WO2008047942A1 - Noyau de stator et machine électrique rotative - Google Patents

Noyau de stator et machine électrique rotative Download PDF

Info

Publication number
WO2008047942A1
WO2008047942A1 PCT/JP2007/070683 JP2007070683W WO2008047942A1 WO 2008047942 A1 WO2008047942 A1 WO 2008047942A1 JP 2007070683 W JP2007070683 W JP 2007070683W WO 2008047942 A1 WO2008047942 A1 WO 2008047942A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator core
divided
assembled
fixing member
cores
Prior art date
Application number
PCT/JP2007/070683
Other languages
English (en)
French (fr)
Inventor
Shinya Sano
Eiji Yamada
Kazutaka Tatematsu
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US12/445,556 priority Critical patent/US8035271B2/en
Publication of WO2008047942A1 publication Critical patent/WO2008047942A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators

Definitions

  • the present invention relates to a stator core and a rotating electric machine, and more particularly to a stator core and a rotating electric machine formed by tightening a plurality of divided stator cores in an annular shape.
  • a stator core described in Japanese Patent Application Laid-Open No. 0-5-095 5 6 45 includes an inner stator core having a plurality of casings on the outer peripheral surface on which the coil is wound, and an inner stator core on the inner peripheral surface. And an annular outer stator core to be mounted.
  • stator described in Japanese Patent Laid-Open No. 2000-0 3 2 8 9 6 5 is formed in an annular shape by press-fitting a cylindrical fixing member and a core formed with teeth into a fixing member. It has a stator core.
  • the core has a large circumference on one end side and a small circumference on the other end side. Then, the stator core is configured by combining the cores so that the end portions having a long circumference and the end portions having a short circumference are alternated.
  • the configuration of the stator core is not limited to the case where the divided stator core is configured to be press-fitted into a cylindrical housing, as disclosed in Japanese Patent Application Laid-Open No. 2000-0 3 2 8 9 6 '5, etc.
  • any one of the divided stator cores protrudes radially inward of the stator core, or any one of the divided stator cores is fixed in a slightly rotated state. For this reason, the end surfaces in the radial direction of the stator teeth of the respective divided stator cores may not line up on the same circumference, and one of the stator teeth may protrude inward in the radial direction.
  • the suction force generated between the rotor and the stator core varies depending on the position, the rotor vibrates, or the rotor and the stator teeth come into contact with each other. There is a risk.
  • the present invention has been made in view of the above problems, and a first object thereof is to provide a stator core and a rotating electric machine in which end faces of the respective stator teeth are arranged at predetermined positions.
  • a second object of the present invention is to provide a stator core and a rotating electrical machine in which variation in gaps between the respective divided stator cores is suppressed and the magnetic resistance in the circumferential direction is made uniform.
  • the stator core according to the present invention is an assembled stator core formed by arranging a plurality of divided stator cores in a ring shape, and is arranged on the outer peripheral surface of the assembled stator core, and each divided stator core is arranged in the radial direction of the assembled stator core. And a fixing member that can be fixed in a state where the divided stator cores are annularly arranged. A fragile portion that can be deformed by a pressing force from the fixing member is provided between the split stator core and the fixing member.
  • the weak part is a part that not only undergoes deformation such as elastic deformation and plastic deformation, but also causes brittle fracture.
  • the weakened portion is deformable in the radial direction of the assembled stator core.
  • the weakened portion includes an outer peripheral surface of the split stator core and an inner peripheral surface of the fixing member. Are formed integrally with at least one of the two.
  • the fragile portion includes a void portion formed in the fragile portion.
  • the stator core according to this Ryoaki is an assembled stator core formed by annularly arranging a plurality of divided stator cores, and arranged on the outer peripheral surface of the assembled stator core, and each divided stator core is arranged in the radial direction of the assembled stator core. And a fixing member that can be fixed in a state where the divided stator cores are annularly arranged.
  • a deformable fragile portion is provided between the divided stator cores.
  • the fragile portion is formed at a circumferential end portion of the split stator core.
  • the fragile portion is deformable in the circumferential direction of the assembled stator core.
  • the fragile portion includes a void portion formed in the fragile portion.
  • the stator core according to the present invention is an assembly stator core formed by annularly arranging a plurality of divided stator cores, and disposed on the outer peripheral surface of the assembly stator core, and each of the divided stator cores is radially inward of the assembly stator core.
  • a fixing member that can be fixed in a state where the divided stator cores are annularly arranged. Then, the hardness of one of the fixed member and the divided stator core is made lower than the other hardness, and one of the divided stator core and the fixed member can be deformed by the pressing force from the fixed member.
  • the rotating electrical machine includes an assembled stator core formed by annularly arranging a plurality of divided stator cores, and arranged on the outer peripheral surface of the assembled stator core, and each divided stator core is arranged in the radial direction of the * a standing stator core
  • a fixing member that can be fixed in a state where the divided stator cores are annularly arranged by pressing inward, and a fragile portion that is formed between the divided stator core and the fixing member and can be deformed by a pressing force from the fixing member.
  • a rotatable rotating shaft provided on the inner peripheral side of the assembled stator core and a rotor fixed to the rotating shaft are provided.
  • the rotating electrical machine according to the present invention is an assembled stator core formed by annularly arranging a plurality of divided stator cores, and is disposed on an outer peripheral surface of the assembled stator core, and the divided stator cores are arranged in the radial direction of the assembled stator core.
  • a fixing member that can be fixed in a state where the divided stator cores are arranged in an annular shape.
  • the deformable weak part formed between the split stator cores and the inner peripheral side of the assembled stator core A rotatable rotating shaft provided on the rotating shaft and a rotor fixed to the rotating shaft.
  • the rotating electrical machine includes a rotatable rotating shaft, a rotor fixed to the rotating shaft, an assembly stator core formed by annularly arranging a plurality of divided stator cores, and an assembly And a fixing member that is disposed on the outer peripheral surface of the stator core and that can be fixed in a state where the divided stator cores are arranged in an annular shape by pressing each divided stator core toward the radially inner side of the assembled stator core. Then, one hardness of the fixed member and the divided stator core is made lower than the other hardness, and one of the divided stator core and the fixed member can be deformed by a pressing force from the fixed member.
  • the pressing force received from the fixing member can be reduced by the deformation of the fragile portion. Therefore, it can suppress that a specific division
  • the split stator core displaced from the predetermined position is displaced to the predetermined position by deforming the fragile portion by the pressing force received from the fixing member or the adjacent split stator core. can do.
  • the divided stator cores can be arranged at predetermined positions, the magnetic resistance between the divided stator cores can be made uniform, and the occurrence of bias in the flow of magnetic flux can be suppressed.
  • the split stator core that is displaced from the predetermined position is deformed by the pressing force received from the fixed member or the adjacent split stator core, or the fixed member is deformed. By doing so, it can be displaced to a predetermined position.
  • FIG. 1 is a cross-sectional view of the rotating electrical machine according to the first embodiment.
  • FIG. 2 is an enlarged plan view of the split stator core.
  • FIG. 3 is a cross-sectional view showing a first manufacturing process of the stator core.
  • FIG. 4 is a cross-sectional view showing a second manufacturing process of the stator core.
  • FIG. 5 is a cross-sectional view showing a third manufacturing process of the stator core.
  • FIG. 6 is an enlarged cross-sectional view of a part of the split stator core in FIG.
  • FIG. 7 is a cross-sectional view showing a second state after the first state of the split stator core shown in FIG.
  • FIG. 8 is a cross-sectional view showing a rotating electrical machine according to a first modification of the first embodiment.
  • FIG. 9 is a cross-sectional view when the fixing member is shrink-fitted in the manufacturing process of the stator core shown in FIG.
  • FIG. 10 is a cross-sectional view showing a state where the weakened portion of the fixing member where the split stator core shown in FIG. 9 is located is deformed.
  • FIG. 11 is a cross-sectional view showing a second modification of the first embodiment.
  • FIG. 12 is a cross-sectional view showing a second state after the first state of the split stator core and the fixing member shown in FIG.
  • FIG. 13 is a cross-sectional view showing a third modification of the first embodiment.
  • FIG. 14 is a cross-sectional view showing a second state after the first state of the split stator core and the fixing member shown in FIG.
  • FIG. 15 is a plan view of the rotating electrical machine according to the second embodiment.
  • FIG. 16 is a cross-sectional view of the split stator core.
  • FIG. 17 is a cross-sectional view showing a first manufacturing process of the stator core according to the second embodiment.
  • FIG. 18 is a cross-sectional view showing a second manufacturing process of the stator core according to the second embodiment.
  • FIG. 19 is an enlarged cross-sectional view of a part of FIG.
  • FIG. 20 is a cross-sectional view showing a second state after the first state of the misaligned split stator core shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention is applied to a motor generator installed in a hybrid vehicle. It can be applied to motors (rotary electric machines), but it can be applied to various vehicles such as various vehicles other than hybrid vehicles (for example, electric vehicles including fuel cell vehicles and electric vehicles), industrial equipment, air conditioning equipment, and environmental equipment.
  • the present invention is also applicable to a rotating electrical machine that is mounted.
  • the same or corresponding parts are denoted by the same reference numerals.
  • not all of the components in each embodiment are essential, and it is planned from the beginning that some components may be omitted.
  • FIG. 1 is a cross-sectional view of rotating electrical machine 100 according to the first embodiment.
  • the rotating electrical machine 100 shown in FIG. 1 has an annular stator core 10, a coil (not shown) wound around a stator core 14 of the stator core 10, and an inner periphery of the stator core 10.
  • a rotating shaft 1 1 3 provided so as to be possible, and a rotor 1 1 2 fixed to the rotating shaft 1 1 3 are provided.
  • the rotor 1 1 2 is made of a magnetic material such as iron or an iron alloy, and a rotor core 1 1 0 formed by laminating a plurality of electromagnetic steel plates, and a plurality of permanent magnets provided on the surface of the rotor core 1 1 0 1 1 1 with.
  • the force I P M (Interior Permanent Magnet) may be used as S P M (Surface Permanent Magnet).
  • S P M Surface Permanent Magnet
  • the coil wound around the stator core 10 is omitted.
  • the stator core 10 is configured in a cylindrical shape. Then, the rotor 1 1 2 is rotated by the magnetic flux generated between the rotor 1 1 2 and the rotor 1 1 2. When the rotating electrical machine having the stator core 10 is applied to a hybrid car, current is supplied from the battery via an inverter or the like, and the rotor 11 2 rotates.
  • the stator core 10 includes an annular fixing member 11 and an assembled stator core 12 disposed on the inner peripheral surface of the fixing member 11.
  • the assembly stage core 12 is formed by annularly arranging a plurality of divided stage cores 13 on the inner peripheral surface of the fixing member 11.
  • the fixed member 11 is disposed on the outer peripheral surface of the assembled stator core 12 and presses each divided stator core 13 toward the radially inner side of the assembled stator core 12.
  • the cores 13 can be fixed in an annularly arranged state.
  • FIG. 2 is an enlarged plan view of the split stator core 13.
  • the split stator core 13 is formed on the arcuate body portion 53 and the inner peripheral surface of the body portion 53, and radially inward of the assembled stator core 12.
  • State teeth 14 projecting toward the head.
  • the end surfaces 14 a of the stator teeth 14 located radially inward of the assembled stator core 12 are curved in an arc shape.
  • an armature winding (not shown) is wound to form a coil.
  • the main body 53 has a sector shape, and the end face 53 b positioned in the circumferential direction extends along the radial direction of the assembled stator core 12 shown in FIG. That is, the main body 53 is formed in a tapered shape so that the length in the circumferential direction becomes shorter as it goes inward in the radial direction.
  • a weakened portion 15 is formed on the outer peripheral surface 5 3 a of the main body portion 53.
  • the fragile portion 15 includes a frame 15 b that protrudes from the outer surface of the main body 53 and is formed in an annular shape, and a gap 15 a defined by the frame 15 b.
  • the fragile portion 15 is less rigid than the split stator core 13, and can be deformed by plastic deformation or brittle fracture when a predetermined pressing force is applied from the outside.
  • the fragile portion 15 can be easily deformed in the radial direction of the assembled stator core 12 and the fixing member 11 shown in FIG.
  • FIG. 3 is a cross-sectional view showing a first manufacturing process of the stator core 10.
  • a plurality of divided stator cores 13 are arranged in an annular shape to form an assembled stator core 12.
  • the end faces 14 a of the stator teeth 14 of each divided stator core 13 are also arranged in an annular shape. Note that the curvatures of the ends S 14 a of the stator teeth 14 are all the same, and the end faces 14 a are arranged on the same circumference.
  • FIG. 4 is a cross-sectional view showing a second manufacturing process of stator core 10. As shown in FIG. 4, the inner mold 20 is inserted into the assembled stator core 12. Inner mold 2
  • 0 is a cylinder
  • the outer peripheral surface 20 of the inner mold 20 is a stator teeth 1
  • the inner mold 20 may be configured so that the diameter can be slightly increased in the radial direction. As a result, when the inner mold 20 is inserted into the assembled stator core 12, the inner mold 20 is inserted in a reduced diameter state, and the contact between the inner mold 20 and each divided stator core 13 is performed during the insertion. It can be suppressed.
  • the inner mold 20 is slightly expanded in diameter.
  • the end face 14 a of each stator tooth 14 is brought into contact with the outer peripheral face 20 a of the inner mold 20, and the end face 14 a is aligned with the outer peripheral face 20 a of the inner mold 20. Can be aligned.
  • FIG. 5 is a cross-sectional view showing a third manufacturing process of stator core 10.
  • the fixing member 11 is attached to the outer peripheral surface of the assembled stator core 12 by shrink fitting. Thereby, each divided stator core 13 is pressed from the fixed member 11 inward in the radial direction.
  • each of the divided stator cores 13 is tapered toward the radially inward direction, each of the divided stator cores 13 is restrained by the adjacent divided stator cores 13 in the radially inward displacement. The For this reason, the pressing force between the adjacent divided stator cores 13 increases, the frictional force between the divided stator cores 13 increases, and the assembled stator core 12 is fixed to the inner peripheral surface of the fixing member 11.
  • the fixing member 11 is mounted in a state where the inner die 20 is inserted into the assembled stator core 12, the end surface 14 a of the stator teeth 14 is connected to the outer peripheral surface 20 a of the inner die 20. When pressed, the end face 14 a is accurately arranged along the outer peripheral face 20 a.
  • FIG. 6 is an enlarged cross-sectional view of a part of the split stator core 13 in FIG.
  • the divided stator cores 13 When the divided stator cores 13 are manufactured, it is common to manufacture them with a certain degree of intersection. In addition, a slight error may occur when manufacturing each divided stator core 13. Therefore, in any one of the split stator cores 13, the outer peripheral surface 5 3 a is adjacent to the outer peripheral surface of the adjacent split stator core 13 with the end surface 14 a in contact with the outer peripheral surface 20 a of the inner mold 20. It may be in a state of protruding outward in the radial direction from 5 3 a.
  • the fixing member 11 is curved radially outward at that portion.
  • the pressing force with which the divided stator core 13 is pressed radially inward from the fixed member 11 is larger than the pressing force received by the other divided stator cores 13.
  • FIG. 7 is a cross-sectional view showing a second state after the first state of split stator core 13 shown in FIG. As shown in FIG. 7, the fragile portion 15 formed in the split stator core 13 projecting radially outward from the other split stator core 13 is deformed.
  • the frame 15 b is plastically deformed so that the gap 15 a of the fragile portion 15 is crushed.
  • the fragile portion 15 is plastically deformed radially inward, so that the bulge of the fixing member 11 at that portion is reduced, and the pressing force pressing the split state core 13 is reduced. .
  • the gaps between the stator teeth 14 and the rotor 1 1 2 can be made uniform.
  • an electric current is supplied to an armature winding (not shown), the amount of magnetic flux generated between each status tooth 14 and the rotor 1 1 2 can be made uniform, and the rotor 1 1 2 is vibrated. Can be prevented from occurring.
  • FIG. 8 is a cross-sectional view showing a rotating electrical machine according to a first modification of the first embodiment. As shown in FIG. 8, the weakened portion 55 may be provided on the inner peripheral surface of the fixing member 11.
  • FIG. 9 is a cross-sectional view when the fixing member 11 is shrink-fitted in the manufacturing process of the stator core 10 shown in FIG. 8, and FIG. 10 shows a state where the weakened portion of the fixing member 11 is deformed. It is sectional drawing.
  • the outer peripheral surface 5 3 a of a specific split stator core 13 is positioned radially outward from the other split stator cores 13. Then, as shown in FIG. 10, the fragile portion 55 formed on the inner peripheral surface of the fixing member 11 where the divided stator core 13 is located is deformed in the radial direction.
  • the fragile portions 15 and 55 are formed so as to protrude outward from the outer surface 5 3a of the split stator core 1 3 and the inner surface of the fixing member 1 1, but the split stator core 1 It may be formed inside 3 or inside the fixing member 11.
  • annular member having fragile portions 15 and 55 formed between the fixing member 11 and the split stator core 13 may be arranged.
  • FIG. 11 is a cross-sectional view showing a second modification of the first embodiment.
  • a protrusion 65 may be formed on the outer peripheral surface 53 a of the split stator core 13 so as to protrude outward in the radial direction.
  • the hardness of the divided stator core 13 and the protruding portion 65 is made higher than the hardness of the fixing member 11.
  • the inner peripheral surface of the fixing member 11 is made a fragile portion and can be deformed by the protruding portion 65.
  • FIG. 12 is a cross-sectional view showing a second state after the first state of the split stator core and the fixing member shown in FIG. As shown in Fig.12, the outer peripheral surface 5 3 a is divided into other parts A protrusion 65 formed on a specific split stator core 1 3 positioned radially outward from the stator core 13 enters the fixing member 11.
  • the portion of the fixed member 11 that presses the split stator core 13 protruding outward in the radial direction is deformed so as to receive the protruding portion 65. Then, a portion of the fixing member 11 that presses the split stator core 13 protruding outward in the radial direction is displaced inward in the radial direction, and the swelling of the fixing member 11 in the portion is reduced.
  • FIGS. 11 and 12 show an example in which the protruding portion 65 is formed on the outer peripheral surface 53a of each divided stator core 13, the present invention is not limited to this.
  • FIGS. 13 and 14 are cross-sectional views showing a third modification of the first embodiment. ⁇
  • the fixing member 11 has a hardness higher than that of the divided stator core 13, and protrudes radially inward from the inner surface of the fixing member 11.
  • the portion 65 may be formed.
  • the fixed member 11 is formed at a portion that presses the specific split stator core 13.
  • the protrusion 65 enters the specific split stator core 13.
  • the protruding portion 65 deforms a part of the specific split stator core 13 so as to enter the split stator core 13, whereby the bulge of the fixing member 11 is relaxed, and the fixing member 1 1 The pressing force is reduced.
  • FIGS. 1 to 14 A rotating electric machine and a stator core according to the second embodiment will be described with reference to FIGS.
  • the same components as those shown in FIGS. 1 to 14 are designated by the same reference numerals, and the description thereof is omitted.
  • FIG. 15 is a cross-sectional view of the rotating electrical machine according to the second embodiment
  • FIG. 3 is a plan view of theta core 23.
  • FIG. 16 a plurality of fragile portions 25 are arranged in the radial direction on one end surface in the circumferential direction of the split stator core 23.
  • the fragile portion 25 also has a void portion 25 a formed therein.
  • stator core 10 is an assembled stator core 2 2 formed by annularly arranging the fixed member 11 having an annular shape and the divided stator core 23 having the above-described configuration on the inner peripheral surface of the fixed member 11. And.
  • FIG. 17 is a cross-sectional view showing a first manufacturing process of stator core 10 according to the second embodiment
  • FIG. 18 is a cross-sectional view showing a second manufacturing process.
  • a plurality of divided stator cores 23 are combined in an annular shape by combining the weakened portion 25 of each divided stator core 23 and the recess 26.
  • FIG. 18 a cylindrical inner mold 20 is inserted into an annularly formed assembly stator core 22. Then, the fixing member 11 is shrink-fitted onto the outer peripheral surface of the assembled stator core 22.
  • FIG. 19 is an enlarged cross-sectional view of a part of FIG. FIG. 20 is a sectional view showing a second state after the first state of the misaligned divided stator core 23 shown in FIG.
  • a specific split state core 23 may be fixed in a rotated state.
  • the split stator core 23 is fixed in such a state, for example, when the inner mold 20 is inserted or when the fixing member 11 is shrink-fitted, and the split stator core 23 and the inner mold 2 are fixed. This may be due to contact with 0 or misalignment when the fixing member 11 is attached.
  • the split stator core 23 rotated counterclockwise from a predetermined position, the right side portion of the outer peripheral surface 5 3 a is radially outward from the other split stator core 23. To position.
  • the radially outer portion is separated from the end face of the adjacent split stator core 23, and is in contact only on the radially inner side. ing.
  • stator teeth 1 4 end face 1 4 a the portion on the right side in the circumferential direction floats from the outer peripheral surface 20 a of the inner mold 20.
  • the fixing member 11 is shrink-fitted on the outer peripheral side of the split stator core 23 that is displaced in this way, the portion on the right side in the circumferential direction of the outer peripheral surface 53 a of the split stator core 23 is strongly pressed. Further, of the end face located on the right side in the circumferential direction, only the radially inward portion is pressed by the adjacent divided stator core 23.
  • the divided stator core 23 rotated counterclockwise and deviated from a predetermined position receives a pressing force that rotates clockwise from the periphery.
  • the misaligned divided stator core 23 is divided into the weakened portion 25 formed on the circumferential end face and the weakened portion 25 of the adjacent divided stator core 23, for example, in the circumferential direction. By being deformed into, it can fit in a predetermined position.
  • both end faces positioned in the circumferential direction can make good contact with the end faces of the adjacent divided stator cores 23.
  • the distribution of magnetic resistance in the circumferential direction of the stator core 10 to be formed becomes substantially uniform.
  • the end surface 14 a of the stator teeth 14 can also be along the outer peripheral surface 20 a of the inner die 20, and it is possible to suppress adverse effects such as vibration of the rotor 1 1 2. .
  • the present invention is suitable for a stator core of a rotating electrical machine, and particularly suitable for a rotating electrical machine mounted on a hybrid vehicle or an electric vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Description

明細書 ステータコアおよび回転電機
技術分野
本発明は、 ステータコアおよび回転電機に関するものであり、 特に複数の分割 ステータコアを環状に締め付けることで形成されたステータコアおよび回転電機 に関する。 背景技術
近年、 ハイブリット自動車等に永久磁石型同期モータが用いられている。 そし て、 従来から、 ステータの組立ての容易化が図られたステータコアが各種提案さ れている。
たとえば、 特開平 0 5— 0 9 5 6 4 5号公報に記載されたステータコアは、 コ ィルが卷回される卷体を外周面上に複数有する内側ステータコアと、 内周面に内 側ステータコアが装着される環状の外側ステータコアとを備えている。
また、 特開 2 0 0 4— 3 2 8 9 6 5号公報に記載されたステータは、 筒状の固 定部材と、 ティースが形成されたコァを固定部材内に圧入して環状に形成された ステータコアとを備えている。
コアは、 一端部側が大きな周長を有し、 他端部側が小さな周長とされている。 そして、 周長の長い端部と周長の短い端部とが交互となるように、 各コアを組み 合わせることでステータコアが構成されている。
ステータコアの構成としては、 特開 2 0 0 4— 3 2 8 9 6' 5号公報などのよう に、 分割ステータコアを筒状のハウジング内に圧入して構成する場合に限られず、 環状に配置した複数の分割ステータコアを焼き嵌めなどの手法で環状の固定部材 で固定する手法がある。
このような圧入する手法や焼き嵌めする手法のいずれの手法においても、 製作 上の観点から各部材に交差を設けておくのが一般的に行なわれる。
このため、 各分割ステータコアを環状に固定して、 ステータコアを構成した際 に、 いずれかの分割ステータコアがステータコアの径方向内方に突出したり、 い ずれかの分割ステータコアが僅かに回転した状態で固定される場合等がある。 このため、 各分割ステータコアのステータティースの径方向端面が同一円周上 に並ばず、 いずれかのステータティースが径方向内方に突出した状態となること がある。 このように構成されたステータコア内にロータを配置してロータを駆動 すると、 位置によってロータとステータコアとの間に生じる吸引力が変動し、 口 ータが振動したり、 ロータとステータティースとが接触するおそれがある。
いずれかの分割ステータコアが回転した状態で固定されると、 この分割ステー タコアと、 隣り合う分割ステータコアとの間に隙間が生じ、 他の分割ステータコ ァ間の磁気的抵抗より高くなる。 このため、 ステータコア内の周方向の磁気抵抗 の分布にばらつきが生じ、 形成されたステータコア内で磁束の流れに偏りが生じ る。 発明の開示
本発明は、 上記のような課題に鑑みてなされたものであり、 その第 1の目的は、 各ステータティースの端面が所定の位置に配置されたステータコアおよび回転電 機を提供することである。 本発明の第 2の目的は、 各分割ステータコア間の隙間 にばらつきが抑制して、 周方向の磁気抵抗の均一化の図られたステータコアおよ び回転電機を提供することである。
本発明に係るステータコアは、 1つの局面では、 複数の分割ステータコアを環 状に配置して形成された組立ステータコアと、 組立ステータコアの外周面に配置 され、 各分割ステータコアを組立ステ タコアの径方向内方に向けて押圧して、 分割ステータコアを環状に配列した状態で固定可能な固定部材とを備える。 そし て、 分割ステータコアと固定部材との間には、 固定部材からの押圧力により変形 可能な脆弱部が設けられている。
なお、 脆弱部とは、 弾性変形や塑性変形などの変形するのみならず、 脆性破壊 するような部位である。
好ましくは、 上記脆弱部は、 組立ステータコアの径方向に変形可能とされる。 好ましくは、 上記脆弱部は、 分割ステータコアの外周面と、 固定部材の内周面と の少なくとも一方に一体的に形成される。 好ましくは、 上記脆弱部は、 該脆弱部 内に形成された空隙部を含む。
本亮明に係るステータコアは、 他の局面では、 複数の分割ステータコアを環状 に配置して形成された組立ステータコアと、 組立ステータコァの外周面に配置さ れ、 各分割ステータコアを組立ステータコアの径方向内方に向けて押圧して、 分 割ステータコアを環状に配列した状態で固定可能な固定部材とを備える。 そして、 分割ステータコア間には変形可能な脆弱部が設けられている。 好ましくは、 上記 脆弱部は、 分割ステータコアの周方向端部に形成される。 好ましくは、 上記脆弱 部は、 組立ステータコアの周方向に変形可能とされる。 好ましくは、 上記脆弱部 は、 該脆弱部内に形成された空隙部を含む。
本発明に係るステータコアは、 他の局面では、 複数の分割ステータコアを環状 に配置して形成された組立ステータコアと、 組立ステータコアの外周面に配置さ れ、 各分割ステータコアを組立ステータコアの径方向内方に向けて押圧して、 分 割ステータコアを環状に配列した状態で固定可能な固定部材とを備える。 そして、 固定部材と分割ステータコアとの一方の硬度を他方の硬度より低くして、 固定部 材からの押圧力によって、 分割ステータコアと固定部材との一方を変形可能とす る。
本発明に係る回転電機は、 1つの局面では、 複数の分割ステータコアを環状に 配置して形成された組立ステータコアと、 組立ステータコアの外周面に配置され、 各分割ステータコァを *a立ステータコァの径方向内方に向けて押圧して、 分割ス テータコアを環状に配列した状態で固定可能な固定部材と、 分割ステータコアと 固定部材との間に形成され、 固定部材からの押圧力により変形可能な脆弱部とを 備える。 さらに、 組立ステータコアの内周側に設けられた回転可能な回転シャフ トと、 回転シャフトに固設されたロータとを備える。
本発明に係る回転電機は、 他の局面では、 複数の分割ステータコアを環状に配 置して形成された組立ステータコアと、 組立ステータコアの外周面に配置され、 各分割ステータコアを組立ステータコアの径方向内方に向けて押圧して、 分割ス テータコアを環状に配列した状態で固定可能な固定部材とを備える。 さらに、 分 割ステータコア間に形成された変形可能な脆弱部と、 組立ステータコアの内周側 に設けられた回転可能な回転シャフトと、 回転シャフトに固設されたロータとを 倔える。
本発明に係る回転電機は、 他の局面では、 回転可能な回転シャフトと、 回転シ ャフトに固設されたロータと、 複数の分割ステータコアを環状に配置して形成さ れた組立ステータコアと、 組立ステ一タコアの外周面に配置され、 各分割ステー タコアを組立ステータコアの径方向内方に向けて押圧して、 分割ステータコアを 環状に配列した状態で固定可能な固定部材とを備える。 そして、 固定部材と分割 ステータコアとの一方の硬度を他方の硬度より低く して、 固定部材からの押圧力 によって、 分割ステータコアと固定部材との一方を変形可能とする。
本発明に係るステータコアおよび回転電機によれば、 固定部材から受ける押圧 力が大きな分割ステータコアにおいては、 脆弱部が変形することにより、 固定部 材から受ける押圧力が低減することができる。 これにより、 特定の分割ステータ コアが他の分割ステータコアよりも径方向内方に突出することを抑制することが できる。
本発明に係るステータコアおよび回転電機によれば、 所定の位置からずれた分 割ステータコアが、 固定部材や隣り合う分割ステータコアから受ける押圧力によ つて、 脆弱部を変形させることで所定の位置に変位することができる。 これによ り、 各分割ステータコアを所定の位置に配列させることができ、 分割ステータコ ァ間の磁気抵抗を均一にすることができ、 磁束の流れに偏りが生じることを抑制 することができる。
本発明に係るステータコアおよび回転電機によれば、 所定の位置からずれた分 割ステータコアは、 固定部材または隣り合う分割ステータコアから受ける押圧力 によって、 分割ステータコア自身が変形するか、 または、 固定部材を変形させる ことで、 所定の位置に変位することができる。 図面の簡単な説明
図 1は、 本実施の形態 1に係る回転電機の断面図である。
図 2は、 分割ステータコアの拡大平面図である。
図 3は、 ステータコアの第 1製造工程を示す断面図である。 図 4は、 ステータコアの第 2製造工程を示す断面図である。
図 5は、 ステータコアの第 3製造工程を示す断面図である。
図 6は、 図 5における分割ステータコアの一部を拡大した断面図である。
図 7は、 図 6に示す分割ステータコアの第 1状態後の第 2状態を示す断面図で ある。
図 8は、 本実施の形態 1の第 1変形例に係る回転電機を示す断面図である。 図 9は、 図 8に示すステータコアの製造工程において、 固定部材を焼き嵌めし たときの断面図である。
図 1 0は、 図 9に示す分割ステータコアが位置する固定部材の脆弱部が変形し た状態を示す断面図である。
図 1 1は、 本実施の形態 1の第 2変形例を示す断面図である。
図 1 2は、 図 1 1に示す分割ステータコアおよび固定部材の第 1状態後の第 2 状態を示す断面図である。
図 1 3は、 本実施の形態 1の第 3変形例を示す断面図である。
図 1 4は、 図 1 3に示す分割ステータコアおよび固定部材の第 1状態後の第 2 状態を示す断面図である。
図 1 5は、 本実施の形態 2に係る回転電機の平面図である。
図 1 6は、 分割ステータコアの断面図である。
図 1 7は、 本実施の形態 2に係るステータコアの第 1製造工程を示す断面図で ある。
図 1 8は、 本実施の形態 2に係るステータコアの第 2製造工程を示す断面図で ある。
図 1 9は、 図 1 8の一部を拡大した断面図である。
図 2 0は、 図 1 9に示された位置ずれした分割ステータコアの第 1状態後の第 2状態を示す断面図である。 発明を実施するための最良の形態
本発明に係る実施の形態について、 図 1から図 2 0を用いて説明する。 なお、 下記の実施の形態では、 本発明をハイプリッド車両に搭載されるモータジエネレ ータ (回転電機) に適用可能であるが、 ハイブリッド車両以外の各種車両 (たと えば燃料電池車や電気自動車を含む電動車両) や、 産業機器、 空調機器、 環境機 器等の様々な機器に搭載される回転電機に対しても本発明は適用可能である。 また、 下記の実施の形態において同一または相当する部分には同一の参照符号 を付す。 さらに、 各実施の形態の各構成要素は、 全てが必須のものであるとは限 らず、 一部の構成要素を省略可能な場合があることも当初から予定している。
(実施の形態 1 )
本実施の形態 1について、 図 1から図 1 4を用いて説明する。 図 1は、 本実施 の形態 1に係る回転電機 1 0 0の断面図である。 この図 1に示す回転電機 1 0 0 は、 環状に形成されたステータコア 1 0と、 ステータコア 1 0のステータティ一 ス 1 4に卷回される図示されないコイルと、 このステータコア 1 0の内周に回転 可能に設けられた回転シャフト 1 1 3と、 この回転シャフト 1 1 3に固設された ロータ 1 1 2とを備えている。
ロータ 1 1 2は、 鉄または鉄合金などの磁性体によって構成され、 複数の電磁 鋼板を積層して形成されたロータコア 1 1 0と、 このロータコア 1 1 0の表面に 設けられた複数の永久磁石 1 1 1とを備えている。
図 1に示す例においては、 S P M (Surface Permanent Magnet) とされている 力 I P M (Interior Permanent Magnet) としてもよい。 なお、 この図 1に示 す例においては、 ステータコア 1 0に巻回されるコイルは省略している。
ステータコア 1 0は、 円筒状に構成されている。 そして、 ロータ 1 1 2との間 で生じる磁束によって、 ロータ 1 1 2を回転させる。 なお、 このステータコア 1 0を備えた回転電機をハイプリット自動車に適用した場合には、 バッテリから電 流がインバータなどを介して供給されて、 ロータ 1 1 2が回転する。
ステータコア 1 0は、 円環状の固定部材 1 1と、 この固定部材 1 1の内周面に 配置された組立ステータコア 1 2とを備えている。
組立ステ一夕コア 1 2は、 複数の分割ステ一タコア 1 3を固定部材 1 1の内周 面に環状に配置することにより形成されている。
固定部材 1 1は、 組立ステータコア 1 2の外周面に配置され、 各分割ステータ コア 1 3を組立ステータコア 1 2の径方向内方に向けて押圧して、 分割ステータ コア 1 3を環状に配列した状態で固定することができる。
図 2は、 分割ステータコア 1 3の拡大平面図である。 この図 2に示されるよう に、 分割ステータコア 1 3は、 円弧状に形成された本体部 5 3と、 この本体部 5 3の内周面に形成され、 組立ステータコア 1 2の径方向内方に向けて突出するス テータティース 1 4とを備えている。 組立ステータコア 1 2の径方向内方に位置 するステータティース 1 4の端面 1 4 aは、 円弧状に湾曲している。 そして、 ス テータティース 1 4には、 図示されない電機子卷線が卷回され、 コイルが形成さ れる。
本体部 5 3は、 扇型形状をしており、 周方向に位置する端面 5 3 bは図 1に示 す組立ステータコア 1 2の径方向に沿って延びている。 すなわち、 本体部 5 3は、 径方向内方に向かうにしたがって、 周方向の長さが短くになるように先細状に形 成されている。
本体部 5 3の外周面 5 3 aには、 脆弱部 1 5が形成されている。 脆弱部 1 5は、 本体部 5 3の外表面から突出し環状に形成された枠体 1 5 bと、 この枠体 1 5 b によって規定された空隙部 1 5 aとを備えている。
すなわち、 脆弱部 1 5は、 分割ステータコア 1 3より剛性が小さく、 外部から 所定以上の押圧力が加えられると、 塑性変形したり、 脆性破壊したりして変形可 能とされている。 特に、 脆弱部 1 5は、 図 1に示す組立ステータコア 1 2および 固定部材 1 1の径方向に容易に変形可能とされている。
このように構成されたステータコア 1 0の製造方法について、 図 3から図 7を 用いて説明する。 図 3は、 ステータコア 1 0の第 1製造工程を示す断面図である。 この図 3に示すように、 複数の分割ステータコア 1 3を環状に配置して、 組立ス テータコア 1 2を形成する。 このように、 分割ステータコア 1 3を配置すると、 各分割ステータコア 1 3のステータティース 1 4の端面 1 4 aも環状に配列する。 なお、 各ステータティース 1 4の端 S 1 4 aの曲率は全て一致しており、 各端面 1 4 aは、 同一円周上に配列する。
なお、 分割ステータコア 1 3のステータティース 1 4には、 予め電機子卷線を 巻回する。 組立ステータコア 1 2の状態で各ステータティース 1 4に電機子巻線 を卷回するよりも、 独立した状態の分割ステータコア 1 3のステータティース 1 4に電機子卷線を卷回する方が、 容易に電機子巻線を卷回するこ.とができる。 図 4は、 ステータコア 1 0の第 2製造工程を示す断面図である。 この図 4に示 されるように、 組立ステータコア 1 2の内部に内金型 2 0を挿入する。 内金型 2
0は、 円柱とされており、 内金型 2 0の外周面 2 0 aは、 各ステータティース 1
4の端面 1 4 aに周接する。
なお、 内金型 2 0を僅かに径方向に拡径可能なように構成してもよい。 これに より、 組立ステータコア 1 2内に内金型 2 0を挿入する際には、 縮径状態として 挿入して、 挿入の際に、 内金型 2 0と各分割ステータコア 1 3との接触を抑制す ることができる。
そして、 内金型 2 0の挿入が完了すると、 内金型 2 0を僅かに拡径させる。 こ れにより、 各ステータティース 1 4の端面 1 4 aと内金型 2 0の外周面 2 0 aと を接触させて、 端面 1 4 aを内金型 2 0の外周面 2 0 aに沿って整列させること ができる。
図 5は、 ステータコア 1 0の第 3製造工程を示す断面図である。 この図 5に示 すように、 固定部材 1 1を組立ステータコア 1 2の外周面に焼き嵌めにより装着 する。 これにより、 各分割ステータコア 1 3は、 固定部材 1 1から径方向内方に 向けて押圧される。
各分割ステータコア 1 3は、 径方向内方に向かうに従って先細状に構成されて いるため、 各分割ステータコア 1 3は、 径方向内方に向けての変位が隣り合う分 割ステータコア 1 3によって拘束される。 このため、 隣り合う分割ステータコア 1 3同士の押圧力が大きくなり、 各分割ステータコア 1 3間の摩擦力が増大し、 組立ステータコア 1 2が固定部材 1 1の内周面に固定される。
さらに、 内金型 2 0を組立ステータコア 1 2内に挿入した状態で、 固定部材 1 1を装着するので、 ステータティース 1 4の端面 1 4 aが内金型 2 0の外周面 2 0 aに押圧され、 端面 1 4 aが外周面 2 0 aに正確に沿 て配列する。
図 6は、 図 5における分割ステータコア 1 3の一部を拡大した断面図である。 分割ステータコア 1 3を製造する際には、 ある程度の交差を付けて製造するのが 一般的である。 また、 各分割ステータコア 1 3を製造する際に、 僅かな誤差が生 じる場合がある。 このため、 いずれかの分割ステータコア 1 3において、 端面 1 4 aが内金型 2 0の外周面 2 0 aに当接した状態で、 外周面 5 3 aが隣り合う分割ステータコア 1 3の外周面 5 3 aより径方向外方に突出した状態となる場合がある。
このように特定の分割ステータコア 1 3が他の分割ステータコア 1 3より径方 向外方に突出すると、 その部分で固定部材 1 1が径方向外方に湾曲する。 そして、 この分割ステータコア 1 3が固定部材 1 1から径方向内方に向けて押圧される押 圧力は、 他の分割ステータコア 1 3が受ける押圧力より大きくなる。
図 7は、 図 6に示す分割ステータコア 1 3の第 1状態後の第 2状態を示す断面 図である。 この図 7に示すように、 他の分割ステータコア 1 3より径方向外方に 突出した分割ステータコア 1 3に形成された脆弱部 1 5が変形する。
図 7に示す例においては、 脆弱部 1 5の空隙部 1 5 aが潰れるように枠体 1 5 bが塑性変形する。 このように、 脆弱部 1 5が径方向内方に向けて塑性変形する ことにより、 その部分における固定部材 1 1の膨らみが小さくなり、 その分割ス テータコア 1 3を押圧する押圧力が低減される。
なお、 図 7に示す例のように、 脆弱部 1 5の枠体 1 5 bが塑性変形する場合に 限られず、 脆弱部 1 5が脆性破壌してもよい。 すなわち、 固定部材 1 1の膨らみ を小さくすることができ、 かつ、 分割ステータコア 1 3と固定部材 1 1との間で、 分割ステータコア 1 3を径方向に押圧する内部応力を低減することができる手段 であればよレ、。
このようにして、 特定の分割ステータコア 1 3に固定部材 1 1から過大な押圧 力が加えられることを抑制し、 各分割ステータコア 1 3に加えられる押圧力がい ずれも所定の範囲内となるようにする。
そして、 図 1に示すように、 図 5に示す内金型 2 0を組立ステータコア 1 2か ら引き抜く。 この際、 各分割ステータコア 1 3に固定部材 1 1から加えられる押 圧力が所定の範囲内とされているので、 いずれの分割ステータコア 1 3について も径方向内方に向けて突出することを抑制することができる。
そして、 各分割ステータコア 1 3の端面 1 4 aが同一円周上に配列した状態を 維持することができる。
このようにして構成されたステータコア 1 0内にロータ 1 1 2を配置すること により、 各ステータティース 1 4と、 ロータ 1 1 2との間のギヤップを均一にす ることができる。 これにより、 図示されない電機子卷線に電流が供給され、 各ス テータティース 1 4とロータ 1 1 2との間に生じる磁束量を均一なものとするこ とができ、 ロータ 1 1 2に振動が生じることを抑制することができる。
図 8は、 本実施の形態 1の第 1変形例に係る回転電機を示す断面図である。 こ の図 8に示すように、 脆弱部 5 5を固定部材 1 1の内周面に設けてもよい。 図 9 は、 図 8に示すステータコア 1 0の製造工程において、 固定部材 1 1を焼き嵌め したときの断面図であり、 図 1 0は、 固定部材 1 1の脆弱部が変形した状態を示 す断面図である。
図 9に示すように、 特定の分割ステータコア 1 3の外周面 5 3 aが、 他の分割 ステータコア 1 3よりも、 径方向外方に位置している。 そして、 図 1 0に示すよ うに、 この分割ステータコア 1 3が位置する固定部材 1 1の内周面に形成された 脆弱部 5 5が径方向に変形する。
これにより、 固定部材 1 1がこの分割ステータコア 1 3を押圧する押圧力が低 減され、 内金型 2 0を引き抜いた際に、 この分割ステータコア 1 3が径方向内方 に変位することを抑制することができる。
なお、 上記脆弱部 1 5、 5 5は、 分割ステータコア 1 3の外周面 5 3 a、 固定 部材 1 1の内表面から外方に向けて突出するように形成されているが、 分割ステ ータコア 1 3の内部や固定部材 1 1の内部に形成してもよい。
さらに、 固定部材 1 1と分割ステータコア 1 3との間に脆弱部 1 5、 5 5が形 成された環状部材を配置するようにしてもよい。
図 1 1は、 本実施の形態 1の第 2変形例を示す断面図である。 この図 1 1に示 されるように、 分割ステータコア 1 3の外周面 5 3 aに径方向外方に向けて突出 する突出部 6 5を形成してもよレ、。
そして、 分割ステータコア 1 3および突出部 6 5の硬度を、 固定部材 1 1の硬 度より高くする。 これにより、 固定部材 1 1の内周面を脆弱部とし、 突出部 6 5 によって変形可能としている。
図 1 2は、 図 1 1に示す分割ステータコアおよび固定部材の第 1状態後の第 2 状態を示す断面図である。 この図 1 2に示すように、 外周面 5 3 aが、 他の分割 ステータコア 1 3よりも径方向外方に位置している特定の分割ステータコア 1 3 に形成された突出部 6 5が、 固定部材 1 1内に入り込む。
このように、 固定部材 1 1のうち、 径方向外方に突出した分割ステータコア 1 3を押圧する部分が突出部 6 5を受け入れるように変形する。 そして、 固定部材 1 1のうち、 径方向外方に突出する分割ステータコア 1 3を押圧する部分が径方 向内方に変位して、 当該部分の固定部材 1 1の膨らみが低減される。
これにより、 外周面 5 3 aが他の分割ステータコア 1 3より径方向外方に位置 する特定の分割ステータコア 1 3を固定部材 1 1が押圧する押圧力を低減するこ とができる。 したがって、 この図 1 1および図 1 2に示す例においても、 上記他 の例と同様に、 内金型 2 0を引き抜いたときに、 特定の分割ステータコア 1 3が 径方向内方に変位することを抑制することができる。
なお、 図 1 1、 図 1 2においては、 突出部 6 5を各分割ステータコア 1 3の外 周面 5 3 aに形成した例を示したが、 これに限られない。 図 1 3および図 1 4は、 本実施の形態 1の第 3変形例を示す断面図である。 ·
この図 1 3, 図 1 4に示すように、 固定部材 1 1の硬度を分割ステータコア 1 3の硬度より高くして、 固定部材 1 1の内表面に径方向内方に向けて突出する突 出部 6 5を形成してもよい。
これにより、 特定の分割ステータコア 1 3が他の分割ステータコア 1 3より径 方向外方に位置する場合において、 固定部材 1 1のうち、 この特定の分割ステー タコア 1 3を押圧する部分に形成された突出部 6 5がこの特定の分割ステータコ ァ 1 3内に入り込む。
このように、 突出部 6 5が上記特定の分割ステータコア 1 3の一部を変形させ て、 分割ステータコア 1 3内に入り込むことにより、 固定部材 1 1の膨らみが緩 和されて、 固定部材 1 1の押圧力が低減される。
(実施の形態 2 )
図 1 5から図 2 0を用いて、 本実施の形態 2に係る回転電機およびステータコ ァについて説明する。 なお、 上記図 1から図 1 4に示された構成と同一の構成に ついては、 同一の符号を付してその説明を省略する。
図 1 5は、 本実施の形態 2に係る回転電機の断面図であり、 図 1 6は、 分割ス テータコア 2 3の平面図である。 図 1 6に示されるように、 分割ステータコア 2 3の周方向の一方の端面には、 複数の脆弱部 2 5が径方向に配列されている。 こ の脆弱部 2 5にも、 内部に空隙部 2 5 aが形成されている。
そして、 分割ステータコア 2 3の周方向に位置する他方の端面には、 隣り合う 分割ステータコア 2 3の脆弱部 2 5を受け入れる凹部 2 6が形成されている。 図 1 5において、 ステータコア 1 0は、 環状の固定部材 1 1と、 上記のように 構成された分割ステータコア 2 3を固定部材 1 1の内周面に環状に配列して形成 した組立ステータコア 2 2とを備えている。
図 1 7から図 2 0を用いて、 本実施の形態 2に係るステータコア 1 0の製造方 法について説明する。 図 1 7は、 本実施の形態 2に係るステータコア 1 0の第 1 製造工程を示す断面図であり、 図 1 8は、 第 2製造工程を示す断面図である。 図 1 7に示されるように、 各分割ステータコア 2 3の脆弱部 2 5と、 凹部 2 6とを 組み合わせて、 複数の分割ステータコア 2 3を環状に組み合わせる。
そして、 図 1 8において、 環状に形成された組立ステータコア 2 2内に円柱状 の内金型 2 0を揷入する。 そして、 組立ステータコア 2 2の外周面に固定部材 1 1を焼き嵌めする。
図 1 9は、 図 1 8の一部を拡大した断面図である。 図 2 0は、 図 1 9に示され た位置ずれした分割ステータコア 2 3の第 1状態後の第 2状態を示す断面図であ る。 図 1 9に示されるように、 固定部材 1 1を焼き嵌めした際に、 特定の分割ス テータコア 2 3が回転した状態で固定されることがある。 このような状態で分割 ステータコア 2 3が固定されるのは、 たとえば、 内金型 2 0を挿入する際や、 固 定部材 1 1を焼き嵌めする際に、 分割ステータコア 2 3と内金型 2 0とが接触し たり、 固定部材 1 1を装着する際に、 位置ずれすること等が原因となっている。 たとえば、 この図 1 9に示すように、 所定の位置から左回転した分割ステータ コア 2 3においては、 外周面 5 3 aのうち、 右側の部分が他の分割ステータコア 2 3より径方向外方に位置する。
さらに、 この位置ずれした分割ステータコア 2 3の周方向右側の端面では、 径 方向外方側の部分が、 隣り合う分割ステータコア 2 3の端面から離間しており、 径方向内方側のみで接触している。 さらに、 ステータティース 1 4の端面 1 4 a では、 周方向右側の部分が、 内金型 2 0の外周面 2 0 aから浮き上がつている。 このように位置ずれした分割ステータコア 2 3の外周側に固定部材 1 1が焼き 嵌めされると、 この分割ステータコア 2 3の外周面 5 3 aのうち、 周方向右側の 部分が強く押圧される。 さらに、 周方向右側に位置する端面のうち、 径方向内方 に部分のみが、 隣り合う分割ステータコア 2 3力ゝら押圧される。
このため、 左回転して、 所定の位置からずれた分割ステータコア 2 3は、 周囲 から右回転するような押圧力を受ける。
このため、 図 2 0に示すように、 位置ずれした分割ステータコア 2 3は、 その 周方向端面に形成された脆弱部 2 5および隣り合う分割ステータコア 2 3の脆弱 部 2 5を、 たとえば、 周方向に変形することで、 所定の位置に収まることができ る。 ·
そして、 周方向に位置する両端面は、 隣り合う分割ステータコア 2 3の端面と 良好に接触することができる。 これにより、 形成されるステータコア 1 0の周方 向の磁気抵抗の分布が略均一となる。
特に、 部分的に磁気抵抗の高い部分が形成されることを抑制することができる ので、 鉄損を低減することができ、 効率のよい回転電機を提供することができる。 さらに、 ステータティース 1 4の端面 1 4 aも、 内金型 2 0の外周面 2 0 aに 沿わせることができ、 ロータ 1 1 2の振動の発生等の弊害の抑制を図ることがで さる。
なお、 実施の形態 1に係る脆弱部 1 5と実施の形態 2に係る脆弱部 2 5とのい ずれをも備えた分割ステータコアを用いることにより、 製造過程において、 所定 の位置から回転または径方向に突出した分割ステータコアが生じたとしても、 周 方向の磁気抵抗を均等に分布させることが出来ると共に、 各ステータティースの 端面を同一円周上に配列させることができる。
以上のように本発明の実施の形態について説明を行なったが、 今回開示された 実施の形態はすべての点で例示であって制限的なものではないと考えられるべき である。 本発明の範囲は請求の範囲によって示され、 請求の範囲と均等の意味お よび範囲内でのすべての変更が含まれることが意図される。 産業上の利用可能性
本発明は、 回転電機のステータコアに好適であり、 特に、 ハイブリット自動車 や電気自動車に搭載される回転電機に好適である。

Claims

請求の範囲
1 . 複数の分割ステータコアを環状に配置して形成された組立ステータコアと、 前記組立ステータコアの外周面に配置され、 前記各分割ステータコアを前記組 立ステータコアの径方向内方に向けて押圧して、 前記分割ステータコアを環状に 配列した状態で固定可能な固定部材と、
前記分割ステータコアと前記固定部材との間に形成され、 前記固定部材からの 押圧力により変形可能な脆弱部と、
を備えたステータコア。 '
2 . 前記脆弱部は、 前記組立ステータコアの径方向に変形可能とされた、 請求 の範囲第 1項に記載のステータコア。
3 . 前記脆弱部は、 前記分割ステータコアの外周面と、 前記固定部材の内周面 との少なくとも一方に一体的に形成された、 請求の範囲第 1項に記載のステータ コア。
4 . 前記脆弱部は、 該脆弱部内に形成された空隙部を含む、 請求の範囲第 1項 に記載のステータコア。
5 . 複数の分割ステータコアを環状に配置して形成された組立ステータコアと、 前記組立ステータコアの外周面に配置され、 前記各分割ステータコアを前記組 立ステータコアの径方向内方に向けて押圧して、 前記分割ステータコアを環状に 配列した状態で固定可能な固定部材と、
前記分割ステータコア間に形成された変形可能な脆弱部と、
を備えたステータコア。
6 . 前記脆弱部は、 前記分割ステータコアの周方向端部に形成された、 請求の 範囲第 5項に記載のステータコア。
7 . 前記脆弱部は、 前記組立ステータコアの周方向に変形可能とされた、 請求 の範囲第 5項に記載のステータコア。
8 . 前記脆弱部は、 該脆弱部内に形成された空隙部を含む、 請求の範囲第 5項 に記載のステータコア。
9 . 複数の分割ステータコアを環状に配置して形成された組立ステータコアと、 前記組立ステータコアの外周面に配置され、 前記各分割ステータコアを前記組 立ステータコアの径方向内方に向けて押圧して、 前記分割ステータコアを環状に 配列した状態で固定可能な固定部材と、
を備え、
前記固定部材と前記分割ステータコアとの一方の硬度を他方の硬度より低くし て、 前記固定部材からの押圧力によって、 前記分割ステータコアと前記固定部材 との一方を変形可能とした、 ステータコア。
1 0 . 複数の分割ステータコアを環状に配置して形成された組立ステータコア と、
前記組立ステータコアの外周面に配置され、 前記各分割ステータコアを前記組 立ステータコアの径方向内方に向けて押圧して、 前記分割ステータコアを環状に 配列した状態で固定可能な固定部材と、
前記分割ステータコアと前記固定部材との間に形成され、 前記固定部材からの 押圧力により変形可能な脆弱部と、
前記組立ステータコアの内周側に設けられた回転可能な回転シャフトと、 前記回転シャフトに固設されたロータと、
を備えた回転電機。
1 1 . 複数の分割ステータコアを環状に配置して形成された組立ステータコア と、
前記組立ステータコアの外周面に配置され、 前記各分割ステータコアを前記組 立ステータコアの径方向内方に向けて押圧して、 前記分割ステータコアを環状に 配列した状態で固定可能な固定部材と、
前記分割ステータコア間に形成された変形可能な脆弱部と、
前記組立ステータコアの内周側に設けられた回転可能な回転シャフトと、 前記回転シャフトに固設されたロータと、
を備えた回転電機。 ' 1 2 . 回転可能な回転シャフトと、
前記回転シャフトに固設されたロータと、
複数の分割ステータコアを環状に配置して形成された組立ステータコアと、 前記組立ステータコアの外周面に配置され、 前記各分割ステータコアを前記組 立ステータコアの径方向内方に向けて押圧して、 前記分割ステータコアを環状に 配列した状態で固定可能な固定部材と、
を備え、
前記固定部材と前記分割ステータコアとの一方の硬度を他方の硬度より低く し て、 前記固定部材からの押圧力によって、 前記分割ステータコアと前記固定部材 との一方を変形可能とした、 回転電機。
PCT/JP2007/070683 2006-10-20 2007-10-17 Noyau de stator et machine électrique rotative WO2008047942A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/445,556 US8035271B2 (en) 2006-10-20 2007-10-17 Stator core and rotating electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-286463 2006-10-20
JP2006286463A JP4807219B2 (ja) 2006-10-20 2006-10-20 ステータコアおよび回転電機

Publications (1)

Publication Number Publication Date
WO2008047942A1 true WO2008047942A1 (fr) 2008-04-24

Family

ID=39314150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070683 WO2008047942A1 (fr) 2006-10-20 2007-10-17 Noyau de stator et machine électrique rotative

Country Status (3)

Country Link
US (1) US8035271B2 (ja)
JP (1) JP4807219B2 (ja)
WO (1) WO2008047942A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2224576A3 (de) * 2009-02-26 2016-09-07 Bühler Motor GmbH Stator für einen elektronisch kommutierten Gleichstrommotor
WO2017159811A1 (ja) * 2016-03-18 2017-09-21 株式会社安川電機 回転電機及び回転電機の製造方法
JP7473793B2 (ja) 2020-03-26 2024-04-24 ダイキン工業株式会社 モータ

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5441360B2 (ja) * 2008-05-29 2014-03-12 三菱電機株式会社 電動機の固定子
CN102122868B (zh) * 2010-01-08 2016-06-29 思博莫顿股份公司 电机定子及其制造方法
DE102010007885A1 (de) * 2010-02-13 2011-08-18 Daimler AG, 70327 Stator einer elektrischen Maschine
FR2957730B1 (fr) * 2010-03-17 2013-02-22 Converteam Technology Ltd Machine electrique tournante avec stator a bobinages concentriques
EP2579428A4 (en) * 2010-06-02 2015-12-23 Aisin Seiki ROTARY ELECTRIC MACHINE
JP2011254624A (ja) * 2010-06-02 2011-12-15 Aisin Seiki Co Ltd 回転電機
JP2011254623A (ja) * 2010-06-02 2011-12-15 Aisin Seiki Co Ltd 回転電機および回転電機のステータ
JP2011254625A (ja) * 2010-06-02 2011-12-15 Aisin Seiki Co Ltd 回転電機
JP5641902B2 (ja) * 2010-10-08 2014-12-17 日本発條株式会社 モーターのステーター・コア及び製造方法
CN103187842B (zh) * 2011-12-28 2015-07-01 日本电产株式会社 单相感应马达
FR2986673B1 (fr) * 2012-02-02 2017-08-11 Novatem Machine electrique presentant une structure statorique modulaire
US8941282B2 (en) * 2012-03-05 2015-01-27 Siemens Energy, Inc. Turbine generator stator core attachment technique
JP6056193B2 (ja) * 2012-05-17 2017-01-11 富士電機株式会社 永久磁石式回転電機
JP6032998B2 (ja) * 2012-08-15 2016-11-30 三菱重工業株式会社 モータ締結構造およびこれを備えたモータ
DE102012215232A1 (de) * 2012-08-28 2014-03-06 Robert Bosch Gmbh Stator in einem Elektromotor
US9806566B2 (en) * 2012-08-30 2017-10-31 Asmo Co., Ltd. Brushless motor, stator, stator manufacturing method and brushless motor manufacturing method
JP6084039B2 (ja) * 2013-01-10 2017-02-22 アスモ株式会社 ブラシレスモータ
KR20140078819A (ko) * 2012-12-18 2014-06-26 엘지이노텍 주식회사 모터
DE102013219535A1 (de) * 2013-09-27 2015-04-02 Mahle International Gmbh Statoranordnung für einen Elektromotor
WO2015063871A1 (ja) * 2013-10-29 2015-05-07 三菱電機株式会社 永久磁石埋込型電動機、圧縮機、および冷凍空調装置
CN106233577B (zh) * 2014-04-16 2018-11-02 三菱电机株式会社 旋转电机的电枢铁芯
JP6324812B2 (ja) * 2014-05-29 2018-05-16 本田技研工業株式会社 回転電機用圧入固定構造体、およびステータ
DE102014110073A1 (de) * 2014-07-17 2016-01-21 Pfeiffer Vacuum Gmbh Vakuumpumpe
CN105790455B (zh) * 2014-12-26 2019-07-30 德昌电机(深圳)有限公司 内转子电机及其定子结构
KR20180018771A (ko) * 2015-08-21 2018-02-21 미쓰비시덴키 가부시키가이샤 영구자석 매입형 모터, 압축기, 및 냉동 공조 장치
JP6381820B2 (ja) * 2015-09-28 2018-08-29 三菱電機株式会社 回転電機および回転電機の製造方法
CN108884828A (zh) * 2016-04-06 2018-11-23 Lg电子株式会社 电机操作的压缩机
WO2017175945A1 (en) * 2016-04-06 2017-10-12 Lg Electronics Inc. Motor-operated compressor
GB2563941A (en) * 2017-06-30 2019-01-02 Valeo Air Man Uk Limited Electric supercharger
DE102018106947A1 (de) * 2017-12-27 2019-07-11 Ebm-Papst St. Georgen Gmbh & Co. Kg Elektromotor und Verfahren zum Montieren eines Elektromotors
FR3082374B1 (fr) * 2018-06-07 2020-05-29 Moteurs Leroy-Somer Stator de machine electrique tournante
JP7209480B2 (ja) * 2018-06-18 2023-01-20 三菱電機株式会社 回転電機および回転電機の製造方法
FR3087962B1 (fr) * 2018-10-29 2022-01-14 Circor Ind Moteur electrique a courant continu sans balai avec un couple de crantage reduit et son procede de fabrication
DE102019116822A1 (de) * 2019-06-21 2020-12-24 Valeo Siemens Eautomotive Germany Gmbh Statorblech, Statorblechpaket, Stator, elektrische Maschine, Fahrzeug und Verfahren zur Herstellung eines Stators
WO2021002629A1 (ko) * 2019-07-02 2021-01-07 삼성전자주식회사 모터 및 이를 포함하는 압축기
JPWO2021075275A1 (ja) * 2019-10-16 2021-04-22
DE102022206448A1 (de) * 2022-06-27 2023-12-28 Zf Friedrichshafen Ag Stator für eine elektrische Maschine mit federnder Außenkontur

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747840U (ja) * 1980-09-03 1982-03-17
JPH0614482A (ja) * 1992-06-22 1994-01-21 Fuji Electric Co Ltd 回転電機の固定子鉄心
JPH08196048A (ja) * 1995-01-12 1996-07-30 Hitachi Ltd 回転電機の固定子鉄心
JPH11341716A (ja) * 1998-05-29 1999-12-10 Nippon Seiko Kk 分割磁極型電動モータ
JP2005354870A (ja) * 2004-06-14 2005-12-22 Aichi Elec Co 電動機の固定子
JP2006115581A (ja) * 2004-10-13 2006-04-27 Matsushita Electric Ind Co Ltd 密閉型電動圧縮機

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2774897A (en) * 1953-07-08 1956-12-18 Gen Motors Corp Stator and method of making same
JP3096501B2 (ja) 1991-09-30 2000-10-10 三洋電機株式会社 誘導電動機のステータ装置
JPH08163834A (ja) 1994-12-02 1996-06-21 Yaskawa Electric Corp 積層鉄心の固定方法
WO1997031422A1 (fr) * 1996-02-23 1997-08-28 Matsushita Electric Industrial Co., Ltd. Moteur
US6020667A (en) * 1998-09-10 2000-02-01 General Electric Company Stator bonding nib
JP4063140B2 (ja) 2003-04-28 2008-03-19 株式会社ジェイテクト モータ用ステータ
JP2007068324A (ja) * 2005-08-31 2007-03-15 Nippon Densan Corp 電機子およびこの電機子を搭載したブラシレスモータ
JP2009044880A (ja) * 2007-08-09 2009-02-26 Jtekt Corp モータ及び電動パワーステアリング装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747840U (ja) * 1980-09-03 1982-03-17
JPH0614482A (ja) * 1992-06-22 1994-01-21 Fuji Electric Co Ltd 回転電機の固定子鉄心
JPH08196048A (ja) * 1995-01-12 1996-07-30 Hitachi Ltd 回転電機の固定子鉄心
JPH11341716A (ja) * 1998-05-29 1999-12-10 Nippon Seiko Kk 分割磁極型電動モータ
JP2005354870A (ja) * 2004-06-14 2005-12-22 Aichi Elec Co 電動機の固定子
JP2006115581A (ja) * 2004-10-13 2006-04-27 Matsushita Electric Ind Co Ltd 密閉型電動圧縮機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2224576A3 (de) * 2009-02-26 2016-09-07 Bühler Motor GmbH Stator für einen elektronisch kommutierten Gleichstrommotor
WO2017159811A1 (ja) * 2016-03-18 2017-09-21 株式会社安川電機 回転電機及び回転電機の製造方法
JPWO2017159811A1 (ja) * 2016-03-18 2019-01-10 株式会社安川電機 回転電機及び回転電機の製造方法
US10855123B2 (en) 2016-03-18 2020-12-01 Kabushiki Kaisha Yaskawa Denki Rotating electrical machine and producing method of rotating electrical machine
JP7473793B2 (ja) 2020-03-26 2024-04-24 ダイキン工業株式会社 モータ

Also Published As

Publication number Publication date
US8035271B2 (en) 2011-10-11
US20100007236A1 (en) 2010-01-14
JP4807219B2 (ja) 2011-11-02
JP2008104325A (ja) 2008-05-01

Similar Documents

Publication Publication Date Title
WO2008047942A1 (fr) Noyau de stator et machine électrique rotative
US7323801B2 (en) Axial air-gap electronic motor
US9154005B2 (en) Rotor core for rotating electrical machine, and manufacturing method thereof
JP5324673B2 (ja) 分割式コアを有する電動機の回転子及びその製造方法
JP5418837B2 (ja) 積層巻きコア及びこれを備えた回転子、回転電機
JP2009278814A (ja) 電動機および同電動機の製造方法
JP2001169483A (ja) 分割コアモータ
US7109630B2 (en) Electric rotating machine and manufacturing process thereof
JP2007195281A (ja) 回転電機用ステータコアおよびそのステータコアを用いたステータ
US11374443B2 (en) Rotary electric machine
KR101097398B1 (ko) 전동기의 회전자
CN110574257B (zh) 电动马达用定子和电动马达
JP2008199854A (ja) ステータコアおよび回転電機
JP2006311702A (ja) 回転電機のステータ構造
JP4295691B2 (ja) 回転電機の電機子
CN115250017A (zh) 定子
JP2008061307A (ja) 回転電機
JP2007049816A (ja) 回転電機の電機子
JP2017225208A (ja) 電機子、回転電機および電機子の製造方法
JP2009118634A (ja) 回転電機
JP5146077B2 (ja) モータ及びその製造方法
JP2004064925A (ja) ブラシレスモータ
WO2017170298A1 (ja) 電動モータ用ステータの製造方法、電動モータの製造方法、電動モータ用ステータ、および電動モータ
WO2023286606A1 (ja) 回転電機、電動ホイール及び車両
CN111684684B (zh) 旋转电机、定子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830417

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12445556

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07830417

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)