WO2007086143A1 - ハニカム構造体の検査方法、及び、ハニカム構造体の製造方法 - Google Patents

ハニカム構造体の検査方法、及び、ハニカム構造体の製造方法 Download PDF

Info

Publication number
WO2007086143A1
WO2007086143A1 PCT/JP2006/301461 JP2006301461W WO2007086143A1 WO 2007086143 A1 WO2007086143 A1 WO 2007086143A1 JP 2006301461 W JP2006301461 W JP 2006301461W WO 2007086143 A1 WO2007086143 A1 WO 2007086143A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb structure
probe
longitudinal direction
shape
contact
Prior art date
Application number
PCT/JP2006/301461
Other languages
English (en)
French (fr)
Inventor
Toru Idei
Norio Suzuki
Original Assignee
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co., Ltd. filed Critical Ibiden Co., Ltd.
Priority to PCT/JP2006/301461 priority Critical patent/WO2007086143A1/ja
Priority to DE602006019378T priority patent/DE602006019378D1/de
Priority to EP06023076A priority patent/EP1813909B1/en
Priority to PL06023076T priority patent/PL1813909T3/pl
Priority to AT06023076T priority patent/ATE494526T1/de
Priority to US11/651,562 priority patent/US7922963B2/en
Publication of WO2007086143A1 publication Critical patent/WO2007086143A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/20Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures
    • G01B5/207Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures using a plurality of fixed, simultaneously operating transducers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/005Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • B01J35/56
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • C04B2235/383Alpha silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • C04B2237/062Oxidic interlayers based on silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • C04B2237/064Oxidic interlayers based on alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/08Non-oxidic interlayers
    • C04B2237/083Carbide interlayers, e.g. silicon carbide interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a honeycomb structure inspection method and a honeycomb structure manufacturing method.
  • FIG. 3 is a perspective view schematically showing an example of such a her cam structure
  • FIG. 4 (a) schematically shows a her cam fired body that constitutes the her cam structure
  • 4 (b) is a cross-sectional view taken along line AA of FIG.
  • her cam structure 130 a plurality of her cam fired bodies 140 as shown in FIG. 4 are bundled through a sealing material layer (adhesive layer) 131 to form a ceramic block 133.
  • a sealing material layer (coat layer) 132 is formed on the outer periphery of the ceramic block 133.
  • the Hercam fired body 140 has a large number of cells 141 arranged in parallel in the longitudinal direction, and the cell wall 143 separating the cells 141 functions as a filter! / .
  • either the inlet side or the outlet side end of the exhaust gas is formed by the sealing material layer 142.
  • the exhaust gas that is sealed and flows into one cell 141 always passes through the cell wall 143 that separates the cell 141 and then flows out from the other cell 141.
  • Particulates are captured by the cell wall 143 and the exhaust gas is purified.
  • a ceramic powder, a binder, a dispersion medium liquid, and the like are mixed to prepare a wet mixture. Then, the wet mixture is continuously extruded with a die, and the extruded molded body is cut into a predetermined length to produce a prismatic honeycomb molded body. [0007] Next, the obtained two-cam molded body is dried, and then a predetermined cell is sealed, and one end of the cell is sealed with a sealing material layer. Then, a degreasing treatment and a firing treatment are performed to manufacture a honeycomb fired body.
  • the her cam fired body is formed through the seal material layer (adhesive layer).
  • An aggregate of honeycomb fired bodies in a bundled state is prepared.
  • the obtained honeycomb fired body aggregate is cut into a predetermined shape such as a cylinder or an elliptical column using a cutting machine or the like to form a ceramic block, and finally, a seal is formed on the outer periphery of the ceramic block.
  • Hercam structure (ceramic filter or catalyst carrier) is usually used while being housed in a casing. For this reason, it is necessary to inspect whether or not the manufactured two-cam structure has a predetermined shape suitable for the casing before it is housed in the casing. There is.
  • an original image is obtained by imaging the outer shape (end surface) of the her cam structure, and the original image is imaged.
  • a method for measuring the outer shape of a honeycomb structure after processing has been disclosed (for example, see Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-267427
  • the shape of the Hercam structure is inspected by obtaining a change in luminance according to a change in shape in an image subjected to image conversion processing.
  • the shape of the end face in the radial direction is a measurement target, and the longitudinal shape of the hammer structure is ineffective as the measurement target.
  • the inventors of the present invention have made extensive studies in order to solve the above-mentioned problems. While measuring the shape of the her cam structure in the longitudinal direction, the her cam structure conforms to the standard. Whether or not, a method for inspecting a hard cam structure that can be accurately judged in a short time and is less influenced by measurement conditions, and a honeycomb incorporating such an inspection method The manufacturing method of the structure was found.
  • a contact-type measuring machine having a reference surface, a rail provided perpendicular to the reference surface, and a probe having a probe force that moves along the rail is prepared.
  • One end surface of the structure is brought into contact, the probe is moved in a direction to approach the reference surface, and the probe is brought into contact with the other end surface of the honeycomb structure, whereby the longitudinal direction of the honeycomb structure is increased. It is characterized by measuring the shape.
  • the Hercam structure to be inspected is a structure in which a plurality of Hercam fired bodies are bundled through an adhesive layer.
  • the inspection item related to the shape in the longitudinal direction of the her cam structure is at least one of the length in the longitudinal direction, the parallelism, and the position.
  • the contact-type measuring instrument preferably includes a plurality of measuring elements.
  • the method for manufacturing a her cam structure of the present invention is to manufacture a columnar her cam molded body in which a number of cells are arranged in parallel in the longitudinal direction across a cell wall by molding a ceramic raw material.
  • a manufacturing method of a hard cam structure in which a shape inspection step of inspecting the shape is performed after firing this to form a honeycomb structure including a honeycomb fired body,
  • a reference surface, a rail provided perpendicular to the reference surface, and A contact-type measuring instrument having a probe having a probe force that moves along the rail is prepared, one end face of the honeycomb structure is brought into contact with the reference plane, and the probe is brought close to the reference plane.
  • the shape of the honeycomb structure in the longitudinal direction is measured by moving the probe in the direction and bringing the probe into contact with the other end face of the honeycomb structure.
  • the her cam structure to be inspected is formed by binding a plurality of the above mentioned her cam fired bodies via an adhesive layer. I hope that.
  • the inspection item relating to the longitudinal shape of the her cam structure is at least one of the longitudinal length, the parallelism, and the positional degree.
  • the contact measuring instrument used in this manufacturing method has a plurality of measuring elements.
  • the probe constituting the probe is simply brought into contact with the end face of the nonicam structure. Therefore, the measurement error can be reduced. Furthermore, since the shape along the longitudinal direction of the honeycomb structure can be evaluated accurately and simply in a short time, the time required for the inspection of the honeycomb structure can be shortened. , It is possible to accurately determine only the hard cam structures that meet the product standards in a short time.
  • various inspection items can be obtained by measuring the shape of the her cam structure in the longitudinal direction at multiple points.
  • a multifaceted evaluation can be performed as an evaluation of body product standards.
  • a contact-type measuring instrument having a plurality of measuring elements can measure the shape of the honeycomb structure in the longitudinal direction at a single point, thereby further reducing the inspection time. It can be shrunk.
  • the honeycomb structure is manufactured by the above inspection method. Since the shape is inspected, information on the shape of the honeycomb structure in the longitudinal direction can be obtained in a short time and accurately, and whether or not the manufactured hard cam structure has passed the product standard. Can be determined accurately in a short time.
  • the method for inspecting a hard cam structure is a method for inspecting a hard cam structure having a columnar hard cam fired body force in which a number of cells are arranged in parallel in the longitudinal direction across a cell wall.
  • a contact-type measuring instrument comprising a surface, a rail provided perpendicular to the reference surface, and a probe having a probe force that moves along the rail, and the hard structure is provided on the reference surface.
  • the shape of the honeycomb structure in the longitudinal direction is brought into contact with one end face of the body, and the probe is brought into contact with the other end face of the honeycomb structure by moving the probe toward the reference plane. It is characterized by measuring.
  • a her-cam structure including a columnar Her-cam fired body in which a large number of cells are arranged in parallel in the longitudinal direction with a cell wall therebetween is an inspection target.
  • her cam structure for example, as described with reference to FIGS. 3 and 4, a plurality of her cam fired bodies 140 are bundled through a sealing material layer (adhesive layer) 131 and A hard cam structure 130 (hereinafter also referred to as a collective type hard cam structure) having a structure in which a sealing material layer (coat layer) 132 is formed on a cylindrical ceramic block as shown in FIG.
  • a hard cam structure 50 hereinafter also referred to as an integrated hard cam structure
  • the core 55 also has a single hard cam fired body strength
  • FIG. 5 51 is a cell, 53 is a cell wall, and 54 is a sealing material layer (coat layer).
  • the longitudinal direction of the her cam structure is a direction parallel to the direction in which the cells are formed. Therefore, even if the value of the diameter of the end face is larger than the value of the length of the nose-cam structure along the direction in which the cells are formed, the direction in which the cells are formed It is called the longitudinal direction of the structure.
  • FIG. 1 (a) is a schematic diagram showing one step of the measurement principle of the present invention in the case of using a contact-type measuring instrument equipped with one measuring element, and (b) shows one measuring element.
  • FIG. 7C is a schematic diagram showing another step of the measurement principle of the present invention
  • FIG. 8C is a schematic diagram showing the measurement principle of the present invention when using a contact-type measuring instrument equipped with a plurality of measuring elements. .
  • FIG. 7C is a schematic diagram showing another step of the measurement principle of the present invention
  • FIG. 8C is a schematic diagram showing the measurement principle of the present invention when using a contact-type measuring instrument equipped with a plurality of measuring elements.
  • a coordinate axis with the vertical upper direction being positive is provided for each of FIGS. 1 (a) to 1 (c).
  • a contact-type measuring instrument 10 used in the honeycomb structure of the present invention includes a reference surface 2 and a measuring element 3 provided above the reference surface 2.
  • the measuring element 3 includes a rail 3a provided perpendicular to the reference surface 2 and a probe 3b that moves along the rail 3a. Therefore, the moving direction of the probe 3b is also perpendicular to the reference plane 2.
  • the standard sample S used when adjusting the zero point of the contact-type measuring instrument 10 will be described later.
  • the contact-type measuring machine includes a probe support plate that can support and move the probe 3 perpendicular to the reference plane 2, and a ball screw or the like for moving the probe support plate.
  • a support member and a displacement meter for measuring the amount of movement of the probe 3 may be attached. These members will be described later.
  • a scale or a detector for measuring the amount of movement of the probe 3b may be attached to the probe 3 as appropriate.
  • the zero adjustment of the contact-type measuring instrument 10 is performed before measuring the shape of the honeycomb structure in the longitudinal direction.
  • the zero point adjustment is a procedure for determining the origin position of the probe relative to the reference plane and the origin position of the probe relative to the rail in the measurement system including the reference plane and the probe.
  • the relative movement amount of the probe and Z or the probe from the origin position determined by the zero point adjustment is detected, and the coordinate in the measurement system is detected from the detected movement amount.
  • the shape of the sample is measured by obtaining the position.
  • the zero point adjustment is performed as follows.
  • one end face of the standard sample S is brought into contact with the reference plane 2.
  • Standard sample S should be aligned so that the end faces are parallel and the length (height) between the end faces is L.
  • the length between the upper surface and the reference surface 2 is all L regardless of the length measured at any point on the upper surface of the standard sample S in the state shown in FIG.
  • the probe 3b is brought into contact with the other end surface of the standard sample S as shown in FIG. At this time By recording the position of the stator 3 and the position of the probe 3b with respect to the rail 3a as the respective origin positions, the zero-point adjustment of the contact measuring instrument 10 is performed.
  • the length of the tip of the probe 3b and the reference surface 2 is L.
  • the upper side of the probe 3 is the origin position of the probe 3
  • the position “0” shown on the rail 3a is the origin position of the probe 3b.
  • the length of the standard sample S may be longer or shorter than the length in the longitudinal direction of the hard cam structure 1, but is preferably longer. If the length of the standard sample S is longer than the length in the longitudinal direction of the hard cam structure 1, the zero position adjustment of the probe 3's origin position force 3 is moved closer to the reference plane 2 when measuring. This is because it only needs to be moved in one direction.
  • the probe 3b is brought into contact with the other end surface of the heart cam structure 1 by moving the measuring element 3 in a direction approaching the reference plane 2, and thereby the heart cam structure 1 Measure the shape in the longitudinal direction.
  • the value (L L) is a negative number, and the coordinate axis applied to the measurement system is positive in the vertical direction.
  • the direction in which the probe 3 is moved is a negative direction on the coordinate axis, that is, vertically downward, and the amount of movement of the probe 3 is the absolute value of (L L).
  • the length L in the longitudinal direction of the honeycomb structure is a set value input to the contact-type measuring instrument 10 during measurement, and is not an actual measurement value. That is, for example, when the length L in the longitudinal direction of the honeycomb structure is 100 mm, this value of 100 mm is a value of the length required for the Hercam structure, such as a product standard value that is not an actual measurement value. Or, this value is increased or decreased by a predetermined amount from this length. Based on this value, the movement amount of the probe 3 in the contact-type measuring instrument 10 is determined, and the probe 3 moves by the determined movement amount at the time of measurement. [0038] In the following, for the sake of simplicity, the length L of the honeycomb structure in the longitudinal direction (setting value) at the time of measurement is the value of the length required for the Hercam structure itself. The case will be explained.
  • the position of the tip of the probe 3b when moved is at a position away from the reference plane 2 by L.
  • the actual length in the longitudinal direction of the Hercam structure 1 is L
  • the probe 3 moves by the value (L—L)
  • the probe 3b and the Hercam structure The upper end face of 1
  • the displacement of the probe 3b from the origin position with respect to the rail 3a indicates Z (positive number), and therefore the actual length in the longitudinal direction of the hard cam structure 1 is a set value. Confirmed to be the value of L plus Z (L + Z).
  • the honeycomb structure 1 shown in FIG. 1 (b) has a length in the longitudinal direction that includes a value (that is, variation) that is larger by Z from the length L (e.g., product specification) required for the honeycomb structure. It has a length.
  • the length in the longitudinal direction of the honeycomb structure is not the length L required for the honeycomb structure, but the predetermined length d is short and long.
  • a brief description will be given of the measurement of a honeycomb structure in which the actual length in the longitudinal direction is (L + Z) and the required length is L using this set value.
  • the probe 3b is pushed back by the length d (cannot move), and the actual length of the honeycomb structure in the longitudinal direction is (L + Z ) Is pushed back by the length Z (cannot move).
  • the actual length in the longitudinal direction of the hard cam structure 1 is a set value ( It is confirmed that the value is (L + Z) obtained by adding (d + Z) to L d).
  • the length in the longitudinal direction of the honeycomb structure 1 can be measured in the same manner as the measurement procedure described above. it can. For example, if the set value L is input to the contact-type measuring instrument 10, the probe 3 will be based on (L L).
  • the length of the her cam structure 1 in the longitudinal direction can be measured.
  • the measurement procedure is not limited to the procedure exemplified above, and a measurement procedure capable of obtaining the same result is also included in the present invention.
  • the reference plane 2 may be installed in the horizontal direction as shown in FIG. 1, or may be installed in an inclined manner in which it may be installed in the vertical direction.
  • the her cam structure is disposed between the reference surface 2 and the measuring element 3 as in the standard sample S, and is sandwiched between the reference surface 2 and the measuring element 3.
  • the installation direction of the reference surface 2 may be any direction as long as the her cam structure can be securely fixed and arranged.
  • the reference plane 2 is installed in the vertical direction, the end face of the honeycomb structure is brought into contact with the reference plane 2, and the probe is oriented in the direction perpendicular to the reference plane 2. That is, the shape of the honeycomb structure in the longitudinal direction may be measured by moving it in the horizontal direction.
  • the configuration of the rail 3a and the probe 3b is not limited to the configuration shown in FIG. 1, and for example, a configuration of a tubular rail 3a and a probe 3b attached so as to be slidable inside the rail 3a. It may be a succession. As long as the rail 3a is provided perpendicular to the reference plane 2 and the probe 3b can move along the rail 3a, it can serve as a component of the probe 3.
  • the tip shape of the probe 3b on the side in contact with the end face of the honeycomb structure is not particularly limited, but the tip of the probe 3b that is not rounded or pointed in the length direction of the rail 3a
  • the surface shape is preferably obtained by cutting along a plane perpendicular to the surface.
  • the contact position is Since it corresponds to the position of the end face, no error occurs in the measurement result.
  • the probe 3b is positioned in a direction closer to the reference plane than the position of the end face of the hammer structure. Since 3b moves, an error may occur in the measurement result.
  • the shape of the tip of the probe 3b is a surface shape having a surface perpendicular to the rail 3a, the shape in the longitudinal direction of the hammer structure can be accurately measured without such a risk.
  • the shape of the surface is not particularly limited, and examples thereof include an arbitrary shape such as a circle, an ellipse, a square, a rectangle, and a hexagon.
  • the size of the surface should be at least larger than the size of the cell.
  • the moving speed of the measuring element 3 when the measuring element 3 is moved in the direction approaching the reference plane 2 is not particularly limited, and may be in the range of 5 to 50 cmZs.
  • the length of the long cam structure can be efficiently increased without causing damage to the cell wall at the time of contact between the probe 3b and the end face of the honeycomb structure. Can be measured.
  • the position at which the probe 3b contacts the end face of the her cam structure is not particularly limited.
  • the end face of the her cam fired body, the sealing material layer (adhesive layer), the sealing material layer (coat) Any position on the end face such as a material layer) may be used.
  • the contact position between the end face and the probe 3b may be adjusted according to the object shape.
  • the position where the probe 3b comes into contact is often the end face of the Hercam fired body.
  • the hard cam structure to be inspected is an integrated type even if it is a collective hard cam structure.
  • Any of the hard cam structures, which may be a hard cam structure, can be suitably subjected to inspection.
  • the hard cam structure to be inspected is one in which a plurality of hard cam fired bodies are bundled through an adhesive layer (that is, a collective hard cam structure). It is desirable.
  • the shape in the longitudinal direction thereof is different from that of the integrated her cam structure due to the fact that it consists of a plurality of hard cam fired bodies.
  • the honeycomb fired bodies which are constituent elements, vary in length in the longitudinal direction, or when a plurality of honeycomb fired bodies are bundled, the positions where the honeycomb fired bodies are bound to each other are shifted in the longitudinal direction.
  • the end face of the integrated hard cam structure has irregularities due to the above-described variation.
  • the conventional inspection method has to undergo complicated operations and processes.
  • the shape of the honeycomb structure in the longitudinal direction such as the unevenness can be measured easily and accurately by simply moving the probe in a direction approaching the reference plane. be able to. Therefore, even a collective type hard structure having a complicated end face structure is preferably detected.
  • the process of contacting the probe for each region occupied by one honeycomb fired body in the entire end face of the honeycomb structure is repeated. Can be performed.
  • the target can be moved in the horizontal direction X-y stage or multi-axis stage What is necessary is just to combine well-known moving means, such as.
  • the inspection item related to the shape of the honeycomb structure in the longitudinal direction is preferably at least one of the length in the longitudinal direction, the parallelism, and the position.
  • the inspection items relating to the shape in the longitudinal direction are not particularly limited, but even the inspection items relating to the shape in the longitudinal direction can be accurately measured in a short time. it can.
  • the length in the longitudinal direction refers to each value of the length in the longitudinal direction measured for each region occupied by the end face of one of the hard cam fired bodies in the entire end face of the hard cam structure. .
  • the parallelism and the position degree are based on JIS B 0621.
  • the parallelism is a two-plane shape in which all of the end faces of the respective hard cam fired bodies on the side in contact with the probe are parallel to the reference plane.
  • the distance between the two planes when sandwiched between them is the reference plane parallel to the reference plane, and the degree of position is a predetermined value (for example, the length in the longitudinal direction) from the reference plane.
  • the definition of the inspection item can also be applied to a force-integrated type hard cam structure that assumes that V and deviation are also applied to the aggregated honeycomb structure. That is, in the above definition, there may be one end face of the sintered hard cam, and the above inspection item may be measured by measuring one point or multiple points on this end face.
  • the difference between the standard length (design value) and the actual measurement value, etc., in each her cam fired body constituting the collective her cam structure shall be the inspection item regarding the shape in the longitudinal direction. Can do.
  • the shape of the honeycomb structure in the longitudinal direction is an object to be inspected, but by combining a plurality of contact-type measuring instruments, the length of the honeycomb structure is reduced in the longitudinal direction. It is also possible to perform measurement in a direction perpendicular to.
  • the contact-type measuring instrument includes a plurality of measuring elements.
  • a contact-type measuring instrument is equipped with multiple measuring elements! /, When the number of measurement points on the end face of the honeycomb structure is multiple, the number of measurements can be reduced, resulting from multiple measurements. The error can be reduced. In addition, if the contact-type measuring instrument has the same number of measuring points as the number of measurement points, the length of the nonicam structure in the longitudinal direction can be measured with only one measurement. And the measurement accuracy can be improved.
  • FIG. 2 (a) is a front view schematically showing a process of a specific example of the embodiment of the present invention using a contact-type measuring instrument having a plurality of measuring elements, and (b) is a plurality of measuring elements. It is a front view which shows typically another process of the specific example of embodiment of this invention using the contact-type measuring device provided with.
  • a contact-type measuring machine 20 shown in FIG. 1 (c) includes a reference surface 2 and two measuring elements 31 and 32.
  • the probe 31 includes a rail 31a and a probe 31b
  • the probe 32 includes a rail 32a and a probe 32b.
  • FIG. 1 (c) shows a state after measuring the longitudinal shape (length in the figure) of the honeycomb structure 11, and in the probe 31, the probe 3 lb with respect to the rail 3 la is measured. The displacement from the origin position indicates Z, and in the probe 32, the displacement from the origin position of the probe 32b relative to the rail 32a indicates Z. Therefore, the no-cam measured by the probe 31 and 32
  • the lengths of the structures in the longitudinal direction are L + Z and L + Z, respectively.
  • the vertical positions bound to each other are shifted in the longitudinal direction (that is, the reference plane 2 Is shifted vertically upward by Z and Z). Because there is such a gap
  • the measurement results 31 and 32 indicate the measurement results L + Z and L + Z, respectively.
  • the contact-type measuring machine having a plurality of measuring elements can simultaneously perform multipoint measurement on the end face of the honeycomb structure, and examine various inspection items in one measurement. be able to.
  • a contact-type measuring machine 30 shown in FIG. 2 (a) includes a reference surface 2, two support members 5 mounted perpendicularly to the reference surface 2, and a reference surface 2 between these two support members 5.
  • a measuring element support plate 4 suspended in parallel with the measuring element support plate 4 and a plurality of measuring elements 3 supported by the measuring element support plate 4 are provided.
  • the probe support plate 4 is configured to be movable up and down along a support member 5 such as a ball screw while keeping parallel to the reference plane.
  • the plurality of measuring elements 3 are attached so as to penetrate the measuring element support plate 4.
  • a standard sample S used to adjust the zero point of the contact measuring instrument 30 is installed in the contact measuring instrument 30 shown in FIG. 2 (a).
  • the contact-type measuring machine 30 shown in a) is in a state where zero point adjustment is performed.
  • the contact-type measuring instrument 30 of the embodiment shown in Fig. 2 (b) When the contact-type measuring instrument 30 of the embodiment shown in Fig. 2 (b) is used, the measuring element 3 comes into contact with each region occupied by one end face of the one hard cam fired body on the end face of the honeycomb structure. Therefore, data necessary for various inspection items can be obtained by one measurement, and the longitudinal shape of the her cam structure can be inspected accurately and in a short time.
  • a ceramic raw material is formed to manufacture a columnar her cam formed body in which a large number of cells are arranged in parallel in the longitudinal direction across the cell wall.
  • a honeycomb structure manufacturing method in which a shape inspection process for inspecting the shape is performed after firing the substrate to form a honeycomb structure made of the honeycomb fired body,
  • a contact-type measuring instrument including a reference surface, a rail provided perpendicular to the reference surface, and a probe having a probe force that moves along the rail is prepared.
  • the honeycomb structure is brought into contact with one end face of the honeycomb structure, and the probe is brought into contact with the other end face of the honeycomb structure by moving the measuring element in a direction approaching the reference plane. It is characterized by measuring the shape in the longitudinal direction.
  • a manufacturing method of a honeycomb structure in the case of using a carbide carbide powder as a ceramic raw material will be described, taking as an example the case of manufacturing a hard carbide structure whose main component is a carbide carbide.
  • the main component of the constituent material of the Hercom structure is not limited to the carbide carbide, but as other ceramic raw materials, for example, nitrides such as aluminum nitride, silicon nitride, boron nitride, titanium nitride, etc. Ceramic, zirconium carbide, titanium carbide, tantalum carbide, carbide carbide such as tungsten carbide, alumina, zircoure, cordierite, mullite, Examples thereof include oxide ceramics such as aluminum titanate.
  • carbonized carbides are preferred because non-acidic ceramics are preferred. This is because it is excellent in heat resistance, mechanical strength, thermal conductivity and the like.
  • ceramic raw materials such as the above-mentioned ceramics including a metal-containing ceramic mixed with a metal cage, and ceramics bonded with a key or a silicate compound can also be cited as constituent materials. It is desirable to use a combination of elemental metal and metal (carbide containing carbide)!
  • an inorganic powder such as a silicon carbide powder having a different average particle size and an organic binder are dry mixed to prepare a mixed powder, and a liquid plasticizer, a lubricant, and water are mixed. Then, a mixed liquid is prepared, and then, the mixed powder and the mixed liquid are mixed using a wet mixer to prepare a wet mixture for manufacturing a molded body.
  • the particle size of the above carbide carbide powder is not particularly limited, but those having less shrinkage in the subsequent firing step are preferred, for example, 100 parts by weight of powder having an average particle size of about 0.3 to 50 111 A combination of 5 to 65 parts by weight of powder having an average particle diameter of about 0.1 to 1. O / zm is preferable.
  • the pore diameter and the like of the honeycomb fired body it is necessary to adjust the firing temperature, but the pore diameter can be adjusted by adjusting the particle size of the inorganic powder.
  • the organic binder is not particularly limited, and examples thereof include methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, polyethylene glycol, phenol resin, and epoxy resin. Of these, methylcellulose is desirable.
  • the amount of the binder is preferably about 1 to 10 parts by weight with respect to 100 parts by weight of the inorganic powder.
  • the plasticizer is not particularly limited, and examples thereof include glycerin.
  • the lubricant is not particularly limited, and examples thereof include polyoxyalkylene compounds such as polyoxyethylene alkyl ether and polyoxypropylene alkyl ether.
  • lubricant examples include polyoxyethylene monobutyl ether and polyoxypropylene monobutyl ether.
  • the plasticizer and lubricant may not be contained in the mixed raw material powder.
  • the dispersion medium liquid that may use a dispersion medium liquid includes, for example, water, an organic solvent such as benzene, alcohol such as methanol, and the like. It is done.
  • a molding aid may be added to the wet mixture.
  • the molding aid is not particularly limited, and examples thereof include ethylene glycol, dextrin, fatty acid, fatty acid sarcophagus, and polyalcohol.
  • a pore-forming agent such as a balloon, which is a fine hollow sphere composed of an oxide-based ceramic, spherical acrylic particles, or graphite, may be added to the wet mixture as necessary.
  • the balloon is not particularly limited, and examples thereof include an alumina balloon, a glass micro balloon, a shirasu balloon, a fly ash balloon (FA balloon), and a mullite balloon. Of these, alumina balloons are desirable.
  • the temperature of the wet mixture prepared here using the silicon carbide powder is 28 ° C or lower. If the temperature is too high, the organic binder may gel.
  • the organic content in the wet mixture is preferably 10% by weight or less, and the water content is preferably 8.0 to 20.0% by weight.
  • the wet mixture is transported after preparation and put into a molding machine.
  • a honeycomb formed body having a predetermined shape is formed by extrusion.
  • the honeycomb formed body is dried by using a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, a freeze dryer, or the like to obtain a dried honeycomb formed body.
  • a cutting step is performed to cut both ends of the her-cam molded body produced using the cutting device, and the honeycomb molded body is cut to a predetermined length.
  • a predetermined amount of a sealing material paste that serves as a sealing material is filled in the outlet-side end portion of the inlet-side cell group and the inlet-side end portion of the outlet-side cell group, Seal the cell.
  • a sealing mask is applied to the end face of the honeycomb formed body (that is, the cut surface after the cutting step), and only the cells that need to be sealed are filled with the sealing material paste.
  • the sealing material paste is not particularly limited, but it is desirable that the sealing material produced through a subsequent process has a porosity of 30 to 75%.
  • the same material as the wet mixture is used. Can be used.
  • the sealing material paste may be filled as necessary.
  • the sealing material paste for example, the Hercom structure obtained through the post-process is used as a ceramic filter.
  • a honeycomb structure obtained through a subsequent process can be suitably used as a catalyst carrier.
  • the two-cam molded body filled with the sealing material paste is degreased (for example, 200 to 500 ° C) under predetermined conditions, and then fired (for example, 1400 to 2300 ° C). ),
  • the whole is composed of one fired body, a plurality of cells are arranged in parallel in the longitudinal direction across the cell wall, and either one end of the cell is sealed, Two-cam fired bodies (see Fig. 4) can be manufactured.
  • a sealing material paste serving as a sealing material layer is applied to the side surface of the her-cam fired body with a uniform thickness to form a sealing material paste layer.
  • This sealing material paste layer On top of this, the process of sequentially laminating other Hercam fired bodies is repeated to produce an aggregate of Hercam fired bodies of a predetermined size.
  • sealing material paste examples include those composed of an inorganic binder, an organic binder, inorganic fibers, and Z or inorganic particles.
  • examples of the inorganic binder include silica sol and alumina sol. These may be used alone or in combination of two or more. Among the inorganic binders, silica sol is desirable.
  • organic binder examples include polybulal alcohol, methylcellulose, ethylcellulose, carboxymethylcellulose, and the like. These are alone Two or more types may be used in combination. Among the above organic binders, carboxymethylcellulose is desirable!
  • the inorganic fiber examples include ceramic fibers such as silica-alumina, mullite, alumina, and silica. These may be used alone or in combination of two or more. Among the inorganic fibers, alumina fibers are desirable.
  • Examples of the inorganic particles include carbides, nitrides, and the like. Specifically,
  • Inorganic powders composed of silicon carbide, silicon nitride, boron nitride, and the like. These may be used alone or in combination of two or more. Of the above inorganic particles, carbonized carbide with excellent thermal conductivity is desirable.
  • a pore-forming agent such as a balloon, which is a fine hollow sphere containing an oxide-based ceramic, spherical acrylic particles, or graphite, may be added to the sealing material paste as necessary.
  • the balloon is not particularly limited, and examples thereof include an alumina balloon, a glass micro balloon, a shirasu balloon, a fly ash balloon (FA balloon), and a mullite balloon. Of these, alumina balloons are desirable.
  • the assembly of the hard cam fired bodies is heated to dry and solidify the sealing material paste layer to form a sealing material layer (adhesive layer).
  • the aggregate of honeycomb fired bodies in which a plurality of her-cam fired bodies are bonded via a sealing material layer (adhesive layer), is subjected to cutting to form a cylindrical ceramic block. Is made.
  • sealing material layer (coating material layer) on the outer periphery of the ceramic block using the sealing material paste, a plurality of honeycomb fired bodies are bonded via the sealing material layer (adhesive layer).
  • a two-cam structure in which a sealing material layer (coating material layer) is provided on the outer periphery of a cylindrical ceramic block.
  • a shape inspection process for inspecting the shape of the her cam structure manufactured as described above is performed.
  • a contact-type measuring instrument including a reference surface, a rail provided perpendicular to the reference surface, and a probe having a probe force that moves along the rail is prepared.
  • the one end face of the honeycomb structure is brought into contact with the reference plane, the probe is moved in a direction approaching the reference plane, and the probe is brought into contact with the other end face of the honeycomb structure.
  • the shape of the honeycomb structure in the longitudinal direction is measured.
  • the inspection method to be performed in the present shape inspection step the above-described inspection method for the hard cam structure of the present invention can be suitably employed.
  • the her cam structure to be inspected is one in which a plurality of honeycomb fired bodies are bundled through an adhesive layer (aggregate honeycomb structure). It is desirable that the structure.
  • the hard cam structure manufactured by the method of manufacturing the hard cam structure of the present invention is usually used while being housed in a casing.
  • the casing cannot be stored in the casing or may be damaged.
  • the inspection item related to the shape of the honeycomb structure in the longitudinal direction is desirably at least one of the length in the longitudinal direction, the degree of parallelism, and the degree of position. Furthermore, it is desirable that the contact-type measuring instrument has a plurality of measuring elements.
  • the non-defective product and the defective product can be selected by inspecting the shape in the longitudinal direction of the honeycomb structure in the present shape inspection step, and the Hercam structure having a desired shape is manufactured. be able to.
  • the catalyst is supported on the Hercam structure as necessary.
  • the catalyst may be supported on the honeycomb fired body before producing the aggregate.
  • an alumina film with a high specific surface area is formed on the surface of the Hercam structure. It is desirable to form and apply a promoter such as platinum and a catalyst such as platinum to the surface of the alumina film.
  • Examples thereof include a method of heating, a method of impregnating a Hercam structure with a solution containing alumina powder and heating.
  • Examples of a method for imparting a cocatalyst to the alumina film include rare earth such as Ce (NO)
  • Examples thereof include a method of impregnating a Hercom structure with a solution of a metal compound containing an element or the like and heating.
  • Examples of the method include impregnation and heating.
  • the catalyst may be applied by a method in which a catalyst is applied to the alumina particles in advance, and the solution containing the alumina powder to which the catalyst is applied is impregnated into the Hercam structure and heated.
  • the manufacturing method of the two-cam structure described up to here is a collective honeycomb having a configuration in which a plurality of her cam fired bodies are bundled through a seal material layer (adhesive layer).
  • the structure is a structure
  • the her cam structure manufactured by the manufacturing method of the present invention is an integrated her cam structure in which a cylindrical ceramic block is composed of one her cam firing strength. Also good.
  • the main constituent material of the integrated her-cam structure is cordierite or aluminum titanate.
  • the size of the her cam formed by extrusion molding is larger than that of the collective her cam structure. Except for the large size, the same structure as that for manufacturing the collective type hard cam structure is used to manufacture the hard cam structure.
  • the honeycomb formed body is subjected to a microwave dryer, hot air dryer, dielectric dryer, vacuum dryer, vacuum dryer, freeze dryer, and the like. Use to dry.
  • a cutting process for cutting both end portions of the dried nozzle-cam molded body is performed.
  • a predetermined amount of a sealing material paste as a sealing material is filled in the outlet side end of the inlet side cell group and the inlet side end of the outlet side cell group, and the cells are sealed. To do.
  • a ceramic block is produced by degreasing and firing, and if necessary, a sealing material layer (coating material layer) is formed.
  • a body-shaped her cam structure can be manufactured.
  • the catalyst may also be supported on the above-described integrated her cam structure by the method described above.
  • the her cam structure of the present invention can be manufactured with high work efficiency.
  • the shape of the her cam structure in the longitudinal direction can be measured in a short time and accurately, and the manufactured two-cam structure can be obtained. Whether or not the product standard is passed can be judged in a short time and accurately, and therefore the efficiency of the entire manufacturing process of the her cam structure can be improved.
  • the shape of the assembled honeycomb structure manufactured in the longitudinal direction is measured by adopting the inspection method of the her cam structure of the present invention. did.
  • the inspection items in this shape inspection process were the length, parallelism, and position in the longitudinal direction, and each was evaluated.
  • a mixed powder was prepared by mixing 250 kg of ⁇ -type carbonized carbide powder with an average particle size of 10 m, 100 kg of ⁇ -type carbonized carbide powder with an average particle size of 0.5 m, and 20 kg of an organic binder (methylcellulose). .
  • a liquid mixture is prepared by mixing 12 kg of lubricant (Nihon Yushi Co., Ltd. uniloop), 5 kg of plasticizer (glycerin) and 65 kg of water, and this liquid mixture and the mixed powder are wet-mixed. To prepare a wet mixture.
  • the moisture content of the wet mixture prepared here was 14% by weight.
  • the wet mixture is transported to an extruder using a transport device, and the original of the extruder is transported. It was put into the charge inlet.
  • the moisture content of the wet mixture immediately before charging the extruder was 13.5% by weight. Then, a molded body having the same shape as that shown in FIG. 4 was produced by extrusion molding, except that the end of the cell was not sealed.
  • a heat-resistant sealing material paste containing 28.4% by weight of water a large number of Hercam's fired bodies were adhered, further dried at 120 ° C, and then cut using a diamond cutter. Then, a cylindrical ceramic block having a lmm thickness of the sealing material layer (adhesive layer) was produced.
  • silica-alumina fino as an inorganic fiber (average fiber length 100 m, average fiber diameter 10 m) 23.3% by weight, inorganic carbide particles having an average particle size of 0.3 m 30 . 2 by weight 0/0, (SiO the content in the sol: 30 weight 0/0) of silica sol as an inorganic Roh inductor 7 wt 0/0,
  • an organic binder 0.5% by weight of carboxymethylcellulose and 39% by weight of water were mixed and kneaded to prepare a sealing material paste.
  • a sealing material paste layer having a thickness of 0.2 mm was formed on the outer periphery of the her cam block using the sealing material paste. Then, this sealing material paste layer was dried at 120 ° C. to prepare a columnar herm cam structure having a diameter of 143.8 mm and a length of 254 mm, in which a sealing material layer (coat layer) was formed on the outer periphery.
  • the inspection process was performed and the shape in the longitudinal direction was measured.
  • one measuring element is assigned to each end region of the her cam fired body on the end surface of the her cam structure.
  • the longitudinal length, parallelism, and position of each of the five samples of the hard cam structure were measured. Therefore, when inspecting the longitudinal shape of one sample of the cam structure, the number of measurement points in one inspection is 12 as shown in Fig. 6, and the same number of measurement results as the number of measurement points is obtained. It is done.
  • Fig. 6 shows measurement points when one probe is assigned to each area occupied by one end face of the honeycomb fired body when measuring the shape of the end face of the honeycomb structure in the longitudinal direction. It is a schematic diagram which shows a number.
  • the length in the longitudinal direction was obtained by measuring the distance between the end surface with which the probe is in contact and the reference surface.
  • the parallelism was obtained by calculating the difference between the maximum value and the minimum value among the measured length values in the longitudinal direction.
  • Table 1 shows the results of each measurement.
  • the method for inspecting the her cam structure of the present invention makes it possible to obtain a lot of data relating to the shape in the longitudinal direction by one measurement. Furthermore, by analyzing these data, it is possible to inspect the shape in the longitudinal direction such as length, parallelism and position in the longitudinal direction with only one measurement, thereby reducing the time required for the shape inspection process. Therefore, the efficiency of the entire manufacturing process of the her cam structure can be improved.
  • FIG. 1 is a schematic diagram showing one step of the measurement principle of the present invention when using a contact-type measuring instrument equipped with one probe
  • FIG. 1 is a schematic diagram showing another process of the measurement principle of the present invention when using a contact-type measuring instrument equipped with one measuring element
  • FIG. It is a schematic diagram which shows the measurement principle of this invention when using a machine.
  • FIG. 2 (a) is a front view schematically showing one step of a specific example of the embodiment of the present invention using a contact-type measuring instrument equipped with a plurality of measuring elements
  • FIG. 2 (b) FIG. 5 is a front view schematically showing another process of the specific example of the embodiment of the present invention using the contact-type measuring device including a plurality of measuring elements.
  • FIG. 3 is a perspective view schematically showing an example of a her cam structure.
  • FIG. 4 (a) is a perspective view schematically showing a her-cam fired body constituting the her-cam structure
  • FIG. 4 (b) is a sectional view taken along the line AA. .
  • FIG. 5 is a perspective view schematically showing another example of a honeycomb structure.
  • FIG. 6 is a graph showing a case where one measuring element is assigned to each region occupied by one end face of the honeycomb fired body when measuring the shape of the end face of the honeycomb structure in the longitudinal direction. It is a schematic diagram which shows a station number.

Abstract

本発明は、測定条件の影響が少なく、かつ、短時間で正確にハニカム構造体の長手方向の形状を計測することができるハニカム構造体の検査方法を提供することを目的とするものであり、本発明のハニカム構造体の検査方法は、多数のセルがセル壁を隔てて長手方向に並設された柱状のハニカム焼成体からなるハニカム構造体の検査方法であって、基準面と、上記基準面に垂直に設けられたレール、及び、上記レールに沿って移動する探針からなる測定子とを備えた接触式計測機を準備し、上記基準面に上記ハニカム構造体の一方の端面を接触させ、上記測定子を上記基準面に近づける方向に移動せしめて上記ハニカム構造体の他方の端面に上記探針を接触させることにより、上記ハニカム構造体の長手方向の形状を計測することを特徴とする。

Description

明 細 書
ハニカム構造体の検査方法、及び、ハニカム構造体の製造方法
技術分野
[0001] 本発明は、ハニカム構造体の検査方法及びハニカム構造体の製造方法に関する。
背景技術
[0002] バス、トラック等の車両や建設機械等の内燃機関力も排出される排ガス中に含有され るスス等のパティキュレートが環境や人体に害を及ぼすことが最近問題となっている。 そこで、排ガス中のパティキュレートを捕集して、排ガスを浄ィ匕するフィルタとして多孔 質セラミック力 なるハ-カム構造体を用いたセラミックフィルタが種々提案されて 、る
[0003] 図 3は、このようなハ-カム構造体の一例を模式的に示す斜視図であり、図 4 (a)は、 上記ハ-カム構造体を構成するハ-カム焼成体を模式的に示す斜視図であり、図 4 ( b)は、その A— A線断面図である。
[0004] ハ-カム構造体 130では、図 4に示すようなハ-カム焼成体 140がシール材層(接着 剤層) 131を介して複数個結束されてセラミックブロック 133を構成し、さらに、このセ ラミックブロック 133の外周にシール材層(コート層) 132が形成されている。
また、ハ-カム焼成体 140は、図 4に示すように、長手方向に多数のセル 141が並設 され、セル 141同士を隔てるセル壁 143がフィルタとして機能するようになって!/、る。
[0005] すなわち、ハ-カム焼成体 140に形成されたセル 141は、図 4 (b)に示すように、排 ガスの入口側又は出口側の端部のいずれかが封ロ材層 142により目封じされ、一の セル 141に流入した排ガスは、必ずセル 141を隔てるセル壁 143を通過した後、他 のセル 141から流出するようになっており、排ガスがこのセル壁 143を通過する際、 パティキュレートがセル壁 143部分で捕捉され、排ガスが浄ィ匕される。
[0006] 従来、このようなハ-カム構造体 130を製造する際には、例えば、まず、セラミック粉 末とバインダと分散媒液等とを混合して湿潤混合物を調製する。そして、この湿潤混 合物をダイスにより連続的に押出成形し、押し出された成形体を所定の長さに切断 することにより、角柱形状のハニカム成形体を作製する。 [0007] 次に、得られたノ、二カム成形体を乾燥させ、その後、所定のセルに目封じを施し、セ ルの ヽずれかの端部が封口材層により封止された状態とした後、脱脂処理及び焼成 処理を施し、ハニカム焼成体を製造する。
[0008] この後、ハ-カム焼成体の側面にシール材ペーストを塗布し、ハ-カム焼成体同士を 接着させることにより、シール材層 (接着剤層)を介してハ-カム焼成体が多数結束し た状態のハニカム焼成体の集合体を作製する。次に、得られたハニカム焼成体の集 合体に、切削機等を用いて円柱、楕円柱等の所定の形状に切削加工を施してセラミ ックブロックを形成し、最後に、セラミックブロックの外周にシール材ペーストを塗布し てシール材層(コート層)を形成することにより、ハ-カム構造体の製造を終了する。
[0009] なお、本明細書にお!、て、ハ-カム成形体、ハ-カム焼成体、ハ-カム構造体の!/ヽ ずれの形態においても、それぞれの外形状をなす面のうち、セルが露出している面 を端面といい、端面以外の面を側面という。
[0010] 上記のようなハ-カム構造体 (セラミックフィルタや触媒担持体)は、通常、ケーシング 内に収納されて使用される。そのため、ハ-カム構造体をケーシング内に収納する前 に、製造したノ、二カム構造体が、上記ケーシングに適合するような所定の形状を有し て!、る力否かを検査する必要がある。
[0011] ここで、製造したハ-カム構造体の形状を検査する方法としては、例えば、ハ-カム 構造体の外形状 (端面)を撮像して原画像を取得し、この原画像に画像処理を施し ハニカム構造体の外形状を測定する方法が開示されている(例えば、特許文献 1参 照)。
[0012] 特許文献 1:特開 2002— 267427号公報
発明の開示
発明が解決しょうとする課題
[0013] 特許文献 1の方法では、画像変換処理を行なった画像において、形状の変化に応じ た輝度の変化を求めることによりハ-カム構造体の形状を検査して 、る。上記輝度の 変化を求めるためには、撮像した原画像に対して 1画素ごとに画像変換処理等を行 なう必要があり、照明条件や振動等の測定条件がわずかでも変化すると、測定結果 において大きな誤差が生じてしまう。この測定誤差を最小限に抑えるには測定条件 を厳密に設定する必要があり、そのために多大なコストや時間を要していた。また、 特許文献 1の方法では、端面の半径方向の形状のみを測定対象としており、ハ-カ ム構造体の長手方向の形状は測定対象としていな力つた。
課題を解決するための手段
[0014] 本発明者らは、上記課題を解決するために鋭意検討を行な ヽ、ハ-カム構造体の長 手方向の形状を計測し、そのハ-カム構造体が規格に合致して 、るか否かにっ ヽて 、短時間で正確に判断することができ、かつ、計測条件の影響が少ないハ-カム構 造体の検査方法、及び、このような検査方法をとり入れたハニカム構造体の製造方法 を見出した。
[0015] すなわち、本発明のハ-カム構造体の検査方法は、多数のセルがセル壁を隔てて長 手方向に並設された柱状のハ-カム焼成体力 なるハ-カム構造体の検査方法で あって、
基準面と、上記基準面に垂直に設けられたレール、及び、上記レールに沿って移動 する探針力 なる測定子とを備えた接触式計測機を準備し、上記基準面に上記ハ- カム構造体の一方の端面を接触させ、上記測定子を上記基準面に近づける方向に 移動せしめて上記ハニカム構造体の他方の端面に上記探針を接触させることにより 、上記ハニカム構造体の長手方向の形状を計測することを特徴とする。
[0016] 上記検査方法において、検査の対象となるハ-カム構造体は、複数の上記ハ-カム 焼成体が接着剤層を介して結束されてなるものであることが望ましい。
また、上記検査方法において、上記ハ-カム構造体の長手方向の形状に関する検 查項目は、長手方向の長さ、平行度及び位置度のうちの少なくとも 1つであることが 望ましい。
上記接触式計測機は、複数の測定子を備えて 、ることが望ま 、。
[0017] 本発明のハ-カム構造体の製造方法は、セラミック原料を成形することにより、多数 のセルがセル壁を隔てて長手方向に並設された柱状のハ-カム成形体を製造し、こ れを焼成してハニカム焼成体からなるハニカム構造体とした後、形状を検査する形状 検査工程を行なうハ-カム構造体の製造方法であって、
上記形状検査工程では、基準面と、上記基準面に垂直に設けられたレール、及び、 上記レールに沿って移動する探針力 なる測定子とを備えた接触式計測機を準備し 、上記基準面に上記ハニカム構造体の一方の端面を接触させ、上記測定子を上記 基準面に近づける方向に移動せしめて上記ハニカム構造体の他方の端面に上記探 針を接触させることにより、上記ハニカム構造体の長手方向の形状を計測することを 特徴とする。
[0018] 本発明のハ-カム構造体の製造方法において、検査の対象となるハ-カム構造体は 、複数の上記ハ-カム焼成体が接着剤層を介して結束されてなるものであることが望 ましい。
また、本製造方法において、上記ハ-カム構造体の長手方向の形状に関する検査 項目は、長手方向の長さ、平行度及び位置度のうちの少なくとも 1つであることが望ま しい。
さらに、本製造方法において使用する接触式計測機は、複数の測定子を備えている ことが望ましい。
発明の効果
[0019] 本発明のハニカム構造体の検査方法によれば、形状を計測するには、測定子を構 成する探針をノヽニカム構造体の端面に接触させるだけであるので、測定結果に及ぼ す測定条件の影響が少なぐ従って、測定誤差を小さくすることができる。さらに、ハ 二カム構造体の長手方向に沿った形状を正確かつ簡便に、短時間で評価することが できるので、ハ-カム構造体の検査に必要な時間を短縮させることができ、これにより 、製品規格に合致するハ-カム構造体のみを短時間で正確に判断することができる
[0020] また、本発明のハ-カム構造体の検査方法では、ハ-カム構造体の長手方向の形 状を多点計測することから種々の検査項目を求めることができ、ハ-カム構造体の製 品規格の評価として多面的な評価を行なうことができる。
[0021] 上記効果に加えて、測定子を複数備えた接触式計測機では、ハニカム構造体の長 手方向の形状を一回の測定で多点計測することができるので、検査時間をさらに短 縮することができる。
[0022] 本発明のハニカム構造体の製造方法では、上記検査方法によりハニカム構造体の 形状を検査するので、ハニカム構造体の長手方向の形状の情報を短時間でかつ正 確に得ることができ、製造したハ-カム構造体が製品規格に合格して 、るか否かに ついても短時間でかつ正確に判断することができる。
発明を実施するための最良の形態
[0023] まず、本発明のハニカム構造体の検査方法について図面を参照しながら説明する。
本発明のハ-カム構造体の検査方法は、多数のセルがセル壁を隔てて長手方向に 並設された柱状のハ-カム焼成体力 なるハ-カム構造体の検査方法であって、 基準面と、上記基準面に垂直に設けられたレール、及び、上記レールに沿って移動 する探針力 なる測定子とを備えた接触式計測機を準備し、上記基準面に上記ハ- カム構造体の一方の端面を接触させ、上記測定子を上記基準面に近づける方向に 移動せしめて上記ハニカム構造体の他方の端面に上記探針を接触させることにより 、上記ハニカム構造体の長手方向の形状を計測することを特徴とする。
[0024] 本発明の検査方法では、多数のセルがセル壁を隔てて長手方向に並設された柱状 のハ-カム焼成体からなるハ-カム構造体を検査対象とする。
上記ハ-カム構造体としては、例えば、既に図 3及び 4を参照しながら説明したような 、複数のハ-カム焼成体 140がシール材層(接着剤層) 131を介して結束され、外周 にシール材層(コート層) 132が形成された構成を有するハ-カム構造体 130 (以下 、集合型ハ-カム構造体ともいう)や、図 5に示したような、円柱形状のセラミックブロッ ク 55が 1つのハ-カム焼成体力も構成されているハ-カム構造体 50 (以下、一体型 ハ-カム構造体とも 、う)等が挙げられる。上記 、ずれのハ-カム構造体であっても、 好適に、本発明の検査方法による長手方向の形状の計測の対象とすることができる 。なお、図 5中、 51はセル、 53はセル壁、 54はシール材層(コート層)である。
[0025] なお、ハ-カム構造体の長手方向とは、セルが形成されている方向と平行な方向で ある。従って、セルが形成されている方向に沿ったノヽ-カム構造体の長さの値と比較 して、端面の直径の値の方が大きくても、セルが形成されている方向をノヽ-カム構造 体の長手方向という。
[0026] 図 1 (a)は、一の測定子を備えた接触式計測機を用いる場合の本発明の計測原理の 一工程を示す模式図であり、(b)は、一の測定子を備えた接触式計測機を用いる場 合の本発明の計測原理の他の一工程を示す模式図であり、(C)は、複数の測定子を 備えた接触式計測機を用いる場合の本発明の計測原理を示す模式図である。なお
、図 1 (a)〜 (c)のそれぞれに対して鉛直上方を正とする座標軸を設けて 、る。
[0027] 図 1 (a)に示すように、本発明のハニカム構造体で用いる接触式計測機 10は、基準 面 2と、基準面 2の上方に設けられた測定子 3とを備えており、測定子 3は、基準面 2 に垂直に設けられたレール 3a、及び、レール 3aに沿って移動する探針 3bで構成さ れている。従って、探針 3bの移動方向も基準面 2に対して垂直である。なお、接触式 計測機 10の 0点調整をする際に使用する標準サンプル Sについては後述する。
[0028] なお、接触式計測機には、測定子 3を基準面 2に対して垂直に支持し移動させること ができる測定子支持板と、この測定子支持板を移動させるためのボールネジ等の支 持部材と、測定子 3の移動量を測定するための変位計とが取り付けられていてもよい 。これらの部材については後述する。さらに、測定子 3には、探針 3bの移動量を測定 するためのスケールや検出器が適宜取り付けられて 、てもよ!/、。
[0029] 次に、本発明のハ-カム構造体の検査方法の手順について、図面を参照しながら説 明する。
第 1に、ハニカム構造体の長手方向の形状を計測する前に、接触式計測機 10の 0点 調整を行なう。ここで、 0点調整とは、基準面と測定子とを含む計測系において、基準 面に対する測定子の原点位置、及び、レールに対する探針の原点位置を決定する 手順である。本発明のハ-カム構造体の検査方法では、 0点調整で決定した原点位 置からの測定子及び Z又は探針の相対的な移動量を検出し、検出した移動量から 計測系における座標位置を求めることによりサンプルの形状等を計測する。
[0030] 具体的には、次のように 0点調整を行なう。
図 1 (a)に示すように、標準サンプル Sの一方の端面を基準面 2に接触させる。標準 サンプル Sの端面同士は平行であり、かつ、端面間の長さ(高さ)が Lであるように校
0
正されている。これにより、図 1 (a)に示す状態にある標準サンプル Sの上面のどの点 において長さを計測しても、上記上面と基準面 2との間の長さは全て Lとなる。
0
[0031] 次いで、測定子 3を基準面 2に近づける方向に移動せしめて、標準サンプル Sの他方 の端面に探針 3bを図 1 (a)に示すように接触させる。このときの基準面 2に対する測 定子 3の位置、及び、レール 3aに対する探針 3bの位置をそれぞれの原点位置として 記録することで、接触式計測機 10の 0点調整を行なう。ここで、探針 3bの先端と基準 面 2との長さは Lである。
0
[0032] 図 1 (a)では、説明の便宜上、測定子 3の上辺を測定子 3の原点位置とし、レール 3a 上に示された「0」の位置を探針 3bの原点位置としているが、これらに限定されず、任 意の位置にお!、て原点位置を決定してもよ 、。
[0033] 第 2に、 0点調整後、計測対象であるハニカム構造体 1の長手方向の形状を計測する ために、基準面 2にハ-カム構造体 1の一方の端面を接触させる。ここで、標準サン プル Sの長さは、ハ-カム構造体 1の長手方向の長さより長くてもよぐ短くてもよいが 、長い方が望ましい。標準サンプル Sの長さがハ-カム構造体 1の長手方向の長さよ り長いと、計測の際には、 0点調整後の測定子 3の原点位置力 測定子 3を基準面 2 に近づける方向の一方向にのみ移動させるだけでよいからである。
[0034] そして、第 3に、測定子 3を基準面 2に近づける方向に移動せしめて、ハ-カム構造 体 1の他方の端面に探針 3bを接触させることにより、ハ-カム構造体 1の長手方向の 形状を計測する。
[0035] 測定子 3の移動に際しては、計測対象であるハニカム構造体 1の長手方向の長さを L とし、ハ-カム構造体の長手方向の長さ L力 標準サンプル Sの長さ Lを減じて得た
0
値 (L L )の分だけ測定子 3を基準面 2に近づける方向に移動せしめる。
0
[0036] 上記値 (L L )は負の数であって、計測系に適用した座標軸は鉛直上方が正の方
0
向であるので、測定子 3を移動させる方向としては、座標軸における負の方向、すな わち鉛直下方に移動させることになり、測定子 3の移動量としては、(L L )の絶対
0
値の分だけ移動することになる。
[0037] なお、上記ハニカム構造体の長手方向の長さ Lは、計測の際に接触式計測機 10に 入力する設定値であり、実測値ではない。すなわち、例えば、ハニカム構造体の長手 方向の長さ Lが 100mmであるというとき、この 100mmという値は実測値ではなぐ製 品規格値のようなハ-カム構造体に要求される長さの値、又は、この長さから所定の 分だけ増減させた値である。この値に基づ 、て接触式計測機 10における測定子 3の 移動量が決められ、計測時に測定子 3が決められた移動量の分だけ移動する。 [0038] 以下、説明を簡明にするために、計測の際の上記ハニカム構造体の長手方向の長さ L (設定値)として、ハ-カム構造体に要求される長さそのものの値を採用した場合に ついて説明する。
[0039] 上述のように、ハニカム構造体 1の長手方向の長さを Lとすると、測定子 3の移動量は
(L-L )である。そして、値 (L— L )の分だけ測定子 3を基準面 2に近づける方向に
0 0
移動せしめた際の探針 3bの先端の位置は、基準面 2から Lだけ離れた位置にある。 ここで、ハ-カム構造体 1の長手方向の実際の長さが Lである場合には、測定子 3が 値 (L— L )の分だけ移動すると、探針 3bとハ-カム構造体 1の上側の端面とがちょう
0
ど接触することになる。従って、この場合は、レール 3aに対する探針 3bの原点位置か らの変位は 0であり、ハ-カム構造体 1の長手方向の実際の長さが Lであることが確認 される。
[0040] 一方、ハ-カム構造体 1の長手方向の実際の長さが L+Zである場合について、図 1
(b)を参照しつつ計測方法を説明する。
ハ-カム構造体 1に要求される長さが Lであるとして、接触式計測機 10に設定値を L と入力すると、測定子 3は値 (L L )の絶対値の分だけ基準面 2に近づく方向 (鉛直
0
下方)に移動する。このとき、ハニカム構造体 1の長手方向の実際の長さが Lであるな らば、探針 3bの先端は基準面 2から距離 Lの位置にあり、探針 3bとハニカム構造体 1 の上側の端面とがちょうど接触する。従って、レール 3aに対する探針 3bの原点位置 力もの変位は 0を示すことになり、長さの実測値として Lであると確認されるはずである
[0041] し力し、ハ-カム構造体 1の長手方向の実際の長さは Lではなく L+Zであるので、レ ール 3aが値 (L— L )の分だけ移動しても、探針 3bは Zの分だけ押し戻される (移動
0
することができない)ことになる。この場合には、レール 3aに対する探針 3bの原点位 置からの変位は Z (正の数)を示し、従って、ハ-カム構造体 1の長手方向の実際の 長さは、設定値である Lに Zを加えた値 (L + Z)であると確認される。言い換えると、図 1 (b)に示すハニカム構造体 1は、ハニカム構造体に要求される長さ L (例えば、製品 規格等)から Zの分だけ大きい値 (すなわち、ばらつき)を含む長手方向の長さを有す る。 [0042] 本発明のハニカム構造体の検査方法では、例えば、ハニカム構造体の長手方向の 長さとして、ハニカム構造体に要求される長さ Lではなぐそこ力 所定の長さ dだけ 短 、長さ 一 d)等を設定値として接触式計測機に入力してもょ 、。この設定値を使 用して、長手方向の実際の長さが(L + Z)であり、要求される長さが Lであるハニカム 構造体を計測する場合について簡単に説明する。
[0043] 上記の場合には、測定子 3は (L d— L )の分だけ移動することになり、それに応じ
0
てレール 3aは(L d— L )の分だけ移動する。このとき、ハニカム構造体の長手方向
0
の長さが Lであるとすると、探針 3bは、長さ dの分だけ押し戻され (移動することができ ず)、さらに、ハニカム構造体の長手方向の実際の長さは (L + Z)であるので、長さ Z の分だけ押し戻される (移動することができな 、)。
従って、レール 3aに対する探針 3bの原点位置からの変位は d+Z (正の数)を示すこ とから、ハ-カム構造体 1の長手方向の実際の長さは、設定値である (L d)に (d + Z)を加えた値 (L + Z)であると確認される。
[0044] また、ハ-カム構造体 1の長手方向の実際の長さが (L Z)である場合についても、 上記計測手順と同様にハニカム構造体 1の長手方向の長さを計測することができる。 例えば、接触式計測機 10に設定値 Lを入力すると、測定子 3は (L L )の分だけ基
0
準面 2に近づくように移動する。移動後の状態では、探針 3bの先端と基準面 2との間 の距離は Lであるのに対し、ハ-カム構造体 1の長手方向の実際の長さは (L Z)で あるので、探針 3bとハ-カム構造体 1の上側の端面とは 、まだ接触して ヽな ヽ(この とき、レール 3aに対する探針 3bの原点位置からの変位は 0)。ここから探針 3bがレー ル 3aに沿って鉛直下方に Zの分だけ移動する(レール 3aに沿って— Zの分だけ移動 する)ことにより、探針 3bとハ-カム構造体 1の上側の端面とが接触する。このとき、レ ール 3aに対する探針 3bの原点位置からの変位は Zを示すことから、ハ-カム構造 体 1の長手方向の実際の長さは、設定値である Lに Zを加えた値 (L Z)であると 確認される。
[0045] 以上のようにして、本発明のハ-カム構造体の検査方法では、ハ-カム構造体 1の長 手方向の長さ)を計測することができる。計測の手順としては、上記に例示した手順 に限定されず、同様の結果を得ることができる計測手順も本発明に含まれる。 [0046] ここで、基準面 2は、図 1に示すように水平方向に設置されていてもよぐまた、鉛直 方向に設置されていてもよぐ傾斜して設置されていてもよい。本発明のハ-カム構 造体の検査方法では、ハ-カム構造体を標準サンプル Sのように基準面 2と測定子 3 との間に配置し、基準面 2と測定子 3とで挟むようにして長手方向の形状を計測する ので、ハ-カム構造体を確実に固定して配置することができるのであれば、基準面 2 の設置方向はいずれの方向であってもよい。例えば、図 1 (a)に示す水平方向とは異 なり、基準面 2を鉛直方向に設置し、ハニカム構造体の端面を基準面 2に接触させ、 測定子を基準面 2に垂直な方向、すなわち水平方向に移動させる等してハニカム構 造体の長手方向の形状を計測してもよい。
[0047] また、レール 3a及び探針 3bの構成としては、図 1に示す構成に限定されず、例えば 、筒状のレール 3aとその内部をスライド可能なように取り付けられた探針 3bという構 成等であってもよい。レール 3aが基準面 2に垂直に設けられ、かつ、探針 3bがレー ル 3aに沿って移動することができる限り、測定子 3の構成要素としての役割を果たす ことができる。
[0048] ハニカム構造体の端面と接触する側の探針 3bの先端形状は、特に限定されないが、 丸みを帯びた形状や尖った形状ではなぐ探針 3bの先端をレール 3aの長さ方向に 対して垂直な平面で切断して得られる面形状であることが望ましい。
探針 3bの先端形状が丸みを帯びた形状や尖った形状である場合に、先端形状のう ち最も突出した部分がセル壁に接触したときは、その接触位置はハ-カム構造体 1 の端面の位置に相当するので計測した結果に誤差は生じない。しかし、先端形状の うち最も突出した部分がセル壁に接触しな力つたときには、探針 3bの位置は、ハ-カ ム構造体の端面の位置ではなぐさらに基準面に近づいた方向に探針 3bが移動す ることになるので、計測した結果に誤差が生じるおそれがある。探針 3bの先端の形状 がレール 3aに垂直な面を有する面形状であると、上記のようなおそれがなぐハ-カ ム構造体の長手方向の形状を正確に計測することができる。
[0049] 探針 3bの先端形状が上記面形状である場合に、その面の形状は、特に限定されず 、例えば、円形、楕円形、正方形、長方形、六角形等の任意の形状が挙げられる。こ のとき、その面の大きさは、少なくともセルの大きさより大きければよい。 [0050] 計測の際に、測定子 3を基準面 2に近づける方向に移動せしめる際の測定子 3の移 動速度は、特に限定されず、 5〜50cmZsの範囲であればよい。
測定子 3の移動速度が上記範囲であると、探針 3bとハニカム構造体の端面との接触 の際にセル壁の破損等が生じることなぐ効率よくハ-カム構造体の長手方向の長さ を計測することができる。
[0051] ハ-カム構造体の端面において探針 3bが接触する位置は、特に限定されず、例え ば、ハ-カム焼成体の端面、シール材層(接着剤層)、シール材層(コート材層)等、 端面上のいずれの位置であってもよい。検査の対象が、ハ-カム構造体の長手方向 の形状に関する項目である限り、対象とする形状に応じて端面と探針 3bとの接触位 置を調整すればよい。通常、探針 3bが接触する位置は、ハ-カム焼成体の端面であ ることが多い。
[0052] 上述のように、本発明のハ-カム構造体の検査方法にお!、て、検査対象であるハ- カム構造体は、集合型ハ-カム構造体であっても、一体型ハ-カム構造体であって もよぐいずれのハ-カム構造体であっても好適に検査の対象とすることができる。こ のうち、特に、検査の対象となるハ-カム構造体は、複数のハ-カム焼成体が接着剤 層を介して結束されてなるもの (すなわち、集合型ハ-カム構造体)であることが望ま しい。
[0053] 検査対象が集合型ハ-カム構造体である場合には、複数のハ-カム焼成体からなる ことに起因して、その長手方向の形状が一体型ハ-カム構造体と比して複雑であるこ とが多い。例えば、構成要素であるハニカム焼成体の長手方向の長さにばらつきが 生じていたり、複数のハニカム焼成体を結束させる際に、互いに結束させる位置が長 手方向に沿ってずれていたりすると、図 1 (c)に示すノ、二カム構造体 11のように、集 合型ハ-カム構造体の端面では上記ばらつきにより凹凸が生じる。
[0054] このような形状を有するハニカム構造体の形状を検査するには、従来の検査方法で は複雑な作業や処理を経る必要があった。しかし、本発明のハニカム構造体の検査 方法では、測定子を基準面に近づける方向に相対的に移動せしめるだけで、上記 凹凸のようなハニカム構造体の長手方向の形状を簡便かつ正確に計測することがで きる。従って、複雑な端面構造を有する集合型ハ-カム構造体であっても好適に検 查の対象とすることができる。
[0055] 集合型ハニカム構造体の長手方向の形状を計測するには、ハニカム構造体の端面 全体のうち一のハニカム焼成体が占める領域ごとに探針を接触させて計測するという 工程を繰り返すことにより行なうことができる。なお、一の計測点から他の計測点へと 測定子 3及び Z又はハ-カム構造体 1を移動させるには、対象を水平方向で移動さ せることができる X— yステージや多軸ステージ等の周知の移動手段をさらに組み合 わせればよい。
[0056] ハニカム構造体の長手方向の形状に関する検査項目は、長手方向の長さ、平行度 及び位置度のうちの少なくとも 1つであることが望ましい。
本発明のハニカム構造体の検査方法では、長手方向の形状に関する検査項目は特 に限定されないが、長手方向の形状に関する上記検査項目であっても短時間で、か つ、正確に計測することができる。
[0057] この理由は、検査対象として集合型ハ-カム構造体が望ま 、ことの説明にお!/、て 記載したように、従来の検査方法では、集合型ハニカム構造体の端面では凹凸が存 在することがあり、長手方向の長さも含めた長手方向の形状を計測することが困難で ある力 本発明のハ-カム構造体の検査方法では好適に検査することができるから である。
[0058] ここで、長手方向の長さとは、ハ-カム構造体の端面全体のうち一のハ-カム焼成体 の端面が占める領域ごとに計測した長手方向の長さのそれぞれの値をいう。
平行度及び位置度は、 JIS B 0621に基づいており、詳細には、平行度とは、探針 が接触する側の各ハ-カム焼成体の端面の全てが基準面に平行な二平面の間に存 在するように挟んだときの、上記二平面の間隔をいい、位置度とは、基準面と平行な 基準平面であって、基準面から所定値 (例えば、長手方向の長さを複数計測したとき のそれらの平均値等)の分だけ離れた位置にある基準平面を設定したとき、この基準 平面に対して対称な平行二平面の間に、探針が接触する側の各ハニカム焼成体の 端面の全てが存在するように挟んだときの、平行二平面の間隔をいう。
[0059] 上記検査項目の定義は、 V、ずれも集合型ハニカム構造体に対して適用することを前 提としている力 一体型ハ-カム構造体に対しても適用することができる。すなわち、 上記定義においてハ-カム焼成体の端面が 1つである場合とし、この端面に対して 一点又は多点計測して上記検査項目を計測してもよ 、。
また、例えば、集合型ハ-カム構造体を構成する各ハ-カム焼成体における、規格 長さ (設計値)と実際の測定値との差等も上記長手方向の形状に関する検査項目と することができる。
[0060] 本発明のハニカム構造体の検査方法では、ハニカム構造体の長手方向の形状を検 查の対象としているが、複数の接触式計測機を組み合わせることにより、長手方向に カロえて、長手方向に垂直な方向での計測を補助的に行なうこともできる。
[0061] 本発明のハニカム構造体の検査方法では、接触式計測機は、複数の測定子を備え ていることが望ましい。
接触式計測機が複数の測定子を備えて!/、ると、ハニカム構造体の端面における計測 点数が複数の場合に、計測回数を少なくすることができ、計測を多数回行なうことに より生じる誤差を小さくすることができる。また、接触式計測機が計測点数と同数の測 定子を備えていると、 1回の計測を行なうだけでノヽニカム構造体の長手方向の形状を 計測することができるので、検査工程に要する時間を短くすることができ、計測の正 確さも向上させることができる。
[0062] 接触式計測機が複数の測定子を備えている場合の本発明の実施形態を図 1 (c)並 びに図 2 (a)及び (b)を参照しつつ説明する。
図 2 (a)は、複数の測定子を備えた接触式計測機を用いる本発明の実施形態の具体 例の一工程を模式的に示す正面図であり、(b)は、複数の測定子を備えた接触式計 測機を用いる本発明の実施形態の具体例の他の一工程を模式的に示す正面図で ある。
[0063] 図 1 (c)に示す接触式計測機 20は、基準面 2と、 2つの測定子 31及び 32とを備えて いる。そして、測定子 31は、レール 31aと探針 31bとを備え、測定子 32はレール 32a と探針 32bとを備えている。
また、基準面 2とハ-カム構造体 11の一方の端面とが接触し、ハ-カム構造体 11の 他方の端面には探針 31b及び 32bが接触している。なお、図 1 (c)に示すノヽ-カム構 造体 11は、集合型ハ-カム構造体である。 [0064] 図 1 (c)は、ハニカム構造体 11の長手方向の形状(図では長さ)を計測した後の状態 を示しており、測定子 31において、レール 3 laに対する探針 3 lbの原点位置からの 変位は Zを示しており、測定子 32において、レール 32aに対する探針 32bの原点位 置からの変位は Zを示している。従って、測定子 31及び 32により計測したノヽ-カム
2
構造体の長手方向の長さは、それぞれ L + Z 、 L + Zである。
1 2
[0065] 図 1 (c)に示すハ-カム構造体 11では、複数のハ-カム焼成体のいくつかにおいて 、互いに結束されている鉛直位置が長手方向にずれている(すなわち、基準面 2に 対して鉛直上方に Z及び Zの分だけずれている)。このようなずれが存在するために
1 2
、接触式計測機 20によりハニカム構造体 11の長手方向の長さを計測すると、測定子 31及び 32において、それぞれ L+Z 、 L+Zという計測結果が示されることになる。
1 2
[0066] このように、複数の測定子を備えた接触式計測機により、ハニカム構造体の端面に対 して多点計測を同時に行なうことができ、種々の検査項目を 1回の計測で調べること ができる。
次に、ハ-カム構造体の端面において、一のハ-カム焼成体の端面が占める領域ご とに一の測定子を接触させることができるように構成された接触式計測機を用いて、 ハニカム構造体の長手方向の形状を計測する実施形態を図 2 (a)及び (b)を参照し つつ説明する。
[0067] 図 2 (a)に示す接触式計測機 30は、基準面 2と、基準面 2に垂直に取り付けられた二 つの支持部材 5と、これらの二つの支持部材 5間に基準面 2と平行に懸けられた測定 子支持板 4と、この測定子支持板 4に支持された複数の測定子 3を備えている。上記 測定子支持板 4は、ボールネジ等の支持部材 5に沿って基準面との平行を保ったま ま昇降可能に構成されている。また、複数の測定子 3は、測定子支持板 4を貫通する ように取り付けられている。
[0068] 図 2 (a)に示す接触式計測機 30には、上記部材の他、接触式計測機 30の 0点調整 に使用される標準サンプル Sが設置されており、従って、図 2 (a)に示す接触式計測 機 30は、 0点調整を行なっている状態にある。
[0069] ハニカム構造体の長手方向の形状を計測するために、接触式計測機 30の 0点調整 後、まず、検査対象であるハ-カム構造体 1の一方の端面を基準面 2に接触させる。 次いで、ボールネジ等の支持部材 5を回転させる等して、測定子支持板 4を基準面 2 に近づける方向に移動(下降)させる。この測定子支持板 4の下降により、複数の測 定子 3も基準面 2に近づく方向に移動する。そして、図 2 (b)に示すように、ハ-カム 構造体の他方の端面に全ての探針が接触するまで測定子支持板 4を下降させて計 測を完了する。
[0070] 図 2 (b)に示す実施形態の接触式計測機 30を使用すると、ハニカム構造体の端面に おいて一のハ-カム焼成体の端面が占める領域ごとに測定子 3が接触するので、各 種検査項目に必要なデータを 1回の計測で得ることができ、ハ-カム構造体の長手 方向の形状を正確にかつ短時間で検査することができる。
[0071] 次に、本発明のハ-カム構造体の製造方法について説明する。
本発明のハ-カム構造体の製造方法は、セラミック原料を成形することにより、多数 のセルがセル壁を隔てて長手方向に並設された柱状のハ-カム成形体を製造し、こ れを焼成してハニカム焼成体からなるハニカム構造体とした後、形状を検査する形状 検査工程を行なうハ-カム構造体の製造方法であって、
上記形状検査工程では、基準面と、上記基準面に垂直に設けられたレール、及び、 上記レールに沿って移動する探針力 なる測定子とを備えた接触式計測機を準備し 、上記基準面に上記ハニカム構造体の一方の端面を接触させ、上記測定子を上記 基準面に近づける方向に移動せしめて上記ハニカム構造体の他方の端面に上記探 針を接触させることにより、上記ハニカム構造体の長手方向の形状を計測することを 特徴とする。
[0072] 以下、本発明のハ-カム構造体の製造方法について、工程順に説明する。
ここでは、構成材料の主成分が炭化ケィ素のハ-カム構造体を製造する場合を例に 、セラミック原料である炭化ケィ素粉末を使用した場合のハニカム構造体の製造方法 について説明する。
勿論、ハ-カム構造体の構成材料の主成分は、炭化ケィ素に限定されるわけではな ぐ他のセラミック原料として、例えば、窒化アルミニウム、窒化ケィ素、窒化ホウ素、 窒化チタン等の窒化物セラミック、炭化ジルコニウム、炭化チタン、炭化タンタル、炭 化タングステン等の炭化物セラミック、アルミナ、ジルコユア、コージエライト、ムライト、 チタン酸アルミニウム等の酸ィ匕物セラミック等が挙げられる。
これらのなかでは、非酸ィ匕物セラミックが好ましぐ炭化ケィ素が特に好ましい。耐熱 性、機械強度、熱伝導率等に優れるからである。なお、上述したセラミックに金属ケィ 素を配合したケィ素含有セラミック、ケィ素やケィ酸塩ィ匕合物で結合されたセラミック 等のセラミック原料も構成材料として挙げられ、これらのなかでは、炭化ケィ素に金属 ケィ素が配合されたもの (ケィ素含有炭化ケィ素)が望まし!/、。
[0073] まず、セラミック原料として平均粒子径の異なる炭化ケィ素粉末等の無機粉末と有機 バインダとを乾式混合して混合粉末を調製するとともに、液状の可塑剤と潤滑剤と水 とを混合して混合液体を調製し、続いて、上記混合粉末と上記混合液体とを湿式混 合機を用いて混合することにより、成形体製造用の湿潤混合物を調製する。
[0074] 上記炭化ケィ素粉末の粒径は特に限定されないが、後の焼成工程で収縮の少ない ものが好ましぐ例えば、 0. 3〜50 111程度の平均粒径を有する粉末100重量部と0 . 1〜1. O /z m程度の平均粒径を有する粉末 5〜65重量部とを組み合わせたものが 好ましい。
ハニカム焼成体の気孔径等を調節するためには、焼成温度を調節する必要があるが 、無機粉末の粒径を調節することにより、気孔径を調節することができる。
[0075] 上記有機バインダとしては特に限定されず、例えば、メチルセルロース、カルボキシメ チルセルロース、ヒドロキシェチルセルロース、ポリエチレングリコール、フエノール榭 脂、エポキシ榭脂等が挙げられる。これらのなかでは、メチルセルロースが望ましい。 上記バインダの配合量は、通常、無機粉末 100重量部に対して、 1〜10重量部程度 が望ましい。
[0076] 上記可塑剤としては特に限定されず、例えば、グリセリン等が挙げられる。
また、上記潤滑剤としては特に限定されず、例えば、ポリオキシエチレンアルキルェ 一テル、ポリオキシプロピレンアルキルエーテル等のポリオキシアルキレン系化合物 等が挙げられる。
潤滑剤の具体例としては、例えば、ポリオキシエチレンモノブチルエーテル、ポリオキ シプロピレンモノブチルエーテル等が挙げられる。
なお、可塑剤、潤滑剤は、場合によっては、混合原料粉末に含まれていなくてもよい [0077] また、上記湿潤混合物を調製する際には、分散媒液を使用してもよぐ上記分散媒 液としては、例えば、水、ベンゼン等の有機溶媒、メタノール等のアルコール等が挙 げられる。
さらに、上記湿潤混合物中には、成形助剤が添加されていてもよい。
上記成形助剤としては特に限定されず、例えば、エチレングリコール、デキストリン、 脂肪酸、脂肪酸石鹼、ポリアルコール等が挙げられる。
[0078] さらに、上記湿潤混合物には、必要に応じて酸化物系セラミックを成分とする微小中 空球体であるバルーンや、球状アクリル粒子、グラフアイト等の造孔剤を添加してもよ い。
上記バルーンとしては特に限定されず、例えば、アルミナバルーン、ガラスマイクロバ ルーン、シラスバルーン、フライアッシュバルーン(FAバルーン)、ムライトバルーン等 を挙げることができる。これらのなかでは、アルミナバルーンが望ましい。
[0079] また、ここで調製した、炭化ケィ素粉末を用いた湿潤混合物は、その温度が 28°C以 下であることが望ましい。温度が高すぎると、有機バインダがゲルイ匕してしまうことがあ るカゝらである。
また、上記湿潤混合物中の有機分の割合は 10重量%以下であることが望ましぐ水 分の含有量は 8. 0〜20. 0重量%以下であることが望ましい。
[0080] 上記湿潤混合物は、調製後搬送され、成形機に投入されることとなる。
上記搬送装置で搬送された湿潤混合物を押出成形機に投入した後は、押出成形に より所定の形状のハニカム成形体とする。
次に、上記ハニカム成形体を、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧 乾燥機、真空乾燥機、凍結乾燥機等を用いて乾燥させ、乾燥させたハニカム成形体 とする。
[0081] ここで、切断装置を用いて作製したハ-カム成形体の両端を切断する切断工程を行 ない、ハニカム成形体を所定の長さに切断する。
[0082] 次いで、必要に応じて、入口側セル群の出口側の端部、及び、出口側セル群の入口 側の端部に、封止材となる封止材ペーストを所定量充填し、セルを目封じする。この セルの目封じの際には、ハニカム成形体の端面 (すなわち切断工程後の切断面)に 目封じ用のマスクを当てて、 目封じの必要なセルにのみ封止材ペーストを充填する。
[0083] 上記封止材ペーストとしては特に限定されないが、後工程を経て製造される封止材 の気孔率が 30〜75%となるものが望ましぐ例えば、上記湿潤混合物と同様のもの を用いることができる。
[0084] 上記封止材ペーストの充填は、必要に応じて行なえばよぐ上記封止材ペーストを充 填した場合には、例えば、後工程を経て得られたハ-カム構造体をセラミックフィルタ として好適に使用することができ、上記封止材ペーストを充填しな力つた場合には、 例えば、後工程を経て得られたハニカム構造体を触媒担持体として好適に使用する ことができる。
[0085] 次に、上記封止材ペーストが充填されたノ、二カム成形体を、所定の条件で脱脂 (例 えば、 200〜500°C)に次いで、焼成(例えば、 1400〜2300°C)することにより、全 体が一の焼成体から構成され、複数のセルがセル壁を隔てて長手方向に並設され、 かつ、上記セルのいずれか一方の端部が封止されたノ、二カム焼成体(図 4参照)を 製造することができる。
[0086] 上記ハニカム成形体の脱脂及び焼成の条件は、従来から多孔質セラミックからなるフ ィルタを製造する際に用いられている条件を適用することができる。
[0087] 次に、ハ-カム焼成体の側面に、シール材層(接着剤層)となるシール材ペーストを 均一な厚さで塗布してシール材ペースト層を形成し、このシール材ペースト層の上に 、順次他のハ-カム焼成体を積層する工程を繰り返し、所定の大きさのハ-カム焼成 体の集合体を作製する。
[0088] 上記シール材ペーストとしては、例えば、無機バインダと有機ノ インダと無機繊維及 び Z又は無機粒子とからなるもの等が挙げられる。
上記無機バインダとしては、例えば、シリカゾル、アルミナゾル等を挙げることができる 。これらは、単独で用いてもよぐ 2種以上を併用してもよい。上記無機バインダのな かでは、シリカゾルが望ましい。
[0089] 上記有機バインダとしては、例えば、ポリビュルアルコール、メチルセルロース、ェチ ルセルロース、カルボキシメチルセルロース等を挙げることができる。これらは、単独 で用いてもよぐ 2種以上を併用してもよい。上記有機バインダのなかでは、カルボキ シメチルセルロースが望まし!/、。
[0090] 上記無機繊維としては、例えば、シリカ アルミナ、ムライト、アルミナ、シリカ等のセラ ミックファイバ一等を挙げることができる。これらは、単独で用いてもよぐ 2種以上を併 用してもよい。上記無機繊維のなかでは、アルミナファイバが望ましい。
[0091] 上記無機粒子としては、例えば、炭化物、窒化物等を挙げることができ、具体的には
、炭化ケィ素、窒化ケィ素、窒化ホウ素からなる無機粉末等を挙げることができる。こ れらは、単独で用いてもよぐ 2種以上を併用してもよい。上記無機粒子のなかでは、 熱伝導性に優れる炭化ケィ素が望ま ヽ。
[0092] さらに、上記シール材ペーストには、必要に応じて酸化物系セラミックを成分とする微 小中空球体であるバルーンや、球状アクリル粒子、グラフアイト等の造孔剤を添加し てもよい。
上記バルーンとしては特に限定されず、例えば、アルミナバルーン、ガラスマイクロバ ルーン、シラスバルーン、フライアッシュバルーン(FAバルーン)、ムライトバルーン等 を挙げることができる。これらのなかでは、アルミナバルーンが望ましい。
[0093] 次に、このハ-カム焼成体の集合体を加熱してシール材ペースト層を乾燥、固化さ せてシール材層(接着剤層)とする。
次に、ダイヤモンドカッター等を用い、ハ-カム焼成体がシール材層(接着剤層)を介 して複数個接着されたハニカム焼成体の集合体に切削加工を施し、円柱形状のセラ ミックブロックを作製する。
[0094] そして、セラミックブロックの外周に上記シール材ペーストを用いてシール材層(コート 材層)を形成することで、ハニカム焼成体がシール材層 (接着剤層)を介して複数個 接着された円柱形状のセラミックブロックの外周部にシール材層(コート材層)が設け られたノ、二カム構造体とすることができる。
[0095] 本発明のハ-カム構造体の製造方法では、以上のようにして作製したハ-カム構造 体について、その形状を検査する形状検査工程を行なう。
[0096] 上記形状検査工程では、基準面と、上記基準面に垂直に設けられたレール、及び、 上記レールに沿って移動する探針力 なる測定子とを備えた接触式計測機を準備し 、上記基準面に上記ハニカム構造体の一方の端面を接触させ、上記測定子を上記 基準面に近づける方向に移動せしめて上記ハニカム構造体の他方の端面に上記探 針を接触させることにより、上記ハニカム構造体の長手方向の形状を計測する。本形 状検査工程において行なう検査方法としては、既に説明した本発明のハ-カム構造 体の検査方法を好適に採用することができる。
[0097] 本発明のハ-カム構造体の製造方法において、検査の対象となるハ-カム構造体は 、複数のハニカム焼成体が接着剤層を介して結束されてなるもの (集合型ハニカム構 造体)であることが望ましい。
この理由は、本発明のハ-カム構造体の製造方法により製造したハ-カム構造体は 、通常、ケーシング内に収納されて使用される。製造したノヽ-カム構造体をケーシン グに収納する際に、特に、ハニカム構造体の長手方向の形状が整っていないと、ケ 一シングに収納することができな力つたり、破損が生じたりする場合がある。このような 問題が生じることを防止するために形状検査を行なうのである力 一体型ハ-カム構 造体と比して長手方向の形状が複雑である集合型ハニカム構造体であっても、本形 状検査工程ではその長手方向の形状を正確かつ簡便に計測することができ、好適 に検査の対象とすることができるからである。
[0098] また、ハニカム構造体の長手方向の形状に関する検査項目は、長手方向の長さ、平 行度及び位置度のうちの少なくとも 1つであることが望ましい。さらに、接触式計測機 は、複数の測定子を備えていることが望ましい。
これらの理由に関しても、本発明のハ-カム構造体の検査方法の説明において記載 した理由にカ卩えて、最終製品としてのハ-カム構造体の長手方向の形状を多面的に 評価し、その機能性 ·安全性の担保を確実にするためである。
[0099] このように、本形状検査工程においてハニカム構造体の長手方向の形状を検査する ことにより良品と不良品とを選別することができ、所望の形状を有するハ-カム構造体 を製造することができる。
[0100] その後、必要に応じて、ハ-カム構造体に触媒を担持させる。上記触媒の担持は集 合体を作製する前のハニカム焼成体に行ってもよい。
触媒を担持させる場合には、ハ-カム構造体の表面に高い比表面積のアルミナ膜を 形成し、このアルミナ膜の表面に助触媒、及び、白金等の触媒を付与することが望ま しい。
[0101] 上記ハ-カム構造体の表面にアルミナ膜を形成する方法としては、例えば、 Α1 (ΝΟ
3
) 等のアルミニウムを含有する金属化合物の溶液をノ、二カム構造体に含浸させてカロ
3
熱する方法、アルミナ粉末を含有する溶液をハ-カム構造体に含浸させて加熱する 方法等を挙げることができる。
上記アルミナ膜に助触媒を付与する方法としては、例えば、 Ce (NO ) 等の希土類
3 3
元素等を含有する金属化合物の溶液をハ-カム構造体に含浸させて加熱する方法 等を挙げることができる。
上記アルミナ膜に触媒を付与する方法としては、例えば、ジニトロジアンミン白金硝酸 溶液([Pt (NH ) (NO ) ]HNO、白金濃度 4. 53重量%)等をハニカム構造体に
3 2 2 2 3
含浸させて加熱する方法等を挙げることができる。
また、予め、アルミナ粒子に触媒を付与して、触媒が付与されたアルミナ粉末を含有 する溶液をハ-カム構造体に含浸させて加熱する方法で触媒を付与してもよい。
[0102] また、ここまで説明したノ、二カム構造体の製造方法は、複数のハ-カム焼成体がシ 一ル材層 (接着剤層)を介して結束された構成を有する集合型ハニカム構造体であ るが、本発明の製造方法により製造するハ-カム構造体は、円柱形状のセラミックブ ロックが 1つのハ-カム焼成体力 構成されている一体型ハ-カム構造体であっても よい。ここで一体型ハ-カム構造体の主な構成材料は、コージエライトやチタン酸ァ ルミ-ゥムであることが望まし 、。
[0103] このような一体型ハ-カム構造体を製造する場合は、まず、押出成形により成形する ハ-カム成形体の大きさが、集合型ハ-カム構造体を製造する場合に比べて大きい 以外は、集合型ハ-カム構造体を製造する場合と同様の方法を用いて、ハ-カム成 形体を作製する。
[0104] 次に、集合型ハニカム構造体の製造と同様に、上記ハニカム成形体を、マイクロ波乾 燥機、熱風乾燥機、誘電乾燥機、減圧乾燥機、真空乾燥機、凍結乾燥機等を用い て乾燥させる。
次 、で、乾燥させたノヽ-カム成形体の両端部を切断する切断工程を行なう。 [0105] 次に、入口側セル群の出口側の端部、及び、出口側セル群の入口側の端部に、封 止材となる封止材ペーストを所定量充填し、セルを目封じする。
その後、集合型ハ-カム構造体の製造と同様に、脱脂、焼成を行なうことによりセラミ ックブロックを製造し、必要に応じて、シール材層(コート材層)の形成を行なうことに より、一体型ハ-カム構造体を製造することができる。また、上記一体型ハ-カム構 造体にも、上述した方法で触媒を担持させてもよい。
[0106] 以上、説明した本発明のハ-カム構造体の製造方法では、作業効率よくハ-カム構 造体を製造することができる。
また、上述した方法によりハ-カム構造体を製造する場合、ハ-カム構造体の長手 方向の形状を短時間でかつ正確に計測することができ、また、製造したノ、二カム構造 体が製品規格に合格して ヽるか否かにっ 、ても短時間でかつ正確に判断することが でき、従って、ハ-カム構造体の製造工程全体の効率も向上させることができる。 実施例
[0107] 以下に実施例を掲げ、本発明をさらに詳しく説明するが、本発明はこれら実施例の みに限定されない。
[0108] 本発明のハ-カム構造体の製造方法の形状検査工程において、本発明のハ-カム 構造体の検査方法を採用して、製造した集合型ハニカム構造体の長手方向の形状 を計測した。本形状検査工程における検査項目は、長手方向の長さ、平行度及び位 置度であり、それぞれについて評価を行なった。
[0109] (実施例 1)
平均粒径 10 mの α型炭化ケィ素粉末 250kgと、平均粒径 0. 5 mの α型炭化ケ ィ素粉末 100kgと、有機バインダ (メチルセルロース)と 20kgとを混合し、混合粉末を 調製した。
次に、別途、潤滑剤 (日本油脂社製 ュニループ) 12kgと、可塑剤(グリセリン) 5kgと 、水 65kgとを混合して液体混合物を調製し、この液体混合物と混合粉末とを湿式混 合機を用いて混合し、湿潤混合物を調製した。
なお、ここで調製した湿潤混合物の水分含有量は、 14重量%であった。
[0110] 次に、搬送装置を用いて、この湿潤混合物を押出成形機に搬送し、押出成形機の原 料投入口に投入した。
なお、押出成形機投入直前の湿潤混合物の水分含有量は、 13. 5重量%であった。 そして、押出成形により、セルの端部が封止されていない以外は、図 4に示した形状 と同様の形状の成形体を作製した。
[0111] 次に、マイクロ波乾燥機等を用いて上記生成形体を乾燥させた後、上記湿潤混合物 と同様の組成の封止材ペーストを所定のセルに充填した。
次いで、再び乾燥機を用いて乾燥させた後、 400°Cで脱脂し、常圧のアルゴン雰囲 気下 2200°C、 3時間で焼成を行なうことにより、気孔率力 0%、平均気孔径が 12. 5 /z m、その大きさが 34. 3mm X 34. 3mm X 254mm、セノレの数(セノレ密度)が 46. 5個 Zcm2、セル壁の厚さが 0. 20mmの炭化ケィ素焼結体力 なるハ-カム焼成体 を製造した。
[0112] 平均繊維長 20 μ mのアルミナファイバ 30重量0 /0、平均粒径 0. 6 μ mの炭化ケィ素 粒子 21重量%、シリカゾル 15重量%、カルボキシメチルセルロース 5. 6重量%、及 び、水 28. 4重量%を含む耐熱性のシール材ペーストを用いてハ-カム焼成体を多 数接着させ、さらに、 120°Cで乾燥させ、続いて、ダイヤモンドカッターを用いて切断 することにより、シール材層(接着剤層)の厚さ lmmの円柱状のセラミックブロックを 作製した。
[0113] 次に、無機繊維としてシリカ一アルミナファイノ (平均繊維長 100 m、平均繊維径 1 0 m) 23. 3重量%、無機粒子として平均粒径 0. 3 mの炭化ケィ素粉末 30. 2重 量0 /0、無機ノ インダとしてシリカゾル (ゾル中の SiOの含有率: 30重量0 /0) 7重量0 /0
2
有機バインダとしてカルボキシメチルセルロース 0. 5重量%及び水 39重量%を混合 、混練してシール材ペーストを調製した。
[0114] 次に、上記シール材ペーストを用いて、ハ-カムブロックの外周部に厚さ 0. 2mmの シール材ペースト層を形成した。そして、このシール材ペースト層を 120°Cで乾燥し て、外周にシール材層(コート層)が形成された直径 143. 8mm X長さ 254mmの円 柱状のハ-カム構造体を作製した。
[0115] (ハニカム構造体の長手方向の形状の計測)
上記手順で作製したハ-カム構造体にっ ヽて、本発明の検査方法を採用する形状 検査工程を行ない、その長手方向の形状を計測した。具体的には、図 2に示す接触 式計測機 30を用い、ハ-カム構造体の端面において、一のハ-カム焼成体の端面 が占める領域ごとに一の測定子が割り当てられるようにして、 5サンプルのハ-カム構 造体について、それぞれ長手方向の長さ、平行度及び位置度を計測した。従って、 1 サンプルのハ-カム構造体の長手方向の形状を検査するに際して、 1回の検査での 計測点数は、図 6に示すように 12点であり、計測点数と同数の計測結果が得られる。 なお、図 6は、ハニカム構造体の端面の長手方向の形状の計測の際に、一のハニカ ム焼成体の端面が占める領域ごとに一の測定子が割り当てられるようにしたときの計 測点番号を示す模式図である。
[0116] なお、各検査項目の値は、次のようにして求めた。
長手方向の長さは、探針が接触している端面と基準面との間の距離を計測すること により求めた。
平行度は、計測した長手方向の長さの値のうち、最大値と最小値との差を算出するこ とにより求めた。
位置度は、長手方向の長さの平均値を算出し、この平均値と各長手方向の長さとの 差の絶対値をそれぞれ算出し、これらの絶対値のうちの最大値に 2を乗じることにより 求めた。
それぞれの計測の結果を表 1に示す。
[0117] [表 1]
サンプル No.
検査項目
1 2 3 4 5
1 254.09 253.98 254.08 254.2 254.24
2 254.02 254 254.05 254.43 254.03
3 254.03 253.97 253.95 254.27 254.03
4 254.04 253.96 253.97 254.28 253.92
5 253.99 253.98 253.97 254.55 253.94 長手方向 6 253.99 254.01 254.05 254.52 253.96 の長さ
[mm] フ 253.99 254.01 253.96 254.18 254.09
8 254.02 253.97 254.01 254.1 6 254.06
9 253.97 253.97 254 254.39 254.08
10 253.98 253.98 254.1 254.52 253.99
1 1 254 253.97 254.02 254.26 254.1
12 253.97 254 254.02 254.45 254.13 長手方向の長さの
254.01
平均値 253.98 254.02 254.35 254.05 [mm]
長手方向の長さの
最大値 254.09 254.01 254, 10 254.55 254.24 [mm]
長手方向の長さの
253.97
最小値 253.96 253.95 254.16 253.92 [mm]
平行度 [mm] 0.1 2 0.05 0.1 5 0.39 0.32 位置度 [mm] 0.1 6 0.06 0.1 6 0.40 0.38
[0118] 表 1から明らかなように、各サンプルの長手方向の形状の検査項目について計測し たところ、サンプル No. 4及び No. 5の平行度の値と位置度の値とが、サンプル No. 1〜3と比較して大きかったものの、全てのサンプルが製品として使用可能であること が確認された。
[0119] このように、本発明のハ-カム構造体の検査方法により、 1回の計測により長手方向 の形状に関するデータを多数得ることができる。さらに、これらのデータを解析するこ とにより、長手方向の長さ、平行度及び位置度といった長手方向の形状を 1回の計測 のみで検査することができるので、形状検査工程に要する時間を短縮することができ 、 ハ-カム構造体の製造工程全体の効率ィ匕を図ることができる。
[0120] (比較例 1)
ハ-カム構造体を側面方向から撮影し、その画像を解析することにより、長手方向の 形状を検査した。
その結果、実施例 1で計測したようなばらつき等を検出することができないまま、全て のサンプルが製品として使用可能であることが確認されただけであった。
図面の簡単な説明
[0121] [図 1]図 1 (a)は、一の測定子を備えた接触式計測機を用いる場合の本発明の計測 原理の一工程を示す模式図であり、図 1 (b)は、一の測定子を備えた接触式計測機 を用いる場合の本発明の計測原理の他の一工程を示す模式図であり、図 1 (c)は、 複数の測定子を備えた接触式計測機を用いる場合の本発明の計測原理を示す模 式図である。
[図 2]図 2 (a)は、複数の測定子を備えた接触式計測機を用いる本発明の実施形態 の具体例の一工程を模式的に示す正面図であり、図 2 (b)は、複数の測定子を備え た接触式計測機を用いる本発明の実施形態の具体例の他の一工程を模式的に示 す正面図である。
[図 3]図 3は、ハ-カム構造体の一例を模式的に示す斜視図である。
[図 4]図 4 (a)は、ハ-カム構造体を構成するハ-カム焼成体を模式的に示す斜視図 であり、図 4 (b)は、その A— A線断面図である。
[図 5]図 5は、ハニカム構造体の他の一例を模式的に示す斜視図である。
[図 6]図 6は、ハニカム構造体の端面の長手方向の形状の計測の際に、一のハユカ ム焼成体の端面が占める領域ごとに一の測定子が割り当てられるようにしたときの計 測点番号を示す模式図である。
符号の説明
[0122] 1、 11 ハ-カム構造体
2 基準面
3、 31、 32 測定子
3a、 31a, 32a レール
3b、 31b、 32b 探針
4 測定子支持板
5 支持部材 、 20、 30 接触式計測機

Claims

請求の範囲
[1] 多数のセルがセル壁を隔てて長手方向に並設された柱状のハ-カム焼成体力 なる ハ-カム構造体の検査方法であって、
基準面と、前記基準面に垂直に設けられたレール、及び、前記レールに沿って移動 する探針力 なる測定子とを備えた接触式計測機を準備し、前記基準面に前記ハニ カム構造体の一方の端面を接触させ、前記測定子を前記基準面に近づける方向に 移動せしめて前記ハニカム構造体の他方の端面に前記探針を接触させることにより 、前記ハニカム構造体の長手方向の形状を計測することを特徴とするハニカム構造 体の検査方法。
[2] 検査の対象となるハ-カム構造体は、複数の前記ハ-カム焼成体が接着剤層を介し て結束されてなるものである請求項 1に記載のハニカム構造体の検査方法。
[3] 前記ハニカム構造体の長手方向の形状に関する検査項目は、長手方向の長さ、平 行度及び位置度のうちの少なくとも 1つである請求項 1又は 2に記載のハニカム構造 体の検査方法。
[4] 前記接触式計測機は、複数の測定子を備えている請求項 1〜3のいずれかに記載の ハニカム構造体の検査方法。
[5] セラミック原料を成形することにより、多数のセルがセル壁を隔てて長手方向に並設 された柱状のハニカム成形体を製造し、これを焼成してハニカム焼成体からなるハニ カム構造体とした後、形状を検査する形状検査工程を行うハニカム構造体の製造方 法であって、
前記形状検査工程では、基準面と、前記基準面に垂直に設けられたレール、及び、 前記レールに沿って移動する探針力 なる測定子とを備えた接触式計測機を準備し 、前記基準面に前記ハニカム構造体の一方の端面を接触させ、前記測定子を前記 基準面に近づける方向に移動せしめて前記ハニカム構造体の他方の端面に前記探 針を接触させることにより、前記ハニカム構造体の長手方向の形状を計測することを 特徴とするハニカム構造体の製造方法。
[6] 検査の対象となるハ-カム構造体は、複数の前記ハ-カム焼成体が接着剤層を介し て結束されてなるものである請求項 5に記載のハニカム構造体の製造方法。
[7] 前記ハニカム構造体の長手方向の形状に関する検査項目は、長手方向の長さ、平 行度及び位置度のうちの少なくとも 1つである請求項 5又は 6に記載のハニカム構造 体の製造方法。
[8] 前記接触式計測機は、複数の測定子を備えて!/、る請求項 5〜7の 、ずれかに記載の ハニカム構造体の製造方法。
PCT/JP2006/301461 2006-01-30 2006-01-30 ハニカム構造体の検査方法、及び、ハニカム構造体の製造方法 WO2007086143A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2006/301461 WO2007086143A1 (ja) 2006-01-30 2006-01-30 ハニカム構造体の検査方法、及び、ハニカム構造体の製造方法
DE602006019378T DE602006019378D1 (de) 2006-01-30 2006-11-06 Verfahren zur Überprüfung von wabenförmig strukturierten Körpern und Verfahren zur Herstellung eines wabenförmig strukturierten Körpers
EP06023076A EP1813909B1 (en) 2006-01-30 2006-11-06 Method for inspecting honeycomb structured body and method for manufacturing honeycomb structured body
PL06023076T PL1813909T3 (pl) 2006-01-30 2006-11-06 Sposób kontroli korpusu strukturalnego, o strukturze plastra miodu, sposób wytwarzania korpusu strukturalnego, o strukturze plastra miodu
AT06023076T ATE494526T1 (de) 2006-01-30 2006-11-06 Verfahren zur überprüfung von wabenförmig strukturierten körpern und verfahren zur herstellung eines wabenförmig strukturierten körpers
US11/651,562 US7922963B2 (en) 2006-01-30 2007-01-10 Method for inspecting honeycomb structured body and method for manufacturing honeycomb structured body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/301461 WO2007086143A1 (ja) 2006-01-30 2006-01-30 ハニカム構造体の検査方法、及び、ハニカム構造体の製造方法

Publications (1)

Publication Number Publication Date
WO2007086143A1 true WO2007086143A1 (ja) 2007-08-02

Family

ID=37726614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301461 WO2007086143A1 (ja) 2006-01-30 2006-01-30 ハニカム構造体の検査方法、及び、ハニカム構造体の製造方法

Country Status (6)

Country Link
US (1) US7922963B2 (ja)
EP (1) EP1813909B1 (ja)
AT (1) ATE494526T1 (ja)
DE (1) DE602006019378D1 (ja)
PL (1) PL1813909T3 (ja)
WO (1) WO2007086143A1 (ja)

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1688171B2 (en) 1999-09-29 2013-03-27 Ibiden Co., Ltd. Honeycomb filter and ceramic filter assembly
CN100427730C (zh) 2002-02-05 2008-10-22 揖斐电株式会社 废气净化用蜂巢式过滤器、接合剂、涂布材料以及废气净化用蜂巢式过滤器的制造方法
DE60317174T3 (de) 2002-03-22 2013-01-17 Ibiden Co., Ltd. Herstellungsverfahren eines wabenfilters zur reinigung von abgas
CN100371562C (zh) 2002-04-10 2008-02-27 揖斐电株式会社 废气净化用蜂窝状过滤器
US20050153099A1 (en) * 2002-04-11 2005-07-14 Ibiden Co. Ltd. Honeycomb filter for clarifying exhaust gases
EP1538309A4 (en) * 2003-05-06 2006-03-08 Ibiden Co Ltd HONEYCOMB STRUCTURE BODY
EP1686107A4 (en) * 2003-09-12 2008-12-03 Ibiden Co Ltd FRITTED CERAMIC TABLET AND CERAMIC FILTER
US7981475B2 (en) * 2003-11-05 2011-07-19 Ibiden Co., Ltd. Manufacturing method of honeycomb structural body, and sealing material
JPWO2005108328A1 (ja) * 2004-05-06 2008-03-21 イビデン株式会社 ハニカム構造体及びその製造方法
CN101249350B (zh) * 2004-05-18 2012-02-22 揖斐电株式会社 蜂窝结构体及废气净化装置
PL1647790T3 (pl) * 2004-07-01 2009-01-30 Ibiden Co Ltd Sposób wytwarzania porowatego elementu ceramicznego
WO2006013651A1 (ja) * 2004-08-04 2006-02-09 Ibiden Co., Ltd. 焼成炉及びこれを用いた多孔質セラミック部材の製造方法
CN1973171B (zh) * 2004-08-10 2010-05-05 揖斐电株式会社 烧制炉及利用该烧制炉制造陶瓷部件的方法
WO2006035822A1 (ja) * 2004-09-30 2006-04-06 Ibiden Co., Ltd. ハニカム構造体
DE602005015610D1 (de) * 2004-10-12 2009-09-03 Ibiden Co Ltd Keramische wabenstruktur
WO2006082938A1 (ja) * 2005-02-04 2006-08-10 Ibiden Co., Ltd. セラミックハニカム構造体およびその製造方法
JP2006223983A (ja) * 2005-02-17 2006-08-31 Ibiden Co Ltd ハニカム構造体
JP4870559B2 (ja) 2005-03-28 2012-02-08 イビデン株式会社 ハニカム構造体
JP4937116B2 (ja) * 2005-04-28 2012-05-23 イビデン株式会社 ハニカム構造体
EP1752390B1 (en) * 2005-06-06 2011-09-28 Ibiden Co., Ltd. Use of packaging material and method of transporting honeycomb structure
WO2007010643A1 (ja) * 2005-07-21 2007-01-25 Ibiden Co., Ltd. ハニカム構造体及び排ガス浄化装置
WO2007015550A1 (ja) * 2005-08-03 2007-02-08 Ibiden Co., Ltd. 炭化珪素質焼成用治具及び多孔質炭化珪素体の製造方法
JPWO2007039991A1 (ja) * 2005-10-05 2009-04-16 イビデン株式会社 押出成形用金型及び多孔質セラミック部材の製造方法
JPWO2007058006A1 (ja) * 2005-11-18 2009-04-30 イビデン株式会社 ハニカム構造体
KR100882401B1 (ko) 2005-11-18 2009-02-05 이비덴 가부시키가이샤 벌집형 구조체
US20070187651A1 (en) * 2005-12-26 2007-08-16 Kazuya Naruse Method for mixing powder, agitation apparatus, and method for manufacturing honeycomb structured body
WO2007074508A1 (ja) * 2005-12-26 2007-07-05 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2007074528A1 (ja) * 2005-12-27 2007-07-05 Ibiden Co., Ltd. 脱脂用治具、セラミック成形体の脱脂方法、及び、ハニカム構造体の製造方法
WO2007074523A1 (ja) * 2005-12-27 2007-07-05 Ibiden Co., Ltd. 搬送装置及びハニカム構造体の製造方法
WO2007094075A1 (ja) * 2006-02-17 2007-08-23 Ibiden Co., Ltd. 乾燥用治具組立装置、乾燥用治具分解装置、乾燥用治具循環装置、セラミック成形体の乾燥方法、及び、ハニカム構造体の製造方法
WO2007096986A1 (ja) 2006-02-24 2007-08-30 Ibiden Co., Ltd. 端面加熱装置、ハニカム集合体の端面乾燥方法、及び、ハニカム構造体の製造方法
WO2007097000A1 (ja) * 2006-02-24 2007-08-30 Ibiden Co., Ltd. ハニカム成形体用封口装置、封止材ペーストの充填方法、及び、ハニカム構造体の製造方法
WO2007097004A1 (ja) * 2006-02-24 2007-08-30 Ibiden Co., Ltd. 湿式混合機、湿式混合方法及びハニカム構造体の製造方法
DE602006002244D1 (de) * 2006-02-28 2008-09-25 Ibiden Co Ltd Trageelement für Trocknung, Trocknungsverfahren eines Presslings mit Wabenstruktur, und Verfahren zur Herstellung eines Wabenkörpers.
EP1825979B1 (en) * 2006-02-28 2012-03-28 Ibiden Co., Ltd. Manufacturing method of honeycomb structured body
WO2007102217A1 (ja) * 2006-03-08 2007-09-13 Ibiden Co., Ltd. 焼成体用冷却機、焼成炉、セラミック焼成体の冷却方法、及び、ハニカム構造体の製造方法
WO2007102216A1 (ja) * 2006-03-08 2007-09-13 Ibiden Co., Ltd. 脱脂炉投入装置、及び、ハニカム構造体の製造方法
WO2007108076A1 (ja) * 2006-03-17 2007-09-27 Ibiden Co., Ltd. 乾燥装置、セラミック成形体の乾燥方法及びハニカム構造体の製造方法
WO2007116529A1 (ja) * 2006-04-11 2007-10-18 Ibiden Co., Ltd. 成形体切断装置、セラミック成形体の切断方法、及び、ハニカム構造体の製造方法
WO2007122680A1 (ja) * 2006-04-13 2007-11-01 Ibiden Co., Ltd. 押出成形機、押出成形方法及びハニカム構造体の製造方法
WO2007122707A1 (ja) * 2006-04-19 2007-11-01 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2007122716A1 (ja) * 2006-04-20 2007-11-01 Ibiden Co., Ltd. 搬送装置、及び、ハニカム構造体の製造方法
WO2007129391A1 (ja) * 2006-05-01 2007-11-15 Ibiden Co., Ltd. 焼成用治具組立装置、焼成用治具分解装置、循環装置、セラミック成形体の焼成方法、及び、ハニカム構造体の製造方法
WO2007138701A1 (ja) * 2006-05-31 2007-12-06 Ibiden Co., Ltd. 把持装置、及び、ハニカム構造体の製造方法
EP1880818A1 (en) * 2006-06-05 2008-01-23 Ibiden Co., Ltd. Method for cutting honeycomb structure
ATE425852T1 (de) * 2006-07-07 2009-04-15 Ibiden Co Ltd Apparat und verfahren zur bearbeitung der endflache eines wabenkírpers und verfahren zur herstellung eines wabenkírpers
WO2008032391A1 (fr) * 2006-09-14 2008-03-20 Ibiden Co., Ltd. Procédé de production d'une structure en nid d'abeille et composition de matière première pour nid d'abeille calciné
WO2008032390A1 (fr) * 2006-09-14 2008-03-20 Ibiden Co., Ltd. Procédé de production d'une structure en nid d'abeille
DE602006014830D1 (de) * 2006-09-14 2010-07-22 Ibiden Co Ltd Verfahren zur Herstellung eines Wabenkörpers und Zusammensetzung für Sinterwabenkörper
WO2008047404A1 (fr) * 2006-10-16 2008-04-24 Ibiden Co., Ltd. Support de montage pour structure alvéolaire et dispositif d'inspection pour structure alvéolaire
WO2008090625A1 (ja) * 2007-01-26 2008-07-31 Ibiden Co., Ltd. 外周層形成装置及びハニカム構造体の製造方法
WO2008114335A1 (ja) * 2007-02-21 2008-09-25 Ibiden Co., Ltd. 加熱炉及びハニカム構造体の製造方法
WO2008126320A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2008126319A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. 多孔質炭化ケイ素焼結体の製造方法
WO2008139581A1 (ja) * 2007-05-09 2008-11-20 Ibiden Co., Ltd. 炭化ケイ素焼成用原料の製造方法、及び、ハニカム構造体の製造方法
WO2008149435A1 (ja) * 2007-06-06 2008-12-11 Ibiden Co., Ltd. 焼成用治具及びハニカム構造体の製造方法
WO2008155856A1 (ja) * 2007-06-21 2008-12-24 Ibiden Co., Ltd. ハニカム構造体、及び、ハニカム構造体の製造方法
JP5180835B2 (ja) * 2007-10-31 2013-04-10 イビデン株式会社 ハニカム構造体用梱包体、及び、ハニカム構造体の輸送方法
WO2009066388A1 (ja) * 2007-11-21 2009-05-28 Ibiden Co., Ltd. ハニカム構造体及びハニカム構造体の製造方法
WO2009101682A1 (ja) * 2008-02-13 2009-08-20 Ibiden Co., Ltd. ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法
WO2009101683A1 (ja) 2008-02-13 2009-08-20 Ibiden Co., Ltd. ハニカム構造体の製造方法
JPWO2009107230A1 (ja) * 2008-02-29 2011-06-30 イビデン株式会社 ハニカム構造体用シール材、ハニカム構造体、及び、ハニカム構造体の製造方法
WO2009118813A1 (ja) * 2008-03-24 2009-10-01 イビデン株式会社 ハニカム構造体及びハニカム構造体の製造方法
WO2009118814A1 (ja) * 2008-03-24 2009-10-01 イビデン株式会社 ハニカムフィルタ
WO2009118862A1 (ja) * 2008-03-27 2009-10-01 イビデン株式会社 ハニカム構造体の製造方法
JP2012103081A (ja) * 2010-11-09 2012-05-31 Mitsubishi Heavy Ind Ltd 穴検査装置
CN110487144B (zh) * 2019-07-20 2021-01-05 南平市建阳区汽车锻压件厂 车桥主销孔内套检测机构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128308U (ja) * 1986-02-07 1987-08-14
JPS63145103U (ja) * 1987-03-13 1988-09-26
JPH022901A (ja) * 1988-06-14 1990-01-08 Nippon Denshi Eng Kk 配線基板端子ピンの長さ検査機構
JPH02128902U (ja) * 1989-03-29 1990-10-24

Family Cites Families (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076574B2 (ja) 1985-11-29 1995-01-30 株式会社ユーシン チェンジレバーユニット
JPS63145103A (ja) 1986-12-08 1988-06-17 Toyo Tire & Rubber Co Ltd ラジアルタイヤ
JPH02128902A (ja) 1988-11-09 1990-05-17 Nippon Obitaiya Kk 車輌用スリップ脱出装置
JPH07113523B2 (ja) * 1990-06-19 1995-12-06 日本碍子株式会社 ハニカムの表面粗度測定法及びそれに用いる表面粗度測定用測定子
EP1382444B1 (en) 1996-01-12 2013-04-24 Ibiden Co., Ltd. A filter for purifying exhaust gas
EP1688171B2 (en) 1999-09-29 2013-03-27 Ibiden Co., Ltd. Honeycomb filter and ceramic filter assembly
JP4257720B2 (ja) * 2001-03-14 2009-04-22 日本碍子株式会社 ハニカム構造体の外形状測定方法及び装置
JPWO2002096827A1 (ja) 2001-05-31 2004-09-09 イビデン株式会社 多孔質セラミック焼結体及びその製造方法、ディーゼルパティキュレートフィルタ
WO2003067042A1 (fr) 2002-02-05 2003-08-14 Ibiden Co., Ltd. Filtre a nids d'abeille pour la decontamination des gaz d'echappement
CN100427730C (zh) 2002-02-05 2008-10-22 揖斐电株式会社 废气净化用蜂巢式过滤器、接合剂、涂布材料以及废气净化用蜂巢式过滤器的制造方法
DE60318937T3 (de) 2002-03-04 2013-10-10 Ibiden Co., Ltd. Verwendung eines wabenfilters zur abgasreinigung
DE60317942T2 (de) 2002-03-15 2008-11-27 Ibiden Co., Ltd., Ogaki Keramikfilter zur Abgasreinigung
DE60317174T3 (de) 2002-03-22 2013-01-17 Ibiden Co., Ltd. Herstellungsverfahren eines wabenfilters zur reinigung von abgas
EP1495790A4 (en) 2002-04-09 2005-01-26 Ibiden Co Ltd HONEYCOMB FILTER FOR CLARIFYING EXHAUST GAS
CN100371562C (zh) 2002-04-10 2008-02-27 揖斐电株式会社 废气净化用蜂窝状过滤器
US20050153099A1 (en) 2002-04-11 2005-07-14 Ibiden Co. Ltd. Honeycomb filter for clarifying exhaust gases
ATE481151T1 (de) 2003-02-28 2010-10-15 Ibiden Co Ltd Keramische wabenstruktur
EP1538309A4 (en) 2003-05-06 2006-03-08 Ibiden Co Ltd HONEYCOMB STRUCTURE BODY
EP1686107A4 (en) 2003-09-12 2008-12-03 Ibiden Co Ltd FRITTED CERAMIC TABLET AND CERAMIC FILTER
US7981475B2 (en) 2003-11-05 2011-07-19 Ibiden Co., Ltd. Manufacturing method of honeycomb structural body, and sealing material
KR100779815B1 (ko) 2003-11-12 2007-11-28 이비덴 가부시키가이샤 세라믹 구조체
JP4515386B2 (ja) * 2003-11-28 2010-07-28 日本碍子株式会社 形状測定装置
US7387829B2 (en) 2004-01-13 2008-06-17 Ibiden Co., Ltd. Honeycomb structure, porous body, pore forming material for the porous body, and methods for manufacturing the pore forming material, the porous body and the honeycomb structure
KR100637298B1 (ko) 2004-04-05 2006-10-24 이비덴 가부시키가이샤 벌집형 구조체, 벌집형 구조체의 제조 방법 및 배기 가스정화 장치
JPWO2005108328A1 (ja) 2004-05-06 2008-03-21 イビデン株式会社 ハニカム構造体及びその製造方法
CN101249350B (zh) 2004-05-18 2012-02-22 揖斐电株式会社 蜂窝结构体及废气净化装置
WO2006013651A1 (ja) 2004-08-04 2006-02-09 Ibiden Co., Ltd. 焼成炉及びこれを用いた多孔質セラミック部材の製造方法
KR100842595B1 (ko) 2004-08-04 2008-07-01 이비덴 가부시키가이샤 연속 소성로 및 이것을 이용한 다공질 세라믹 부재의 제조방법
EP1818639A4 (en) 2004-08-04 2007-08-29 Ibiden Co Ltd FURNACE AND METHOD FOR PRODUCING A BURNTED POROUS CERAMIC ARTICLE USING THE FUEL
JPWO2006013932A1 (ja) 2004-08-06 2008-05-01 イビデン株式会社 焼成炉及びその焼成炉を用いた多孔質セラミック焼成体の製造方法
JPWO2006022131A1 (ja) 2004-08-25 2008-05-08 イビデン株式会社 焼成炉及びその焼成炉を用いた多孔質セラミック焼成体の製造方法
JP2006073683A (ja) 2004-08-31 2006-03-16 Sony Corp 回路デバイス及び回路デバイスの製造方法
WO2006035822A1 (ja) 2004-09-30 2006-04-06 Ibiden Co., Ltd. ハニカム構造体
JPWO2006035823A1 (ja) 2004-09-30 2008-05-15 イビデン株式会社 ハニカム構造体
DE602005015610D1 (de) 2004-10-12 2009-09-03 Ibiden Co Ltd Keramische wabenstruktur
JP5142532B2 (ja) 2004-11-26 2013-02-13 イビデン株式会社 ハニカム構造体
KR100820619B1 (ko) 2004-12-28 2008-04-08 이비덴 가부시키가이샤 필터 및 필터 집합체
WO2006082938A1 (ja) 2005-02-04 2006-08-10 Ibiden Co., Ltd. セラミックハニカム構造体およびその製造方法
JP4880581B2 (ja) 2005-02-04 2012-02-22 イビデン株式会社 セラミックハニカム構造体
JP2006223983A (ja) 2005-02-17 2006-08-31 Ibiden Co Ltd ハニカム構造体
JP4812316B2 (ja) 2005-03-16 2011-11-09 イビデン株式会社 ハニカム構造体
JP4870559B2 (ja) 2005-03-28 2012-02-08 イビデン株式会社 ハニカム構造体
KR100810476B1 (ko) 2005-03-28 2008-03-07 이비덴 가부시키가이샤 허니컴 구조체
JPWO2006112052A1 (ja) 2005-03-30 2008-11-27 イビデン株式会社 炭化珪素含有粒子、炭化珪素質焼結体を製造する方法、炭化珪素質焼結体、及びフィルター
JP4805823B2 (ja) 2005-04-07 2011-11-02 イビデン株式会社 ハニカム構造体
JP2006289237A (ja) 2005-04-08 2006-10-26 Ibiden Co Ltd ハニカム構造体
JP4937116B2 (ja) 2005-04-28 2012-05-23 イビデン株式会社 ハニカム構造体
EP1752390B1 (en) 2005-06-06 2011-09-28 Ibiden Co., Ltd. Use of packaging material and method of transporting honeycomb structure
WO2007010643A1 (ja) 2005-07-21 2007-01-25 Ibiden Co., Ltd. ハニカム構造体及び排ガス浄化装置
WO2007015550A1 (ja) 2005-08-03 2007-02-08 Ibiden Co., Ltd. 炭化珪素質焼成用治具及び多孔質炭化珪素体の製造方法
KR100884518B1 (ko) 2005-08-26 2009-02-18 이비덴 가부시키가이샤 허니컴 구조체 및 그 제조 방법
KR100944133B1 (ko) 2005-09-28 2010-02-24 이비덴 가부시키가이샤 허니컴 필터
JPWO2007043245A1 (ja) 2005-10-12 2009-04-16 イビデン株式会社 ハニカムユニット及びハニカム構造体
JPWO2007058006A1 (ja) 2005-11-18 2009-04-30 イビデン株式会社 ハニカム構造体
KR100882401B1 (ko) 2005-11-18 2009-02-05 이비덴 가부시키가이샤 벌집형 구조체
CN101309883B (zh) 2006-01-27 2012-12-26 揖斐电株式会社 蜂窝结构体及其制造方法
WO2007094075A1 (ja) 2006-02-17 2007-08-23 Ibiden Co., Ltd. 乾燥用治具組立装置、乾燥用治具分解装置、乾燥用治具循環装置、セラミック成形体の乾燥方法、及び、ハニカム構造体の製造方法
WO2007097056A1 (ja) 2006-02-23 2007-08-30 Ibiden Co., Ltd. ハニカム構造体および排ガス浄化装置
WO2007097004A1 (ja) 2006-02-24 2007-08-30 Ibiden Co., Ltd. 湿式混合機、湿式混合方法及びハニカム構造体の製造方法
EP1825979B1 (en) 2006-02-28 2012-03-28 Ibiden Co., Ltd. Manufacturing method of honeycomb structured body
WO2007102217A1 (ja) 2006-03-08 2007-09-13 Ibiden Co., Ltd. 焼成体用冷却機、焼成炉、セラミック焼成体の冷却方法、及び、ハニカム構造体の製造方法
WO2007102216A1 (ja) 2006-03-08 2007-09-13 Ibiden Co., Ltd. 脱脂炉投入装置、及び、ハニカム構造体の製造方法
WO2007108076A1 (ja) 2006-03-17 2007-09-27 Ibiden Co., Ltd. 乾燥装置、セラミック成形体の乾燥方法及びハニカム構造体の製造方法
JP4863904B2 (ja) 2006-03-31 2012-01-25 イビデン株式会社 ハニカム構造体およびその製造方法
WO2007116529A1 (ja) 2006-04-11 2007-10-18 Ibiden Co., Ltd. 成形体切断装置、セラミック成形体の切断方法、及び、ハニカム構造体の製造方法
WO2007122680A1 (ja) 2006-04-13 2007-11-01 Ibiden Co., Ltd. 押出成形機、押出成形方法及びハニカム構造体の製造方法
WO2007122707A1 (ja) 2006-04-19 2007-11-01 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2007122715A1 (ja) 2006-04-20 2007-11-01 Ibiden Co., Ltd. ハニカム焼成体の検査方法、及び、ハニカム構造体の製造方法
WO2007129391A1 (ja) 2006-05-01 2007-11-15 Ibiden Co., Ltd. 焼成用治具組立装置、焼成用治具分解装置、循環装置、セラミック成形体の焼成方法、及び、ハニカム構造体の製造方法
WO2007129390A1 (ja) 2006-05-01 2007-11-15 Ibiden Co., Ltd. 脱脂用治具組立装置、脱脂用治具分解装置、脱脂用治具循環装置、セラミック成形体の脱脂方法、及び、ハニカム構造体の製造方法
WO2007129399A1 (ja) 2006-05-08 2007-11-15 Ibiden Co., Ltd. ハニカム構造体の製造方法、ハニカム成形体受取機及びハニカム成形体取出機
WO2007132530A1 (ja) 2006-05-17 2007-11-22 Ibiden Co., Ltd. ハニカム成形体用端面処理装置、ハニカム成形体の封止方法、及び、ハニカム構造体の製造方法
WO2007138701A1 (ja) 2006-05-31 2007-12-06 Ibiden Co., Ltd. 把持装置、及び、ハニカム構造体の製造方法
WO2008032391A1 (fr) 2006-09-14 2008-03-20 Ibiden Co., Ltd. Procédé de production d'une structure en nid d'abeille et composition de matière première pour nid d'abeille calciné
DE602006014830D1 (de) 2006-09-14 2010-07-22 Ibiden Co Ltd Verfahren zur Herstellung eines Wabenkörpers und Zusammensetzung für Sinterwabenkörper
WO2008090625A1 (ja) 2007-01-26 2008-07-31 Ibiden Co., Ltd. 外周層形成装置及びハニカム構造体の製造方法
WO2008099454A1 (ja) 2007-02-09 2008-08-21 Ibiden Co., Ltd. ハニカム構造体および排気ガス処理装置
WO2008099450A1 (ja) 2007-02-09 2008-08-21 Ibiden Co., Ltd. ハニカム構造体および排気ガス処理装置
EP1982966B1 (en) 2007-03-29 2011-11-09 Ibiden Co., Ltd. Honeycomb structure and method of producing honeycomb structure
WO2008120385A1 (ja) 2007-03-29 2008-10-09 Ibiden Co., Ltd. ハニカム構造体、ハニカム構造体の製造方法、排ガス浄化装置及び排ガス浄化装置の製造方法
JPWO2008120386A1 (ja) 2007-03-29 2010-07-15 イビデン株式会社 ハニカム構造体
WO2008126320A1 (ja) 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2008129691A1 (ja) 2007-03-30 2008-10-30 Ibiden Co., Ltd. ハニカムフィルタ
WO2008139581A1 (ja) 2007-05-09 2008-11-20 Ibiden Co., Ltd. 炭化ケイ素焼成用原料の製造方法、及び、ハニカム構造体の製造方法
WO2008149435A1 (ja) 2007-06-06 2008-12-11 Ibiden Co., Ltd. 焼成用治具及びハニカム構造体の製造方法
WO2008155856A1 (ja) 2007-06-21 2008-12-24 Ibiden Co., Ltd. ハニカム構造体、及び、ハニカム構造体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128308U (ja) * 1986-02-07 1987-08-14
JPS63145103U (ja) * 1987-03-13 1988-09-26
JPH022901A (ja) * 1988-06-14 1990-01-08 Nippon Denshi Eng Kk 配線基板端子ピンの長さ検査機構
JPH02128902U (ja) * 1989-03-29 1990-10-24

Also Published As

Publication number Publication date
ATE494526T1 (de) 2011-01-15
PL1813909T3 (pl) 2011-05-31
US20070175060A1 (en) 2007-08-02
DE602006019378D1 (de) 2011-02-17
EP1813909A1 (en) 2007-08-01
US7922963B2 (en) 2011-04-12
EP1813909B1 (en) 2011-01-05

Similar Documents

Publication Publication Date Title
WO2007086143A1 (ja) ハニカム構造体の検査方法、及び、ハニカム構造体の製造方法
US7520178B2 (en) Method for inspecting honeycomb fired body and method for manufacturing honeycomb structured body
US20080236724A1 (en) Method for manufacturing honeycomb structure
US8110139B2 (en) Method for manufacturing honeycomb structure
EP1918675B1 (en) Honeycomb structured body mounting base and honeycomb structured body inspection apparatus
US7695671B2 (en) Method for manufacturing a honeycomb structured body
US7811351B2 (en) Honeycomb structural body and exhaust gas treating apparatus
US7603793B2 (en) End-face heating apparatus, end-face drying method for honeycomb aggregated body, and method for manufacturing honeycomb structured body
US20080136062A1 (en) Drying apparatus, method for drying ceramic molded body, and method for manufacturing honeycomb structure
US20070212517A1 (en) Honeycomb structured body
EP1997791A2 (en) Honeycomb structured body and method of manufacturing the honeycomb structured body
EP1975138A1 (en) Method for manufacturing porous silicon carbide sintered body
JP2004001365A (ja) ハニカム構造体の製造方法及びハニカム構造体
US20090239740A1 (en) Honeycomb structure
JP5183070B2 (ja) ハニカム構造体の検査方法、及び、ハニカム構造体の製造方法
JP7235890B2 (ja) センサ素子
US8889242B2 (en) Honeycomb structure and method for manufacturing honeycomb structure
JP6964616B2 (ja) セラミックス焼成体の特性推定方法
JP5057802B2 (ja) ハニカム焼成体の検査方法、及び、ハニカム構造体の製造方法
KR100798718B1 (ko) 형상 측정 장치
JP2008132745A (ja) ハニカム成形体用封口装置、ハニカム焼成体用封口装置、封止材ペーストの充填方法、及び、ハニカム構造体の製造方法
JP5032923B2 (ja) ハニカム構造体用載置台、及び、ハニカム構造体の検査装置
JP2008132751A (ja) ハニカム構造体の製造方法
JP2006329790A (ja) 排ガス浄化用触媒の製造方法
JP2008273810A (ja) ハニカム構造体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06712604

Country of ref document: EP

Kind code of ref document: A1