высокой ударной вязкостью и способ их изготовления
JP5516659B2 (ja) * 2012-06-28 2014-06-11 Jfeスチール株式会社 中温域の長期耐軟化性に優れた高強度電縫鋼管及びその製造方法
US10081042B2 (en) 2013-08-16 2018-09-25 Nippon Steel & Sumitomo Metal Corporation Electric resistance welded steel pipe excellent in weld zone and method of production of same
CN103952639B (zh) * 2014-04-04 2016-05-04 日照钢铁控股集团有限公司 具有优异抗延展性破坏的管线钢
US10450627B2 (en) 2014-09-05 2019-10-22 Jfe Steel Corporation Thick steel plate having good multipass weld joint CTOD characteristics and method for manufacturing the same
CN105506494B (zh) * 2014-09-26 2017-08-25 宝山钢铁股份有限公司 一种屈服强度800MPa级高韧性热轧高强钢及其制造方法
WO2016084335A1 (ja) * 2014-11-27 2016-06-02 Jfeスチール株式会社 電縫鋼管およびその製造方法
US10640843B2 (en) 2015-05-20 2020-05-05 Nippon Steel Corporation High strength electric resistance welded steel pipe and method for producing high strength electric resistance welded steel pipe
KR101822292B1 (ko) * 2016-08-17 2018-01-26 현대자동차주식회사 고강도 특수강
KR101822295B1 (ko) * 2016-09-09 2018-01-26 현대자동차주식회사 고강도 특수강
KR102226684B1 (ko) * 2016-09-13 2021-03-12 닛폰세이테츠 가부시키가이샤 강판
KR101940880B1 (ko) * 2016-12-22 2019-01-21 주식회사 포스코 저온인성 및 후열처리 특성이 우수한 내sour 후판 강재 및 그 제조방법
KR101899691B1 (ko) * 2016-12-23 2018-10-31 주식회사 포스코 수소유기균열 저항성이 우수한 압력용기용 강재 및 그 제조방법
TWI629363B (zh) * 2017-02-02 2018-07-11 新日鐵住金股份有限公司 Steel plate
CN108103410B (zh) * 2018-03-05 2020-05-26 嘉兴德基机械设计有限公司 一种屈服强度≥910MPa的管线钢及其制备方法
CA3094517C (en) * 2018-03-19 2022-08-30 Tata Steel Limited A steel composition in accordance with api 5l psl-2 specification for x-65 grade having enhanced hydrogen induced cracking (hic) resistance, and method of manufacturing the steel thereof
RU2702171C1 (ru) * 2018-06-07 2019-10-04 Публичное акционерное общество "Магнитогорский металлургический комбинат" Способ производства толстолистового проката из низколегированной стали для труб
RU2696920C1 (ru) * 2018-07-30 2019-08-07 Акционерное общество "Выксунский металлургический завод" Способ производства проката для труб магистральных трубопроводов с одновременным обеспечением равномерного удлинения и хладостойкости
CN109023069B (zh) * 2018-09-04 2020-06-23 鞍钢股份有限公司 NbC纳米颗粒强化X80塑性管用钢板及其制造方法
ES2895456T3 (es) 2018-12-11 2022-02-21 Ssab Technology Ab Producto de acero de alta resistencia y método de fabricación del mismo
CN113614269B (zh) * 2019-03-26 2022-10-25 杰富意钢铁株式会社 铁素体系不锈钢板及其制造方法
WO2020262638A1 (ja) * 2019-06-27 2020-12-30 日本製鉄株式会社 鋼材及びその製造方法
MX2022008303A (es) * 2020-01-30 2022-08-08 Nippon Steel Corp Lamina de acero laminada en caliente y metodo de produccion de la misma.
TWI708851B (zh) * 2020-02-06 2020-11-01 中國鋼鐵股份有限公司 預測高爐發生管道流現象之方法
KR102352647B1 (ko) * 2020-06-10 2022-01-18 현대제철 주식회사 저온 인성이 우수한 저항복비형 열연강재 및 그 제조 방법
CN112981254B (zh) * 2021-02-09 2022-03-22 鞍钢股份有限公司 一种宽幅高强韧性厚壁x80m管线钢板及其制造方法
CN116162866A (zh) * 2021-11-25 2023-05-26 中国石油天然气集团有限公司 一种双峰组织高应变海洋用管线钢、管线管及其制造方法
CN115229150B (zh) * 2022-07-04 2024-05-14 攀钢集团攀枝花钢铁研究院有限公司 钢轨夹杂物的控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158723A (ja) * 1996-12-05 1998-06-16 Nippon Steel Corp 電縫鋼管用鋼の製造方法
JPH10183295A (ja) * 1996-12-19 1998-07-14 Nippon Steel Corp 大入熱溶接の熱影響部靭性の優れた鋼材およびその製造方法
JP2004315957A (ja) 2003-03-27 2004-11-11 Jfe Steel Kk 低温靱性および溶接性に優れた高強度電縫管用熱延鋼帯およびその製造方法
JP2005503483A (ja) 2001-09-10 2005-02-03 ポスコ コーポレーション 極低温衝撃靭性の優れたラインパイプ用熱延鋼板及びその製造方法
JP2005146407A (ja) 2003-10-20 2005-06-09 Nippon Steel Corp 高速延性破壊特性に優れた超高強度鋼板及び超高強度鋼管並びにそれらの製造方法
JP2005240051A (ja) * 2004-02-24 2005-09-08 Jfe Steel Kk 溶接部の靭性に優れる耐サワー高強度電縫鋼管用熱延鋼板およびその製造方法
JP2005281838A (ja) * 2004-03-31 2005-10-13 Jfe Steel Kk 材質均質性の優れた高強度高靭性熱延鋼帯及びその製造方法
JP2006274338A (ja) * 2005-03-29 2006-10-12 Jfe Steel Kk 耐hic性および溶接部靱性優れる耐サワー高強度電縫鋼管用熱延鋼板およびその製造方法
WO2008132882A1 (ja) * 2007-03-01 2008-11-06 Nippon Steel Corporation 低温靭性に優れるラインパイプ用高強度熱延鋼板およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3417878B2 (ja) * 1999-07-02 2003-06-16 株式会社神戸製鋼所 伸びフランジ性および疲労特性に優れた高強度熱延鋼板およびその製法
US7220325B2 (en) * 2002-04-03 2007-05-22 Ipsco Enterprises, Inc. High-strength micro-alloy steel
JP4807949B2 (ja) * 2004-12-10 2011-11-02 株式会社神戸製鋼所 高温浸炭特性に優れた肌焼用圧延棒鋼
JP4555694B2 (ja) * 2005-01-18 2010-10-06 新日本製鐵株式会社 加工性に優れる焼付け硬化型熱延鋼板およびその製造方法
CN100513611C (zh) * 2005-03-31 2009-07-15 杰富意钢铁株式会社 高强度厚钢板及其制造方法、以及高强度钢管
JP4502947B2 (ja) * 2005-12-27 2010-07-14 株式会社神戸製鋼所 溶接性に優れた鋼板
JP5055899B2 (ja) * 2006-08-30 2012-10-24 Jfeスチール株式会社 溶接熱影響部靭性に優れた、引張り強さ760MPa以上の高強度溶接鋼管の製造方法および高強度溶接鋼管
KR101139605B1 (ko) * 2007-04-06 2012-04-27 신닛뽄세이테쯔 카부시키카이샤 고온 특성과 인성이 우수한 강재 및 그 제조 방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158723A (ja) * 1996-12-05 1998-06-16 Nippon Steel Corp 電縫鋼管用鋼の製造方法
JPH10183295A (ja) * 1996-12-19 1998-07-14 Nippon Steel Corp 大入熱溶接の熱影響部靭性の優れた鋼材およびその製造方法
JP2005503483A (ja) 2001-09-10 2005-02-03 ポスコ コーポレーション 極低温衝撃靭性の優れたラインパイプ用熱延鋼板及びその製造方法
JP2004315957A (ja) 2003-03-27 2004-11-11 Jfe Steel Kk 低温靱性および溶接性に優れた高強度電縫管用熱延鋼帯およびその製造方法
JP2005146407A (ja) 2003-10-20 2005-06-09 Nippon Steel Corp 高速延性破壊特性に優れた超高強度鋼板及び超高強度鋼管並びにそれらの製造方法
JP2005240051A (ja) * 2004-02-24 2005-09-08 Jfe Steel Kk 溶接部の靭性に優れる耐サワー高強度電縫鋼管用熱延鋼板およびその製造方法
JP2005281838A (ja) * 2004-03-31 2005-10-13 Jfe Steel Kk 材質均質性の優れた高強度高靭性熱延鋼帯及びその製造方法
JP2006274338A (ja) * 2005-03-29 2006-10-12 Jfe Steel Kk 耐hic性および溶接部靱性優れる耐サワー高強度電縫鋼管用熱延鋼板およびその製造方法
WO2008132882A1 (ja) * 2007-03-01 2008-11-06 Nippon Steel Corporation 低温靭性に優れるラインパイプ用高強度熱延鋼板およびその製造方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9200342B2 (en) 2010-06-30 2015-12-01 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and manufacturing method thereof
JP2012072421A (ja) * 2010-09-28 2012-04-12 Sumitomo Metal Ind Ltd 氷海構造物用鋼板
JP2012188731A (ja) * 2011-02-24 2012-10-04 Jfe Steel Corp 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
JP2016084539A (ja) * 2011-03-30 2016-05-19 新日鐵住金株式会社 ラインパイプ用電縫鋼管及びその製造方法
WO2013011791A1 (ja) * 2011-07-20 2013-01-24 Jfeスチール株式会社 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
JP2013124398A (ja) * 2011-12-15 2013-06-24 Jfe Steel Corp 高強度耐サワーラインパイプ用鋼板及びその素材
JP2013147733A (ja) * 2011-12-21 2013-08-01 Jfe Steel Corp 強度−伸びバランスに優れた高張力鋼板およびその製造方法
WO2013099192A1 (ja) * 2011-12-27 2013-07-04 Jfeスチール株式会社 高張力熱延鋼板及びその製造方法
JPWO2013099192A1 (ja) * 2011-12-27 2015-04-30 Jfeスチール株式会社 高張力熱延鋼板及びその製造方法
JP2015515541A (ja) * 2012-03-08 2015-05-28 バオシャン アイアン アンド スティール カンパニー リミテッド 磁気特性に優れた無方向性電磁鋼板及びそのカルシウム処理方法
KR20160030218A (ko) * 2013-07-03 2016-03-16 티센크루프 스틸 유럽 악티엔게젤샤프트 강 스트립의 열간 압연을 위한 설비 및 방법
JP2016530099A (ja) * 2013-07-03 2016-09-29 ティッセンクルップ スチール ヨーロッパ アーゲーThyssenkrupp Steel Europe Ag 帯鋼を熱間圧延する設備および方法
US10335840B2 (en) 2013-07-03 2019-07-02 Thyssenkrupp Steel Europe Ag Production lines and methods for hot rolling steel strip
KR102212807B1 (ko) * 2013-07-03 2021-02-05 티센크루프 스틸 유럽 악티엔게젤샤프트 강 스트립의 열간 압연을 위한 설비 및 방법
JP2015203124A (ja) * 2014-04-11 2015-11-16 新日鐵住金株式会社 熱延鋼板およびその製造方法
WO2017221690A1 (ja) * 2016-06-22 2017-12-28 Jfeスチール株式会社 厚肉高強度ラインパイプ用熱延鋼板、ならびに、厚肉高強度ラインパイプ用溶接鋼管およびその製造方法
JPWO2017221690A1 (ja) * 2016-06-22 2018-07-05 Jfeスチール株式会社 厚肉高強度ラインパイプ用熱延鋼板、ならびに、厚肉高強度ラインパイプ用溶接鋼管およびその製造方法
US11377719B2 (en) 2016-06-22 2022-07-05 Jfe Steel Corporation Hot-rolled steel sheet for heavy-wall, high-strength line pipe, welded steel pipe for heavy-wall, high-strength line pipe, and method for producing the welded steel pipe
JP2022510199A (ja) * 2018-11-29 2022-01-26 ポスコ 低温靭性と延伸率に優れ降伏比が小さい厚物高強度ラインパイプ用鋼材及びその製造方法
JP7244718B2 (ja) 2018-11-29 2023-03-23 ポスコ カンパニー リミテッド 低温靭性と延伸率に優れ降伏比が小さい厚物高強度ラインパイプ用鋼材及びその製造方法
WO2023281808A1 (ja) * 2021-07-08 2023-01-12 日本製鉄株式会社 熱延鋼板

Also Published As

Publication number Publication date
TWI393791B (zh) 2013-04-21
KR101228610B1 (ko) 2013-02-01
EP2295615B1 (en) 2017-11-29
MX2010012472A (es) 2010-12-02
EP2295615A1 (en) 2011-03-16
TW201005105A (en) 2010-02-01
KR20100134793A (ko) 2010-12-23
US20140318672A1 (en) 2014-10-30
JP4700765B2 (ja) 2011-06-15
CN102046829B (zh) 2013-03-13
EP2295615A4 (en) 2016-07-27
US9657364B2 (en) 2017-05-23
JPWO2009145328A1 (ja) 2011-10-20
BRPI0913046A2 (pt) 2020-12-15
US20110079328A1 (en) 2011-04-07
CN102046829A (zh) 2011-05-04

Similar Documents

Publication Publication Date Title
JP4700765B2 (ja) 低温靭性と延性破壊停止性能に優れるラインパイプ用高強度熱延鋼板およびその製造方法
JP5223375B2 (ja) 低温靭性に優れるラインパイプ用高強度熱延鋼板およびその製造方法
JP5223379B2 (ja) 低温靭性に優れるスパイラルパイプ用高強度熱延鋼板およびその製造方法
JP4970625B2 (ja) 熱延鋼板及びその製造方法
US10287661B2 (en) Hot-rolled steel sheet and method for producing the same
EP2799567B1 (en) High-strength steel plate and high-strength steel pipe excellent in deformability and low-temperature toughness, and manufacturing method of the steel plate
JP5741483B2 (ja) 現地溶接性に優れるラインパイプ用高強度熱延鋼板およびその製造方法
KR101331976B1 (ko) 인성이 우수한 후육 내사워 라인 파이프용 강판의 제조 방법
WO2013011791A1 (ja) 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
JP2006257499A (ja) 高張力鋼板、溶接鋼管及びそれらの製造方法
JP6572963B2 (ja) 熱延鋼板およびその製造方法
JP5742123B2 (ja) ラインパイプ用高強度溶接鋼管向け高張力熱延鋼板およびその製造方法
WO2016157863A1 (ja) 高強度・高靭性鋼板およびその製造方法
EP2093302B1 (en) Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same
JP2018178210A (ja) ラインパイプ用電縫鋼管及びその製造方法
JP5927927B2 (ja) 現地溶接性に優れるラインパイプ用高強度熱延鋼板およびその製造方法
JP2021042425A (ja) ラインパイプ用電縫鋼管、及び、ラインパイプ用熱延鋼板
KR101139540B1 (ko) 저온 인성이 우수한 스파이럴 파이프용 고강도 열연 강판 및 그 제조 방법
JP7448804B2 (ja) ラインパイプ用電縫鋼管、及びラインパイプ用熱延鋼板
JP2021172848A (ja) ラインパイプ用電縫鋼管、及びラインパイプ用熱延鋼板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980119435.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754836

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010514566

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 8042/DELNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/012472

Country of ref document: MX

REEP Request for entry into the european phase

Ref document number: 2009754836

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009754836

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107026490

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0913046

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101123