WO2016157863A1 - 高強度・高靭性鋼板およびその製造方法 - Google Patents

高強度・高靭性鋼板およびその製造方法 Download PDF

Info

Publication number
WO2016157863A1
WO2016157863A1 PCT/JP2016/001744 JP2016001744W WO2016157863A1 WO 2016157863 A1 WO2016157863 A1 WO 2016157863A1 JP 2016001744 W JP2016001744 W JP 2016001744W WO 2016157863 A1 WO2016157863 A1 WO 2016157863A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
temperature
cooling
strength
bainite
Prior art date
Application number
PCT/JP2016/001744
Other languages
English (en)
French (fr)
Inventor
英之 木村
恭野 安田
石川 信行
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201680019421.6A priority Critical patent/CN107532253B/zh
Priority to US15/562,192 priority patent/US10640841B2/en
Priority to CA2977017A priority patent/CA2977017C/en
Priority to KR1020177027517A priority patent/KR102051199B1/ko
Priority to EP16771751.1A priority patent/EP3279352B1/en
Priority to JP2017506420A priority patent/JP6123973B2/ja
Publication of WO2016157863A1 publication Critical patent/WO2016157863A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high-strength and high-toughness steel plate and a method for producing the same, and in particular, a high-strength and high-toughness steel plate suitable for a line pipe steel material having high strength, high Charpy impact absorption energy and excellent DWTT performance, and the production thereof. Regarding the method.
  • Fracture toughness values in ordinary structural steel indicate resistance to brittle fracture, and are used as an index for designing so that brittle fracture does not occur in the usage environment.
  • This unstable ductile fracture is a phenomenon in which ductile fracture propagates in the direction of the pipe axis at a speed of 100 m / s or more in a high-pressure gas line pipe, which may cause a large-scale fracture of several kilometers. Therefore, the Charpy impact absorption energy value and the DWTT (Drop Weight Tear Test) test value required for the suppression of unstable ductile fracture obtained from past actual gas burst test results are specified, and high Charpy impact absorption energy and excellent DWTT characteristics have been required.
  • the DWTT test value here is the fracture surface transition temperature at which the ductile fracture surface ratio is 85%.
  • Patent Document 1 discloses a bainite whose texture is developed by setting a cumulative reduction amount of 700 ° C. or lower to 30% or more in a component system in which ferrite formation is suppressed in the air cooling process after the end of rolling. Proposed a steel plate material for steel pipe material with high Charpy impact absorption energy and excellent DWTT characteristics and its manufacturing method by making the main structure and the area ratio of ferrite existing in the prior austenite grain boundary to 5% or less Has been.
  • Patent Document 2 by mass, C: 0.03 to 0.1%, Mn: 1.0 to 2.0%, Nb: 0.01 to 0.1%, P ⁇ 0.01%, S After rolling the steel containing ⁇ 0.003% and O ⁇ 0.005% in a temperature range of Ar 3 + 80 ° C. to 950 ° C. so that the cumulative reduction ratio is 50% or more, and then air-cooling for a while Generation of separation using processed ferrite without developing the rolling texture by rolling so that the cumulative reduction amount is 10 to 30% in the temperature range of Ar 3 to Ar 3 -30 ° C.
  • Patent Document 3 in mass%, C: 0.02 to 0.1%, Si: 0.6% or less, Mn: 1.6 to 2.5%, Ni: 0.1 to 0.7%, Nb: 0.01 to 0.1%, Ti: 0.005 to 0.03%, and a steel having a carbon equivalent Pcm of 0.180 to 0.220% is subjected to predetermined continuous casting, whereby the center of Mn After performing hot rolling under predetermined conditions while reducing segregation, cooling is performed at a cooling rate of 10 to 45 ° C./s from a temperature of Ar 3 ⁇ 50 ° C. or higher to a temperature range of 300 to 500 ° C., if necessary.
  • a high-tensile steel sheet having excellent toughness and high-speed ductile fracture characteristics in which the fraction and hardness of the island-like martensite in the surface layer portion are reduced by tempering at less than 1 Ac has been proposed, and a method for producing the same.
  • Patent Document 4 in mass%, C: 0.03 to 0.12%, Si ⁇ 0.5%, Mn: 1.5 to 3.0%, Nb: 0.01 to 0.08%, Ti : 0.005 to 0.025%, and steel containing at least one of Cu, Ni, Cr, Mo, V, and B is hot at a cumulative reduction of ⁇ 67% in the austenite non-recrystallization temperature range of 950 ° C. or less By rolling and then cooling from a cooling start temperature of 600 ° C. or higher to a temperature range of 250 ° C.
  • the tensile strength is 625 MPa or more, and the temperature at ⁇ 40 ° C. It is desired that the Charpy impact absorption energy is 375 J or more and the ductility area ratio obtained by the DWTT test at ⁇ 40 ° C. is 85% or more. In addition, there is a demand for more excellent surface characteristics in accordance with such characteristics.
  • Patent Document 1 since the Charpy impact test in the example is carried out with a test piece taken from a 1/4 position of the plate thickness, a desired structure cannot be obtained at the plate thickness central portion where the cooling rate after rolling is slow, There is concern about the deterioration of characteristics, and the stopping performance against unstable ductile fracture as a steel pipe material for line pipes may be low.
  • Patent Document 2 is a technique in which pressing is performed with a cumulative pressurization amount of 50% or more in a temperature range of Ar 3 + 80 ° C. to 950 ° C. or less, and then rolling in a temperature range of Ar 3 to Ar 3 ⁇ 30 ° C. Since air cooling is necessary, the rolling time is prolonged, and there is a concern that the rolling efficiency is lowered. Moreover, there is no description regarding the DWTT test, and there is a concern that the propagation stopping performance of brittle fracture is inferior.
  • a temperature from Ar 3 ⁇ 50 ° C. or higher after rolling to a temperature range of 300 to 500 ° C. is 10 to 10 ° C. Cooling is performed at a cooling rate of 45 ° C./s, and tempering is performed at less than 1 Ac as necessary.
  • tempering by heating is not performed, the temperature after the martensite transformation and the subsequent cooling process In some cases, it is difficult to stably obtain desired characteristics.
  • Patent Document 3 has been evaluated by Charpy impact absorption energy at ⁇ 20 ° C., but if it is assumed to be used in an extremely cold region at ⁇ 40 ° C. or lower, the high-speed ductile fracture characteristics are not sufficient. I want.
  • the cooling stop temperature is set to 250 ° C. or lower in order to make the microstructure of the steel sheet a bainite or martensite structure from the viewpoint of increasing the strength.
  • the cooling stop temperature is low, not only may the plate shape deteriorate due to cooling strain, but the surface layer part where the cooling rate is fast tends to become excessively high, so that the surface such as wrinkles and cracks during steel pipe production There are concerns about the occurrence of defects.
  • the tensile strength is 625 MPa or more
  • the Charpy impact absorption energy at ⁇ 40 ° C. is 375 J or more
  • the ductile surface obtained by the DWTT test at ⁇ 40 ° C. It has not been possible to stably produce a steel sheet having a rate of 85% or more and sufficient surface characteristics.
  • the present invention has a ductile fracture surface ratio (SA) obtained by a DWTT test at ⁇ 40 ° C. and a Charpy impact absorption energy at ⁇ 40 ° C. at a tensile strength of 625 MPa or more at ⁇ 40 ° C. Value) is 85% or more, and an object thereof is to provide a high-strength and high-toughness steel plate having excellent surface characteristics and a method for producing the same.
  • SA ductile fracture surface ratio
  • the present inventors diligently studied various factors affecting Charpy impact absorption energy, DWTT characteristics, and surface characteristics for steel plates for line pipes. As a result, in steel sheets containing C, Mn, Nb, Ti, etc. (1) Control the cumulative rolling reduction and rolling temperature in the austenite non-recrystallization temperature range, (2) In the cooling process after rolling, while appropriately controlling the cooling start temperature and the cooling stop temperature, (3) Properly control the temperature drop ( ⁇ T) from the cooling start temperature to the cooling stop temperature, (4) Further, by performing reheating treatment under predetermined conditions after cooling, Also in the surface layer portion and the central portion of the plate thickness, it is possible to obtain a bainite-based structure in which island-like martensite (hereinafter also referred to as MA) is reduced as much as possible, and in the bainite in the central portion of the plate thickness.
  • MA island-like martensite
  • the gist of the present invention is as follows. [1] By mass%, C: 0.03% to 0.08%, Si: 0.01% to 0.50%, Mn: 1.5% to 2.5%, P: 0.00. 001% to 0.010%, S: 0.0030% or less, Al: 0.01% to 0.08%, Nb: 0.010% to 0.080%, Ti: 0.005% or more 0.025% or less, N: 0.001% to 0.006%, Cu: 0.01% to 1.00%, Ni: 0.01% to 1.00%, Cr : 0.01% to 1.00%, Mo: 0.01% to 1.00%, V: 0.01% to 0.10%, B: 0.0005% to 0.0030% A steel plate having a component composition comprising at least one selected from the group consisting of Fe and inevitable impurities, The area ratio of island martensite in each of the surface layer portion and the center portion of the plate thickness is less than 3%, and the area ratio of bainite in each of the surface layer portion and the plate thickness center portion of the
  • the average particle diameter of cementite present in the bainite at the center of the plate thickness has a microstructure of 0.5 ⁇ m or less, and the Vickers hardness difference ( ⁇ HV) between the surface layer and the plate thickness center is 20 or less.
  • High strength and high toughness steel plate In addition to the above-mentioned component composition, Ca: 0.0005% or more and 0.0100% or less, REM: 0.0005% or more and 0.0200% or less, Zr: 0.0005% or more.
  • the high-strength and high-toughness steel sheet according to the above [1] which contains one or more selected from 0300% or less and Mg: 0.0005% or more and 0.0100% or less.
  • [3] A method for producing a high-strength and high-toughness steel sheet according to the above [1] or [2], wherein the steel slab is heated to 1000 ° C. or more and 1250 ° C. or less, rolled in the austenite recrystallization temperature region, and then austenite-free. Rolling is performed at a cumulative reduction ratio of 60% or more in the recrystallization temperature range, and the rolling is finished at a temperature of 770 ° C or more and 850 ° C or less, and from a cooling start temperature of 750 ° C or more and 830 ° C or less, 10 ° C / s or more and 80 ° C / s.
  • the temperature drop ( ⁇ T) is accelerated and cooled at 350 ° C. or higher to a cooling stop temperature of 250 ° C. or higher and 400 ° C. or lower, and then immediately 400 ° C. at a temperature rising rate of 3 ° C./s or higher.
  • a method for producing a high-strength, high-toughness steel sheet that is reheated to a temperature of 500 ° C. or lower.
  • the surface layer part as used in the field of this invention points out the area
  • the plate thickness central portion is a region of 3/8 to 5/8 in the plate thickness direction (the plate thickness direction depth from one plate surface when the plate thickness is t is 3/8 t. ⁇ 5 / 8t area).
  • the temperature in the production conditions is the steel sheet average temperature.
  • the average steel plate temperature is obtained by simulation calculation or the like from the plate thickness, surface temperature, cooling conditions, and the like. For example, the average temperature of a steel plate is calculated
  • the temperature drop ( ⁇ T) in the present invention refers to the difference between the cooling start temperature and the cooling stop temperature.
  • the microstructure of the steel in the surface layer part and the sheet thickness center part is mainly bainite and exists in the bainite in the sheet thickness center part. It becomes possible to make the average particle diameter of cementite 0.5 ⁇ m or less, and as a result, the surface property is excellent by making the Vickers hardness difference ( ⁇ HV) between the surface layer part and the plate thickness center part 20 or less, A steel sheet having a base metal tensile strength of 625 MPa or more, Charpy impact absorption energy at ⁇ 40 ° C. of 375 J or more, and a ductile fracture surface ratio (SA value) of 85% or more obtained by the DWTT test at ⁇ 40 ° C. Which is very useful in industry.
  • the high-strength and high-toughness steel sheet of the present invention is, in mass%, C: 0.03% to 0.08%, Si: 0.01% to 0.50%, Mn: 1.5% to 2. 5% or less, P: 0.001% or more and 0.010% or less, S: 0.0030% or less, Al: 0.01% or more and 0.08% or less, Nb: 0.010% or more and 0.080% or less Ti: 0.005% to 0.025%; N: 0.001% to 0.006%; Cu: 0.01% to 1.00%; Ni: 0.01% 1.00% or less, Cr: 0.01% or more and 1.00% or less, Mo: 0.01% or more and 1.00% or less, V: 0.01% or more and 0.10% or less, B: 0.0.
  • the area ratio of island martensite is less than 3%, and the area ratio of bainite is 90% or more, and the plate thickness.
  • the average particle diameter of cementite present in the bainite in the central portion has a microstructure of 0.5 ⁇ m or less, and the Vickers hardness difference ( ⁇ HV) between the surface layer portion and the plate thickness central portion is 20 or less.
  • C 0.03% or more and 0.08% or less C forms a bainite main structure after accelerated cooling, and effectively acts to increase the strength by transformation strengthening.
  • the amount of C is less than 0.03%, ferrite transformation and pearlite transformation are likely to occur during cooling, so that a predetermined amount of bainite cannot be obtained and a desired tensile strength ( ⁇ 625 MPa) may not be obtained.
  • the C content exceeds 0.08%, hard martensite is likely to be formed after accelerated cooling, and the Charpy impact absorption energy of the base material may be lowered or the DWTT characteristics may be deteriorated. Therefore, the C content is 0.03% or more and 0.08% or less, preferably 0.03% or more and 0.07% or less.
  • Si 0.01% or more and 0.50% or less Si is an element necessary for deoxidation, and further has an effect of improving the strength of the steel material by solid solution strengthening. In order to obtain such an effect, it is necessary to contain 0.01% or more of Si, preferably 0.05% or more, and more preferably 0.10% or more. On the other hand, if the amount of Si exceeds 0.50%, island-like martensite that can be the starting point of ductile cracks and brittle cracks is likely to be generated, so that weldability and Charpy impact absorption energy of the base material are lowered. For this reason, the amount of Si shall be 0.01% or more and 0.50% or less. In addition, from the viewpoint of preventing softening of the welded portion of the steel pipe and preventing toughness deterioration of the weld heat affected zone, the Si content is preferably 0.01% or more and 0.20% or less.
  • Mn 1.5% or more and 2.5% or less Mn, like C, forms a bainite main structure after accelerated cooling, and effectively acts to increase the strength by transformation strengthening.
  • the amount of Mn is less than 1.5%, ferrite transformation or pearlite transformation is likely to occur during cooling, so that a predetermined amount of bainite cannot be obtained and a desired tensile strength ( ⁇ 625 MPa) may not be obtained.
  • Mn is contained in excess of 2.5%, Mn is concentrated in the segregated part inevitably formed at the time of casting, and this causes the Charpy impact absorption energy to be lowered and the DWTT performance to be inferior.
  • the Mn content is 1.5% or more and 2.5% or less. From the viewpoint of improving toughness, the amount of Mn is preferably 1.5% or more and 2.0% or less.
  • P 0.001% or more and 0.010% or less
  • P is an element effective for increasing the strength of a steel sheet by solid solution strengthening.
  • the amount of P is less than 0.001%, not only the effect does not appear, but also the dephosphorization cost may be increased in the steel making process, so the amount of P is made 0.001% or more.
  • the amount of P exceeds 0.010%, toughness and weldability are remarkably inferior. Therefore, the P content is 0.001% or more and 0.010% or less.
  • S 0.0030% or less
  • S is a harmful element that exists as sulfide inclusions in steel and deteriorates toughness and ductility. Therefore, it is preferable to reduce S as much as possible.
  • the upper limit of the amount of S is 0.0030%, preferably 0.0015% or less. Although there is no particular lower limit, it is preferable to make it 0.0001% or more because extremely low S increases the steelmaking cost.
  • Al 0.01% or more and 0.08% or less
  • Al is an element contained as a deoxidizing material. Further, since Al has a solid solution strengthening ability, it effectively acts to increase the strength of the steel sheet. However, if the Al content is less than 0.01%, the above effect cannot be obtained. On the other hand, if the Al content exceeds 0.08%, the raw material cost may be increased and the toughness may be deteriorated. Therefore, the Al content is 0.01% or more and 0.08% or less, preferably 0.01% or more and 0.05% or less.
  • Nb 0.010% or more and 0.080% or less Nb is effective in increasing the strength of a steel sheet by precipitation strengthening and hardenability increasing effects.
  • Nb has the effect of expanding the non-recrystallization temperature range of austenite during hot rolling, and is effective in improving toughness due to the refinement effect of non-recrystallization austenite region rolling. In order to acquire these effects, it contains 0.010% or more.
  • the Nb amount exceeds 0.080%, hard martensite is likely to be generated after accelerated cooling, and the Charpy impact absorption energy of the base material may be lowered or the DWTT characteristics may be deteriorated.
  • the toughness of the HAZ part (hereinafter also referred to as a weld heat affected part) is remarkably inferior. Therefore, the Nb content is 0.010% or more and 0.080% or less, preferably 0.010% or more and 0.040% or less.
  • Ti forms nitrides (mainly TiN) in steel, and when it contains 0.005% or more in particular, there is an effect of refining austenite grains due to the pinning effect of nitride. This contributes to securing the toughness of the base metal and the toughness of the weld heat affected zone.
  • Ti is an element effective for increasing the strength of a steel sheet by precipitation strengthening. To obtain these effects, 0.005% or more of Ti is contained. On the other hand, when Ti is contained in excess of 0.025%, TiN and the like are coarsened and do not contribute to the refinement of austenite grains, and the effect of improving toughness cannot be obtained.
  • the Ti content is 0.005% or more and 0.025% or less, preferably 0.008% or more and 0.018% or less.
  • N forms a nitride with Ti and suppresses austenite coarsening and contributes to improvement of toughness.
  • N is contained by 0.001% or more.
  • the amount of N exceeds 0.006%, when TiN decomposes in the weld zone, particularly in the weld heat affected zone heated to 1450 ° C. or more in the vicinity of the melting line, the weld heat affected zone caused by solute N Toughness may be inferior. Therefore, the N amount is 0.001% or more and 0.006% or less, and when the required level for the toughness of the weld heat affected zone is high, the N amount is preferably 0.001% or more and 0.004% or less. .
  • one or more selected from Cu, Ni, Cr, Mo, V, and B are further contained as selective elements.
  • Cu, Cr, and Mo are all elements for improving hardenability. As with Mn, it obtains a low temperature transformation structure and contributes to increasing the strength of the base metal and the weld heat affected zone. In order to acquire this effect, it is necessary to contain 0.01% or more. On the other hand, when the amount of Cu, Cr, and Mo exceeds 1.00%, the effect of increasing the strength is saturated. Therefore, when Cu, Cr, and Mo are contained, the content is 0.01% or more and 1.00% or less, respectively.
  • Ni 0.01% or more and 1.00% or less Ni is also a useful element because it is a hardenability improving element and does not deteriorate toughness even if it is contained. In order to acquire this effect, it is necessary to contain 0.01% or more. On the other hand, Ni is very expensive, and when the amount of Ni exceeds 1.00%, the effect is saturated. Therefore, when Ni is contained, the content is made 0.01% to 1.00%.
  • V 0.01% or more and 0.10% or less
  • V is an element that is effective in increasing the strength of a steel sheet by precipitation strengthening by forming carbides. To obtain this effect, V is contained in an amount of 0.01% or more. is necessary. On the other hand, if the amount of V exceeds 0.10%, the amount of carbide becomes excessive, which may lead to a decrease in toughness. Therefore, when it contains V, it is 0.01% or more and 0.10% or less.
  • B 0.0005% or more and 0.0030% or less B segregates at the austenite grain boundary and suppresses the ferrite transformation, thereby contributing particularly to prevention of strength reduction in the weld heat affected zone. In order to acquire this effect, it is necessary to contain 0.0005% or more. On the other hand, when the amount of B exceeds 0.0030%, the effect is saturated. Therefore, when B is contained, the content is made 0.0005% or more and 0.0030% or less.
  • the balance other than the above components is composed of Fe and unavoidable impurities, but if necessary, Ca: 0.0005% to 0.0100%, REM: 0.0005% to 0.0200%, Zr: 0.00.
  • One or more selected from 0005% to 0.0300% and Mg: 0.0005% to 0.0100% can be contained.
  • Ca, REM, Zr, and Mg have the function of fixing S in steel and improving the toughness of the steel sheet, and the effect is exhibited by containing 0.0005% or more.
  • Ca is contained in an amount of 0.0100%
  • REM is 0.0200%
  • Zr is 0.0300%
  • Mg is contained in an amount exceeding 0.0100%
  • inclusions in the steel may increase and the toughness may be deteriorated. . Therefore, when these elements are contained, Ca: 0.0005% to 0.0100%, REM: 0.0005% to 0.0200%, Zr: 0.0005% to 0.0300%, Mg : 0.0005% or more and 0.0100% or less.
  • the microstructure of the high-strength and high-toughness steel sheet of the present invention has a Vickers hardness difference ( ⁇ HV) of 20 or less between the surface layer part and the center part of the sheet thickness, and a base material tensile strength of 625 MPa or more and Charpy at ⁇ 40 ° C.
  • ⁇ HV Vickers hardness difference
  • SA value ductile fracture surface ratio
  • the island-like martensite has a structure mainly composed of a bainite structure with an area ratio of less than 3%, and the average particle size of cementite present in the bainite at the center of the plate thickness is 0.5 ⁇ m or less. It is necessary.
  • the structure mainly composed of bainite means that the area ratio of bainite is substantially composed of a bainite structure of 90% or more.
  • island-shaped martensite with an area ratio of less than 3% is allowed, and phases other than bainite such as ferrite, pearlite, and martensite may be included. If it is 10% or less, the effect of the present invention can be exhibited.
  • a surface layer part here refers to the area
  • the area ratio of island martensite in each of the surface layer portion and the center of the plate thickness less than 3% Since the island martensite has high hardness and becomes the starting point of ductile cracks and brittle cracks, the area ratio of island martensite is If it is 3% or more, the Charpy impact absorption energy and the DWTT characteristic are significantly lowered. On the other hand, if the island-like martensite is less than 3% in area ratio, Charpy impact absorption energy is not lowered and the DWTT characteristics are not deteriorated. Therefore, in the present invention, in each of the surface layer portion and the plate thickness central portion, The area ratio of the martensite is limited to less than 3%. The area ratio of the island martensite is preferably 2% or less.
  • the area ratio of bainite in each of the surface layer part and the central part of the plate thickness 90% or more
  • the bainite phase is a hard phase, effective in increasing the strength of the steel sheet by transformation structure strengthening, and by making the structure mainly bainite Further, it is possible to increase the strength while stabilizing the Charpy impact absorption energy and DWTT characteristics at a high level.
  • the area ratio of bainite is less than 90%, the total area ratio of the remaining structures such as ferrite, pearlite, martensite, and island martensite is more than 10%. Since it becomes the starting point of the occurrence of brittle cracks, the target Charpy impact absorption energy and DWTT characteristics may not be obtained.
  • the area ratio of bainite is 90% or more, preferably 95% or more, in each of the surface layer portion and the center portion of the plate thickness.
  • bainite is lath-shaped bainitic ferrite and refers to a structure in which cementite particles are precipitated.
  • the average particle size of cementite in bainite at the center of the plate thickness 0.5 ⁇ m or less
  • the center of the plate thickness has a slow cementing rate compared to the surface layer or 1/4 position of the plate thickness, so the cementite is coarse. Tends to occur.
  • the cementite in bainite may be the starting point of ductile cracks and brittle cracks.
  • the average particle size of cementite exceeds 0.5 ⁇ m, the Charpy impact absorption energy is remarkably lowered and the DWTT characteristics are remarkably inferior.
  • the average particle size of cementite in the bainite at the central portion of the plate thickness is 0.5 ⁇ m or less, these decreases are small and the target characteristics can be obtained.
  • the average particle size of cementite is 0.5 ⁇ m or less, preferably 0. .2 ⁇ m or less.
  • the cooling rate during accelerated cooling is faster than the central portion of the plate thickness and the cementite is finer, so the influence on the Charpy impact absorption energy is small. Therefore, in the present invention, the average particle diameter of cementite in bainite is limited only in the central portion of the plate thickness.
  • the area ratio of bainite at the center of the plate thickness is cut out from a region of 3/8 to 5/8 of the plate thickness, and the L section (vertical section parallel to the rolling direction) is mirror-polished and then corroded with nital.
  • SEM scanning electron microscope
  • the island-shaped martensite was made to appear in the same sample using the electrolytic etching method (electrolytic solution: 100 ml distilled water + 25 g sodium hydroxide + 5 g picric acid), and then, at a magnification of 2000 times with a scanning electron microscope (SEM).
  • the area ratio of island-like martensite can be obtained by image analysis by randomly observing 5 fields of view and from the taken tissue photographs.
  • cementite was extracted using a selective low potential electrolytic etching method (electrolytic solution: 10% by volume acetylacetone + 1% by volume tetramethylammonium croid methyl alcohol), and then the SEM was used at a magnification of 2000 times. It is possible to calculate the average equivalent circle diameter of cementite particles by observing 5 fields of view for the purpose and analyzing the image of the taken tissue photograph.
  • the high-strength and high-toughness steel sheet having the high absorption energy of the present invention composed of the above has the following characteristics.
  • Vickers hardness difference ( ⁇ HV) between the surface layer portion and the center portion of the plate thickness is 20 or less: Hard island-like martensite is easily generated in the surface layer portion of the steel plate where the cooling rate after rolling is fast, and the surface hardness increases. Such an increase in surface hardness may cause surface defects such as wrinkles and cracks during the manufacture of steel pipes where stress concentration tends to occur on the steel sheet surface. Moreover, when a steel pipe having such surface defects is applied to a high-pressure gas pipeline, there is a concern that the surface defects may become a starting point for ductile fracture and brittle fracture and cause large-scale fracture.
  • the Vickers hardness difference ( ⁇ HV) between the surface layer portion and the central portion of the plate thickness is set to 20 or less, preferably the Vickers hardness of the surface layer portion.
  • the absolute value is 260 or less.
  • the Vickers hardness of the surface layer portion is obtained by mechanically polishing the L cross section (vertical cross section parallel to the rolling direction), and in a region (surface layer portion) within 2 mm from the surface layer in the plate thickness direction, the load is 10 kgf. Can be obtained by measuring 10 points each and obtaining the average value.
  • the Vickers hardness at the center of the plate thickness can be obtained by performing the same Vickers hardness test at the 1 / 2t position (plate thickness center) in the plate thickness direction and obtaining the difference between the two Vickers hardnesses ( ⁇ HV). .
  • Tensile strength of base material is 625 MPa or more: For line pipes used for transportation of natural gas, crude oil, etc., high strength is required to improve transportation efficiency by increasing the pressure and to improve field welding efficiency by reducing the thickness. There is a great demand for conversion. In order to meet these requirements, the tensile strength of the base material is set to 625 MPa in the present invention. Here, the tensile strength can be measured by collecting a full-thickness tensile test piece based on API-5L and having the tensile direction C direction, and performing a tensile test. In the composition and structure of the present invention, the tensile strength of the base material can be produced without problems up to about 850 MPa.
  • Charpy impact absorption energy at ⁇ 40 ° C. is 375 J or more:
  • high-speed ductile fracture in which ductile cracks generated by an extrinsic accident propagate at a speed of 100 m / s or more in the tube axis direction ( (Unstable ductile fracture) is known to occur, which can cause large-scale fractures of up to several kilometers.
  • Charpy impact absorption energy at ⁇ 40 ° C. is set to 375 J or more, preferably 400 J or more.
  • the Charpy impact absorption energy at ⁇ 40 ° C. can be measured by performing a Charpy impact test in accordance with ASTM A370 at ⁇ 40 ° C.
  • the ductile fracture surface ratio (SA value) obtained by the DWTT test at ⁇ 40 ° C. is 85% or more: In the line pipe used for transportation of natural gas, etc., from the viewpoint of preventing brittle crack propagation, DWTT It is desired that the value of the ductile fracture surface ratio in the test is high.
  • the ductile fracture surface ratio (SA value) obtained by the DWTT test at ⁇ 40 ° C. is set to 85% or more.
  • the method for producing a high-strength and high-toughness steel sheet of the present invention comprises heating the steel slab having the above-described composition to 1000 ° C. or more and 1250 ° C. or less, rolling in the austenite recrystallization temperature region, and then in the austenite non-recrystallization temperature region. Rolling is performed at a cumulative reduction rate of 60% or more, and the rolling is finished at a temperature of 770 ° C. or higher and 850 ° C. or lower, and a cooling rate of 10 ° C./s or higher and 80 ° C./s or lower from a cooling start temperature of 750 ° C. or higher and 830 ° C. or lower.
  • the temperature drop amount ( ⁇ T) is accelerated and cooled to 350 ° C. or more to a cooling stop temperature of 250 ° C. or more and 400 ° C. or less, and then immediately, the temperature is 400 ° C. or more and 500 ° C. or less at a temperature rising rate of 3 ° C./s or more. Is obtained by reheating up to.
  • the temperature drop amount ( ⁇ T) refers to the difference between the cooling start temperature and the cooling stop temperature.
  • the steel slab of the present invention is desirably produced by a continuous casting method to prevent macro segregation of components, and may be produced by an ingot forming method. Also, (1) After manufacturing the steel slab, in addition to the conventional method of once cooling to room temperature and then heating again, (2) Direct feed rolling in which a hot piece is not cooled and charged in a heating furnace and hot rolled, or (3) Direct feed rolling / direct rolling in which hot rolling is performed immediately after performing a slight heat retention, (4) Method of charging a heating furnace in a high temperature state and omitting a part of reheating (hot piece charging) Energy-saving processes such as can be applied without problems.
  • the slab heating temperature is 1000 ° C. or higher and 1250 ° C. or lower, preferably 1000 ° C. or higher and 1150 ° C. or lower.
  • Cumulative rolling reduction in austenite recrystallization temperature range 50% or more (preferable range)
  • the cumulative rolling reduction in the recrystallization temperature range is not particularly defined, but is preferably 50% or more.
  • the minimum temperature of austenite recrystallization is about 950 degreeC.
  • Cumulative rolling reduction in the austenite non-recrystallization temperature range 60% or more Austenite grains expand by performing rolling reduction of 60% or more in the austenite non-recrystallization temperature range, especially in the thickness direction.
  • the Charpy impact absorption energy and DWTT characteristics of steel obtained by accelerated cooling in this state are good.
  • the cumulative reduction ratio of the austenite in the non-recrystallization temperature region is preferably 60% or more, and more preferably 70% or more when toughness improvement is required.
  • Rolling end temperature 770 ° C or more and 850 ° C or less
  • Large reduction with a high cumulative reduction ratio in the austenite non-recrystallization temperature range is effective in improving Charpy impact absorption energy and DWTT characteristics, and by lowering in a lower temperature range The effect is further increased.
  • rolling in a low temperature region of less than 770 ° C. causes a texture to develop in the austenite grains, and then, when accelerated cooling to form a bainite-based structure, the texture is partially inherited by the transformation structure. Is likely to occur, and Charpy impact absorption energy is significantly reduced.
  • the rolling end temperature is 770 ° C. or higher and 850 ° C. or lower, and preferably 770 ° C. or higher and 820 ° C. or lower.
  • Cooling start temperature of accelerated cooling 750 ° C. or more and 830 ° C. or less If the cooling start temperature of accelerated cooling is less than 750 ° C., proeutectoid ferrite is generated from the austenite grain boundary in the air cooling process after hot rolling until the start of accelerated cooling. The base material strength may be reduced. Further, when the amount of pro-eutectoid ferrite increases, the interface between ferrite and bainite, which is the starting point of ductile cracks and brittle cracks, increases, and thus Charpy impact absorption energy decreases and the DWTT characteristics may deteriorate.
  • the cooling start temperature of accelerated cooling is 750 ° C. or higher and 830 ° C. or lower, preferably 750 ° C. or higher and 800 ° C. or lower.
  • Cooling rate of accelerated cooling 10 ° C./s or more and 80 ° C./s or less
  • the cooling rate of accelerated cooling is less than 10 ° C./s
  • ferrite transformation may occur during cooling, and the base material strength may be lowered.
  • the interface between ferrite and bainite which is the starting point of ductile cracks and brittle cracks, increases, resulting in low Charpy impact absorption energy and inferior DWTT characteristics.
  • cementite in the bainite at the center of the plate thickness tends to agglomerate and coarsen, the Charpy impact absorption energy of the base material becomes low, and the DWTT characteristics may be inferior.
  • the cooling rate of accelerated cooling is set to 10 ° C./s or more and 80 ° C./s or less.
  • the cooling rate refers to an average cooling rate obtained by dividing the difference between the cooling start temperature and the cooling stop temperature by the required time.
  • Temperature drop amount ( ⁇ T) from the cooling start temperature to the cooling stop temperature 350 ° C. or more Control of the temperature drop amount ( ⁇ T) from the cooling start temperature to the cooling stop temperature is important in the present invention. Since the nucleation of bainite increases as the temperature drop ( ⁇ T) increases, the bainite structure becomes finer, and the packets and laths that make up the bainite become finer. Further, as ⁇ T is larger, carbon that is supersaturated in bainite transformed by cooling is finely precipitated during the heat treatment described later, and high Charpy impact absorption energy and excellent DWTT performance can be obtained. In order to stably obtain these effects, ⁇ T needs to be 350 ° C. or higher, preferably 400 ° C. or higher.
  • ⁇ T is 350 ° C. or higher, preferably 400 ° C. or higher.
  • the temperature drop amount ( ⁇ T) refers to the difference between the cooling start temperature and the cooling stop temperature.
  • Cooling stop temperature for accelerated cooling 250 ° C. or more and 400 ° C. or less If the cooling stop temperature for accelerated cooling is less than 250 ° C., martensitic transformation may occur and the strength of the base material will increase, but the Charpy impact absorption energy of the base material will increase. In some cases, the DWTT characteristics may be remarkably inferior, and the tendency becomes remarkable particularly in the vicinity of the steel sheet surface layer. Also, the hardness tends to be excessively high at the surface layer portion where the cooling rate is fast, and as a result, the desired Vickers hardness difference ( ⁇ HV) between the surface layer portion and the central portion of the plate thickness cannot be obtained, and wrinkles, cracks, etc. May cause surface defects. Therefore, the cooling stop temperature is 250 ° C.
  • the cooling stop temperature for accelerated cooling is set to 250 ° C. or more and 400 ° C. or less.
  • island-like martensite may be generated due to the concentration of carbon and alloy elements into untransformed austenite accompanying bainite transformation in the cooling process. Further, in the surface layer portion where the cooling rate is relatively fast, martensite may be generated in addition to island martensite. Since these hard layers are the starting point of brittle cracks and ductile cracks, the toughness of the base metal is significantly deteriorated, and if the surface hardness increases excessively, it may cause surface defects such as wrinkles and cracks during steel pipe production. There is a case. For this reason, it is necessary to perform appropriate structure control by reheating treatment to improve the base material toughness and suppress surface defects.
  • the heating method is not particularly limited, but a high-frequency heating device is preferable.
  • to immediately reheat after stopping the accelerated cooling means to reheat at a rate of temperature increase of 3 ° C./s or more within 120 seconds after stopping the accelerated cooling.
  • Heating rate in reheating treatment after accelerated cooling 3 ° C./s or more
  • the heating rate in reheating after accelerated cooling is less than 3 ° C./s, cementite in bainite aggregates and becomes coarse
  • the Charpy impact absorption energy of the base material is lowered and the DWTT characteristics may be deteriorated
  • the temperature rising rate is set to 3 ° C./s or more.
  • the upper limit is not particularly limited, but is necessarily limited by the capability of the heating means.
  • Reheating temperature after accelerated cooling 400 ° C. or higher and 500 ° C. or lower
  • Hard islands such as island martensite, martensite and bainite generated after accelerated cooling reduce the toughness of the base material. It is necessary to improve the toughness of the material. If the reheating temperature is less than 400 ° C., the tempering of hard phases such as island martensite, martensite, and bainite is insufficient, and thus the effect of improving the base material toughness may not be obtained.
  • surface hardness will increase excessively and may cause surface defects, such as a wrinkle and a crack at the time of steel pipe manufacture.
  • the reheating temperature after accelerated cooling is set to 400 ° C. or more and 500 ° C. or less.
  • the steel sheet of the present invention produced by the rolling process described above is suitably used as a material for high-strength line pipes.
  • a high-strength line pipe using the steel plate of the present invention, it is formed into a substantially cylindrical shape by U-press, O-press, or the like, or a press bend method in which three-point bending is repeated, and welding such as submerged arc welding is performed.
  • welding such as submerged arc welding is performed.
  • the surface of the high-strength line pipe manufactured in this way may be coated as necessary, or may be subjected to heat treatment for the purpose of improving toughness.
  • Molten steel consisting of the component composition shown in Table 1 (the balance is Fe and inevitable impurities) is melted in a converter to form a slab having a thickness of 220 mm, and after hot rolling, accelerated cooling, and accelerated cooling shown in Table 2 Reheating was performed to produce a thick steel plate having a thickness of 30 mm.
  • a full-thickness tensile test piece in which the tensile direction in accordance with API-5L is the C direction is collected, and a tensile test is performed to obtain a yield strength (0.5% YS) and a tensile strength ( TS).
  • Charpy impact test was performed by collecting Charpy test pieces having a V-notch of 2 mm from the 1/2 position in the plate thickness direction and having a longitudinal direction of C direction at ⁇ 40 ° C. in accordance with ASTM A370. And Charpy impact absorption energy (vE ⁇ 40 ° C. ) was determined.
  • press notch type full-thickness DWTT test pieces having a longitudinal direction C direction according to API-5L were collected and subjected to impact bending load due to drop weight at ⁇ 40 ° C., and the ductile fracture surface ratio of fractured surfaces ( SA ⁇ 40 ° C. ).
  • a specimen for hardness measurement is taken from the obtained thick steel plate, the L cross section (vertical cross section parallel to the rolling direction) is mechanically polished, and in a region (surface layer portion) within 2 mm from the surface layer in the plate thickness direction.
  • the Vickers hardness was measured at 10 points each with a load of 10 kgf, and the average value was obtained. Further, the same Vickers hardness test was conducted at the 1 / 2t position (plate thickness center) in the plate thickness direction, and the Vickers hardness difference ( ⁇ HV) between the two was obtained.
  • a specimen for tissue observation was collected from a region within 2 mm from the surface layer in the plate thickness direction (surface layer portion) and a region of 3/8 to 5/8 of the plate thickness (plate thickness central portion). Then, the identification of the structure, the area ratio of bainite, island-like martensite and the remaining structure and the average particle diameter of cementite were determined.
  • Samples for structure observation were collected from the region of the thickness of the steel plate from 3/8 to 5/8 (plate thickness central part), the L cross section (vertical cross section parallel to the rolling direction) was mirror-polished and corroded with nital. Then, using a scanning electron microscope (SEM), observe 5 fields at random at a magnification of 2000 times, identify the structure by the photographed structure photograph, and determine the area ratio of each phase such as bainite, martensite, ferrite, pearlite, etc. Obtained by image analysis.
  • SEM scanning electron microscope
  • No. Steel sheets 2 to 13 are examples of the invention in which the component composition and the production method are adapted to the present invention, the Vickers hardness difference ( ⁇ HV) between the surface layer portion and the central portion of the plate thickness is 20 or less, and the tensile strength (TS) of the base material Is 625 MPa or more, Charpy impact absorption energy (vE ⁇ 40 ° C. ) at ⁇ 40 ° C. is 375 J or more, and the ductile fracture surface ratio (SA ⁇ 40 ° C. ) obtained by the DWTT test at ⁇ 40 ° C. is 85% or more.
  • the steel sheet is a high strength and high toughness steel plate having high absorption energy with excellent surface characteristics.
  • No. of the comparative example No. 1 has a C content of No. 1 in the comparative example.
  • No. 18 has a Mn content lower than that of the present invention, so that a large amount of ferrite and pearlite generated during cooling cannot be obtained in the surface layer portion and the center portion of the plate thickness, and a predetermined amount of bainite cannot be obtained. (TS) cannot be obtained.
  • Comparative Example No. No. 14 shows that the Nb amount is No. of the comparative example.
  • No. 15 has a C amount of No. in the comparative example. In No.
  • the amount of Mn exceeds the present invention, so the amount of martensite after reheating after accelerated cooling increases, and the desired Charpy impact absorption energy (vE ⁇ 40 ° C. ) and DWTT characteristics (SA ⁇ 40 ° C. ) ) Is not obtained.
  • the surface layer portion where the cooling rate is fast has a larger amount of martensite than the center portion of the plate thickness, so the surface layer hardness is very high. As a result, the difference in Vickers hardness ( ⁇ HV) between the surface layer portion and the plate thickness center portion. ) Exceeds a predetermined value, surface defects such as wrinkles and cracks are produced during the production of steel pipes, and the surface properties are inferior. Comparative Example No. No.
  • a molten steel consisting of the components of steels D and H shown in Table 1 (the balance is Fe and inevitable impurities) is melted in a converter to form a slab having a thickness of 220 mm, followed by hot rolling and accelerated cooling shown in Table 4. Then, reheating after accelerated cooling was performed to produce a thick steel plate having a thickness of 30 mm.
  • the thick steel plate obtained as described above was subjected to a full thickness tensile test, a Charpy impact test, and a press notch type full thickness DWTT test in the same manner as in Example 1, yield strength (0.5% YS), and tensile strength.
  • TS Charpy impact absorption energy
  • SA ductile fracture surface ratio
  • Vickers hardness were measured.
  • Steel plates 22 to 26 and 35 to 37 are examples of the invention in which the composition and manufacturing method are adapted to the present invention, the Vickers hardness difference ( ⁇ HV) between the surface layer portion and the plate thickness center portion is 20 or less, and the tensile strength of the base material Ductile fracture surface ratio (SA -40 ° C ) obtained by DWTT test at -40 ° C and Charpy impact absorption energy (vE -40 ° C ) at -40 ° C with strength (TS) of 625 MPa or more and -40 ° C Is 85% or more, and is a high-strength and high-toughness steel sheet having high absorption energy with excellent surface characteristics. Furthermore, no.
  • Nos. 22, 24 and 25 are suitable ranges for the cumulative reduction ratio in the non-recrystallization temperature range, the rolling end temperature, the cooling start temperature and the temperature drop ( ⁇ T) from the cooling start temperature to the cooling stop temperature.
  • Charpy impact absorption energy (vE ⁇ 40 ° C. ) and ductile fracture surface area (SA ⁇ ) due to the effect of fine precipitation of carbon dissolved in supersaturation in bainite transformed by crystallization and accelerated cooling during reheating treatment 40 ° C. ) is higher in the steel plate having the same composition.
  • No. 36, ⁇ T is in the preferred range, but the cumulative reduction ratio in the non-recrystallization temperature region, the rolling end temperature, and the cooling start temperature are not in the preferred range. Slightly lower than 35 characteristics.
  • Comparative Example No. No. 34 has a reheating temperature lower than the range of the present invention, so that the effect of tempering in the reheating treatment is insufficient, and the desired Charpy impact absorption energy (vE ⁇ 40 ° C. ) and DWTT characteristics (SA ⁇ 40 ° C. ) ) Is not obtained.
  • the cooling stop temperature exceeds the range of the present invention
  • the reheating temperature exceeds the range of the present invention, so that cementite in bainite aggregates and coarsens, and the desired tensile strength (TS) and DWTT characteristics (SA- 40 ° C. ) Cannot be obtained.
  • the temperature drop ( ⁇ T) is less than 350 ° C.
  • the desired DWTT characteristic (SA ⁇ 40 ° C. ) cannot be obtained.
  • Comparative Example No Since the cooling rate during accelerated cooling exceeds the range of the present invention, the amount of hard martensite produced increases after accelerated cooling, and the desired Charpy impact absorption energy (vE ⁇ 40 ° C. ) and DWTT characteristics (SA ⁇ 40 ° C.
  • Comparative Example No. No. 41 has a cooling stop temperature lower than the range of the present invention, so the amount of martensite generated after accelerated cooling increases, and the desired Charpy impact absorption energy (vE ⁇ 40 ° C. ) and DWTT characteristics (SA ⁇ 40 ° C. ) can be obtained. Absent. Moreover, desired surface characteristics cannot be obtained due to an increase in surface hardness due to hard martensite remaining in the surface layer portion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 表面特性に優れた高吸収エネルギーを有する高強度・高靭性鋼板を提供する。 質量%で、C:0.03~0.08%、Si:0.01~0.50%、Mn:1.5~2.5%、P:0.001~0.010%、S:0.0030%以下、Al:0.01~0.08%、Nb:0.010~0.080%、Ti:0.005~0.025%、N:0.001~0.006%を有し、さらにCu:0.01~1.00%、Ni:0.01~1.00%、Cr:0.01~1.00%、Mo:0.01~1.00%、V:0.01~0.10%、B:0.0005~0.0030%から選ばれる1種以上を有し、残部がFeおよび不可避的不純物からなり、表層部と板厚中央部について、島状マルテンサイトの面積率が3%未満、ベイナイトの面積率が90%以上、かつ板厚中央部でベイナイト中のセメンタイトの平均粒径が0.5μm以下である。

Description

高強度・高靭性鋼板およびその製造方法
 本発明は高強度・高靭性鋼板とその製造方法に関し、特に、高強度、高シャルピー衝撃吸収エネルギーおよび優れたDWTT性能を有するラインパイプ用鋼管用素材に好適な高強度・高靭性鋼板とその製造方法に関する。
 天然ガスや原油等の輸送用として使用されるラインパイプでは、高圧化による輸送効率の向上や薄肉化による現地溶接施工効率の向上のため、高強度化の要望が非常に高まっている。特に、高圧ガスを輸送するラインパイプ(以下、高圧ガスラインパイプとも記す。)では、通常の構造用鋼として要求される強度、靭性等の材料特性のみでなく、ガスラインパイプ特有の破壊抵抗に関する材料特性が必要とされる。
 通常の構造用鋼における破壊靱性値は脆性破壊に対する抵抗特性を示し、使用環境で脆性破壊が生じないように設計するための指標として用いられる。一方、高圧ガスラインパイプでは大規模破壊の回避に対する脆性破壊の抑制だけでは十分ではなく、さらに不安定延性破壊と呼ばれる延性破壊の抑制も必要となる。
 この不安定延性破壊は、高圧ガスラインパイプにおいて延性破壊が管軸方向に100m/s以上の速度で伝播する現象で、これによって数kmにもおよぶ大規模破壊が生じる可能性がある。そのため、過去の実管ガスバースト試験結果から求められた不安定延性破壊抑制のために必要なシャルピー衝撃吸収エネルギー値およびDWTT(Drop Weight Tear Test)試験値が規定され、高いシャルピー衝撃吸収エネルギーや優れたDWTT特性が要求されてきた。なお、ここでいうDWTT試験値とは、延性破面率が85%となる破面遷移温度のことである。
 このような要求に対して、特許文献1では、圧延終了後の空冷過程におけるフェライト生成を抑制した成分系において、700℃以下の累積圧下量を30%以上とすることで集合組織が発達したベイナイト主体の組織とするとともに、旧オーステナイト粒界に存在するフェライトの面積率を5%以下とすることで、高いシャルピー衝撃吸収エネルギーと優れたDWTT特性を有する鋼管素材用厚鋼板およびその製造方法が提案されている。
 特許文献2では、質量%で、C:0.03~0.1%、Mn:1.0~2.0%、Nb:0.01~0.1%、P≦0.01%、S≦0.003%、O≦0.005%を含有する鋼をAr+80℃~950℃の温度範囲の中で累積圧下率が50%以上となるように圧延を実施し、暫く空冷した後、Ar~Ar-30℃の温度範囲の中で累積圧下量が10~30%となるように圧延することで、圧延集合組織を発達させることなく、加工フェライトを利用した、セパレーションの発生しない高吸収エネルギーを有する板厚15mm以下の高強度鋼板の製造方法が提案されている。
 特許文献3では、質量%で、C:0.02~0.1%、Si:0.6%以下、Mn:1.6~2.5%、Ni:0.1~0.7%、Nb:0.01~0.1%、Ti:0.005~0.03%で、炭素当量Pcmが0.180~0.220%からなる鋼を所定の連続鋳造を行うことでMnの中心偏析を低減しつつ、所定の条件で熱間圧延実施後、Ar-50℃以上の温度から300~500℃の温度域まで10~45℃/sの冷却速度で冷却し、必要に応じてAc点未満で焼き戻しを実施することで表層部の島状マルテンサイトの分率や硬度を低減した優れた靭性および高速延性破壊特性を有する高張力鋼板およびその製造方法が提案されている。
 特許文献4では,質量%で、C:0.03~0.12%、Si≦0.5%、Mn:1.5~3.0%、Nb:0.01~0.08%、Ti:0.005~0.025%、さらにCu、Ni、Cr、Mo、V、Bの一種以上を含有する鋼を950℃以下のオーステナイト未再結晶温度域で累積圧下率≧67%で熱間圧延し、その後、600℃以上の冷却開始温度から250℃以下の温度域まで20~80℃/sの冷却速度で冷却後、300~500℃まで再加熱処理を行うことで,ベイナイトまたはマルテンサイトを含み,これらの組織中に存在するセメンタイトの平均粒径が0.5μm以下であることを特徴とする耐切断割れ性とDWTT特性に優れた高強度・高靭性厚鋼板が提案されている。
特開2010-222681号公報 特開2003-96517号公報 特開2006-257499号公報 特開2013-057125号公報
 ところで、近年の高圧ガスラインパイプ等に適用される鋼板としては、より高強度かつ高靭性であることが求められており、具体的には、引張強度が625MPa以上であり、-40℃でのシャルピー衝撃吸収エネルギーが375J以上であり、-40℃でのDWTT試験で得られた延性面率が85%以上であることが希求されている。また、このような特性に合せて、表面特性をより優れたものとすることも希求されている。
 特許文献1では実施例におけるシャルピー衝撃試験は板厚の1/4位置から採取した試験片で実施しているため、圧延後の冷却速度が遅い板厚中央部では所望の組織が得られず、特性の劣化が懸念され、ラインパイプ用鋼管素材として不安定延性破壊に対する停止性能が低位である可能性がある。
 特許文献2に記載の技術は、Ar+80℃から950℃以下の温度域で50%以上の累積圧加量で圧加したのち、Ar~Ar-30℃の温度域での圧延まで空冷が必要なため、圧延時間が長時間化し、圧延能率の低下が懸念される。また、DWTT試験に関する記載がなく、脆性破壊の伝播停止性能が劣位であることが懸念される。
 特許文献3では表層部のMA(島状マルテンサイト、Martensite-Austenite constituent、)比率や硬度を低減するために、圧延後Ar-50℃以上の温度から300~500℃の温度域まで10~45℃/sの冷却速度で冷却し、必要に応じてAc点未満で焼き戻しを実施しているが、加熱による焼き戻し処理を行わない場合、マルテンサイト変態後の温度およびその後の冷却過程を制御する必要があり、所望の特性を安定的に得るのが困難な場合がある。また、加熱による焼戻しを実施した実施例(試験番号9)ではDWTTにおける85%FATTが-29℃であり、-40℃以下の極寒地域での使用を想定した場合、十分であるとは言いがたい。なお、特許文献3に記載の技術は、高強度及び高靭性を得るために表層部より内部の組織を実質的にフェライト及びベイナイトの混合組織としている。しかし、フェライトとベイナイトの界面は延性亀裂や脆性亀裂の発生起点となる。したがって、-40℃のようなより厳しい使用環境を想定した場合、十分なシャルピー衝撃吸収エネルギーを有しているとは言えず、ラインパイプ用鋼管素材として不安定延性破壊に対する停止性能が不十分な可能性がある。実際、特許文献3は-20℃でのシャルピー衝撃吸収エネルギーで評価されているが、やはり-40℃以下の極寒地域での使用を想定した場合、高速延性破壊特性が十分であるとは言いがたい。
 特許文献4に記載の技術は、高強度化の観点から、鋼板のミクロ組織をベイナイトやマルテンサイト組織化するため、冷却停止温度を250℃以下としている。しかし、冷却停止温度が低い場合、冷却歪による板形状の劣化を招く場合があるだけでなく、冷却速度が速い表層部では硬度が過剰に高くなりやすいため、鋼管製造時にしわや割れ等の表面欠陥の発生が懸念される。
 このような特許文献1~4に記載の技術では、引張強度が625MPa以上であり、-40℃でのシャルピー衝撃吸収エネルギーが375J以上であり、-40℃でのDWTT試験で得られた延性面率が85%以上であると共に、十分な表面特性を有する鋼板を安定的に製造することは実現できていなかった。
 そこで本発明はかかる事情を鑑み、母材の引張強度が625MPa以上、-40℃でのシャルピー衝撃吸収エネルギーが375J以上でかつ、-40℃でのDWTT試験で得られた延性破面率(SA値)が85%以上であり、表面特性に優れた高強度・高靭性鋼板とその製造方法を提供することを目的とする。
 本発明者らは、シャルピー衝撃吸収エネルギー、DWTT特性、表面特性に及ぼす各種要因について、ラインパイプ用鋼板を対象に鋭意検討した。その結果、C、Mn、Nb、Ti等を含有する鋼板において、
(1)オーステナイト未再結晶温度域での累積圧下率や圧延温度を制御し、
(2)圧延後の冷却工程において、冷却開始温度および冷却停止温度を適正に制御するとともに、
(3)冷却開始温度から冷却停止温度の温度降下量(△T)を適正に制御し、
(4)さらに冷却後に所定の条件で再加熱処理を施すことで、
表層部および板厚中央部においても島状マルテンサイト(Martensite-Austenite constituent、以下、MAとも記載する。)を極力低減したベイナイト主体の組織とすることが可能となり、さらに板厚中央部におけるベイナイト中に存在するセメンタイトの平均粒径を0.5μm以下に抑制することが可能となることを知見した。また、この結果、表層部と板厚中央部のビッカース硬度差(△HV)が小さく、高いシャルピー衝撃吸収エネルギー、優れたDWTT特性、優れた表面特性を有する高強度・高靭性鋼板が得られることを知見した。
 本発明の要旨は以下のとおりである。
[1]質量%で、C:0.03%以上0.08%以下、Si:0.01%以上0.50%以下、Mn:1.5%以上2.5%以下、P:0.001%以上0.010%以下、S:0.0030%以下、Al:0.01%以上0.08%以下、Nb:0.010%以上0.080%以下、Ti:0.005%以上0.025%以下、N:0.001%以上0.006%以下を含有し、さらにCu:0.01%以上1.00%以下、Ni:0.01%以上1.00%以下、Cr:0.01%以上1.00%以下、Mo:0.01%以上1.00%以下、V:0.01%以上0.10%以下、B:0.0005%以上0.0030%以下から選ばれる1種以上を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼板であり、該鋼板の表層部および板厚中央部の夫々における島状マルテンサイトの面積率が3%未満であって、さらに前記鋼板の表層部および板厚中央部の夫々におけるベイナイトの面積率が90%以上であり、かつ板厚中央部におけるベイナイト中に存在するセメンタイトの平均粒径が0.5μm以下であるミクロ組織を有し、表層部および板厚中央部のビッカース硬度差(△HV)が20以下である高強度・高靭性鋼板。
[2]前記成分組成に加えてさらに、質量%で、Ca:0.0005%以上0.0100%以下、REM:0.0005%以上0.0200%以下、Zr:0.0005%以上0.0300%以下、Mg:0.0005%以上0.0100%以下から選ばれる1種以上を含有する前記[1]に記載の高強度・高靭性鋼板。
[3]前記[1]または[2]に記載の高強度・高靭性鋼板の製造方法であり、鋼スラブを1000℃以上1250℃以下に加熱し、オーステナイト再結晶温度域において圧延後、オーステナイト未再結晶温度域において累積圧下率60%以上の圧延を行い、770℃以上850℃以下の温度で圧延を終了し、750℃以上830℃以下の冷却開始温度から10℃/s以上80℃/s以下の冷却速度にて、250℃以上400℃以下の冷却停止温度まで温度降下量(△T)を350℃以上で加速冷却し、その後、直ちに、3℃/s以上の昇温速度で400℃以上500℃以下の温度まで再加熱する高強度・高靭性鋼板の製造方法。
 なお、本発明でいう表層部とは、鋼板表面から板厚方向に2mm以内の領域を指す。また、本発明でいう板厚中央部とは、板厚方向の3/8~5/8の領域(板厚をtとしたときに一方の板表面からの板厚方向深さが3/8t~5/8tの領域)を指す。本発明において、製造条件における温度は、特に断らない限り、いずれも鋼板平均温度とする。鋼板平均温度は、板厚、表面温度および冷却条件等から、シミュレーション計算等により求められる。例えば、差分法を用い、板厚方向の温度分布を計算することにより、鋼板の平均温度が求められる。また、本発明でいう温度降下量(△T)とは、冷却開始温度と冷却停止温度との差を指す。
 本発明によれば、圧延条件および圧延後の冷却条件を適正に制御することで、表層部および板厚中央部における鋼のミクロ組織をベイナイト主体とし、かつ板厚中央部におけるベイナイト中に存在するセメンタイトの平均粒径を0.5μm以下とすることが可能となり、この結果、表層部と板厚中央部のビッカース硬度差(△HV)が20以下とすることで表面特性を優れたものとし、母材の引張強度が625MPa以上、-40℃でのシャルピー衝撃吸収エネルギーが375J以上でかつ、-40℃でのDWTT試験で得られた延性破面率(SA値)が85%以上の鋼板が得られ、産業上極めて有益である。
 以下、本発明について詳細に説明する。
 本発明の高強度・高靭性鋼板は、質量%で、C:0.03%以上0.08%以下、Si:0.01%以上0.50%以下、Mn:1.5%以上2.5%以下、P:0.001%以上0.010%以下、S:0.0030%以下、Al:0.01%以上0.08%以下、Nb:0.010%以上0.080%以下、Ti:0.005%以上0.025%以下、N:0.001%以上0.006%以下を含有し、さらにCu:0.01%以上1.00%以下、Ni:0.01%以上1.00%以下、Cr:0.01%以上1.00%以下、Mo:0.01%以上1.00%以下、V:0.01%以上0.10%以下、B:0.0005%以上0.0030%以下から選ばれる1種以上を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼板であり、該鋼板の表層部および板厚中央部の夫々について、島状マルテンサイトの面積率が3%未満であって、さらにベイナイトの面積率が90%以上であり、かつ板厚中央部におけるベイナイト中に存在するセメンタイトの平均粒径が0.5μm以下であるミクロ組織を有し、表層部および板厚中央部のビッカース硬度差(△HV)が20以下である。
 まず、本発明の成分組成の限定理由を説明する。なお、成分に関する「%」表示は、質量%を意味するものとする。
 C:0.03%以上0.08%以下
 Cは加速冷却後にベイナイト主体組織を形成し、変態強化による高強度化に有効に作用する。しかしながら、C量が0.03%未満では冷却中にフェライト変態やパーライト変態が生じやすくなるため、所定量のベイナイトが得られず、所望の引張強度(≧625MPa)が得られない場合がある。一方、C量が0.08%を超えて含有すると加速冷却後に硬質なマルテンサイトが生成しやすくなり、母材のシャルピー衝撃吸収エネルギーが低くなったり、DWTT特性が劣ったりする場合がある。したがって、C量は0.03%以上0.08%以下とし、好ましくは0.03%以上0.07%以下とする。
 Si:0.01%以上0.50%以下
 Siは脱酸に必要な元素であり、さらに固溶強化により鋼材の強度を向上させる効果を有する。このような効果を得るためにはSiを0.01%以上含有することが必要であり、0.05%以上含有することが好ましく、0.10%以上含有することがさらに好ましい。一方、Si量が0.50%を超えると、延性亀裂や脆性亀裂の起点となりうる島状マルテンサイトが生成しやすくなるため、溶接性および母材のシャルピー衝撃吸収エネルギーが低下する。このため、Si量は0.01%以上0.50%以下とする。なお、鋼管の溶接部の軟化防止および溶接熱影響部の靭性劣化防止の観点から、Si量は0.01%以上0.20%以下とすることが好ましい。
 Mn:1.5%以上2.5%以下
 MnはCと同様に加速冷却後にベイナイト主体組織を形成し、変態強化による高強度化に有効に作用する。しかしながら、Mn量が1.5%未満では冷却中にフェライト変態やパーライト変態が生じやすくなるため、所定量のベイナイトが得られず、所望の引張強度(≧625MPa)が得られない場合がある。一方、Mnを2.5%超えて含有すると鋳造時に不可避的に形成される偏析部にMnが濃化し、その部分でシャルピー衝撃吸収エネルギーが低くなったり、DWTT性能が劣ったりする原因となるため、Mn量は1.5%以上2.5%以下とする。なお、靭性向上の観点から、Mn量は1.5%以上2.0%以下とすることが好ましい。
 P:0.001%以上0.010%以下
 Pは固溶強化により鋼板の高強度化に有効な元素である。しかしながら、P量が0.001%未満ではその効果が現れないだけでなく、製鋼工程において脱燐コストの上昇を招く場合があるため、P量は0.001%以上とする。一方、P量が0.010%を超えると、靭性や溶接性が顕著に劣る。したがって、P量は0.001%以上0.010%以下とする。
 S:0.0030%以下
 Sは熱間脆性を起こす原因となるほか、鋼中に硫化物系介在物として存在して、靭性や延性を劣らせる有害な元素である。したがって、Sは極力低減するのが好ましく、本発明ではS量の上限は0.0030%とし、好ましくは0.0015%以下とする。下限は特にないが、極低S化は製鋼コストが上昇するため、0.0001%以上とすることが好ましい。
 Al:0.01%以上0.08%以下
 Alは脱酸材として含有する元素である。また、Alは固溶強化能を有するため、鋼板の高強度化に有効に作用する。しかしながら、Al量が0.01%未満では上記効果が得られない。一方、Al量が0.08%を超えると、原料コストの上昇を招くとともに、靭性を劣らせる場合がある。したがって、Al量は0.01%以上0.08%以下とし、好ましくは0.01%以上0.05%以下とする。
 Nb:0.010%以上0.080%以下
 Nbは析出強化や焼入れ性増大効果による鋼板の高強度化に有効である。また、Nbは熱間圧延時のオーステナイトの未再結晶温度域を拡大する効果があり、未再結晶オーステナイト域圧延の微細化効果による靭性の向上に有効である。これらの効果を得るために、0.010%以上含有する。一方、Nb量が0.080%を超えると、加速冷却後に硬質なマルテンサイトが生成しやすくなり、母材のシャルピー衝撃吸収エネルギーが低くなったり、DWTT特性が劣ったりする場合がある。また、HAZ部(以下、溶接熱影響部とも記す。)の靭性が著しく劣る。したがって、Nb量は0.010%以上0.080%以下とし、好ましくは0.010%以上0.040%以下とする。
 Ti:0.005%以上0.025%以下
 Tiは鋼中で窒化物(主としてTiN)を形成し、特に0.005%以上含有すると窒化物のピンニング効果でオーステナイト粒を微細化する効果があり、母材の靭性確保や溶接熱影響部の靭性確保に寄与する。また、Tiは析出強化による鋼板の高強度化に有効な元素である。これらの効果を得るにはTiを0.005%以上含有する。一方、Tiを0.025%超えて含有すると、TiN等が粗大化し、オーステナイト粒の微細化に寄与しなくなり、靭性向上効果が得られなくなるばかりでなく、粗大なTiNは延性亀裂や脆性亀裂の発生起点となるため、シャルピー衝撃吸収エネルギーが著しく低くなり、DWTT特性が著しく劣る。したがって、Ti量は0.005%以上0.025%以下とし、好ましくは0.008%以上0.018%以下とする。
 N:0.001%以上0.006%以下
 NはTiと窒化物を形成してオーステナイトの粗大化を抑制し、靭性の向上に寄与する。このようなピンニング効果を得るため、Nを0.001%以上含有する。一方、N量が0.006%を超えると、溶接部、特に溶融線近傍で1450℃以上に加熱された溶接熱影響部でTiNが分解した場合、固溶Nに起因した溶接熱影響部の靭性が劣る場合がある。したがって、N量は0.001%以上0.006%以下とし、溶接熱影響部の靭性に対する要求レベルが高い場合には、N量は0.001%以上0.004%以下とすることが好ましい。
 本発明では上記必須元素のほかに、さらにCu、Ni、Cr、Mo、V、Bから選ばれる1種以上を選択元素として含有する。
 Cu:0.01%以上1.00%以下、Cr:0.01%以上1.00%以下、Mo:0.01%以上1.00%以下
 Cu、Cr、Moはいずれも焼入れ性向上元素であり、Mnと同様に低温変態組織を得て、母材や溶接熱影響部の高強度化に寄与する。この効果を得るためには、0.01%以上含有することが必要である。一方、Cu、Cr、Mo量がそれぞれ1.00%を超えると高強度化の効果は飽和する。したがって、Cu、Cr、Moを含有する場合はそれぞれ0.01%以上1.00%以下とする。
 Ni:0.01%以上1.00%以下
 Niも焼入れ性向上元素であり、含有しても靭性の劣化を生じないため、有用な元素である。この効果を得るためには0.01%以上含有することが必要である。一方、Niは非常に高価であり、またNi量が1.00%を超えるとその効果が飽和するため、Niを含有する場合は、0.01%以上1.00%以下とする。
 V:0.01%以上0.10%以下
 Vは炭化物を形成して析出強化による鋼板の高強度化に有効な元素であり、この効果を得るためには0.01%以上含有することが必要である。一方、V量が0.10%を超えると、炭化物量が過剰となり、靭性の低下を招く場合がある。したがって、Vを含有する場合は0.01%以上0.10%以下とする。
 B:0.0005%以上0.0030%以下
 Bはオーステナイト粒界に偏析し、フェライト変態を抑制することで、特に溶接熱影響部の強度低下防止に寄与する。この効果を得るためには0.0005%以上含有することが必要である。一方、B量が0.0030%を超えるとその効果は飽和するため、Bを含有する場合は0.0005%以上0.0030%以下とする。
 上記成分以外の残部は、Feおよび不可避的不純物からなるが、必要に応じてCa:0.0005%以上0.0100%以下、REM:0.0005%以上0.0200%以下、Zr:0.0005%以上0.0300%以下、Mg:0.0005%以上0.0100%以下から選ばれる1種以上を含有することができる。
 Ca、REM、Zr、Mgは鋼中のSを固定して鋼板の靭性を向上させる働きがあり、0.0005%以上含有することで効果が発揮する。一方、Caは0.0100%、REMは0.0200%、Zrは0.0300%、Mgは0.0100%を超えて含有すると鋼中の介在物が増加し、靭性を劣化させる場合がある。したがって、これらの元素を含有する場合、Ca:0.0005%以上0.0100%以下、REM:0.0005%以上0.0200%以下、Zr:0.0005%以上0.0300%以下、Mg:0.0005%以上0.0100%以下とする。
 次に、ミクロ組織について説明する。
 本発明の高強度・高靭性鋼板のミクロ組織は、表層部と板厚中央部のビッカース硬度差(△HV)が20以下であり、母材の引張強度が625MPa以上、-40℃でのシャルピー衝撃吸収エネルギーが375J以上でかつ、-40℃でのDWTT試験で得られた延性破面率(SA値)が85%以上の特性を安定して得るために、表層部および板厚中央部の夫々について、島状マルテンサイトが面積率で3%未満であるベイナイト組織を主体とする組織を有し、かつ板厚中央部におけるベイナイト中に存在するセメンタイトの平均粒径が0.5μm以下であることが必要である。ここで、ベイナイトを主体とする組織とは、ベイナイトの面積率が90%以上である実質的にベイナイト組織からなることを意味する。残部組織としては、面積率が3%未満の島状マルテンサイトが許容されるほか、フェライト、パーライト、マルテンサイトなどのベイナイト以外の相が含まれていてもよく、これらの残部組織が合計面積率で10%以下であれば、本発明の効果を発現することができる。ここでいう表層部とは、鋼板表面から板厚方向に2mm以内の領域を指す。また、ここでいう板厚中央部とは、板厚方向の3/8~5/8の領域(板厚をtとしたときに一方の板表面からの板厚方向深さが3/8t~5/8tの領域)を指す。
 表層部および板厚中央部の夫々における島状マルテンサイトの面積率:3%未満
 島状マルテンサイトは硬度が高く、延性亀裂や脆性亀裂の発生起点となるため、島状マルテンサイトの面積率が3%以上ではシャルピー衝撃吸収エネルギーやDWTT特性が著しく低下する。一方、島状マルテンサイトが面積率で3%未満であれば、シャルピー衝撃吸収エネルギーが低くなったり、DWTT特性が劣ったりはしないため、本発明では表層部および板厚中央部の夫々において、島状マルテンサイトの面積率を3%未満に限定する。上記の島状マルテンサイトの面積率は、2%以下であることが好ましい。
 表層部および板厚中央部の夫々におけるベイナイトの面積率:90%以上
 ベイナイト相は硬質相であり、変態組織強化によって鋼板の強度を増加させるのに有効であり、ベイナイト主体の組織とすることで、シャルピー衝撃吸収エネルギーやDWTT特性を高位で安定化しつつ、高強度化が可能となる。一方、ベイナイトの面積率が90%未満では、フェライト、パーライト、マルテンサイトおよび島状マルテンサイト等の残部組織の合計面積率が10%超となり、このような複合組織では、異相界面が延性亀裂や脆性亀裂の発生起点となるため、目標とするシャルピー衝撃吸収エネルギーやDWTT特性が得られない場合がある。したがって、本発明では、表層部および板厚中央部の夫々において、ベイナイトの面積率は90%以上とし、好ましくは95%以上とする。ここで、ベイナイトとは、ラス状のベイニティックフェライトであって、その内部にセメンタイト粒子が析出した組織をいう。
 板厚中央部におけるベイナイト中に存在するセメンタイトの平均粒径:0.5μm以下
 板厚中央部は表層や板厚の1/4位置に比べて加速冷却時の冷却速度が遅いため、セメンタイトの粗大化が生じやすい。ベイナイト中のセメンタイトは延性亀裂や脆性亀裂の起点となる場合があり、セメンタイトの平均粒径が0.5μmを超えるとシャルピー衝撃吸収エネルギーが著しく低くなり、DWTT特性が著しく劣る。しかしながら、板厚中央部におけるベイナイト中のセメンタイトの平均粒径が0.5μm以下では、これらの低下は小さく、目標特性が得られるため、セメンタイトの平均粒径は0.5μm以下とし、好ましくは0.2μm以下とする。表層や板厚の1/4位置においては、加速冷却時の冷却速度が板厚中央部に比べて速く、セメンタイトもより微細であるため、シャルピー衝撃吸収エネルギーへの影響は小さい。よって、本発明においてはベイナイト中のセメンタイトの平均粒径は、板厚中央部のみにおいて限定する。
 ここで、板厚中央部のベイナイトの面積率は板厚の3/8~5/8の領域からサンプルを切り出し、L断面(圧延方向に平行な垂直断面)を鏡面研磨後、ナイタールで腐食し、走査型電子顕微鏡(SEM)を用いて倍率2000倍で無作為に5視野観察し、撮影した組織写真により組織を同定し、ベイナイト、マルテンサイト、フェライト、パーライト等の各相の面積率を画像解析にて求めることで、得ることができる。さらに同じ試料を電解エッチング法(電解液:100ml蒸留水+25g水酸化ナトリウム+5gピクリン酸)を用いて島状マルテンサイトを現出させ、その後、走査型電子顕微鏡(SEM)で2000倍の倍率にて無作為に5視野観察し、撮影した組織写真から島状マルテンサイトの面積率を画像解析によって求めることができる。さらに、再度、鏡面研磨後、選択的低電位電解エッチング法(電解液:10体積%アセチルアセトン+1体積%テトラメチルアンモニウムクロイドメチルアルコール)を用いてセメンタイトを抽出後、SEMで2000倍の倍率にて無作為に5視野観察し、撮影した組織写真を画像解析してセメンタイト粒子の円相当径を平均して算出することができる。
 また、表層部のベイナイトの面積率および島状マルテンサイトの面積率は表面酸化物(スケール)を除いた表面から2mm以内の領域からサンプルを切り出し、上記の板厚中央部と同様の方法にて求める。
 以上からなる本発明の高吸収エネルギーを有する高強度・高靭性鋼板は以下の特性を有する。
 (1)表層部と板厚中央部のビッカース硬度差(△HV)が20以下:圧延後の冷却速度が速い鋼板表層部では硬質な島状マルテンサイトが生成しやすく、表面硬度が上昇する。このような表面硬度の上昇は、鋼板表面に応力集中が生じやすい鋼管製造時に、しわや割れ等の表面欠陥の原因となる場合がある。また、このような表面欠陥を有する鋼管が高圧ガスパイプラインに適用された場合、表面欠陥が延性破壊や脆性破壊の発生起点となり、大規模破壊の原因になることが懸念される。このため、表層部の硬さを適正に制御することが重要であり、本発明では表層部と板厚中央部のビッカース硬度差(△HV)を20以下とし、好ましくは表層部のビッカース硬度の絶対値を260以下とする。ここで、表層部のビッカース硬度は、L断面(圧延方向に平行な垂直断面)を機械的に研磨し、表層から板厚方向に2mm以内の領域(表層部)において、荷重を10kgfでビッカース硬度を各10点測定し、その平均値を求めることで得られる。また、板厚中央部のビッカース硬度は、板厚方向の1/2t位置(板厚中央部)において、同様のビッカース硬度試験を行い、両者のビッカース硬度差(△HV)を求めることで得られる。
 (2)母材の引張強度が625MPa以上:天然ガスや原油等の輸送用として使用されるラインパイプでは、高圧化による輸送効率の向上や薄肉化による現地溶接施工効率の向上のため、高強度化の要望が非常に高まっている。これらの要求に応えるため、本発明においては母材の引張強度を625MPaとする。ここで、引張強度は、API-5Lに準拠した、引張方向がC方向となる全厚引張試験片を採取し、引張試験を実施することで測定することができる。なお、本発明の組成および組織では、母材の引張強度は850MPa程度までは問題なく製造できる。
 (3)-40℃でのシャルピー衝撃吸収エネルギーが375J以上:高圧ガスラインパイプにおいては、外因性の事故により発生した延性亀裂が管軸方向に100m/s以上の速度で伝播する高速延性破壊(不安定延性破壊)が生じることが知られており、これによって数kmにもおよぶ大規模破壊が生じる可能性がある。このような高速延性破壊を防止するためには高吸収エネルギー化が有効であるため、本発明においては-40℃でのシャルピー衝撃吸収エネルギーが375J以上とし、好ましくは400J以上とする。ここで、-40℃でのシャルピー衝撃吸収エネルギーは、-40℃にてASTM A370に準拠したシャルピー衝撃試験を実施することで測定することができる。
 (4)-40℃でのDWTT試験で得られた延性破面率(SA値)が85%以上:天然ガス等の輸送用として使用されるラインパイプでは、脆性亀裂伝播防止の観点から、DWTT試験における延性破面率の値が高いことが望まれ、本発明範囲においては-40℃でのDWTT試験で得られた延性破面率(SA値)を85%以上とする。ここで、-40℃でのDWTT試験による延性破面率(SA値)は、API-5Lに準拠した長手方向がC方向となるプレスノッチ型全厚DWTT試験片を採取し、-40℃で落重による衝撃曲げ荷重を加え、破断した破面から求めることができる。
 次に、本発明の高強度・高靭性鋼板の製造方法について説明する。
 本発明の高強度・高靭性鋼板の製造方法は、前述した成分組成からなる鋼スラブを、1000℃以上1250℃以下に加熱し、オーステナイト再結晶温度域において圧延後、オーステナイト未再結晶温度域において累積圧下率60%以上の圧延を行い、770℃以上850℃以下の温度で圧延を終了し、750℃以上830℃以下の冷却開始温度から10℃/s以上80℃/s以下の冷却速度にて、250℃以上400℃以下の冷却停止温度まで温度降下量(ΔT)を350℃以上で加速冷却し、その後、直ちに、3℃/s以上の昇温速度で400℃以上500℃以下の温度まで再加熱することによって得られる。なお、ここでいう温度降下量(△T)とは、冷却開始温度と冷却停止温度との差を指す。
 スラブ加熱温度:1000℃以上1250℃以下
 本発明の鋼スラブは、成分のマクロ偏析を防止すべく連続鋳造法で製造することが望ましく、造塊法で製造してもよい。また、
(1)鋼スラブを製造した後、一旦室温まで冷却し、その後再度加熱する従来法
に加え、
(2)冷却せず温片のままで加熱炉に装入し熱間圧延する直送圧延、あるいは
(3)わずかの保熱をおこなった後に直ちに熱間圧延する直送圧延・直接圧延、
(4)高温状態のまま加熱炉に装入して再加熱の一部を省略する方法(温片装入)
などの省エネルギープロセスも問題なく適用することができる。
 加熱温度が1000℃未満では、鋼スラブ中のNbやV等の炭化物が十分に固溶せず、析出強化による強度上昇効果が得られない場合がある。一方、加熱温度が1250℃を超えると初期のオーステナイト粒が粗大化するため、母材のシャルピー衝撃吸収エネルギーが低くなったり、DWTT特性が劣ったりする場合がある。したがって、スラブ加熱温度は1000℃以上1250℃以下とし、好ましくは1000℃以上1150℃以下とする。
 オーステナイト再結晶温度域での累積圧下率:50%以上(好適範囲)
 スラブ加熱保持後、オーステナイト再結晶温度域での圧延を行うことで、オーステナイトが再結晶により細粒化し、母材のシャルピー衝撃吸収エネルギーやDWTT特性の向上に寄与する。再結晶温度域での累積圧下率は特に規定しないが、50%以上とすることが好ましい。なお、本発明の鋼の成分範囲においては、オーステナイト再結晶の下限温度はおおよそ950℃である。
 オーステナイト未再結晶温度域での累積圧下率:60%以上
 オーステナイトの未再結晶温度域にて累積で60%以上の圧下を行うことにより、オーステナイト粒が伸展し、特に板厚方向では細粒となり、この状態で加速冷却して得られる鋼のシャルピー衝撃吸収エネルギーやDWTT特性は良好となる。一方、圧下量が60%未満では細粒化効果が不十分となり目標とするシャルピー衝撃吸収エネルギーやDWTT特性が得られない場合がある。したがって、オーステナイトの未再結晶温度域での累積圧下率は60%以上とし、より靭性向上が必要な場合は70%以上とすることが好ましい。
 圧延終了温度:770℃以上850℃以下
 オーステナイトの未再結晶温度域の高累積圧下率での大圧下は、シャルピー衝撃吸収エネルギーやDWTT特性の向上に有効であり、より低温域で圧下することでその効果はさらに増大する。しかしながら、770℃未満の低温域での圧延はオーステナイト粒に集合組織が発達し、その後、加速冷却してベイナイト主体組織とした場合、集合組織が変態組織にも一部受け継がれ、この結果、セパレーションが発生しやすくなり、シャルピー衝撃吸収エネルギーが著しく低くなる。一方、850℃を超えると、DWTT特性の向上に有効な微細化効果が十分に得られない場合がある。したがって、圧延終了温度は770℃以上850℃以下とし、好ましくは、770℃以上820℃以下とする。
 加速冷却の冷却開始温度:750℃以上830℃以下
 加速冷却の冷却開始温度が750℃未満では、熱間圧延後、加速冷却開始までの空冷過程において、オーステナイト粒界から初析フェライトが生成し、母材強度が低下する場合がある。また、初析フェライトの生成量が増加すると、延性亀裂や脆性亀裂の発生起点となるフェライトとベイナイトの界面が増加するため、シャルピー衝撃吸収エネルギーが低くなり、DWTT特性が劣る場合がある。一方、冷却開始温度が830℃を超えると、圧延終了温度も高いため、DWTT特性の向上に有効なミクロ組織微細化効果が十分に得られない場合がある。さらに、冷却開始温度が830℃を超えると、圧延終了後、加速冷却開始までの空冷時間がわずかであっても、オーステナイトの回復や粒成長が進行する場合があり、DWTT特性が低下する場合がある。したがって、加速冷却の冷却開始温度は750℃以上830℃以下とし、好ましくは750℃以上800℃以下とする。
 加速冷却の冷却速度:10℃/s以上80℃/s以下
 加速冷却の冷却速度が10℃/s未満では、冷却中にフェライト変態が生じ、母材強度が低下する場合がある。また、フェライトの生成量が増加すると、延性亀裂や脆性亀裂の発生起点となるフェライトとベイナイトの界面が増加するため、シャルピー衝撃吸収エネルギーが低くなり、DWTT特性が劣る場合がある。さらに、板厚中央部のベイナイト中のセメンタイトが凝集・粗大化しやすく、母材のシャルピー衝撃吸収エネルギーが低くなり、DWTT特性が劣る場合がある。一方、80℃/sを超えると、特に鋼板表層近傍では島状マルテンサイトが増加し、かつ表面硬度が過剰に高くなるため、所望の表層部と板厚中央部のビッカース硬度差(△HV)が得られず、鋼管製造時にしわや割れ等の表面欠陥の原因となる場合がある。また、当該表面欠陥を有する鋼管が高圧ガスパイプラインに適用された場合、延性破壊や脆性破壊の発生起点となる場合があり、大規模破壊の原因になることが懸念される。したがって、加速冷却の冷却速度は10℃/s以上80℃/s以下とする。なお、冷却速度は冷却開始温度と冷却停止温度との差を所要時間で除した平均冷却速度を指す。
 冷却開始温度から冷却停止温度までの温度降下量(△T):350℃以上
 冷却開始温度から冷却停止温度までの温度降下量(△T)の制御は本発明において重要である。温度降下量(△T)が大きいほどベイナイトの核生成が増大するため、ベイナイト組織が微細化し、さらにベイナイトを構成するパケットやラスも微細化される。また、△Tが大きいほど、冷却によって変態生成したベイナイト中に過飽和に固溶している炭素が後述の加熱処理中に微細に析出し、高いシャルピー衝撃吸収エネルギーや優れたDWTT性能が得られる。これらの効果を安定的に得るため、△Tは350℃以上とする必要があり、好ましくは400℃以上とする。一方、△Tが350℃未満では、組織の微細化効果が不十分なため、所望のシャルピー衝撃吸収エネルギーやDWTT特性が得られない場合がある。したがって、△Tは350℃以上とし、好ましくは400℃以上とする。なお、ここでいう温度降下量(△T)とは、冷却開始温度と冷却停止温度との差を指す。
 加速冷却の冷却停止温度:250℃以上400℃以下
 加速冷却の冷却停止温度が250℃未満では、マルテンサイト変態が生じる場合があり、母材強度は上昇するものの、母材のシャルピー衝撃吸収エネルギーが著しく低くなり、DWTT特性が著しく劣る場合があり、特に鋼板表層近傍でその傾向は顕著となる。また、冷却速度が速い表層部で硬度が過剰に高くなりやすく、その結果、所望の表層部と板厚中央部のビッカース硬度差(△HV)が得られず、鋼管製造時にしわや割れ等の表面欠陥の原因となる場合がある。よって、冷却停止温度は250℃以上とし、255℃以上であることが好ましい。一方、冷却停止温度が400℃を超えると、後述の焼き戻し後に十分な強度が得られない場合があることに加えて、ベイナイト中のセメンタイトが凝集・粗大化し、母材のシャルピー衝撃吸収エネルギーが低くなり、DWTT特性が劣る場合がある。したがって、加速冷却の冷却停止温度は250℃以上400℃以下とする。
 再加熱処理
 板厚中央部では冷却過程におけるベイナイト変態に伴う未変態のオーステナイトへの炭素や合金元素の濃化により、島状マルテンサイトが生成する場合がある。また、冷却速度が比較的速い表層部では島状マルテンサイトに加えて、マルテンサイトが生成する場合がある。これらの硬質層は脆性亀裂や延性亀裂の発生起点となるため、母材の靭性を著しく劣化させ、さらに表面硬度が過剰に増加した場合、鋼管製造時のしわや割れ等の表面欠陥の原因となる場合がある。このため、再加熱処理による適正な組織制御を行い、母材靭性の改善や表面欠陥の抑制を行う必要がある。なお、加熱方法は特に限定しないが、高周波加熱装置が好ましい。ここで、加速冷却停止後、直ちに再加熱するとは、加速冷却停止後、120秒以内に3℃/s以上の昇温速度で再加熱することを言う。
 加速冷却後の再加熱処理における昇温速度(再加熱速度):3℃/s以上
 加速冷却後の再加熱における昇温速度が3℃/s未満では、ベイナイト中のセメンタイトが凝集・粗大化し、母材のシャルピー衝撃吸収エネルギーが低下し、DWTT特性が劣化する場合があるため、昇温速度は、3℃/s以上とする。上限は特に限定しないが加熱手段の能力により必然的に制限される。
 加速冷却後の再加熱温度:400℃以上500℃以下
 加速冷却後に生成した島状マルテンサイトやマルテンサイトやベイナイトなどの硬質相は母材の靭性を低下させるため、再加熱処理による焼戻しにより、母材靭性を改善する必要がある。再加熱温度が400℃未満では島状マルテンサイトやマルテンサイトやベイナイトなどの硬質相の焼戻しが不十分なため、母材靭性の改善効果が得られない場合がある。また、表層部に硬質相が残存すると、表面硬度が過剰に増加し、鋼管製造時のしわや割れ等の表面欠陥の原因となる場合がある。一方、再加熱温度が500℃を超えると、焼戻しによる強度低下が顕著となり、所望の母材強度が得られない場合があり、さらに、ベイナイト中のセメンタイトが凝集・粗大化し、母材のシャルピー衝撃吸収エネルギーが低下し、DWTT特性が劣化する場合がある。したがって、加速冷却後の再加熱温度は400℃以上500℃以下とする。
 上述の圧延工程により製造された本発明の鋼板は高強度ラインパイプの材料として好適に用いられる。本発明の鋼板を用いて高強度ラインパイプを製造するには、UプレスやOプレス等により、あるいは、3点曲げを繰り返すプレスベンド法により、略円筒状に成形し、サブマージアーク溶接等の溶接を行うことで溶接鋼管とし、所定の形状となるように拡管する。このようにして製造された高強度ラインパイプは必要に応じて表面に塗装を行ってもよく、靭性向上などを目的とした熱処理を行ってもよい。
 以下、発明の実施例について説明する。
 表1に示す成分組成(残部はFeおよび不可避的不純物)からなる溶鋼を転炉で溶製し、220mm厚さのスラブとした後、表2に示す熱間圧延、加速冷却、加速冷却後の再加熱を施し、板厚が30mmの厚鋼板を製造した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 
 以上により得られた厚鋼板より、API-5Lに準拠した引張方向がC方向となる全厚引張試験片を採取し、引張試験を実施し、降伏強度(0.5%YS)、引張強度(TS)を求めた。また、シャルピー衝撃試験は、板厚方向の1/2位置から2mmのVノッチを有する長手方向がC方向となるシャルピー試験片を採取して、-40℃にてASTM A370に準拠したシャルピー衝撃試験を実施し、シャルピー衝撃吸収エネルギー(vE-40℃)を求めた。さらに、API-5Lに準拠した長手方向がC方向となるプレスノッチ型全厚DWTT試験片を採取し、-40℃で落重による衝撃曲げ荷重を加え、破断した破面の延性破面率(SA-40℃)を求めた。
 また、得られた厚鋼板から硬度測定用試験片を採取し、L断面(圧延方向に平行な垂直断面)を機械的に研磨し、表層から板厚方向に2mm以内の領域(表層部)において、荷重を10kgfでビッカース硬度を各10点測定し、その平均値を求めた。さらに板厚方向の1/2t位置(板厚中央部)において、同様のビッカース硬度試験を行い、両者のビッカース硬度差(△HV)を求めた。
 そして、表層から板厚方向に2mm以内の領域(表層部)および板厚の3/8~5/8の領域(板厚中央部)から組織観察用試験片を採取し、前述した方法にて、組織の同定、ベイナイト、島状マルテンサイトおよび残部組織の面積率ならびにセメンタイトの平均粒径を求めた。
 さらに、鋼板の表面特性の評価として、外径が1200mm(D/t=40)の鋼管を製造する時、しわや割れ等の表面欠陥の発生有無を目視で評価し、表面欠陥が発生しないものを○、表面欠陥が発生したものを×とした。
 <組織観察>
 鋼板の板厚の3/8~5/8の領域(板厚中央部)から組織観察用試験片を採取し、L断面(圧延方向に平行な垂直断面)を鏡面研磨し、ナイタールで腐食した後、走査型電子顕微鏡(SEM)を用いて倍率2000倍で無作為に5視野観察し、撮影した組織写真により組織を同定し、ベイナイト、マルテンサイト、フェライト、パーライト等の各相の面積率を画像解析にて求めた。
 次に、同じ試料を電解エッチング法(電解液:100ml蒸留水+25g水酸化ナトリウム+5gピクリン酸)により島状マルテンサイトのみを現出させた後、SEMを用いて倍率2000倍で無作為に5視野観察し、撮影した組織写真から板厚方向の1/2位置における島状マルテンサイトの面積率を画像解析によって求めた。
 さらに、再度、鏡面研磨後、選択的低電位電解エッチング法(電解液:10体積%アセチルアセトン+1体積%テトラメチルアンモニウムクロイドメチルアルコール)によりセメンタイトを抽出後、SEMを用いて倍率2000倍で無作為に5視野観察し、撮影した組織写真から板厚方向の1/2位置におけるセメンタイトの平均粒径(円相当径)を画像解析によって求めた。また、スケールを除いた表面から2mm以内の領域(表層部)からサンプルを切り出し、上記の板厚中央部と同様の方法にて、ベイナイトの面積率および島状マルテンサイトの面積率を求めた。
 得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 
 表3より、No.2~13の鋼板は、成分組成および製造方法が本発明に適合した発明例であり、表層部と板厚中央部のビッカース硬度差(△HV)が20以下、母材の引張強度(TS)が625MPa以上、-40℃でのシャルピー衝撃吸収エネルギー(vE-40℃)が375J以上でかつ、-40℃でのDWTT試験で得られた延性破面率(SA-40℃)が85%以上となっており、表面特性に優れた高吸収エネルギーを有する高強度・高靭性鋼板となっている。
 これに対して、比較例のNo.1はC量が、比較例のNo.18はMn量が、それぞれ本発明を下回っているため、表層部および板厚中央部において、冷却中に生じたフェライトやパーライトの生成量が多く所定量のベイナイトが得られず、所望の引張強度(TS)が得られない。比較例のNo.14はNb量が、比較例のNo.15はC量が、比較例のNo.17はMn量が、それぞれ本発明を上回っているため、加速冷却後の再加熱後におけるマルテンサイト量が増加し、所望のシャルピー衝撃吸収エネルギー(vE-40℃)やDWTT特性(SA-40℃)が得られない。また、冷却速度が速い表層部では板厚中央部に比べてマルテンサイトの生成量が多いため、表層硬さが非常に高く、その結果、表層部と板厚中央部のビッカース硬度差(△HV)が所定値を超えるため、鋼管製造時のしわや割れ等の表面欠陥が生じ、表面特性が劣位である。比較例のNo.16はSi量が本発明範囲を上回っているため、延性亀裂や脆性亀裂の発生起点となる島状マルテンサイトの面積率が多く生成し、所望のシャルピー衝撃吸収エネルギー(vE-40℃)やDWTT特性(SA-40℃)が得られない。比較例のNo.19はTi量が本発明範囲を上回っているため、TiNが粗大化し、延性亀裂や脆性亀裂の発生起点となり、所望のシャルピー衝撃吸収エネルギー(vE-40℃)やDWTT特性(SA-40℃)が得られない。比較例のNo.20はTi量が本発明範囲を下回っているため、窒化物(TiN)のピンニング効果によるオーステナイト粒の微細化効果が得られず、所望のDWTT特性(SA-40℃)が得られない。比較例のNo.21はNb量が本発明範囲を下回っているため、未再結晶域圧延の微細化効果が得られず、所望のDWTT特性(SA-40℃)が得られない。また、冷却中に生じたフェライトやパーライトの生成量が多いため、所定量のベイナイトが得られず、所望の引張強度(TS)が得られない。
 表1に示す鋼DおよびHの成分組成(残部はFeおよび不可避的不純物)からなる溶鋼を転炉で溶製し、220mm厚さのスラブとした後、表4に示す熱間圧延、加速冷却、加速冷却後の再加熱を施し、板厚が30mmの厚鋼板を製造した。
Figure JPOXMLDOC01-appb-T000004
 
 以上により得られた厚鋼板に対して、実施例1と同様に、全厚引張試験、シャルピー衝撃試験、プレスノッチ型全厚DWTT試験を実施し、降伏強度(0.5%YS)、引張強度(TS)、シャルピー衝撃吸収エネルギー(vE-40℃)および延性破面率(SA-40℃)およびビッカース硬度を測定した。
 得られた結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 
 表5から、本発明の製造条件を満たすNo.22~26、35~37の鋼板は、成分組成および製造方法が本発明に適合した発明例であり、表層部と板厚中央部のビッカース硬度差(△HV)が20以下、母材の引張強度(TS)が625MPa以上、-40℃でのシャルピー衝撃吸収エネルギー(vE-40℃)が375J以上でかつ、-40℃でのDWTT試験で得られた延性破面率(SA-40℃)が85%以上となっており、表面特性に優れた高吸収エネルギーを有する高強度・高靭性鋼板となっている。さらに、No.22、24および25は未再結晶温度域の累積圧下率、圧延終了温度、冷却開始温度および冷却開始温度から冷却停止温度までの温度降下量(△T)が好適範囲であるため、ベイナイトの微細化効果や加速冷却によって変態生成したベイナイト中に過飽和に固溶している炭素が再加熱処理中に微細析出する効果により、シャルピー衝撃吸収エネルギー(vE-40℃)や延性破面率(SA-40℃)が同じ組成の鋼板の中でより高位となっている。また、No.36は△Tは好適範囲であるものの、未再結晶温度域の累積圧下率、圧延終了温度および冷却開始温度が好適範囲ではないため、No.35の特性に対してやや低位である。
 これに対して、比較例のNo.27は、スラブ加熱温度が本発明範囲を上回るため、初期のオーステナイト粒の粗大化に起因し、所望のDWTT特性(SA-40℃)が得られない。比較例のNo.28は、圧延終了温度および圧延終了温度と連動する冷却開始温度が本発明範囲を上回っているため、DWTT特性の向上に有効な微細化効果が十分に得られず、所望のDWTT特性(SA-40℃)が得られない。比較例のNo.29は、スラブ加熱温度が本発明範囲を下回るため、鋼スラブ中のNbやV等の炭化物が十分に固溶せず、析出強化による強度上昇効果が得られないため、所望の引張強度(TS)が得られない。比較例のNo.30は、圧延終了温度および冷却開始温度が本発明範囲を下回るため、圧延中あるいは冷却中に生じたフェライトの生成量が多く、所定量のベイナイトが得られず、所望の引張強度(TS)が得られない。また、圧延時に発達した集合組織の影響によるセパレーションが発生し、所望のシャルピー衝撃吸収エネルギー(vE-40℃)が得られない。比較例のNo.31は、加速冷却時の冷却速度が本発明範囲を下回るため、冷却中に生じたフェライトやパーライトの生成量が多く、所定量のベイナイトが得られず、所望の引張強度(TS)が得られない。比較例のNo.32は、再加熱時の加熱速度が本発明範囲を下回っているため、ベイナイト中のセメンタイトが凝集・粗大化し、所望のDWTT特性(SA-40℃)が得られない。比較例のNo.33は、再加熱温度が本発明範囲を上回っているため、ベイナイト中のセメンタイトが凝集・粗大化し、所望のシャルピー衝撃吸収エネルギー(vE-40℃)やDWTT特性(SA-40℃)が得られない。比較例のNo.34は、再加熱温度が本発明範囲を下回っているため、再加熱処理における焼き戻しの効果が不十分であり、所望のシャルピー衝撃吸収エネルギー(vE-40℃)やDWTT特性(SA-40℃)が得られない。また、表層部に残存した島状マルテンサイト等の硬質相による表面硬度の増加によって、所望の表面特性が得られない。比較例のNo.38は、再加熱時の加熱速度が本発明範囲を下回っているため、ベイナイト中のセメンタイトが凝集・粗大化し、所望のシャルピー衝撃吸収エネルギー(vE-40℃)およびDWTT特性(SA-40℃)が得られない。比較例のNo.39は冷却停止温度が本発明範囲を上回り、さらに再加熱温度が本発明範囲を上回るため、ベイナイト中のセメンタイトが凝集・粗大化し、所望の引張強度(TS)やDWTT特性(SA-40℃)が得られない。また、温度降下量(△T)が350℃未満であることからも、所望のDWTT特性(SA-40℃)が得られない。比較例のNo.40は加速冷却時の冷却速度が本発明範囲を上回るため、加速冷却後に硬質なマルテンサイトの生成量が増加し、所望のシャルピー衝撃吸収エネルギー(vE-40℃)やDWTT特性(SA-40℃)が得られない。また、表層部に残存した硬質なマルテンサイトによる表面硬度の増加によって、所望の表面特性が得られない。比較例のNo.41は冷却停止温度が本発明範囲を下回るため、加速冷却後のマルテンサイトの生成量が増加し、所望のシャルピー衝撃吸収エネルギー(vE-40℃)やDWTT特性(SA-40℃)が得られない。また、表層部に残存した硬質なマルテンサイトによる表面硬度の増加によって、所望の表面特性が得られない。
 本発明の高吸収エネルギーを有する高強度・高靭性鋼板を天然ガスや原油等の輸送用として使用されるラインパイプに適用することで、高圧化による輸送効率の向上や薄肉化による現地溶接施工効率の向上に大きく貢献できる。

Claims (3)

  1.  質量%で、
    C:0.03%以上0.08%以下、
    Si:0.01%以上0.50%以下、
    Mn:1.5%以上2.5%以下、
    P:0.001%以上0.010%以下、
    S:0.0030%以下、
    Al:0.01%以上0.08%以下、
    Nb:0.010%以上0.080%以下、
    Ti:0.005%以上0.025%以下、
    N:0.001%以上0.006%以下
    を含有し、さらに
    Cu:0.01%以上1.00%以下、
    Ni:0.01%以上1.00%以下、
    Cr:0.01%以上1.00%以下、
    Mo:0.01%以上1.00%以下、
    V:0.01%以上0.10%以下、
    B:0.0005%以上0.0030%以下
    から選ばれる1種以上を含有し、
    残部がFeおよび不可避的不純物からなる成分組成を有する鋼板であり、
    該鋼板の表層部および板厚中央部の夫々における島状マルテンサイトの面積率が3%未満であって、さらに前記鋼板の表層部および板厚中央部の夫々におけるベイナイトの面積率が90%以上であり、
    かつ板厚中央部におけるベイナイト中に存在するセメンタイトの平均粒径が0.5μm以下であるミクロ組織を有し、
    表層部および板厚中央部のビッカース硬度差(△HV)が20以下である高強度・高靭性鋼板。
  2.  前記成分組成に加えてさらに、質量%で、
    Ca:0.0005%以上0.0100%以下、
    REM:0.0005%以上0.0200%以下、
    Zr:0.0005%以上0.0300%以下、
    Mg:0.0005%以上0.0100%以下
    から選ばれる1種以上を含有する請求項1に記載の高強度・高靭性鋼板。
  3.  請求項1または2に記載の高強度・高靭性鋼板の製造方法であり、
    鋼スラブを1000℃以上1250℃以下に加熱し、
    オーステナイト再結晶温度域において圧延後、
    オーステナイト未再結晶温度域において累積圧下率60%以上の圧延を行い、
    770℃以上850℃以下の温度で圧延を終了し、
    750℃以上830℃以下の冷却開始温度から10℃/s以上80℃/s以下の冷却速度にて、250℃以上400℃以下の冷却停止温度まで温度降下量(△T)を350℃以上で加速冷却し、
    その後、直ちに、3℃/s以上の昇温速度で400℃以上500℃以下の温度まで再加熱する
    高強度・高靭性鋼板の製造方法。
PCT/JP2016/001744 2015-03-31 2016-03-25 高強度・高靭性鋼板およびその製造方法 WO2016157863A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201680019421.6A CN107532253B (zh) 2015-03-31 2016-03-25 高强度/高韧性钢板及其制造方法
US15/562,192 US10640841B2 (en) 2015-03-31 2016-03-25 High-strength, high-toughness steel plate and method for producing the same
CA2977017A CA2977017C (en) 2015-03-31 2016-03-25 High-strength, high-toughness steel plate, and method for producing the same
KR1020177027517A KR102051199B1 (ko) 2015-03-31 2016-03-25 고강도·고인성 강판 및 그 제조 방법
EP16771751.1A EP3279352B1 (en) 2015-03-31 2016-03-25 Method for producing a high strength/high toughness steel sheet
JP2017506420A JP6123973B2 (ja) 2015-03-31 2016-03-25 高強度・高靭性鋼板およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-071932 2015-03-31
JP2015071932 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016157863A1 true WO2016157863A1 (ja) 2016-10-06

Family

ID=57006852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001744 WO2016157863A1 (ja) 2015-03-31 2016-03-25 高強度・高靭性鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US10640841B2 (ja)
EP (1) EP3279352B1 (ja)
JP (1) JP6123973B2 (ja)
KR (1) KR102051199B1 (ja)
CN (1) CN107532253B (ja)
CA (1) CA2977017C (ja)
WO (1) WO2016157863A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019023324A (ja) * 2017-07-21 2019-02-14 新日鐵住金株式会社 鋼板および鋼板の製造方法
JP2019023323A (ja) * 2017-07-21 2019-02-14 新日鐵住金株式会社 鋼板および鋼板の製造方法
WO2020004410A1 (ja) * 2018-06-27 2020-01-02 Jfeスチール株式会社 クラッド鋼板およびその製造方法
WO2020196214A1 (ja) * 2019-03-28 2020-10-01 Jfeスチール株式会社 ラインパイプ用鋼材およびその製造方法ならびにラインパイプおよびその製造方法
EP3733878A4 (en) * 2018-01-30 2021-03-17 JFE Steel Corporation STEEL MATERIAL FOR LINE PIPE, MANUFACTURING METHODS FOR IT AND MANUFACTURING METHOD FOR LINE PIPE
EP3733879A4 (en) * 2018-01-30 2021-03-17 JFE Steel Corporation STEEL MATERIAL FOR A CONDUIT TUBE AS WELL AS A METHOD FOR MANUFACTURING THE INVENTION THEREOF, AND A METHOD FOR MANUFACTURING A DUCT TUBE

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3279351B1 (en) 2015-03-31 2019-07-03 JFE Steel Corporation High strength, high toughness steel plate and method for producing the same
KR102119975B1 (ko) * 2018-11-29 2020-06-08 주식회사 포스코 저온인성과 연신율이 우수하며, 항복비가 작은 후물 고강도 라인파이프용 강재 및 그 제조방법

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242849A (ja) * 2008-03-31 2009-10-22 Jfe Steel Corp 高靱性鋼の製造方法
JP2011132601A (ja) * 2009-11-25 2011-07-07 Jfe Steel Corp 高圧縮強度高靭性ラインパイプ用溶接鋼管及びその製造方法
JP2011132600A (ja) * 2009-11-25 2011-07-07 Jfe Steel Corp 高圧縮強度耐サワーラインパイプ用溶接鋼管及びその製造方法
JP2011195883A (ja) * 2010-03-19 2011-10-06 Jfe Steel Corp 引張強度590MPa以上の延靭性に優れた高強度厚鋼板およびその製造方法
JP2012241266A (ja) * 2011-05-24 2012-12-10 Jfe Steel Corp 高圧縮強度耐サワーラインパイプ用鋼管及びその製造方法
JP2013095926A (ja) * 2011-10-28 2013-05-20 Nippon Steel & Sumitomo Metal Corp 溶接性に優れた高張力鋼板およびその製造方法
WO2013089156A1 (ja) * 2011-12-15 2013-06-20 新日鐵住金株式会社 低温靭性に優れた高強度h形鋼及びその製造方法
JP2013133476A (ja) * 2011-12-26 2013-07-08 Jfe Steel Corp 耐サワー特性と溶接熱影響部靭性に優れたラインパイプ用高強度鋼板及びその製造方法
JP2013204103A (ja) * 2012-03-29 2013-10-07 Jfe Steel Corp 耐座屈性能に優れた低温用高強度溶接鋼管とその製造方法および耐座屈性能に優れた低温用高強度溶接鋼管用鋼板の製造方法
JP2013227671A (ja) * 2012-03-29 2013-11-07 Jfe Steel Corp 低降伏比高強度鋼板およびその製造方法並びにそれを用いた高強度溶接鋼管
WO2013190750A1 (ja) * 2012-06-18 2013-12-27 Jfeスチール株式会社 厚肉高強度耐サワーラインパイプおよびその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4705287B2 (ja) 2001-09-20 2011-06-22 新日本製鐵株式会社 高い吸収エネルギーを有する薄手高強度鋼板の非水冷型製造方法
WO2006004228A1 (ja) 2004-07-07 2006-01-12 Jfe Steel Corporation 高張力鋼板の製造方法
JP5505487B2 (ja) 2004-12-28 2014-05-28 Jfeスチール株式会社 耐切断割れ性とdwtt特性に優れた高強度・高靭性厚鋼板
JP4696615B2 (ja) 2005-03-17 2011-06-08 住友金属工業株式会社 高張力鋼板、溶接鋼管及びそれらの製造方法
JP4997805B2 (ja) 2005-03-31 2012-08-08 Jfeスチール株式会社 高強度厚鋼板およびその製造方法、ならびに高強度鋼管
JP4309946B2 (ja) 2007-03-05 2009-08-05 新日本製鐵株式会社 脆性き裂伝播停止特性に優れた厚手高強度鋼板およびその製造方法
JP5439889B2 (ja) 2009-03-25 2014-03-12 Jfeスチール株式会社 厚肉高靭性鋼管素材用厚鋼板およびその製造方法
KR101450977B1 (ko) 2009-09-30 2014-10-15 제이에프이 스틸 가부시키가이샤 저항복비, 고강도 및 고일정 연신을 가진 강판 및 그 제조 방법
JP5857400B2 (ja) 2009-11-25 2016-02-10 Jfeスチール株式会社 高圧縮強度ラインパイプ用溶接鋼管及びその製造方法
JP5327106B2 (ja) 2010-03-09 2013-10-30 Jfeスチール株式会社 プレス部材およびその製造方法
JP5782828B2 (ja) * 2011-05-24 2015-09-24 Jfeスチール株式会社 高圧縮強度鋼管及びその製造方法
JP5991175B2 (ja) * 2011-12-09 2016-09-14 Jfeスチール株式会社 鋼板内の材質均一性に優れたラインパイプ用高強度鋼板とその製造方法
JP5692305B2 (ja) 2013-08-22 2015-04-01 Jfeスチール株式会社 大入熱溶接特性と材質均質性に優れた厚鋼板およびその製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242849A (ja) * 2008-03-31 2009-10-22 Jfe Steel Corp 高靱性鋼の製造方法
JP2011132601A (ja) * 2009-11-25 2011-07-07 Jfe Steel Corp 高圧縮強度高靭性ラインパイプ用溶接鋼管及びその製造方法
JP2011132600A (ja) * 2009-11-25 2011-07-07 Jfe Steel Corp 高圧縮強度耐サワーラインパイプ用溶接鋼管及びその製造方法
JP2011195883A (ja) * 2010-03-19 2011-10-06 Jfe Steel Corp 引張強度590MPa以上の延靭性に優れた高強度厚鋼板およびその製造方法
JP2012241266A (ja) * 2011-05-24 2012-12-10 Jfe Steel Corp 高圧縮強度耐サワーラインパイプ用鋼管及びその製造方法
JP2013095926A (ja) * 2011-10-28 2013-05-20 Nippon Steel & Sumitomo Metal Corp 溶接性に優れた高張力鋼板およびその製造方法
WO2013089156A1 (ja) * 2011-12-15 2013-06-20 新日鐵住金株式会社 低温靭性に優れた高強度h形鋼及びその製造方法
JP2013133476A (ja) * 2011-12-26 2013-07-08 Jfe Steel Corp 耐サワー特性と溶接熱影響部靭性に優れたラインパイプ用高強度鋼板及びその製造方法
JP2013204103A (ja) * 2012-03-29 2013-10-07 Jfe Steel Corp 耐座屈性能に優れた低温用高強度溶接鋼管とその製造方法および耐座屈性能に優れた低温用高強度溶接鋼管用鋼板の製造方法
JP2013227671A (ja) * 2012-03-29 2013-11-07 Jfe Steel Corp 低降伏比高強度鋼板およびその製造方法並びにそれを用いた高強度溶接鋼管
WO2013190750A1 (ja) * 2012-06-18 2013-12-27 Jfeスチール株式会社 厚肉高強度耐サワーラインパイプおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3279352A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019023324A (ja) * 2017-07-21 2019-02-14 新日鐵住金株式会社 鋼板および鋼板の製造方法
JP2019023323A (ja) * 2017-07-21 2019-02-14 新日鐵住金株式会社 鋼板および鋼板の製造方法
EP3733878A4 (en) * 2018-01-30 2021-03-17 JFE Steel Corporation STEEL MATERIAL FOR LINE PIPE, MANUFACTURING METHODS FOR IT AND MANUFACTURING METHOD FOR LINE PIPE
EP3733879A4 (en) * 2018-01-30 2021-03-17 JFE Steel Corporation STEEL MATERIAL FOR A CONDUIT TUBE AS WELL AS A METHOD FOR MANUFACTURING THE INVENTION THEREOF, AND A METHOD FOR MANUFACTURING A DUCT TUBE
US11401568B2 (en) 2018-01-30 2022-08-02 Jfe Steel Corporation Steel material for line pipes, method for producing the same, and method for producing line pipe
WO2020004410A1 (ja) * 2018-06-27 2020-01-02 Jfeスチール株式会社 クラッド鋼板およびその製造方法
JP6705569B1 (ja) * 2018-06-27 2020-06-03 Jfeスチール株式会社 クラッド鋼板およびその製造方法
KR20210010566A (ko) * 2018-06-27 2021-01-27 제이에프이 스틸 가부시키가이샤 클래드 강판 및 그 제조 방법
KR102401618B1 (ko) 2018-06-27 2022-05-24 제이에프이 스틸 가부시키가이샤 클래드 강판 및 그 제조 방법
US11628512B2 (en) 2018-06-27 2023-04-18 Jfe Steel Corporation Clad steel plate and method of producing the same
WO2020196214A1 (ja) * 2019-03-28 2020-10-01 Jfeスチール株式会社 ラインパイプ用鋼材およびその製造方法ならびにラインパイプおよびその製造方法
JP6819835B1 (ja) * 2019-03-28 2021-01-27 Jfeスチール株式会社 ラインパイプ用鋼材およびその製造方法ならびにラインパイプおよびその製造方法

Also Published As

Publication number Publication date
CA2977017C (en) 2020-02-04
EP3279352A4 (en) 2018-02-07
EP3279352A1 (en) 2018-02-07
CN107532253B (zh) 2019-06-21
US10640841B2 (en) 2020-05-05
EP3279352B1 (en) 2022-12-07
JPWO2016157863A1 (ja) 2017-06-15
CN107532253A (zh) 2018-01-02
US20180057908A1 (en) 2018-03-01
CA2977017A1 (en) 2016-10-06
JP6123973B2 (ja) 2017-05-10
KR20170118939A (ko) 2017-10-25
KR102051199B1 (ko) 2019-12-02

Similar Documents

Publication Publication Date Title
JP5516784B2 (ja) 低降伏比高強度鋼板およびその製造方法並びにそれを用いた高強度溶接鋼管
JP6123973B2 (ja) 高強度・高靭性鋼板およびその製造方法
JP5445720B1 (ja) アレスト性に優れた高強度厚鋼板
JP5516785B2 (ja) 低降伏比高強度鋼板およびその製造方法並びにそれを用いた高強度溶接鋼管
JP6123972B2 (ja) 高強度・高靭性鋼板およびその製造方法
JP5574059B2 (ja) 低温靭性に優れた高強度h形鋼及びその製造方法
JP6299935B2 (ja) 高強度・高靭性鋼管用鋼板およびその製造方法
JP5141073B2 (ja) X70グレード以下の低降伏比高強度高靱性鋼管およびその製造方法
JP5782827B2 (ja) 高圧縮強度耐サワーラインパイプ用鋼管及びその製造方法
JP5532800B2 (ja) 耐歪時効特性に優れた低降伏比高強度高一様伸び鋼板及びその製造方法
WO2009061006A1 (ja) ラインパイプ用鋼板及び鋼管
JP2000513050A (ja) 高張力鋼及びその製造方法
JP4897126B2 (ja) 厚鋼板の製造方法
JP6015602B2 (ja) 高靭性高延性高強度熱延鋼板及びその製造方法
JP7155702B2 (ja) 耐サワーラインパイプ用厚鋼板およびその製造方法
JP2017115200A (ja) 低温用h形鋼及びその製造方法
WO2014175122A1 (ja) H形鋼及びその製造方法
JP7155703B2 (ja) ラインパイプ用厚鋼板およびその製造方法
JP6624145B2 (ja) 高強度・高靭性厚鋼板の製造方法
JP6390813B2 (ja) 低温用h形鋼及びその製造方法
JP5157387B2 (ja) 高変形能を備えた厚肉高強度高靭性鋼管素材の製造方法
JP2016156032A (ja) 低温用h形鋼及びその製造方法
JP2017186594A (ja) 低温用h形鋼及びその製造方法
JP2012193446A (ja) 高延性超高強度溶接鋼管用鋼板および鋼管ならびにその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771751

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506420

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2977017

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20177027517

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15562192

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016771751

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE