WO2007123118A1 - 電力変換装置および電力変換装置の制御方法 - Google Patents

電力変換装置および電力変換装置の制御方法 Download PDF

Info

Publication number
WO2007123118A1
WO2007123118A1 PCT/JP2007/058337 JP2007058337W WO2007123118A1 WO 2007123118 A1 WO2007123118 A1 WO 2007123118A1 JP 2007058337 W JP2007058337 W JP 2007058337W WO 2007123118 A1 WO2007123118 A1 WO 2007123118A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
voltage
phase
converter
command signal
Prior art date
Application number
PCT/JP2007/058337
Other languages
English (en)
French (fr)
Inventor
Kenichi Sakakibara
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006321703A external-priority patent/JP4135027B2/ja
Priority claimed from JP2006321687A external-priority patent/JP4135026B2/ja
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to CN2007800127068A priority Critical patent/CN101421911B/zh
Priority to EP07741773.1A priority patent/EP2053731B1/en
Priority to US12/297,845 priority patent/US7944717B2/en
Priority to AU2007241931A priority patent/AU2007241931B2/en
Publication of WO2007123118A1 publication Critical patent/WO2007123118A1/ja
Priority to AU2010202505A priority patent/AU2010202505B2/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power conversion device and a method for controlling the power conversion device.
  • a conventional direct power converter includes a PWM rectifier that converts a three-phase AC voltage into a DC voltage, a PWM inverter that converts the DC voltage converted by the PWM rectifier into a predetermined three-phase AC output voltage, and (For example, refer to Japanese Unexamined Patent Application Publication No. 2004-266972).
  • This direct power converter generates a trapezoidal wave command signal based on the input current command, compares the trapezoidal wave command signal with the carrier signal, and turns off the PWM rectifier switching circuit. A modulation signal is generated. Also, a triangular wave obtained by modifying the carrier signal is compared with an output voltage command to generate a PWM modulation signal for turning on / off the switching circuit of the PWM inverter.
  • an object of the present invention is to provide a power conversion device and a method for controlling the power conversion device that can reduce a calculation load of a control unit with a simple configuration.
  • Another object of the present invention is to provide a power conversion device and a method for controlling the power conversion device that can simplify the circuit of the control unit.
  • a command signal generator for generating a trapezoidal wave-shaped command signal based on the phase angle of the reference signal, a carrier signal generator for generating a carrier signal,
  • the three-phase AC input voltage is converted into a DC voltage, or the DC voltage is A conversion unit for converting into a phase AC output voltage
  • the command signal generation unit generates the slope region of the trapezoidal wave-shaped command signal using a predetermined table or a predetermined formula.
  • the reference signal when generating the trapezoidal wave-shaped command signal by the command signal generation unit is the three-phase AC input when the conversion unit converts the three-phase AC input voltage into the DC voltage.
  • the reference signal of the voltage is used and the converter converts the DC voltage into the three-phase AC output voltage, for example, the signal used as the reference for generating the three-phase AC output voltage is used.
  • the command signal generation unit generates the slope region of the trapezoidal wave-shaped command signal using a predetermined table or a predetermined equation, so that the trapezoidal wave-shaped
  • the calculation load on the control unit can be reduced with a simple configuration that eliminates the need to generate command signals.
  • the power converter of the second invention is A converter unit that converts a three-phase AC input voltage into a DC voltage; and an inverter unit that converts the DC voltage converted by the converter unit into a predetermined three-phase AC output voltage.
  • a command signal generator for a converter unit that generates a trapezoidal converter command signal in synchronization with the three-phase AC input voltage
  • a carrier signal generating unit for generating a carrier signal
  • An inverter command signal generator for generating an inverter command signal for outputting the predetermined three-phase AC output voltage
  • a command signal correction unit for correcting the inverter unit command signal generated by the inverter unit command signal generation unit based on the trapezoidal converter unit command signal from the converter unit command signal generation unit
  • the converter unit converts the three-phase AC input voltage into the DC voltage based on the trapezoidal converter unit command signal from the converter unit command signal generation unit and the carrier signal of the carrier signal generation unit force. Converted,
  • the inverter unit converts the DC voltage converted by the converter unit into the predetermined three-phase AC output voltage based on the command signal for the inverter unit corrected by the command signal correction unit,
  • the converter unit command signal generation unit generates the slope region of the trapezoidal converter unit command signal using a predetermined table or a predetermined equation.
  • the command signal correction unit prevents the three-phase AC output voltage (current) from being distorted with respect to the pulsating voltage (current) waveform of the DC voltage converted by the converter unit.
  • the DC voltage converted by the converter can be converted into a predetermined three-phase AC output voltage based on the corrected inverter command signal. It becomes.
  • the converter unit command signal generator generates a predetermined area of the slope region of the trapezoidal converter unit command signal.
  • the predetermined formula is
  • phase angle ⁇ is 0 ⁇ / 3
  • phase angle ⁇ is ⁇ ⁇ 4 ⁇ ⁇ 3
  • the converter unit command signal generation unit generates a trapezoidal converter unit command signal using the predetermined formula, thereby reducing the computation load and reducing distortion.
  • a three-phase AC output voltage (current) can be reliably obtained.
  • PWM converter signal generation for converter unit for generating PWM modulation signal for converter unit by comparing the command signal for converter unit from the command unit for converter unit and the carrier signal of the carrier signal generating unit
  • the inverter unit that generates the PWM modulation signal for the inverter unit by comparing the inverter unit command signal from the inverter unit command signal generation unit with the same carrier signal used for the converter unit PWM modulation signal generator and
  • the converter unit converts the three-phase AC input voltage into the DC voltage based on the converter unit PWM modulation signal generated by the converter unit PWM modulation signal generation unit,
  • the inverter unit converts the DC voltage converted by the converter unit into the predetermined three-phase AC output voltage based on the PWM modulation signal for the inverter unit generated by the PWM modulation signal generation unit for the inverter unit. To do.
  • one carrier common to the converter unit and the inverter unit is provided.
  • the control circuit can be simplified.
  • the carrier signal is a triangular wave signal.
  • a circuit for pulse width modulation can be simplified by using a triangular wave signal suitable for PWM modulation as a carrier signal.
  • the carrier signal is a sawtooth signal.
  • carrier generation and modulation processing can be simplified by using a sawtooth signal as a carrier signal.
  • Each of the three-phase AC input voltages is input to one end, and each of the three switching circuits has the other end connected to the second DC link.
  • the inverter part is
  • each output terminal of the predetermined three-phase AC output voltage is connected to one end, and the other end is connected to the second DC link section;
  • a matrix converter having a virtual converter unit corresponding to the converter unit, a virtual inverter unit corresponding to the inverter unit, and a virtual DC link unit corresponding to the DC link unit,
  • the virtual converter unit and the virtual inverter unit are identical to the virtual converter unit and the virtual inverter unit.
  • the first phase voltage of the three-phase AC input voltage is input to one end, and the predetermined three-phase voltage is input.
  • Three switching circuits each having the other end connected to each output terminal of the phase AC output voltage, and the second phase voltage of the three-phase AC input voltage are respectively input to one end, and the predetermined three-phase AC output voltage
  • Three switching circuits each having the other end connected to each output terminal, and a third phase voltage of the three-phase AC input voltage is input to one end, and each output terminal of the predetermined three-phase AC output voltage.
  • three switching circuits each connected at the other end.
  • the command signal generation unit the slope region of the trapezoidal wave command signal,
  • the reference signal when generating the trapezoidal wave-shaped command signal by the command signal generation unit is the three-phase AC input when the conversion unit converts the three-phase AC input voltage to the DC voltage.
  • the reference signal of the voltage is used and the converter converts the DC voltage into the three-phase AC output voltage, for example, the signal used as the reference for generating the three-phase AC output voltage is used.
  • the command signal generation unit is configured to detect the tilt region of the trapezoidal wave-shaped command signal.
  • phase angle ⁇ is 0 ⁇ ⁇ ⁇ / 3
  • the calculation load on the control unit can be reduced with a simple configuration without the need to form a trapezoidal wave-shaped command signal by a complicated calculation.
  • the three-phase AC output voltage (current) is not distorted with respect to the pulsating voltage (current) waveform of the DC voltage converted by the converter unit.
  • the DC voltage converted by the converter unit is converted into a predetermined three-phase AC output voltage based on the corrected inverter command signal. It becomes possible.
  • the converter unit command signal generation unit determines the slope region of the trapezoidal converter unit command signal,
  • Each of the three-phase AC input voltages is input to one end, and each of the three switching circuits has the other end connected to the second DC link.
  • the inverter part is
  • each output terminal of the predetermined three-phase AC output voltage is connected to one end, and the other end is connected to the second DC link section;
  • a matrix converter having a virtual converter unit corresponding to the converter unit, a virtual inverter unit corresponding to the inverter unit, and a virtual DC link unit corresponding to the DC link unit,
  • the virtual converter unit and the virtual inverter unit are identical to the virtual converter unit and the virtual inverter unit.
  • the first phase voltage is input to one end, and each of the predetermined three-phase AC output voltage is connected to each output terminal, the other switching circuit, and the three-phase AC Of the input voltage
  • the second phase voltage is input to one end, and each of the predetermined three-phase AC output voltage is connected to each output terminal of the three switching circuits, and the three-phase AC input voltage is The three-phase voltage is input to one end, and three switching circuits each having the other end connected to each output terminal of the predetermined three-phase AC output voltage.
  • a command signal generation unit for the converter unit that generates a command signal for the converter unit synchronized with the three-phase AC input voltage
  • An inverter command signal generator for generating an inverter command signal for outputting a predetermined three-phase AC output voltage
  • a carrier signal generating unit for generating a carrier signal
  • a converter unit that converts the three-phase AC input voltage into a DC voltage based on the converter unit command signal from the converter unit command signal generation unit and the carrier signal generated by the carrier signal generation unit;
  • the DC voltage converted by the converter unit is converted to the DC voltage.
  • one carrier signal common to the converter unit and the inverter unit is provided.
  • the control circuit can be simplified.
  • the carrier signal is a triangular wave signal.
  • a circuit for pulse width modulation can be simplified by using a triangular wave signal suitable for PWM modulation as a carrier signal.
  • the carrier signal is a sawtooth signal.
  • carrier generation and modulation processing can be simplified by using a sawtooth signal as a carrier signal.
  • the converter Based on the trapezoidal wave-shaped command signal from the command signal generator and the carrier signal generated by the carrier signal generator, the converter converts the three-phase AC input voltage into a DC voltage, or Converting DC voltage into three-phase AC output voltage and
  • the slope region of the trapezoidal wave-shaped command signal is generated using a predetermined table or a predetermined equation.
  • the command signal generation unit generates a slope region of the trapezoidal converter command signal using a predetermined table or a predetermined equation, thereby generating a trapezoidal wave shape by a complicated calculation.
  • the calculation load on the control unit can be reduced with a simple configuration that eliminates the need to generate a command signal.
  • a converter unit that converts a three-phase AC input voltage into a DC voltage; and an inverter unit that converts the DC voltage converted by the converter unit into a predetermined three-phase AC output voltage.
  • the inverter unit command signal generated by the inverter unit command signal generation unit is corrected by the command signal correction unit.
  • the converter unit Based on the trapezoidal converter command signal from the converter command signal generator and the carrier signal from the carrier signal generator, the converter unit converts the three-phase AC input voltage to the DC voltage. And converting the DC voltage converted by the converter unit into the predetermined three-phase AC output voltage based on the inverter unit command signal corrected by the command signal correction unit. Step to convert and
  • the slope area of the trapezoidal converter command signal is determined by using a predetermined table or a predetermined formula. It is characterized by generating using.
  • the command signal correction unit prevents the three-phase AC output voltage (current) from being distorted with respect to the pulsating voltage (current) waveform of the DC voltage converted by the converter unit.
  • the DC voltage converted by the converter can be converted into a predetermined three-phase AC output voltage based on the corrected inverter command signal. It becomes.
  • the command signal generator for the converter unit generates a slope region of the command signal for the trapezoidal wave using a predetermined table or a predetermined formula, thereby performing a trapezoidal wave-shaped operation by a complicated calculation.
  • the calculation load on the control unit can be reduced with a simple configuration that eliminates the need to form a command signal for the converter unit.
  • the predetermined formula is
  • phase angle ⁇ is 0 ⁇ / 3
  • phase angle ⁇ is ⁇ ⁇ 4 ⁇ ⁇ 3
  • the converter unit command signal generation unit generates a trapezoidal converter unit command signal using the predetermined formula, thereby reducing the computation load and reducing distortion.
  • a three-phase AC output voltage (current) can be reliably obtained.
  • phase angle ⁇ is 0 ⁇ ⁇ ⁇ / 3
  • the three-phase AC output voltage (current) is not distorted with respect to the pulsating voltage (current) waveform of the DC voltage converted by the converter unit.
  • the DC voltage converted by the converter unit is converted into a predetermined three-phase AC output voltage based on the corrected inverter command signal. It becomes possible.
  • the converter unit command signal generation unit determines the slope region of the trapezoidal converter unit command signal,
  • phase angle ⁇ is 0 ⁇ ⁇ ⁇ / 3
  • the converter unit Based on the converter unit command signal from the converter unit command signal generation unit and the carrier signal generated by the carrier signal generation unit, the converter unit converts the three-phase AC input voltage into a DC voltage.
  • the DC voltage converted by the converter unit is converted to the DC voltage.
  • the circuit of the control unit can be simplified by enabling PWM modulation with one carrier signal common to the converter unit and the inverter unit.
  • a PWM modulation signal generator for generating a PWM modulation signal by a space vector modulation method, and converting a three-phase AC input voltage into a DC voltage based on the PWM modulation signal from the PWM modulation signal generator! Or a converter that converts a DC voltage into a three-phase AC output voltage
  • the PWM modulation signal generator uses a voltage vector to be output based on the space vector modulation method, and when the carrier period is T and the phase angle is ⁇ ,
  • a converter unit that converts a three-phase AC input voltage into a DC voltage; and an inverter unit that converts the DC voltage converted by the converter unit into a predetermined three-phase AC output voltage.
  • a PWM modulation signal generation unit for the converter unit that generates a PWM modulation signal for the converter unit synchronized with the three-phase AC input voltage by a space vector modulation method
  • a PWM modulation signal generator for inverter that generates a PWM modulation signal for inverter for outputting the predetermined three-phase AC output voltage
  • PWM modulation signal correction unit for correcting the PWM modulation signal for the inverter unit generated by the PWM modulation signal generation unit for the inverter unit based on the PWM modulation signal for the converter unit from the PWM modulation signal generation unit for the converter unit
  • the converter unit converts the three-phase AC input voltage into the DC voltage based on the PWM modulation signal for the converter unit from the PWM modulation signal generation unit for the converter unit,
  • the inverter unit is the inverter corrected by the PWM modulation signal correction unit. Based on the PWM modulation signal for the unit, the DC voltage converted by the converter unit is converted into the predetermined three-phase AC output voltage,
  • the PWM modulation signal generation unit for the converter unit uses the voltage vector to output the DC voltage based on the space vector modulation method, sets the carrier period to T, and the phase angle ⁇ .
  • a modulation signal is generated.
  • a command is provided so that the three-phase AC output voltage (current) is not distorted with respect to the pulsating voltage (current) waveform of the DC voltage converted by the converter unit.
  • the DC voltage converted by the converter unit is converted into a predetermined three-phase AC output voltage.
  • the converter unit command signal generator uses the voltage vector to output the DC voltage based on the space vector modulation method, the carrier period is T, and the phase angle is ⁇ ,
  • a PWM modulation signal generator for generating a PWM modulation signal by a space vector modulation method, and converting a three-phase AC input voltage into a DC voltage based on the PWM modulation signal from the PWM modulation signal generator! Or a converter that converts a DC voltage into a three-phase AC output voltage
  • the PWM modulation signal generator uses a voltage vector to be output based on the space vector modulation method, and when the carrier period is T and the phase angle is ⁇ ,
  • the command signal generation unit uses the voltage vector to be output based on the space vector modulation method, the carrier period is T, and the phase angle is ⁇ ,
  • a converter unit that converts a three-phase AC input voltage into a DC voltage; and an inverter unit that converts the DC voltage converted by the converter unit into a predetermined three-phase AC output voltage.
  • a PWM modulation signal generation unit for the converter unit that generates a PWM modulation signal for the converter unit synchronized with the three-phase AC input voltage by a space vector modulation method
  • a PWM modulation signal generator for inverter that generates a PWM modulation signal for inverter for outputting the predetermined three-phase AC output voltage
  • PWM modulation signal correction unit for correcting the PWM modulation signal for the inverter unit generated by the PWM modulation signal generation unit for the inverter unit based on the PWM modulation signal for the converter unit from the PWM modulation signal generation unit for the converter unit
  • the converter unit converts the three-phase AC input voltage into the DC voltage based on the PWM modulation signal for the converter unit from the PWM modulation signal generation unit for the converter unit,
  • the inverter unit converts the DC voltage converted by the converter unit into the predetermined three-phase AC output voltage based on the PWM modulation signal for the inverter unit corrected by the PWM modulation signal correction unit,
  • the PWM modulation signal generation unit for the converter unit uses the voltage vector to output the DC voltage based on the space vector modulation method, sets the carrier period to T, and the phase angle ⁇ .
  • a modulation signal is generated.
  • a command is provided so that the three-phase AC output voltage (current) is not distorted with respect to the pulsating voltage (current) waveform of the DC voltage converted by the converter unit.
  • the DC voltage converted by the converter unit is converted into a predetermined three-phase AC output voltage.
  • the converter unit command signal generator uses the voltage vector to output the DC voltage based on the space vector modulation method, the carrier period is T, and the phase angle is ⁇ ,
  • the power converter of the present invention and the method of controlling the power converter According to the method, by generating a slope region of a trapezoidal wave-shaped command signal used for PWM modulation of the converter unit or the inverter unit using a predetermined table or a predetermined formula, the control unit can be configured with a simple configuration. The calculation load can be reduced.
  • the circuit of the control unit can be simplified by enabling PWM modulation with one carrier signal common to the converter unit and the inverter unit.
  • a carrier period is T
  • a phase angle is ⁇
  • the calculation load on the control unit can be reduced with a simple configuration.
  • the slope region of the trapezoidal wave-shaped command signal used for the PWM modulation of the converter unit or the inverter unit is obtained.
  • a carrier period is T
  • a phase angle is ⁇
  • the calculation load on the control unit can be reduced with a simple configuration.
  • FIG. 1 is a configuration diagram of a direct power converter according to a first embodiment of the present invention.
  • FIG. 2 is a configuration diagram of a direct power converter according to a second embodiment of the present invention.
  • Figure 3 is a block diagram of a direct conversion circuit with a DC link.
  • Fig. 4 is a diagram showing the waveforms of each part for explaining the control principle of the direct conversion circuit with DC link
  • FIG. 5A is a diagram showing a line voltage control waveform.
  • FIG. 5B is a diagram showing a trapezoidal wave modulation waveform (phase voltage).
  • FIG. 5C is a diagram showing a trapezoidal wave modulation waveform (line voltage).
  • FIG. 6A is a diagram for explaining space vector modulation.
  • FIG. 6B is a diagram showing a trapezoidal wave modulation waveform (phase voltage) in space vector modulation.
  • FIG. 6C is a diagram showing a trapezoidal wave modulation waveform (line voltage) in space vector modulation.
  • FIG. 7 is a diagram showing a synchronous PWM modulation method for comparison.
  • Figure 8 shows the PW using the triangular wave carrier signal of the direct power converter of this invention.
  • FIG. 9 is a diagram showing a PWM modulation method using a sawtooth carrier signal of the direct power converter of the present invention.
  • FIG. 10 is a configuration diagram of the power conversion device according to the third embodiment of the present invention.
  • FIG. 11 is a configuration diagram of the power conversion device according to the fourth embodiment of the present invention.
  • FIG. 12 is a diagram showing command waveforms of the power converter.
  • FIG. 13 is a diagram showing a line current conduction ratio when a carrier comparison is used.
  • FIG. 14 is a diagram for explaining the modulation schemes in Table 1.
  • FIG. 15 is a diagram showing the line current conduction ratio when space vector modulation is used.
  • FIG. 16 is a diagram for explaining space vector modulation.
  • FIG. 17 is a configuration diagram of a direct power converter with a DC link according to a fifth embodiment of the present invention.
  • FIG. 18 is a configuration diagram of a matrix converter as an example of a direct power converter according to a sixth embodiment of the present invention.
  • a pulsating voltage waveform is generated in the same manner as a method of generating a phase voltage waveform in which a sine wave line voltage is obtained with respect to a constant DC voltage.
  • the derivation of the phase voltage signal wave from which the sine wave output is obtained will be described.
  • This technical document 1 relates to a modulation method of a direct conversion circuit with a DC link in which the DC link unit does not have a smoothing or rectifying circuit.
  • the direct conversion circuit with a DC link in this technical document 1 consists of six switching circuits S 1 and S that constitute a three-phase bridge circuit.
  • vn, s will also be a force.
  • the above-mentioned comparator up wn unit converts the three-phase AC power supply V, ⁇ , ⁇ force three-phase AC input voltage V, ⁇ , ⁇ into DC.
  • the above inverter unit applies the three-phase DC voltage V converted by the converter unit.
  • FIG. 4 (a) to 4 (d) show the waveforms of the respective parts based on the control principle of the direct conversion circuit with a DC link in the above-mentioned Technical Document 1.
  • FIG. 4 (a) the phase voltage is expressed as [two phases: positive, one phase: negative. ] And [two-phase: negative, one-phase: positive], and can be divided into six regions every 60 degrees.
  • region 1 and region 2 based on the c phase are described.
  • phase c which is the minimum phase, is made conductive by switching circuit S.
  • a switching circuit that connects the a phase and b phase, which is the middle or minimum phase, with the slewing circuit S
  • the DC link voltage includes the line voltage Emax between the maximum phase and the minimum phase, and the minimum phase (region 1) and the maximum phase (region 2). It can be seen that two potentials of the line voltage Emid generated in the intermediate phase are obtained. Also, the average voltage V is obtained by multiplying each DC link voltage by the current ratio.
  • the energization time is the pulsating flow cos ⁇
  • the inverter load is inductive and can be regarded as a current source.
  • the DC link current has an amplitude of pulsating flow cos ⁇ as shown in the above equation.
  • the input current can be a sine wave shown in Fig. 4 (d).
  • phase voltage command signals V *, V *, V * are referred to be referred to be referred to be referred to be referred to be referred to be referred to be referred to be referred to be referred to be referred to be referred to be referred to be referred to be referred to be referred to be referred to be referred to be referred to be referred to be referred to be referred to be referred to be referred to be referred to
  • phase voltage command signals V **, V **, V ** are different from each other.
  • the phase of the V-line voltage is used as a reference, but here the phase order is used as a reference, so the phase order is read (W is UU, VV is w). .
  • the pulsating voltage V is based on the voltage type, it is determined by the maximum value of the line voltage.
  • the slope region of the trapezoidal wave-shaped command signal 120-degree energized trapezoidal wave modulation waveform
  • the calculation load of the control unit can be reduced with a simple configuration.
  • the trapezoidal wave modulation waveform obtained as described above is equivalent to the line current command shown in the technical document 1.
  • the line current corresponds to the line voltage in the voltage type, so the line current command signal in Fig. 4 (b) is compared with the trapezoidal wave modulation waveform (line voltage) in Fig. 5C.
  • Is represented by the phase angle of 0 to ⁇ ⁇ ⁇ ⁇ ⁇ 3 in region 1.
  • the line voltage command signal generated by the method for controlling the power conversion device of the present invention is equivalent to the line current command shown in Technical Document 1, for example, Technical Document 3 (Takaharu Takeshita, et al. Duality of voltage type and current type shown in two authors, “Triangle Wave Comparison PWM Control of Current Type Three Phase Inverter 'Converter”, Electron Theory D, Vol.l l6, No.l, 1996) (Technical Reference 3 By applying a logic operation based on Table 1), it is possible to easily generate a current type PWM pattern from a voltage type.
  • the method of generating the phase voltage command signal As described above, the method of generating the phase voltage command signal! As the force PWM modulation method described above, in addition to a method using a triangular wave carrier signal, a space vector modulation type power converter using a voltage vector It can also be applied to.
  • FIG. 6A On the upper side of Fig. 6A is a vector diagram showing a space vector in PWM modulation of the space vector modulation method and a diagram for explaining a voltage vector in Fig. 5A. As shown in this vector diagram, the voltage vector is a non-zero vector in 6 out of 8 states (V to V)
  • V * ⁇ / 6)
  • Fig. 6 (b) shows the voltage vector corresponding to the phase angle 0 to ⁇ 3 in the line voltage control waveform of Fig. 5A.
  • the voltage control rate ks is set to 0.5.
  • the intermediate voltage V * of the voltage command signals V * and V * is s t s —mid
  • the trapezoidal wave modulation waveform (phase voltage) in Fig. 5 (b) shows voltage vectors corresponding to phase angles 0 to ⁇ 3.
  • ⁇ ⁇ and ⁇ ⁇ in the basic formula of the space vector modulation method are
  • V * 3 sin ( ⁇ - ⁇ / 6) / sin ( ⁇ + ⁇ / 3) + 1.
  • FIG. 7 shows the synchronous PWM modulation method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 2004-266972 in comparison with the modulation method of Technical Document 1.
  • t t
  • I (rt) is the current command
  • I (st) is the current command
  • d is the current ratio
  • d is the current ratio
  • 1, 1, 1 is the input current rt st r s t
  • I is the DC link current
  • V, V and V are the voltage commands
  • d is the duty ratio corresponding to the voltage command V
  • d dc 0 4 6 0 0 4 is the duty ratio corresponding to the voltage command V.
  • V, ⁇ , ⁇ are the inverter gate signals.
  • the carrier cycle on the converter side is divided into two switching states in which current is supplied to st and rt, and each current ratio is different.
  • Two carrier signals with different carrier amplitudes are used.
  • the signal wave to be compared with the carrier signal is corrected by the carrier amplitude by multiplying it with the current ratio of the converter.
  • the modulation circuit configuration is complicated as shown in Japanese Unexamined Patent Application Publication No. 2004-266972 (described in paragraphs [0021] to [0026] of Japanese Unexamined Patent Application Publication No. 2004-266972 and FIG. 4).
  • FIG. 8 is a diagram showing a PWM modulation method using a triangular wave carrier signal of the power converter of the present invention.
  • t is the carrier cycle
  • I (rt) is the current command
  • s is the carrier cycle
  • I (st) is the current command
  • d is the current ratio
  • d is the current ratio
  • 1, 1, 1 are the input current
  • I is the DC link current rt st r s t ac
  • V, V, V are voltage commands
  • d is a conduction ratio corresponding to the voltage command V
  • d is a voltage command V
  • V, ⁇ , ⁇ are the upper arm gate signals, and ⁇ ', / ⁇ ', / ⁇ 'are the lower arm gate signals.
  • the same carrier signal is used for the converter side and the inverter side.
  • the two command signals whose amplitudes are corrected in the same manner as in the past, one of the command signals is offset to give a carrier.
  • the polarity of the command signal is inverted, and then compared with the carrier signal, and the resulting gate signal is inverted.
  • the gate signals of the respective phases can be obtained by performing a logical sum to obtain a gate signal having the same phase.
  • FIG. 9 is a diagram showing a PWM modulation method using a sawtooth carrier signal of the power converter of the present invention.
  • t is the carrier cycle
  • I (rt) is the current command
  • I (st) is the current s
  • d is the conduction ratio
  • d is the conduction ratio
  • 1, 1, 1 is the input current
  • I is the DC link current
  • V is the DC link current
  • V is the DC link current
  • V is the DC link current
  • V is the DC link current
  • V is the DC link current
  • V is the DC link current
  • V is the DC link current
  • V is the DC link current
  • V is the DC link current
  • V is the DC link current
  • V V
  • V rt st rst dc 0 4 6 is the voltage command
  • d is the voltage command V
  • the flow ratio corresponding to, d is the flow corresponding to the voltage command V
  • the ratio d is the flow ratio corresponding to the voltage command V.
  • V, ⁇ , ⁇ are the upper arm gates
  • the signals ⁇ ', / ⁇ ', / ⁇ ' are the lower arm gate signals.
  • the power conversion device shown in FIG. 9 can simplify carrier generation and modulation processing, and is more suitable for software. However, in the direct conversion circuit with DC link shown in Technical Document 1, both V and ⁇ zero vectors are used to commutate the converter side in the zero vector period.
  • the inverter side is disadvantageous in terms of three-phase modulation and loss.
  • the frequency component 2c of the main component of the carrier voltage spectrum is compared with the frequency 2f of the triangular wave.
  • the frequency of the sawtooth is f, and the noise aspect is inferior.
  • the line voltage (line current) is not distorted with respect to the pulsating voltage (current) waveform.
  • the carrier comparison based phase voltage command waveform or space vector modulation method it is possible to reduce the computation load when generating the command signal.
  • the modulation circuit can be simplified by enabling synchronous PWM modulation with one carrier signal (triangular wave, sawtooth wave, etc.) common to the converter unit and the inverter unit.
  • carrier signal triangular wave, sawtooth wave, etc.
  • FIG. 1 is a configuration diagram of a direct power converter with a DC link according to a first embodiment of the present invention.
  • the direct power converter with a direct current link of the first embodiment does not have a smoothing filter in the direct current link part that connects the converter part and the inverter part.
  • this direct power converter includes switches S 1, S 2, S 3, S 5, S 5, and S 5.
  • S 1, S 2, S 3, S 3, S 5, and 5 c are provided with a control unit 3 that outputs a gate signal for turning on and off
  • tn s up, s un, s vp, s vn, s wp, s is rp rn sp wn
  • the converter unit 1 inputs the phase voltage V from a three-phase AC power source (not shown) to one r rp end of the switch S and one end of the switch S, and the phase voltage V is input to one end of the switch S. At one end of S
  • phase voltage v is input to one end of switch S and one end of switch S.
  • the inverter unit 2 has one end of the switch S and one end of the switch S connected to the output terminal of the phase voltage V of the three-phase AC output voltage, and one end of the switch S connected to the output terminal of the phase voltage V.
  • un v vp One end of switch S is connected, and one end of switch S and switch S are connected to the output terminal of phase voltage V.
  • One end of vn w wp wn is connected.
  • the other ends of the switches S 1, S 2, S are respectively connected to the first DC link portion L1.
  • the other ends of the switches S 1, S 2, S are connected to the second DC link L 2 respectively.
  • control unit 3 generates trapezoidal wave voltage command signals V *, V *, V * based on a power supply synchronization signal V as an example of a reference signal for synchronizing with a three-phase AC input voltage. Finger to generate
  • the trapezoidal wave voltage command generation unit 11 as an example of the command signal generation unit and the command signal generation unit for the converter unit, and the trapezoidal wave voltage command signals V *, V *, V * from the trapezoidal wave voltage command generation unit 11 and the carrier
  • the comparison unit 12 for comparing the signal and the ratio rst from the comparison unit 12
  • An intermediate phase detector 14 for detecting the ratios d and d, and a carrier signal generator rt st for generating the carrier signal.
  • output voltage command signal generating section 21 as an example of an inverter section command signal generating section for generating output voltage command signals V *, V *, V * for inverter section 2, and output voltage command Based on the output voltage command signals V *, V *, V * from the signal generation unit 21 and the flow ratios d, d from the intermediate phase detection unit 14,
  • the switch S of the converter unit 1 is detected by the gate signal from the current source gate logic conversion unit 13.
  • the switches S 1, S 2, S 3, S 5, S 5, S 5 of the inverter unit 2 are on / off controlled.
  • the intermediate phase detection unit 14 and the calculation units 22 and 23 constitute a command signal correction unit.
  • the comparison unit 12 and the current source gate logic conversion unit 13 constitute a converter PWM modulation signal generation unit, and the comparison unit 24 and the OR operation unit 25 constitute an inverter PWM modulation signal generation unit.
  • the trapezoidal wave voltage command generation unit 11 generates the slope region rst region of the trapezoidal wave voltage command signals V *, V *, V * using a predetermined table.
  • the equation (8) described in FIGS. 5A to 5C that is,
  • phase voltage command signal V ***, v ***, v *** represented by
  • slope region r st region of the trapezoidal wave voltage command signals V *, V *, V * may be obtained using an equation instead of the table.
  • phase angle ⁇ is 0 ⁇ / 3
  • phase angle ⁇ is ⁇ ⁇ 4 ⁇ Z3
  • the slope regions of the trapezoidal wave voltage command signals V *, V *, V * are respectively obtained using the predetermined formulas (1).
  • the three-phase AC output voltage (current) is compared to the pulsating voltage (current) waveform of the DC voltage converted by the converter unit 1.
  • DC voltage converted by the converter unit 1 based on the corrected output voltage command signal is corrected by the command signal correction unit (14, 22, 23). Is converted into a predetermined three-phase AC output voltage.
  • the trapezoidal wave voltage command generation unit 11 uses a predetermined table (or r st) for the slope area of the trapezoidal wave voltage command signal ⁇ *, ⁇ *, ⁇ *.
  • the calculation load of the control unit can be reduced with a simple configuration.
  • FIG. 2 is a configuration diagram of a matrix converter as an example of the direct power converter according to the second embodiment of the present invention.
  • this matrix converter has switches S 1, S 2, S 3, S 5, S 5, S 5, S 5 S ur ut vr vs vt wr
  • the conversion unit 4 corresponds to a virtual converter unit and a virtual inverter unit, and has a smoothing filter in a virtual DC link unit that connects the virtual converter unit and the virtual inverter unit.
  • the switches S, S, S, S, S, S, S, S, S, S can be combined with a plurality of switching elements, respectively.
  • the conversion unit 4 inputs the phase voltage V of the three-phase AC input voltage from the three-phase AC power supply 6 to one end of each of the switches S, S, and S, and outputs the phase voltage V of the three-phase AC input voltage.
  • control unit 5 generates a trapezoidal wave voltage command signal V *, V *, V * based on a power supply synchronization signal V as an example of a reference signal for synchronizing with a three-phase AC input voltage. Finger to generate rrst
  • the trapezoidal wave voltage command generation unit 31 as an example of the command signal generation unit and the command signal generation unit for the converter unit, and the trapezoidal wave voltage command signals V *, V *, V * from the trapezoidal wave voltage command generation unit 31 and the carrier
  • the comparison unit 32 for comparing the signal and the ratio rst from the comparison unit 32
  • An intermediate phase detector 34 for detecting the ratios d and d and a carrier signal generator rt st for generating the carrier signal.
  • an output voltage command signal generator 41 as an example of an inverter command signal generator for generating output voltage command signals V *, V *, V * for the converter 4, and the output voltage Based on the output voltage command signals V *, V *, V * from the command signal generator 41 and the current ratios d, d from the intermediate phase detector 34, d + d V * (V *: Voltage vector of each phase)
  • the sum calculator 45 and a gate signal synthesizer 50 that synthesizes the gate signal based on the signal from the current source gate logic converter 33 and the signal from the logic sum calculator 45 are provided.
  • S 1, S 2, S 3, S 4, S 5 are controlled on and off.
  • the intermediate phase detection unit 34 and the calculation units 42 and 43 constitute a command signal correction unit.
  • the comparison unit 32 and the current source gate logic conversion unit 33 constitute a converter PWM modulation signal generation unit, and the comparison unit 44 and the OR operation unit 45 constitute an inverter PWM modulation signal generation unit. Yes.
  • the trapezoidal wave voltage command generation unit 31 generates a slope region r st region of the trapezoidal wave voltage command signals V *, V *, V * using a predetermined table.
  • the equation (8) described in FIGS. 5A to 5C that is,
  • phase voltage command signal V ***, ⁇ ***, ⁇ *** represented by
  • slope region r st region of the trapezoidal wave voltage command signals V *, V *, V * may be obtained using an equation instead of the table.
  • phase angle ⁇ is 0 ⁇ / 3
  • phase angle ⁇ is ⁇ ⁇ 4 ⁇ ⁇ 3
  • the slope regions of the trapezoidal wave voltage command signals V *, V *, V * are respectively obtained using the predetermined formulas (1).
  • the three-phase AC output voltage (current) is not distorted with respect to the pulsating voltage (current) waveform of the virtual DC voltage converted by the virtual converter unit.
  • the command signal correction unit (34, 42, 43) corrects the output voltage command signal, and based on the corrected output voltage command signal, the virtual inverter unit is converted by the virtual comparator unit.
  • the obtained virtual DC voltage is converted into a predetermined three-phase AC output voltage.
  • the trapezoidal wave voltage command generator 31 generates the slope region r st of the trapezoidal wave voltage command signals V *, V *, V *.
  • the calculation load of the control unit can be reduced with a simple configuration.
  • FIG. 10 shows a configuration diagram of the power conversion device according to the third embodiment of the present invention.
  • the power converter of the third embodiment includes a voltage output voltage type converter 101 as an example of a converter unit that converts a three-phase AC voltage from a three-phase AC power source 100 into a DC voltage;
  • An inverter unit 102 that converts the DC voltage from the voltage output voltage source converter 101 and outputs a desired three-phase AC voltage to the motor 103, and a control unit that controls the voltage output voltage type converter 101 and the inverter unit 102.
  • a voltage output voltage type converter 101 as an example of a converter unit that converts a three-phase AC voltage from a three-phase AC power source 100 into a DC voltage
  • An inverter unit 102 that converts the DC voltage from the voltage output voltage source converter 101 and outputs a desired three-phase AC voltage to the motor 103
  • a control unit that controls the voltage output voltage type converter 101 and the inverter unit 102.
  • the inverter unit 102 has a transistor connected to the output terminal of the phase voltage V of the three-phase AC output voltage. Connect the S emitter and the collector of the transistor S, and connect the transistor rp rn s to the output terminal of the phase voltage v.
  • the S emitter and the collector of transistor s are connected.
  • the tp tn rp sp tp collectors of the transistors s, s, s are connected to the first DC link LlOl, respectively, while the emitters of the transistors S, S, S are connected.
  • the diodes D, D, D are reversed between the collectors of the transistors S, S, S and the emitter.
  • control unit 110 includes a pulsating voltage command generation unit 104 that outputs a pulsating voltage command signal to the voltage output voltage type converter 101 based on the amplitude command ks and the phase command ⁇ , and a phase command ⁇ Based on the trapezoidal phase voltage command generation unit 105 for generating the trapezoidal phase voltage command signal, and the PWM modulation signal is converted into an inverter based on the trapezoidal phase voltage command signal from the trapezoidal phase voltage command generation unit 105.
  • a PWM modulation unit 106 that outputs to the unit 102.
  • the PWM modulation unit 106 includes a carrier signal generation unit 106a.
  • the trapezoidal phase voltage command generation unit 105 is a trapezoidal waveform voltage command signal generation unit 11 shown in Fig. 1 of the first embodiment or a trapezoidal waveform voltage command signal shown in Fig. 2 of the second embodiment.
  • the slope region of the trapezoidal wave voltage command signal is generated using a predetermined table, or the slope region of the trapezoidal wave voltage command signal is obtained using an expression instead of the table.
  • FIG. 12 shows the command waveform of the power converter
  • FIG. 12 (a) shows the amplitude command waveform
  • FIG. 12 (b) shows the phase voltage command waveform
  • FIG. 12 (c) shows the waveform of the line current command when a current source converter is used instead of the voltage output voltage converter 101 shown in FIG.
  • FIG. 11 shows a configuration diagram of the power conversion device according to the fourth embodiment of the present invention.
  • the power conversion device of the fourth embodiment includes a current output current as an example of a converter unit that converts a three-phase AC voltage from a three-phase AC power source 200 into a DC voltage.
  • Converter 201 inverter unit 202 that converts the DC voltage from current output current source converter 201 and outputs a desired three-phase AC voltage to motor 203, current output current type converter 201, and inverter unit And a control unit 210 for controlling 202.
  • One end of the first DC link L201 is connected to the positive terminal of the current output current source converter 201, and one end of the second DC link L202 is connected to the negative terminal of the current output current source converter 201. ing.
  • the inverter unit 202 includes the collectors of the transistors S 1, S 2, and S in the first DC link unit L201.
  • the power swords of the above diodes D, D, D are connected to the output terminals of the phase voltages ⁇ , ⁇ , ⁇ .
  • the emitters of the transistors S 1, S 2 and S are connected to the second DC link section L202.
  • the anodes of the above diodes Drn, Dsn, Dtn are connected to the output terminals of the phase voltages v, ⁇ , ⁇ .
  • control unit 210 includes a pulsating current command generation unit 204 that outputs a pulsating current command signal to the current output current-source converter 201 based on the amplitude command ks and the phase command ⁇ , and a phase command ⁇ .
  • a pulsating current command generation unit 204 that outputs a pulsating current command signal to the current output current-source converter 201 based on the amplitude command ks and the phase command ⁇ , and a phase command ⁇ .
  • the trapezoidal phase voltage command generation unit 205 that generates a trapezoidal phase voltage command signal
  • the PWM modulation signal based on the trapezoidal phase voltage command signal from the trapezoidal phase voltage command generation unit 205.
  • a PWM modulation unit 207 for outputting, and a current-type logic conversion unit 206 for logically converting the PWM modulation signal from the PWM modulation unit 207 and outputting it to the inverter unit 202 are provided.
  • the trapezoidal phase voltage command generation unit 205 is the trapezoidal waveform voltage command signal generation unit 11 shown in FIG. 1 of the first embodiment or the trapezoidal waveform voltage command signal shown in FIG. 2 of the second embodiment.
  • the slope region of the trapezoidal wave voltage command signal is generated using a predetermined table, or the slope region of the trapezoidal wave voltage command signal is obtained using an expression instead of the table.
  • FIG. 12 shows the command waveform of the power converter
  • FIG. 12 (a) shows the amplitude command waveform
  • FIG. 12 (b) shows the phase current command waveform
  • Fig. 12 (c) shows the current form of Fig. 11.
  • the line current command value converted by the physical conversion unit 206 and given to the inverter unit 202 is shown.
  • the PWM waveform can also be generated by determining the output time of the voltage vector using the basic expression of the space vector modulation method expressed as follows.
  • FIG. 17 is a configuration diagram of a direct power converter with a DC link according to a fifth embodiment of the present invention.
  • the direct power converter with a direct current link of the fifth embodiment does not have a smoothing filter in the direct current link part that connects the converter part and the inverter part.
  • the direct power converter of the fifth embodiment has the same configuration as the converter and inverter of the direct power converter shown in Fig. 1 of the first comparative example, except for the controller.
  • control unit 303 uses the trapezoidal wavy line current command signal d *, d *, d based on the power supply synchronization signal V as an example of the reference signal for synchronizing with the three-phase AC input voltage. Generate *
  • Trapezoidal corrugated wire current command generator 31 1 as an example of command signal generator and converter command signal generator, and trapezoidal corrugated wire current command signal from trapezoidal corrugated wire current command generator 311 d *, d * , d * and power sync signal V, the signals corresponding to the carrier signals ⁇ , ⁇
  • Signal distribution unit 316 that outputs signals d *, d *, d *, d * and the signal rpa rpo rna rno from the signal distribution unit 316
  • Rpa rpo rna rno is the ratio of signals d *, d *, d *, d * to carrier signals A and B ("Carrier A” and "Carrier B” in Fig. 17)
  • a comparison unit 312 for comparison an OR operation unit 313 that outputs a gate signal based on the comparison result from the comparison unit 312, and a trapezoidal waveform current command signal d from the trapezoidal waveform current command generation unit 311
  • Two-phase command detector that detects the flow ratios d and d based on *, d *, d *
  • the carrier signal generation unit 315 that generates the carrier signals ⁇ and ⁇
  • an example of an inverter command signal generation unit that generates the output voltage command signals V *, V *, and V * for the inverter unit 2
  • Output voltage command signal generator 321 and the output voltage command signal generator Based on the output voltage command signal V u *, V v *, V w * from section 321 and the current ratio d rt , d from two-phase command detection section 314,
  • a comparison unit 324 for comparing the calculation results from the calculation units 322 and 323 and the carrier signal, and a logic for outputting a gate signal based on the comparison result from the comparison unit 324 A sum calculation unit 325.
  • the switches S 1, S 2, S 3, S 3, S 5, S 5 of the barter unit 2 are turned on / off.
  • the two-phase command detection unit 314 and the calculation units 322 and 323 constitute a command signal correction unit. Further, the comparison unit 312 and the OR operation unit 313 constitute a converter PWM modulation signal generation unit, and the comparison unit 324 and the OR operation unit 325 constitute an inverter PWM modulation signal generation unit.
  • the trapezoidal wavy line current command generation unit 311 generates a trapezoidal wavy line current command signal d *, d *, d *.
  • An inclined region is generated using a predetermined table.
  • the angle ⁇ is synchronized with the phase voltage V of the three-phase AC input voltage.
  • trapezoidal wavy line current command signals d *, d *, d * are calculated using the above equation instead of the table.
  • An r st gradient region may be obtained.
  • Fig. 13 shows the line current ratio when the carrier comparison is used
  • Fig. 13 (a) shows the phase voltage waveform
  • Fig. 13 (b) shows the line current ratio ratio waveform. Yes.
  • the mode shown in Figure 13 In the region 1 the line current conduction ratio command is generated based on the above-described equation for the gradient region that is two-phase modulated.
  • the trapezoidal waveform used here is the trapezoidal waveform voltage command signal V *, V *,
  • Table 1 shows the force that indicates the carrier signal to be compared for each mode.
  • the carrier signal is expressed by the rising waveform of the trapezoidal wavy line current command signal d *, d *, d *.
  • Signal A is selected and carrier signal B is selected with a falling waveform.
  • Fig. 14 is a diagram for explaining the modulation schemes in Table 1.
  • the flow ratio command d * is separated into the positive and negative commands d * and d *.
  • the command value waveform should be compared based on the signal distribution signals C and C, which are phase-shifted by ⁇ ⁇ .
  • Signal signals d *, d *, d *, d * corresponding to carrier signals ⁇ and ⁇ are obtained. That is, the signal wave d * is
  • the signals obtained here are compared with the two carrier signals ⁇ and ⁇ by the comparison unit 312 and then logically summed by the OR operation unit 313 to obtain the gate signals S 1 and S of the upper and lower arms. obtain.
  • the gate signals s 1, s 1, s 2, s are obtained for the ratio commands d *, d *. That is, get s t sp sn tp tn
  • the gate signal S is obtained by the logical sum of the signal wave d * and the signal wave d *.
  • the three-phase AC output voltage (current) is distorted with respect to the pulsating voltage (current) waveform of the DC voltage converted by the converter unit 1.
  • the command signal correction unit (314, 322, 323) corrects the output voltage command signal, and based on the corrected output voltage command signal, the DC voltage converted by the converter unit 1 is set to a predetermined value. Convert to three-phase AC output voltage.
  • the trapezoidal corrugated line current command generation unit 311 determines the slope region of the trapezoidal corrugated line current command signal d *, d *, d * as follows:
  • FIG. 15 (a) shows a phase voltage waveform
  • FIG. 15 (b) shows a line current conduction ratio waveform
  • FIG. Indicates current vector in PWM modulation of current source space vector modulation method.
  • the current vector shown in Fig. 16 is defined by the phase current, but it is a trapezoidal wave signal wave, and one phase is in a conduction state for a period of 60 degrees. Based on the current ratio, the phase current can be supplied by giving the energization time of each current vector as shown in the following equation.
  • Table 2 shows the output time of each current vector in PWM modulation of this current source space vector modulation method.
  • FIG. 18 is a configuration diagram of a matrix converter as an example of the direct power converter according to the sixth embodiment of the present invention.
  • the direct power converter of the sixth embodiment has the same configuration as that of the converter of the direct power converter shown in Fig. 2 of the second comparative example except for the control unit.
  • the converter is omitted ( Figure 2 is used for the converter).
  • the difference from the voltage type is that the two-phase modulation waveform is used for the one-phase modulation waveform in the synchronization of the virtual converter unit and the virtual inverter unit. Also, the virtual converter part is different in that a logic converter from phase current to line current is not required to generate a force gate signal using two phases of carrier signals.
  • control unit 405 uses the trapezoidal wavy line current command signal d *, d *, d based on the power supply synchronization signal V as an example of the reference signal for synchronizing with the three-phase AC input voltage. Generate *
  • Trapezoidal wave current command generator 431 as an example of command signal generator and converter command signal generator, and trapezoidal wave current command signal d *, d *, from above trapezoidal wave current command generator 431 Based on d * and the power sync signal V, the signals corresponding to the carrier signals ⁇ and ⁇
  • the signal distributor 436 that outputs the signals d *, d *, d *, d * and the signal rpa rpo rna rno from the signal distributor 436
  • Rpa rpo rna rno is the ratio of signals d *, d *, d *, d * to carrier signals A and B ("Carrier A” and "Carrier B” in Figure 18)
  • a comparison unit 432 for comparison a logical sum operation unit 433 that outputs a gate signal based on the comparison result from the comparison unit 432, and a trapezoid from the trapezoidal wavy line current command generation unit 431.
  • Two-phase command detector rst rt st that detects the current ratio d, d based on the wavy line current command signal d *, d *, d *
  • the carrier signal generation unit 435 that generates the carrier signals ⁇ and ⁇
  • the inverter command signal generation unit that generates the output voltage command signals V *, V *, and V * for the conversion unit 4
  • the sum operation unit 445 Based on the signal from the OR operation unit 433 and the signal from the OR operation unit 445, the sum operation unit 445 has a gate signal synthesis unit 450 that synthesizes the gate signals.
  • S 1, S 2, S 2, S 3, S 5, S 5 are controlled to be turned on / off.
  • the two-phase command detection unit 434 and the calculation units 442 and 443 constitute a command signal correction unit. Further, the comparison unit 432 and the logical sum operation unit 433 constitute a PWM modulation signal generation unit for the converter unit, and the comparison unit 444 and the logical sum operation unit 445 constitute a PWM modulation signal generation unit for the inverter unit.
  • the trapezoidal wavy line current command generation unit 431 generates the r st gradient region of the trapezoidal wavy line current command signals d *, d *, d * using a predetermined table.
  • the values in the slope region r st region of the trapezoidal wave current command signals d *, d *, d * are set in advance as a table.
  • r st gradient region of the trapezoidal wavy line current command signals d *, d *, d * may be obtained using the above equation instead of the table.
  • the temporary converter converted by the virtual converter unit.
  • the virtual inverter unit Based on the corrected output voltage command signal, converts the virtual DC voltage converted by the virtual converter unit into a predetermined three-phase AC output voltage.
  • the trapezoidal wave voltage command generation unit 31 determines the slope of the trapezoidal wave current command signal d *, d *, d *.
  • the direct-type power conversion device has been described in which the trapezoidal wave voltage command signal and the trapezoidal wave current command signal obtained by using the table or equation are applied to the converter side.
  • the present invention may be applied to a power conversion device in which a trapezoidal wave-shaped command signal is applied to the inverter side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

 三相交流入力電圧を直流電圧に変換するコンバータ部1と、コンバータ部1により変換された上記直流電圧を所定の三相交流出力電圧に変換するインバータ部2とを備える。上記コンバータ部1は、台形波状電圧指令生成部11からの台形波状電圧指令信号Vr *,Vs *,Vt *およびキャリヤ信号生成部15からのキャリヤ信号に基づいて、三相交流入力電圧を直流電圧に変換し、インバータ部は、指令信号補正部(14,22,23)により補正されたインバータ部用指令信号に基づいて、コンバータ部1により変換された直流電圧を所定の三相交流出力電圧に変換する。上記台形波状電圧指令生成部11は、台形波状電圧指令信号Vr *,Vs *,Vt *の傾斜領域を、所定のテーブルを用いて生成する。

Description

電力変換装置および電力変換装置の制御方法
技術分野
[0001] この発明は、電力変換装置および電力変換装置の制御方法に関する。
背景技術
[0002] インバータの代表的な回路構成としては、整流回路と平滑回路を介して商用交流 を直流に変換し、電圧形変換器により所望の交流を出力する間接形交流電力変換 回路が一般に用いられている。一方、交流電圧から直接交流出力を得る方式として は、マトリックスコンバータを代表とする直接形電力変換装置が知られており、商用周 波数による電圧脈動を平滑する大型のコンデンサやリアタトルが不要となることから、 変換装置の小型化が期待でき、次世代の電力変換装置として近年注目されつつあ る。
[0003] 従来の直接形電力変換装置としては、三相交流電圧を直流電圧に変換する PWM 整流器と、上記 PWM整流器により変換された直流電圧を所定の三相交流出力電圧 に変換する PWMインバータとを備えたものがある (例えば、特開 2004— 266972号 公報参照)。
[0004] この直接形電力変換装置は、入力電流指令に基づ 、て台形波指令信号を生成し 、台形波指令信号とキヤリャ信号とを比較して、 PWM整流器のスイッチング回路をォ ンオフする PWM変調信号を生成している。また、上記キヤリャ信号を変形した三角 波と出力電圧指令とを比較して、 PWMインバータのスイッチング回路をオンオフする PWM変調信号を生成して 、る。
[0005] し力しながら、上記直接形電力変換装置では、入力電流指令に基づいて演算によ り台形波指令信号を生成するので、制御部の演算負荷が増加するという問題がある
[0006] また、上記直接形電力変換装置では、 PWMインバータ側のキヤリャ波形を変形さ せる必要があるため、変調波形生成が複雑であり、制御回路が複雑になるという問題 がある。また、 PWM整流器と PWMインバータに対して、キヤリャ信号を供給するキヤ リャ生成回路を別々に用いた場合も、制御部の回路が複雑になるという問題がある。 発明の開示
発明が解決しょうとする課題
[0007] そこで、この発明の課題は、簡単な構成で制御部の演算負荷を低減できる電力変 換装置および電力変換装置の制御方法を提供することにある。
[0008] また、この発明のもう 1つの課題は、制御部の回路を簡略ィ匕できる電力変換装置お よび電力変換装置の制御方法を提供することにある。
課題を解決するための手段
[0009] 上記課題を解決するため、第 1の発明の電力変換装置は、
台形波状の指令信号を基準信号の位相角に基づ 、て生成する指令信号生成部と キヤリャ信号を生成するキヤリャ信号生成部と、
上記指令信号生成部からの上記台形波状の指令信号および上記キヤリャ信号生 成部により生成された上記キヤリャ信号に基づいて、三相交流入力電圧を直流電圧 に変換するか、または、直流電圧を三相交流出力電圧に変換する変換部と を備え、
上記指令信号生成部は、上記台形波状の指令信号の傾斜領域を、所定のテープ ルまたは所定の式を用いて生成することを特徴とする。
[0010] ここで、上記指令信号生成部により台形波状の指令信号を生成するときの上記基 準信号は、変換部が三相交流入力電圧を直流電圧に変換する場合は、三相交流入 力電圧のうちの基準となる信号を用い、変換部が直流電圧を三相交流出力電圧に 変換する場合は、例えば上記三相交流出力電圧を作るための基準となる信号を用 いる。
[0011] 上記構成によれば、上記指令信号生成部により、台形波状の指令信号の傾斜領 域を、所定のテーブルまたは所定の式を用いて生成することによって、複雑な演算に より台形波状の指令信号を形成する必要がなぐ簡単な構成で制御部の演算負荷を 低減できる。
[0012] また、第 2の発明の電力変換装置は、 三相交流入力電圧を直流電圧に変換するコンバータ部と、上記コンバータ部により 変換された上記直流電圧を所定の三相交流出力電圧に変換するインバータ部とを 備え、上記コンバータ部と上記インバータ部とを接続する直流リンク部に平滑用のフ ィルタを有しな 、電力変換装置であって、
上記三相交流入力電圧に同期した台形波状のコンバータ部用指令信号を生成す るコンバータ部用指令信号生成部と、
キヤリャ信号を生成するキヤリャ信号生成部と、
上記所定の三相交流出力電圧を出力するためのインバータ部用指令信号を生成 するインバータ部用指令信号生成部と、
上記コンバータ部用指令信号生成部からの上記台形波状のコンバータ部用指令 信号に基づいて、上記インバータ部用指令信号生成部により生成された上記インバ 一タ部用指令信号を補正する指令信号補正部と
を備え、
上記コンバータ部は、上記コンバータ部用指令信号生成部からの上記台形波状の コンバータ部用指令信号および上記キヤリャ信号生成部力 の上記キヤリャ信号に 基づいて、上記三相交流入力電圧を上記直流電圧に変換し、
上記インバータ部は、上記指令信号補正部により補正された上記インバータ部用 指令信号に基づいて、上記コンバータ部により変換された上記直流電圧を上記所定 の三相交流出力電圧に変換し、
上記コンバータ部用指令信号生成部は、上記台形波状のコンバータ部用指令信 号の傾斜領域を、所定のテーブルまたは所定の式を用いて生成することを特徴とす る。
上記構成によれば、上記コンバータ部により変換された上記直流電圧の脈流状の 電圧 (電流)波形に対して、三相交流出力電圧 (電流)に歪を生じないように、指令信号 補正部によりインバータ部用指令信号を補正することによって、補正されたインバー タ部用指令信号に基づいて、上記コンバータ部により変換された上記直流電圧を所 定の三相交流出力電圧に変換することが可能となる。このとき、上記コンバータ部用 指令信号生成部は、台形波状のコンバータ部用指令信号の傾斜領域を、所定のテ 一ブルまたは所定の式を用いて生成することによって、複雑な演算により台形波状の コンバータ部用指令信号を形成する必要がなぐ簡単な構成で制御部の演算負荷を 低減できる。
[0014] また、一実施形態の電力変換装置では、
上記所定の式は、
3 tan^ - / 6)
(ただし、位相角 φは 0≤ φ≤ π /3)
Figure imgf000006_0001
(ただし、位相角 φは π≤ φ≤4 π Ζ3)
である。
[0015] 上記実施形態によれば、上記コンバータ部用指令信号生成部が、上記所定の式を 用いて台形波状のコンバータ部用指令信号を生成することによって、演算負荷を低 減しつつ、歪のない三相交流出力電圧 (電流)を確実に得ることができる。
[0016] また、一実施形態の電力変換装置では、
上記コンバータ部用指令信号生成部からの上記コンバータ部用指令信号と上記キ ャリャ信号生成部力 の上記キヤリャ信号とを比較して、コンバータ部用 PWM変調 信号を生成するコンバータ部用 PWM変調信号生成部と、
上記インバータ部用指令信号生成部からの上記インバータ部用指令信号と上記コ ンバータ部に用いられたものと同一の上記キヤリャ信号とを比較して、インバータ部 用 PWM変調信号を生成するインバータ部用 PWM変調信号生成部と
を備え、
上記コンバータ部は、上記コンバータ部用 PWM変調信号生成部により生成された 上記コンバータ部 PWM変調信号に基づ 、て、上記三相交流入力電圧を上記直流 電圧に変換し、
上記インバータ部は、上記インバータ部用 PWM変調信号生成部により生成された 上記インバータ部用 PWM変調信号に基づいて、上記コンバータ部により変換された 上記直流電圧を上記所定の三相交流出力電圧に変換する。
[0017] 上記実施形態によれば、上記コンバータ部とインバータ部に共通する 1つのキヤリ ャ信号で PWM変調を可能とすることによって、制御部の回路を簡略ィ匕できる。
[0018] また、一実施形態の電力変換装置では、上記キヤリャ信号は三角波状の信号であ る。
[0019] 上記実施形態によれば、 PWM変調に適した三角波状の信号をキヤリャ信号に用 いることによって、パルス幅変調のための回路を簡略ィ匕できる。
[0020] また、一実施形態の電力変換装置では、上記キヤリャ信号は鋸波状の信号である
[0021] 上記実施形態によれば、鋸波状の信号をキヤリャ信号に用いることによって、キヤリ ャ生成や変調処理が簡素化できる。
[0022] また、一実施形態の電力変換装置では、
上記コンバータ部は、
上記三相交流入力電圧の各相電圧が一端に夫々入力され、第 1直流リンク部に他 端が夫々接続された 3つのスイッチング回路と、
上記三相交流入力電圧の各相電圧が一端に夫々入力され、第 2直流リンク部に他 端が夫々接続された 3つのスイッチング回路と
を有し、
上記インバータ部は、
上記所定の三相交流出力電圧の各出力端子が一端に夫々接続され、上記第 1直 流リンク部に他端が夫々接続された 3つのスイッチング回路と、
上記所定の三相交流出力電圧の各出力端子が一端に夫々接続され、上記第 2直 流リンク部に他端が夫々接続された 3つのスイッチング回路と
を有する。
[0023] また、一実施形態の電力変換装置では、
上記コンバータ部に相当する仮想コンバータ部と、上記インバータ部に相当する仮 想インバータ部と、上記直流リンク部に相当する仮想直流リンク部とを有するマトリック スコンバータであって、
上記仮想コンバータ部および上記仮想インバータ部は、
上記三相交流入力電圧のうちの第 1相電圧が一端に夫々入力され、上記所定の三 相交流出力電圧の各出力端子に他端が夫々接続された 3つのスイッチング回路と、 上記三相交流入力電圧のうちの第 2相電圧が一端に夫々入力され、上記所定の三 相交流出力電圧の各出力端子に他端が夫々接続された 3つのスイッチング回路と、 上記三相交流入力電圧のうちの第 3相電圧が一端に夫々入力され、上記所定の三 相交流出力電圧の各出力端子に他端が夫々接続された 3つのスイッチング回路とを 有する。
[0024] また、一実施形態では、上記第 1の発明の電力変換装置において、
上記指令信号生成部は、上記台形波状の指令信号の傾斜領域を、
| | = ( 1 - V3 tan - π/ら ))/2
I I = ( 1 + V3 tan - π/6 ))/2
(ただし、 d *,d *は線電流通流比、位相角 φは 0≤ ≤ π /3)
s t
に基づ!/ヽて生成することを特徴とする。
[0025] ここで、上記指令信号生成部により台形波状の指令信号を生成するときの上記基 準信号は、変換部が三相交流入力電圧を直流電圧に変換する場合は、三相交流入 力電圧のうちの基準となる信号を用い、変換部が直流電圧を三相交流出力電圧に 変換する場合は、例えば上記三相交流出力電圧を作るための基準となる信号を用 いる。
[0026] 上記実施形態によれば、上記指令信号生成部により、台形波状の指令信号の傾 斜領域を、
| | = ( 1 - V3 tan - π/6 ))/2
I I = ( 1 + 3 tan - π/6 ))/2
(ただし、 d *,d *は通流比、位相角 φは 0≤ ≤ π /3)
s t
に基づいて生成することによって、複雑な演算により台形波状の指令信号を形成す る必要がなぐ簡単な構成で制御部の演算負荷を低減できる。
[0027] また、一実施形態では、上記第 2の発明の電力変換装置において、
上記コンバータ部用指令信号生成部は、上記台形波状のコンバータ部用指令信 号の傾斜領域を、 \ d* \ = ( 1 - V3 tan - π/6 ))/2
J d* J = ( 1 + 3 tan - π/6 ))/2
(ただし、 d *,d *は線電流通流比、位相角 φは 0≤ ≤ π /3)
s t
に基づ!/ヽて生成することを特徴とする。
[0028] 上記実施形態によれば、上記コンバータ部により変換された上記直流電圧の脈流 状の電圧 (電流)波形に対して、三相交流出力電圧 (電流)に歪を生じないように、指令 信号補正部によりインバータ部用指令信号を補正することによって、補正されたイン バータ部用指令信号に基づいて、上記コンバータ部により変換された上記直流電圧 を所定の三相交流出力電圧に変換することが可能となる。このとき、上記コンバータ 部用指令信号生成部は、台形波状のコンバータ部用指令信号の傾斜領域を、
\ d* \ = ( 1 - V3 tan - π/6 ))/2
J ά* J = ( 1 + 3 tan - π/6 ))/2
(ただし、 d *,d *は線電流通流比、位相角 φは 0≤ ≤ π /3)
s t
に基づいて生成することによって、複雑な演算により台形波状のコンバータ部用指令 信号を形成する必要がなく、簡単な構成で制御部の演算負荷を低減できる。
[0029] また、一実施形態の電力変換装置では、
上記コンバータ部は、
上記三相交流入力電圧の各相電圧が一端に夫々入力され、第 1直流リンク部に他 端が夫々接続された 3つのスイッチング回路と、
上記三相交流入力電圧の各相電圧が一端に夫々入力され、第 2直流リンク部に他 端が夫々接続された 3つのスイッチング回路と
を有し、
上記インバータ部は、
上記所定の三相交流出力電圧の各出力端子が一端に夫々接続され、上記第 1直 流リンク部に他端が夫々接続された 3つのスイッチング回路と、
上記所定の三相交流出力電圧の各出力端子が一端に夫々接続され、上記第 2直 流リンク部に他端が夫々接続された 3つのスイッチング回路と を有する。
[0030] また、一実施形態の電力変換装置では、
上記コンバータ部に相当する仮想コンバータ部と、上記インバータ部に相当する仮 想インバータ部と、上記直流リンク部に相当する仮想直流リンク部とを有するマトリック スコンバータであって、
上記仮想コンバータ部および上記仮想インバータ部は、
上記三相交流入力電圧のうちの第 1相電圧が一端に夫々入力され、上記所定の三 相交流出力電圧の各出力端子に他端が夫々接続された 3つのスイッチング回路と、 上記三相交流入力電圧のうちの第 2相電圧が一端に夫々入力され、上記所定の三 相交流出力電圧の各出力端子に他端が夫々接続された 3つのスイッチング回路と、 上記三相交流入力電圧のうちの第 3相電圧が一端に夫々入力され、上記所定の三 相交流出力電圧の各出力端子に他端が夫々接続された 3つのスイッチング回路とを 有する。
[0031] また、第 3の発明の電力変換装置では、
三相交流入力電圧に同期したコンバータ部用指令信号を生成するコンバータ部用 指令信号生成部と、
所定の三相交流出力電圧を出力するためのインバータ部用指令信号を生成するィ ンバータ部用指令信号生成部と、
キヤリャ信号を生成するキヤリャ信号生成部と、
上記コンバータ部用指令信号生成部からの上記コンバータ部用指令信号および上 記キヤリャ信号生成部により生成された上記キヤリャ信号に基づいて、上記三相交流 入力電圧を直流電圧に変換するコンバータ部と、
上記インバータ部用指令信号生成部からの上記インバータ部用指令信号および上 記コンバータ部に用いられたものと同一の上記キヤリャ信号に基づいて、上記コンパ ータ部により変換された上記直流電圧を上記所定の三相交流出力電圧に変換する インバータ部と
を有することを特徴とする。
[0032] 上記構成によれば、上記コンバータ部とインバータ部に共通する 1つのキヤリャ信 号で PWM変調を可能とすることによって、制御部の回路を簡略ィ匕できる。
[0033] また、一実施形態の電力変換装置では、上記キヤリャ信号は三角波状の信号であ る。
[0034] 上記実施形態によれば、 PWM変調に適した三角波状の信号をキヤリャ信号に用 いることによって、パルス幅変調のための回路を簡略ィ匕できる。
[0035] また、一実施形態の電力変換装置では、上記キヤリャ信号は鋸波状の信号である
[0036] 上記実施形態によれば、鋸波状の信号をキヤリャ信号に用いることによって、キヤリ ャ生成や変調処理が簡素化できる。
[0037] また、第 4の発明の電力変換装置の制御方法では、
台形波状の指令信号を指令信号生成部により生成するステップと、
キヤリャ信号をキヤリャ信号生成部により生成するステップと、
上記指令信号生成部からの上記台形波状の指令信号および上記キヤリャ信号生 成部により生成された上記キヤリャ信号に基づいて、変換部によって、三相交流入力 電圧を直流電圧に変換するか、または、直流電圧を三相交流出力電圧に変換する ステップと
を有し、
上記指令信号生成部により上記台形波状の指令信号を生成するステップにおいて 、上記台形波状の指令信号の傾斜領域を、所定のテーブルまたは所定の式を用い て生成することを特徴とする。
[0038] 上記構成によれば、上記指令信号生成部により、台形波状のコンバータ部用指令 信号の傾斜領域を、所定のテーブルまたは所定の式を用いて生成することによって 、複雑な演算により台形波状の指令信号を形成する必要がなぐ簡単な構成で制御 部の演算負荷を低減できる。
[0039] また、第 5の発明の電力変換装置の制御方法では、
三相交流入力電圧を直流電圧に変換するコンバータ部と、上記コンバータ部により 変換された上記直流電圧を所定の三相交流出力電圧に変換するインバータ部とを 備え、上記コンバータ部と上記インバータ部とを接続する直流リンク部に平滑用のフ ィルタを有しない電力変換装置の制御方法であって、
上記三相交流入力電圧に同期した台形波状のコンバータ部用指令信号をコンパ 一タ部用指令信号生成部により生成するステップと、
キヤリャ信号をキヤリャ信号生成部により生成するステップと、
上記所定の三相交流出力電圧を出力するためのインバータ部用指令信号をインバ 一タ部用指令信号生成部により生成するステップと、
上記コンバータ部用指令信号生成部からの上記台形波状のコンバータ部用指令 信号に基づいて、上記インバータ部用指令信号生成部により生成された上記インバ 一タ部用指令信号を指令信号補正部により補正するステップと、
上記コンバータ部用指令信号生成部からの上記台形波状のコンバータ部用指令 信号および上記キヤリャ信号生成部からの上記キヤリャ信号に基づいて、上記コン バータ部により、上記三相交流入力電圧を上記直流電圧に変換するステップと、 上記指令信号補正部により補正された上記インバータ部用指令信号に基づいて、 上記インバータ部によって、上記コンバータ部により変換された上記直流電圧を上記 所定の三相交流出力電圧に変換するステップと
を有し、
上記コンバータ部用指令信号生成部により上記台形波状のコンバータ部用指令信 号を生成するステップにお 、て、上記台形波状のコンバータ部用指令信号の傾斜領 域を、所定のテーブルまたは所定の式を用いて生成することを特徴とする。
上記構成によれば、上記コンバータ部により変換された上記直流電圧の脈流状の 電圧 (電流)波形に対して、三相交流出力電圧 (電流)に歪を生じないように、指令信号 補正部によりインバータ部用指令信号を補正することによって、補正されたインバー タ部用指令信号に基づいて、上記コンバータ部により変換された上記直流電圧を所 定の三相交流出力電圧に変換することが可能となる。このとき、上記コンバータ部用 指令信号生成部は、台形波状のコンバータ部用指令信号の傾斜領域を、所定のテ 一ブルまたは所定の式を用いて生成することによって、複雑な演算により台形波状の コンバータ部用指令信号を形成する必要がなぐ簡単な構成で制御部の演算負荷を 低減できる。 [0041] また、一実施形態の電力変換装置の制御方法では、
上記所定の式は、
Figure imgf000013_0001
(ただし、位相角 φは 0≤ φ≤ π /3)
Figure imgf000013_0002
(ただし、位相角 φは π≤ φ≤4 π Ζ3)
である。
[0042] 上記実施形態によれば、上記コンバータ部用指令信号生成部が、上記所定の式を 用いて台形波状のコンバータ部用指令信号を生成することによって、演算負荷を低 減しつつ、歪のない三相交流出力電圧 (電流)を確実に得ることができる。
[0043] また、一実施形態では、上記第 5の発明の電力変換装置の制御方法において、 上記コンバータ部用指令信号生成部により上記台形波状のコンバータ部用指令信 号を生成するステップにお 、て、上記台形波状のコンバータ部用指令信号の傾斜領 域を、
| | = ( 1 - V3 tan - π/ら ))/2
I I = ( 1 + V3 tan - π/6 ))/2
(ただし、 d *,d *は通流比、位相角 φは 0≤ ≤ π /3)
s t
に基づ!/ヽて生成することを特徴とする。
[0044] 上記実施形態によれば、上記コンバータ部により変換された上記直流電圧の脈流 状の電圧 (電流)波形に対して、三相交流出力電圧 (電流)に歪を生じないように、指令 信号補正部によりインバータ部用指令信号を補正することによって、補正されたイン バータ部用指令信号に基づいて、上記コンバータ部により変換された上記直流電圧 を所定の三相交流出力電圧に変換することが可能となる。このとき、上記コンバータ 部用指令信号生成部は、台形波状のコンバータ部用指令信号の傾斜領域を、
| | = ( 1 - V3 tan - π/6 ))/2
I I = ( 1 + V3 tan - π/6 ))/2
(ただし、 d *,d *は通流比、位相角 φは 0≤ ≤ π /3)
s t に基づいて生成することによって、複雑な演算により台形波状のコンバータ部用指令 信号を形成する必要がなく、簡単な構成で制御部の演算負荷を低減できる。
[0045] また、第 6の発明の電力変換装置の制御方法では、
三相交流入力電圧に同期したコンバータ部用指令信号をコンバータ部用指令信 号生成部により生成するステップと、
所定の三相交流出力電圧を出力するためのインバータ部用指令信号をインバータ 部用指令信号生成部により生成するステップと、
キヤリャ信号をキヤリャ信号生成部により生成するステップと、
上記コンバータ部用指令信号生成部からの上記コンバータ部用指令信号および上 記キヤリャ信号生成部により生成された上記キヤリャ信号に基づいて、上記三相交流 入力電圧から直流電圧にコンバータ部により変換するステップと、
上記インバータ部用指令信号生成部からの上記インバータ部用指令信号および上 記コンバータ部に用いられたものと同一の上記キヤリャ信号に基づいて、上記コンパ ータ部により変換された上記直流電圧を上記所定の三相交流出力電圧にインバータ 部により変換するステップと
を有することを特徴とする。
[0046] 上記構成によれば、上記コンバータ部とインバータ部に共通する 1つのキヤリャ信 号で PWM変調を可能とすることによって、制御部の回路を簡略ィ匕できる。
[0047] また、第 7の発明の電力変換装置では、
空間ベクトル変調方式により PWM変調信号を生成する PWM変調信号生成部と、 上記 PWM変調信号生成部からの上記 PWM変調信号に基づ!/、て、三相交流入 力電圧を直流電圧に変換するか、または、直流電圧を三相交流出力電圧に変換す る変換部と
を備え、
上記 PWM変調信号生成部は、上記空間ベクトル変調方式に基づ!/、て出力すべき 電圧ベクトルを用い、キヤリャ周期を T、位相角 φとするとき、
0
4 = Τ0 (
Figure imgf000014_0001
- π/6 ))/2
6 = Τ0 ( 1 + ^ ίΆη( - π/6 ))/2 (ただし、 0≤ φ≤π Ζ3)
で表される出力時間 τ , τ の電圧ベクトルに基づいて、上記 PWM変調信号を生成
4 6
することを特徴とする。
[0048] 上記構成によれば、上記指令信号生成部が、空間ベクトル変調方式に基づ!/、て出 力すべき電圧ベクトルを用い、キヤリャ周期を T、位相角 φとするとき、
0
4 =
6 =
Figure imgf000015_0001
(ただし、 0≤ φ≤π Ζ3)
で表される出力時間 τ , τ の電圧ベクトルに基づいて、 PWM変調信号を生成する
4 6
ことによって、複雑な演算により指令信号を形成する必要がなぐ簡単な構成で制御 部の演算負荷を低減できる。
[0049] また、第 8の発明の電力変換装置では、
三相交流入力電圧を直流電圧に変換するコンバータ部と、上記コンバータ部により 変換された上記直流電圧を所定の三相交流出力電圧に変換するインバータ部とを 備え、上記コンバータ部と上記インバータ部とを接続する直流リンク部に平滑用のフ ィルタを有しな 、電力変換装置であって、
空間ベクトル変調方式により上記三相交流入力電圧に同期したコンバータ部用 P WM変調信号を生成するコンバータ部用 PWM変調信号生成部と、
上記所定の三相交流出力電圧を出力するためのインバータ部用 PWM変調信号 を生成するインバータ部用 PWM変調信号生成部と、
上記コンバータ部用 PWM変調信号生成部からの上記コンバータ部用 PWM変調 信号に基づいて、上記インバータ部用 PWM変調信号生成部により生成された上記 インバータ部用 PWM変調信号を補正する PWM変調信号補正部と
を備え、
上記コンバータ部は、上記コンバータ部用 PWM変調信号生成部からの上記コン バータ部用 PWM変調信号に基づいて、上記三相交流入力電圧を上記直流電圧に 変換し、
上記インバータ部は、上記 PWM変調信号補正部により補正された上記インバータ 部用 PWM変調信号に基づいて、上記コンバータ部により変換された上記直流電圧 を上記所定の三相交流出力電圧に変換し、
上記コンバータ部用 PWM変調信号生成部は、上記空間ベクトル変調方式に基づ く上記直流電圧を出力すべき電圧ベクトルを用い、キヤリャ周期を T、位相角 φとす
0
るとさ、
Figure imgf000016_0001
(ただし、 0≤ φ≤π Ζ3)
で表される出力時間 τ , τ の電圧ベクトルに基づいて、上記コンバータ部用 PWM
4 6
変調信号を生成することを特徴とする。
[0050] 上記構成によれば、上記コンバータ部により変換された上記直流電圧の脈流状の 電圧 (電流)波形に対して、三相交流出力電圧 (電流)に歪を生じないように、指令信号 補正部により補正されたインバータ部用指令信号に基づいて、上記コンバータ部に より変換された上記直流電圧を所定の三相交流出力電圧に変換する。このとき、上 記コンバータ部用指令信号生成部が、空間ベクトル変調方式に基づく上記直流電圧 を出力すべき電圧ベクトルを用い、キヤリャ周期を T、位相角 φとするとき、
0
Figure imgf000016_0002
(ただし、 0≤ φ≤π Ζ3)
で表される出力時間 τ , τ の電圧ベクトルに基づいて、コンバータ部用 PWM変調
4 6
信号を生成することによって、複雑な演算により指令信号を形成する必要がなぐ簡 単な構成で制御部の演算負荷を低減できる。
[0051] また、第 9の発明の電力変換装置では、
空間ベクトル変調方式により PWM変調信号を生成する PWM変調信号生成部と、 上記 PWM変調信号生成部からの上記 PWM変調信号に基づ!/、て、三相交流入 力電圧を直流電圧に変換するか、または、直流電圧を三相交流出力電圧に変換す る変換部と
を備え、 上記 PWM変調信号生成部は、上記空間ベクトル変調方式に基づ!/、て出力すべき 電圧ベクトルを用い、キヤリャ周期を T、位相角 φとするとき、
Figure imgf000017_0001
(ただし、 0≤ φ≤π Ζ3)
で表される出力時間 τ , τ の電流ベクトルに基づいて、上記 PWM変調信号を生成 rs rt
することを特徴とする。
[0052] 上記構成によれば、上記指令信号生成部が、空間ベクトル変調方式に基づ!、て出 力すべき電圧ベクトルを用い、キヤリャ周期を T、位相角 φとするとき、
0
Figure imgf000017_0002
rrt = 7 ( 1 + 1 ( _ ^6》/2
(ただし、 0≤ φ≤π Ζ3)
で表される出力時間 τ , τ の電流ベクトルに基づいて、 PWM変調信号を生成する rs rt
ことによって、複雑な演算により指令信号を形成する必要がなぐ簡単な構成で制御 部の演算負荷を低減できる。
[0053] また、第 10の発明の電力変換装置では、
三相交流入力電圧を直流電圧に変換するコンバータ部と、上記コンバータ部により 変換された上記直流電圧を所定の三相交流出力電圧に変換するインバータ部とを 備え、上記コンバータ部と上記インバータ部とを接続する直流リンク部に平滑用のフ ィルタを有しな 、電力変換装置であって、
空間ベクトル変調方式により上記三相交流入力電圧に同期したコンバータ部用 P WM変調信号を生成するコンバータ部用 PWM変調信号生成部と、
上記所定の三相交流出力電圧を出力するためのインバータ部用 PWM変調信号 を生成するインバータ部用 PWM変調信号生成部と、
上記コンバータ部用 PWM変調信号生成部からの上記コンバータ部用 PWM変調 信号に基づいて、上記インバータ部用 PWM変調信号生成部により生成された上記 インバータ部用 PWM変調信号を補正する PWM変調信号補正部と
を備え、 上記コンバータ部は、上記コンバータ部用 PWM変調信号生成部からの上記コン バータ部用 PWM変調信号に基づいて、上記三相交流入力電圧を上記直流電圧に 変換し、
上記インバータ部は、上記 PWM変調信号補正部により補正された上記インバータ 部用 PWM変調信号に基づいて、上記コンバータ部により変換された上記直流電圧 を上記所定の三相交流出力電圧に変換し、
上記コンバータ部用 PWM変調信号生成部は、上記空間ベクトル変調方式に基づ く上記直流電圧を出力すべき電圧ベクトルを用い、キヤリャ周期を T、位相角 φとす
0
るとさ、
Figure imgf000018_0001
(ただし、 0≤ φ≤π Ζ3)
で表される出力時間 τ , τ の電流ベクトルに基づいて、上記コンバータ部用 PWM rs rt
変調信号を生成することを特徴とする。
[0054] 上記構成によれば、上記コンバータ部により変換された上記直流電圧の脈流状の 電圧 (電流)波形に対して、三相交流出力電圧 (電流)に歪を生じないように、指令信号 補正部により補正されたインバータ部用指令信号に基づいて、上記コンバータ部に より変換された上記直流電圧を所定の三相交流出力電圧に変換する。このとき、上 記コンバータ部用指令信号生成部が、空間ベクトル変調方式に基づく上記直流電圧 を出力すべき電圧ベクトルを用い、キヤリャ周期を T、位相角 φとするとき、
0
Figure imgf000018_0002
(ただし、 0≤ φ≤π Ζ3)
で表される出力時間 τ , τ の電流ベクトルに基づいて、コンバータ部用 PWM変調
rs rt
信号を生成することによって、複雑な演算により指令信号を形成する必要がなぐ簡 単な構成で制御部の演算負荷を低減できる。
発明の効果
[0055] 以上より明らかなように、この発明の電力変換装置および電力変換装置の制御方 法によれば、コンバータ部またはインバータ部の PWM変調に用いる台形波状の指 令信号の傾斜領域を、所定のテーブルまたは所定の式を用いて生成することによつ て、簡単な構成で制御部の演算負荷を低減することができる。
[0056] また、この発明の電力変換装置によれば、コンバータ部とインバータ部に共通する 1つのキヤリャ信号で PWM変調を可能とすることによって、制御部の回路を簡略ィ匕 することができる。
[0057] また、この発明の電力変換装置によれば、空間ベクトル変調方式に基づく直流電 圧を出力すべき電圧ベクトルを用い、キヤリャ周期を T、位相角 φとするとき、
0
Figure imgf000019_0001
(ただし、 0≤ φ≤π Ζ3)
で表される出力時間 τ , τ の電圧ベクトルに基づいて、コンバータ部用 PWM変調
4 6
信号を生成することによって、簡単な構成で制御部の演算負荷を低減することができ る。
[0058] また、この発明の電力変換装置および電力変換装置の制御方法によれば、コンパ ータ部またはインバータ部の PWM変調に用いる台形波状の指令信号の傾斜領域を
| | = ( 1 - V3 tan - π/6 ))/2
\ d* \ = ( 1 + V3 tan - π/6 ))/2
(ただし、 d *,d *は線電流通流比、位相角 φは 0≤ ≤ π /3)
s t
に基づいて生成することによって、簡単な構成で制御部の演算負荷を低減すること ができる。
[0059] また、この発明の電力変換装置によれば、空間ベクトル変調方式に基づく直流電 圧を出力すべき電圧ベクトルを用い、キヤリャ周期を T、位相角 φとするとき、
0
Figure imgf000019_0002
(ただし、 0≤ φ≤π Ζ3) で表される出力時間 τ , τ の電流ベクトルに基づいて、コンバータ部用 PWM変調 rs rt
信号を生成することによって、簡単な構成で制御部の演算負荷を低減することができ る。
図面の簡単な説明
圆 1]図 1はこの発明の第 1実施形態の直接形電力変換装置の構成図である。
圆 2]図 2はこの発明の第 2実施形態の直接形電力変換装置の構成図である。
圆 3]図 3は直流リンク付き直接変換回路の構成図である
圆 4]図 4は直流リンク付き直接変換回路の制御原理を説明するための各部の波形 を示す図である
[図 5A]図 5Aは線間電圧制御波形を示す図である。
[図 5B]図 5Bは台形波変調波形 (相電圧)を示す図である。
[図 5C]図 5Cは台形波変調波形 (線間電圧)を示す図である。
[図 6A]図 6Aは空間ベクトル変調について説明するための図である。
[図 6B]図 6Bは空間ベクトル変調における台形波変調波形 (相電圧)を示す図である。
[図 6C]図 6Cは空間ベクトル変調における台形波変調波形 (線間電圧)を示す図であ る。
[図 7]図 7は比較のための同期 PWM変調方式を示す図である。
圆 8]図 8はこの発明の直接形電力変換装置の三角波状のキヤリャ信号を用いた PW
M変調方式を示す図である。
圆 9]図 9はこの発明の直接形電力変換装置の鋸波状のキヤリャ信号を用いた PWM 変調方式を示す図である。
圆 10]図 10はこの発明の第 3実施形態の電力変換装置の構成図である。
圆 11]図 11はこの発明の第 4実施形態の電力変換装置の構成図である。
圆 12]図 12は上記電力変換装置の指令波形を示す図である。
[図 13]図 13はキヤリャ比較を用 、た場合の線電流通流比を示す図である。
[図 14]図 14は表 1の変調方式を説明するための図である。
[図 15]図 15は空間ベクトル変調を用 、た場合の線電流通流比を示す図である。
[図 16]図 16は空間ベクトル変調について説明するための図である。 [図 17]図 17はこの発明の第 5実施形態の直流リンク付き直接形電力変換装置の構 成図である。
[図 18]図 18はこの発明の第 6実施形態の直接形電力変換装置の一例としてのマトリ ックスコンバータの構成図である。 発明を実施するための最良の形態
[0061] この発明の電力変換装置および電力変換装置の制御方法を図示の実施の形態を 説明する前に、この発明の電力変換装置および電力変換装置の制御方法の特徴に ついて説明する。
[0062] まず、直流 Z交流変換する電力変換装置において、一定の直流電圧に対して正 弦波状の線間電圧が得られる相電圧波形の生成法と同様に、脈流状の電圧波形に 対しても、正弦波出力が得られる相電圧信号波の導出について説明する。
[0063] 技術文献 1(リザイアング 'ウェイ (Lixiang.Wei)、トーマス 'エ^ ~·リポ (Thomas.A. Lipo) 著、「簡単な転流方式を用いた新しいマトリックスコンバータ 'トポロジー (A Novel Matr lx converter Topology with; simple Commutation) 、 イトリプルィ ~~ (IEEE IAS2001) 、 vol.3,pp.l749-1754.2001)に示された直流リンク付き直接変換回路では、電流形変 であるため、線電流の通流比を台形波状に制御している。この明細書では、電 圧形ベースで検討するものとし、電流形と電圧形の双対性 (線電流:線間電圧、相電 流:相電圧に対応)を考慮して、線間電圧を台形波状に制御するものとする。
[0064] この技術文献 1は、直流リンク部に平滑や整流回路を持たない直流リンク付き直接 変換回路の変調方式に関するものである。この技術文献 1の直流リンク付き直接変換 回路は、図 3に示すように、三相ブリッジ回路を構成する 6つのスイッチング回路 S ,S
ap
,S ,S ,S ,S 力 なるコンバータ部と、三相ブリッジ回路を構成する 6つのスィッチ bp cp an bn cn
ング回路 s ,s vp ,s wp ,s un ,s ンバータ部とを備えてい
vn ,s 力もなるイ る。上記コンパ up wn 一 タ部は、三相交流電源 V ,ν ,ν力 の三相交流入力電圧 V ,ν ,νを直流に変換
sa so sc a b c
する。また、上記インバータ部は、コンバータ部により変換された直流電圧 V を三相
dc 交流出力電圧 V ,ν ,ν に変換する。
[0065] 図 4(a)〜(d)は上記技術文献 1の直流リンク付き直接変換回路の制御原理に基づく 各部の波形を示したものである。図 4(a)に示すように、相電圧は、 [二相:正、一相:負 ]と [二相:負、一相:正]の 2つの状態の何れかに相当することから、 60度毎の 6つの 領域に分割することができる。ここでは、 c相を基準とする領域 1、領域 2について述 ベる。ここで、領域 1において、最小相である c相をスイッチング回路 S により導通さ
cn
せ、最大または中間相である a相, b相をスイッチング回路 S ,S を用いて以下の通流
ap bp
比 d ,d でスイッチングさせる。同様に領域 2においては、最大相である c相をスイツ ac be
チング回路 S により導通させ、中間または最小相である a相, b相をスイッチング回路
cp
S ,S を用いて以下の通流比 d ,d でスイッチングさせる。
an bn ac be
_ COS ― _ c s 9b
|cos 0C I |cos 0C I
[0066] 以上の動作を 6つの領域に対して適用すると、各相の通流比は、図 4(b)に示す台 形波状の波形となる。なお、ここでは、コンバータ側の上アームと下アームのスィッチ ング状態を示すため、通流比が正の場合の上アームが導通し、通流比が負の場合の 下アームが導通するものとして 、る。
[0067] このとき、図 4(c)に示すように、 DCリンク電圧は、最大相と最小相との間の線間電圧 Emaxと、最小相 (領域 1)と最大相 (領域 2)との中間相で生成される線間電圧 Emidの 2 つの電位が得られることが分かる。また、各 DCリンク電圧に対して、各々通流比を乗 じることにより平均電圧 V は、
dc
Vdc = 3Vm / (2 cos Θιη , cos Θιη = max |cos Θα |, |cos 0b | , |cos 0C | ) で表され、 DCリンク電圧が脈流状の電圧波形となることが分かる。
[0068] 一方、インバータ側については、脈流電圧 V を用いて電圧制御を行うため、変調
dc
波は脈流分を補償するように通電時間は脈流分 cos θ
inを乗じて、
= ί10 cos θιη , t2 = t20 cos θιη , t0 = ~ tx - t2
に基づき制御される。また、インバータの負荷は誘導性であるため電流源として捉え ることができ、 DCリンク電流は通電時間が上式に示すように、脈流分 cos Θ で振幅
in 変調されているため、
—。 = kl0 co& i cos 9m で示されるように脈流状となる。ここで、上述のようにコンバータ側は一相が導通状態 にあり、二相が各々の通流比 d ,d でスイッチングするため、領域 1において入力電
ac be
流は、
の関係となる。
[0069] 以上により、図 4(b)に示した台形波状通流比と脈流電流を乗じた波形となるため、 入力電流は、図 4(d)に示す正弦波とすることができる。
[0070] また、一定の直流電圧に対する線間電圧制御法としては、技術文献 2(特公平 6— 0
81514号公報)に示す信号波が知られている (技術文献 2の第 3頁右欄第 10行目〜 第四頁左欄第 25行目の記載および第 1図,第 2図参照)。
[0071] ここで、相電圧指令信号 V *,V *,V *は、
V* = VQOS0, V* = νΰθ8(θ-2π/3), VW* = V ΰοα{θ + 2π 13) (1) で表される。この (1)式の相電圧指令信号 V *,V *,V *に中間相電圧の 1/2を加算す ることで、 1相を π Ζ6遅れ、他の 2相を π Ζ3進みの極性が相互に異なる相電圧指 令信号 V **,V **,V **は、
V** =—νήη(θ + π/3), V** = -V ήη(θ - π / 6), V** =-—Vsm(0 + π/3) ■■■ (2) で表現される。上記技術文献 2では、 V線間電圧の位相を基準に示しているが、こ こでは、相電圧を基準とするため、相順を読み替えて表記している (Wは U Uは V V は w)。
[0072] また、脈流電圧 V は、電圧形ベースであるため、線間電圧の最大値で決定される
link
ので、
Figure imgf000023_0001
で表される。そして、位相角 0 π Ζ3の領域では、線間電圧 V が最大値となるため
Vlmk = Vuw = V(cos Θ - cos( θ + 2π/3)) = ^3V sin( θ+ π/3) (4) の関係式が成り立つ。ここで、(4)式を (2)式に代入することにより、相電圧指令信号 Vu
7
, V , V 【よ、 V** = ^ , V** = Unk ύη(θ - π/6)/ ύη(θ + π/3) , ν" = -^- ·■■ (5) で表される。
[0073] 振幅 1の三角波キヤリャ比較ベースの指令値に書き換えると、次の (6)式のキヤリャ 振幅と出力電圧の関係より、相電圧指令信号 V **,V **,V **は (7)式で示され、さらに( 8)式に書き換えることができる。 … (
2
V*** = 1 , V*** = 3 sin( Θ - π/6)/ sin( Θ + π/3) , V*** = -1 … (7)
V*** = 1 , V*** = 3 tan(^ - π/6) , V*** = -1 … (8)
[0074] 以上の結果は、図 5Αに示す線間電圧制御波形において、最大相電圧で各相指 令値を割ったものと同様であり、位相角 0〜 π Ζ3の領域では r相が最大相電圧とな る。図 5Bは、位相角 π Ζ3毎の 6つの領域に対して同様の演算を行った結果であり、 120度通電の台形波変調波形湘電圧)となる。
[0075] したがって、この発明の電力変換装置および電力変換装置の制御方法において、 コンバータ部またはインバータ部の PWM変調に用いる台形波状の指令信号 (120度 通電の台形波変調波形)の傾斜領域を、所定のテーブルまたは所定の式を用いて生 成することによって、簡単な構成で制御部の演算負荷を低減することができる。
[0076] 次に、以上により得られた台形波変調波形が技術文献 1で示される線電流指令と 等価であることを示す。電流形において線電流は電圧形では線間電圧に相当するこ とから、図 4(b)の線電流指令信号と図 5Cの台形波変調波形 (線間電圧)を比較する。
[0077] 図 4(b)において b相線電流指令信号 d は、
d,—c = - cos 0b / cos θ„ · · · (9)
で示されるが、領域 1における 0〜 π Ζ3の位相角で表記すると、
dbc = sin θ/{ύη Θ + π/3) … (10) に書き換えられる。
[0078] また、図 5Cの線間電圧指令を図 4(b)の線電流指令信号と振幅を合わせると、 で表すことができ、(10)式と等しいものとすると、(11)式より、
2sin ^ = V3 sin( θ - π/β) + sin( θ + π/3) … (12)
が成り立てば良い。この (12)式の右辺を、加法定理を用いて変形すると、
Figure imgf000025_0001
I Λ
/3(— sin ^ - - cos Θ) + (-sin ^ +— cos θ) - (13)
2 2 2 2
= 2ύη θ が成立する。
[0079] 従って、この発明の電力変換装置の制御方法により生成される線間電圧指令信号 は、技術文献 1に示される線電流指令と等価であるため、例えば技術文献 3(竹下隆 晴、他 2名著、「電流形三相インバータ'コンバータの三角波比較方式 PWM制御」、 電学論 D、 Vol.l l6,No.l, 1996)に示される電圧形、電流形の双対性 (技術文献 3の表 1参照)に基づく論理演算を適用することにより、容易に電圧形より電流形 PWMバタ ーンの発生が可能である。
[0080] 以上、相電圧指令信号の生成法につ!、て説明した力 PWM変調方式としては、 三角波状のキヤリャ信号による方式の他に、電圧ベクトルを用いた空間ベクトル変調 方式の電力変換装置にも適用できる。
[0081] 図 6Aの上側の (a)は、空間ベクトル変調方式の PWM変調における空間ベクトルを 示すベクトル図と図 5Aにおける電圧ベクトルを説明する図である。このベクトル図に 示すように、電圧ベクトルは、 8つ状態のうちの 6状態(V〜V )は、 0でないベクトル
1 6
で残りの 2状態 (V ,V )は 0状態である。
0 7
[0082] この空間ベクトル変調方式では、位相角 φ力^〜 π Ζ3における電圧ベクトルの出 力時間 τ , τ , τ とし、電圧制御率を ksとするとき、電圧ベクトルの基本式は、
0 4 6
て。/ ί0 = 1-
Figure imgf000025_0002
+ πΧ
τ4/ Τ0 = ks sin( π/ - φ)
6/Τ。 = ks sin φ で表される。この位相角 0〜 π /3における電圧指令信号 V *,V *,V *は、 V* = 1-2(Γ0/2Γ0) = ks ύη{φ + π/3)
V* = π/6)
V* =
Figure imgf000026_0001
で表される。図 6Αの下側の (b)は、図 5Aの線間電圧制御波形に位相角 0〜πΖ3に 対応する電圧ベクトルを示している。なお、図 6Αでは電圧制御率 ksを 0.5としている 。ここで、位相角 φが 0〜πΖ3において電圧指令信号 V*,V*の中間相電圧 V* は s t s —mid
K ld = v v;
= sin(^ - π/ 6)/ ks sin(^ + π/ 3)
で表される。図 6Βに示すように、図 5Βの台形波変調波形 (相電圧)に位相角 0〜πΖ 3に対応する電圧ベクトルを示している。そして、空間ベクトル変調方式の基本式の τ ΖΤと τ ΖΤは、
4 0 6 0
てノ Τ0 = (l-Vr*)/2 =
てノ T0 = 1_τ4ΖΤ0 = (
Figure imgf000026_0002
1 +
で表される。この基本式を、図 6Α中の表で位相角 πΖ3毎に読み替えて、電圧べク トルの出力時間を決定することによって、 PWM波形生成を行うことができる。
[0083] なお、図 6Cに示すように、線間電圧指令信号 V *は、
V* = 3 sin( θ-π/6)/ sin( Θ + π/3) + 1 で表される。
[0084] 図 7は上述の特開 2004— 266972号公報に示される同期 PWM変調方式につい て、技術文献 1の変調法と対比して示したものである。図 7において、 t
sはキヤリャ周 期、 I(rt)は電流指令、 I(st)は電流指令、 dは通流比、 dは通流比、 1 ,1 ,1は入力電流 rt st r s t
、 I は DCリンク電流、 V ,V ,Vは電圧指令、 dは電圧指令 Vに対応する通流比、 d dc 0 4 6 0 0 4 は電圧指令 Vに対応する通流比である。また、 V ,ν ,νはインバータのゲート信号 である。
[0085] 図 7では、コンバータ側のキヤリャ周期は、 st、 rtに通電する 2つのスイッチング状態 に分割され、さらに各々の通流比が異なるため、インバータ側は通電期間毎にキヤリ ャ振幅が異なる 2つのキヤリャ信号を用いている。また、キヤリャ信号と比較される信 号波は、コンバータの通流比と掛け合わせることにより、キヤリャ振幅にて補正される 。このため、変調回路構成としては特開 2004— 266972号公報に示すような複雑な 構成となる (特開 2004— 266972号公報の段落 [0021]〜[0026]の記載および図 4)
[0086] これに対して、図 8はこの発明の電力変換装置の三角波状のキヤリャ信号を用いた PWM変調方式を示す図である。図 8において、 tはキヤリャ周期、 I(rt)は電流指令、 s
I(st)は電流指令、 dは通流比、 dは通流比、 1 ,1 ,1は入力電流、 I は DCリンク電流 rt st r s t ac
、 V ,V ,Vは電圧指令、 dは電圧指令 Vに対応する通流比、 dは電圧指令 Vに対
0 4 6 0 0 4 4 応する通流比である。また、 V ,ν ,νは上アームのゲート信号、 Ζν ',/ν ',/ν 'は 下アームのゲート信号である。
[0087] 図 8では、コンバータ側とインバータ側のキヤリャ信号は同一の信号を用いており、 従来と同様に振幅補正された 2つの指令信号のうち、一方の指令信号にオフセットを 持たせてキヤリャ信号と比較し、他方につ!、ては指令信号の極性を反転させた上で キヤリャ信号と比較し、それにより得られたゲート信号を反転させている。また、各々 の期間のゲート信号は、論理和を取ることにより、同一相のゲート信号を得ることがで きる。
[0088] また、図 9はこの発明の電力変換装置の鋸波状のキヤリャ信号を用いた PWM変調 方式を示す図である。図 9において、 tはキヤリャ周期、 I(rt)は電流指令、 I(st)は電流 s
指令、 dは通流比、 dは通流比、 1 ,1 ,1は入力電流、 I は DCリンク電流、 V ,V ,V rt st r s t dc 0 4 6 は電圧指令、 dは電圧指令 Vに対応する通流比、 dは電圧指令 Vに対応する通流
0 0 4 4
比、 dは電圧指令 Vに対応する通流比である。また、 V ,ν ,νは上アームのゲート
6 6 w
信号、 Ζν ',/ν ',/ν 'は下アームのゲート信号である。
[0089] 図 9に示す電力変換装置は、キヤリャ生成や変調処理が簡素化でき、ソフトウェア 化により適した構成である。ただし、技術文献 1に示される直流リンク付き直接変換回 路では、コンバータ側を零ベクトル期間で転流させるために、 V ,ν双方の零ベクトル
0 7
を用いる必要があり、インバータ側は三相変調と損失面で不利となる。また、一般に 知られるように、キヤリャによる電圧スペクトルの主要成分の三角波の周波数 2fに対 して、鋸波の周波数は fとなり、騒音面についても劣るものとなる。
[0090] このように、この発明の電力変換装置および電力変換装置の制御方法によれば、 脈流状の電圧 (電流)波形に対して、線間電圧 (線電流)に歪を生じな 、キヤリャ比較 ベースの相電圧指令波形ほたは空間ベクトル変調方式)により、指令信号を生成す るときの演算負荷を軽減することができる。
[0091] また、コンバータ部とインバータ部に共通する一つのキヤリャ信号 (三角波や鋸波等 )で同期 PWM変調を可能とすることによって、変調回路の簡素化することができる。
[0092] 以下、この発明の電力変換装置および電力変換装置の制御方法を図示の実施の 形態により詳細に説明する。
[0093] 〔第 1実施形態〕
図 1はこの発明の第 1実施形態の直流リンク付き直接形電力変換装置の構成図で ある。この第 1実施形態の直流リンク付き直接形電力変換装置は、コンバータ部とィ ンバータ部とを接続する直流リンク部に平滑用のフィルタを有しな 、。
[0094] この直接形電力変換装置は、図 1に示すように、スィッチ S ,S ,S ,S ,S ,Sから
rp rn sp sn tp tn なるコンバータ部 1と、スィッチ S ,S ,S ,S ,S ,S 力 なるインバータ部 2と、上記
up un vp vn wp wn
コンバータ部 1のスィッチ S ,S ,S ,S ,S ,S およびインバータ部 2のスィッチ S ,S
rp rn sp sn tp tn up un
,S ,S ,S ,S をオンオフするためのゲート信号を出力する制御部 3とを備えている vp vn wp wn
。上記スィッチ s ,s ,s ,s sn ,s tp ,s およびスィッチ
tn s up ,s un ,s vp ,s vn ,s wp ,s は、それぞ rp rn sp wn
れスイッチング素子を複数組み合わせて構成されているスイッチング回路である。
[0095] 上記コンバータ部 1は、三相交流電源 (図示せず)からの相電圧 Vをスィッチ S の一 r rp 端とスィッチ S の一端に入力し、相電圧 Vをスィッチ S の一端とスィッチ S の一端に
rn s sp sn
入力し、相電圧 vをスィッチ S の一端とスィッチ S の一端に入力している。上記スィ
t tp tn
ツチ S ,S ,S の他端を第 1直流リンク部 LIに夫々接続する一方、スィッチ S ,S ,S rp sp tp rn sn tn の他端を第 2直流リンク部 L2に夫々接続して!/、る。
[0096] また、上記インバータ部 2は、三相交流出力電圧の相電圧 Vの出力端子にスィッチ S の一端とスィッチ S の一端を接続し、相電圧 Vの出力端子にスィッチ S の一端と up un v vp スィッチ S の一端を接続し、相電圧 Vの出力端子にスィッチ S の一端とスィッチ S
vn w wp wn の一端を接続している。上記スィッチ S ,S ,S の他端を第 1直流リンク部 L1に夫々 接続する一方、スィッチ S ,S ,S の他端を第 2直流リンク部 L2に夫々接続している
un vn wn
[0097] また、上記制御部 3は、三相交流入力電圧に同期するための基準信号の一例とし ての電源同期信号 Vに基づいて、台形波状電圧指令信号 V *,V *,V *を生成する指
r r s t
令信号生成部およびコンバータ部用指令信号生成部の一例としての台形波状電圧 指令生成部 11と、上記台形波状電圧指令生成部 11からの台形波状電圧指令信号 V *, V *, V *とキヤリャ信号とを比較するための比較部 12と、上記比較部 12からの比 r s t
較結果に基づいてゲート信号を出力する電流形ゲート論理変換部 13と、上記台形 波状電圧指令生成部 11からの台形波状電圧指令信号 V *,V *,V *に基づ 、て、通流
r s t
比 d ,dを検出する中間相検出部 14と、上記キヤリャ信号を生成するキヤリャ信号生 rt st
成部 15と、上記インバータ部 2に対する出力電圧指令信号 V *,V *,V *を生成するィ ンバータ部用指令信号生成部の一例としての出力電圧指令信号生成部 21と、上記 出力電圧指令信号生成部 21からの出力電圧指令信号 V *,V *,V *と中間相検出部 1 4からの通流比 d ,dに基づいて、
rt st
d +d V* (V*:各相の電圧ベクトル)
rt st
を出力する演算部 22と、上記出力電圧指令信号生成部 21からの出力電圧指令信 号 V *,V *,V *と中間相検出部 14からの通流比 dに基づいて、
d (l -v*) (v*:各相の電圧ベクトル)
rt
を出力する演算部 23と、上記演算部 22,23からの演算結果とキヤリャ信号とを比較 するための比較部 24と、上記比較部 24からの比較結果に基づいてゲート信号を出 力する論理和演算部 25とを有する。
[0098] 上記電流形ゲート論理変換部 13からのゲート信号によりコンバータ部 1のスィッチ S
,S ,S ,S ,S ,S をオンオフ制御すると共に、論理和演算部 25からのゲート信号に rp rn sp sn tp tn
よりインバータ部 2のスィッチ S ,S ,S ,S ,S ,S をオンオフ制御する。
up un vp vn wp wn
[0099] 上記中間相検出部 14と演算部 22,23で指令信号補正部を構成している。また、上 記比較部 12と電流形ゲート論理変換部 13でコンバータ部用 PWM変調信号生成部 を構成し、比較部 24と論理和演算部 25でインバータ部用 PWM変調信号生成部を 構成している。 [0100] 上記台形波状電圧指令生成部 11は、台形波状電圧指令信号 V *,V *, V *の傾斜領 r s t 域を所定のテーブルを用いて生成する。ここで、図 5 A〜図 5Cで説明した (8)式、す なわち、
で表される相電圧指令信号 V ***,v ***,v ***と同様に、台形波状電圧指令信号 v *,v
*,v *の傾斜領域における値を予めテーブルとして設定しておく。ここで、位相角 φは t
、三相交流入力電圧の相電圧 Vに同期している。
[0101] なお、テーブルの代わりに式を用いて台形波状電圧指令信号 V *,V *, V *の傾斜領 r s t 域を求めてもよい。
[0102] すなわち、
Figure imgf000030_0001
(ただし、位相角 φは 0≤ φ≤ π /3)
Figure imgf000030_0002
(ただし、位相角 φは π≤ φ≤4 π Z3)
の所定の式を用いて、台形波状電圧指令信号 V *,V *,V *の傾斜領域を夫々求める。
r S t
これにより、演算負荷を低減しつつ、歪のない三相交流出力電圧 (電流)を確実に得 ることがでさる。
[0103] 上記構成の直流リンク付き直接形電力変換装置によれば、コンバータ部 1により変 換された直流電圧の脈流状の電圧 (電流)波形に対して、三相交流出力電圧 (電流) に歪を生じないように、指令信号補正部 (14,22,23)により出力電圧指令信号を補正 して、その補正された出力電圧指令信号に基づいて、コンバータ部 1により変換され た直流電圧を所定の三相交流出力電圧に変換する。このとき、台形波状電圧指令 生成部 11は、台形波状電圧指令信号¥ *,¥ *,¥ *の傾斜領域を、所定のテーブル (ま r s t
たは所定の式)を用いて生成することによって、簡単な構成で制御部の演算負荷を低 減することができる。
[0104] 上記コンバータ部 1とインバータ部 2に共通する 1つのキヤリャ信号で PWM変調を 可能とすることによって、制御部の回路を簡略ィ匕することができる。 [0105] 〔第 2実施形態〕
図 2はこの発明の第 2実施形態の直接形電力変換装置の一例としてのマトリックス コンバータの構成図である。
[0106] このマトリックスコンバータは、図 2に示すように、スィッチ S ,S ,S ,S ,S ,S ,S ,S ur us ut vr vs vt wr
,S からなる変換部 4と、上記変換部 4のスィッチ S ,S ,S ,S ,S ,S ,S ,S ,S を ws wt ur us ut vr vs vt wr ws wt オンオフするためのゲート信号を出力する制御部 5とを備えている。この変換部 4が、 仮想コンバータ部と仮想インバータ部に相当し、この仮想コンバータ部と仮想インバ ータ部とを接続する仮想直流リンク部に平滑用のフィルタを有しな 、。上記スィッチ S ,S ,S ,S ,S ,S ,S ,S ,S は、それぞれスイッチング素子を複数組み合わせて構 r us ut vr vs vt wr ws wt
成されて!/ヽるスイッチング回路である。
[0107] 上記変換部 4は、三相交流電源 6からの三相交流入力電圧のうちの相電圧 Vをスィ ツチ S ,S ,S 夫々の一端に入力し、三相交流入力電圧のうちの相電圧 vを S ,S , ur vr wr s us vs
S 夫々の一端に入力し、三相交流入力電圧のうちの相電圧 vを S ,S ,S 夫々の ws t ut vt wt 一 端に入力している。上記スィッチ S ,S ,S の他端を相電圧 vの出力端子に夫々接 ur us ut u
続する一方、スィッチ S ,S ,S の他端を相電圧 vの出力端子に夫々接続し、スイツ vr vs vt r
チ S ,S ,S の他端を相電圧 vの出力端子に夫々接続している。
wr ws wt w
[0108] また、上記制御部 5は、三相交流入力電圧に同期するための基準信号の一例とし ての電源同期信号 Vに基づいて、台形波状電圧指令信号 V *,V *,V *を生成する指 r r s t
令信号生成部およびコンバータ部用指令信号生成部の一例としての台形波状電圧 指令生成部 31と、上記台形波状電圧指令生成部 31からの台形波状電圧指令信号 V *,V *,V *とキヤリャ信号とを比較するための比較部 32と、上記比較部 32からの比 r s t
較結果に基づいてゲート信号を出力する電流形ゲート論理変換部 33と、上記台形 波状電圧指令生成部 31からの台形波状電圧指令信号 V *,V *,V *に基づいて、通流 r s t
比 d ,dを検出する中間相検出部 34と、上記キヤリャ信号を生成するキヤリャ信号生 rt st
成部 35と、上記変換部 4に対する出力電圧指令信号 V *,V *,V *を生成するインバー タ部用指令信号生成部の一例としての出力電圧指令信号生成部 41と、上記出力電 圧指令信号生成部 41からの出力電圧指令信号 V *,V *,V *と中間相検出部 34から の通流比 d ,dに基づいて、 d + d V* (V* :各相の電圧ベクトル)
rt st
を出力する演算部 42と、上記出力電圧指令信号生成部 41からの出力電圧指令信 号 V *,V *,V *と中間相検出部 34からの通流比 dに基づいて、
d (l -v*) (v*:各相の電圧ベクトル)
rt
を出力する演算部 43と、上記演算部 42,43からの演算結果とキヤリャ信号とを比較 するための比較部 44と、上記比較部 44からの比較結果に基づいてゲート信号を出 力する論理和演算部 45と、上記電流形ゲート論理変換部 33からの信号と論理和演 算部 45からの信号に基づ ヽて、ゲート信号を合成するゲート信号合成部 50とを有す る。
[0109] 上記ゲート信号合成部 50からのゲート信号により変換部 4のスィッチ S ,S ,S ,S , ur us ut vr
S ,S ,S ,S ,S をオンオフ制御する。
vs vt wr ws wt
[0110] 上記中間相検出部 34と演算部 42,43で指令信号補正部を構成している。また、上 記比較部 32と電流形ゲート論理変換部 33でコンバータ部用 PWM変調信号生成部 を構成し、比較部 44と論理和演算部 45でインバータ部用 PWM変調信号生成部を 構成している。
[0111] 上記台形波状電圧指令生成部 31は、台形波状電圧指令信号 V *,V *, V *の傾斜領 r s t 域を所定のテーブルを用いて生成する。ここで、図 5 A〜図 5Cで説明した (8)式、す なわち、
* = 1 , ν = ^ϊ^ - η/6)· , ν * = -l
で表される相電圧指令信号 V ***,ν ***,ν ***と同様に、台形波状電圧指令信号 ν *,ν
*,ν *の傾斜領域における値を予めテーブルとして設定しておく。ここで、位相角 φは t
、三相交流入力電圧の相電圧 Vに同期している。
[0112] なお、テーブルの代わりに式を用いて台形波状電圧指令信号 V *,V *, V *の傾斜領 r s t 域を求めてもよい。
[0113] すなわち、
3 tan^ - π / b ι
(ただし、位相角 φは 0≤ φ≤ π /3)
Figure imgf000033_0001
(ただし、位相角 φは π≤ φ≤4 π Ζ3)
の所定の式を用いて、台形波状電圧指令信号 V *,V *,V *の傾斜領域を夫々求める。
r S t
これにより、演算負荷を低減しつつ、歪のない三相交流出力電圧 (電流)を確実に得 ることがでさる。
[0114] 上記構成のマトリックスコンバータによれば、仮想コンバータ部により変換された仮 想直流電圧の脈流状の電圧 (電流)波形に対して、三相交流出力電圧 (電流)に歪を 生じな 、ように、指令信号補正部 (34,42,43)により出力電圧指令信号を補正して、 その補正された出力電圧指令信号に基づいて、仮想インバータ部は、仮想コンパ一 タ部により変換された仮想直流電圧を所定の三相交流出力電圧に変換する。このと き、台形波状電圧指令生成部 31は、台形波状電圧指令信号 V *,V *,V *の傾斜領域 r s t
を、所定のテーブル (または所定の式)を用いて生成することによって、簡単な構成で 制御部の演算負荷を低減することができる。
[0115] 上記仮想コンバータ部と仮想インバータ部に共通する 1つのキヤリャ信号で PWM 変調を可能とすることによって、制御部の回路を簡略ィ匕することができる。
[0116] 上記第 1 ,第 2実施形態では、テーブルまたは式を用いて傾斜領域を求めた台形波 状電圧指令信号をコンバータ側に適用した直接形の電力変換装置について説明し たが、台形波状電圧指令信号をインバータ側に適用した電力変換装置にこの発明を 適用してもよい。以下の第 3,第 4実施形態により、この台形波状電圧指令信号をイン バータ側に適用した電力変換装置を説明する。
[0117] 〔第 3実施形態〕
図 10はこの発明の第 3実施形態の電力変換装置の構成図を示している。 この第 3実施形態の電力変換装置は、図 10に示すように、三相交流電源 100から の三相交流電圧を直流電圧に変換するコンバータ部の一例としての電圧出力電圧 形変換器 101と、上記電圧出力電圧形変換器 101からの直流電圧を変換して所望 の三相交流電圧をモータ 103に出力するインバータ部 102と、上記電圧出力電圧形 変翻 101とインバータ部 102を制御する制御部 1 10とを備えている。
[0118] 上記インバータ部 102は、三相交流出力電圧の相電圧 Vの出力端子にトランジスタ S のェミッタとトランジスタ S のコレクタを接続し、相電圧 vの出力端子にトランジスタ rp rn s
S のェミッタとトランジスタ S のコレクタを接続し、相電圧 vの出力端子にトランジスタ sp sn t
S のェミッタとトランジスタ s のコレクタを接続している。上記トランジスタ s ,s ,s の tp tn rp sp tp コレクタを第 1直流リンク部 LlOlに夫々接続する一方、トランジスタ S ,S ,S のェミツ
rn sn tn タを第 2直流リンク部 L102に夫々接続している。また、上記トランジスタ S ,S ,S の
rp sp tp コレクタとェミッタとの間にダイオード D ,D ,Dを夫々逆方向に接続すると共に、上
rp sp tp
記トランジスタ S ,S ,S のコレクタとェミッタとの間にダイオード D ,D ,Dを夫々逆
rn sn tn rn sn tn
方向に接続している。
[0119] また、上記制御部 110は、振幅指令 ksと位相指令 Θに基づいて、電圧出力電圧形 変換器 101に脈流電圧指令信号を出力する脈流電圧指令生成部 104と、位相指令 Θに基づいて、台形状相電圧指令信号を生成する台形状相電圧指令生成部 105と 、上記台形状相電圧指令生成部 105からの台形状相電圧指令信号に基づいて、 P WM変調信号をインバータ部 102に出力する PWM変調部 106とを有している。上 記 PWM変調部 106は、キヤリャ信号生成部 106aを有する。
[0120] ここで、台形状相電圧指令生成部 105は、第 1実施形態の図 1に示す台形波状電 圧指令信号生成部 11や、第 2実施形態の図 2に示す台形波状電圧指令信号生成 部 31と同様に、台形波状電圧指令信号の傾斜領域を所定のテーブルを用いて生成 するか、または、テーブルの代わりに式を用いて台形波状電圧指令信号の傾斜領域 を求める。これにより、演算負荷を低減しつつ、歪のない三相交流出力電圧 (電流)を 確実に得ることができる。
[0121] 図 12は上記電力変換装置の指令波形を示しており、図 12(a)は振幅指令の波形を 示し、図 12(b)は相電圧指令波形を示している。また、図 10に示す電圧出力電圧形 変換器 101の代わりに電流形の変換器を用いた場合の線電流指令の波形を図 12(c )に示している。
[0122] 〔第 4実施形態〕
図 11はこの発明の第 4実施形態の電力変換装置の構成図を示して ヽる。
[0123] この第 4実施形態の電力変換装置は、図 11に示すように、三相交流電源 200から の三相交流電圧を直流電圧に変換するコンバータ部の一例としての電流出力電流 形変換器 201と、上記電流出力電流形変換器 201からの直流電圧を変換して所望 の三相交流電圧をモータ 203に出力するインバータ部 202と、上記電流出力電流形 変翻 201とインバータ部 202を制御する制御部 210とを備えている。上記電流出 力電流形変換器 201の正極側端子に第 1直流リンク部 L201の一端を接続する一方 、電流出力電流形変換器 201の負極側端子に第 2直流リンク部 L202の一端を接続 している。
[0124] 上記インバータ部 202は、第 1直流リンク部 L201にトランジスタ S ,S ,S のコレクタ
rp sp tp
を接続し、トランジスタ S ,S ,S のェミッタにダイオード D ,D ,Dのアノードを夫々
rp sp tp rp sp tp
接続している。上記ダイオード D ,D ,D の力ソードを相電圧 ν ,ν ,νの出力端子に夫
rp sp tp r s t
々接続している。一方、トランジスタ S ,S ,S のェミッタを第 2直流リンク部 L202に夫
rn sn tn
々接続し、トランジスタ S ,S ,S のコレクタにダイオード D ,D ,D の力ソードを夫々
rn sn tn rn sn tn
接続している。上記ダイオード Drn,Dsn,Dtnのアノードを相電圧 v ,ν ,νの出力端子
r s t
に夫々接続している。
[0125] また、制御部 210は、振幅指令 ksと位相指令 Θに基づいて、電流出力電流形変換 器 201に脈流電流指令信号を出力する脈流電流指令生成部 204と、位相指令 Θに 基づいて、台形状相電圧指令信号を生成する台形状相電圧指令生成部 205と、上 記台形状相電圧指令生成部 205からの台形状相電圧指令信号に基づ 、て、 PWM 変調信号を出力する PWM変調部 207と、 PWM変調部 207からの PWM変調信号 を論理変換してインバータ部 202に出力する電流形論理変換部 206とを有している 。上記 PWM変調部 207は、キヤリャ信号生成部 207aを有する。
[0126] ここで、台形状相電圧指令生成部 205は、第 1実施形態の図 1に示す台形波状電 圧指令信号生成部 11や、第 2実施形態の図 2に示す台形波状電圧指令信号生成 部 31と同様に、台形波状電圧指令信号の傾斜領域を所定のテーブルを用いて生成 するか、または、テーブルの代わりに式を用いて台形波状電圧指令信号の傾斜領域 を求める。これにより、演算負荷を低減しつつ、歪のない三相交流出力電圧 (電流)を 確実に得ることができる。
[0127] 図 12は上記電力変換装置の指令波形を示しており、図 12(a)は振幅指令の波形を 示し、図 12(b)は相電流指令の波形を示している。また、図 12(c)は図 11の電流形論 理変換部 206で変換され、インバータ部 202に与えられる線電流指令値を示してい る。
[0128] なお、上記第 3,第 4実施形態の電力変換装置において、
τ40 = ( l - Vr* )/ 2 =
τ60 = 1 - τ40 =
Figure imgf000036_0001
で表される空間ベクトル変調方式の基本式を用いて、電圧ベクトルの出力時間を決 定すること〖こよって、 PWM波形生成を行うこともできる。
[0129] 〔第 5実施形態〕
図 17はこの発明の第 5実施形態の直流リンク付き直接形電力変換装置の構成図 である。この第 5実施形態の直流リンク付き直接形電力変換装置は、コンバータ部と インバータ部とを接続する直流リンク部に平滑用のフィルタを有しない。
[0130] この第 5実施形態の直接形電力変換装置は、制御部を除いて第 1比較例の図 1に 示す直接形電力変換装置のコンバータ部とインバータ部と同一の構成をしており、図
17ではコンバータ部とインバータ部を省略する (コンバータ部とインバータ部について は図 1を援用する)。
[0131] また、上記制御部 303は、三相交流入力電圧に同期するための基準信号の一例と しての電源同期信号 Vに基づいて、台形波状線電流指令信号 d *,d *,d *を生成する
r r s t
指令信号生成部およびコンバータ部用指令信号生成部の一例としての台形波状線 電流指令生成部 31 1と、上記台形波状線電流指令生成部 311からの台形波状線電 流指令信号 d *,d *,d *と電源同期信号 Vに基づいて、キヤリャ信号 Α,Βに対応する信
r s t r
号波 d *,d *,d *,d *を出力する信号分配部 316と、上記信号分配部 316からの信 rpa rpo rna rno
号波 d *,d *,d *,d *とキヤリャ信号 A,B (図 17では"キヤリャ A","キヤリャ B")とを比 rpa rpo rna rno
較するための比較部 312と、上記比較部 312からの比較結果に基づいてゲート信号 を出力する論理和演算部 313と、上記台形波状線電流指令生成部 311からの台形 波状線電流指令信号 d *,d *,d *に基づいて、通流比 d ,dを検出する 2相指令検出部
r s t rt st
314と、上記キヤリャ信号 Α,Βを生成するキヤリャ信号生成部 315と、上記インバータ 部 2に対する出力電圧指令信号 V *,V *,V *を生成するインバータ部用指令信号生 成部の一例としての出力電圧指令信号生成部 321と、上記出力電圧指令信号生成 部 321からの出力電圧指令信号 Vu*,Vv*,Vw*と 2相指令検出部 314からの通流比 drt,d に基づいて、
st
d + d V* (V* :各相の電圧ベクトル)
rt st
を出力する演算部 322と、上記出力電圧指令信号生成部 321からの出力電圧指令 信号 V *,V *,V *と 2相指令検出部 314からの通流比 dに基づいて、
d
rt (l-v*) (v*:各相の電圧ベクトル)
を出力する演算部 323と、上記演算部 322, 323からの演算結果とキヤリャ信号とを 比較するための比較部 324と、上記比較部 324からの比較結果に基づいてゲート信 号を出力する論理和演算部 325とを有する。
[0132] 上記論理和演算部 313からのゲート信号によりコンバータ部 1のスィッチ S ,S ,S , rp rn sp
S ,S ,S をオンオフ制御すると共に、論理和演算部 325からのゲート信号によりイン sn tp tn
バータ部 2のスィッチ S ,S ,S ,S ,S ,S をオンオフ制御する。
up un vp vn wp wn
[0133] 上記 2相指令検出部 314と演算部 322, 323で指令信号補正部を構成している。ま た、上記比較部 312と論理和演算部 313でコンバータ部用 PWM変調信号生成部を 構成し、比較部 324と論理和演算部 325でインバータ部用 PWM変調信号生成部を 構成している。
[0134] 上記台形波状線電流指令生成部 311は、台形波状線電流指令信号 d *,d *,d *の
r s t 傾斜領域を所定のテーブルを用いて生成する。
[0135] ここで、次式に基づ 、て、台形波状線電流指令信号 d *,d *,d *の傾斜領域における
r s t
値を予めテーブルとして設定して 、る。
\d*\ = ( 1 - V3 tan - π/6 ))/2
J d* J = ( 1 + V3 tan - π/6 ))/2 ここで、 d *,d *は線電流通流比であり、位相角 φは 0≤ φ≤π /3である。また、位相
s t
角 φは、三相交流入力電圧の相電圧 Vに同期している。
[0136] なお、テーブルの代わりに上記式を用いて台形波状線電流指令信号 d *,d *,d *の
r s t 傾斜領域を求めてもよい。
[0137] 図 13はキヤリャ比較を用いた場合の線電流通流比を示しており、図 13(a)は相電圧 波形を示し、図 13(b)は線電流通流比波形を示している。例えば、図 13に示すモード 1の領域にお 、て、二相変調される傾斜領域を上記式に基づ 、て線電流通流比指 令を生成する。
[0138] なお、ここで用いる台形波状波形は、第 1比較例の台形波状電圧指令信号 V *,V *,
r s
V *の線間電圧波形と同等である (電圧形、電流形の相対性より線電流指令に相当)。
t
[0139] 表 1は、モード毎の比較すべきキヤリャ信号を示している力 上記二相の指令値 (d *
s
,d *)の和が 1となるため、二相夫々が異なるキヤリャ信号で比較されるように選択すれ t
ばよい。ここでは、台形波状線電流指令信号 d *,d *,d *の立ち上がり波形でキヤリャ信
r s t
号 Aを選択し、立ち下がり波形でキヤリャ信号 Bを選択している。
[0140] [表 1]
Figure imgf000038_0001
[0141] また、図 14は、表 1の変調方式を説明するための図を示している。図 14において、 上から順に、通流比指令 d *、指令 d *、指令 d *、信号分配信号 C、信号分配信号 C
r rp rn a b
、信号波 d *、信号波 d *、信号波 d *、信号波 d *、ゲート信号 S 、ゲート信号 S を
rpa rpo rna rnb rp rn 示している。
[0142] 信号分配部 316において、通流比指令 d *は正負夫々の指令 d *、 d *に分離した
r rp rn
後、指令値の波形を π Ζ2進相した信号分配信号 C ,Cに基づいて、比較すべきキ
a b
ャリャ信号 Α,Βに対応する信号波 d *,d *,d *,d *を得る。すなわち、信号波 d *は
rpa rpb rna rnb rpa
、指令 d *と信号分配信号 Cとの論理積により得られ、信号波 d Ίま、指令 d *と信号 rp a rpo rp 分配信号 Cとの論理積により得られ、信号波 d *は、指令 d *と信号分配信号 Cとの
b rna rn a 論理積により得られ、信号波 d *は、指令 d *と信号分配信号 Cとの論理積により得
rnb rn b
られる。 [0143] ここで得られた信号は、比較部 312で 2つのキヤリャ信号 Α,Βと比較された後、論理 和演算部 313で論理和をとることにより、上下アームのゲート信号 S ,S を得る。通流
rp rn
比指令 d *,d *についても同様にして、ゲート信号 s ,s ,s ,s を得る。すなわち、ゲ s t sp sn tp tn
ート信号 S は、信号波 d *と信号波 d *との論理和により得られ、ゲート信号 S は、
rp rpa rpb rn 信号波 d *と信号波 d *との論理和により得られる。
rna rnb
[0144] 上記構成の直接形電力変換装置によれば、コンバータ部 1により変換された直流 電圧の脈流状の電圧 (電流)波形に対して、三相交流出力電圧 (電流)に歪を生じな 、 ように、指令信号補正部 (314, 322, 323)により出力電圧指令信号を補正して、その 補正された出力電圧指令信号に基づいて、コンバータ部 1により変換された直流電 圧を所定の三相交流出力電圧に変換する。このとき、台形波状線電流指令生成部 3 11は、台形波状線電流指令信号 d *,d *,d *の傾斜領域を、
r s t
= ( 1 - V3 tan - π/6 ))/2
= ( 1
Figure imgf000039_0001
+ V3 tan - π/6 ))/2 に基づいて生成することによって、簡単な構成で制御部の演算負荷を低減すること ができる。
[0145] 同様に、空間ベクトル変調を用いて実現することも可能であり、図 15(a)は相電圧波 形を示し、図 15(b)は線電流通流比波形を示し、図 16は電流形空間ベクトル変調方 式の PWM変調における電流ベクトルを示して!/、る。
[0146] 図 16に示す電流ベクトルは、相電流で規定されるが、台形波状信号波であり 1相が 60度期間導通状態であるため、図 15に示すように、二相の線電流通流比に基づい て、次式のように各電流ベクトルの通電時間を与えることにより、相電流を供給するこ とがでさる。
Figure imgf000039_0002
rrt = 7 ( 1 + 1 (^ _ ^6》/2
[0147] 表 2は、この電流形空間ベクトル変調方式の PWM変調における各電流ベクトルの 出力時間を示している。
[0148] [表 2] I 2 3 4 5 6
s 〇 τ X X X τ
rs rt
s X τ
■Ψ ί 〇 τ
rs X X
s X X X τ
ri 〇 τ
rs
s X X τ τ
ri 〇 rs X
s τ X X X
sn rs ri 〇
τ τ
n 〇 rs X X X
[0149] 〔第 6実施形態〕
図 18はこの発明の第 6実施形態の直接形電力変換装置の一例としてのマトリックス コンバータの構成図である。
[0150] この第 6実施形態の直接形電力変換装置は、制御部を除いて第 2比較例の図 2に 示す直接形電力変換装置の変換部と同一の構成をしており、図 18では変換部を省 略する (変換部については図 2を援用する)。
電圧形との相違点は、仮想コンバータ部と仮想インバータ部の同期において、一相 変調波形に対して、二相変調波形を用いることである。また、仮想コンバータ部側に ついては、キヤリャ信号を二相用いている力 ゲート信号の生成に相電流から線電流 への論理変換部を不要とする点が異なる。
[0151] また、上記制御部 405は、三相交流入力電圧に同期するための基準信号の一例と しての電源同期信号 Vに基づいて、台形波状線電流指令信号 d *,d *,d *を生成する
r r s t
指令信号生成部およびコンバータ部用指令信号生成部の一例としての台形波状線 電流指令生成部 431と、上記台形波状線電流指令生成部 431からの台形波状線電 流指令信号 d *,d *,d *と電源同期信号 Vに基づいて、キヤリャ信号 Α,Βに対応する信
r s t r
号波 d *,d *,d *,d *を出力する信号分配部 436と、上記信号分配部 436からの信 rpa rpo rna rno
号波 d *,d *,d *,d *とキヤリャ信号 A,B (図 18では"キヤリャ A","キヤリャ B")とを比 rpa rpo rna rno
較するための比較部 432と、上記比較部 432からの比較結果に基づいてゲート信号 を出力する論理和演算部 433と、上記台形波状線電流指令生成部 431からの台形 波状線電流指令信号 d *,d *,d *に基づいて、通流比 d ,dを検出する 2相指令検出部 r s t rt st
434と、上記キヤリャ信号 Α,Βを生成するキヤリャ信号生成部 435と、上記変換部 4に 対する出力電圧指令信号 V *,V *,V *を生成するインバータ部用指令信号生成部の 一例としての出力電圧指令信号生成部 441と、上記出力電圧指令信号生成部 441 力もの出力電圧指令信号 V *,V *,V *と 2相指令検出部 434からの通流比 d ,dに基 u V w rt st づいて、
d +d V* (V*:各相の電圧ベクトル)
rt st
を出力する演算部 442と、上記出力電圧指令信号生成部 441からの出力電圧指令 信号 V *,V *,V *と 2相指令検出部 434からの通流比 dに基づいて、
d (l -v*) (v*:各相の電圧ベクトル)
rt
を出力する演算部 443と、上記演算部 442, 443からの演算結果とキヤリャ信号とを 比較するための比較部 444と、上記比較部 444からの比較結果に基づいてゲート信 号を出力する論理和演算部 445と、上記論理和演算部 433からの信号と論理和演 算部 445からの信号に基づ 、て、ゲート信号を合成するゲート信号合成部 450とを 有する。
[0152] 上記ゲート信号合成部 450からのゲート信号により変換部 4のスィッチ S ,S ,S ,S ur us ut v
,S ,S ,S ,S ,S をオンオフ制御する。
r vs vt wr ws wt
[0153] 上記 2相指令検出部 434と演算部 442, 443で指令信号補正部を構成している。ま た、上記比較部 432と論理和演算部 433でコンバータ部用 PWM変調信号生成部を 構成し、比較部 444と論理和演算部 445でインバータ部用 PWM変調信号生成部を 構成している。
[0154] 上記台形波状線電流指令生成部 431は、台形波状線電流指令信号 d *,d *,d *の r s t 傾斜領域を所定のテーブルを用いて生成する。
[0155] ここで、上記第 5実施形態と同様に、台形波状線電流指令信号 d *,d *,d *の傾斜領 r s t 域における値を予めテーブルとして設定して 、る。
[0156] なお、テーブルの代わりに上記式を用いて台形波状線電流指令信号 d *,d *,d *の r s t 傾斜領域を求めてもよい。
[0157] 上記構成のマトリックスコンバータによれば、仮想コンバータ部により変換された仮 想直流電圧の脈流状の電圧 (電流)波形に対して、三相交流出力電圧 (電流)に歪を 生じな 、ように、指令信号補正部 (434,442,443)により出力電圧指令信号を補正し て、その補正された出力電圧指令信号に基づいて、仮想インバータ部は、仮想コン バータ部により変換された仮想直流電圧を所定の三相交流出力電圧に変換する。こ のとき、台形波状電圧指令生成部 31は、台形波状線電流指令信号 d *,d *,d *の傾斜
r s t 領域を、
| | = ( 1 - V3 tan - π/ら ))/2
I I = ( 1 + V3 tan - π/6 ))/2 に基づいて生成することによって、簡単な構成で制御部の演算負荷を低減すること ができる。
上記第 5,第 6実施形態では、テーブルまたは式を用いて傾斜領域を求めた台形波 状電圧指令信号,台形波状線電流指令信号をコンバータ側に適用した直接形の電 力変換装置について説明したが、台形波状の指令信号をインバータ側に適用した電 力変換装置にこの発明を適用してもよい。

Claims

請求の範囲
[1] 台形波状の指令信号を基準信号の位相角に基づ 、て生成する指令信号生成部 (1 1,31, 105, 205, 311,431)と、
キヤリャ信号を生成するキヤリャ信号生成部 (15,35, 106a,207a,315,435)と、 上記指令信号生成部 (11, 31, 105,205,311 ,431)からの上記台形波状の指令信 号および上記キヤリャ信号生成部 (15,35, 106a,207a,315,435)により生成された 上記キヤリャ信号に基づいて、三相交流入力電圧を直流電圧に変換するか、または 、直流電圧を三相交流出力電圧に変換する変換部 (1,4, 102,202)と
を備え、
上記指令信号生成部 (11, 31, 105,205,311 ,431)は、上記台形波状の指令信号 の傾斜領域を、所定のテーブルまたは所定の式を用いて生成することを特徴とする 電力変換装置。
[2] 三相交流入力電圧を直流電圧に変換するコンバータ部 (1)と、上記コンバータ部 (1) により変換された上記直流電圧を所定の三相交流出力電圧に変換するインバータ 部 (2)とを備え、上記コンバータ部 (1)と上記インバータ部 (2)とを接続する直流リンク部 に平滑用のフィルタを有しない電力変換装置であって、
上記三相交流入力電圧に同期した台形波状のコンバータ部用指令信号を生成す るコンバータ部用指令信号生成部 (11, 31, 311,431)と、
キヤリャ信号を生成するキヤリャ信号生成部 (15,35,315,435)と、
上記所定の三相交流出力電圧を出力するためのインバータ部用指令信号を生成 するインバータ部用指令信号生成部 (21 ,41, 321,441)と、
上記コンバータ部用指令信号生成部 (11,31,311 ,431)からの上記台形波状のコ ンバータ部用指令信号に基づいて、上記インバータ部用指令信号生成部 (21,41,3 21 ,441)により生成された上記インバータ部用指令信号を補正する指令信号補正部 ひ 4,22,23, 34,42,43, 314,322,323,434,442,443)と
を備え、
上記コンバータ部 (1)は、上記コンバータ部用指令信号生成部 (11, 31, 311,431) からの上記台形波状のコンバータ部用指令信号および上記キヤリャ信号生成部 (15, 35, 315,435)からの上記キヤリャ信号に基づいて、上記三相交流入力電圧を上記 直流電圧に変換し、
上記インバータ部 (2)は、上記指令信号補正部 (14,22,23,34,42,43,314,322,3 23,434,442,443)により補正された上記インバータ部用指令信号に基づいて、上記 コンバータ部 (1)により変換された上記直流電圧を上記所定の三相交流出力電圧に 変換し、
上記コンバータ部用指令信号生成部 (11 , 31 , 311 ,431)は、上記台形波状のコン バータ部用指令信号の傾斜領域を、所定のテーブルまたは所定の式を用いて生成 することを特徴とする電力変換装置。
[3] 請求項 1または 2に記載の電力変換装置において、
上記所定の式は、
3 tan^ - π / b ι
(ただし、位相角 φは 0≤ φ≤ π /3)
- ¾ tan^— π / 6)
(ただし、位相角 φは π≤ φ≤4 π Ζ3)
であることを特徴とする電力変換装置。
[4] 請求項 2に記載の電力変換装置において、
上記コンバータ部用指令信号生成部 (11,31)からの上記コンバータ部用指令信号 と上記キヤリャ信号生成部 (15, 35)からの上記キヤリャ信号とを比較して、コンバータ 部用 PWM変調信号を生成するコンバータ部用 PWM変調信号生成部 (12, 13,32,3 3)と、
上記インバータ部用指令信号生成部 (21,41)からの上記インバータ部用指令信号 と上記コンバータ部 (1)に用いられたものと同一の上記キヤリャ信号とを比較して、ィ ンバータ部用 PWM変調信号を生成するインバータ部用 PWM変調信号生成部 (24, 25,44,45)と
を備え、
上記コンバータ部 (1)は、上記コンバータ部用 PWM変調信号生成部 (12, 13,32,3 3)により生成された上記コンバータ部 PWM変調信号に基づいて、上記三相交流入 力電圧を上記直流電圧に変換し、
上記インバータ部 (2)は、上記インバータ部用 PWM変調信号生成部 (24,25,44,4 5)により生成された上記インバータ部用 PWM変調信号に基づいて、上記コンバータ 部 (1)により変換された上記直流電圧を上記所定の三相交流出力電圧に変換するこ とを特徴とする電力変換装置。
[5] 請求項 4に記載の電力変換装置において、
上記キヤリャ信号は三角波状の信号であることを特徴とする電力変換装置。
[6] 請求項 4に記載の電力変換装置において、
上記キヤリャ信号は鋸波状の信号であることを特徴とする電力変換装置。
[7] 請求項 2に記載の電力変換装置において、
上記コンバータ部 (1)は、
上記三相交流入力電圧の各相電圧が一端に夫々入力され、第 1直流リンク部に他 端が夫々接続された 3つのスイッチング回路 (S ,S ,S )と、
rp sp tp
上記三相交流入力電圧の各相電圧が一端に夫々入力され、第 2直流リンク部に他 端が夫々接続された 3つのスイッチング回路 (S ,S ,S )と
rn sn tn
を有し、
上記インバータ部 (2)は、
上記所定の三相交流出力電圧の各出力端子が一端に夫々接続され、上記第 1直 流リンク部に他端が夫々接続された 3つのスイッチング回路 (S ,S ,S )と、
up vp wp
上記所定の三相交流出力電圧の各出力端子が一端に夫々接続され、上記第 2直 流リンク部に他端が夫々接続された 3つのスイッチング回路 (S ,S ,S )と
un vn wn
を有することを特徴とする電力変換装置。
[8] 請求項 2に記載の電力変換装置において、
上記コンバータ部に相当する仮想コンバータ部と、上記インバータ部に相当する仮 想インバータ部と、上記直流リンク部に相当する仮想直流リンク部とを有するマトリック スコンバータであって、
上記仮想コンバータ部および上記仮想インバータ部は、
上記三相交流入力電圧のうちの第 1相電圧が一端に夫々入力され、上記所定の三 相交流出力電圧の各出力端子に他端が夫々接続された 3つのスイッチング回路 (S ,
ur
S ,S )と、
vr wr
上記三相交流入力電圧のうちの第 2相電圧が一端に夫々入力され、上記所定の三 相交流出力電圧の各出力端子に他端が夫々接続された 3つのスイッチング回路 (S ,
us
S ,S )と、
上記三相交流入力電圧のうちの第 3相電圧が一端に夫々入力され、上記所定の三 相交流出力電圧の各出力端子に他端が夫々接続された 3つのスイッチング回路 (S ,
ut
S ,S )とを有することを特徴とする電力変換装置。
vt wt
[9] 請求項 1に記載の電力変換装置にお!、て、
上記指令信号生成部 (311 ,431)は、上記台形波状の指令信号の傾斜領域を、
| | = ( 1 - V3 tan - π/ら ))/2
I I = ( 1 + 3 tan - π/ ))/2
(ただし、 d *,d *は線電流通流比、位相角 φは 0≤ ≤ π /3)
s t
に基づ!/、て生成することを特徴とする電力変換装置。
[10] 請求項 2に記載の電力変換装置において、
上記コンバータ部用指令信号生成部 (311 ,431)は、上記台形波状のコンバータ部 用指令信号の傾斜領域を、
| | = ( 1 - V3 tan - π/6 ))/2
I I = ( 1 + V3 tan - π/6 ))/2
(ただし、 d *,d *は線電流通流比、位相角 φは 0≤ ≤ π /3)
s t
に基づ!/、て生成することを特徴とする電力変換装置。
[11] 請求項 10に記載の電力変換装置において、
上記コンバータ部 (1)は、
上記三相交流入力電圧の各相電圧が一端に夫々入力され、第 1直流リンク部に他 端が夫々接続された 3つのスイッチング回路 (S ,S ,S )と、
rp sp tp
上記三相交流入力電圧の各相電圧が一端に夫々入力され、第 2直流リンク部に他 端が夫々接続された 3つのスイッチング回路 (S ,S ,S )と
rn sn tn を有し、
上記インバータ部 (2)は、
上記所定の三相交流出力電圧の各出力端子が一端に夫々接続され、上記第 1直 流リンク部に他端が夫々接続された 3つのスイッチング回路 (S ,S ,S )と、
up vp wp
上記所定の三相交流出力電圧の各出力端子が一端に夫々接続され、上記第 2直 流リンク部に他端が夫々接続された 3つのスイッチング回路 (S ,S ,S )と
un vn wn
を有することを特徴とする電力変換装置。
[12] 請求項 10に記載の電力変換装置において、
上記コンバータ部に相当する仮想コンバータ部と、上記インバータ部に相当する仮 想インバータ部と、上記直流リンク部に相当する仮想直流リンク部とを有するマトリック スコンバータであって、
上記仮想コンバータ部および上記仮想インバータ部は、
上記三相交流入力電圧のうちの第 1相電圧が一端に夫々入力され、上記所定の三 相交流出力電圧の各出力端子に他端が夫々接続された 3つのスイッチング回路 (S ,
ur
S ,S )と、
vr wr
上記三相交流入力電圧のうちの第 2相電圧が一端に夫々入力され、上記所定の三 相交流出力電圧の各出力端子に他端が夫々接続された 3つのスイッチング回路 (S ,
us
S ,S )と、
上記三相交流入力電圧のうちの第 3相電圧が一端に夫々入力され、上記所定の三 相交流出力電圧の各出力端子に他端が夫々接続された 3つのスイッチング回路 (S ,
ut
S ,S )とを有することを特徴とする電力変換装置。
vt wt
[13] 三相交流入力電圧に同期したコンバータ部用指令信号を生成するコンバータ部用 指令信号生成部 (11,31)と、
所定の三相交流出力電圧を出力するためのインバータ部用指令信号を生成するィ ンバータ部用指令信号生成部 (21,41)と、
キヤリャ信号を生成するキヤリャ信号生成部 (15, 35)と、
上記コンバータ部用指令信号生成部 (11,31)からの上記コンバータ部用指令信号 および上記キヤリャ信号生成部 (15,35)により生成された上記キヤリャ信号に基づい て、上記三相交流入力電圧を直流電圧に変換するコンバータ部 (1)と、 上記インバータ部用指令信号生成部 (21,41)からの上記インバータ部用指令信号 および上記コンバータ部 (1)に用いられたものと同一の上記キヤリャ信号に基づいて 、上記コンバータ部 (1)により変換された上記直流電圧を上記所定の三相交流出力 電圧に変換するインバータ部 (2)と
を有することを特徴とする電力変換装置。
[14] 請求項 13に記載の電力変換装置において、
上記キヤリャ信号は三角波状の信号であることを特徴とする電力変換装置。
[15] 請求項 13に記載の電力変換装置において、
上記キヤリャ信号は鋸波状の信号であることを特徴とする電力変換装置。
[16] 台形波状の指令信号を指令信号生成部 (11, 31, 105,205,311,431)により生成す るステップと、
キヤリャ信号をキヤリャ信号生成部 (15,35, 106a,207a,315,435)により生成するス テツプと、
上記指令信号生成部 (11, 31, 105,205,311 ,431)からの上記台形波状の指令信 号および上記キヤリャ信号生成部 (15,35, 106a,207a,315,435)により生成された 上記キヤリャ信号に基づいて、変換部 (1,4, 102,202)によって、三相交流入力電圧 を直流電圧に変換するカゝ、または、直流電圧を三相交流出力電圧に変換するステツ プと
を有し、
上記指令信号生成部 (11, 31, 105,205,311 ,431)により上記台形波状の指令信 号を生成するステップにおいて、上記台形波状の指令信号の傾斜領域を、所定のテ 一ブルまたは所定の式を用いて生成することを特徴とする電力変換装置の制御方法
[17] 三相交流入力電圧を直流電圧に変換するコンバータ部 (1)と、上記コンバータ部 (1) により変換された上記直流電圧を所定の三相交流出力電圧に変換するインバータ 部 (2)とを備え、上記コンバータ部 (1)と上記インバータ部 (2)とを接続する直流リンク部 に平滑用のフィルタを有しない電力変換装置の制御方法であって、 上記三相交流入力電圧に同期した台形波状のコンバータ部用指令信号をコンパ 一タ部用指令信号生成部 (11,31,311,431)により生成するステップと、
キヤリャ信号をキヤリャ信号生成部 (15,35,315,435)により生成するステップと、 上記所定の三相交流出力電圧を出力するためのインバータ部用指令信号をインバ 一タ部用指令信号生成部 (21,41, 321,441)により生成するステップと、
上記コンバータ部用指令信号生成部 (11,31,311 ,431)からの上記台形波状のコ ンバータ部用指令信号に基づいて、上記インバータ部用指令信号生成部 (21,41,3 21,441)により生成された上記インバータ部用指令信号を指令信号補正部 (14,22, 23, 34,42,43, 314,322,323,434,442,443)によりネ甫正するステップと、
上記コンバータ部用指令信号生成部 (11,31,311 ,431)からの上記台形波状のコ ンバータ部用指令信号および上記キヤリャ信号生成部 (15,35,315,435)からの上 記キヤリャ信号に基づいて、上記コンバータ部 (1)により、上記三相交流入力電圧を 上記直流電圧に変換するステップと、
上記指令信号ネ ΐ正部 (14,22,23, 34,42,43, 314,322,323,434,442,443)により 補正された上記インバータ部用指令信号に基づいて、上記インバータ部 (2)によって 、上記コンバータ部 (1)により変換された上記直流電圧を上記所定の三相交流出力 電圧に変換するステップと
を有し、
上記コンバータ部用指令信号生成部 (11, 31, 311,431)により上記台形波状のコン バータ部用指令信号を生成するステップにおいて、上記台形波状のコンバータ部用 指令信号の傾斜領域を、所定のテーブルまたは所定の式を用いて生成することを特 徴とする電力変換装置の制御方法。
請求項 16または 17に記載の電力変換装置の制御方法において、
上記所定の式は、
Figure imgf000049_0001
(ただし、位相角 φは 0≤ φ≤ π /3)
-V3 tan^-π /6)
(ただし、位相角 φは π≤ φ≤4 π Ζ3) であることを特徴とする電力変換装置の制御方法。
[19] 請求項 16または 17に記載の電力変換装置の制御方法において、
上記コンバータ部用指令信号生成部 (311 ,431)により上記台形波状のコンバータ 部用指令信号を生成するステップにおいて、上記台形波状のコンバータ部用指令信 号の傾斜領域を、
| | = ( 1 - V3 tan - π/ら ))/2
I I = ( 1 + V3 tan - π/6 ))/2
(ただし、 d *,d *は通流比、位相角 φは 0≤ ≤ π /3)
s t
に基づいて生成することを特徴とする電力変換装置の制御方法。
[20] 三相交流入力電圧に同期したコンバータ部用指令信号をコンバータ部用指令信 号生成部 (11 , 31)により生成するステップと、
所定の三相交流出力電圧を出力するためのインバータ部用指令信号をインバータ 部用指令信号生成部 (21 ,41)により生成するステップと、
キヤリャ信号をキヤリャ信号生成部 (15,35)により生成するステップと、
上記コンバータ部用指令信号生成部 (11 ,31)からの上記コンバータ部用指令信号 および上記キヤリャ信号生成部 (15,35)により生成された上記キヤリャ信号に基づい て、上記三相交流入力電圧力も直流電圧にコンバータ部 (1)により変換するステップ と、
上記インバータ部用指令信号生成部 (21 ,41)からの上記インバータ部用指令信号 および上記コンバータ部 (1)に用いられたものと同一の上記キヤリャ信号に基づいて 、上記コンバータ部 (1)により変換された上記直流電圧を上記所定の三相交流出力 電圧にインバータ部 (2)により変換するステップと
を有することを特徴とする電力変換装置の制御方法。
[21] 空間ベクトル変調方式により PWM変調信号を生成する PWM変調信号生成部と、 上記 PWM変調信号生成部からの上記 PWM変調信号に基づ!/、て、三相交流入 力電圧を直流電圧に変換するか、または、直流電圧を三相交流出力電圧に変換す る変換部と
を備え、 上記 PWM変調信号生成部は、上記空間ベクトル変調方式に基づ!/、て出力すべき 電圧ベクトルを用い、キヤリャ周期を T、位相角 φとするとき、
0
4 = Τ0 (
Figure imgf000051_0001
- π/6 ))/2
6 = Τ0 ( 1 + ^ ίΆη( - π/6 ))/2
(ただし、 0≤ φ≤π Ζ3)
で表される出力時間 τ , τ の電圧ベクトルに基づいて、上記 PWM変調信号を生成
4 6
することを特徴とする電力変換装置。
三相交流入力電圧を直流電圧に変換するコンバータ部と、上記コンバータ部により 変換された上記直流電圧を所定の三相交流出力電圧に変換するインバータ部とを 備え、上記コンバータ部と上記インバータ部とを接続する直流リンク部に平滑用のフ ィルタを有しな 、電力変換装置であって、
空間ベクトル変調方式により上記三相交流入力電圧に同期したコンバータ部用 P WM変調信号を生成するコンバータ部用 PWM変調信号生成部と、
上記所定の三相交流出力電圧を出力するためのインバータ部用 PWM変調信号 を生成するインバータ部用 PWM変調信号生成部と、
上記コンバータ部用 PWM変調信号生成部からの上記コンバータ部用 PWM変調 信号に基づいて、上記インバータ部用 PWM変調信号生成部により生成された上記 インバータ部用 PWM変調信号を補正する PWM変調信号補正部と
を備え、
上記コンバータ部は、上記コンバータ部用 PWM変調信号生成部からの上記コン バータ部用 PWM変調信号に基づいて、上記三相交流入力電圧を上記直流電圧に 変換し、
上記インバータ部は、上記 PWM変調信号補正部により補正された上記インバータ 部用 PWM変調信号に基づいて、上記コンバータ部により変換された上記直流電圧 を上記所定の三相交流出力電圧に変換し、
上記コンバータ部用 PWM変調信号生成部は、上記空間ベクトル変調方式に基づ く上記直流電圧を出力すべき電圧ベクトルを用い、キヤリャ周期を T、位相角 φとす
0
るとさ、 て 4 =
6 =
Figure imgf000052_0001
(ただし、 0≤ φ≤π Ζ3)
で表される出力時間 τ , τ の電圧ベクトルに基づいて、上記コンバータ部用 PWM
4 6
変調信号を生成することを特徴とする電力変換装置。
[23] 空間ベクトル変調方式により PWM変調信号を生成する PWM変調信号生成部と、 上記 PWM変調信号生成部からの上記 PWM変調信号に基づ!/、て、三相交流入 力電圧を直流電圧に変換するか、または、直流電圧を三相交流出力電圧に変換す る変換部と
を備え、
上記 PWM変調信号生成部は、上記空間ベクトル変調方式に基づ!/、て出力すべき 電流ベクトルを用い、キヤリャ周期を T、位相角 φとするとき、
Trs = Γ0 ( 1—
Figure imgf000052_0002
rrt = 7 ( 1 + 1 ( _ ^6》/2
(ただし、 0≤ φ≤π Ζ3)
で表される出力時間 τ , τ の電流ベクトルに基づいて、上記 PWM変調信号を生成 rs rt
することを特徴とする電力変換装置。
[24] 三相交流入力電圧を直流電圧に変換するコンバータ部と、上記コンバータ部により 変換された上記直流電圧を所定の三相交流出力電圧に変換するインバータ部とを 備え、上記コンバータ部と上記インバータ部とを接続する直流リンク部に平滑用のフ ィルタを有しな 、電力変換装置であって、
空間ベクトル変調方式により上記三相交流入力電圧に同期したコンバータ部用 P WM変調信号を生成するコンバータ部用 PWM変調信号生成部と、
上記所定の三相交流出力電圧を出力するためのインバータ部用 PWM変調信号 を生成するインバータ部用 PWM変調信号生成部と、
上記コンバータ部用 PWM変調信号生成部からの上記コンバータ部用 PWM変調 信号に基づいて、上記インバータ部用 PWM変調信号生成部により生成された上記 インバータ部用 PWM変調信号を補正する PWM変調信号補正部と を備え、
上記コンバータ部は、上記コンバータ部用 PWM変調信号生成部からの上記コン バータ部用 PWM変調信号に基づいて、上記三相交流入力電圧を上記直流電圧に 変換し、
上記インバータ部は、上記 PWM変調信号補正部により補正された上記インバータ 部用 PWM変調信号に基づいて、上記コンバータ部により変換された上記直流電圧 を上記所定の三相交流出力電圧に変換し、
上記コンバータ部用 PWM変調信号生成部は、上記空間ベクトル変調方式に基づ く上記直流電圧を出力すべき電流ベクトルを用い、キヤリャ周期を T、位相角 φとす
0
るとさ、
Figure imgf000053_0001
rrt = 7(1+ 1 ( _ ^6》/2
(ただし、 0≤ φ≤πΖ3)
で表される出力時間 τ ,τ の電流ベクトルに基づいて、上記コンバータ部用 PWM
rs rt
変調信号を生成することを特徴とする電力変換装置。
PCT/JP2007/058337 2006-04-20 2007-04-17 電力変換装置および電力変換装置の制御方法 WO2007123118A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2007800127068A CN101421911B (zh) 2006-04-20 2007-04-17 电力转换装置及电力转换装置的控制方法
EP07741773.1A EP2053731B1 (en) 2006-04-20 2007-04-17 Power converting device, and control method for the device
US12/297,845 US7944717B2 (en) 2006-04-20 2007-04-17 Power converter apparatus and power converter apparatus control method
AU2007241931A AU2007241931B2 (en) 2006-04-20 2007-04-17 Power converter apparatus and power converter apparatus control method
AU2010202505A AU2010202505B2 (en) 2006-04-20 2010-06-16 Power converter apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006116722 2006-04-20
JP2006-116722 2006-04-20
JP2006-321687 2006-11-29
JP2006321703A JP4135027B2 (ja) 2006-04-20 2006-11-29 電力変換装置および電力変換装置の制御方法
JP2006-321703 2006-11-29
JP2006321687A JP4135026B2 (ja) 2006-04-20 2006-11-29 電力変換装置および電力変換装置の制御方法

Publications (1)

Publication Number Publication Date
WO2007123118A1 true WO2007123118A1 (ja) 2007-11-01

Family

ID=38625018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058337 WO2007123118A1 (ja) 2006-04-20 2007-04-17 電力変換装置および電力変換装置の制御方法

Country Status (6)

Country Link
US (1) US7944717B2 (ja)
EP (1) EP2053731B1 (ja)
KR (1) KR100982119B1 (ja)
CN (3) CN102170236B (ja)
AU (2) AU2007241931B2 (ja)
WO (1) WO2007123118A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119321A1 (ja) 2008-03-28 2009-10-01 ダイキン工業株式会社 電力変換装置
JP4534007B2 (ja) * 2007-12-11 2010-09-01 国立大学法人東京工業大学 ソフトスイッチング電力変換装置
WO2010140650A1 (ja) 2009-06-04 2010-12-09 ダイキン工業株式会社 電力変換装置
WO2011024351A1 (ja) * 2009-08-26 2011-03-03 ダイキン工業株式会社 電力変換装置、及びその制御方法
EP2317638A1 (en) * 2008-08-21 2011-05-04 Daikin Industries, Ltd. Direct conversion device, method for controlling same, and control signal generation device
AU2009264654B2 (en) * 2008-07-01 2013-03-07 Daikin Industries, Ltd. Direct-type converting apparatus and method for controlling the same
WO2016148163A1 (ja) * 2015-03-18 2016-09-22 ダイキン工業株式会社 インバータの制御装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4029904B2 (ja) * 2006-04-28 2008-01-09 ダイキン工業株式会社 マトリックスコンバータおよびマトリックスコンバータの制御方法
JP5099305B2 (ja) * 2006-07-31 2012-12-19 富士電機株式会社 直接形電力変換器の制御装置
JP4240141B1 (ja) * 2007-10-09 2009-03-18 ダイキン工業株式会社 直接形交流電力変換装置
CN102160274B (zh) * 2008-09-22 2014-01-08 大金工业株式会社 电力变换器及其控制方法以及直接型矩阵变流器
WO2010032761A1 (ja) * 2008-09-22 2010-03-25 ダイキン工業株式会社 電力変換器及びその制御方法並びにダイレクトマトリックスコンバータ
US8730702B2 (en) * 2009-03-03 2014-05-20 Renewable Power Conversion, Inc. Very high efficiency three phase power converter
JP4780234B1 (ja) * 2010-04-07 2011-09-28 ダイキン工業株式会社 交流/直流変換装置
CN102263414A (zh) * 2010-05-25 2011-11-30 新能动力(北京)电气科技有限公司 电能变换装置与***
JP4877411B1 (ja) 2010-09-30 2012-02-15 ダイキン工業株式会社 リンク電圧測定方法
EP2763301B1 (en) * 2011-09-26 2016-12-07 Daikin Industries, Ltd. Power converter control method
KR101345704B1 (ko) 2011-09-29 2013-12-27 (주)시지바이오 섬유상 탈회골 기질의 제조방법
JP5299555B2 (ja) 2011-11-28 2013-09-25 ダイキン工業株式会社 電力変換制御装置
US9385620B1 (en) 2013-01-10 2016-07-05 Lockheed Martin Corporation AC link converter switch engine
KR101410731B1 (ko) 2013-02-13 2014-06-24 한국전기연구원 고압직류송전용 모듈형 멀티레벨 컨버터의 순환전류 억제 방법
CN106471725B (zh) * 2014-07-18 2018-02-27 大金工业株式会社 直接型交流电力变换装置
JP6765985B2 (ja) * 2017-02-16 2020-10-07 日立オートモティブシステムズ株式会社 インバータ装置および電動車両
JP7067380B2 (ja) * 2018-01-25 2022-05-16 株式会社豊田自動織機 インバータ装置
US10158299B1 (en) * 2018-04-18 2018-12-18 Rockwell Automation Technologies, Inc. Common voltage reduction for active front end drives
US11211879B2 (en) 2019-09-23 2021-12-28 Rockwell Automation Technologies, Inc. Capacitor size reduction and lifetime extension for cascaded H-bridge drives

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04121065A (ja) * 1990-09-07 1992-04-22 Hitachi Ltd 電力変換方法、電力変換装置およびその電力変換装置を用いた圧延システム
JPH0556655A (ja) * 1991-08-26 1993-03-05 Meidensha Corp 電圧形インバータのpwm演算方法
JPH0681514B2 (ja) 1989-09-20 1994-10-12 株式会社日立製作所 電力変換装置とその制御方法
JPH08228488A (ja) * 1995-02-21 1996-09-03 Nippon Electric Ind Co Ltd 高周波リンクdc/acコンバータのデッドタイム補正法
JPH1118488A (ja) * 1997-06-17 1999-01-22 Mitsubishi Electric Corp Pwmインバータ装置の制御方法および制御装置
JP2004222338A (ja) * 2003-01-09 2004-08-05 Fuji Electric Holdings Co Ltd 電力変換装置
JP2004266972A (ja) 2003-03-04 2004-09-24 Fuji Electric Holdings Co Ltd 交流−交流電力変換装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917620B2 (ja) * 1977-02-16 1984-04-23 株式会社日立製作所 インバ−タの保護装置
JPH0684514B2 (ja) 1986-08-20 1994-10-26 ライオン株式会社 浴室用液体洗浄剤組成物
CA1313219C (en) * 1988-10-07 1993-01-26 Boon-Teck Ooi Pulse width modulation high voltage direct current transmission system and converter
JPH06343266A (ja) * 1993-05-31 1994-12-13 Fuji Electric Co Ltd コンバータの制御回路
US5657220A (en) * 1995-12-04 1997-08-12 Astec International, Ltd. Electrical power inverter
US5736825A (en) * 1996-06-25 1998-04-07 Allen-Bradley Company, Inc. Method and apparatus for linearizing pulse width modulation by modifying command voltges
JP2002017088A (ja) 2000-06-29 2002-01-18 Toshiba Corp 電力変換装置の制御装置
JP4524882B2 (ja) 2000-08-16 2010-08-18 富士電機ホールディングス株式会社 電力変換システムの制御装置
JP3841282B2 (ja) * 2002-03-20 2006-11-01 株式会社安川電機 Pwmインバータ装置
JP4552466B2 (ja) * 2004-03-12 2010-09-29 株式会社日立製作所 交流モータの制御装置,2チップインバータ及びワンチップインバータ。
JP4240141B1 (ja) * 2007-10-09 2009-03-18 ダイキン工業株式会社 直接形交流電力変換装置
US7738267B1 (en) * 2009-01-07 2010-06-15 Rockwell Automation Technologies, Inc. Systems and methods for common-mode voltage reduction in AC drives

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681514B2 (ja) 1989-09-20 1994-10-12 株式会社日立製作所 電力変換装置とその制御方法
JPH04121065A (ja) * 1990-09-07 1992-04-22 Hitachi Ltd 電力変換方法、電力変換装置およびその電力変換装置を用いた圧延システム
JPH0556655A (ja) * 1991-08-26 1993-03-05 Meidensha Corp 電圧形インバータのpwm演算方法
JPH08228488A (ja) * 1995-02-21 1996-09-03 Nippon Electric Ind Co Ltd 高周波リンクdc/acコンバータのデッドタイム補正法
JPH1118488A (ja) * 1997-06-17 1999-01-22 Mitsubishi Electric Corp Pwmインバータ装置の制御方法および制御装置
JP2004222338A (ja) * 2003-01-09 2004-08-05 Fuji Electric Holdings Co Ltd 電力変換装置
JP2004266972A (ja) 2003-03-04 2004-09-24 Fuji Electric Holdings Co Ltd 交流−交流電力変換装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIXIANG WEI; THOMAS. A LIPO: "A Novel Matrix Converter Topology with Simple Commutation", IEEE IAS2001, vol. 3, 2001, pages 1749 - 1754
TAKAHARU TAKESHITA: "PWM Scheme for Current Source Three-Phase Inverters and Converters", TRANS. INST. ELECT. ENGNR. JPN. D, vol. 116, no. L, 1996

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4534007B2 (ja) * 2007-12-11 2010-09-01 国立大学法人東京工業大学 ソフトスイッチング電力変換装置
JPWO2009075366A1 (ja) * 2007-12-11 2011-04-28 国立大学法人東京工業大学 ソフトスイッチング電力変換装置
WO2009119321A1 (ja) 2008-03-28 2009-10-01 ダイキン工業株式会社 電力変換装置
US8450961B2 (en) 2008-03-28 2013-05-28 Daikin Industries, Ltd. Power converting apparatus
AU2009264654B2 (en) * 2008-07-01 2013-03-07 Daikin Industries, Ltd. Direct-type converting apparatus and method for controlling the same
US8659917B2 (en) 2008-07-01 2014-02-25 Daikin Industries, Ltd. Direct-type converting apparatus and method for controlling the same
US8711589B2 (en) 2008-08-21 2014-04-29 Daikin Industries, Ltd. Direct converting apparatus, method for controlling the same, and control signal generation device
EP2317638A1 (en) * 2008-08-21 2011-05-04 Daikin Industries, Ltd. Direct conversion device, method for controlling same, and control signal generation device
EP2317638A4 (en) * 2008-08-21 2013-07-17 Daikin Ind Ltd DIRECT CONVERSION DEVICE, METHOD FOR CONTROLLING IT AND DEVICE FOR GENERATING CONTROL SIGNALS
WO2010140650A1 (ja) 2009-06-04 2010-12-09 ダイキン工業株式会社 電力変換装置
US9276489B2 (en) 2009-06-04 2016-03-01 Daikin Industries, Ltd. Power converter having clamp circuit with capacitor and component for limiting current flowing into capacitor
JP2011072175A (ja) * 2009-08-26 2011-04-07 Daikin Industries Ltd 電力変換装置、及びその制御方法
US8773870B2 (en) 2009-08-26 2014-07-08 Daikin Industries, Ltd. Power converter and method for controlling same
WO2011024351A1 (ja) * 2009-08-26 2011-03-03 ダイキン工業株式会社 電力変換装置、及びその制御方法
WO2016148163A1 (ja) * 2015-03-18 2016-09-22 ダイキン工業株式会社 インバータの制御装置
JP2016174508A (ja) * 2015-03-18 2016-09-29 ダイキン工業株式会社 インバータの制御装置
AU2016234332B2 (en) * 2015-03-18 2018-04-19 Daikin Industries, Ltd. Inverter control method

Also Published As

Publication number Publication date
CN101421911B (zh) 2012-02-01
US7944717B2 (en) 2011-05-17
EP2053731A1 (en) 2009-04-29
KR100982119B1 (ko) 2010-09-14
AU2007241931A1 (en) 2007-11-01
CN103051203A (zh) 2013-04-17
AU2007241931B2 (en) 2010-08-12
KR20080106286A (ko) 2008-12-04
CN102170236B (zh) 2013-01-30
AU2010202505B2 (en) 2011-07-07
US20090175059A1 (en) 2009-07-09
EP2053731B1 (en) 2020-08-05
CN102170236A (zh) 2011-08-31
AU2010202505A1 (en) 2010-07-08
CN101421911A (zh) 2009-04-29
EP2053731A4 (en) 2017-04-19
CN103051203B (zh) 2015-11-04

Similar Documents

Publication Publication Date Title
WO2007123118A1 (ja) 電力変換装置および電力変換装置の制御方法
JP4135026B2 (ja) 電力変換装置および電力変換装置の制御方法
KR101072647B1 (ko) 전력 변환 장치
JP4029904B2 (ja) マトリックスコンバータおよびマトリックスコンバータの制御方法
JP4135027B2 (ja) 電力変換装置および電力変換装置の制御方法
JP5915751B2 (ja) マトリクスコンバータ
JP6826928B2 (ja) インバータ装置、空気調和機、インバータ装置の制御方法及びプログラム
JP4059083B2 (ja) 電力変換装置
JP2018174599A (ja) インバータ装置、空気調和機、インバータ装置の制御方法及びプログラム
JP4582125B2 (ja) 電力変換装置
JP4876600B2 (ja) 交流直接変換器の制御方法
JP4582126B2 (ja) 電力変換装置
JP3182322B2 (ja) Npcインバータのpwm制御装置
JPH07213067A (ja) Pwmコンバータの制御回路
JP5883733B2 (ja) 電力変換装置
JP4905174B2 (ja) 交流交流直接変換器の制御装置
WO2022208911A1 (ja) 電力変換装置およびモータモジュール
JP4742234B2 (ja) 交流交流直接変換装置の制御方法
JPH11299243A (ja) 高調波レス電力変換装置
JP2020089116A (ja) 電力変換装置
JPH07337026A (ja) Pwm制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741773

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 200780012706.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12297845

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007241931

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007741773

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2007241931

Country of ref document: AU

Date of ref document: 20070417

Kind code of ref document: A