WO2011024351A1 - 電力変換装置、及びその制御方法 - Google Patents

電力変換装置、及びその制御方法 Download PDF

Info

Publication number
WO2011024351A1
WO2011024351A1 PCT/JP2010/003144 JP2010003144W WO2011024351A1 WO 2011024351 A1 WO2011024351 A1 WO 2011024351A1 JP 2010003144 W JP2010003144 W JP 2010003144W WO 2011024351 A1 WO2011024351 A1 WO 2011024351A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
srp
stn
voltage
switching elements
Prior art date
Application number
PCT/JP2010/003144
Other languages
English (en)
French (fr)
Inventor
藤田崇之
榊原憲一
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to KR1020127004898A priority Critical patent/KR101343189B1/ko
Priority to US13/392,132 priority patent/US8773870B2/en
Priority to EP10811410.9A priority patent/EP2472708B1/en
Priority to AU2010288068A priority patent/AU2010288068B2/en
Priority to CN201080035825.7A priority patent/CN102474192B/zh
Publication of WO2011024351A1 publication Critical patent/WO2011024351A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power converter for converting AC power into DC power or AC power and a control method thereof.
  • a power conversion device that converts commercial AC power into predetermined AC power is often used.
  • Such power converters include, for example, what is called a direct AC power converter of a type that directly obtains a desired AC output from an AC voltage, and a so-called matrix converter is known as a representative example.
  • This matrix converter eliminates the need for large capacitors and reactors that smooth voltage pulsations due to commercial frequencies, so it can be expected to reduce the size of the power converter, and has recently been attracting attention as a next-generation power converter (for example, (See Patent Document 1).
  • a reverse blocking diode may be connected in series to a switching element used in a power converter in order to ensure a withstand voltage against a reverse bias.
  • a reverse blocking diode it has been proposed to use a reverse blocking IGBT (Insulated Gate Bipolar Transistor) that does not require a reverse blocking diode and can reduce the on-voltage drop of the switching element as a switching element (for example, non-blocking diode). (See Patent Document 1).
  • IGBT Insulated Gate Bipolar Transistor
  • a transistor including a bipolar structure such as a reverse blocking IGBT has a characteristic that when a reverse bias is applied in an off state, the leakage current increases as the voltage increases. The higher the value, the more prominent. That is, even if the conduction resistance is reduced by adopting the reverse blocking IGBT, the efficiency of the power conversion device cannot always be improved.
  • the present invention has been made paying attention to the above-described problem, and aims to reduce the leakage current of the switching element in a power conversion device using a transistor including a bipolar structure.
  • the first invention is Three sets of two switching elements (Srp,..., Stn) connected in series between two output lines (L1, L2), and one input three-phase AC phase at each connection node in the series connection Converter sections (2) connected one by one, Switching so that one phase of the input three-phase AC is the reference phase and the line voltage between the reference phase and each of the other phases is output to the two output lines (L1, L2) in a time-sharing manner
  • Each switching element (Srp, ..., Stn) is composed of a transistor including a bipolar structure,
  • the control unit (5) applies a predetermined gate voltage to the switching elements (Srp, ..., Stn) to which a reverse bias is applied among the switching elements (Srp, ..., Stn).
  • the input three-phase alternating current is converted into a direct current voltage by switching of the switching elements (Srp,..., Stn).
  • switching elements among these switching elements (Srp,..., Stn), there are switching elements to which a reverse bias is applied.
  • Each switching element (Srp,..., Stn) of the converter section (2) is composed of a transistor including a bipolar structure.
  • a switching element to which a reverse bias is applied generates a leakage current.
  • the leakage current is reduced by utilizing the characteristics of a transistor including a bipolar structure that leakage current is reduced when a gate voltage is applied with a reverse bias applied. Yes.
  • the gate voltage is applied to the switching element to which the reverse bias is applied by the control unit (5). Even if the gate voltage is applied to the switching elements (Srp,..., Stn) to which the reverse bias is applied in this way, each switching element (Srp,..., Stn) is constituted by a reverse blocking IGBT or reverse blocking. If a diode is added, the two output lines (L1, L2) will not be short-circuited.
  • the reference phase is a sector in which the two phase voltages are positive and the remaining phase voltage is negative in the input three-phase alternating current, and a period in which the two phase voltages are negative and the remaining phase voltage is positive.
  • the phase where the absolute value of the voltage is the maximum is selected for each sector,
  • the control unit (5) controls at least on / off of the switching elements (Srp,..., Stn) to which the forward bias of the maximum phase is applied at a predetermined current ratio (drt, dst).
  • This configuration outputs a two-level DC voltage in which an AC voltage component is superimposed on a DC voltage component.
  • the on / off control target in the control unit (5) is only the switching element (Srp,..., Stn) of the maximum phase.
  • the fourth invention is In the power converter of the second invention, When a phase other than the reference phase and the maximum phase is an intermediate phase, During a period of each sector, the current flows out of the switching elements (Srp,..., Stn) to which the forward bias is applied and the switching elements (Srp,..., Stn) corresponding to the intermediate phase.
  • Switching elements (Srp,..., Stn) are complementarily turned on / off at a predetermined current ratio (drt, dst), and the switching elements (Srp,... Stn) to which the forward bias is applied are applied for the remaining period.
  • Stn) is on / off controlled with a predetermined flow ratio (drt, dst).
  • This configuration makes it possible to operate with two types of switching patterns: a switching pattern that modulates only one phase and a switching pattern that modulates two phases.
  • Each phase of the input three-phase alternating current is provided with a filter capacitor (C11, C12, C13),
  • the partial period includes a period in which the voltage of the filter capacitor (C11, C12, C13) corresponding to the intermediate phase is larger than the voltage of the filter capacitor (C11, C12, C13) corresponding to the maximum phase. It is characterized by a period.
  • the partial period is a period corresponding to a phase angle of 30 degrees of the input three-phase alternating current.
  • the period of 1-phase modulation and 2-phase modulation is switched in 1 / integer period.
  • the control unit (5) includes a switching element (Srp,..., Stn) to which the forward bias is applied and a switching element (Srp,..., Stn) corresponding to the intermediate phase on the side from which a current flows out.
  • the switching elements (Srp,..., Stn) are complementarily controlled to be turned on / off at a predetermined flow ratio (drt, dst).
  • a predetermined gate voltage is applied to a switching element to which a reverse bias of another phase is applied while performing two-phase modulation.
  • the eighth invention is In any one of the power converters of the first to seventh inventions, Based on the power supply synchronization signal (Vr) synchronized with the input three-phase alternating current, the control unit (5) generates a trapezoidal voltage command signal (Vr * , Vs * ) corresponding to each phase of the input three-phase alternating current . , Vt * ) with a trapezoidal wave voltage command generator (11) for determining the slope region, The control unit (5) generates a gate signal of each switching element (Srp,..., Stn) using the voltage command signal (Vr * , Vs * , Vt * ) of any one phase. It is characterized by that.
  • the control unit (30) can be simplified.
  • an inverter unit (3) for converting electric power output to the output lines (L1, L2) into predetermined single-phase alternating current or multi-phase alternating current is provided.
  • This configuration works as a direct AC power converter that converts input three-phase AC directly into desired AC power.
  • the tenth aspect of the invention is There are three sets of two switching elements (Srp,..., Stn) composed of transistors including a bipolar structure connected in series between two output lines (L1, L2), and connected to each connection node in the series connection.
  • a reverse bias element specifying step for specifying switching elements (Srp,..., Stn) to which a reverse bias is applied during the on / off control
  • a gate voltage application step of applying a predetermined gate voltage to the switching elements (Srp,..., Stn) identified in the reverse bias element identification step during the on / off control
  • a control method characterized by comprising:
  • the gate voltage is applied to the switching element to which the reverse bias is applied, even if a transistor including a bipolar structure is employed for each switching element (Srp,..., Stn), It becomes possible to reduce the leakage current of the switching element when a reverse bias is applied.
  • the reverse blocking IGBT is adopted, the reverse blocking diode that has been conventionally required is not necessary, and the conduction resistance can be reduced.
  • the effect of reducing the leakage current can be maximized by limiting the switching target to one switching element. Moreover, since one switching element is switched, switching control becomes easy.
  • the leakage current can be reduced during the period of one-phase modulation, and the magnitude relation of the phase voltage is reversed from the original relation during the period of two-phase modulation, for example. In some cases, it becomes possible to improve the distortion of the input three-phase alternating current.
  • the fifth aspect it becomes possible to improve the distortion of the input three-phase alternating current near the phase angle at which the maximum phase and the intermediate phase are switched.
  • the seventh invention it is possible to reduce the leakage current while more reliably improving the distortion of the input three-phase alternating current.
  • control unit (30) since the control unit (30) can be simplified, the power converter can be simplified and reduced in size.
  • the gate voltage is applied to the switching element to which the reverse bias is applied, it is possible to employ a transistor including a bipolar structure for each switching element (Srp,..., Stn). It is possible to reduce the leakage current of the switching element when a reverse bias is applied. As a result, it is possible to reduce the loss of the converter section (2) by taking advantage of the characteristics of the transistor including the bipolar structure that the conduction resistance can be reduced.
  • FIG. 1 is a block diagram showing a configuration of a matrix converter according to Embodiment 1 of the present invention.
  • FIG. 2 is a waveform diagram illustrating the input three-phase AC and the two-level DC voltage output from the converter unit.
  • FIG. 3 is a block diagram illustrating a configuration of the control unit according to the first embodiment.
  • FIG. 4 is a diagram showing the waveform of the trapezoidal wave voltage command signal.
  • FIG. 5 is a diagram for explaining the state of the converter unit in sector 1.
  • FIG. 6 is a diagram for explaining the PWM modulation performed by the matrix converter in the period of the phase angle 30 to 60 ° of the sector 1.
  • FIG. 7 is a diagram for explaining PWM modulation performed by the matrix converter in the period of the phase angle of sector 1 of 60 to 90 °.
  • FIG. 8 is a diagram for explaining the state of the converter unit in sector 2.
  • FIG. 9 is a diagram illustrating the waveforms of the gate signal of each phase, the input three-phase AC voltage, and the input current in the first embodiment.
  • FIG. 10 is a block diagram illustrating a configuration of a control unit according to a modification.
  • FIG. 11 is a diagram illustrating the relationship between the transition state of the reference phase, the maximum phase, and the intermediate phase and the slope region of the trapezoidal wave voltage command signal.
  • FIG. 12 is a block diagram illustrating a configuration of a control unit according to the second embodiment of the present invention.
  • FIG. 13 is a waveform diagram of the voltage of each phase of the input three-phase alternating current in mode 0.
  • FIG. 14 is a diagram showing the switching state of the gate pattern in mode 0 and the voltage waveform of each filter capacitor.
  • FIG. 15 is a diagram illustrating the waveforms of the gate signals of the respective phases, the input three-phase AC voltage, and the input current after passing through the filter capacitor in the second embodiment.
  • FIG. 16 is a diagram schematically showing the waveform of the phase current when switching is performed with each of the gate patterns A and B during the inversion period of mode 0 (30 ° to 60 °).
  • FIG. 17 is a diagram showing the input three-phase alternating current, r and s-phase gate signal patterns (gate pattern B), and the waveform of the input current after passing through the filter capacitor in the first embodiment and its modifications.
  • FIG. 18 is a block diagram illustrating a configuration of a control unit according to the third embodiment of the present invention.
  • FIG. 19 is a diagram illustrating waveforms of signals output from the current-type gate logic conversion unit, the mask signal generation unit, and the multiplexer, corresponding to the r-phase voltage waveform and the switching element (Srp).
  • FIG. 20 is a diagram illustrating the waveforms of the gate signal of each phase, the input three-phase AC voltage, and the input current in the third embodiment.
  • Embodiment 1 of the Invention demonstrates the example of a matrix converter as an example of the power converter device of this invention.
  • FIG. 1 is a block diagram showing a configuration of a matrix converter (1) according to Embodiment 1 of the present invention.
  • the matrix converter (1) includes a converter unit (2), an inverter unit (3), a clamp circuit (4), a control unit (5), and an LC filter circuit (6).
  • the matrix converter (1) is connected to a three-phase AC power source (7) and a motor (8).
  • the three-phase AC power output from the three-phase AC power source (7) hereinafter referred to as input three-phase AC).
  • Phase voltage (Vr, Vs, Vt) is converted to a DC voltage in which an AC voltage component is superimposed on a DC voltage component by the converter unit (2), and the DC voltage is converted to a three-phase AC ( Hereinafter, it is converted into an output three-phase alternating current) and supplied to the motor (8).
  • This motor (8) drives, for example, a compressor provided in a refrigerant circuit of an air conditioner.
  • the motor (8) is represented as a load in which three coils (L21, L22, L23) and three resistors (R21, R22, R23) are three-phase star-coupled.
  • the LC filter circuit (6) is an LC filter provided with three coils (L11, L12, L13) and three filter capacitors (C11, C12, C13) corresponding to the respective phases of the input three-phase alternating current. .
  • This LC filter circuit (6) is provided in order to suppress the high-frequency current generated by the on / off operation of a switching element (described later) such as the converter section (2) from flowing into the three-phase AC power source (7) side.
  • a switching element described later
  • the phase voltage (Vr) of the three-phase AC power supply (7) is in the coil (L11)
  • the phase voltage (Vs) is in the coil (L12)
  • the phase voltage (Vt) is in the coil (L13).
  • the converter unit (2) is configured to switch an input three-phase alternating current with a switching element (described later), convert the input three-phase alternating current into a two-level DC voltage, and output it. Switching in the converter unit (2) is controlled by the control unit (5).
  • FIG. 2 is a waveform diagram for explaining the input three-phase AC and the two-level DC voltage output from the converter unit (2).
  • FIG. 2A is a waveform diagram obtained by normalizing each phase voltage (Vr, Vs, Vt) of the input three-phase AC
  • FIG. 2B is a diagram showing an output waveform of the converter unit (2). is there.
  • these phase voltages (Vr, Vs, Vt) are a period in which the voltages of the two phases are positive and the voltages of the remaining phases are negative (hereinafter referred to as sector 1).
  • sector 2 There is a period (hereinafter referred to as sector 2) in which the voltages of the two phases are negative and the voltages of the remaining phases are positive, and sector 1 and sector 2 are alternately repeated every 60 degrees in phase angle.
  • This converter unit (2) selects a phase (hereinafter referred to as a reference phase) as a reference for the output DC voltage for each sector, and calculates the line voltage of the remaining two phases with respect to the reference phase voltage as a reference. By selecting each of the divisions, a two-level DC voltage is output. Specifically, with reference to the phase voltage of the reference phase, the line voltage between the phase with the larger absolute value of the remaining two phases (hereinafter referred to as the maximum phase) and the reference phase is the maximum voltage (Emax) And the line voltage between the other phase (hereinafter referred to as the intermediate phase) and the reference phase is output as an intermediate voltage (Emid).
  • a phase hereinafter referred to as a reference phase
  • the reference phase is a phase in which the absolute value of the voltage is maximum in each sector.
  • the phase with the maximum voltage absolute value is the t phase
  • the t phase is the reference phase (see FIG. 2A).
  • the two phases other than the reference phase in each sector are switched in voltage relationship between the period for the first half phase angle of 30 ° and the period for the second half phase angle of 30 ° (see FIG. 2 (A)).
  • the phase that becomes the maximum phase and the phase that becomes the intermediate phase are switched in the first half and the second half of the sector.
  • the phase voltage (Vr) is higher than the phase voltage (Vs) in the period in which the phase angle of sector 1 is 30 to 60 °. That is, during the phase angle of 30 to 60 °, the r phase is the maximum phase and the s phase is the intermediate phase.
  • the phase voltage (Vs) is higher than the phase voltage (Vr) in the period in which the phase angle of sector 1 is 60 to 90 °. That is, during the phase angle of 60 to 90 °, the s phase is the maximum phase and the r phase is the intermediate phase.
  • the converter unit (2) of the present embodiment includes three switching elements (Srp, Ssp, Stp) that constitute the upper arm and three switching elements (Srp, Ssp, Stp) that constitute the lower arm. Srn, Ssn, Stn).
  • the switching elements (Srp,..., Stn) of the upper and lower arms are configured by unidirectional switching elements. More specifically, a so-called reverse blocking IGBT is employed as each switching element (Srp,..., Stn).
  • diode symbols are shown at the collectors of the switching elements (Srp,..., Stn) of the converter unit (2), but these diodes are not actually connected separately.
  • each switching element (Srp,..., Stn) blocks a reverse voltage (hereinafter, the same applies to other drawings). That is, in the converter unit (2), the use of the reverse blocking IGBT eliminates the need for the reverse blocking diode that is necessary in the conventional converter circuit, and it can be expected to reduce the conduction loss in the converter unit (2).
  • the switching elements (Srp, Ssp, Stp) of the upper arm are connected in parallel on the emitter side.
  • the switching elements (Srn, Ssn, Stn) of the lower arm are connected in parallel on the collector side.
  • the upper arm switching elements (Srp, Ssp, Stp) and the lower arm switching elements (Srn, Ssn, Stn) have a one-to-one correspondence, and each upper arm switching element (Srp, Ssp, Stn)
  • the emitter of the corresponding lower arm switching element (Srn, Ssn, Stn) is connected to the collector of Stp.
  • the bus connected to the emitter side of the upper arm switching elements (Srp, Ssp, Stp) is called the first DC link (L1)
  • the collector side of the lower arm switching elements (Srn, Ssn, Stn) The bus connected to is called the second DC link part (L2).
  • the first and second DC link portions (L1, L2) are an example of the output line of the present invention.
  • one end of the coil (L11) of the LC filter circuit (6) is connected to the connection node between the switching element (Srp) and the switching element (Srn), and the coil (L11) is connected to the connection node.
  • the phase voltage (Vr) from the three-phase AC power source (7) is input via
  • the phase voltage (Vs) from the three-phase AC power source (7) is input to the connection node between the switching element (Ssp) and the switching element (Ssn) via the coil (L12).
  • the phase voltage (Vt) from the three-phase AC power supply (7) is input to the connection node between the switching element (Stp) and the switching element (Stn) via the coil (L13).
  • this converter part (2) has three sets of two switching elements (Srp,..., Stn) connected in series between the first DC link part (L1) and the second DC link part (L2). In addition, one input three-phase AC phase is connected to each connection node in series connection.
  • the clamp circuit (4) includes two capacitors (C1, C2) and three diodes (D1, D2, D3).
  • one end of the capacitor (C1) is connected to the first DC link part (L1), and the other end of the capacitor (C1) is connected to the anode of the diode (D1).
  • One end of a capacitor (C2) is connected to the cathode of the diode (D1), and the other end of the capacitor (C2) is connected to the second DC link part (L2).
  • the diode (D2) has an anode connected to the cathode of the diode (D1), and a cathode of the diode (D2) connected to the first DC link part (L1).
  • the diode (D3) has a cathode connected to the anode of the diode (D1), and an anode of the diode (D3) connected to the second DC link portion (L2).
  • the inverter unit (3) converts the DC voltage output from the converter unit (2) into an output three-phase AC whose phase voltages are Vu, Vv, and Vw and supplies them to the motor (8).
  • the inverter unit (3) of the present embodiment includes three switching elements (Sup, Svp, Swp) and three diodes (Dup, Dvp, Dwp) that constitute the upper arm. And three switching elements (Sun, Svn, Swn) and three diodes (Dun, Dvn, Dwn) constituting the lower arm.
  • general IGBT is employ
  • the switching elements (Sup, Svp, Swp) of the upper arm are connected in parallel on the collector side and also connected to the first DC link part (L1).
  • these switching elements (Sup, Svp, Swp) in the upper arm have diodes (Dup, Dvp, Dwp) connected in reverse parallel between the collector and the emitter, respectively.
  • switching elements (Sun, Svn, Swn) of the lower arm are connected in parallel on the emitter side and connected to the second DC link part (L2).
  • these switching elements (Sun, Svn, Swn) in the lower arm have diodes (Dun, Dvn, Dwn) connected in reverse parallel between the collector and the emitter, respectively.
  • the upper arm switching elements (Sup, Svp, Swp) and the lower arm switching elements (Sun, Svn, Swn) have a one-to-one correspondence, and the upper arm switching elements (Sup, Svp, The collector of the switching element (Sun, Svn, Swn) of the corresponding lower arm is connected to the emitter of Swp.
  • the inverter unit (3) outputs the phase voltage (Vu) from the connection node between the switching element (Sup) and the switching element (Sun), and outputs the phase voltage from the connection node between the switching element (Svp) and the switching element (Svn).
  • the voltage (Vv) is output, and the phase voltage (Vw) is output from the connection node between the switching element (Swp) and the switching element (Swn).
  • the control unit (5) controls the converter unit (2) and the inverter unit (3) by a PWM modulation method (Pulse Width Modulation).
  • PWM modulation method Pulse Width Modulation
  • the converter unit (2) one phase of the input three-phase alternating current is used as a reference phase, and the line voltage between the reference phase and each of the other phases is time-shared by the first and second DC link units (
  • the switching elements (Srp,..., Stn) are controlled to be turned on / off so as to be output to L1, L2).
  • FIG. 3 is a block diagram showing the configuration of the control unit (5) according to the present embodiment.
  • the control unit (5) includes a converter control unit (5a) that controls the converter unit (2) and an inverter control unit (5b) that controls the inverter unit (3).
  • This converter control unit (5a) includes a trapezoidal wave voltage command generation unit (11), a comparison unit (12), a current source gate logic conversion unit (13), an intermediate phase detection unit (14), and a carrier signal generation unit (15).
  • the maximum phase element detection unit (16) and the conduction element selection unit (17), and the intermediate phase detection unit (14) and the carrier signal generation unit (15) are shared with the inverter control unit (5b). It has become.
  • the inverter control unit (5b) includes an output voltage command generation unit (21), a calculation unit (22), a calculation unit (23), a comparison unit (24), and a logical sum calculation unit (25). Below, each component of a control part (5) is demonstrated.
  • the trapezoidal wave voltage command generator (11) receives the power supply synchronization signal (Vr), and based on the power supply synchronization signal (Vr), the trapezoidal wave voltage command signal generation unit (11) has a slope region of the trapezoidal wave voltage command signal (Vr * , Vs * , Vt * ). Values are generated for each phase of the input three-phase alternating current.
  • the power supply synchronization signal (Vr) is a signal synchronized with any phase of the input three-phase alternating current.
  • the trapezoidal wave voltage command generation unit (11) of the present embodiment obtains the value of the slope region of the trapezoidal wave voltage command signal (Vr * , Vs * , Vt * ) based on the following equation: A table is set in advance, and the value of the slope region of the trapezoidal wave voltage command signal (Vr * , Vs * , Vt * ) is output using the table during operation.
  • phase angle ⁇ is synchronized with the input three-phase AC phase voltage (Vr).
  • FIG. 4 is a diagram showing waveforms of trapezoidal wave voltage command signals (Vr * , Vs * , Vt * ). These trapezoidal wave voltage command signals (Vr * , Vs * , Vt * ) represent the conduction ratio (duty ratio) in each phase of the converter section (2).
  • the upper arm of the converter unit (2) conducts when the conduction ratio is positive, and the lower arm conducts when the conduction ratio is negative.
  • the carrier signal generator (15) is adapted to generate a carrier signal.
  • This carrier signal is a triangular wave signal.
  • the comparison unit (12) includes the trapezoidal wave voltage command signal (Vr * , Vs * , Vt * ) generated by the trapezoidal wave voltage command generation unit (11) and the carrier signal generated by the carrier signal generation unit (15). Compare.
  • the current source gate logic converter (13) outputs six gate signals based on the comparison result in the comparator (12). These gate signals are signals for controlling the gates of the six switching elements (Srp,..., Stn) of the converter unit (2).
  • the current source gate logic conversion unit (13) generates gate signals so that the switching elements of the maximum phase and the intermediate phase are repeatedly turned on and off in a complementary manner with a conduction ratio (drt, dst). . That is, the current source gate logic converter (13) generates a signal for conventional PWM control (see, for example, Patent Document 1). These gate signals are input to the switching elements (Srp,..., Stn) of the converter section (2) via the conduction element selection section (17).
  • the intermediate phase detection unit (14) detects the flow ratio (drt, dst) of the intermediate phase based on the trapezoidal wave voltage command signal (Vr * , Vs * , Vt * ).
  • the maximum phase element detection unit (16) detects the maximum phase from each phase voltage (Vr, Vs, Vt) of the input three-phase AC based on the power supply synchronization signal (Vr).
  • the conduction element selection unit (17) is a switching element to which a forward bias is applied among the switching elements (Srp, ..., Stn) corresponding to the maximum phase.
  • the output of the current-type gate logic converter (13) is applied as it is to the gate (control terminal), and the other switching element of the maximum phase, the switching element corresponding to the intermediate phase, and the reference phase are supported.
  • a predetermined gate voltage is applied to the gate regardless of the output of the current source gate logic converter (13).
  • the control unit (5) of the present embodiment applies a predetermined gate voltage to the switching elements to which the reverse bias is applied among the six switching elements (Srp,..., Stn).
  • the predetermined gate voltage is a voltage equal to the voltage at which the collector-emitter of the switching element conducts, but a lower voltage or a higher voltage can be appropriately selected according to the leakage current value. .
  • An output voltage command generation unit (21) generates output voltage command signals (Vu * , Vv * , Vw * ) for the inverter unit (3).
  • the calculation unit (22) is based on the output voltage command signal (Vu * , Vv * , Vw * ) and the current ratio (drt, dst). drt + dstV * (V * : voltage vector of each phase) is output.
  • the comparison unit (24) compares the calculation results of the two calculation units (22, 23) with the carrier signal generated by the carrier signal generation unit (15).
  • the OR operation unit (25) outputs a gate signal based on the comparison result in the comparison unit (24). These gate signals are signals for on / off control of the six switching elements (Sup,..., Swn) of the inverter unit (3).
  • FIG. 5 is a diagram for explaining the state of the converter section (2) in the sector 1.
  • FIG. 5A is an equivalent circuit diagram schematically showing the main part of the converter section (2)
  • FIG. FIG. 6 is an equivalent circuit diagram showing a state in a period of ⁇ 60 °
  • (C) is an equivalent circuit diagram showing a state in a period of 60 to 90 ° phase angle.
  • the operation of the matrix converter (1) will be described by dividing sector 1 into a period of phase angle 30 to 60 ° and a period of phase angle 60 to 90 °.
  • FIG. 6 is a diagram for explaining PWM modulation performed by the matrix converter (1) in the period of the phase angle 30 to 60 ° of the sector 1.
  • ts is a carrier cycle
  • I (rt) is a current command
  • I (st) is a current command
  • drt and dst are conduction ratios
  • Idc is a DC link current
  • V0, V4 and V6 are voltage commands
  • d0 is The conduction ratio corresponding to the voltage command V0
  • d4 is the conduction ratio corresponding to the voltage command V4.
  • Srp, Ssp, and Stn are gate signals to the switching elements (Srp, Ssp, Stn) of the converter unit (2), respectively.
  • Sup, Svp, Swp are gate signals to the switching elements (Sup, Svp, Swp) on the upper arm side of the inverter section (3), and Sun, Svn, Swn are switching elements on the lower arm side, respectively. This is the gate signal to (Sun, Svn, Swn).
  • the matrix converter (1) uses a triangular wave carrier signal.
  • the t phase is the reference phase (see FIG. 2 (A)).
  • the r phase is the maximum phase and the s phase is the intermediate phase.
  • the control unit (5) performs on / off control of only the switching element (Srp) corresponding to the maximum phase, that is, the r phase, according to the above-described flow ratio (drt, dst), and the other in the converter unit (2)
  • the aforementioned predetermined gate voltage is applied to the switching elements (Ssp, Stp, Srn, Ssn, Stn) (see FIG. 6).
  • the switching element (Stp) corresponding to the t phase (reference phase) has a predetermined junction capacitance
  • the switching element (Stp) is replaced with a capacitor (Ctp). It is represented by
  • the switching elements (Srn, Ssn, Stp) that do not appear in FIG. 5B, a reverse bias is applied to all of them. Specifically, the maximum voltage (Emax) is applied to the switching element (Srn), the intermediate voltage (Emid) is applied to the switching element (Ssn), and the maximum voltage (Emax) or intermediate voltage (Emid) is applied to the switching element (Stp). The Since these switching elements (Srn, Ssn, Stp) are unidirectional switches, no current flows even when a gate voltage is applied to them.
  • the DC voltage output from the converter unit (2) is input to the inverter unit (3).
  • the inverter unit (3) on / off of the six switching elements (Sup,..., Swn) is controlled by the gate signal output from the control unit (5).
  • an inverter part (3) outputs a predetermined alternating voltage to a motor (8).
  • FIG. 7 is a diagram for explaining PWM modulation performed by the matrix converter (1) during the period of the phase angle of sector 1 of 60 to 90 °.
  • the control unit (5) controls on / off of only the switching element (Ssp) corresponding to the maximum phase, that is, the s phase, according to the current ratio (drt, dst).
  • a predetermined gate voltage is applied to the other switching elements (Srp, Stp, Srn, Ssn, Stn) in the converter section (2).
  • a reverse bias is applied to the switching elements in the converter unit (2) other than the switching element (Ssp). Since each switching element (Srp,..., Stn) of the converter unit (2) is a unidirectional switch, no current flows even when the gate voltage of the switching element to which a reverse bias is applied is applied.
  • FIG. 8A and 8B are diagrams for explaining the state of the converter unit (2) in the sector 2.
  • FIG. 8A is an equivalent circuit diagram schematically showing the main part of the converter unit (2)
  • FIG. FIG. 6 is an equivalent circuit diagram showing a state in a period of ⁇ 120 °
  • (C) is an equivalent circuit diagram showing a state in a period of a phase angle of 120-150 °.
  • the switching element on the lower arm side of the reference phase is controlled to be turned on / off at the current ratio (drt, dst) based on the relationship between the phase voltages (Vr, Vs, Vt).
  • Other switching elements are fixed in a state where a predetermined gate voltage is applied.
  • the reverse blocking IGBT generates a relatively large leakage current when a reverse bias is applied between the collector and the emitter. However, when the gate voltage is applied with the reverse bias applied in this way, the leakage current is reduced. It is known to have In this respect, in the matrix converter (1), the control unit (5) controls the switching element to which the reverse bias is applied so that a predetermined gate voltage is applied, so that each switching element (Srp, .., Stn), it is possible to reduce the leakage current when a reverse bias is applied even if a reverse blocking IGBT is employed. As a result of employing the reverse blocking IGBT, the reverse blocking diode, which has been conventionally required, becomes unnecessary, and the conduction resistance in the converter section (2) can be reduced.
  • FIG. 10 is a block diagram illustrating a configuration of the control unit (30) according to the present modification.
  • the control unit (30) is obtained by changing the configuration of the converter control unit (5a) of the control unit (5) in the first embodiment.
  • the converter control unit (30a) of the control unit (30) includes a conduction element selection unit (31) instead of the comparison unit (12), the current source gate logic conversion unit (13), and the conduction element selection unit (17). ) And a comparison unit (32).
  • the comparison unit (32) compares the intermediate-phase conduction ratio obtained by the intermediate-phase detection unit (14) with the output of the carrier signal generation unit (15) to obtain the intermediate-phase conduction ratio. Is output to the conduction element selection section (31). Further, the conduction element selection unit (31) of the present modification obtains the maximum phase conduction ratio based on the intermediate phase conduction ratio input from the comparison unit (32), and determines each switching element (Srp, ..., Stn).
  • Figure 11 shows the reference phase, the maximum phase, and the transition of the state of the middle phase (mode 0, mode 1, ...) and, trapezoidal voltage command signal (Vr *, Vs *, Vt *) the relation of the inclined region of the FIG. As can be seen from FIG.
  • the reference phase, the maximum phase, and the intermediate phase are switched at a predetermined cycle. Therefore, if the flow ratio for any phase is known, the flow ratio for the other phase can also be determined. Therefore, a forward bias is applied to the conduction element selection unit (31) among the switching elements (Srp,..., Stn) corresponding to the maximum phase according to the detection result of the maximum phase element detection unit (16). For the gates of the switching elements (Srp,..., Stn), a gate voltage is applied according to the obtained conduction ratio, the other switching element of the maximum phase, the switching element corresponding to the intermediate phase, and the reference phase A predetermined gate voltage is applied to the switching element corresponding to.
  • FIG. 12 is a block diagram illustrating a configuration of the control unit (50) according to the second embodiment of the present invention.
  • the control unit (50) includes a converter control unit (50a) and an inverter control unit (5b). That is, the controller (50) is different from the first embodiment in the configuration of the converter controller (50a).
  • the converter controller (50a) of this embodiment includes a trapezoidal wave voltage command generator (11), an intermediate phase detector (14), a carrier signal generator (15), a first gate signal generator (51), a second A gate signal generation unit (52), a selector (53), and a selector control unit (54) are provided.
  • the intermediate phase detector (14) and the carrier signal generator (15) are shared with the inverter controller (5b).
  • the first gate signal generation unit (51) includes the comparison unit (12) and the current source gate logic conversion unit (13) described in the first embodiment, and outputs an output signal of the current source gate logic conversion unit (13). Output to selector (53). That is, the first gate signal generator (51) generates a signal for conventional PWM control (see, for example, Patent Document 1) and outputs the signal to the selector (53). When the gate signal output from the first gate signal generation unit (51) is applied to each switching element (Srp,..., Stn), two phases of the three-phase alternating current are modulated.
  • the second gate signal generation unit (52) includes the maximum phase element detection unit (16), the comparison unit (32), and the conduction element selection unit (31) described in the modification, and includes a conduction element selection unit.
  • the output of (31) is output to the selector (53). That is, the second gate signal generation unit (52) outputs the same gate signal as that of the converter control unit (30a) of the modified example to the selector (53). Therefore, if the gate signal output from the second gate signal generator (52) is applied to each switching element (Srp,..., Stn), one phase of the three-phase alternating current is modulated.
  • the gate signal patterns output from the first and second gate signal generation units (51, 52) are referred to as gate patterns A and B, respectively.
  • the selector (53) selects either the gate signal from the first gate signal generation unit (51) or the gate signal from the second gate signal generation unit (52) according to the control of the selector control unit (54). This is selected and output to each switching element (Srp,..., Stn) of the converter section (2). That is, the selector (53) selectively outputs a gate pattern A signal or a gate pattern B signal.
  • the selector (53) selects the output of the first gate signal generation unit (51) during a part of each sector, and the second gate signal generation unit (52) during the remaining period.
  • the selector (53) is controlled to select the output of).
  • a period in which the selector (53) selects the output of the first gate signal generation unit (51), that is, a period controlled by the gate pattern A is referred to as a two-phase modulation period
  • the second gate signal generation unit (52) A period in which the output is selected is referred to as a one-phase modulation period.
  • a switching element (Srp,..., Stn) to which a forward bias is applied and a switching element (Srp,..., Stn) corresponding to the intermediate phase from which current flows out ( Srp,..., Stn) are complementarily turned on and off at a predetermined flow ratio (drt, dst).
  • a switching element (Srp,..., Stn) to which the forward bias is applied are ON / OFF controlled at a predetermined current ratio (drt, dst).
  • the two-phase modulation period (period controlled by the gate pattern A) is a filter capacitor (C11, C11, C12, C13) corresponding to the intermediate phase rather than the voltage of the filter capacitors (C11, C12, C13) corresponding to the maximum phase.
  • This is a period including a period in which the voltage of C12, C13) is larger. More specifically, it is a period corresponding to a phase angle of 30 ° centering on the timing (phase angle) at which the intermediate phase and the maximum phase of the input three-phase alternating current are switched.
  • FIG. 13 is a waveform diagram of the voltage of each phase of the input three-phase alternating current in mode 0.
  • the reference phase is the t phase
  • the r phase is the maximum phase and the s phase is the intermediate phase in the first half period
  • the s phase is the maximum phase and the r phase is the intermediate phase in the second half period (see FIG. 11). reference).
  • the period of phase angle 30 to 90 ° corresponds.
  • the intermediate phase and the maximum phase are switched at a phase angle of 60 °.
  • FIG. 14 is a diagram showing the switching state of the gate pattern in mode 0 and the voltage waveform of each filter capacitor (C11, C12, C13).
  • the converter control unit (50a) (more specifically, the selector control unit (54)) of the present embodiment converts the gate signal into a gate pattern during a phase angle of 45 ° to 75 °.
  • A is controlled to A
  • the remaining period (a phase angle of 30 ° to 45 ° and a phase angle of 60 ° to 90 °) is controlled to the gate pattern B.
  • FIG. 15 is a diagram illustrating the waveforms of the gate signals of the respective phases, the input three-phase AC voltage, and the input current after passing through the filter capacitor in the present embodiment.
  • these reversal periods are included in a period corresponding to a phase angle of 30 ° centering on the timing (phase angle 60 °) at which the intermediate phase and the maximum phase are switched. That is, switching is performed by the gate pattern A during the reverse period.
  • FIG. 16 is a diagram schematically showing the waveform of the phase current when switching is performed with each of the gate patterns A and B in the inversion period of mode 0 (phase angle 30 ° to 60 °).
  • the switching element (Srp) and the switching element (Ssp) are complementarily switched.
  • the maximum phase is connected by turning on the switching element (Ssp)
  • the intermediate phase is connected by turning off the switching element (Ssp). Therefore, as shown in FIG. 16A, the phase current (Irp, Isp, Itn) flows through the switching element (Srp) and the switching element (Ssp) in a complementary manner.
  • FIG. 17 shows the waveform of the input current after passing through the input three-phase alternating current, the r and s phase gate signal pattern (gate pattern B), and the filter capacitors (C11, C12, and C13) in the first embodiment and its modifications.
  • FIG. As described above, when switching is performed using only the gate pattern B, the distortion of the input current after passing through the filter capacitor increases every 60 ° when the maximum phase and the intermediate phase are switched.
  • the period of 30 ° phase angle centered on the timing (phase angle) at which the intermediate phase and the maximum phase are switched, including the inversion period, is switched by the gate pattern A (that is, two phases). Modulation). Therefore, an increase in distortion of the current waveform can be suppressed during this period. Further, during the period of switching (that is, one-phase modulation) by the gate pattern B, it is possible to reduce the leakage current of the switching element to which the reverse bias is applied, as in the matrix converter of the first embodiment and the modified example. . As described above, according to the present embodiment, it is possible to obtain a good balance between the effect of reducing the leakage current and the effect of suppressing the increase in distortion of the current waveform.
  • the gate patterns A and B are switched in units of a phase angle of 30 °. Since this value of 30 ° is a value of 1 / integer of the sector, the gate pattern switching control can be performed more easily.
  • the period for performing the two-phase modulation in the above example, the period for each phase of 30 ° is an example, and can be changed to another value.
  • FIG. 18 is a block diagram illustrating a configuration of the control unit (60) according to the third embodiment of the present invention.
  • the control unit (60) includes a converter control unit (60a) and an inverter control unit (5b). That is, the control unit (60) is different from the first embodiment in the configuration of the converter control unit (60a).
  • the converter control unit (60a) of the present embodiment includes a trapezoidal wave voltage command generation unit (11), a current source gate logic conversion unit (13), an intermediate phase detection unit (14), a carrier signal generation unit (15), a mask signal A generation unit (61) and a multiplexer (62) are provided.
  • the intermediate phase detector (14) and the carrier signal generator (15) are shared with the inverter controller (5b).
  • the mask signal generator (61) outputs six mask signals (S2) corresponding to the switching elements (Srp,..., Stn).
  • This mask signal (S2) is high for the switching elements (Srp,..., Stn) corresponding to the phase to be modulated, and low for the other switching elements (Srp,..., Stn).
  • Level hereinafter referred to as L level.
  • the two-phase modulation is performed, and the mask signal generation unit (61) sends an H level signal to the two switching elements (Srp,..., Stn) involved in the modulation. It is designed to output.
  • FIG. 19 shows a waveform of the r-phase phase voltage Vr (voltage is normalized), a current source gate logic conversion unit (13), a mask signal generation unit (61), and a multiplexer corresponding to the switching element (Srp).
  • (62) is a figure which shows the waveform of the signal (S1, S2, S3) which each outputs.
  • the period from mode 4 to mode 0 is shown.
  • the mask signal (S2) corresponding to the switching element (Srp) is at the H level in region A (first half of mode 4) and region C (first half of mode 5) shown in FIG. 4 in the second half) and region D (the second half of mode 5 to the whole area of mode 0) are at the L level.
  • S1 in FIG. 19 is a waveform of a signal output from the current source gate logic conversion unit (13). That is, S1 is a conventional PWM control gate signal.
  • This gate signal (S1) is at L level in the region D where the switching element (Srp) is not subjected to the modulation operation.
  • the gate signal (S1), the mask signal (S2), and a higher level signal (High signal in FIG. 19) are input to the multiplexer (62).
  • the multiplexer (62) selects the gate signal (S1) when the mask signal (S2) is at the H level, and selects the High signal when the mask signal (S2) is at the L level. (Srp, ..., Stn).
  • the gate signal (S1) or High signal for the switching element (Srp) output from the current-type gate logic conversion unit (13) is used as described above.
  • the gate signal (S1), the mask signal (S2), and the gate signal (S3) have been described with respect to the r phase, but the same applies to the other s and t phases.
  • FIG. 20 is a diagram illustrating the waveforms of the gate signal of each phase, the input three-phase AC voltage, and the input current in the third embodiment.
  • the switching element (Srp) and the switching element (Stp) complementarily perform an on / off operation at a predetermined conduction ratio, and the r-phase And t phase are modulated. That is, the matrix converter (1) performs two-phase modulation.
  • each of the gates of the switching element (Srn) of the lower arm of the r phase, the switching element (Stn) of the lower arm of the t phase, and the two switching elements (Ssp, Ssn) of the s phase includes a multiplexer (62 ) Applies an H level signal.
  • an H level signal is applied to switching elements (Srp,..., Stn) that are not performing switching while performing two-phase modulation.
  • the power conversion device may be configured as, for example, a device that omits the inverter unit (3) and outputs the DC voltage by the converter unit (2).
  • the switching element (Srp,..., Stn) it is possible to adopt a transistor including a bipolar structure in addition to the reverse blocking IGBT.
  • the present invention is useful as a power conversion device that converts AC power into DC power or AC power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

コンバータ部(2)には、2つの直流リンク部(L1,L2)間に直列接続した2つのスイッチング素子(Srp,…,Stn)の組を3組設け、直列接続における各接続ノードに入力三相交流の相を1つずつ接続する。それぞれのスイッチング素子(Srp,…,Stn)は、バイポーラ構造を含んだトランジスタで構成する。また、制御部(5)は、入力三相交流の1つの相を基準相として、基準相と他のそれぞれの相との線間電圧が時分割で2つの直流リンク部(L1,L2)に出力されるように、それぞれのスイッチング素子(Srp,…,Stn)を制御する。そして、制御部(5)は、スイッチング素子(Srp,…,Stn)のうち、逆バイアスが印加されているものに所定のゲート電圧を印加する。

Description

電力変換装置、及びその制御方法
 本発明は、交流電力から直流電力又は交流電力への変換を行う電力変換装置及びその制御方法に関するものである。
 空気調和機では、圧縮機の電動機に電力を供給するために、商用交流電力を所定の交流電力に変換する電力変換装置が用いられることが多い。このような電力変換装置には、例えば、交流電圧から所望の交流出力を直接得る方式の直接形交流電力変換装置とよばれるものがあり、その代表例として、いわゆるマトリックスコンバータが知られている。このマトリックスコンバータは、商用周波数による電圧脈動を平滑する大型のコンデンサやリアクトルが不要となることから、電力変換装置の小型化が期待でき、次世代の電力変換装置として近年注目されつつある(例えば、特許文献1を参照)。
 また、このような電力変換装置では、その効率の向上も種々検討されている。例えば、電力変換装置で用いられるスイッチング素子には、逆バイアスに対する耐圧を確保するために、逆阻止ダイオードを直列接続することがある。しかしながら、このような逆阻止ダイオードが設けられていると導通損失が増大するので、高効率化の妨げになる。これに対しては、逆阻止ダイオードが不要で、スイッチング素子のオン電圧降下を低減することが可能な逆阻止IGBT(Insulated Gate Bipolar Transistor)をスイッチング素子として用いることが提案されている(例えば、非特許文献1を参照)。
特許第4135026号公報
武井学、他2名 "富士時報" Vol.75 No.8 2002
 しかしながら、逆阻止IGBTのようなバイポーラ構造を含んだトランジスタは、オフ状態で逆バイアスが印加されると、その電圧が大きいほど漏れ電流が大きくなるという特性があり、その特性はスイッチング素子の温度が高いほど顕著になる。すなわち、逆阻止IGBTの採用によって導通抵抗が低減したとしても、必ずしも電力変換装置の高効率化を図れるとは限らないのである。そして、このことは、直接形交流電力変換装置のみならず、交流電力を受けて直流電力を出力するコンバータ回路でも同様のことがいえる。
 本発明は上記の問題に着目してなされたものであり、バイポーラ構造を含んだトランジスタを用いた電力変換装置において、該スイッチング素子の漏れ電流を低減することを目的としている。
 上記の課題を解決するため、第1の発明は、
 2つの出力線(L1,L2)間に直列接続した2つのスイッチング素子(Srp,…,Stn)の組を3組有し、前記直列接続における各接続ノードに入力三相交流の相が1つずつ接続されたコンバータ部(2)と、
 前記入力三相交流の1つの相を基準相として、前記基準相と他のそれぞれの相との線間電圧が時分割で前記2つの出力線(L1,L2)に出力されるように、スイッチング素子(Srp,…,Stn)のオンオフを制御する制御部(5)と、
 を備え、
 それぞれのスイッチング素子(Srp,…,Stn)は、バイポーラ構造を含んだトランジスタで構成され、
 前記制御部(5)は、前記スイッチング素子(Srp,…,Stn)のうち、逆バイアスが印加されているスイッチング素子(Srp,…,Stn)に所定のゲート電圧を印加することを特徴とする。
 この構成では、スイッチング素子(Srp,…,Stn)のスイッチングによって、入力三相交流が直流電圧に変換される。この場合、これらのスイッチング素子(Srp,…,Stn)のなかには逆バイアスが印加されることとなるスイッチング素子が存在する。コンバータ部(2)の各スイッチング素子(Srp,…,Stn)は、バイポーラ構造を含んだトランジスタで構成されており、一般的には逆バイアスが印加されたスイッチング素子は漏れ電流を生ずる。これに対し、この電力変換装置では、逆バイアスが印加された状態でゲート電圧を印加すると漏れ電流が低減するという、バイポーラ構造を含んだトランジスタの特性を利用し、上記漏れ電流の低減を図っている。具体的には、逆バイアスが印加されたスイッチング素子に対し、制御部(5)によってゲート電圧を印加している。なお、このように逆バイアスが印加されたスイッチング素子(Srp,…,Stn)にゲート電圧を印加しても、各スイッチング素子(Srp,…,Stn)を逆阻止IGBTで構成したり、逆阻止ダイオードを付加したりすれば、2つの出力線(L1,L2)間が短絡することはない。
 また、第2の発明は、
 第1の発明の電力変換装置において、
 前記基準相は、前記入力三相交流を2つの相電圧が正で残りの相電圧が負となる期間であるセクターと、2つの相電圧が負で残りの相電圧が正となる期間であるセクターとに分けたそれぞれのセクターにおいて電圧の絶対値が最大となる相をセクター毎に選択したものであり、
 前記基準相以外の相であって電圧の絶対値が大きい方の相を最大相とした場合に、
 前記制御部(5)は、少なくとも前記最大相の順バイアスが印加されたスイッチング素子(Srp,…,Stn)を所定の通流比(drt,dst)でオンオフ制御することを特徴とする。
 この構成により、直流電圧成分に交流電圧成分が重畳した、2レベルの直流電圧が出力される。
 また、第3の発明は、
 第2の発明の電力変換装置において、
 前記制御部(5)における前記オンオフ制御の対象は、前記最大相のスイッチング素子(Srp,…,Stn)のみであることを特徴とする。
 この構成では、1つの相のスイッチング素子をスイッチングする(すなわち、1相のみを変調する)のみで、直流電圧成分に交流電圧成分が重畳した、2レベルの直流電圧が出力される。そして、スイッチング動作を行わないスイッチング素子には所定のゲート電圧が印加される。
 また、第4の発明は、
 第2の発明の電力変換装置において、
 前記基準相及び前記最大相以外の相を中間相とした場合に、
 各セクターの一部の期間は、前記順バイアスが印加されているスイッチング素子(Srp,…,Stn)と、前記中間相に対応したスイッチング素子(Srp,…,Stn)のうち電流が流出する側のスイッチング素子(Srp,…,Stn)とを、所定の通流比(drt,dst)で相補的にオンオフ制御し、残りの期間は、前記順バイアスが印加されているスイッチング素子(Srp,…,Stn)のみを所定の通流比(drt,dst)でオンオフ制御することを特徴とする。
 この構成では、1相のみを変調するスイッチングパターンと、2相を変調するスイッチングパターンの2種類のスイッチングパターンでの動作が可能になる。
 また、第5の発明は、
 第4の発明の電力変換装置において、
 前記入力三相交流の各相には、フィルタコンデンサ(C11,C12,C13)が設けられ、
 前記一部の期間は、前記最大相に対応したフィルタコンデンサ(C11,C12,C13)の電圧よりも前記中間相に対応したフィルタコンデンサ(C11,C12,C13)の電圧の方が大きい期間を含む期間であることを特徴とする。
 この構成では、フィルタコンデンサ(C11,C12,C13)にはキャリアリプルが重畳する。そのため、最大相と中間相が入れ替わる位相角付近では、フィルタコンデンサ(C11,C12,C13)の電圧の大きさが、本来の大小関係とは逆転する場合がある。この発明では、この大小関係が逆転した期間に2相変調が行われる。
 また、第6の発明は、
 第4又は第5の発明の電力変換装置において、
 前記一部の期間は、前記入力三相交流の位相角30度分に相当する期間であることを特徴とする。
 この構成では、セクターの整数分の1期間で、1相変調と2相変調の期間が切り替わる。
 また、第7の発明は、
 第2の発明の電力変換装置において、
 前記基準相及び前記最大相以外の相を中間相とした場合に、
 前記制御部(5)は、前記順バイアスが印加されているスイッチング素子(Srp,…,Stn)と、前記中間相に対応したスイッチング素子(Srp,…,Stn)のうち電流が流出する側のスイッチング素子(Srp,…,Stn)とを、所定の通流比(drt,dst)で相補的にオンオフ制御することを特徴とする。
 この構成では、2相の変調を行いつつ、他の相の逆バイアスが印加されたスイッチング素子に所定のゲート電圧が印加される。
 また、第8の発明は、
 第1から第7の発明のうちの何れか一つの電力変換装置において、
 前記制御部(5)は、前記入力三相交流に同期した電源同期信号(Vr)に基づいて、前記入力三相交流の各相に対応した台形波形状の電圧指令信号(Vr*,Vs*,Vt*)の傾斜領域を求める台形波状電圧指令生成部(11)を備え、
 前記制御部(5)は、何れかの1つの相の前記電圧指令信号(Vr*,Vs*,Vt*)を用いて、それぞれのスイッチング素子(Srp,…,Stn)のゲート信号を生成することを特徴とする。
 この構成では、相ごとの電圧指令信号(Vr*,Vs*,Vt*)を用いるのではなく、何れか1つの相の電圧指令信号(Vr*,Vs*,Vt*)から6つのゲート電圧を生成するので、制御部(30)を簡略化することが可能になる。
 また、第9の発明は、
 第1から第8の発明のうちの何れか1つの電力変換装置において、
 前記出力線(L1,L2)に出力された電力を所定の単相交流又は多相交流に変換するインバータ部(3)を備えていることを特徴とする。
 この構成により、入力三相交流を直接的に所望の交流電力に変換する、直接形交流電力変換装置として動作する。
 また、第10の発明は、
 2つの出力線(L1,L2)間に直列接続した、バイポーラ構造を含んだトランジスタからなる2つのスイッチング素子(Srp,…,Stn)の組を3組有し、前記直列接続における各接続ノードに入力三相交流の相が1つずつ接続されたコンバータ部(2)を有した電力変換装置の制御方法であって、
 前記入力三相交流の1つの相を基準相として選択する選択ステップと、
 前記基準相と他のそれぞれの相との線間電圧が時分割で前記2つの出力線(L1,L2)に出力されるように、所定のスイッチング素子(Srp,…,Stn)のオンオフ制御を行う制御ステップと、
 前記オンオフ制御の際に逆バイアスが印加されるスイッチング素子(Srp,…,Stn)を特定する逆バイアス素子特定ステップと、
 前記逆バイアス素子特定ステップで特定したスイッチング素子(Srp,…,Stn)に、前記オンオフ制御の際に所定のゲート電圧を印加するゲート電圧印加ステップと、
 を備えたことを特徴とする制御方法である。
 第1の発明によれば、逆バイアスが印加されたスイッチング素子にゲート電圧を印加しているので、各スイッチング素子(Srp,…,Stn)に、バイポーラ構造を含んだトランジスタを採用しても、逆バイアスが印加された際におけるスイッチング素子の漏れ電流を低減させることが可能になる。そして、逆阻止IGBTを採用した場合には、従来必要であった逆阻止ダイオードが不要になり、導通抵抗の低減も可能になる。
 また、第2の発明によれば、2レベルの直流電圧を得られるので、これらの直流電圧を用いて、所望の交流電力を容易に生成できる。
 また、第3の発明によれば、スイッチングの対象を1つのスイッチング素子に限定することで、漏れ電流の低減効果を最大限引き出すことが可能になる。また、1つのスイッチング素子をスイッチングするので、スイッチング制御が容易になる。
 また、第4の発明によれば、例えば、1相変調を行う期間は前記漏れ電流を低減が可能になり、2相変調を行う期間に、例えば相電圧の大小関係が本来の関係から逆転した場合に、入力三相交流の電流の歪を改善することか可能になる。
 また、第5の発明によれば、最大相と中間相が入れ替わる位相角付近での入力三相交流の電流の歪を改善することか可能になる。
 また、第6の発明によれば、セクターの整数分の1単位で変調方法を切替えるので、容易な制御が可能になる。
 また、第7の発明によれば、入力三相交流の電流の歪をより確実に改善しつつ、漏れ電流の低減も可能になる。
 また、第8の発明によれば、制御部(30)を簡略化することが可能になるので、延いては電力変換装置の簡略化、小型化が可能になる。
 また、第9の発明によれば、いわゆる直接形交流電力変換装置において、上記第1から第8の発明の効果を得ることが可能になる。
 また、第10の発明によれば、逆バイアスが印加されたスイッチング素子にゲート電圧を印加しているので、各スイッチング素子(Srp,…,Stn)にバイポーラ構造を含んだトランジスタを採用しても、逆バイアスが印加された際におけるスイッチング素子の漏れ電流を低減させることが可能になる。その結果、導通抵抗を低減できるという、バイポーラ構造を含んだトランジスタの特性を生かしてコンバータ部(2)の低損失化を図ることが可能になる。
図1は、本発明の実施形態1に係るマトリックスコンバータの構成を示すブロック図である。 図2は、入力三相交流とコンバータ部が出力する2レベルの直流電圧を説明する波形図である。 図3は、実施形態1にかかる制御部の構成を示すブロック図である。 図4は、台形波状電圧指令信号の波形を示す図である。 図5は、セクター1におけるコンバータ部の状態を説明する図である。 図6は、セクター1の位相角30~60°の期間において、マトリックスコンバータで行われるPWM変調を説明する図である。 図7は、セクター1の位相角60~90°の期間に、マトリックスコンバータで行われるPWM変調を説明する図である。 図8は、セクター2におけるコンバータ部の状態を説明する図である。 図9は、実施形態1における各相のゲート信号、入力三相交流の電圧、及び入力電流の波形をそれぞれ示す図である。 図10は、変形例にかかる制御部の構成を示すブロック図である。 図11は、基準相、最大相、及び中間相の遷移の状態と台形波状電圧指令信号の傾斜領域の関係を示す図である。 図12は、本発明の実施形態2に係る制御部の構成を示すブロック図である。 図13は、モード0における入力三相交流の各相の電圧の波形図である。 図14は、モード0におけるゲートパターンの切替え状態、及び各フィルタコンデンサの電圧波形を示す図である。 図15は、実施形態2における各相のゲート信号、入力三相交流の電圧、及びフィルタコンデンサ通過後の入力電流の波形をそれぞれ示す図である。 図16は、モード0(30°~60°)の逆転期間において、ゲートパターンA,Bのそれぞれのパターンでスイッチングを行った場合の相電流の波形を模式的に示す図である。 図17は、実施形態1やその変形例における、入力三相交流、r,s相のゲート信号のパターン(ゲートパターンB)、及びフィルタコンデンサ通過後の入力電流の波形をそれぞれ示す図である。 図18は、本発明の実施形態3に係る制御部の構成を示すブロック図である。 図19は、r相の電圧波形、スイッチング素子(Srp)に対応した、電流形ゲート論理変換部、マスク信号生成部、及びマルチプレクサがそれぞれ出力する信号の波形を示す図である。 図20は、実施形態3における各相のゲート信号、入力三相交流の電圧、及び入力電流の波形をそれぞれ示す図である。
 以下、本発明の実施形態について図面を参照しながら説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 《発明の実施形態1》
 《概要》
 実施形態1では、本発明の電力変換装置の一例として、マトリックスコンバータの例を説明する。図1は、本発明の実施形態1に係るマトリックスコンバータ(1)の構成を示すブロック図である。このマトリックスコンバータ(1)は、コンバータ部(2)、インバータ部(3)、クランプ回路(4)、制御部(5)、及びLCフィルタ回路(6)を備えている。そして、マトリックスコンバータ(1)には、三相交流電源(7)とモータ(8)とが接続されており、三相交流電源(7)が出力する三相交流(以下、入力三相交流という)の相電圧(Vr,Vs,Vt)を、コンバータ部(2)によって、直流電圧成分に交流電圧成分が重畳した直流電圧に変換し、その直流電圧をインバータ部(3)によって三相交流(以下、出力三相交流という)に変換してモータ(8)に供給するようになっている。このモータ(8)は、例えば空気調和機の冷媒回路に設けられた圧縮機を駆動するものである。図1では、このモータ(8)を、3つのコイル(L21,L22,L23)と3つの抵抗(R21,R22,R23)が三相スター結合された負荷として表している。
 《マトリックスコンバータの各部の構成》
 以下では、マトリックスコンバータ(1)の各構成要素について詳述する。
 〈LCフィルタ回路(6)〉
 LCフィルタ回路(6)は、前記入力三相交流のそれぞれの相に対応した3つのコイル(L11,L12,L13)と3つのフィルタコンデンサ(C11,C12,C13)とを備えたLCフィルタである。このLCフィルタ回路(6)は、コンバータ部(2)等のスイッチング素子(後述)のオンオフ動作によって生じる高周波電流が三相交流電源(7)側に流れ込むのを抑制するために設けている。具体的に、この例では、三相交流電源(7)の相電圧(Vr)がコイル(L11)に、相電圧(Vs)がコイル(L12)に、相電圧(Vt)がコイル(L13)にそれぞれ入力されている。
 〈コンバータ部(2)〉
 -概要-
 コンバータ部(2)は、入力三相交流をスイッチング素子(後述)でスイッチングして、2レベルの直流電圧に変換して出力するようになっている。コンバータ部(2)におけるスイッチングは制御部(5)が制御する。
 図2は、入力三相交流と、コンバータ部(2)が出力する2レベルの直流電圧を説明する波形図である。詳しくは、図2(A)が入力三相交流のそれぞれの相電圧(Vr,Vs,Vt)を正規化した波形図であり、(B)がコンバータ部(2)の出力波形を示す図である。図2(A)に示すように、これらの相電圧(Vr,Vs,Vt)は、2つの相の電圧が正で残りの相の電圧が負である期間(以下、セクター1という)と、2つの相の電圧が負で残りの相の電圧が正である期間(以下、セクター2という)とがあり、セクター1とセクター2とは位相角60度ごとに交互に繰り返している。
 このコンバータ部(2)は、出力する直流電圧の基準となる相(以下、基準相という)をセクター毎に選択し、基準相の電圧を基準とした残り2つの相の線間電圧を、時分割でそれぞれ選択することによって2レベルの直流電圧を出力するようになっている。具体的には、基準相の相電圧を基準として、残り2つの相のうち、その絶対値が大きい方の相(以下、最大相という)と基準相との線間電圧を最大電圧(Emax)として出力し、もう一方の相(以下、中間相という)と基準相との線間電圧を中間電圧(Emid)として出力する。
 本実施形態では、上記の基準相は、各セクターにおいて電圧の絶対値が最大となる相である。例えばセクター1では、電圧の絶対値が最大となる相はt相でありt相が基準相である(図2(A)を参照)。また、入力三相交流では、基準相以外の2相は、各セクターにおいて、前半の位相角30°分の期間と後半の位相角30°分の期間で電圧の大小関係が入れ替わっている(図2(A)を参照)。すなわち、セクターの前半と後半で、最大相となる相と中間相となる相が入れ替わることになる。例えば、セクター1の位相角30~60°の期間では、相電圧(Vr)が相電圧(Vs)よりも高い。すなわち、位相角30~60°の期間はr相が最大相でありs相が中間相である。一方、セクター1の位相角60~90°の期間では、相電圧(Vs)が相電圧(Vr)よりも高い。すなわち、位相角60~90°の期間はs相が最大相でありr相が中間相である。
 -構成-
 本実施形態のコンバータ部(2)は、具体的には図1に示すように、上アームを構成する3つのスイッチング素子(Srp,Ssp,Stp)と、下アームを構成する3つのスイッチング素子(Srn,Ssn,Stn)を備えている。本実施形態では、上及び下アームの各スイッチング素子(Srp,…,Stn)を単方向スイッチング素子によって構成している。より具体的には、各スイッチング素子(Srp,…,Stn)として、いわゆる逆阻止IGBTを採用している。なお、図1では、コンバータ部(2)の各スイッチング素子(Srp,…,Stn)のコレクタにダイオードのシンボルが記載されているが、実際にこれらのダイオードが別個に接続されているのではなく、この図は、各スイッチング素子(Srp,…,Stn)が逆方向の電圧を阻止することを模式的に示している(以下、他の図でも同様)。すなわち、コンバータ部(2)では、この逆阻止IGBTの採用により従来のコンバータ回路では必要であった逆阻止ダイオードが不要になり、コンバータ部(2)における導通損失の低減を期待できる。
 具体的に、このコンバータ部(2)では、上アームのスイッチング素子(Srp,Ssp,Stp)は、エミッタ側で並列接続してある。一方、下アームのスイッチング素子(Srn,Ssn,Stn)は、コレクタ側で並列接続してある。また、上アームのスイッチング素子(Srp,Ssp,Stp)と下アームのスイッチング素子(Srn,Ssn,Stn)とは、1対1に対応しており、各上アームのスイッチング素子(Srp,Ssp,Stp)のコレクタには、対応した下アームのスイッチング素子(Srn,Ssn,Stn)のエミッタを接続してある。なお、以下では、上アームのスイッチング素子(Srp,Ssp,Stp)のエミッタ側に繋がる母線を第1直流リンク部(L1)とよび、下アームのスイッチング素子(Srn,Ssn,Stn)のコレクタ側に繋がる母線を第2直流リンク部(L2)と呼ぶことにする。この第1及び第2直流リンク部(L1,L2)は、本発明の出力線の一例である。
 また、図1に示すように、スイッチング素子(Srp)とスイッチング素子(Srn)の接続ノードには、LCフィルタ回路(6)のコイル(L11)の一端を接続して、該コイル(L11)を介して、三相交流電源(7)からの相電圧(Vr)を入力している。また、スイッチング素子(Ssp)とスイッチング素子(Ssn)の接続ノードには、コイル(L12)を介して、三相交流電源(7)からの相電圧(Vs)を入力している。同様に、スイッチング素子(Stp)とスイッチング素子(Stn)の接続ノードには、コイル(L13)を介して、三相交流電源(7)からの相電圧(Vt)を入力している。つまり、このコンバータ部(2)は、第1直流リンク部(L1)と第2直流リンク部(L2)の間に直列接続した2つのスイッチング素子(Srp,…,Stn)の組を3組有し、直列接続の各接続ノードに入力三相交流の相が1つずつ接続されている。
 〈クランプ回路(4)〉
 クランプ回路(4)は、2つのコンデンサ(C1,C2)と、3つのダイオード(D1,D2,D3)を備えている。このクランプ回路(4)は、コンデンサ(C1)の一端を、第1直流リンク部(L1)に接続し、そのコンデンサ(C1)の他端にダイオード(D1)のアノードを接続している。そして、このダイオード(D1)のカソードにはコンデンサ(C2)の一端を接続し、そのコンデンサ(C2)の他端は第2直流リンク部(L2)に接続している。
 また、ダイオード(D2)は、そのアノードを上記ダイオード(D1)のカソードに接続し、ダイオード(D2)のカソードは、第1直流リンク部(L1)に接続している。また、ダイオード(D3)は、そのカソードを上記ダイオード(D1)のアノードに接続し、ダイオード(D3)のアノードは第2直流リンク部(L2)に接続している。
 〈インバータ部(3)〉
 インバータ部(3)は、コンバータ部(2)が出力した直流電圧を、相電圧がVu,Vv,Vwである出力三相交流に変換してモータ(8)に供給するようになっている。具体的には、本実施形態のインバータ部(3)は、図1に示すように、上アームを構成する3つのスイッチング素子(Sup,Svp,Swp)及び3つのダイオード(Dup,Dvp,Dwp)、下アームを構成する3つのスイッチング素子(Sun,Svn,Swn)及び3つのダイオード(Dun,Dvn,Dwn)を備えている。このインバータ部(3)では、上及び下アームの各スイッチング素子(Sup,…,Swn)に一般的なIGBTを採用している。
 そして、このインバータ部(3)では、上アームのスイッチング素子(Sup,Svp,Swp)は、コレクタ側で並列接続するとともに、前記第1直流リンク部(L1)に接続してある。また、上アームのこれらのスイッチング素子(Sup,Svp,Swp)は、コレクタとエミッタの間に、ダイオード(Dup,Dvp,Dwp)をそれぞれ逆並列接続してある。
 一方、下アームのスイッチング素子(Sun,Svn,Swn)は、エミッタ側で並列接続するとともに、前記第2直流リンク部(L2)に接続してある。また、下アームのこれらのスイッチング素子(Sun,Svn,Swn)は、コレクタとエミッタの間に、ダイオード(Dun,Dvn,Dwn)をそれぞれ逆並列接続してある。
 また、上アームのスイッチング素子(Sup,Svp,Swp)と下アームのスイッチング素子(Sun,Svn,Swn)とは、1対1に対応しており、上アームの各スイッチング素子(Sup,Svp,Swp)のエミッタには、対応した下アームのスイッチング素子(Sun,Svn,Swn)のコレクタを接続してある。
 そして、このインバータ部(3)では、スイッチング素子(Sup)とスイッチング素子(Sun)の接続ノードから相電圧(Vu)を出力し、スイッチング素子(Svp)とスイッチング素子(Svn)の接続ノードから相電圧(Vv)を出力し、スイッチング素子(Swp)とスイッチング素子(Swn)の接続ノードから相電圧(Vw)を出力する。これらの相電圧(Vu,Vv,Vw)は、前記モータ(8)に供給されている。
 〈制御部(5)〉
 制御部(5)は、コンバータ部(2)とインバータ部(3)をPWM変調方式(Pulse Width Modulation)でそれぞれ制御する。例えばコンバータ部(2)に対しては、入力三相交流の1つの相を基準相として、基準相と他のそれぞれの相との線間電圧が時分割で第1及び第2直流リンク部(L1,L2)に出力されるように、スイッチング素子(Srp,…,Stn)のオンオフを制御する。
 図3は、本実施形態にかかる制御部(5)の構成を示すブロック図である。同図に示すように、制御部(5)は、コンバータ部(2)を制御するコンバータ制御部(5a)と、インバータ部(3)を制御するインバータ制御部(5b)とを備えている。このコンバータ制御部(5a)は、台形波状電圧指令生成部(11)、比較部(12)、電流形ゲート論理変換部(13)、中間相検出部(14)、キャリヤ信号生成部(15)、最大相素子検出部(16)、及び導通素子選択部(17)を備えており、中間相検出部(14)とキャリヤ信号生成部(15)とをインバータ制御部(5b)と共用するようになっている。また、インバータ制御部(5b)は、出力電圧指令生成部(21)、演算部(22)、演算部(23)、比較部(24)、及び論理和演算部(25)を備えている。以下では、制御部(5)の各構成要素について説明する。
 -台形波状電圧指令生成部(11)-
 台形波状電圧指令生成部(11)は、電源同期信号(Vr)が入力され、該電源同期信号(Vr)に基づいて台形波状電圧指令信号(Vr*,Vs*,Vt*)の傾斜領域の値を、入力三相交流の各相に対応して生成するようになっている。なお、電源同期信号(Vr)は、入力三相交流の何れかの相に同期した信号である。
 より具体的には、本実施形態の台形波状電圧指令生成部(11)は、次の式に基づいて台形波状電圧指令信号(Vr*,Vs*,Vt*)の傾斜領域の値を求めて予めテーブルに設定しておき、動作時にそのテーブルを用いて該台形波状電圧指令信号(Vr*,Vs*,Vt*)の傾斜領域の値を出力する。
Figure JPOXMLDOC01-appb-M000001
 ここで、位相角θは、入力三相交流の相電圧(Vr)に同期している。
 図4は、台形波状電圧指令信号(Vr*,Vs*,Vt*)の波形を示す図である。これらの台形波状電圧指令信号(Vr*,Vs*,Vt*)は、コンバータ部(2)の各相における通流比(デューティー比)を表している。本実施形態では、通流比が正の場合にコンバータ部(2)の上アームが導通し、通流比が負の場合に下アームが導通する。
 -キャリヤ信号生成部(15)-
 キャリヤ信号生成部(15)は、キャリヤ信号を生成するようになっている。このキャリヤ信号は三角波状の信号である。
 -比較部(12)-
 比較部(12)は、台形波状電圧指令生成部(11)が生成した台形波状電圧指令信号(Vr*,Vs*,Vt*)と、キャリヤ信号生成部(15)が生成したキャリヤ信号とを比較する。
 -電流形ゲート論理変換部(13)-
 電流形ゲート論理変換部(13)は、比較部(12)における比較結果に基づいて、6つのゲート信号を出力する。これらのゲート信号は、コンバータ部(2)の6つのスイッチング素子(Srp,…,Stn)のゲートを制御するための信号である。
 この電流形ゲート論理変換部(13)は、最大相及び中間相の各スイッチング素子に対しては、通流比(drt,dst)で、互いに相補的にオンオフを繰り返すようにゲート信号を生成する。つまり、電流形ゲート論理変換部(13)は、従来のPWM制御(例えば特許文献1を参照)用の信号を生成する。これらのゲート信号は、導通素子選択部(17)を介してコンバータ部(2)の各スイッチング素子(Srp,…,Stn)に入力されている。
 -中間相検出部(14)-
 中間相検出部(14)は、前記台形波状電圧指令信号(Vr*,Vs*,Vt*)に基づいて、中間相の通流比(drt,dst)を検出する。
 -最大相素子検出部(16)-
 最大相素子検出部(16)は、電源同期信号(Vr)に基づいて、入力三相交流の各相電圧(Vr,Vs,Vt)のなかから前記最大相を検出する。
 -導通素子選択部(17)-
 導通素子選択部(17)は、最大相素子検出部(16)の検出結果に基づいて、最大相に対応したスイッチング素子(Srp,…,Stn)のうち、順バイアスが印加されているスイッチング素子のゲート(制御端子)に対しては、電流形ゲート論理変換部(13)の出力をそのまま印加し、最大相のもう一方のスイッチング素子、中間相に対応したスイッチング素子、及び基準相に対応したスイッチング素子に対しては、電流形ゲート論理変換部(13)の出力にかかわらず、ゲートに所定のゲート電圧を印加する。すなわち、本実施形態の制御部(5)は、6つのスイッチング素子(Srp,…,Stn)のうち、逆バイアスが印加されているスイッチング素子に所定のゲート電圧を印加する。ここで、所定のゲート電圧とは、スイッチング素子のコレクタ・エミッタ間が導通する電圧と等しい電圧であるが、漏れ電流値に応じて、より低い電圧または高い電圧を適宜選択することも可能である。
 -出力電圧指令生成部(21)-
 出力電圧指令生成部(21)は、インバータ部(3)に対する出力電圧指令信号(Vu*,Vv*,Vw*)を生成する。
 -演算部(22,23)-
 演算部(22)は、前記出力電圧指令信号(Vu*,Vv*,Vw*)と前記通流比(drt,dst)に基づいて、
 drt+dstV (V:各相の電圧ベクトル)を出力する。
 また、演算部(23)は、前記出力電圧指令信号(Vu*,Vv*,Vw*)と通流比(drt)とに基づいて、
 drt(1-V) (V:各相の電圧ベクトル)を出力する。
 -比較部(24)-
 比較部(24)は、2つの演算部(22,23)におけるそれぞれの演算結果と、キャリヤ信号生成部(15)が生成したキャリヤ信号とを比較する。
 -論理和演算部(25)-
 論理和演算部(25)は、上記比較部(24)における比較結果に基づいて、ゲート信号を出力する。これらのゲート信号は、インバータ部(3)の6つのスイッチング素子(Sup,…,Swn)をオンオフ制御する信号である。
 《マトリックスコンバータ(1)の動作》
 図5は、セクター1におけるコンバータ部(2)の状態を説明する図であり、(A)がコンバータ部(2)の主要部を模式的に表した等価回路図、(B)が位相角30~60°の期間における状態を示す等価回路図、(C)が位相角60~90°の期間における状態を示す等価回路図である。以下では、セクター1を位相角30~60°の期間と位相角60~90°の期間に分けて、マトリックスコンバータ(1)の動作を説明する。
 〈位相角30~60°の期間〉
 図6は、セクター1の位相角30~60°の期間において、マトリックスコンバータ(1)で行われるPWM変調を説明する図である。図6において、tsはキャリヤ周期、I(rt)は電流指令、I(st)は電流指令、drt、dstは通流比、IdcはDCリンク電流、V0,V4,V6は電圧指令、d0は電圧指令V0に対応する通流比、d4は電圧指令V4に対応する通流比である。
 また、Srp,Ssp,Stnは、それぞれコンバータ部(2)のスイッチング素子(Srp,Ssp,Stn)へのゲート信号である。また、Sup,Svp,Swpは、インバータ部(3)のそれぞれ上アーム側のスイッチング素子(Sup,Svp,Swp)へのゲート信号であり、Sun,Svn,Swnは、それぞれ下アーム側のスイッチング素子(Sun,Svn,Swn)へのゲート信号である。この図6からわかるように、マトリックスコンバータ(1)では、三角波状のキャリヤ信号を用いている。
 セクター1のこの期間ではt相が基準相である(図2(A)を参照)。また、この期間ではr相が最大相であり、s相が中間相である。この場合、制御部(5)は、最大相、すなわちr相に対応したスイッチング素子(Srp)のみを上記通流比(drt,dst)に応じてオンオフ制御し、コンバータ部(2)におけるその他のスイッチング素子(Ssp,Stp,Srn,Ssn,Stn)には、既述した所定のゲート電圧を印加する(図6を参照)。なお、この場合、t相(基準相)に対応したスイッチング素子(Stp)は、所定の接合容量を有しているので、図5(B)では、該スイッチング素子(Stp)をコンデンサ(Ctp)で表している。
 上記のように各スイッチング素子(Srp,…,Stn)が制御されると、スイッチング素子(Srp)のコレクタと第2直流リンク部(L2)との間の電圧が最大電圧(Emax)になる。一方、スイッチング素子(Ssp)のコレクタと第2直流リンク部(L2)間の電圧が中間電圧(Emid)になる。すなわち、スイッチング素子(Ssp)には逆バイアスが印加されることになる。スイッチング素子(Ssp)に逆バイアスが印加されていても、このスイッチング素子(Ssp)は単方向スイッチ(具体的には逆阻止IGBT)で構成されているので、直流リンク部(L1,L2)間が短絡することはない。そして、最大電圧(Emax)と中間電圧(Emid)とは電位差を有しているので、直流リンク部(L1,L2)には最大電圧(Emax)のみが発生する。
 また、図5(B)に現れていないスイッチング素子(Srn,Ssn,Stp)についてみると、これらのすべてについて逆バイアスが印加されることになる。具体的には、スイッチング素子(Srn)に最大電圧(Emax)、スイッチング素子(Ssn)に中間電圧(Emid)、スイッチング素子(Stp)に最大電圧(Emax)又は中間電圧(Emid)がそれぞれ印加される。これらのスイッチング素子(Srn,Ssn,Stp)は単方向スイッチなので、これらにゲート電圧を印加しても電流は流れない。
 以上のように、最大相において順方向電圧が印加されたスイッチング素子のみを上記通流比(drt,dst)でオンオフを切り替え、その他のスイッチング素子は所定のゲート電圧が印加された状態に固定することで、直流電圧成分に交流電圧成分が重畳した直流電圧を出力することができる。
 そして、コンバータ部(2)が出力した直流電圧は、インバータ部(3)に入力される。このインバータ部(3)は、上記制御部(5)が出力したゲート信号によって、6つのスイッチング素子(Sup,…,Swn)のオンオフが制御される。これにより、インバータ部(3)は所定の交流電圧をモータ(8)に出力する。
 〈位相角60~90°の期間〉
 セクター1のこの期間でも、t相が基準相である(図2(A)を参照)。一方、この期間の最大相はs相であり、中間相はr相である。図7は、セクター1の位相角60~90°の期間に、マトリックスコンバータ(1)で行われるPWM変調を説明する図である。この期間には、制御部(5)は図7に示すように、最大相、すなわちs相に対応したスイッチング素子(Ssp)のみを、上記通流比(drt,dst)に応じてオンオフ制御し、コンバータ部(2)におけるその他のスイッチング素子(Srp,Stp,Srn,Ssn,Stn)に所定のゲート電圧を印加する。この状態では、スイッチング素子(Ssp)以外の、コンバータ部(2)におけるスイッチング素子には逆バイアスが印加される。そして、コンバータ部(2)の各スイッチング素子(Srp,…,Stn)は単方向スイッチなので、逆バイアスが印加されたスイッチング素子のゲート電圧を印加しても電流は流れない。
 〈セクター2における動作〉
 図8は、セクター2におけるコンバータ部(2)の状態を説明する図であり、(A)がコンバータ部(2)の主要部を模式的に表した等価回路図、(B)が位相角90~120°の期間における状態を示す等価回路図、(C)が位相角120~150°の期間における状態を示す等価回路図である。このマトリックスコンバータ(1)は、セクター2では、各相電圧(Vr,Vs,Vt)の関係から、基準相の下アーム側のスイッチング素子を上記通流比(drt,dst)でオンオフ制御し、その他のスイッチング素子を、所定のゲート電圧が印加された状態に固定する。なお、このセクター2でも位相角30°ごとに、最大相となる相と中間相となる相のが入れ替わるので、セクター1で行ったのと同様に、30°ごとの期間に分けて制御を行う。そして、本実施形態のマトリックスコンバータ(1)では、上記と同様の動作が繰り返される。このときの各相のゲート信号、入力三相交流の電圧、及び入力電流の波形は図9のようになる。同図に示すように、本実施形態では、何れかの1相の一方のスイッチング素子が所定の通流比でオンオフ制御されている。
 〈本実施形態における効果〉
 逆阻止IGBTはコレクタ・エミッタ間に逆バイアスが印加されると、比較的大きな漏れ電流を生ずるが、このように逆バイアスが印加された状態でゲート電圧を印加すると、漏れ電流が低減するという特性を有していることが知られている。その点、このマトリックスコンバータ(1)では、制御部(5)が、逆バイアスが印加されたスイッチング素子に、所定のゲート電圧が印加されるように制御しているので、各スイッチング素子(Srp,…,Stn)に逆阻止IGBTを採用しても、逆バイアスが印加された際の漏れ電流を低減させることが可能になる。そして、逆阻止IGBTを採用した結果、従来必要であった逆阻止ダイオードが不要になり、コンバータ部(2)における導通抵抗の低減も可能になる。
 《実施形態1の変形例》
 上記実施形態1の変形例として、制御部の他の例を説明する。図10は、本変形例にかかる制御部(30)の構成を示すブロック図である。制御部(30)は、上記実施形態1における制御部(5)のコンバータ制御部(5a)の構成を変更したものである。具体的に制御部(30)のコンバータ制御部(30a)は、比較部(12)、電流形ゲート論理変換部(13)及び導通素子選択部(17)に代えて、導通素子選択部(31)、比較部(32)を設けたものである。
 比較部(32)は、中間相検出部(14)で求めた中間相の通流比と、キャリヤ信号生成部(15)の出力とを比較して中間相の通流比を求め、その結果を導通素子選択部(31)に出力している。また、本変形例の導通素子選択部(31)は、比較部(32)から入力された中間相の通流比に基づいて、最大相の通流比を求めて、各スイッチング素子(Srp,…,Stn)に対するゲート電圧を生成している。図11は、基準相、最大相、及び中間相の遷移の状態(モード0,モード1,…)と、台形波状電圧指令信号(Vr*,Vs*,Vt*)の傾斜領域の関係を示す図である。図11から分かるように、入力三相交流では、基準相、最大相、及び中間相が所定の周期で入れ替わっている。そのため、何れかの相に対する通流比が分かれば、他の相の通流比も決定することができる。そこで、この導通素子選択部(31)は、最大相素子検出部(16)の検出結果に応じ、最大相に対応したスイッチング素子(Srp,…,Stn)のうち、順バイアスが印加されているスイッチング素子(Srp,…,Stn)のゲートに対しては、求めた通流比に応じてゲート電圧を印加し、最大相のもう一方のスイッチング素子、中間相に対応したスイッチング素子、及び基準相に対応したスイッチング素子に対しては、所定のゲート電圧を印加する。
 このように、1つの相の信号(通流比)のみから6つのゲート電圧を生成することで、コンバータ制御部(30a)を簡略化することが可能になる。
 《発明の実施形態2》
 実施形態2では、制御部の他の構成例を説明する。図12は、本発明の実施形態2に係る制御部(50)の構成を示すブロック図である。この制御部(50)は、コンバータ制御部(50a)とインバータ制御部(5b)とを備えている。すなわち、この制御部(50)は、コンバータ制御部(50a)の構成が実施形態1とは異なっている。本実施形態のコンバータ制御部(50a)は、台形波状電圧指令生成部(11)、中間相検出部(14),キャリヤ信号生成部(15)、第1ゲート信号生成部(51)、第2ゲート信号生成部(52)、セレクタ(53)、及びセレクタ制御部(54)を備えている。なお、中間相検出部(14)及びキャリヤ信号生成部(15)は、インバータ制御部(5b)と共用してる。
 第1ゲート信号生成部(51)は、実施形態1でそれぞれ説明した比較部(12)と電流形ゲート論理変換部(13)とを備え、電流形ゲート論理変換部(13)の出力信号をセレクタ(53)に出力している。すなわち、第1ゲート信号生成部(51)は、従来のPWM制御(例えば特許文献1を参照)用の信号を生成してセレクタ(53)に出力するのである。第1ゲート信号生成部(51)が出力するゲート信号を各スイッチング素子(Srp,…,Stn)に印加すれば、三相交流の2相が変調される。
 また、第2ゲート信号生成部(52)は、上記変形例で説明した、最大相素子検出部(16)、比較部(32)、及び導通素子選択部(31)を備え、導通素子選択部(31)の出力をセレクタ(53)に出力している。すなわち、第2ゲート信号生成部(52)は、上記変形例のコンバータ制御部(30a)と同じゲート信号をセレクタ(53)に出力するのである。したがって、第2ゲート信号生成部(52)が出力するゲート信号を各スイッチング素子(Srp,…,Stn)に印加すれば、三相交流の1相が変調される。なお、以下では、第1及び第2ゲート信号生成部(51,52)がそれぞれ出力するゲート信号のパターンを、それぞれゲートパターンA,Bと呼ぶ。
 セレクタ(53)は、セレクタ制御部(54)の制御に応じて、第1ゲート信号生成部(51)からのゲート信号、及び第2ゲート信号生成部(52)からのゲート信号の何れかを選択し、コンバータ部(2)の各スイッチング素子(Srp,…,Stn)に出力するようになっている。すなわち、セレクタ(53)からは、ゲートパターンAの信号、又はゲートパターンBの信号が選択的に出力されるのである。
 セレクタ制御部(54)は、各セクターの一部の期間は、前記セレクタ(53)が第1ゲート信号生成部(51)の出力を選択し、残りの期間は第2ゲート信号生成部(52)の出力を選択するようにセレクタ(53)を制御する。以下では、セレクタ(53)が第1ゲート信号生成部(51)の出力を選択した期間、すなわちゲートパターンAで制御される期間を2相変調期間と呼び、第2ゲート信号生成部(52)の出力を選択した期間を1相変調期間と呼ぶことにする。この2相変調期間は、順バイアスが印加されているスイッチング素子(Srp,…,Stn)と、中間相に対応したスイッチング素子(Srp,…,Stn)のうち電流が流出する側のスイッチング素子(Srp,…,Stn)とが、所定の通流比(drt,dst)で相補的にオンオフ制御される。一方、1相変調期間は、順バイアスが印加されているスイッチング素子(Srp,…,Stn)のみが所定の通流比(drt,dst)でオンオフ制御される。
 本実施形態では、前記2相変調期間(ゲートパターンAで制御される期間)は、最大相に対応したフィルタコンデンサ(C11,C12,C13)の電圧よりも中間相に対応したフィルタコンデンサ(C11,C12,C13)の電圧の方が大きい期間を含む期間である。より具体的には、入力三相交流の中間相と最大相が入れ替わるタイミング(位相角)を中心とした位相角30°分の期間である。
 〈実施形態2のマトリックスコンバータの動作〉
 以下では、例としてモード0における動作を説明する。図13は、モード0における入力三相交流の各相の電圧の波形図である。モード0では、基準相はt相で、前半の期間ではr相が最大相、s相が中間相であり、後半の期間ではs相が最大相、r相が中間相である(図11を参照)。従前の図9では、例えば位相角30~90°(セクター1)の期間が対応する。このモード0では、図13に示すように、位相角60°で中間相と最大相が入れ替わっている。
 図14は、モード0におけるゲートパターンの切替え状態、及び各フィルタコンデンサ(C11,C12,C13)の電圧波形を示す図である。同図に示すように、本実施形態のコンバータ制御部(50a)(より詳しくはセレクタ制御部(54))は、モード0では、位相角45°から75°の期間は、ゲート信号をゲートパターンAに制御し、残りの期間(位相角30°から45°の期間と位相角60°から90°の期間)は、ゲートパターンBに制御する。すなわち、位相角45°から75°の期間は2相変調期間であり、位相角30°から45°の期間と位相角60°から90°の期間は1相変調期間である。そして、本実施形態のコンバータ制御部(50a)は、他の各モードについても同様のスイッチングの制御を行う。図15は、本実施形態における各相のゲート信号、入力三相交流の電圧、及びフィルタコンデンサ通過後の入力電流の波形をそれぞれ示す図である。
 図14に示したように、コンバータ部(2)のような電流形コンバータ回路を有した電力変換装置では、フィルタコンデンサ(C11,C12,C13)はキャリアリプルが重畳する。そして、最大相と中間相が入れ替わる位相角付近では、フィルタコンデンサ(C11,C12,C13)の電圧の大きさが、本来の大小関係とは逆転する期間(以下、単に逆転期間と呼ぶ)が存在する。この例では、r相のフィルタコンデンサ(C11)の電圧(Vrc)と、s相のフィルタコンデンサ(C12)の電圧(Vsc)とが複数箇所で逆転している。また、この例では、これらの逆転期間は、中間相と最大相が入れ替わるタイミング(位相角60°)を中心とした位相角30°分の期間に含まれている。すなわち、逆転期間は、ゲートパターンAでスイッチングが行われるのである。
 〈実施形態2における効果〉
 図15(本実施形態)を図9(実施形態1)とを比べると、本実施形態では、入力三相交流の電流の歪が改善していることが分かる。これは、次に説明する理由によるものである。
 図16は、モード0(位相角30°~60°)の逆転期間において、ゲートパターンA,Bのそれぞれのパターンでスイッチングを行った場合の相電流の波形を模式的に示す図である。例えば、ゲートパターンAでスイッチングを行うと、モード0では、スイッチング素子(Srp)とスイッチング素子(Ssp)とが相補的にスイッチングされる。この際、スイッチング素子(Ssp)をオンにすることにより最大相が接続され、オフにすることにより中間相が接続される。そのため、図16の(A)に示すように、相電流(Irp,Isp,Itn)はスイッチング素子(Srp)とスイッチング素子(Ssp)を相補的に流れる。
 一方、ゲートパターンBのスイッチングでは、相電圧Vr>相電圧Vsの関係が維持されている場合には、スイッチング素子(Ssp)をオンすることにより最大相が接続され、オフすることにより中間相が接続される(図5(B)を参照)。そのため、図16の(A)に示したのと同様に、相電流はスイッチング素子(Srp)とスイッチング素子(Ssp)を相補的に流れる。しかし、最大相と中間相の大小関係が逆転した場合(図14参照)は、スイッチング素子(Srp)を流れるべき電流が、常時オン状態にあるスイッチング素子(Ssp)を流れる。そのため、図16の(B)に示すように、スイッチング素子(Srp)の電流が欠落する。
 実施形態1やその変形例におけるゲートパターンは常にゲートパターンBであるので、実施形態1やその変形例では、このような電流の欠落が起こりえる。図17は、実施形態1やその変形例における、入力三相交流、r,s相のゲート信号のパターン(ゲートパターンB)、及びフィルタコンデンサ(C11,C12,C13)通過後の入力電流の波形をそれぞれ示す図である。このように、ゲートパターンBのみでスイッチングを行うと、フィルタコンデンサ通過後の入力電流は、最大相と中間相が切り替わる60°毎に歪が大きくなる。
 これに対し、本実施形態では、前記逆転期間を含んだ、中間相と最大相が入れ替わるタイミング(位相角)を中心とした位相角30°分の期間は、ゲートパターンAでスイッチング(すなわち2相変調)を行っている。それゆえ、この期間は電流波形の歪の増大を抑えることが可能になる。また、ゲートパターンBでスイッチング(すなわち1相変調)を行う期間には、実施形態1や変形例のマトリックスコンバータと同様に逆バイアスが印加されたスイッチング素子の漏れ電流を低減させることが可能になる。このように、本実施形態では、漏れ電流低減の効果と、電流波形の歪の増大を抑える効果とをバランスよく得ることが可能になる。
 また、本実施形態では、位相角30°単位でゲートパターンA,Bを切替えている。この30°という値は前記セクターの整数分の1の値なので、ゲートパターンの切り替え制御をより容易に行える。勿論、2相変調を行う期間(前記の例では位相各30°分の期間)は、例示であり、他の値に変更することも可能である。
 《発明の実施形態3》
 図18は、本発明の実施形態3に係る制御部(60)の構成を示すブロック図である。この制御部(60)は、コンバータ制御部(60a)とインバータ制御部(5b)とを備えている。すなわち、この制御部(60)は、コンバータ制御部(60a)の構成が実施形態1とは異なっている。本実施形態のコンバータ制御部(60a)は、台形波状電圧指令生成部(11)、電流形ゲート論理変換部(13)、中間相検出部(14),キャリヤ信号生成部(15)、マスク信号生成部(61)、及びマルチプレクサ(62)を備えている。なお、中間相検出部(14)及びキャリヤ信号生成部(15)は、インバータ制御部(5b)と共用してる。
 マスク信号生成部(61)は、各スイッチング素子(Srp,…,Stn)に対応した6つのマスク信号(S2)を出力する。このマスク信号(S2)は、変調させる相に対応したスイッチング素子(Srp,…,Stn)に対してハイレベル(以下、Hレベル)、その他のスイッチング素子(Srp,…,Stn)に対してローレベル(以下、Lレベル)になる。本実施形態のマトリックスコンバータでは、前記2相変調を行うようになっており、マスク信号生成部(61)は、変調にかかわる2つスイッチング素子(Srp,…,Stn)に対してHレベル信号を出力するようになっている。
 図19は、r相の相電圧Vr(電圧は正規化してある)の波形、スイッチング素子(Srp)に対応した、電流形ゲート論理変換部(13)、マスク信号生成部(61)、及びマルチプレクサ(62)がそれぞれ出力する信号(S1,S2,S3)の波形を示す図である。図19では、モード4からモード0の期間を図示してある。この例では、スイッチング素子(Srp)に対応したマスク信号(S2)は、図19に示す領域A(モード4の前半)と領域C(モード5の前半)ではHレベルになり、領域B(モード4の後半)と領域D(モード5の後半からモード0の全域)ではLレベルある。
 また、図19のS1は、電流形ゲート論理変換部(13)が出力する信号の波形である。すなわち、S1は、従来のPWM制御用のゲート信号である。このゲート信号(S1)は、スイッチング素子(Srp)に変調動作を行わせない領域DではLレベルになる。このゲート信号(S1)とマスク信号(S2)と、さらにハイレベルの信号(図19中のHigh信号)が、マルチプレクサ(62)に入力されている。
 このマルチプレクサ(62)は、マスク信号(S2)がHレベルの場合にゲート信号(S1)を選択し、マスク信号(S2)がLレベルの場合に、前記High信号を選択して、各スイッチング素子(Srp,…,Stn)に出力するようになっている。例えば、r相の上アームのスイッチング素子(Srp)に対しては、電流形ゲート論理変換部(13)が出力したスイッチング素子(Srp)用のゲート信号(S1)又はHigh信号を、前記のようにマスク信号(S2)に応じて選択して出力する。なお、ゲート信号(S1)、マスク信号(S2)、ゲート信号(S3)の各信号については、r相に関するものを代表で説明したがその他のs,t相についても同様である。
 〈実施形態3における動作〉
 図20は、実施形態3における各相のゲート信号、入力三相交流の電圧、及び入力電流の波形をそれぞれ示す図である。本実施形態のコンバータ制御部(60a)によれば、例えば、モード4では、スイッチング素子(Srp)とスイッチング素子(Stp)とが相補的に所定の通流比でオンオフ動作を行って、r相とt相とが変調される。すなわち、このマトリックスコンバータ(1)では、2相変調が行われるのである。このとき、r相の下アームのスイッチング素子(Srn)、t相の下アームのスイッチング素子(Stn)、及びs相の2つのスイッチング素子(Ssp,Ssn)のそれぞれのゲートには、マルチプレクサ(62)によってHレベルの信号が印加される。他のモードでも同様に2相変調を行いつつ、スイッチングを行っていないスイッチング素子(Srp,…,Stn)にHレベルの信号が印加される。
 〈実施形態3における効果〉
 以上のように、本実施形態では、各モードの全域にわたって2相変調が行われるので、入力電流の歪を前記の各実施形態や変形例よりも、より小さくすることが可能になる。しかも、逆バイアス状態のスイッチング素子には所定のゲート電圧が印加されるので、漏れ電流の低減も可能になる。
 《その他の実施形態》
 なお、電力変換装置は、例えば、インバータ部(3)を省略し、コンバータ部(2)によって前記直流電圧を出力する装置として構成してもよい。
 また、前記スイッチング素子(Srp,…,Stn)には、逆阻止IGBTの他に、バイポーラ構造を含んだトランジスタなどを採用することも可能である。
 本発明は、交流電力から直流電力又は交流電力への変換を行う電力変換装置として有用である。
   1  マトリックスコンバータ(電力変換装置)
   2  コンバータ部
   3  インバータ部
   5  制御部
  11  台形波状電圧指令生成部
  30  制御部
  50  制御部
  60  制御部
  L1  第1直流リンク部(出力線)
  L2  第2直流リンク部(出力線)
  Srp,…,Stn  スイッチング素子

Claims (10)

  1.  2つの出力線(L1,L2)間に直列接続した2つのスイッチング素子(Srp,…,Stn)の組を3組有し、前記直列接続における各接続ノードに入力三相交流の相が1つずつ接続されたコンバータ部(2)と、
     前記入力三相交流の1つの相を基準相として、前記基準相と他のそれぞれの相との線間電圧が時分割で前記2つの出力線(L1,L2)に出力されるように、スイッチング素子(Srp,…,Stn)のオンオフを制御する制御部(5)と、
     を備え、
     それぞれのスイッチング素子(Srp,…,Stn)は、バイポーラ構造を含んだトランジスタで構成され、
     前記制御部(5)は、前記スイッチング素子(Srp,…,Stn)のうち、逆バイアスが印加されているスイッチング素子(Srp,…,Stn)に所定のゲート電圧を印加することを特徴とする電力変換装置。
  2.  請求項1の電力変換装置において、
     前記基準相は、前記入力三相交流を2つの相電圧が正で残りの相電圧が負となる期間であるセクターと、2つの相電圧が負で残りの相電圧が正となる期間であるセクターとに分けたそれぞれのセクターにおいて電圧の絶対値が最大となる相をセクター毎に選択したものであり、
     前記基準相以外の相であって電圧の絶対値が大きい方の相を最大相とした場合に、
     前記制御部(5)は、少なくとも前記最大相の順バイアスが印加されたスイッチング素子(Srp,…,Stn)を所定の通流比(drt,dst)でオンオフ制御することを特徴とする電力変換装置。
  3.  請求項2の電力変換装置において、
     前記制御部(5)における前記オンオフ制御の対象は、前記最大相のスイッチング素子(Srp,…,Stn)のみであることを特徴とする電力変換装置。
  4.  請求項2の電力変換装置において、
     前記基準相及び前記最大相以外の相を中間相とした場合に、
     各セクターの一部の期間は、前記順バイアスが印加されているスイッチング素子(Srp,…,Stn)と、前記中間相に対応したスイッチング素子(Srp,…,Stn)のうち電流が流出する側のスイッチング素子(Srp,…,Stn)とを、所定の通流比(drt,dst)で相補的にオンオフ制御し、残りの期間は、前記順バイアスが印加されているスイッチング素子(Srp,…,Stn)のみを所定の通流比(drt,dst)でオンオフ制御することを特徴とする電力変換装置。
  5.  請求項4の電力変換装置において、
     前記入力三相交流の各相には、フィルタコンデンサ(C11,C12,C13)が設けられ、
     前記一部の期間は、前記最大相に対応したフィルタコンデンサ(C11,C12,C13)の電圧よりも前記中間相に対応したフィルタコンデンサ(C11,C12,C13)の電圧の方が大きい期間を含む期間であることを特徴とする電力変換装置。
  6.  請求項4の電力変換装置において、
     前記一部の期間は、前記入力三相交流の位相角30度分に相当する期間であることを特徴とする電力変換装置。
  7.  請求項2の電力変換装置において、
     前記基準相及び前記最大相以外の相を中間相とした場合に、
     前記制御部(5)は、前記順バイアスが印加されているスイッチング素子(Srp,…,Stn)と、前記中間相に対応したスイッチング素子(Srp,…,Stn)のうち電流が流出する側のスイッチング素子(Srp,…,Stn)とを、所定の通流比(drt,dst)で相補的にオンオフ制御することを特徴とする電力変換装置。
  8.  請求項1の電力変換装置において、
     前記制御部(5)は、前記入力三相交流に同期した電源同期信号(Vr)に基づいて、前記入力三相交流の各相に対応した台形波形状の電圧指令信号(Vr*,Vs*,Vt*)の傾斜領域を求める台形波状電圧指令生成部(11)を備え、
     前記制御部(5)は、何れかの1つの相の前記電圧指令信号(Vr*,Vs*,Vt*)を用いて、それぞれのスイッチング素子(Srp,…,Stn)のゲート信号を生成することを特徴とする電力変換装置。
  9.  請求項1の電力変換装置において、
     前記出力線(L1,L2)に出力された電力を所定の単相交流又は多相交流に変換するインバータ部(3)を備えていることを特徴とする電力変換装置。
  10.  2つの出力線(L1,L2)間に直列接続した、バイポーラ構造を含んだトランジスタからなる2つのスイッチング素子(Srp,…,Stn)の組を3組有し、前記直列接続における各接続ノードに入力三相交流の相が1つずつ接続されたコンバータ部(2)を有した電力変換装置の制御方法であって、
     前記入力三相交流の1つの相を基準相として選択する選択ステップと、
     前記基準相と他のそれぞれの相との線間電圧が時分割で前記2つの出力線(L1,L2)に出力されるように、所定のスイッチング素子(Srp,…,Stn)のオンオフ制御を行う制御ステップと、
     前記オンオフ制御の際に逆バイアスが印加されるスイッチング素子(Srp,…,Stn)を特定する逆バイアス素子特定ステップと、
     前記逆バイアス素子特定ステップで特定したスイッチング素子(Srp,…,Stn)に、前記オンオフ制御の際に所定のゲート電圧を印加するゲート電圧印加ステップと、
     を備えたことを特徴とする電力変換装置の制御方法。
PCT/JP2010/003144 2009-08-26 2010-05-07 電力変換装置、及びその制御方法 WO2011024351A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127004898A KR101343189B1 (ko) 2009-08-26 2010-05-07 전력변환장치 및 그 제어방법
US13/392,132 US8773870B2 (en) 2009-08-26 2010-05-07 Power converter and method for controlling same
EP10811410.9A EP2472708B1 (en) 2009-08-26 2010-05-07 Power conversion device and control method therefor
AU2010288068A AU2010288068B2 (en) 2009-08-26 2010-05-07 Power Converter and Method for Controlling same
CN201080035825.7A CN102474192B (zh) 2009-08-26 2010-05-07 功率转换装置及其控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009195097 2009-08-26
JP2009-195097 2009-08-26

Publications (1)

Publication Number Publication Date
WO2011024351A1 true WO2011024351A1 (ja) 2011-03-03

Family

ID=43627474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003144 WO2011024351A1 (ja) 2009-08-26 2010-05-07 電力変換装置、及びその制御方法

Country Status (7)

Country Link
US (1) US8773870B2 (ja)
EP (1) EP2472708B1 (ja)
JP (1) JP4626722B1 (ja)
KR (1) KR101343189B1 (ja)
CN (1) CN102474192B (ja)
AU (1) AU2010288068B2 (ja)
WO (1) WO2011024351A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120293141A1 (en) * 2011-05-17 2012-11-22 Chengdu Monolithic Power Systems Co., Ltd. Bridgeless pfc converter and the method thereof
US10337694B2 (en) 2017-10-30 2019-07-02 Phoenix Electric Co., Ltd. LED lamp and lighting device including the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9350227B2 (en) * 2011-09-26 2016-05-24 Daikin Industries, Ltd. Power converter control method
JP6138413B2 (ja) * 2011-11-10 2017-05-31 三菱重工業株式会社 モータ駆動装置
TWI568149B (zh) * 2012-07-12 2017-01-21 台達電子工業股份有限公司 電能轉換裝置及其控制方法
US9270198B2 (en) * 2013-03-12 2016-02-23 University Of Tennessee Research Foundation Control of parallel-connected current source rectifiers
JP5946880B2 (ja) * 2014-09-26 2016-07-06 ファナック株式会社 Lclフィルタ保護機能を有するモータ制御装置
US20180266216A1 (en) * 2015-09-22 2018-09-20 Schlumberger Technology Corporation Downhole generator system
JP6383028B2 (ja) 2017-02-10 2018-08-29 ファナック株式会社 モータ駆動装置
JP7159227B2 (ja) * 2018-02-07 2022-10-24 日立ジョンソンコントロールズ空調株式会社 電力変換装置、並びにそれを用いたモータ駆動装置および冷凍機器
JP2019146301A (ja) * 2018-02-16 2019-08-29 本田技研工業株式会社 インバータ発電機

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002209390A (ja) * 2000-11-13 2002-07-26 Denso Corp 電力変換装置及び多相負荷の駆動制御方法
JP2003092888A (ja) * 2001-09-20 2003-03-28 Denso Corp 電力変換装置及び多相負荷の駆動制御方法
JP2005210831A (ja) * 2004-01-22 2005-08-04 Fuji Electric Holdings Co Ltd 電力制御装置
JP2006166582A (ja) * 2004-12-07 2006-06-22 Fuji Electric Holdings Co Ltd 電力変換装置
JP2007028860A (ja) * 2005-07-21 2007-02-01 Hitachi Ltd 電力変換装置及びこれを備えた鉄道車輌
WO2007123118A1 (ja) * 2006-04-20 2007-11-01 Daikin Industries, Ltd. 電力変換装置および電力変換装置の制御方法
JP4135026B2 (ja) 2006-04-20 2008-08-20 ダイキン工業株式会社 電力変換装置および電力変換装置の制御方法
JP2009106111A (ja) * 2007-10-24 2009-05-14 Daikin Ind Ltd 電力変換装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6324085B2 (en) * 1999-12-27 2001-11-27 Denso Corporation Power converter apparatus and related method
DE10146527A1 (de) * 2001-09-21 2003-04-24 Siemens Ag Umrichter mit einem netz- und lastseitigen selbstgeführten Pulsstromrichter
JP3841282B2 (ja) * 2002-03-20 2006-11-01 株式会社安川電機 Pwmインバータ装置
US6995992B2 (en) * 2003-06-20 2006-02-07 Wisconsin Alumni Research Foundation Dual bridge matrix converter
JP4021431B2 (ja) * 2004-08-10 2007-12-12 ファナック株式会社 コンバータ装置、インバータ装置及びdcリンク電圧の制御方法
US7518891B2 (en) * 2005-08-02 2009-04-14 Rockwell Automation Technologies, Inc. Auxiliary circuit for use with three-phase drive with current source inverter powering a single-phase load
JP4240141B1 (ja) * 2007-10-09 2009-03-18 ダイキン工業株式会社 直接形交流電力変換装置
JP5304192B2 (ja) * 2008-03-28 2013-10-02 ダイキン工業株式会社 電力変換装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002209390A (ja) * 2000-11-13 2002-07-26 Denso Corp 電力変換装置及び多相負荷の駆動制御方法
JP2003092888A (ja) * 2001-09-20 2003-03-28 Denso Corp 電力変換装置及び多相負荷の駆動制御方法
JP2005210831A (ja) * 2004-01-22 2005-08-04 Fuji Electric Holdings Co Ltd 電力制御装置
JP2006166582A (ja) * 2004-12-07 2006-06-22 Fuji Electric Holdings Co Ltd 電力変換装置
JP2007028860A (ja) * 2005-07-21 2007-02-01 Hitachi Ltd 電力変換装置及びこれを備えた鉄道車輌
WO2007123118A1 (ja) * 2006-04-20 2007-11-01 Daikin Industries, Ltd. 電力変換装置および電力変換装置の制御方法
JP4135026B2 (ja) 2006-04-20 2008-08-20 ダイキン工業株式会社 電力変換装置および電力変換装置の制御方法
JP2009106111A (ja) * 2007-10-24 2009-05-14 Daikin Ind Ltd 電力変換装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120293141A1 (en) * 2011-05-17 2012-11-22 Chengdu Monolithic Power Systems Co., Ltd. Bridgeless pfc converter and the method thereof
US10337694B2 (en) 2017-10-30 2019-07-02 Phoenix Electric Co., Ltd. LED lamp and lighting device including the same

Also Published As

Publication number Publication date
JP4626722B1 (ja) 2011-02-09
JP2011072175A (ja) 2011-04-07
EP2472708B1 (en) 2018-12-19
AU2010288068A1 (en) 2012-03-29
CN102474192B (zh) 2014-09-10
KR20120035945A (ko) 2012-04-16
CN102474192A (zh) 2012-05-23
KR101343189B1 (ko) 2013-12-19
EP2472708A4 (en) 2017-01-04
EP2472708A1 (en) 2012-07-04
AU2010288068B2 (en) 2014-10-02
US20120163045A1 (en) 2012-06-28
US8773870B2 (en) 2014-07-08

Similar Documents

Publication Publication Date Title
JP4626722B1 (ja) 電力変換装置、及びその制御方法
JP4534007B2 (ja) ソフトスイッチング電力変換装置
JP5434957B2 (ja) マトリクスコンバータ
JP4743116B2 (ja) Pwmサイクロコンバータ
JP5631499B2 (ja) 電力変換装置
JP6062058B2 (ja) 電力変換装置
JP4942569B2 (ja) 電力変換装置
TWI660566B (zh) 電力變換裝置
JP4274023B2 (ja) Pwmサイクロコンバータの制御方法および制御装置
AU2016234332A1 (en) Inverter control method
JP4423950B2 (ja) 交流交流直接変換器の制御装置
WO2020255459A1 (ja) 電力変換装置
JP6016836B2 (ja) 電力変換装置、および電力変換制御方法
WO2007142009A1 (ja) 電力変換装置及び圧縮機
JP2008099508A (ja) 電力変換装置およびこれを用いた空気調和機
JP3296424B2 (ja) 電力変換装置
JP6440067B2 (ja) 電力変換装置
JP2020005462A (ja) 電力変換装置の制御装置
CN113328648B (zh) 一种逆变器pwm调制方法及装置
JP4931558B2 (ja) スイッチング電源装置
JP2018093610A (ja) 電力変換回路
JP3969021B2 (ja) 電源装置及びスイッチング電源の制御方法
JP6575865B2 (ja) 3レベルインバータの制御方法及び制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080035825.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811410

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127004898

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13392132

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010288068

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2010811410

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2010288068

Country of ref document: AU

Date of ref document: 20100507

Kind code of ref document: A