WO2007046370A1 - 非線形歪検出方法及び歪補償増幅装置 - Google Patents

非線形歪検出方法及び歪補償増幅装置 Download PDF

Info

Publication number
WO2007046370A1
WO2007046370A1 PCT/JP2006/320642 JP2006320642W WO2007046370A1 WO 2007046370 A1 WO2007046370 A1 WO 2007046370A1 JP 2006320642 W JP2006320642 W JP 2006320642W WO 2007046370 A1 WO2007046370 A1 WO 2007046370A1
Authority
WO
WIPO (PCT)
Prior art keywords
distortion
signal
predistorter
value
output
Prior art date
Application number
PCT/JP2006/320642
Other languages
English (en)
French (fr)
Inventor
Manabu Nakamura
Yasuhiro Takeda
Yoichi Okubo
Masaru Adachi
Naoki Hongo
Original Assignee
Hitachi Kokusai Electric Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc. filed Critical Hitachi Kokusai Electric Inc.
Priority to CN2006800283907A priority Critical patent/CN101233684B/zh
Priority to JP2007540981A priority patent/JP4755651B2/ja
Publication of WO2007046370A1 publication Critical patent/WO2007046370A1/ja
Priority to US12/078,507 priority patent/US8014443B2/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/207A hybrid coupler being used as power measuring circuit at the output of an amplifier circuit

Definitions

  • Nonlinear distortion detection method and distortion compensation amplification apparatus Nonlinear distortion detection method and distortion compensation amplification apparatus
  • the present invention relates to a nonlinear distortion detection method for detecting nonlinear distortion in a power amplifier of a radio communication transmitter and a distortion compensation amplifying apparatus for compensating the nonlinear distortion detection method.
  • the present invention relates to a nonlinear distortion detection method and a distortion compensation amplifying apparatus that can detect distortion without increasing the circuit scale and power consumption.
  • Power amplifiers in transmission devices are required to be environmentally friendly, reduce power consumption, and be smaller and lighter. In order to satisfy these requirements, heat dissipation is reduced and high efficiency is achieved. It is necessary to plan. In general, in order to increase the efficiency of a power amplifier, it is designed so that the peak power of the modulation signal becomes the saturation power of the power amplifier. However, due to the nonlinearity of the power amplifier, intermodulation distortion of the transmission signal occurs, Interfering with other radios
  • FIG. 7 is an explanatory diagram showing the output spectrum of a power amplifier with nonlinear characteristics (W—CDMA, 2 carriers (detuned frequency: 5 MHz)).
  • Predistortion is a method of reducing intermodulation distortion by providing the reverse characteristic of the power amplifier in the previous stage, and this reverse characteristic is adaptively controlled according to temperature changes and individual differences.
  • FIG. 8 shows a conventional distortion detection method used for adaptive control of predistortion. Will be described.
  • FIG. 8 is a block diagram of a power amplifying apparatus using a conventional distortion detection method.
  • the conventional power amplifier includes a predistorter 1, a DZA converter 2, an orthogonal modulator 3, an oscillator 4, a power amplifier 5, a directional coupler 6, and a mixer 7. And an oscillator 8, an AZD converter 9, a distortion detection unit 12, and a control unit 13.
  • the distortion detection unit 12 further includes an FFT calculation unit (FFT in the figure) 10 and an IM calculation unit 11.
  • the predistorter 1 performs distortion compensation for adding an inverse characteristic of nonlinear distortion to an input signal in accordance with an instruction from the control unit 13.
  • DZA Transform 2 converts a distortion-compensated digital input signal into an analog signal.
  • the oscillator 4 oscillates the RF frequency.
  • the quadrature modulator 3 performs quadrature modulation on the input analog signal and up-converts it at the frequency of the oscillator 4.
  • the power amplifier 5 amplifies the input RF signal with a predetermined amplification factor and outputs it.
  • the directional coupler 6 branches and feeds back an output signal from the power amplifier 5.
  • the mixer 7 synthesizes the signal from the oscillator 8 and the signal branched from the directional coupler 6 and downconverts it to the IF frequency.
  • the down-converted signal is sampled by AZD conversion using clock 2 (CLK2).
  • the distortion detection unit 12 detects distortion included in the input sampling signal and outputs the distortion value to the control unit 13 as a distortion value.
  • the FFT calculation unit 10 of the distortion detection unit 12 obtains a spectrum of the input signal by FFT (Fast Fourier Transform).
  • the IM calculation unit 11 calculates the number of carriers of the modulation signal and the frequency of the detuning frequency force intermodulation distortion, and outputs the power value at the frequency to the control unit 13 as a distortion value based on the spectrum. .
  • the control unit 13 adaptively controls the predistorter so that the input distortion value becomes small.
  • the input signal of IF frequency input in digital IZQ format is added with the inverse characteristic of nonlinear distortion of the power amplifier by the predistorter 1, converted to an analog signal by the DZA converter 2, and orthogonal by the quadrature modulator 3. It is modulated and up-converted to an RF frequency, amplified by a power amplifier 5 with a predetermined amplification factor, and output.
  • a part of the output of the power amplifier 5 is taken out by the directional coupler 6, down-converted to an IF frequency by the mixer 7, converted into a digital signal by the AZD conversion 9, and the distortion detector 12
  • the spectrum is detected by the FFT calculation unit 10 and the power value in the intermodulation distortion (IM3, IM5) calculated by the IM calculation unit 11 is calculated and output to the control unit 13 as a distortion value.
  • the control unit 13 adaptively controls the predistorter so as to reduce the distortion value.
  • Equation (1) Since it is odd-order distortion that the nonlinear characteristic of the power amplifier appears as intermodulation distortion, the processing in the predistorter that adds the nonlinear inverse characteristic of the power amplifier can be approximated by Equation (1).
  • x and y are input signals and output signals of the predistorter, and are complex numbers.
  • the control unit 13 controls the values of ⁇ , ⁇ , and ⁇ using the perturbation method so that the strain value obtained by the strain detection unit 12 becomes small.
  • FIG. 9 is a block diagram showing a schematic configuration of the predistorter 1.
  • the predistorter 1 includes a plurality of multipliers and adders, and an input signal (
  • control unit 13 cyclically controls these coefficients by the perturbation method in the order of ⁇ 3 ⁇ ⁇ 3 ⁇ ⁇ 5 ⁇ ⁇ 5 ⁇ ⁇ 7 ⁇ ⁇ 7 ⁇ ⁇ 3.
  • FIG. 10 is a flowchart showing the control using the perturbation method in the control unit 13.
  • the control unit 13 when the process is started, the control unit 13 first sets the update target coefficient ( ⁇ , here, ⁇ 3 here) as an initial setting, reads the set number of times, and reads the previous distortion value. (10 0).
  • control unit 13 counts how many times the same coefficient (in this case, ⁇ 3) has been updated.
  • the distortion value detected as the “current distortion value” in the process 101 is stored (105).
  • the distortion value stored here is used as the “previous distortion value” in the next processing 101.
  • control unit 13 compares the stored update count with the set count set in the initial setting of the process 100 (106), and if the update count is equal to or less than the set count, returns to process 1001. Repeat the coefficient update of ⁇ 3.
  • the control unit 13 changes the update target coefficient (107).
  • the update target coefficient is changed from ⁇ 3 to A3. Then, the control unit 13 clears the stored number of updates (108).
  • the control unit 13 controls the coefficient of the predistorter so that the distortion value becomes small by the control using such a perturbation method. In this way, the non-linear inverse characteristic of the power amplifier can be approximated by a predistorter using a power series, and distortion compensation becomes possible. Is.
  • This prior art is an adaptive predistorter type distortion compensation transmitter, and when switching the filter coefficient of the delay control filter that matches the phase of the transmission signal and the feedback signal, the filter coefficient is stored in advance from the memory in which the filter coefficient is stored.
  • This is a method of reading a newly set filter coefficient, branching it from the main signal system path through which the transmission signal is transmitted, and delivering it to the filter coefficient setting register via the looped test system path.
  • the coefficient can be switched at high speed (see Patent Document 1).
  • control unit performs curve interpolation on a plurality of points stored in the distortion compensation table means for storing the predistortion amount corresponding to the power value in a plurality of overlapping sections, and performs curve interpolation.
  • the points stored in the distortion compensation table means are updated by combining the obtained curves, and the distortion characteristics including the inflection points are compensated (see Patent Document 3).
  • US20050 16249A1 is known that controls a predistorter based on an equalization error of an equalizer (see Patent Document 4).
  • US20050163250A1, US20050099230A1, US20 050089125A1 is available as a technique related to distortion compensation (see Patent Documents 5, 6, and 7).
  • Patent Document 1 JP 2005-20515 A (Pages 4-8)
  • Patent Document 2 JP 2005-102029 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-73032
  • Patent Document 4 US2005016249A1
  • Patent Document 5 US20050163250A1
  • Patent Document 6 US20050099230A1
  • Patent Document 7 US20050089125A1
  • the signal of the power amplifying unit output is frequency-converted by FFT and the power of the intermodulation distortion is obtained by calculation to detect the distortion. It is necessary to perform sampling and signal processing in the frequency range that includes this band.
  • FIG. Figure 11 is an explanatory diagram showing another output spectrum of a power amplifier with nonlinear characteristics (W—CDMA, 2 carriers (detuned frequency: 15 MHz)).
  • the distortion detection unit detects IM3 and IM5. In order to detect the spectrum and calculate the power value, a wider band signal must be processed.
  • the AZD conversion for detecting distortion (AZD converter 9 in Fig. 4) needs to increase the sampling frequency, and the amount of calculation in the FFT calculation unit of the distortion compensation unit is large. This causes problems such as an increase in circuit scale, an increase in cost, and an increase in power consumption.
  • Patent Document 1 when an error is detected by comparing a transmission signal and a feedback signal in the time domain, it is difficult to accurately match the phase, amplitude, and delay time.
  • the present invention has been made in view of the above circumstances, and even when the modulation signal is wideband, it is not necessary to increase the sampling frequency, and distortion detection is performed without increasing the circuit scale and power consumption. It is an object of the present invention to provide a nonlinear distortion detection method and a distortion compensation amplifying apparatus that can perform the above-described process.
  • the present invention for solving the problems of the above conventional example includes an amplifier that amplifies the power of an input signal, and distortion compensation that compensates for nonlinear distortion generated in the amplifier with respect to the input modulation signal to be amplified. And a distortion detection unit that detects distortion components by detecting distortion components included in the amplifier output based on the feedback signal of the amplifier output, and a control that controls the distortion compensation unit based on the distortion evaluation by the distortion detection unit
  • a distortion compensation amplifying apparatus comprising: a distortion compensation amplifier, wherein the distortion detector equalizes the feedback signal of the amplifier output with the input signal to the distortion compensation means as a reference symbol. It is characterized by determining the equalization error between the signal and the reference symbol and evaluating the distortion.
  • the distortion detection unit obtains a time average value obtained by averaging the absolute value of the equalization error over a specific time, and V, based on the time average value It is characterized by evaluating distortion.
  • the distortion detection unit cyclically changes the amplitude of the input signal to the distortion compensation unit from a low level to a high level, so that the amplitude of the input signal is increased.
  • An equalization error is detected and averaged for each level, and distortion at each amplitude level is evaluated based on the result of the averaging.
  • the present invention also provides a power amplifier that amplifies the power of an input signal and an input to be transmitted. Based on the modulation signal, the predistorter that compensates for the nonlinear distortion generated in the power amplifier, the AZ D conversion that samples the feedback signal of the power amplifier output at a specific frequency, and the feedback signal that has been converted to AZD.
  • a distortion compensation amplifying apparatus including a distortion detection unit that detects a distortion component included in a power amplifier output and outputs the distortion component as a distortion value, and a control unit that controls a predistorter based on the distortion value.
  • the converter includes the modulation signal to be transmitted and does not include intermodulation distortion!
  • An AZD converter that samples the frequency band at a frequency that can be sampled, and the distortion detector inputs the signal to the predistorter.
  • an equalizer that outputs an equalization error between the equalized signal and the reference symbol by equalizing the feedback signal from the power amplifier output by the FIR filter. It is characterized by a strain detector having the absolute value averaging unit which outputs the distortion values of the time-averaged time-averaged value over a particular time the absolute value of the Equalization error.
  • the present invention also provides a power amplifier that amplifies an input signal, a predistorter that compensates for non-linear distortion generated in the power amplifier according to an input modulation signal to be transmitted, and a power amplifier.
  • a distortion detector that samples the output feedback signal at a specific frequency, a distortion detector that detects a distortion component included in the power amplifier output based on the feedback signal converted by the AZD, and outputs it as a distortion value;
  • a distortion compensation amplifying apparatus including a control unit that controls a predistorter based on the value, wherein the distortion detection unit averages the output from the equalizer for each amplitude level of the reference symbol, The average value is output as a distortion value corresponding to the amplitude level of the reference symbol, and the input signal to the predistorter is input as a reference symbol and the power amplifier output feedback Is equalized by an FIR filter to calculate an equalization error between the equalized signal and the reference symbol, and the result of the complex conjugate operation of the equalization error and the
  • the distortion detection unit is a distortion detection unit including an LMS unit that updates a tap coefficient of an FIR filter by an LMS algorithm. It is a feature.
  • the present invention is characterized in that, in the distortion compensation amplifying apparatus, the LMS unit is an LMS unit that updates a tap coefficient with reference to a reference symbol every plural sample times.
  • the present invention also provides a power amplifier that amplifies an input signal, a predistorter that compensates for non-linear distortion generated in the power amplifier based on an input modulation signal to be transmitted, and the power An AZD converter that samples the feedback signal of the amplifier output at a specific frequency, and a distortion detection that detects a distortion component included in the output of the power amplifier based on the feedback signal that has been AZD converted and outputs it as a distortion value And a control unit for controlling the predistorter based on the distortion value, wherein the distortion detection power is input as a reference symbol to the input signal to the predistorter.
  • An equalizer that equalizes a feedback signal of the power amplifier output by an FIR filter and outputs an equalization error between the equalized signal and the reference symbol as a distortion value;
  • a strain detection unit is characterized in that, Ru.
  • the predistorter includes a third-order intermodulation distortion generator, a fifth-order intermodulation distortion generator, a seventh-order intermodulation distortion generator, and the third-order intermodulation distortion generator.
  • a control unit that updates tap coefficients of the first, second, and third FIR filters of the predistorter based on a distortion value output from the distortion detection unit. It is characterized by being a part.
  • the present invention provides the first, second, and third step gains for determining the response speed for updating the tap coefficients of the first, second, and third FIR filters in the distortion compensation amplifying apparatus. Is set such that the first step gain> the second step gain> the third step gain.
  • the distortion detection unit equalizes the feedback signal of the amplifier output using the input signal to the distortion compensation means as a reference symbol, and an equalization error between the equalized signal and the reference symbol Therefore, since the distortion detection unit does not perform FFT, distortion detection can be performed without increasing the sampling frequency and the amount of calculation that do not require sampling over a wide band, and the modulation signal is Even if the bandwidth is increased, the increase in circuit scale and power consumption can be suppressed.
  • the distortion detector cyclically changes the amplitude of the input signal to the distortion compensation means from a low level to a high level, and an equalization error is generated for each level of the amplitude of the input signal. Since it is a nonlinear distortion detection method that detects and averages and evaluates the distortion at each amplitude level based on the result of the averaging, since the distortion is detected as a vector, it is faster than the perturbation method. It is possible to speed up convergence using a simple distortion compensation algorithm.
  • the feedback signal output from the power amplifier includes a modulation signal to be transmitted, does not include intermodulation distortion, and / or an AZD converter that samples a frequency band at a frequency that can be sampled.
  • the distortion detection unit inputs the input signal to the predistorter as a reference symbol, equalizes the feedback signal of the power amplifier output by an FIR filter, and outputs an equalization error between the equalized signal and the reference symbol Since it is a distortion compensation amplifying device that is a distortion detection unit including an equalizer and an absolute value averaging unit that outputs a time average value obtained by averaging the absolute value of the equalization error over a specific time as a distortion value. Narrowing the sampling band eliminates the need to increase the sampling frequency, enables distortion detection without increasing the amount of computation, and increases the circuit scale and consumption even if the modulation signal becomes wider. This has the effect of suppressing the increase in power.
  • the AZD converter is an AZD converter that samples a frequency band that includes a modulation signal to be transmitted and does not include intermodulation distortion at a frequency that can be sampled.
  • a plurality of averaging units that average the output of the equalizer power for each amplitude level of the reference symbol and output the average value as a distortion value corresponding to the amplitude level of the reference symbol; and a predistorter
  • the input signal to the reference signal is input as a reference symbol, and the feedback signal of the power amplifier output is equalized by an FIR filter to calculate the equalization error between the equalization signal and the reference symbol.
  • the result of the complex conjugate operation is divided by the square of the amplitude component of the reference symbol, and the reference symbol
  • An equalizer that determines the amplitude level of the reference symbol based on the square of the width component and outputs the division result to an averaging unit according to the determined amplitude level. Since the distortion compensation amplifying device which is a distortion detection unit is used, since distortion is detected as a vector, there is an effect that the convergence can be fastened using a distortion compensation algorithm faster than the perturbation method.
  • the distortion detection unit inputs the input signal to the predistorter as a reference symbol, and equalizes the feedback signal of the power amplifier output by the FIR filter, so that the equalized signal and the reference symbol
  • the distortion compensation amplifying device is a distortion detection unit equipped with an equalizer that outputs an equalization error as a distortion value.
  • FFT is not required in distortion detection, reducing the amount of processing, achieving high accuracy and distortion compensation. There are effects that can be performed.
  • a predistorter hawk third-order intermodulation distortion generator, a fifth-order intermodulation distortion generator, a seventh-order intermodulation distortion generator, and the third-order intermodulation distortion generator Including a first FIR filter corresponding to the second FIR filter corresponding to the fifth-order intermodulation distortion generator, and a third FIR filter corresponding to the seventh-order intermodulation distortion generator.
  • Distortion compensation amplification which is a distorter, and a control unit that updates tap coefficients of the first, second, and third FIR filters of the predistorter based on a distortion value output from a distortion detection unit
  • the predistorter has the effect of being able to perform distortion compensation with high accuracy.
  • the first, second, and third step gains for determining the response speed for updating the tap coefficients of the first, second, and third FIR filters are set to Since the distortion compensation amplifier is set so that step gain> second step gain> third step gain, the coefficients in the FIR filter must converge in the order of third-order distortion, fifth-order distortion, and seventh-order distortion. It is possible to improve the stability of convergence.
  • FIG. 1 is a configuration block diagram of a distortion compensation amplifying apparatus (first amplifying apparatus) using a distortion detection method according to a first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing a schematic configuration of the equalizer 15.
  • FIG. 3 is a configuration block diagram of an LMS unit 25.
  • FIG. 4 is an explanatory diagram showing a waveform of time comparison of the input signal of the predistorter 1 and the envelope of the power amplifier.
  • FIG. 5 is an explanatory diagram showing the configuration of the second amplifying device of the present invention.
  • FIG. 8 is a block diagram of a power amplifying apparatus using a conventional distortion detection method.
  • FIG. 9 is a block diagram showing a schematic configuration of predistorter 1.
  • FIG. 10 is a flowchart showing control using a perturbation method in the control unit 13.
  • FIG. 12 is a configuration block diagram of a fourth amplifying device of the present invention.
  • FIG. 13 is a configuration block diagram of a predistorter 100 of the fourth amplifying device.
  • FIG. 14 is a block diagram showing an overall configuration of an amplifying apparatus with a distortion control function according to an embodiment of the present invention.
  • FIG. 15 is a block diagram showing a detailed configuration of the Doherty amplifier in the same embodiment.
  • FIG. 16 is a flowchart showing the processing operation of the control unit in the embodiment.
  • FIG. 17 is a diagram showing third-order intermodulation distortion characteristics when the gate voltage Vg of the peak amplifier is A in the embodiment.
  • FIG. 18 is a diagram showing third-order intermodulation distortion characteristics when the gate voltage Vg of the peak amplifier is B in the same embodiment.
  • FIG. 19 is a diagram showing third-order intermodulation distortion characteristics when the gate voltage Vg of the peak amplifier in the same embodiment is C.
  • FIG. 21 is a block diagram showing a first configuration example of the Doherty amplifier in the same embodiment.
  • FIG. 22 is a block diagram showing a second configuration example of the Doherty amplifier in the embodiment.
  • a signal obtained by feeding back the output of the power amplification unit is
  • the equalizer of the distortion detector detects the equalization error of the orthogonal demodulated signal using the predistorter input signal as a reference symbol, and the absolute value averaging unit of the distortion detector
  • a value obtained by averaging the absolute values of equalization errors over time is output to the control unit as a distortion value for evaluating distortion, and the control unit controls the predistorter based on the distortion value. Since FFT is not performed at the output section, it is not necessary to perform signal processing over a wide band, and distortion can be detected without increasing the sampling frequency even if the signal is wide-banded, preventing an increase in circuit scale and power consumption. It is something that can be done.
  • the distortion detector includes an equalizer that detects an equalization error using the predistorter input signal as a reference symbol, and a time of an absolute value of the equalizer output. It includes an absolute value averaging unit that calculates the average, down-converts the signal branched from the output of the power amplification unit, performs orthogonal demodulation after AZD conversion, and the equalizer of the distortion detection unit converts the input signal of the predistorter An equalization error of the orthogonal demodulated signal is detected as a reference symbol, and the absolute value averaging unit outputs a value obtained by averaging the absolute value of the equalization error over time to the control unit as a distortion value.
  • the predistorter is controlled based on the distortion value, and the FFT is not performed in the distortion detection unit. Therefore, it is not necessary to perform signal processing over a wide band, and distortion detection can be performed without increasing the sampling frequency. Preventing increased power consumption It is those that can.
  • FIG. 1 is a configuration block diagram of a distortion compensation amplifying apparatus (first amplifying apparatus) using the distortion detecting method according to the first embodiment of the present invention.
  • the first amplifying device includes a predistorter 1, a DZA converter 2, a quadrature modulator 3, an oscillator 4 and the like as the conventional power amplifying device shown in FIG. And a power amplifier 5 and a directional coupler 6, and as a characteristic part of the first power amplifier, a mixer 7, an oscillator 8, an AZD converter 9, a quadrature demodulator 14, and a distortion detector 17, a control unit 18, and a decimator 19.
  • the distortion detection unit 17 includes an equalizer 15 and an absolute value averaging unit (absolute value averaging in the figure) 16.
  • the mixer 7 synthesizes the output signal of the power amplifier 5 branched by the directional coupler 6 and the signal from the oscillator 8 and downconverts the IF signal.
  • the IF frequency and its bandwidth may be the same as the IF frequency of the input signal to the predistorter 1. That is, the oscillator 8 may be the same as the oscillator 4 or may be shared.
  • An analog quadrature demodulator may be provided in place of the mixer 7, and the same local signal as that of the quadrature modulator 3 may be applied to perform direct demodulation, and sampled by two AZD converters and input to the distortion detector. ⁇
  • AZD conversion ⁇ 9 is for sampling the down-converted signal with clock 2 and performing AZD conversion.
  • clock 2 is the frequency of the original modulation signal. Any frequency that can normally sample only the band is acceptable.
  • clock 1 (sample rate of DZA converter 2) is 122.88 MHz, which is 32 times the chip rate, while clock 2 is It can be a whole number (eg, a third).
  • the quadrature demodulator 14 performs quadrature demodulation of the AZD-converted sampling signal.
  • the decimator 19 downsamples the input signal d (n) to the predistorter 1 to the sampling rate of the quadrature demodulated signal from the quadrature demodulator 14 and outputs d (n).
  • the distortion detection unit 17 is a characteristic part of the first amplifying device, and includes an equalizer 15 and an absolute value averaging unit 16, and detects distortion included in the orthogonally demodulated sampling signal. Thus, the distortion value is output to the control unit 18.
  • the equalizer 15 of the distortion detector 17 inputs the quadrature demodulated signal u (n) from the quadrature demodulator 14 and the input signal d (n) to the predistorter 1 as a reference signal, and an equalization error e ( n) is detected and output to the absolute value averaging unit 16.
  • the configuration of the equalizer 15 will be described with reference to FIG. FIG. 2 is an explanatory diagram showing a schematic configuration of the equalizer 15.
  • the equalizer 15 includes an FIR (Finite Impulse Response) filter, an adder 24 that outputs the difference between the output of the FIR filter and a reference signal as an equalization error, and an LMS unit 25 that implements an adaptive algorithm. Yes.
  • FIR Finite Impulse Response
  • the FIR filter includes a delay element 21 that delays an input signal by one sample time, a multiplier 22 that multiplies a set coefficient, an adder 23 that adds outputs from each multiplier, and an output of the adder 23 And an adder 24 that outputs the difference between the reference signal and the reference signal as an equalization error.
  • the LMS unit 25 obtains an optimum tap coefficient that minimizes the equalization error e (n) by the LMS algorithm shown in [Equation 1] for each sample time of the quadrature demodulated signal (corresponding to clock 2). First, the coefficient of each multiplier is updated.
  • n is the index of the sample
  • u (n) is the input signal
  • h (n) is the tap coefficient
  • d (n) is referenced symbols
  • E (n) represents the equalization error
  • is the step gain.
  • u (n) is a quadrature demodulated signal
  • d (n) is an input signal of the predistorter, and both are complex signals.
  • FIG. 3 is a configuration block diagram showing the configuration of the LMS unit 25 of the equalizer 15.
  • the LMS unit 25 includes a complex conjugate calculation unit 251, a multiplier 252 and an adder 2
  • the complex conjugate calculation unit 251 performs a complex conjugate calculation of the equalization error e (n), the multiplier 253 multiplies the complex conjugate calculation result and the input signal u (n), and the multiplication result is added by the adder 253. Calculate the new tap coefficient h (n) by adding it to the previous tap coefficient h (n).
  • the absolute value averaging unit 16 calculates the absolute value of the equalization error e (n) output from the equalizer 15, and adds the absolute values over a specific time (time-averaged value). ) Is output to the control unit 18 as a distortion value.
  • the distortion value E (n) output from the absolute value averaging unit 16 is expressed by [Equation 3].
  • E (n) is output as a distortion value from the distortion detection unit 17 and given to the control unit 18, and the distortion value is calculated by the perturbation method described above in the control unit 18.
  • the predistorter coefficient is set to be smaller.
  • equalizer 15 of the distortion detector 17 includes correction of timing shift caused by delay due to a high-frequency filter or microstrip line, and the local frequency of the quadrature modulator or mixer. Following the phase rotation due to the frequency offset due to the difference, the input signal of the predistorter 1 and the output signal of the power amplifier may be synchronized to compare the waveforms in the baseband.
  • FIG. 4 shows the time-compared waveforms of the predistorter 1 input signal and nonlinear distortion compensated for! FIG. In Fig. 4, the power amplifier output signal is corrected so that the gain is unity.
  • control unit 18 performs adaptive control by updating the coefficient of the predistorter in the same manner as in the prior art based on the distortion value thus obtained.
  • the sampling frequency CLK2 of the AZD converter 9 is set to a frequency at which only the frequency bandwidth of the modulation signal can be sampled, the intermodulation distortion outside the modulation signal band is , Aliasing will fall into the modulation signal band
  • the absolute value of the equalization error is averaged for a sufficiently long time for the intermodulation distortion component that has fallen into the band of the modulation signal. Detection is possible by sampling only the band.
  • the equalizer 15 Since the equalizer 15 according to the first embodiment of the present invention aims to evaluate the distortion value of the equalization error force, the reference signal becomes smaller as the nonlinear distortion generated in the power amplifier or the like becomes smaller. It is more desirable that the difference between the input signal d (n) of the predistorter as the signal and the quadrature demodulated signal u (n) to be equalized is smaller. Is zero. Therefore, it is better to match the frequency characteristics received by the reference signal and the quadrature demodulated signal as much as possible.
  • sampling rate of the quadrature demodulated signal can be made smaller than twice the modulation signal bandwidth (20 MHz in the example of the present embodiment).
  • the power amplifier 5 and the predistorter 1 are configured on different substrates and are adjusted later.
  • the frequency characteristics of the connection portion are not satisfactory. Determinism etc. This can be absorbed by the appliance 15 and has the effect of reducing the number of adjustment steps and reducing the manufacturing cost.
  • the principle is shown.
  • a normal CDMA signal is used as it is as a reference signal. Therefore, in practice, the amplitude is not constant.
  • the LMS unit 25 refers to the reference signal every multiple sample times (every multiple sample times).
  • the coefficient may be updated. The update may be performed by notch processing in real time.
  • sampling of a narrow band including only the modulation signal is performed without increasing the sampling frequency, and a time average of a sufficiently long time is obtained for the absolute value of the equalization error detected by the equalizer.
  • this was calculated and used as a distortion value for controlling the predistorter the second amplifier maintains a sufficiently wide sampling band in a range that includes IM5 and detects equalization errors only by the magnitude.
  • the error vector is detected as an error vector, and the predistorter is controlled based on the detected error vector.
  • FIG. 5 is an explanatory diagram showing the configuration of the second amplifying device.
  • the second amplifying device has the same configuration as that of the first amplifying device shown in FIG. 1, the configuration of the force strain detecting unit 17, the control unit 18, and the predistorter 1.
  • the operation is partly different from the first amplifier.
  • the sampling frequency in the AZD converter 9 is different from that in the first amplifying device.
  • Other components are the same as the first amplifier Therefore, the description is omitted.
  • the AZD converter 9 samples the branched and down-converted signal at CLK2, and outputs it to the quadrature demodulator.
  • the sampling frequency of the AZD variation 9 is a frequency that can be sampled up to about IM5, and is the same as the DZA converter 2 in the present embodiment.
  • the predistorter 1 is provided with a look-up table in which, for example, a phase shift amount and an attenuation amount corresponding to the power value of the input signal are stored. With reference to the look-up table, By multiplying the distortion compensation value corresponding to the power value of the input signal, a distortion for compensating for the nonlinear distortion of the power amplifier is given to the transmission signal in advance.
  • the control unit 18 generates e (n) based on the equalization error e (n) input from the equalizer 15 of the distortion detection unit 17 so that the equalization error is minimized by the LMS method. It directly updates a specific value in the predistorter 1 lookup table that was used.
  • the specific control method may be the same as in Patent Document 1.
  • the distortion detector 17 which is a characteristic part of the second amplifying device is composed of an equalizer 15 similar to the first amplifier, and is an absolute value average provided in the first power amplifier.
  • the conversion unit 16 is not provided.
  • the equalizer 15 inputs the signal u (n) obtained by down-converting and sampling the input signal branched from the power amplifier output and quadrature demodulating, and the input signal d (n) of the predistorter as a reference symbol.
  • the detected equalization error (n) is output to the control unit 18.
  • the configuration and operation of the equalizer 15 are the same as those of the first amplifying device.
  • the second amplifying apparatus does not use FFT for distortion detection itself, but detects an equalization error with an equalizer and outputs this as a distortion value to the control unit 18 as a vector. ing.
  • the second amplifying device can detect distortion components by sampling a sufficiently wide frequency band without taking the time average of equalization errors.
  • a signal obtained by branching the output of the power amplifier 5 by the directional coupler 6 is down-converted by the mixer 7.
  • the AZD converter 9 samples the frequency band including the fifth-order distortion (IM5)
  • the quadrature demodulator 14 performs quadrature demodulation
  • the equalizer 15 of the distortion detector 17 receives the reference symbol.
  • An equalization error e (n) between the predistorter input signal d (n) and the quadrature demodulated signal u (n) is detected and output to the control unit 18 as a distortion value. Compensation is performed by controlling the predistorter based on the distortion value, and it is possible to easily detect nonlinear distortion components by comparing time waveforms with appropriate compensation for delay and frequency characteristics. There is an effect that can be done.
  • the uncertainty of the frequency characteristic of the connection portion can be absorbed by the equalizer 15, and the adjustment man-hours can be reduced. This has the effect of reducing costs.
  • the third distortion compensation amplifying device (third amplifying device) averages the error as a vector only for a CDMA signal having a specific amplitude, and controls the predistorter using this as a distortion value. is there.
  • the configuration of the third amplifying device is substantially the same as that of the first amplifying device, and is not shown in the figure.
  • the force distortion detector includes an equalizer and an error vector output from the equalizer force. And an averaging unit (error averaging unit) that averages the data as it is.
  • the equalizer of the third amplifying device detects an error with respect to the predistorter input signal d (n) having a specific amplitude.
  • the “specific amplitude” is previously set. It is cyclically changed from the low level to the high level in the set order, detects the error vector for each amplitude, and outputs it to the averaging unit.
  • e (n) / d (n) (e (n) ⁇ d * (n) for the detected error vector e (n) ) /
  • 2 is averaged (you may use u (n) instead of d (n)) o
  • error vector e (n) Therefore, equalizer training must always be performed under the same conditions regardless of the specific amplitude.
  • the control unit controls the predistorter using the average value of the error vectors detected in this manner as a distortion value.
  • the configuration of the error averaging unit will be described with reference to FIG.
  • FIG. 6 is a configuration block diagram of an error averaging unit according to the third embodiment.
  • the error averaging unit of the distortion detection unit includes a complex conjugate multiplier 161 and a squaring.
  • the unit 162, the divider 163, the amplitude determination unit 164, and the number of averaging units 165 -1 to 165-16 equal to the number of representative points.
  • Averaging units 165-1 to 165-16 average error vectors corresponding to amplitudes xl to xl6, respectively.
  • the complex conjugate multiplier 161 performs complex conjugate multiplication with the reference signal d (n) on the error scale e (n) detected by the equalizer, and the divider In 163, the complex multiplication result is divided by the square of the amplitude component of the reference signal d (n), and the amplitude determination unit 164 determines the amplitude of the input signal and outputs the division result to the averaging unit 165 corresponding to the amplitude. The result is averaged and the result is output as a distortion value to the control unit.
  • the averaging unit calculates the error vector from the equalizer.
  • the control unit detects distortion values corresponding to the number of representative points using the torque, and the control unit updates the representative points using the distortion values corresponding to the amplitude.
  • an update method there is a method in which the value of the representative point corresponding to the product of the distortion value multiplied by a step factor of 1 or less is reduced. The method of creating a table by interpolating the representative points is the same as that of JP 2005-73032! /.
  • the control unit compares the partial amplitude values by the specific coefficients of the error detected and the coefficients of the power functions at other amplitudes. Since the direction of the distortion change in the amplitude when the coefficient is increased or decreased is known, the error is reduced based on the direction and the direction of the error vector (phase advance / delay and amplitude magnitude). Then, control for determining the update method of each coefficient is performed.
  • the signal obtained by branching the output of the power amplifier by the directional coupler is down-converted by the mixer 7.
  • Sampled by AZD converter, quadrature demodulated by quadrature demodulator, distortion detector equalizer power Use CDMA signal of specific amplitude as reference symbol d (n) and error from this quadrature demodulated signal u (n)
  • e (n) Zu (n) is averaged.
  • the control unit performs distortion compensation by controlling the predistorter based on the distortion value. Since distortion is detected as a vector, distortion that is faster than the perturbation method is performed. Using the compensation algorithm, it is possible to speed up convergence.
  • a distortion compensation amplifying apparatus (fourth amplifying apparatus) according to the fourth embodiment of the present invention will be described.
  • an FIR filter is provided in the predistorter, and the control unit adaptively controls the tap coefficient of the FIR filter based on the equalization error detected by the equalizer of the distortion detection unit. Is.
  • FIG. 12 is a configuration block diagram of a fourth amplifying device of the present invention.
  • the fourth amplifying device includes predistorter 100, DZA conversion 2, quadrature modulator 3, oscillator 4, power amplifier 5, directional coupler 6, and quadrature demodulation. 7, A ZD conversion 9, equalizer (“linear equalizer” in the figure) 15, and control unit 18, and the basic configuration is the second amplification described above.
  • the force predistorter 100 that is almost the same as the device and the configuration and operation of the control unit 18 are partially different from those of the second amplifying device.
  • the input signal is compensated for nonlinear distortion generated in the power amplifier 5 by the predistorter 100 and is subjected to DZ A conversion. Then, it is quadrature modulated by the quadrature modulator, up-converted at a radio frequency of 4 oscillators, and amplified by the power amplifier 5 to become an output signal.
  • the output signal from the power amplifier 5 is branched by the directional coupler 6 and fed back, down-converted by the quadrature demodulator 7 and quadrature demodulated, converted into a digital signal by the AZD converter 9, etc.
  • the equalizer 15 calculates an equalization error e (n) obtained by equalizing the quadrature demodulated signal u (n) of the feedback signal with the input signal d (n) of the predistorter, and the control unit 18 calculates the equalization error.
  • the predistorter is controlled so as to be minimized.
  • the equalizer 15 removes the linear distortion generated in the analog elements after the directional coupler 6 and the remaining equalization error e (n) is caused by the nonlinear distortion component generated in the power amplifier 5. Become.
  • FIG. 13 is a configuration block diagram of the predistorter 100 of the fourth amplifying device.
  • the predistorter 100 of the fourth amplifying device includes a third-order distortion generator 101, a fifth-order distortion generator 102, a seventh-order distortion generator 103, a delay circuit 104, a first circuit FIR filter (FI R filter (1)) 105, second FIR filter (FIR filter (2)) 106, and third FIR filter (FIR filter (3)) 107 and Karo arithmetic unit 108 ⁇ : L 10!
  • Third-order distortion generator 101 has the same configuration as that of the first stage in the conventional predistorter shown in FIG. 9, and calculates
  • the delay device 104 delays the input signal ⁇ ( ⁇ ) for a certain time.
  • the first FIR filter 105 is a filter that performs a product-sum operation on the third-order distortion based on the optimum tap coefficient hi given from the control unit 18.
  • the second FIR filter 106 and the third FIR filter 107 are respectively given the optimum tap coefficients h2 and h3 from the control unit 18 and are operated! .
  • the difference between the configuration of the conventional predistributor in FIG. 9 and the predistorter of the fourth amplifying device is that, in the predistributor of the fourth amplifying device, the coefficient ( ⁇ , ⁇ , ⁇ ) instead of multiplying by FIR filter.
  • the control unit 18 inputs the equalization error e (n) from the equalizer 15, the third-order distortion signal, the fifth-order distortion signal, and the seventh-order distortion signal, and performs FIR using an adaptive algorithm such as LMS.
  • the optimum tap coefficients hi, h2, and h3 of the filters 105, 106, and 107 are calculated and given to each FIR filter.
  • the Karo arithmetic unit 110 adds the output of the third FIR filter 107 and the output of the second FIR filter 106, and the adder 109 adds the output of the adder 110 and the first FIR filter 106.
  • the output of the FIR filter 105 is added.
  • the adder 108 generates the output signal of the predistorter 100 by caloring the output of the adder 109 and the input signal delayed by the delay circuit 104.
  • the coefficients hl, h2, and h3 in the first, second, and third FIR filters are the coefficients hl, h2, and h3 in the first, second, and third FIR filters.
  • hl (n + l) hl (n) + 1 ⁇ u (n) ⁇ e (n)
  • h2 (n + l) h2 (n) + 2u (n) e (n)
  • h3 (n + l) h3 (n) +, u 3 u (n) e (n)
  • e (n) is an equalization error due to nonlinear distortion that could not be equalized by the linear equalizer 15
  • u (n) is an orthogonal demodulated signal of the feedback signal
  • ⁇ 1, ⁇ 2 , 3 is a step gain that determines the response characteristics of coefficient update. Increasing the step gain increases the convergence speed but increases the residual error. Decreasing the step gain decreases the convergence speed but reduces the residual error.
  • Step gain ⁇ 2 and ⁇ 3 can be set so that the response characteristics for updating hl (n), h2 (n), and h3 (n) are all the same, or in a specific order.
  • a step gain satisfying ⁇ > ⁇ 2 > ⁇ 3 may be set so that the coefficients converge in the order of hl (n), h2 (n), and h3 (n).
  • h3 (n), h2 (n), and hl (n) ⁇ 1 ⁇ 2 ⁇ 3.
  • Another method of setting the step gain is to set ⁇ 1, ⁇ 2, and ⁇ 3 to 0 until the linear equalizer 15 converges.
  • Set an appropriate value for update only hl (n), and when the value of e (n) does not approach 0 any more, return ⁇ 1 to 0 and set an appropriate value for 2.
  • third-order distortion generator 101 third-order distortion generator 101, fifth-order distortion generators 102, 7 of predistorter 100 are provided.
  • FIR filters 105, 106, and 107 are provided at the outputs of the secondary distortion generator 103, respectively, and an equalizer 15 that detects distortion is used for the predistorter input signal d (n) as a reference symbol and the orthogonal demodulated signal u.
  • An equalization error e (n) with (n) is detected and output to the control unit 18 as a distortion value, and the control unit 18 updates the coefficient of each FIR filter by an adaptive algorithm based on the distortion value. Since the distortion compensation amplifying apparatus is used, there is an effect that it is possible to perform highly accurate distortion compensation without increasing the circuit scale by eliminating the need for FFT in distortion detection and reducing the processing amount.
  • FIG. 24 is a block diagram showing a configuration of a conventional Dono / tee amplifier.
  • the signal input to the input terminal 111 is distributed by the distributor 112, and one of the signals is input to the carrier amplifier circuit 40.
  • the carrier amplifier circuit 40 includes an amplifier element 42, an input matching circuit 41 that matches the input side of the amplifier element 42, and an output matching circuit 43 that matches the output side of the amplifier element 42.
  • the output of the carrier amplifier circuit 40 is impedance-converted by a ⁇ 4 transformer 61.
  • the other signal distributed by the distributor 112 is input to the peak amplifier circuit 50 with the phase delayed by 90 degrees by the phase shifter 113.
  • the peak amplifier circuit 5 includes an input matching circuit 51, an amplifier element 52, and an output matching circuit 53.
  • the outputs of the ⁇ 4 transformer 61 and the peak amplifier circuit 5 are synthesized at a node (synthesis point) 62.
  • the combination of the ⁇ ⁇ 4 transformer 61 and the node 62 is referred to as a Dono and tee combiner 60.
  • the synthesized signal is impedance converted by a ⁇ ⁇ 4 transformer 70 to match the output load ⁇ ,
  • the carrier amplifying circuit 40 and the peak amplifying circuit 50 are different in that the amplifying element 42 is biased to the class A and the amplifying element 52 is biased to the class C or the class C. Therefore, the amplifying element 42 operates alone until the input at which the amplifying element 52 operates, and when the amplifying element 42 enters the saturation region and the linearity of the amplifying element 42 starts to collapse, the amplifying element 52 starts to operate, The output of 52 is supplied to the load 90 and drives the load 90 together with the amplifying element 42. At this time, the load line of the output matching circuit 43 has a high resistance force. The force amplifying element 42 moving to a low resistance is in the saturation region, so that the efficiency is good. When the input from the input terminal 111 further increases, the amplifying element 52 of the peak amplifying circuit 50 begins to saturate. Since both the amplifying elements 42 and 52 are saturated, the efficiency is also good at this time.
  • the bias of the amplifier element in the peak amplifier is controlled, or the bias of both the amplifier elements in the carrier amplifier and the peak amplifier is controlled, so that the distortion is reduced.
  • Amplifier with distortion control function to reduce generation Is considered.
  • Known techniques include Japanese Patent Application Laid-Open No. 2005-117599, Japanese Patent Application Laid-Open No. 2002-50933, and Japanese Patent Application Publication No. 2005-516524.
  • An object of the present invention is to provide an amplifying apparatus with a distortion control function that can absorb variations in distortion and draw out the efficiency to the limit.
  • Another amplification device with a distortion control function includes a carrier amplifying circuit having an amplifying element operating at class AB and a peak having an amplifying element whose amplifying operation is controlled by a control signal input to the control terminal force.
  • a Doherty amplifier comprising an amplifying circuit and a combining means for combining and outputting the signals amplified by the carrier amplifying circuit and the peak amplifying circuit; a predistorter for compensating for nonlinear distortion of the Doherty amplifier; A distortion detection unit that detects intermodulation distortion included in the output signal of the tee amplifier, and controls the predistorter so that the distortion value detected by the distortion detection unit decreases, and the distortion detection unit And a predistortion distortion compensation circuit including a control unit that controls the amplification element in the peak amplification circuit so that the detected mutual modulation distortion becomes a target value.
  • the intermodulation distortion in the Doherty amplifier can be converged to the target intermodulation distortion, and the variation of the intermodulation distortion can be absorbed.
  • the target value By setting the target value to an appropriate value, it is possible to extract the efficiency to the limit.
  • FIG. 14 is a block diagram showing a configuration of an amplification device with a distortion control function according to another embodiment of an amplification device with a distortion control function.
  • the predistortion distortion compensation circuit 200 is combined with a Dono and tee amplifier 20. It is composed.
  • FIG. 15 is a block diagram showing a detailed configuration of the Doherty amplifier 20.
  • a signal is input to the input terminal 201 of the predistortion distortion compensation circuit 200.
  • This input signal is compensated for non-linear distortion by the predistorter 202 and sent to the DZ A modulation unit 203.
  • the predistorter 202 is configured in the same manner as that shown in FIG.
  • the DZA converter 203 converts a digital signal into an analog signal in synchronization with the clock signal CLK 1 and outputs it to the quadrature modulator 204.
  • the quadrature modulator 204 quadrature modulates the input signal with the signal from the oscillator 205.
  • the signal modulated by the quadrature modulator 204 is amplified by the Doherty amplifier 20 and output from the output terminal 207.
  • the mixer 209 down-converts the signal extracted from the directional coupler 208 to the IF frequency based on the oscillation frequency from the oscillator 210.
  • the IF signal down-converted by the mixer 209 is converted into a digital signal by the AZD converter 211 and sent to the distortion detector 212.
  • the distortion detection unit 212 includes a fast Fourier transform circuit (FFT) 213 and a power calculation circuit 214, obtains a distortion value of the signal output from the Doherty amplifier 20, and outputs the distortion value to the control unit 217.
  • FFT fast Fourier transform circuit
  • the control unit 217 adaptively controls the predistorter 202 so that the distortion value force S detected by the distortion detection unit 212 becomes small, and the intermodulation distortion detected by the distortion detection unit 212 becomes a target value. Dono, Tee amplifier 20 is controlled.
  • the control signal for the Doherty amplifier 20 output from the control unit 217 is converted into an analog signal by the DZA converter 216 and sent to the Doherty amplifier 20, and the amplification in the peak amplification circuit 50 is performed as shown in FIG. Input to the gate terminal 150 of the element 52.
  • the Donot Tee amplifier 20 is configured as shown in FIG.
  • a signal modulated by the quadrature modulator 204 shown in FIG. 14 is input to the input terminal 111 of the Dono / tee amplifier 20.
  • the signal input to the input terminal 111 is distributed by the distributor 112, and one of the signals is input to the carrier amplifier circuit 40.
  • the carrier amplifying circuit 40 includes an amplifying element 42 and an input matching circuit that performs matching with the input side of the amplifying element 42. It comprises a path 41 and an output matching circuit 43 for matching with the output side of the amplifying element 42.
  • the output of the carrier amplifier circuit 4 is impedance-converted by a ⁇ 4 transformer 61.
  • the other signal distributed by the distributor 112 is input to the peak amplifier circuit 50 with the phase delayed by 90 degrees by the phase shifter 113.
  • the peak amplifying circuit 50 includes an amplifying element 52, an input matching circuit 51 that matches the input side of the amplifying element 52, and an output matching circuit 53 that matches the output side of the amplifying element 52.
  • the amplifying element 52 includes a gate terminal 150 that is a control terminal, and a gate voltage output from the DZA conversion 216 shown in FIG.
  • semiconductor devices such as LD-MOS (Lateral Diffused MOS), GaAs-FET, HEMT, and HBT are usually used.
  • a FET When a FET is used as the amplifying element 52, the operation is controlled by the gate voltage.
  • a transistor is used as the amplifying element 52, the operation is controlled by the base voltage.
  • the outputs of the ⁇ 4 transformer 61 and the peak amplifier circuit 5 are combined at a node 62.
  • the above-mentioned ⁇ / 4 transformer 61 and the node 62 constitute a Donot / tee combiner 6.
  • the signal synthesized at node 62 matches the output load ⁇
  • a part of the signal output from the Dono / tee amplifier 20 is extracted via the directional coupler 208, down-converted to the IF frequency by the mixer 209, and then the AZD converter 211. Is converted into a digital signal and sent to the distortion detector 212.
  • the distortion detection unit 212 obtains the spectrum of the IF signal by the fast Fourier transform circuit 213, and then calculates the number of carriers of the modulation signal and the detuning frequency force by the IM calculation circuit 214.
  • IM3 third order intermodulation distortion
  • the power value at the frequency of IM5 (5th intermodulation distortion) is the distortion value.
  • the control unit 217 adaptively controls the predistorter 202 so that the distortion value detected by the distortion detection unit 212 becomes small, and the intermodulation distortion detected by the distortion detection unit 212 becomes a target value. Controls the peak amplification circuit 50 in the Dono / Tee amplifier 20 via the DZA transformation 216.
  • the signal whose distortion is compensated by the predistorter 102 is converted into an analog signal by the DZA conversion 203. Then, the signal is orthogonally modulated by the orthogonal modulator 204, sent to the Doherty amplifier 20, and amplified.
  • the gate of the amplification element 52 in the peak amplification circuit 50 is controlled by the gate voltage applied to the gate terminal 150 from the control unit 217 via the DZA transformation 216, and the occurrence of intermodulation distortion is suppressed. .
  • the signal amplified by the Dono / tee amplifier 20 is output from the output terminal 207.
  • the update target coefficient, the set number of times, and the previous distortion value are set, and initial setting such as setting the gate voltage Vg of the amplifying element 52 of the peak amplifying circuit 50 to B is performed (step B1).
  • update the same number ⁇ 3 several times in succession. (Step B5) and store the detected distortion value (step B6), which will be used in the next distortion value comparison.
  • step B7 the number of updates is compared with a preset number of times. If the number of updates is less than or equal to the set number, the process returns to step B2 and repeats the coefficient update of ⁇ 3. When the number of updates exceeds the set number, the update target coefficient is changed (step B8). In other words, the coefficient K is changed from ⁇ 3 to A3, and the update count is cleared (step B9).
  • step B10 it is determined whether or not the distortion has converged (stable) (step B10), and it is determined whether or not to continue the operations in steps B2 to B9. If the distortion does not converge, return to step B2 and repeat steps B2 to B10.
  • step B10 When it is determined in step B10 that the distortion has converged, the current distortion value is compared with the target distortion value (step Bl1). That is,
  • the distortion can be automatically reduced to a specified value or less, and the adjustment becomes easy. Further, the gate voltage Vg of the amplifying element 52 may be changed manually.
  • FIGS. 17 to 19 show distortion compensation characteristics when the gate voltage Vg of the amplifying element 52 in the peak amplifier circuit 50 shown in FIG. 14 is changed, and FIG. 17 shows that the gate voltage Vg is A.
  • Fig. 18 shows the third-order intermodulation distortion characteristics when the gate voltage Vg is B, and
  • Fig. 19 shows the third-order intermodulation distortion characteristics when the gate voltage Vg is C.
  • the frequency is plotted on the horizontal axis and the signal level is plotted on the vertical axis.
  • a is the characteristic before distortion compensation
  • b is the characteristic after distortion compensation.
  • the amplification device with the distortion control function has an efficiency of 40% ⁇ third-order intermodulation distortion (after distortion compensation) 40dBc, and as shown in Fig. 18, the gate voltage If Vg is B, efficiency is 30% ⁇ 3rd order intermodulation distortion (after distortion compensation) 45dBc, and if gate voltage Vg is C as shown in Figure 19, efficiency is 20% ⁇ 3rd order intermodulation distortion (after distortion compensation)- 50dBc was obtained. In this way, efficiency and intermodulation distortion after distortion compensation are in a trade-off relationship. By setting the target value of intermodulation distortion (after distortion compensation) to an appropriate value (design value), efficiency can be maximized. Is possible.
  • the target intermodulation distortion value can be obtained by adjusting the gate voltage Vg of the amplifying element 52.
  • the gate voltage is set to B.
  • the third-order intermodulation distortion value may be -40dBc.
  • the intermodulation distortion after distortion compensation can be controlled by changing the gate voltage Vg so that the target intermodulation distortion is obtained. That is, the current intermodulation distortion (after distortion compensation) can be converged to the target intermodulation distortion (after distortion compensation), and variations in the intermodulation distortion (after distortion compensation) can be absorbed.
  • FIGS 20 (a) to (d) show AM-PM conversion characteristics when the gate voltage Vg supplied to the amplifying element 52 of the peak amplifier circuit 5 is changed.
  • This is the characteristic when The AM-PM conversion characteristics shown in Fig. 7 are shown with input on the horizontal axis and phase () on the vertical axis.
  • the Doherty amplifier can also be used as a class AB two synthesis circuit, and the conventional class AB two synthesis circuit can be replaced with a Doherty circuit.
  • predistortion distortion compensation circuit 200 in the above embodiment is an example, and may have other configurations.
  • the Doherty amplifier 20 shows an example, and may have other configurations. Another configuration example of the Dono / Tee amplifier 20 will be described below.
  • FIG. 21 is a block diagram illustrating a first configuration example of the Doherty amplifier 20.
  • This Doherty amplifier 20 is obtained by replacing the ⁇ ⁇ 4 transformer 61 in FIG. 15 with an impedance change 64 that also has a transmission line force of an arbitrary electrical length, and replacing the phase shifter 113 with a phase shifter 31.
  • the configuration is basically the same, although there are differences such as constants.
  • the phase shifter 31 is a transmission line that generates a delay corresponding to the impedance converter 64 in principle.
  • the phase shifter 31 is for carrying out the synthesis in the same phase, and is a carrier amplification circuit. Since the phase difference between 40 and the peak amplification circuit 50 must also be absorbed, it may be different from the delay of the impedance transformation 64.
  • Other configurations are basically the same as the amplifier shown in Fig. 15 although there are differences in constants.
  • the impedance of the circuit can be set to an optimum value without depending on the type of the amplifying element, and the amplifying device Performance can be improved.
  • FIG. 22 is a block diagram illustrating a second configuration example of the Doherty amplifier 20.
  • an impedance shift 65 is provided between the peak amplifier circuit 50 and the node 62, and the phase shifter 31 is replaced with the phase shifter 33.
  • the other configurations are basically the same.
  • the node 62 couples the output signals from the output matching circuits 43 and 53 via the impedance converter 64 and the impedance converter 65.
  • the impedance converter 65 also has a transmission line force having an arbitrary length similar to that of the impedance change 64, the input signal level is low, the amplification element 52 operates, and sometimes the signal of the carrier amplification circuit 4 does not flow. , So that the output impedance of the output matching circuit 53 is converted to a larger impedance
  • the phase shifter 33 generates the same Cf phase rotation (delay) as the impedance change.
  • the phase shifter 33 generates a phase shift. Make adjustments.
  • the impedance change 65 as described above, the impedance viewed from the node 62 side and the peak amplification circuit 5 can be set to a larger value, the level of the input signal is reduced, and the output matching circuit 53 Even if the output impedance of the amplifier does not become sufficiently large, a highly efficient amplifier can be configured with the loss of the carrier amplifier circuit 40 suppressed.
  • FIGS. 23A and 23B are block diagrams showing a third configuration example of the Dono / tee amplifier 20.
  • FIG. 23A is a block diagram showing a third configuration example of the Dono / tee amplifier 20.
  • the Dono and tee amplifier 20 shown in FIG. Since the phase shifter 34 and impedance variations 66 and 67 are used in place of the dance variations 64 and 65, the other configurations are basically the same.
  • Each of the phase shifter 34 and the impedance converters 66 and 67 is a combination of a plurality of transmission lines (here, three types) having different lengths and switches.
  • Each transmission line has a length optimized for the best performance of the amplifier in accordance with a plurality of frequencies expected to be used in advance, and is formed by forming a conductor pattern on the wiring board.
  • a semi-rigid cable that allows easy fine adjustment of the length may be used for each device.
  • the phase shifter 34 is provided with switches a and b and terminals A and B, the impedance change 66 is provided with switch d and terminals C and D, and the impedance change 67 has a switch 6 F and terminals E and F are provided, and each switch a to f is switched to be connected to one of the transmission lines according to a control signal input from the corresponding terminal A to F, respectively. Yes.
  • control unit that controls the amplifier shown in FIG. 23 (a) includes a CPU (or ROM) 120 that generates a control signal and an IZO controller 130, as shown in FIG. 23 (b).
  • the terminals A to F of the amplifier shown in FIG. 23 (a) are connected to the I / O controller 130.
  • the CPU (or ROM) 120 has a power not shown in the figure, for example, as a table, data of control signals for each terminal for connecting to a transmission line having a frequency expected to be used in advance and a corresponding length. Memorized.
  • the phase shifter 34 and the impedance converters 66 and 67 are configured by easily selecting the transmission line having the optimum length according to the used frequency.
  • the shift of the optimum value force due to the frequency characteristics of the phase shifter 34 and impedance change 66, 67 is alleviated, and the optimum matching is performed regardless of the frequency to amplify the Dono and Tee amplifiers
  • the efficiency can be improved, the applicable frequency band can be expanded, and the cost can be greatly reduced compared to the case where a dedicated wiring board is prepared for each frequency band.
  • amplification device with a distortion control function is not limited to the above-described embodiment as it is, but can be specifically modified by modifying constituent elements without departing from the scope of the invention. .
  • the present invention is used in a power amplifier of a wireless communication transmitter, and in particular, even when a modulation signal has a wide band, it is not necessary to increase the sampling frequency, and distortion detection can be performed without increasing the circuit scale and power consumption.
  • the present invention is suitable for a nonlinear distortion detection method and a distortion compensation amplification apparatus that can be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)

Abstract

 従来の電力増幅装置では、信号が広帯域化すると、歪検出のためのサンプリング周波数を上げたり、歪補償部のFFT演算量が多くなって回路規模が増大し消費電力が増大するという問題点があったが、本発明は、信号が広帯域化しても回路規模及び消費電力の増大を抑えることができる非線形歪検出方法及び歪補償増幅装置を提供する。  電力増幅器5の出力をフィードバックした信号をA/D変換器9でサンプリングして、歪検出部17の等化器15が、プリディストータの入力信号d(n)を参照シンボルとして当該直交復調信号u(n)の等化誤差e(n)を検出し、絶対値平均化部16が、等化誤差e(n)の絶対値を時間的に平均化した値E(n)を歪値として制御部18に出力して、制御部18が歪値に基づいてプリディストータを適応的に制御して歪補償を行う非線形歪検出方法及び歪補償増幅装置である。

Description

明 細 書
非線形歪検出方法及び歪補償増幅装置
技術分野
[0001] 本発明は、無線通信送信機の電力増幅器における非線形歪を検出する非線形歪 検出方法及びそれを補償する歪補償増幅装置に係り、特に、変調信号が広帯域ィ匕 しても、サンプリング周波数を上げずにすみ、回路規模及び消費電力を増大させるこ となく歪検出を行うことができる非線形歪検出方法及び歪補償増幅装置に関するも のである。
背景技術
[0002] 送信装置における電力増幅器には、環境に対する配慮や消費電力の低減、及び 小型化、軽量化等が要求されており、これらの要求を満足するために放熱を少なくし て高効率ィ匕を図ることが必要となっている。一般に、電力増幅器の効率を上げるため には、変調信号のピーク電力が電力増幅器の飽和電力になるように設計するが、電 力増幅器の非線形性のために送信信号の相互変調歪が発生し、他の無線機に妨害 を与える
[0003] 電力増幅器によって生じる相互変調歪について説明する。図 7は、非線形特性を 持つ電力増幅器の出力スペクトラムを示す説明図である (W— CDMA、 2キャリア( 離調周波数: 5MHz) )。
図 7に示すように、変調信号を入力したときに非線形歪によりスペクトラムが広がり、 相互変調歪 (IM3, IM5)が発生する。図からもわ力るように、相互変調歪は、変調信 号の離調周波数と同じ周波数間隔で出現する。この相互変調歪を改善するために 歪補償が広く行われている。
[0004] ここで、歪補償方式の一つであるプリディストーションについて説明する。
プリディストーションは、電力増幅器の逆特性を前段に設けることで、相互変調歪を 低減する方法であり、この逆特性を、温度変化や個体差に応じて適応的に制御する
[0005] プリディストーションの適応制御に用いられて 、る従来の歪検出方法にっ ヽて図 8 を用いて説明する。図 8は、従来の歪検出方法を用いた電力増幅装置のブロック図 である。
図 8に示すように、従来の電力増幅器は、プリディストータ 1と、 DZA変換器 2と、直 交変調器 3と、発振器 4と、電力増幅器 5と、方向性結合器 6と、ミキサ 7と、発振器 8と 、 AZD変換器 9と、歪検出部 12と、制御部 13とから構成されている。歪検出部 12は 更に、 FFT演算部(図では FFT) 10と、 IM演算部 11とから構成されている。
[0006] プリディストータ 1は、制御部 13からの指示に従って入力信号に対して非線形歪の 逆特性を付加する歪補償を行うものである。
DZA変翻 2は、歪補償されたディジタル入力信号をアナログ信号に変換するも のである。
発振器 4は、 RF周波数を発振するものである。
直交変調器 3は、入力されたアナログ信号を直交変調して発振器 4の周波数でアツ プコンバートするものである。
電力増幅器 5は、入力された RF信号を所定の増幅率で増幅して出力するものであ る。
[0007] 方向性結合器 6は、電力増幅器 5からの出力信号を分岐してフィードバックするもの である。
ミキサ 7は、発振器 8からの信号と方向性結合器 6から分岐された信号とを合成して I F周波数にダウンコンバートするものである。
AZD変翻 9は、ダウンコンバートされた信号をクロック 2 (CLK2)で AZD変換し てサンプリングするものである。
[0008] 歪検出部 12は、入力されたサンプリング信号に含まれる歪を検出して歪値として制 御部 13に出力するものである。
歪検出部 12の FFT演算部 10は、入力された信号を FFT (Fast Fourier Transform ;高速フーリエ変換)によってスペクトラムを求めるものである。
IM演算部 11は、変調信号のキャリア数とその離調周波数力 相互変調歪の周波 数を算出し、スペクトラムに基づいて、当該周波数における電力値を歪値として制御 部 13に出力するものである。 そして、制御部 13は、入力された歪値が小さくなるようにプリディストータを適応的 に制御するものである。
[0009] 上記構成の電力増幅器における動作にっ 、て説明する。
デジタル IZQ形式で入力された IF周波数の入力信号は、プリディストータ 1で電力 増幅器の非線形歪の逆特性が付加されて、 DZA変換器 2でアナログ信号に変換さ れ、直交変調器 3で直交変調されると共に RF周波数にアップコンバートされ、電力増 幅器 5で所定の増幅率で増幅されて出力される。
[0010] 一方、電力増幅器 5の出力の一部は、方向性結合器 6によって取り出され、ミキサ 7 で IF周波数にダウンコンバートされ、 AZD変 9でディジタル信号に変換されて、 歪検出部 12の FFT演算部 10によってスペクトラム検出され、 IM演算部 11で算出さ れた相互変調歪 (IM3, IM5)における電力値を算出し、歪値として制御部 13に出 力される。
そして、制御部 13が、歪値を小さくするよう、プリディストータを適応的に制御するよ うになつている。
[0011] 電力増幅器の非線形特性が相互変調歪として現れるのは、奇数次歪であるため、 電力増幅器の非線形の逆特性を付加するプリディストータにおける処理は式(1)で 近似できる。
y=x+ · |χ| · χ+ j8 · I x I ·Χ+ γ · | x I ' 式 (1ノ
ここで、 x、 yはプリディストータの入力信号及び出力信号であり、複素数である。制 御部 13は、歪検出部 12で得られた歪値が小さくなるように、摂動法を用いて α、 β、 Ύの値を制御する。
[0012] ここで、プリディストータ 1の概略構成について図 9を用いて説明する。図 9は、プリ ディストータ 1の概略構成を示すブロック図である。
図 9に示すように、プリディストータ 1は、複数の乗算器と加算器を備え、入力信号(
X)から、 3乗、 5乗、 7乗の成分を算出し、各々に係数 α、 βヽ γを乗算して式(1)に 基づ 、て出力信号 (y)を得る構成となって 、る。
[0013] α、 β、 γは複素数で、
a = A3- exp 0*Φ 3) β = A5 -exp 0*Φ 5)
γ = A7-exp 0*Φ 7) 式(2)
と表される。
そこで、制御部 13ではこれらの係数を、 Φ 3→Α3→Φ 5→Α5→Φ 7→Α7→Φ 3の 順番で摂動法によって循環的に制御する。
[0014] 制御部 13における摂動法を用いた制御について図 10を用いて説明する。図 10は 、制御部 13における摂動法を用いた制御を示すフローチャート図である。
図 10に示すように、制御部 13は、処理が開始されると、まず初期設定として更新対 象係数 (Κ、ここではまず Φ 3)の設定、設定回数、前回の歪値の読み込みを行う(10 0)。
[0015] そして、歪補償部 12において算出された現在の歪値が入力されると、制御部 13は 、現在の歪値と前回の歪値との大小を比較し(101)、現在の歪値の方が小さくなつ て!ヽれば (Yesの場合)更に同じ方向に係数を更新する (K=K+Step) (103)。 また、処理 101において歪値が大きくなつていれば (Noの場合)、制御部 13は、更 新方向を反転 (Step=Step * (― 1) )させて(102)、処理 103に移行して係数の更新 を行う。
[0016] 次に、制御部 13は、同じ係数 (ここでは Φ 3)を連続して何回更新したかをカウントし
(104)、処理 101において「現在の歪値」として検出した歪値を保存する(105)。ここ で保存した歪値は次回の処理 101で「前回の歪値」として用いるものである。
そして、制御部 13は、記憶されている更新回数と処理 100の初期設定において設 定しておいた設定回数とを比較し(106)、更新回数が設定回数以下であれば処理 1 01に戻って、 Φ 3の係数更新を繰り返す。
[0017] また、処理 106において、更新回数が設定回数を超えた場合には、制御部 13は、 更新対象係数を変更する(107)。ここでは、更新対象係数を Φ 3から A3に変更する 。そして、制御部 13は、記憶されている更新回数をクリアする(108)。
制御部 13では、このような摂動法を用いた制御によって歪値が小さくなるようにプリ ディストータの係数を制御する。このようにして、電力増幅器における非線形の逆特 性を、べき級数を用いたプリディストータで近似することができ、歪補償が可能となる ものである。
[0018] 尚、歪補償を行う送信装置の従来技術としては、平成 17年 1月 20日公開の特開 2 005— 20515「適応プリディスト一タ型歪補償送信装置及びその遅延制御フィルタ 係数の切替え方法」(出願人:富士通株式会社、発明者:濱野充晴)がある。
この従来技術は、適応プリディスト一タ型歪補償送信装置で、送信信号とフィードバ ック信号との位相を合わせる遅延制御フィルタのフィルタ係数を切り替える際に、予 めフィルタ係数が格納されたメモリから、新たに設定されるフィルタ係数を読み出して 、送信信号が伝達される主信号系経路から分岐され、折り返される試験系経路を経 由してフィルタ係数設定レジスタに配送する方法であり、これにより、フィルタ係数の 切替えを高速に行うことができるものである (特許文献 1参照)。
[0019] また、別の従来技術としては、平成 17年 4月 14日公開の特開 2005— 102029「適 応型プリディストータ」(出願人:三菱電機株式会社、発明者:堀口健一)がある。 この従来技術は、比較器が、歪補償回路からの出力信号と、歪補償回路への入力 信号との誤差を検出し、正規化最小 2乗平均回路が、入力信号の分散で正規化して 誤差信号の 2乗平均を最小化する正規化最小 2乗平均アルゴリズムにより、歪補償 回路での補償係数を更新するものであり、入力信号の振幅レベル等によらず安定し た収束特性を得るものである (特許文献 2参照)。
[0020] 更にまた、別の従来技術として、平成 17年 3月 17日公開の特開 2005— 73032「 歪補償増幅装置及び歪補償方法」(出願人:株式会社日立国際電気、発明者:本江 直榭)がある。
この従来技術は、制御部が、電力値に対応する予歪量を記憶する歪補償テーブル 手段が記憶する複数の点を、一部が重複する複数の区間において曲線補間し、曲 線補間にて得られる夫々の曲線を結合することにより歪補償テーブル手段が記憶す る点を更新するものであり、変曲点を含む歪特性を補償するものである(特許文献 3 参照)。
[0021] また、等化器の等化誤差に基づいてプリディストータを制御するものとして US20050 16249A1がある (特許文献 4参照)。また、歪を抽出する等化器と歪を補償する等化 とをザ 7こ¾のとして、 「Lei Ding et al, Memory Polynomial Predistorter Based on t he Indirect Learning Architecture, GLOBECOM 2002— IEEE Global Teleccommunic ations Conference, no. l, November 2002 pp.976- 980」がある(非特許文献 1参照)。 その他、歪補償に関する技術として、 US20050163250A1, US20050099230A1, US20 050089125A1がある(特許文献 5, 6, 7参照)。
[0022] 特許文献 1:特開 2005 - 20515号公報 (第 4— 8頁)
特許文献 2 :特開 2005— 102029号公報
特許文献 3:特開 2005 - 73032号公報
特許文献 4: US2005016249A1
特干文献 1: Lei Ding et al, Memory Polynomial Predistorter Based on the Indirect Learning Architecture, GLOBECOM 2002— IEEE Global Telecommunications Confe rence, no.l, November 2002 pp.976— 980
特許文献 5: US20050163250A1
特許文献 6: US20050099230A1
特許文献 7: US20050089125A1
発明の開示
発明が解決しょうとする課題
[0023] し力しながら、従来の電力増幅装置では、電力増幅部出力の信号を FFTにより周 波数変換し、相互変調歪の電力を計算により求めることにより、歪を検出するため、 相互変調歪の帯域を含む周波数範囲につ!、てサンプリングして、信号処理を行う必 要がある。
[0024] 広帯域の信号処理が必要な場合について図 11を用いて説明する。図 11は、非線 形特性を持つ電力増幅器の別の出力スペクトラムを示す説明図である (W— CDMA 、 2キャリア (離調周波数: 15MHz) )。
図 11に示すように、相互変調歪 (IM3、 IM5)は、 2キャリアの離調周波数と同じ周 波数間隔で現れるために、離調周波数が大きくなると、歪検出部では、 IM3及び IM 5のスペクトラムを検出して電力値を算出するために、より広帯域の信号を処理しなけ ればならない。
[0025] 今後、高速伝送の要求が高まるのは必至で、変調信号の周波数帯域はますます広 力 Sつていくと予想される。
更に、信号の広帯域化がすすめば、歪検出するための AZD変翻(図 4の AZD 変換器 9)では、サンプリング周波数を上げる必要があり、歪補償部の FFT演算部で の演算量が多くなつて回路規模が増大し、コスト高になり、消費電力が増大する等の 問題点が生じる。
また、特許文献 1のように、時間領域で送信信号とフィードバック信号とを比較して 誤差を検出する場合、位相、振幅、遅延時間を正確に一致させるのが困難だった。
[0026] 本発明は上記実状に鑑みて為されたもので、変調信号が広帯域ィ匕しても、サンプリ ング周波数を上げずにすみ、回路規模及び消費電力を増大させることなく歪検出を 行うことができる非線形歪検出方法及び歪補償増幅装置を提供することを目的とす る。
課題を解決するための手段
[0027] 上記従来例の問題点を解決するための本発明は、入力信号を電力増幅する増幅 器と、増幅対象となる入力された変調信号について、増幅器で発生する非線形歪を 補償する歪補償手段と、増幅器出力のフィードバック信号に基づいて増幅器出力に 含まれる歪成分を検出して歪を評価する歪検出部と、歪検出部での歪の評価に基づ いて歪補償手段を制御する制御部とを備えた歪補償増幅装置における非線形歪検 出方法であって、歪検出部が、歪補償手段への入力信号を参照シンボルとして、増 幅器出力のフィードバック信号を等化して、等化信号と参照シンボルとの等化誤差を 求め、歪を評価することを特徴としている。
[0028] また、本発明は、上記非線形歪検出方法において、歪検出部が、等化誤差の絶対 値を特定時間にわたって時間平均した時間平均値を求め、前記時間平均値に基づ V、て歪を評価することを特徴として 、る。
[0029] また、本発明は、上記非線形歪検出方法において、歪検出部が、歪補償手段への 入力信号の振幅を低レベルから高レベルまで巡回的に変化させて、前記入力信号 の振幅のレベル毎に等化誤差を検出して平均化し、平均化の結果に基づ 、て前記 各振幅のレベルにおける歪を評価することを特徴としている。
[0030] また、本発明は、入力信号を電力増幅する電力増幅器と、入力された送信すべき 変調信号にっ 、て、前記電力増幅器で発生する非線形歪を補償するプリディスト一 タと、電力増幅器出力のフィードバック信号を特定の周波数でサンプリングする AZ D変 と、 AZD変換されたフィードバック信号に基づ 、て電力増幅器出力に含ま れる歪成分を検出して歪値として出力する歪検出部と、歪値に基づいてプリディスト ータを制御する制御部とを備えた歪補償増幅装置であって、 AZD変換器が、送信 すべき変調信号を含み、相互変調歪を含まな!/、周波数帯域をサンプリング可能な周 波数でサンプリングする AZD変換器であり、歪検出部が、プリディストータへの入力 信号を参照シンボルとして入力し、電力増幅器出力のフィードバック信号を FIRフィ ルタにより等化して、等化信号と参照シンボルとの等化誤差を出力する等化器と、等 化誤差の絶対値を特定時間にわたって時間平均した時間平均値を歪値として出力 する絶対値平均化部とを備えた歪検出部であることを特徴としている。
[0031] また、本発明は、入力信号を電力増幅する電力増幅器と、入力された送信すべき 変調信号にっ 、て、前記電力増幅器で発生する非線形歪を補償するプリディスト一 タと、電力増幅器出力のフィードバック信号を特定の周波数でサンプリングする AZ D変 と、 AZD変換されたフィードバック信号に基づ 、て電力増幅器出力に含ま れる歪成分を検出して歪値として出力する歪検出部と、歪値に基づいてプリディスト ータを制御する制御部とを備えた歪補償増幅装置であって、歪検出部が、等化器か らの出力を、参照シンボルの振幅のレベル毎に平均化して、平均値を参照シンボル の振幅のレベルに対応した歪値として出力する複数の平均化部と、プリディストータ への入力信号を参照シンボルとして入力し、電力増幅器出力のフィードバック信号を FIRフィルタにより等化して、等化信号と参照シンボルとの等化誤差を算出し、前記 等化誤差と参照シンボルとの複素共役演算の演算結果を前記参照シンボルの振幅 成分の二乗で除すと共に、前記参照シンボルの振幅成分の二乗に基づ 、て前記参 照シンボルの振幅のレベルを判定し、前記除算結果を、前記判定された振幅のレべ ルに応じた平均化部に出力する等化器とを備えた歪検出部であることを特徴として いる。
[0032] また、本発明は、上記歪補償増幅装置において、歪検出部が、 LMSアルゴリズム によって FIRフィルタのタップ係数を更新する LMS部を備えた歪検出部であることを 特徴としている。
[0033] また、本発明は、上記歪補償増幅装置において、 LMS部が、複数サンプル時間毎 に参照シンボルを参照して、タップ係数を更新する LMS部であることを特徴として ヽ る。
[0034] また、本発明は、入力信号を電力増幅する電力増幅器と、入力された送信すべき 変調信号にっ 、て、前記電力増幅器で発生する非線形歪を補償するプリディスト一 タと、前記電力増幅器出力のフィードバック信号を特定の周波数でサンプリングする AZD変換器と、 AZD変換された前記フィードバック信号に基づ ヽて前記電力増幅 器出力に含まれる歪成分を検出して歪値として出力する歪検出部と、前記歪値に基 づいて前記プリディストータを制御する制御部とを備えた歪補償増幅装置であって、 前記歪検出部力 前記プリディストータへの入力信号を参照シンボルとして入力し、 前記電力増幅器出力のフィードバック信号を FIRフィルタにより等化して、前記等化 信号と前記参照シンボルとの等化誤差を歪値として出力する等化器を備えた歪検出 部であることを特徴として 、る。
[0035] また、本発明は、上記歪補償増幅装置においてプリディストータが、 3次相互変調 歪発生器と、 5次相互変調歪発生器と、 7次相互変調歪発生器と、前記 3次相互変 調歪発生器に対応する第 1の FIRフィルタと、前記 5次相互変調歪発生器に対応す る第 2の FIRフィルタと、前記 7次相互変調歪発生器に対応する第 3の FIRフィルタと を備えたプリディストータであり、制御部が、歪検出部から出力される歪値に基づいて 前記プリディスト一タの第 1,第 2,第 3の FIRフィルタのタップ係数を更新する制御部 であることを特徴として 、る。
[0036] また、本発明は、上記歪補償増幅装置において、第 1、第 2、第 3の各 FIRフィルタ のタップ係数を更新する応答速度を決定する第 1、第 2、第 3のステップゲインを、第 1のステップゲイン >第 2のステップゲイン >第 3のステップゲインとなるよう設定したこ とを特徴としている。
発明の効果
[0037] 本発明によれば、歪検出部が、歪補償手段への入力信号を参照シンボルとして、 増幅器出力のフィードバック信号を等化して、等化信号と参照シンボルとの等化誤差 を求め、歪を評価する非線形歪検出方法としているので、歪検出部において FFTを 行わないため、広帯域にわたってサンプリングする必要がなぐサンプリング周波数 及び演算量を増大させずに歪検出ができ、変調信号が広帯域化しても回路規模及 び消費電力の増大を抑えることができる効果がある。
[0038] 本発明によれば、歪検出部が、歪補償手段への入力信号の振幅を低レベルから高 レベルまで巡回的に変化させて、前記入力信号の振幅のレベル毎に等化誤差を検 出して平均化し、前記平均化の結果に基づ!、て前記各振幅のレベルにおける歪を 評価する非線形歪検出方法としているので、歪がベクトルとして検出されるため、摂 動法よりも高速な歪補償アルゴリズムを用いて収束を高速ィ匕することができる効果が ある。
[0039] また、本発明によれば、電力増幅器出力のフィードバック信号を、送信すべき変調 信号を含み、相互変調歪を含まな!/、周波数帯域をサンプリング可能な周波数でサン プリングする AZD変換器を備え、歪検出部が、プリディストータへの入力信号を参照 シンボルとして入力し、電力増幅器出力のフィードバック信号を FIRフィルタにより等 化して、等化信号と参照シンボルとの等化誤差を出力する等化器と、等化誤差の絶 対値を特定時間にわたって時間平均した時間平均値を歪値として出力する絶対値 平均化部とを備えた歪検出部である歪補償増幅装置としているので、サンプリング帯 域を狭くすることによりサンプリング周波数を高くしなくてすみ、演算量を増大させず に歪検出ができ、変調信号が広帯域化しても回路規模及び消費電力の増大を抑え ることができる効果がある。
[0040] また、本発明によれば、 AZD変換器が、送信すべき変調信号を含み、相互変調 歪を含まない周波数帯域をサンプリング可能な周波数でサンプリングする AZD変換 器であり、歪検出部が、等化器力もの出力を、参照シンボルの振幅のレベル毎に平 均化して、平均値を参照シンボルの振幅のレベルに対応した歪値として出力する複 数の平均化部と、プリディストータへの入力信号を参照シンボルとして入力し、電力 増幅器出力のフィードバック信号を FIRフィルタにより等化して、等化信号と参照シン ボルとの等化誤差を算出し、前記等化誤差と参照シンボルとの複素共役演算の演算 結果を前記参照シンボルの振幅成分の二乗で除すと共に、前記参照シンボルの振 幅成分の二乗に基づ!、て前記参照シンボルの振幅のレベルを判定し、前記除算結 果を、前記判定された振幅のレベルに応じた平均化部に出力する等化器とを備えた 歪検出部である歪補償増幅装置としているので、歪がベクトルとして検出されるため 、摂動法よりも高速な歪補償アルゴリズムを使用して、収束を高速ィ匕することができる 効果がある。
[0041] また、本発明によれば、歪検出部が、プリディストータへの入力信号を参照シンボル として入力し、電力増幅器出力のフィードバック信号を FIRフィルタにより等化して、 等化信号と参照シンボルとの等化誤差を歪値として出力する等化器を備えた歪検出 部である歪補償増幅装置としているので、歪検出における FFTを不要として処理量 を低減し、精度の高 、歪補償を行うことができる効果がある。
[0042] また、本発明によれば、プリディスト一タカ 3次相互変調歪発生器と、 5次相互変 調歪発生器と、 7次相互変調歪発生器と、前記 3次相互変調歪発生器に対応する第 1の FIRフィルタと、前記 5次相互変調歪発生器に対応する第 2の FIRフィルタと、前 記 7次相互変調歪発生器に対応する第 3の FIRフィルタとを備えたプリディストータで あり、制御部が、歪検出部から出力される歪値に基づいて前記プリディスト一タの第 1 ,第 2,第 3の FIRフィルタのタップ係数を更新する制御部である歪補償増幅装置とし て 、るので、プリディストータにお 、て精度の高 、歪補償を行うことができる効果があ る。
[0043] また、本発明によれば、第 1、第 2、第 3の各 FIRフィルタのタップ係数を更新する応 答速度を決定する第 1、第 2、第 3のステップゲインを、第 1のステップゲイン >第 2の ステップゲイン >第 3のステップゲインとなるよう設定した歪補償増幅装置としている ので、 3次歪、 5次歪、 7次歪の順で FIRフィルタにおける係数を収束させることができ 、収束の安定性を向上させることができる効果がある。
図面の簡単な説明
[0044] [図 1]本発明の第 1の実施の形態に係る歪検出方法を用いた歪補償増幅装置 (第 1 の増幅装置)の構成ブロック図である。
[図 2]等化器 15の概略構成を示す説明図である。
[図 3]LMS部 25の構成ブロック図である。 [図 4]プリディストータ 1の入力信号と電力増幅部の包絡線を時間比較した波形を示 す説明図である。
圆 5]本発明の第 2の増幅装置の構成を示す説明図である。
圆 6]本発明の第 3の増幅装置の誤差平均化部の構成ブロック図である。
圆 7]非線形特性を持つ電力増幅器の出力スペクトラムを示す説明図である (W—C
DMA, 2キャリア(離調周波数: 5MHz) )。
[図 8]従来の歪検出方法を用いた電力増幅装置のブロック図である。
[図 9]プリディストータ 1の概略構成を示すブロック図である。
[図 10]制御部 13における摂動法を用いた制御を示すフローチャート図である。 圆 11]非線形特性を持つ電力増幅器の別の出力スペクトラムを示す説明図である(
W— CDMA、 2キャリア(離調周波数: 15MHz) )。
圆 12]本発明の第 4の増幅装置の構成ブロック図である。
[図 13]第 4の増幅装置のプリディストータ 100の構成ブロック図である。
圆 14]本発明の一実施形態に係る歪制御機能付き増幅装置の全体の構成を示すブ ロック図である。
[図 15]同実施形態におけるドハティ増幅器の詳細な構成を示すブロック図である。
[図 16]同実施形態における制御部の処理動作を示すフローチャートである。
[図 17]同実施形態におけるピーク増幅器のゲート電圧 Vgを Aとした場合の 3次相互 変調歪特性を示す図である。
[図 18]同実施形態におけるピーク増幅器のゲート電圧 Vgを Bとした場合の 3次相互 変調歪特性を示す図である。
[図 19]同実施形態におけるピーク増幅器のゲート電圧 Vgを Cとした場合の 3次相互 変調歪特性を示す図である。
圆 20]ピーク増幅器に供給するゲート電圧 Vgを変化させた場合の AM— PM変換特 性を示し、(a)はゲート電圧 Vg= Aとした場合、(b)はゲート電圧 Vg = Bとした場合、 (c)はゲート電圧 Vg = Cとした場合、 (d)はゲート電圧 Vgをキャリア増幅器のゲート 電圧 Vgと等しくした場合の特性図である。
圆 21]同実施形態におけるドハティ増幅器の第 1構成例を示すブロック図である。 [図 22]同実施形態におけるドハティ増幅器の第 2構成例を示すブロック図である [図 23]同実施形態におけるドハティ増幅器の第 3構成例を示すブロック図である, [図 24]従来のドノ、ティ増幅器の構成を示すブロック図である。
符号の説明
1 プリディストータ
2 DZAコンバータ
3 直交変調器
4 発振器
5 電力増幅器
6 方向性結合器
7 ミキサ
8 発振器
9 AZD変觸
10 FFT咅
11 IM演算部
12 歪検出部
13 制御部
14 直交復調器
15 等化器
16 絶対値平均化部
17 歪検出部
18 制御部
20 ドハティ増幅器
25 LMS^
31、 33、 34 移相器
40 キャリア増幅回路
41 入力整合回路
42 増幅素子 出力整合回路
ピーク増幅回路
入力整合回路
増幅素子
出力整合回路
ドハティ合成部
変成器
ノード (合成点)
、 65、 66、 67 インピーダンス変^^ 変成器
出力端子
負荷
0 プリディストータ
1 3次歪発生器
2 5次歪発生器
3 7次歪発生器
遅延回路
5 第 1の FIRフィルタ
6 第 2の FIRフィルタ
7 第 3の FIRフィルタ
〜: L 10 加算器
1 入力端子
2 分配器
3 移相器
CPU
I/Oコントローラ
ゲート端子
1 複素乗算器 162 二乗化部
163 除算器
164 振幅判定部
165 平均化部
200 プリディストーション歪補償回路
201 入力端子
202 プリディストータ
203 DZA変換器
204 直交変調器
205 発振器
206 電力増幅器
207 出力端子
208 方向性結合器
209 ミキサ
210 発振器
211 A/D変換器
212 歪検出部
213 高速フーリエ変換回路 (FFT)
214 IM演算回路
216 D/A変脇
217 制御部
251 複素演算部
252 乗异 1^
253 加算器
254, 255 遅延素子
発明を実施するための最良の形態
本発明の実施の形態について図面を参照しながら説明する。
本発明の非線形歪検出方法は、電力増幅部の出力をフィードバックした信号を、 A ZD変換して直交復調し、歪検出部の等化器が、プリディストータの入力信号を参照 シンボルとして当該直交復調信号の等化誤差を検出し、歪検出部の絶対値平均化 部が、等化誤差の絶対値を時間的に平均化した値を、歪を評価する歪値として制御 部に出力して、制御部が歪値に基づいてプリディストータを制御するものであり、歪検 出部にぉ 、て FFTを行わな 、ので広帯域にわたって信号処理をしなくてすみ、信号 が広帯域ィ匕してもサンプリング周波数を上げることなく歪検出ができ、回路規模及び 消費電力の増大を防ぐことができるものである。
[0047] また、本発明の歪補償増幅装置は、歪検出部に、プリディストータの入力信号を参 照シンボルとして等化誤差を検出する等化器と、等化器出力の絶対値の時間平均を 算出する絶対値平均化部とを備え、電力増幅部の出力を分岐した信号をダウンコン バートし、 AZD変換後直交復調し、歪検出部の等化器が、プリディストータの入力 信号を参照シンボルとして当該直交復調信号の等化誤差を検出し、絶対値平均化 部が、等化誤差の絶対値を時間的に平均化した値を歪値として制御部に出力して、 制御部が歪値に基づいてプリディストータを制御するものであり、歪検出部において FFTを行わな 、ので広帯域にわたって信号処理をしなくてすみ、サンプリング周波 数を上げることなく歪検出ができ、回路規模及び消費電力の増大を防ぐことができる ものである。
[0048] 図 1は、本発明の第 1の実施の形態に係る歪検出方法を用いた歪補償増幅装置( 第 1の増幅装置)の構成ブロック図である。
図 1に示すように、第 1の増幅装置は、図 6に示した従来の電力増幅装置と同様の 部分として、プリディストータ 1と、 DZA変換器 2と、直交変調器 3と、発振器 4と、電 力増幅器 5と、方向性結合器 6とを備え、第 1の電力増幅器の特徴部分として、ミキサ 7と、発振器 8と、 AZD変換器 9と、直交復調器 14と、歪検出部 17と、制御部 18と、 デシメータ 19とを備えている。更に、歪検出部 17は、等化器 15と、絶対値平均化部 (図では絶対値平均化) 16とから構成されている。
従来の電力増幅装置と同様の部分は、構成及び動作が従来と同様であるため、こ こでは説明を省略する。
[0049] 第 1の増幅装置の特徴部分について具体的に説明する。 ミキサ 7は、方向性結合器 6によって分岐された電力増幅器 5の出力信号と、発振 器 8からの信号を合成して IF周波数にダウンコンバートするものである。また、この IF 周波数及びその帯域幅は、プリディストータ 1への入力信号の IF周波数と同じでよい 。つまり、発振器 8は、発振器 4と同じでもよぐ共用してもよい。尚、ミキサ 7の代わり にアナログ直交復調器を設け、直交変調器 3と同じローカル信号を与えてダイレクト 復調を行 、、 2つの AZD変換器でサンプリングして歪検出部に入力しても構わな ヽ
[0050] AZD変^ ^9は、ダウンコンバートされた信号をクロック 2でサンプリングして AZD 変換するものである。ここで、第 1の電力増幅器の特徴として、歪変換に FFTを用い ないので、 IM3や IM5の相互変調歪まで含む広帯域をサンプリングしなくてよぐし たがってクロック 2は、本来の変調信号の周波数帯域のみを正常にサンプリングでき る周波数であればよい。
[0051] 例えば、 WCDMA信号の 4キャリアを扱う増幅装置の場合、クロック 1 (DZA変換 器 2のサンプルレート)は、チップレートの 32倍相当の 122. 88MHzであるのに対し 、クロック 2は、その整数分の 1 (例えば 3分の 1)にすることができる。
従って、クロック周波数を高くしなくてすみ、コスト及び消費電力を増大させずにす むものである。これにより、ダウンコンバートされた信号が含んでいた変調信号及び相 互変調歪は、ナイキスト周波数の帯域内に落とし込まれる。
[0052] また、直交復調器 14は、 AZD変換されたサンプリング信号を直交復調するもので ある。 また、デシメータ 19は、プリディストータ 1への入力信号 d(n)を、直交復調器 1 4からの直交復調信号のサンプリングレートまでダウンサンプリングし、 d(n)を出力する
[0053] 歪検出部 17は、第 1の増幅装置の特徴部分であって、等化器 15と絶対値平均化 部 16とから構成され、直交復調されたサンプリング信号に含まれる歪を検出して、歪 値として制御部 18に出力するものである。
歪検出部 17の等化器 15は、直交復調器 14からの直交復調信号 u(n)と、参照信号 としてプリディストータ 1への入力信号 d(n)を入力し、等化誤差 e(n)を検出して絶対値 平均化部 16に出力するものである。 [0054] ここで、等化器 15の構成について図 2を用いて説明する。図 2は、等化器 15の概 略構成を示す説明図である。
等化器 15は、 FIR (Finite Impulse Response)フィルタと、 FIRフィルタの出力と参照 信号との差を等化誤差として出力する加算器 24と、適応アルゴリズムを実装する LM S部 25とを備えている。
[0055] FIRフィルタは、入力信号を 1サンプル時間遅延させる遅延素子 21、設定された係 数を乗算する乗算器 22、各乗算器からの出力を加算する加算器 23、加算器 23の出 力と参照信号との差を等化誤差として出力する加算器 24から構成される。
[0056] LMS部 25は、直交復調信号の 1サンプル時間(クロック 2に対応する)毎に [数 1] に示す LMSアルゴリズムによって等化誤差 e(n)が最小となる最適なタップ係数を求 めて各乗算器の係数を更新する。
[0057] [数 1] h(n + 1) = (n) + μ ' u{n)e n)
e n) = d{n) - u\ i)T .{ i) ここで、 nはサンプルのインデックス、 u(n)は入力信号、 h(n)はタップ係数、 d(n)は参 照シンボル、 e(n)は等化誤差を表し、 μはステップゲインである。
更に、 h(n)及び u(n)を具体的に記載すると、 [数 2]に示すように表される。
[0058] [数 2] h(«) = [/z。 ¾ … hN ] u(«) = ["(«) u(n - l) … u(n -N)]
等化器 15においては、 u(n)は直交復調信号、 d(n)はプリディストータの入力信号で あり、共に複素信号である。
[0059] ここで、 LMS部 25の構成について図 3を用いて説明する。図 3は、等化器 15の L MS部 25の構成を示す構成ブロック図である。 図 3に示すように、 LMS部 25は、複素共役演算部 251と、乗算器 252と、加算器 2
53と、遅延器 254及び遅延器 255とから構成されて 、る。
そして、複素共役演算部 251で等化誤差 e(n)の複素共役演算を行い、乗算器 253 で複素共役演算結果と入力信号 u(n)とを乗算して、乗算結果を加算器 253で前回の タップ係数 h(n)に加算して新たなタップ係数 h(n)を算出し、 FIRフィルタの各乗算器 2
2に出力するものである。
[0060] また、絶対値平均化部 16は、等化器 15から出力された等化誤差 e(n)の絶対値を求 め、この絶対値を特定時間にわたって加算した値 (時間平均した値)を歪値として制 御部 18に出力するものである。 時間平均を取る間隔を Mサンプルとすると、絶対値 平均化部 16から出力される歪値 E(n)は、 [数 3]で表される。
[0061] [数 3]
Figure imgf000021_0001
[0062] すなわち、第 1の増幅装置においては、歪検出部 17からこの E(n)が歪値として出力 されて、制御部 18に与えられ、制御部 18において上述した摂動法によって歪値が 小さくなるようにプリディストータの係数が設定されるようになって 、る。
[0063] 歪検出部 17の等化器 15の役割としては、他にも、高周波のフィルタやマイクロストリ ップラインによる遅延によって生じるタイミングのずれを補正することや、直交変調器 やミキサのローカル周波数の違いによる周波数オフセットに起因する位相回転に追 従して、プリディストータ 1の入力信号と電力増幅部出力信号とを、ベースバンドで波 形比較するため同期をとることがある。
[0064] 等化器で同期が取れた場合、仮に、電力増幅器に非線形歪がないとすると、等化 誤差 e(n)はほとんどゼロとなる。
し力しながら、実際の電力増幅器は非線形歪を持っているので、線形歪しか等化で きない FIRフィルタでは、非線形歪の成分が、等化誤差となって現れることになる。検 出される等化誤差について図 4を用いて説明する。図 4は、プリディストータ 1の入力 信号と非線形歪が補償されて!ヽな ヽ電力増幅部の包絡線を時間比較した波形を示 す説明図である。尚、図 4においては、電力増幅器出力信号はゲインが 1になるよう に補正している。
[0065] 図 4に示すように、同期が確立された状態では、電力増幅器 5への入力レベルが大 き 、ほど非線形歪の歪成分が大きくなるので、入力信号が比較的小さ 、レベルでは 、等化誤差は現れず、ピーク電力に近い値が入力されたときに等化誤差が増大する 。したがって、等化誤差の絶対値を計算したあと、電力変動の影響が無視できる程度 に十分に長い時間(例えば 1〜: LOms)平均化すれば、これを歪値として用いることが できるものである。
第 1の増幅装置では、このようにして求めた歪値に基づいて、制御部 18が従来と同 様にプリディストータの係数を更新して適応制御を行うものである。
[0066] 尚、第 1の増幅装置では、 AZD変換器 9のサンプリング周波数 CLK2を、変調信号 の周波数帯域幅のみをサンプリング可能な周波数に設定しているので、変調信号帯 域外の相互変調歪は、エイリアシングによって変調信号の帯域に落ち込むことになる
[0067] 第 1の増幅装置では、このことを利用して、変調信号の帯域に落ち込んだ相互変調 歪の成分を、等化誤差の絶対値を十分長い時間平均化することによって、変調信号 の帯域のみのサンプリングで検出可能とするものである。
[0068] 本発明の第 1の実施の形態に係る等化器 15は、等化誤差力も歪値を評価するの が目的なので、電力増幅器等で発生する非線形歪が小さくなればなるほど、参照信 号となるプリディストータの入力信号 d(n)と、等化対象の直交復調信号 u(n)との差が小 さくなるものであればよぐより望ましくは、非線形歪がないときに差がゼロになるもの である。従って、参照信号と直交復調信号が受ける周波数特性は、なるべく一致させ たほうがよい。
また、直交復調信号のサンプリングレートは、変調信号帯域幅 (本実施の形態の例 では 20MHz)の 2倍より小さくすることも可能だ力 なるべく 2倍程度かそれ以上のほ うがよい。
[0069] また、通常、電力増幅器 5とプリディストータ 1とは別の基板で構成して、後から調整 するが、本発明の第 1の増幅装置によれば、接続部の周波数特性の不確定性を等 ィ匕器 15によって吸収することができ、調整工数が減って製造コストを安価にすること ができる効果がある。
[0070] 尚、第 1の増幅装置では、等化器 15で用いるアルゴリズムとして LMSアルゴリズム を適用した例について説明したが、同期をとることが可能であれば、その他のァルゴ リズムであっても構わな!/、。
また、上述した例では原理を示したものであって、第 1の増幅装置では参照信号と して通常の CDMA信号をそのまま使用するので、振幅が一定でなぐ実際には、特 許文献 2と同様に、 [数 1]の第 1式を h(n+l)=h(n)+ -u(n)/ | u(n) | 2とする正規化 L MS法を適用したほうがよい。また、等化対象となる周波数特性や遅延はほとんど変 動しないので、 CDMA信号を常時参照する必要はなぐ LMS部 25は、複数サンプ ル時間おきに (複数サンプル時間毎に)参照信号を参照して、係数を更新してもよい 。更新はリアルタイムではなぐノ ツチ処理で行ってもよい。
あるいは、 CDMA信号の内、特定の振幅の信号のみを参照信号として適応等化を 行えば、その特定の振幅を基準として歪が等化誤差となって検出できるものである。
[0071] 次に、本発明の第 2の実施の形態に係る第 2の歪補償増幅装置 (第 2の増幅装置) について説明する。
上述した第 1の増幅装置では、サンプリング周波数を上げずに、変調信号のみを含 む狭い帯域のサンプリングを行って、等化器で検出した等化誤差の絶対値について 十分長い時間の時間平均を算出してこれを歪値としてプリディストータの制御に用い たが、第 2の増幅装置では、 IM5を含む程度の範囲の十分広いサンプリング帯域を 維持し、等化誤差を大きさのみで検出するのではなぐ誤差ベクトルとして検出して、 これに基づいてプリディストータの制御を行うものである。
[0072] 第 2の増幅装置について図 5を用いて説明する。図 5は、第 2の増幅装置の構成を 示す説明図である。
図 5に示すように、第 2の増幅装置は、図 1に示した第 1の増幅装置とほぼ同様の構 成である力 歪検出部 17、制御部 18、及びプリディストータ 1の構成及び動作が第 1 の増幅装置とは一部異なっている。また、 AZD変換器 9におけるサンプリング周波 数も第 1の増幅装置とは異なっている。その他の構成部分は第 1の増幅装置と基本 的に同様であるため説明を省略する。
[0073] AZD変換器 9は、分岐され、ダウンコンバートされた信号を CLK2でサンプリングし て、直交復調器に出力するものである。ここで、 AZD変 9のサンプリング周波数 は、 IM5程度までサンプリング可能な周波数であり、本実施の形態では、 DZA変換 器 2と同じである。
[0074] また、プリディストータ 1には、例えば入力信号の電力値に対応する移相量と減衰 量とが記憶されたルックアップテーブルが設けられており、ルックアップテーブルを参 照して、入力信号の電力値に対応する歪補償値を乗算して、送信信号に電力増幅 器の非線形歪を補償する歪を予め与えるものである。
[0075] 制御部 18は、歪検出部 17の等化器 15から入力された等化誤差 e(n)に基づいて、 LMS法により等化誤差が最小となるよう、 e(n)が発生したときに用いられたプリディス トータ 1のルックアップテーブルの特定の値を直接更新するものである。具体的な制 御方法は、特許文献 1と同じでよい。
[0076] 第 2の増幅装置の特徴部分である歪検出部 17は、第 1の増幅器と同様の等化器 1 5から構成されており、第 1の電力増幅器において設けられていた絶対値平均化部 1 6は設けられていない。
等化器 15は、電力増幅器出力を分岐した入力信号をダウンコンバートしてサンプリ ングして直交復調した信号 u(n)と、参照シンボルとしてのプリディストータの入力信号 d (n)を入力し、検出した等化誤差 (n)を制御部 18に出力するものである。等化器 15の 構成及び動作は第 1の増幅装置と同様である。
[0077] つまり第 2の増幅装置では、歪検出自体には FFTを用いず、等化器で等化誤差を 検出して、これをベクトルのまま歪値として制御部 18に出力するようになっている。第 2の増幅装置は、十分広い周波数帯をサンプリングすることにより、等化誤差の時間 平均をとらなくても、歪成分を検出可能としているものである。
[0078] 本発明の第 2の実施の形態に係る歪補償増幅装置 (第 2の増幅装置)によれば、電 力増幅器 5の出力を方向性結合器 6によって分岐した信号をミキサ 7でダウンコンパ ートし、 AZD変換器 9で第 5次歪 (IM5)を含む程度の周波数帯域をサンプリングし て、直交復調器 14で直交復調し、歪検出部 17の等化器 15が、参照シンボルとして のプリディストータの入力信号 d(n)と当該直交復調信号 u(n)との等化誤差 e(n)を検出 し、これを歪値として制御部 18に出力して、制御部 18が歪値に基づいてプリディスト ータを制御して歪補償を行うものであり、遅延や周波数特性の補償が適切に行われ た状態で時間波形を比較し、非線形歪成分を容易に検出することができる効果があ る。
[0079] また、第 2の増幅装置によれば、第 1の増幅装置と同様に、接続部の周波数特性の 不確定性を等化器 15によって吸収することができ、調整工数が減って製造コストを安 価にすることができる効果がある。
[0080] 次に、本発明の第 3の実施の形態に係る歪補償増幅装置について説明する。
第 3の歪補償増幅装置 (第 3の増幅装置)は、特定の振幅の CDMA信号に対して のみ、誤差をベクトルのまま平均化し、これを歪値として用いてプリディストータを制御 するものである。
[0081] 第 3の増幅装置の構成は、第 1の増幅装置とほぼ同様であるため図示は省略する 力 歪検出部に、等化器と、等化器力 出力される誤差ベクトルをべ外ルのまま平均 化する平均化部 (誤差平均化部)とを備えて 、る。
[0082] 第 3の増幅装置の等化器は、特定の振幅のプリディストータ入力信号 d(n)に対して 誤差を検出するものであるが、一例として、「特定の振幅」を、予め設定された順で低 レベルから高レベルまで巡回的に順次変化させ、各振幅に対して誤差ベクトルを検 出して、平均化部に出力するものである。
[0083] ここで、歪検出部の平均化部においては、検出された誤差ベクトル e(n)に対して、 e( n)/d(n)= (e(n)-d*(n)) / | d(n) | 2を平均化する (d(n)ではなく u(n)で正規ィ匕してもよい ) oこのとき、誤差ベクトル e(n)は、振幅の違いに対して相対的に表現されるものなの で、等化器トレーニングは特定の振幅とは関係なぐ常に同じ条件で行わなければな らない。
[0084] このようにして検出された誤差ベクトルの平均値を歪値として、制御部がプリディスト ータを制御する。 ここで、誤差平均化部の構成について図 6を用いて説明する。図 6は、第 3の実施の形態の誤差平均化部の構成ブロック図である。
図 6に示すように、歪検出部の誤差平均化部は、複素共役乗算器 161と、二乗化 部 162と、除算器 163と、振幅判定部 164と、代表点の数と等しい数の平均化部 165 -1〜165-16から構成されている。平均化部 165-1〜165-16は、それぞれ振幅 xl〜 xl6に対応した誤差ベクトルの平均化を行うものである。
[0085] そして、誤差平均化部では、等化器で検出された誤差べ外ル e(n)に、複素共役乗 算器 161が参照信号 d(n)と複素共役乗算を行い、除算器 163において複素乗算結 果を参照信号 d(n)の振幅成分の二乗で除すと共に、振幅判定部 164が入力信号の 振幅を判断し、除算結果を振幅に応じた平均化部 165に出力して平均化し、その結 果を歪値として制御部に出力するようになっている。
[0086] プリディストータに振幅値に対応する歪補償テーブルが設けられており、これを代 表点の補間によって更新する構成の場合には、平均化部が、等化器からの誤差べク トルを用いて代表点の数だけ歪値を検出し、制御部は、振幅に対応する歪値を用い て代表点を更新する。更新方法として、歪値に 1以下のステップ係数を乗じたものを 対応する代表点の値力も減じる方法がある。代表点を補間してテーブルを作成する 方法は、特開 2005— 73032と同じでよ!/、。
[0087] また、歪補償テーブルをべき関数によって生成する構成の場合には、制御部は、 誤差検出した特定の振幅と、それ以外の振幅におけるべき関数の各係数による偏微 分値の比較から、当該係数を増減したときの当該振幅における歪の変化の方向がわ かるので、その方向と当該誤差ベクトルの方向(位相の進み遅れと振幅の大小)とに 基づいて、誤差が減少するように、各係数の更新方法を決定する制御を行う。
[0088] 本発明の第 3の実施の形態に係る歪補償増幅装置 (第 3の増幅装置)によれば、電 力増幅器の出力を方向性結合器によって分岐した信号をミキサ 7でダウンコンバート し、 AZD変換器でサンプリングして、直交復調器で直交復調し、歪検出部の等化器 力 特定振幅の CDMA信号を参照シンボル d(n)として、当該直交復調信号 u(n)との 誤差ベクトル e(n)を検出する際に、特定の振幅を低レベルから高レベルまで巡回的 に変化させて各振幅について誤差ベクトルを検出して、 e(n)Zu(n)を平均化し、これ を歪値として制御部に出力して、制御部が歪値に基づいてプリディストータを制御し て歪補償を行うものであり、歪がベクトルとして検出されるので、摂動法よりも高速な 歪補償アルゴリズムを使用して、収束を高速ィ匕することができる効果がある。 [0089] 次に、本発明の第 4の実施の形態に係る歪補償増幅装置 (第 4の増幅装置)につい て説明する。
第 4の増幅装置は、プリディストータに FIRフィルタを設け、制御部が、歪検出部の 等化器で検出された等化誤差に基づいて、 FIRフィルタのタップ係数を適応的に制 御するものである。
[0090] 第 4の増幅装置の構成について図 12を用いて説明する。図 12は、本発明の第 4の 増幅装置の構成ブロック図である。
図 12に示すように、第 4の増幅装置は、プリディストータ 100と、 DZA変翻2と、 直交変調器 3と、発振器 4と、電力増幅器 5と、方向性結合器 6と、直交復調器 7と、 A ZD変翻 9と、等化器 (図では「線形等化器」) 15と、制御部 18とから構成されてお り、基本的な構成は、上述した第 2の増幅装置とほぼ同様である力 プリディストータ 100と、制御部 18の構成及び動作が第 2の増幅装置とは一部異なっている。
[0091] そして、第 4の増幅装置では、上述した第 1〜第 3の増幅装置と同様に、入力信号 はプリディストータ 100によって電力増幅器 5で発生する非線形歪が補償され、 DZ A変換されて、直交変調器で直交変調されると共に発振器 4力 の無線周波数でァ ップコンバートされ、電力増幅器 5で増幅されて出力信号となる。
[0092] 電力増幅器 5からの出力信号は、方向性結合器 6で分岐されてフィードバックされ、 直交復調器 7でダウンコンバートされて直交復調され、 AZD変換器 9でデジタル信 号に変換され、等化器 15において、フィードバック信号の直交復調信号 u(n)をプリデ イストータの入力信号 d(n)で等化した等化誤差 e(n)を算出し、制御部 18が、当該等化 誤差を最小とするよう、プリディストータの制御を行うようになっている。ここで、等化器 15では方向性結合器 6以降のアナログ素子で発生する線形歪が除去され、残った 等化誤差 e(n)は電力増幅器 5で発生した非線形歪成分に起因するものとなる。
[0093] 第 4の増幅装置の特徴部分であるプリディストータ 100の構成について具体的に説 明する。図 13は、第 4の増幅装置のプリディストータ 100の構成ブロック図である。 図 13に示すように、第 4の増幅装置のプリディストータ 100は、 3次歪発生器 101と 、 5次歪発生器 102と、 7次歪発生器 103と、遅延回路 104と、第 1の FIRフィルタ (FI Rフィルタ(1) ) 105と、第 2の FIRフィルタ(FIRフィルタ(2) ) 106と、第 3の FIRフィル タ(FIRフィルタ(3) ) 107と、カロ算器 108〜: L 10とを備えて!/、る。
[0094] 3次歪発生器 101は、図 9に示した従来のプリディストータにおける 1段目の構成と 同様であり、 |χ|2 · χを算出するものである。同様に、 5次歪発生器 102は、 I X I 4 · χを 算出するものであり、 7次歪発生器 103は、 I X I 6 · χを算出するものである。
遅延器 104は、入力信号 χ (η)を一定時間遅延するものである。
[0095] 第 1の FIRフィルタ 105は、制御部 18から与えられた最適なタップ係数 hiに基づい て 3次歪について積和演算を行うフィルタである。同様に、第 2の FIRフィルタ 106及 び第 3の FIRフィルタ 107には、それぞれ、制御部 18から最適なタップ係数 h2、 h3が 与えられて演算が為されるようになって!/、る。
[0096] すなわち、図 9の従来のプリディストリビュータの構成と第 4の増幅装置のプリディス トータとの相違点は、第 4の増幅装置のプリディストリビュータでは、各歪発生器から の出力に係数 ( α、 β、 γ )を乗算する代わりに、 FIRフィルタを通して 、る点である。
[0097] 制御部 18は、等化器 15からの等化誤差 e(n)と、 3次歪信号、 5次歪信号、 7次歪信 号を入力して、 LMS等の適応アルゴリズムにより FIRフィルタ 105, 106, 107の最適 なタップ係数 hi、 h2、 h3を算出して、各 FIRフィルタに与えるものである。
[0098] カロ算器 110は、第 3の FIRフィルタ 107の出力と、第 2の FIRフィルタ 106の出力とを 加算するものであり、加算器 109は、加算器 110の出力と、第 1の FIRフィルタ 105の 出力とを加算するものである。
加算器 108は、加算器 109の出力と、遅延回路 104で遅延された入力信号とをカロ 算してプリディストータ 100の出力信号を生成するものである。
[0099] 次に、制御部 18における上記構成のプリディストータの制御方法について説明す る。
第 1 ,第 2,第 3の FIRフィルタにおける係数 hl、 h2、 h3は、それぞれ、
hl(n+l) =hl(n) + 1 · u(n) · e(n)
h2(n+l) =h2(n) + 2 · u(n) · e(n)
h3(n+l) =h3(n) + ,u 3 · u(n) · e(n)
で表される。上述したように、 e(n)は、線形等化器 15で等化しきれな力つた非線形歪 による等化誤差であり、 u(n)は、フィードバック信号の直交復調信号であり、 μ 1、 μ 2 、 3は、係数更新の応答特性を決めるステップゲインである。ステップゲインを大きく すると、収束速度は速くなるが残留誤差が大きくなり、ステップゲインを小さくすると、 収束速度は遅くなるが残留誤差を小さくすることができるものである。
[0100] そして、第 4の増幅装置では、図 10に示した従来の LMSによる制御と同様にして、 hl、 h2、 h3を更新するものである。
ステップゲイン μ 2, μ 3の設定方法としては、 hl(n)、 h2(n)、 h3(n)を更新する応 答特性が全て同じになるように設定してもよいし、特定の順番、例えば hl(n)、 h2(n)、 h 3(n)の順に係数が収束するように、 β Ι > β 2 > β 3となるステップゲインを設定しても よい。又は、逆の順で、 h3(n)、 h2(n)、 hl(n)の順に係数を収束させたい場合には、 μ 1 < 2 < 3とすればよい。
このように、順番に係数更新を動作させることで、収束の安定ィ匕を図ることができる ものである。
[0101] ステップゲインの別の設定方法としては、線形等化器 15が収束するまでは、 μ 1、 μ 2、 μ 3を全て 0に設定し、線形等化器 15が収束したら、まず 1に適当な値を設定 して hl(n)のみを更新し、 e(n)の値力これ以上 0に近づかない状態になったら、 μ 1を 0 に戻して 2に適当な値を設定して h2(n)のみを更新し、…というようにして、 hl(n)→h2 (n)→h3(n)→hl(n)…という順番で 1つずつ係数を更新することも可能である。これによ り、収束の安定を図ることができるものである。
[0102] 本発明の第 4の実施の形態に係る歪補償増幅装置 (第 4の増幅装置)によれば、プ リディストータ 100の、 3次歪発生器 101、 5次歪発生器 102、 7次歪発生器 103の出 力にそれぞれ FIRフィルタ 105、 106、 107を設け、歪を検出する等化器 15が、参照 シンボルとしてのプリディストータの入力信号 d(n)と当該直交復調信号 u(n)との等化誤 差 e(n)を検出し、これを歪値として制御部 18に出力して、制御部 18が歪値に基づい て各 FIRフィルタの係数を適応アルゴリズムによって更新する歪補償増幅装置として いるので、歪検出における FFTを不要として処理量を低減し、回路規模を増大させ ることなく精度の高い歪補償を行うことができる効果がある。
[0103] また、第 4の増幅装置によれば、各 FIRフィルタにおける係数を収束させる際のステ ップゲインを、 3次歪、 5次歪、 7次歪の順で収束するよう設定することにより、収束の 安定性を向上させ、安定した歪補償を行うことができる効果がある。
[0104] 次に、別の歪制御機能付き増幅装置について説明する。
近年、高効率増幅器としてドハティ増幅器が注目されている。
[0105] 図 24は、従来のドノ、ティ増幅器の構成を示すブロック図である。
入力端子 111に入力された信号は、分配器 112で分配され、その一方の信号はキ ャリア増幅回路 40に入力される。キャリア増幅回路 40は、増幅素子 42と、この増幅 素子 42の入力側と整合を取る入力整合回路 41と、増幅素子 42の出力側と整合を取 る出力整合回路 43から構成されている。キャリア増幅回路 40の出力は、 λ Ζ4変成 器 61でインピーダンス変換される。
[0106] 上記分配器 112で分配されたもう一方の信号は、移相器 113で位相が 90度遅延さ れてピーク増幅回路 50に入力される。ピーク増幅回路 5はキャリア増幅回路 40と同 様に、入力整合回路 51と、増幅素子 52と、出力整合回路 53から構成されている。 λ Ζ4変成器 61及びピーク増幅回路 5の出力はノード (合成点) 62にお ヽて合成され る。 λ Ζ4変成器 61とノード 62とを合わせて、ドノ、ティ合成部 60と呼ぶ。合成された 信号は、出力負荷 Ζに整合するため、 λ Ζ4変成器 70でインピーダンス変換され、
0
出力端子 80を介して負荷 90に供給される。
[0107] キャリア増幅回路 40とピーク増幅回路 50は、増幅素子 42が ΑΒ級にバイアスされ、 増幅素子 52が Β又は C級にバイアスされている点で異なる。そのため、増幅素子 52 が動作する入力までは増幅素子 42は単独で動作し、増幅素子 42が飽和領域に入り 、増幅素子 42の線形性が崩れ始めると、増幅素子 52が動作し始め、増幅素子 52の 出力が負荷 90に供給され、増幅素子 42とともに負荷 90を駆動する。このとき出力整 合回路 43の負荷線は、高い抵抗力 低い抵抗へ移動する力 増幅素子 42は飽和 領域にあるので効率は良い。入力端子 111からの入力が更に増加すると、ピーク増 幅回路 50の増幅素子 52も飽和し始める力 増幅素子 42、 52ともに飽和しているの で、このときも効率は良い。
[0108] また、関連する公知技術として、ドハティ増幅器にお!、て、ピーク増幅器における増 幅素子のバイアスを制御し、あるいはキャリア増幅器及びピーク増幅器における両増 幅素子のバイアスを制御し、歪の発生を低減するようにした歪制御機能付き増幅器 が考えられている。公知技術としては、特開 2005— 117599号公報、特開 2002— 5 0933号公報、特表 2005— 516524号公報力ある。
[0109] そして、従来のフィードフォワード歪補償やプリディストーション歪補償を備えた増幅 装置では、歪を補償しきれない状態になるという問題や、歪補償後の相互変調歪に ばらつきがあり、それを補うためにマージンを大きくとると効率が劣化し、結果的に効 率を限界まで引き出せな 、状態になる。
[0110] また、従来のドハティ増幅器は、効率を良好にすればするほど、 AM— AM (入力 振幅レベル対出力振幅レベル)変換特性及び AM— PM (入力振幅レベル対出力位 相回転量)変換特性が劣化し、また、歪制御機能付き増幅器においても歪の低減が 十分でなぐ効率を限界まで引き出すことができないという問題がある。
[0111] そこで、別の歪補償機能付き増幅装置は、上記の課題を解決するためになされた もので、 AM— AM変換特性及び AM— PM変換特性を良好に保つと共に歪補償後 の相互変調歪にばらつきを吸収でき、効率を限界まで引き出すことができる歪制御 機能付き増幅装置を提供することを目的とする。
[0112] 別の歪制御機能付き増幅装置は、 AB級で動作する増幅素子を備えたキャリア増 幅回路と、制御端子力 入力される制御信号により増幅動作が制御される増幅素子 を備えたピーク増幅回路と、前記キャリア増幅回路及びピーク増幅回路で増幅され た信号を合成して出力する合成手段とからなるドハティ増幅器と、前記ドハティ増幅 器の非線形歪を補償するプリディストータと、前記ドノ、ティ増幅器の出力信号に含ま れる相互変調歪を検出する歪検出部と、前記歪検出部で検出された歪値が小さくな るように前記プリディストータを制御すると共に、前記歪検出部で検出された相互変 調歪が目標値になるように前記ピーク増幅回路内の増幅素子を制御する制御部とか らなるプリディストーション歪補償回路とを具備することを特徴とする。
[0113] 別の歪制御機能付き増幅装置によれば、ドハティ増幅器における相互変調歪を目 標の相互変調歪に収束させることが可能になり、相互変調歪のばらつきを吸収でき、 且つ相互変調歪の目標値を適切な値に設定することで効率を限界まで引き出すこと が可能となる。
[0114] 以下、図面を参照して別の歪制御機能付き増幅装置の一実施形態を説明する。 図 14は別の歪制御機能付き増幅装置の一実施形態に係る歪制御機能付き増幅 装置の構成を示すブロック図であり、プリディストーション歪補償回路 200とドノ、ティ増 幅器 20を組み合わせて構成したものである。図 15はドハティ増幅器 20の詳細な構 成を示すブロック図である。
[0115] 図 14に示すように、プリディストーション歪補償回路 200の入力端子 201には、信 号が入力される。この入力信号は、プリディストータ 202で非線形歪が補償され、 DZ A変^ ^203へ送られる。上記プリディストータ 202は、上記図 12に示したものと同 様に構成される。上記 DZA変 203は、クロック信号 CLK1に同期してデジタル 信号をアナログ信号に変換し、直交変調器 204へ出力する。この直交変調器 204は 、発振器 205からの信号によって入力信号を直交変調する。上記直交変調器 204で 変調された信号は、ドハティ増幅器 20で増幅され、出力端子 207から出力される。
[0116] 又、ドノ、ティ増幅器 20の出力信号の一部は、方向性結合器 208を介して取り出さ れ、ミキサ 209に入力される。ミキサ 209は、方向性結合器 208から取り出された信号 を発振器 210からの発振周波数に基づ 、て IF周波数にダウンコンバートする。ミキサ 209でダウンコンバートされた IF信号は、 AZD変 211でデジタル信号に変換さ れて歪検出部 212へ送られる。この歪検出部 212は、高速フーリエ変換回路 (FFT) 213及び ΙΜ演算回路 214からなり、上記ドハティ増幅器 20から出力される信号の歪 値を求め、制御部 217へ出力する。制御部 217は、歪検出部 212で検出された歪値 力 S小さくなるようにプリディストータ 202を適応的に制御すると共に、歪検出部 212で 検出された相互変調歪が目標値になるようにドノ、ティ増幅器 20を制御する。この場 合、制御部 217から出力されるドハティ増幅器 20に対する制御信号は、 DZA変換 器 216によりアナログ信号に変換されてドハティ増幅器 20へ送られ、図 15に示すよう にピーク増幅回路 50内の増幅素子 52のゲート端子 150に入力される。
[0117] 上記ドノ、ティ増幅器 20は、図 15に示すように構成される。
ドノ、ティ増幅器 20の入力端子 111には、図 14に示した直交変調器 204で変調さ れた信号が入力端子 111に入力される。この入力端子 111に入力された信号は、分 配器 112で分配され、その一方の信号はキャリア増幅回路 40に入力される。キャリア 増幅回路 40は、増幅素子 42と、この増幅素子 42の入力側と整合を取る入力整合回 路 41と、増幅素子 42の出力側と整合を取る出力整合回路 43から構成されて 、る。 キャリア増幅回路 4の出力は、 λ Ζ4変成器 61でインピーダンス変換される。
[0118] 上記分配器 112で分配されたもう一方の信号は、移相器 113で位相が 90度遅延さ れてピーク増幅回路 50に入力される。ピーク増幅回路 50は、増幅素子 52と、この増 幅素子 52の入力側と整合を取る入力整合回路 51と、増幅素子 52の出力側と整合を 取る出力整合回路 53から構成される。上記増幅素子 52は、制御端子であるゲート端 子 150を備え、このゲート端子 150に上記図 14に示した DZA変翻216から出力 されるゲート電圧が入力される。上記増幅素子 42、 52としては、通常、 LD— MOS ( Lateral Diffiised MOS)、 GaAs— FET、 HEMT、 HBT等の半導体デバイスが用い られる。なお、増幅素子 52として FETを用いた場合は、ゲート電圧により動作が制御 される力 増幅素子 52としてトランジスタを用いた場合はベース電圧により動作が制 御される。
[0119] そして、上記 λ Ζ4変成器 61及びピーク増幅回路 5の出力は、ノード 62において 合成される。上記 λ /4変成器 61及びノード 62によりドノ、ティ合成部 6を構成してい る。ノード 62で合成された信号は、出力負荷 Ζに整合するため、
0 λ Ζ4変成器 7でィ ンピーダンス変換され、出力端子 80を介して図 14に示した出力端子 207へ送られる
[0120] 上記の構成において、ドノ、ティ増幅器 20から出力される信号の一部が方向性結合 器 208を介して取り出され、ミキサ 209により IF周波数にダウンコンバートされた後、 AZD変換器 211でデジタル信号に変換されて歪検出部 212へ送られる。歪検出部 212は、高速フーリエ変換回路 213で IF信号のスペクトラムを求め、次いで IM演算 回路 214にて変調信号のキャリア数とその離調周波数力も計算される IM3 (3次の相 互変調歪)、 IM5 (5次の相互変調歪)の周波数における電力値を歪値とする。制御 部 217は、歪検出部 212で検出された歪値が小さくなるようにプリディストータ 202を 適応的に制御すると共に、歪検出部 212で検出された相互変調歪が目標値になるよ うに DZA変翻216を介してドノ、ティ増幅器 20内のピーク増幅回路 50を制御する
[0121] 上記プリディストータ 102で歪補償された信号は、 DZA変翻203でアナログ信 号に変換された後、直交変調器 204で直交変調され、ドハティ増幅器 20へ送られて 増幅される。このときドハティ増幅器 20は、制御部 217から DZA変翻 216を介し てゲート端子 150に与えられるゲート電圧によってピーク増幅回路 50における増幅 素子 52のゲートが制御され、相互変調歪の発生が抑制される。そして、上記ドノ、ティ 増幅器 20で増幅された信号が出力端子 207から出力される。
[0122] 次に、上記図 14おける制御部 217の動作を図 16に示すフローチャートを参照して 説明する。
[0123] 先ず、更新対象係数、設定回数、前回の歪値を設定すると共に、ピーク増幅回路 5 0の増幅素子 52のゲート電圧 Vgを Bに設定する等の初期設定を行なう(ステップ B1 )。例えば、更新する対象の係数 Kを Φ 3に設定し、歪検出部 212で計算された歪値 を、前回の歪値と比較する (ステップ B2)。歪値が前回の値より小さくなつていれば、 更に同じ方向に係数を更新し、すなわち、「K=K+Step」の処理により係数を更新し (ステップ B4)、歪値が大きくなつていれば「Step = Step * (— 1)の処理により更新方 向を反転させ (ステップ B3)、その後、ステップ B4に進んで係数の更新を行なう。次 に同じ数 Φ 3を連続して何回更新したかをカウントし (ステップ B5)、検出した歪値を 保存する (ステップ B6)。この保存した歪値は、次回の歪値比較で用いる。
[0124] 次に、更新回数と予め設定した設定回数を比較し (ステップ B7)、更新回数が設定 回数以下であればステップ B2に戻って Φ 3の係数更新を繰り返す。また、更新回数 が設定回数を超えると、更新対象係数を変更する (ステップ B8)。つまり、係数 Kを Φ 3から A3に変更し、更新回数をクリアする (ステップ B9)。
[0125] 次に、歪が収束 (安定)したかどうかを判定し (ステップ B10)、上記ステップ B2〜B 9の作業を継続させるかどうかを判断する。歪が収束しな 、場合はステップ B2に戻つ てステップ B2〜B10の処理を繰り返して実行する。
[0126] 上記ステップ B10で歪が収束したと判定された場合は、現状の歪値と目標の歪値 を比較する (ステップ Bl l)。すなわち、
a:目標の歪値 =現在の歪値
b :目標の歪値 <現在の歪値
c :目標の歪値 >現在の歪値 の何れであるかを判定する。
[0127] 判定の結果、現状の歪値と目標の歪値が同等 (a)であれば、ピーク増幅回路 5内 の増幅素子 52のゲート電圧を「Vg=Vg」とし (ステップ B12)、現状の歪値が目標の 歪値以上 (b)のときはピーク増幅回路 5内の増幅素子 52のゲート電圧を「Vg=Vg + Vステップ (変化させる電圧のステップ幅)」に変更し (ステップ B13)、また、現状の歪 値が目標の歪値以下 (c)のときはピーク増幅回路 5内の増幅素子 52のゲート電圧 V 8を「¥88—¥ステップ」と変更する(ステップ B14)。その後、ステップ B2に戻って 処理を継続する。また、このゲート電圧 Vgの変化幅 (ピーク増幅回路 5の動作点の範 囲)は、下限を A、上限を Cとする。
[0128] この様にすることにより自動的に規定値の歪以下にすることができるので、調整が 容易となる。また、増幅素子 52のゲート電圧 Vgを手動で変えても良い。
[0129] 図 17〜図 19は、図 14に示したピーク増幅回路 50における増幅素子 52のゲート電 圧 Vgを変化させた場合の歪補償特性であり、図 17はゲート電圧 Vgを Aとした場合 の 3次相互変調歪特性、図 18はゲート電圧 Vgを Bとした場合の 3次相互変調歪特性 、図 19はゲート電圧 Vgを Cとした場合の 3次相互変調歪特性である。
[0130] 図 17〜図 19は、横軸に周波数をとり、縦軸に信号レベルをとつて示した。図中の a は歪補償前の特性、 bは歪補償後の特性である。
[0131] 上記歪制御機能付き増幅装置は、図 17に示すようにゲート電圧 Vgを Aとすると効 率 40% · 3次相互変調歪 (歪補償後) 40dBc、図 18に示すようにゲート電圧 Vgを Bとすると効率 30% · 3次相互変調歪 (歪補償後) 45dBc、図 19に示すようにゲー ト電圧 Vgを Cとすると効率 20% · 3次相互変調歪 (歪補償後) - 50dBcが得られた。 このように効率と歪補償後の相互変調歪はトレードオフの関係であり、相互変調歪( 歪補償後)の目標値を適切な値 (設計値)に設定することで効率を限界まで引き出す ことが可能である。
[0132] 以上の説明から明らかなように、増幅素子 52のゲート電圧 Vgを調整することによつ て目標とする相互変調歪値とすることができる。例えば目標の相互変調歪値を 45 dBcと決めた場合、ゲート電圧は Bに設定する。但し、増幅器の仕様によっては、 3次 相互変調歪値が— 40dBcで良い場合もあり、その時はゲート電圧を Aに設定する。 従って、目標の相互変調歪になるように、ゲート電圧 Vgを変化させることで歪補償後 の相互変調歪をコントロールすることができる。すなわち、現状の相互変調歪 (歪補 償後)を目標の相互変調歪 (歪補償後)に収束させることが可能になり、相互変調歪( 歪補償後)のばらつきを吸収できる。
[0133] 一例として、上記歪制御機能付き増幅装置の AM— PM変換特性について説明す る。図 20 (a)〜(d)は、ピーク増幅回路 5の増幅素子 52に供給するゲート電圧 Vgを 変化させた場合の AM— PM変換特性で、(a)はゲート電圧 Vg=Aとした場合、 (b) はゲート電圧 Vg = Bとした場合、(c)はゲート電圧 Vg = Cとした場合、(d)はゲート電 圧 Vgをキャリア増幅回路 4の増幅素子 42のゲート電圧 Vgと等しくした場合の特性で ある。なお、上記図 7の AM— PM変換特性は、横軸に入力をとり、縦軸に位相()をと つて示した。
[0134] 上記のように増幅素子 52に供給するゲート電圧 Vgを上げていくと AB級の 2合成の AM— PM変換特性に近づいていき最終的に AB級と同等の性能になる。このためド ハティ増幅器を AB級の 2合成回路としても使用でき、従来の AB級 2合成回路をドハ ティ回路で置き換えることが可能である。
[0135] なお、上記実施形態におけるプリディストーション歪補償回路 200は、一例を示した ものであり、他の構成であっても良い。
また、ドハティ増幅器 20も一例を示したもので、他の構成であっても良い。 上記ドノ、ティ増幅器 20の他の構成例について以下に説明する。
(第 1構成例)
図 21は、ドハティ増幅器 20の第 1構成例を示すブロック図である。このドハティ増幅 器 20は、図 15における λ Ζ4変成器 61を任意の電気長の伝送線路力もなるインピ 一ダンス変 64に置き換えると共に移相器 113を移相器 31に置き換えたもので、 その他の構成は定数等の違いはあるものの基本的に同じである。
[0136] インピーダンス変換器 64は、長さ 1=0〜 λ Ζ2或いは以上の電気長を有する伝送 線路により構成される。
移相器 31は、原理的にはインピーダンス変換器 64に相当する遅延を発生する伝 送線路である。移相器 31は合成を同相で行なうためのものであり、キャリア増幅回路 40とピーク増幅回路 50の位相差も吸収しなければならな 、ので、インピーダンス変 翻64の遅延と異なることもある。その他の構成は、定数等の違いはあるものの図 1 5に示した増幅器と基本的に同じである。
[0137] 上記の構成によれば、インピーダンス変換器 64を構成する伝送線路の長さを調整 することにより、増幅素子の種類などに依存することなく回路のインピーダンスを最適 値に設定でき、増幅装置の性能を向上することができる。
[0138] (第 2構成例)
図 22は、ドハティ増幅器 20の第 2構成例を示すブロック図である。この第 2構成例 は、図 21に示したドハティ増幅器 20において、ピーク増幅回路 50とノード 62との間 にインピーダンス変翻 65を設けると共に、移相器 31を移相器 33に置き換えたもの で、その他の構成は基本的に同じである。
[0139] 上記ノード 62は、出力整合回路 43及び 53からの出力信号をインピーダンス変換 器 64とインピーダンス変換器 65を介して結合する。インピーダンス変換器 65は、例 えばインピーダンス変 64と同様の任意長の伝送線路力もなり、入力信号のレべ ルが低く増幅素子 52が動作して 、な 、ときキャリア増幅回路 4の信号が流れな 、よう に、出力整合回路 53の出力インピーダンスを、より大きなインピーダンスに変換する
[0140] 移相器 33は、インピーダンス変 と同 Cf立相回転 (遅延)を発生するもので、 インピーダンス変翻 64の影響やキャリア増幅回路 40とピーク増幅回路 50の位相 が異なったときに位相調整を行なう。
[0141] 上記のようにインピーダンス変 65を設けることにより、ノード 62側カゝらピーク増 幅回路 5をみたインピーダンスをより大きな値とすることができ、入力信号のレベルが 小さくて出力整合回路 53の出力インピーダンスが十分大きくならないような場合であ つても、キャリア増幅回路 40の損失を抑えて高効率な増幅器を構成することができる
[0142] (第 3構成例)
図 23 (a)、(b)は、ドノ、ティ増幅器 20の第 3構成例を示すブロック図である。
この第 3構成例は、図 22に示したドノ、ティ増幅器 20において、移相器 33、インピー ダンス変 64、 65に代えて移相器 34、インピーダンス変 66、 67を使用したも ので、その他の構成は基本的に同じである。
[0143] 上記移相器 34、インピーダンス変換器 66、 67は、何れも長さの異なる複数の伝送 線路 (ここでは 3種類)とスィッチとを組み合わせたものである。
[0144] 各伝送線路は、予め使用が予想される複数の周波数に合わせて増幅器の性能が 最も良くなるよう最適化された長さとなっており、また、配線板上に導体パターンをし て形成されるものに限らず、装置毎に長さの微調整が容易なセミリジッドケーブルを 用いてもよい。
[0145] 移相器 34には、スィッチ a、 b及び端子 A、 Bが設けられ、インピーダンス変 66 には、スィッチ d及び端子 C、 Dが設けられ、インピーダンス変翻 67には、スイツ チ6、 f及び端子 E、 Fが設けられており、各スィッチ a〜fは、それぞれ対応する端子 A 〜Fから入力される制御信号に従って何れかの伝送線路に接続するよう切り替えられ るようになっている。
[0146] 更に、図 23 (a)に示した増幅器の制御を行なう制御部は、図 23 (b)に示すように、 制御信号を発生する CPU (又は ROM) 120と、 IZOコントローラ 130とを備えており 、図 23 (a)に示した増幅器の各端子 A〜Fは、 I/Oコントローラ 130に接続されてい る。また、 CPU (又は ROM) 120には、図示は省略する力 例えばテーブルとして、 予め使用が予想される周波数とそれに対応する長さの伝送線路に接続するための 各端子毎の制御信号のデータが記憶されて 、る。
[0147] そして、 CPU (又は ROM) 120に、周波数を指定する信号が入力されると、 CPU ( 又は ROM) 120が、指定された周波数に対応して記憶されている制御信号を読み 出して、端子 A〜Fに出力する。そして、スィッチ a〜fは、それぞれ端子 A〜Fに入力 された制御信号に基づいて切り替えられ、使用される周波数に応じた最適な長さの 伝送線路が選択されるものである。
[0148] 第 3構成例に係るドハティ増幅器 20によれば、使用周波数に応じて容易に最適な 長さの伝送線路を選択して移相器 34、インピーダンス変換器 66、 67を構成するので 、移相器 34、インピーダンス変 66、 67の周波数特性に起因する最適値力ゝらの ずれが緩和され、周波数にかかわらず最適な整合を行なってドノ、ティ増幅器の増幅 効率を向上させることができ、適用可能な周波数帯を拡大できる効果があり、また、 各周波数帯用に専用の配線板を準備する場合に比べ、コストを大幅に削減できる効 果がある。
[0149] なお、別の歪制御機能付き増幅装置は、上記実施形態そのままに限定されるもの ではなぐ実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体ィ匕で きるものである。
産業上の利用可能性
[0150] 本発明は、無線通信送信機の電力増幅器に用いられ、特に、変調信号が広帯域 化しても、サンプリング周波数を上げずにすみ、回路規模及び消費電力を増大させ ることなく歪検出を行うことができる非線形歪検出方法及び歪補償増幅装置に適して いる。

Claims

請求の範囲
[1] 入力信号を電力増幅する増幅器と、
増幅対象となる入力された変調信号につ!、て、前記増幅器で発生する非線形歪を 補償する歪補償手段と、
前記増幅器出力のフィードバック信号に基づいて前記増幅器出力に含まれる歪成 分を検出して歪を評価する歪検出部と、
前記歪検出部での歪の評価に基づいて歪補償手段を制御する制御部とを備えた 歪補償増幅装置における非線形歪検出方法であって、
前記歪検出部が、前記歪補償手段への入力信号を参照シンボルとして、前記増幅 器出力のフィードバック信号を等化して、前記等化信号と前記参照シンボルとの等化 誤差を求め、前記等化誤差に基づいて歪を評価する非線形歪検出方法。
[2] 歪検出部が、等化誤差の絶対値を特定時間にわたって時間平均した時間平均値 を求め、前記時間平均値に基づいて歪を評価する請求項 1記載の非線形歪検出方 法。
[3] 歪検出部が、歪補償手段への入力信号の振幅を低レベルから高レベルまで巡回 的に変化させて、前記入力信号の振幅のレベル毎に等化誤差を検出して平均化し、 前記平均化の結果に基づいて前記各振幅のレベルにおける歪を評価する請求項 1 記載の非線形歪検出方法。
[4] 入力信号を電力増幅する電力増幅器と、
入力された送信すべき変調信号につ!、て、前記電力増幅器で発生する非線形歪 を補償するプリディストータと、
前記電力増幅器出力のフィードバック信号を特定の周波数でサンプリングする AZ D変翻と、
AZD変換された前記フィードバック信号に基づ 、て前記電力増幅器出力に含ま れる歪成分を検出して歪値として出力する歪検出部と、
前記歪値に基づいて前記プリディストータを制御する制御部とを備えた歪補償増幅 装置であって、
前記 AZD変換器が、送信すべき変調信号を含み、相互変調歪を含まない周波数 帯域をサンプリング可能な周波数でサンプリングする AZD変換器であり、 前記歪検出部が、前記プリディストータへの入力信号を参照シンボルとして入力し
、前記電力増幅器出力のフィードバック信号を FIRフィルタにより等化して、前記等化 信号と前記参照シンボルとの等化誤差を出力する等化器と、前記等化誤差の絶対 値を特定時間にわたって時間平均した時間平均値を歪値として出力する絶対値平 均化部とを備えた歪検出部である歪補償増幅装置。
[5] 入力信号を電力増幅する電力増幅器と、
入力された送信すべき変調信号につ!、て、前記電力増幅器で発生する非線形歪 を補償するプリディストータと、
前記電力増幅器出力のフィードバック信号を特定の周波数でサンプリングする AZ D変翻と、
AZD変換された前記フィードバック信号に基づ 、て前記電力増幅器出力に含ま れる歪成分を検出して歪値として出力する歪検出部と、
前記歪値に基づいて前記プリディストータを制御する制御部とを備えた歪補償増幅 装置であって、
前記 AZD変換器が、送信すべき変調信号を含み、相互変調歪を含まない周波数 帯域をサンプリング可能な周波数でサンプリングする AZD変換器であり、
歪検出部が、等化器からの出力を、参照シンボルの振幅のレベル毎に平均化して 、平均値を参照シンボルの振幅のレベルに対応した歪値として出力する複数の平均 化部と、
前記プリディストータへの入力信号を参照シンボルとして入力し、前記電力増幅器 出力のフィードバック信号を FIRフィルタにより等化して、前記等化信号と前記参照シ ンボルとの等化誤差を算出し、前記等化誤差と前記参照シンボルとの複素共役演算 の演算結果を前記参照シンボルの振幅成分の二乗で除すと共に、前記参照シンポ ルの振幅成分の二乗に基づ 、て前記参照シンボルの振幅のレベルを判定し、前記 除算結果を、前記判定された振幅のレベルに応じた平均化部に出力する等化器とを 備えた歪検出部である歪補償増幅装置。
[6] 歪検出部が、 LMSアルゴリズムによって FIRフィルタのタップ係数を更新する LMS 部を備えた歪検出部である請求項 4又は 5記載の歪補償増幅装置。
[7] LMS部が、複数サンプル時間毎に参照シンボルを参照して、タップ係数を更新す る LMS部である請求項 6記載の歪補償増幅装置。
[8] 入力信号を電力増幅する電力増幅器と、
入力された送信すべき変調信号につ!、て、前記電力増幅器で発生する非線形歪 を補償するプリディストータと、
前記電力増幅器出力のフィードバック信号を特定の周波数でサンプリングする AZ D変翻と、
AZD変換された前記フィードバック信号に基づ 、て前記電力増幅器出力に含ま れる歪成分を検出して歪値として出力する歪検出部と、
前記歪値に基づいて前記プリディストータを制御する制御部とを備えた歪補償増幅 装置であって、
前記歪検出部が、前記プリディストータへの入力信号を参照シンボルとして入力し 、前記電力増幅器出力のフィードバック信号を FIRフィルタにより等化して、前記等化 信号と前記参照シンボルとの等化誤差を歪値として出力する等化器を備えた歪検出 部である歪補償増幅装置。
[9] プリディストータが、 3次相互変調歪発生器と、 5次相互変調歪発生器と、 7次相互 変調歪発生器と、前記 3次相互変調歪発生器に対応する第 1の FIRフィルタと、前記 5次相互変調歪発生器に対応する第 2の FIRフィルタと、前記 7次相互変調歪発生 器に対応する第 3の FIRフィルタとを備えたプリディストータであり、
制御部が、歪検出部から出力される歪値に基づいて前記プリディスト一タの第 1, 第 2,第 3の FIRフィルタのタップ係数を更新する制御部である請求項 8記載の歪補 償増幅装置。
[10] 前記第 1、第 2、第 3の各 FIRフィルタのタップ係数を更新する応答速度を決定する 第 1、第 2、第 3のステップゲインを、第 1のステップゲイン >第 2のステップゲイン >第 3のステップゲインとなるよう設定した請求項 9記載の歪補償増幅装置。
PCT/JP2006/320642 2005-10-17 2006-10-17 非線形歪検出方法及び歪補償増幅装置 WO2007046370A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2006800283907A CN101233684B (zh) 2005-10-17 2006-10-17 非线形失真检测方法和失真补偿放大装置
JP2007540981A JP4755651B2 (ja) 2005-10-17 2006-10-17 非線形歪検出方法及び歪補償増幅装置
US12/078,507 US8014443B2 (en) 2005-10-17 2008-04-01 Non-linear distortion detection method and distortion compensation amplifying device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005301671 2005-10-17
JP2005-301671 2005-10-17
JP2006-117452 2006-04-21
JP2006117452 2006-04-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/078,507 Continuation US8014443B2 (en) 2005-10-17 2008-04-01 Non-linear distortion detection method and distortion compensation amplifying device

Publications (1)

Publication Number Publication Date
WO2007046370A1 true WO2007046370A1 (ja) 2007-04-26

Family

ID=37962463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320642 WO2007046370A1 (ja) 2005-10-17 2006-10-17 非線形歪検出方法及び歪補償増幅装置

Country Status (4)

Country Link
US (1) US8014443B2 (ja)
JP (1) JP4755651B2 (ja)
CN (1) CN101233684B (ja)
WO (1) WO2007046370A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218769A (ja) * 2008-03-10 2009-09-24 Fujitsu Ltd 歪み補償係数更新装置および歪み補償増幅器
WO2010001357A1 (en) * 2008-07-02 2010-01-07 Innovaradio S.A. A pre-distortion method and device to enhance the power utility of power amplifiers in wireless digital communication applications
JP2010045791A (ja) * 2008-08-18 2010-02-25 Fujitsu Ltd 電力増幅器の非線形度測定装置及び方法、先行歪ませ補正装置
JP2010114759A (ja) * 2008-11-07 2010-05-20 Sumitomo Electric Ind Ltd 歪補償回路
JP2011151787A (ja) * 2010-01-20 2011-08-04 Pohang Univ Of Science & Technology Academy-Industry Cooperation 分布ドハティ電力増幅器
JP2012070063A (ja) * 2010-09-21 2012-04-05 Fujitsu Ltd 送信装置及び歪補償方法
JP2012529225A (ja) * 2009-06-04 2012-11-15 ザイリンクス インコーポレイテッド 予測的オーバードライブ検出のための装置および方法
US8542062B2 (en) 2009-11-16 2013-09-24 Innovaradio Sa Adaptive digital pre-distortion method and device to enhance the power utility of power amplifiers in wireless digital communication applications
US8837633B2 (en) 2011-10-21 2014-09-16 Xilinx, Inc. Systems and methods for digital processing based on active signal channels of a communication system
JP2014179981A (ja) * 2013-03-13 2014-09-25 Analog Devices Technology アンダーサンプリングデジタル前置歪アーキテクチャ
WO2014196504A1 (ja) * 2013-06-03 2014-12-11 住友電気工業株式会社 歪補償装置および無線通信装置
US9236893B2 (en) 2014-05-21 2016-01-12 Fujitsu Limited Distortion compensation device and distortion compensation method
US9270231B2 (en) 2014-02-17 2016-02-23 Fujitsu Limited Distortion compensation apparatus, wireless transmission apparatus, and distortion compensation method
CN105811901A (zh) * 2016-05-06 2016-07-27 广州市兴世电子有限公司 基于伺服驱动的音频功率放大器及其音频输出方法
US9768891B2 (en) 2015-12-21 2017-09-19 Fujitsu Limited Distortion compensation device and distortion compensation method
JP2019050465A (ja) * 2017-09-08 2019-03-28 株式会社日立国際電気 無線伝送装置及び無線伝送方法

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1914885B1 (en) * 2005-06-30 2012-03-07 Fujitsu Ltd. Power amplifier having distortion compensating circuit
US7606539B2 (en) * 2006-08-07 2009-10-20 Infineon Technologies Ag Adaptive predistorter coupled to a nonlinear element
US8102940B1 (en) * 2007-07-16 2012-01-24 Lockheed Martin Corporation Receive frequency band interference protection system using predistortion linearization
US9548775B2 (en) * 2007-09-06 2017-01-17 Francis J. Smith Mitigation of transmitter passive and active intermodulation products in real and continuous time in the transmitter and co-located receiver
US8073340B2 (en) 2008-02-05 2011-12-06 Applied Optoelectronics, Inc. Distortion compensation circuit including one or more phase invertible distortion paths
US7834643B2 (en) * 2008-03-28 2010-11-16 Baker Hughes Incorporated Systems and methods for reducing distortion in a power source using an active harmonics filter
US8369447B2 (en) * 2008-06-04 2013-02-05 Apple Inc. Predistortion with sectioned basis functions
US8498369B2 (en) * 2009-10-30 2013-07-30 Qualcomm Incorporated Adaptive digital post distortion reduction
US8964901B2 (en) 2011-01-07 2015-02-24 Massachusetts Institute Of Technology Analog/digital co-design methodology to achieve high linearity and low power dissipation in a radio frequency (RF) receiver
US8606116B2 (en) 2011-01-13 2013-12-10 Applied Optoelectronics, Inc. System and method for distortion compensation in response to frequency detection
KR101758086B1 (ko) * 2011-04-12 2017-07-17 숭실대학교산학협력단 개선된 선형적 특징을 가지는 전력 증폭기
US9559879B2 (en) 2011-04-21 2017-01-31 Mediatek Singapore Pte. Ltd. PA cell, PA module, wireless communication unit, RF transmitter architecture and method therefor
US9088319B2 (en) 2011-04-21 2015-07-21 Mediatek Singapore Pte. Ltd. RF transmitter architecture, integrated circuit device, wireless communication unit and method therefor
US9379742B2 (en) 2011-04-21 2016-06-28 Mediatek Singapore Pte. Ltd. RF transmitter, integrated circuit device, wireless communication unit and method therefor
US9647866B2 (en) 2011-04-21 2017-05-09 Mediatek Singapore Pte, Ltd. RF transmitter, integrated circuit device, wireless communication unit and method therefor
US10129055B2 (en) 2011-04-21 2018-11-13 Mediatek Singapore Pte. Ltd. PA cell, PA module, wireless communication unit, RF transmitter architecture and method therefor
JP5751420B2 (ja) * 2011-08-11 2015-07-22 富士通株式会社 歪補償装置、歪補償方法及び無線送信機
US8766718B2 (en) * 2011-09-30 2014-07-01 Aviat U.S., Inc. Systems and methods for adaptive power amplifier linearization
US8805304B2 (en) * 2011-10-25 2014-08-12 Scintera Networks Llc Linearization of broadband power amplifiers
US8625226B2 (en) * 2011-11-23 2014-01-07 International Business Machines Corporation Fixing tap coefficients in a programmable finite-impulse-response equalizer
EP2704318A4 (en) * 2011-12-09 2015-04-29 Ntt Docomo Inc PRE-COUPLER AND CONTROL PROCEDURE FOR THE FORECASTER
US8564368B1 (en) * 2012-04-11 2013-10-22 Telefonaktiebolaget L M Ericsson Digital Predistorter (DPD) structure based on dynamic deviation reduction (DDR)-based volterra series
US8537043B1 (en) * 2012-04-12 2013-09-17 Analog Devices, Inc. Digital-to-analog converter with controlled gate voltages
US8787494B2 (en) * 2012-06-11 2014-07-22 Telefonaktiebolaget L M Ericsson (Publ) Modeling digital predistorter
US8958470B2 (en) * 2012-07-26 2015-02-17 Massachusetts Institute Of Technology Method and apparatus for sparse polynomial equalization of RF receiver chains
JP6127554B2 (ja) 2013-02-08 2017-05-17 株式会社デンソー レーダ装置
US9660673B2 (en) * 2013-06-26 2017-05-23 Telefonaktiebolaget Lm Ericsson (Publ) Apparatus and method for canceling inter-modulation products
MX2016002460A (es) * 2013-08-28 2016-08-17 Deltanode Solutions Ab Determinacion del punto de funcionamiento de etapa amplificadora.
FR3012704A1 (fr) * 2013-10-29 2015-05-01 Chambre De Commerce Et D Ind De Region Paris Ile De France Procede de linearisation par predistorsion numerique
US9191250B2 (en) * 2013-11-26 2015-11-17 Blackberry Limited Extended bandwidth adaptive digital pre-distortion with reconfigurable analog front-ends
US9184784B2 (en) * 2014-03-10 2015-11-10 Texas Instruments Incorporated Method and apparatus for digital predistortion for a switched mode power amplifier
WO2016058181A1 (en) * 2014-10-17 2016-04-21 Texas Instruments Incorporated Compensation parameter and predistortion signal
JP6565288B2 (ja) * 2015-04-10 2019-08-28 富士通株式会社 無線装置
JP6551115B2 (ja) * 2015-09-30 2019-07-31 富士通株式会社 無線装置
US10432250B2 (en) 2016-09-13 2019-10-01 Electronics And Telecommunications Research Institute Method for cancelling self-interference of in-band full-duplex multiple-input multiple-output wireless communication
US10567014B2 (en) * 2016-10-31 2020-02-18 The Johns Hopkins University High power transmission using multi-tone signals
US10211784B2 (en) * 2016-11-03 2019-02-19 Nxp Usa, Inc. Amplifier architecture reconfiguration
JP2019057878A (ja) 2017-09-22 2019-04-11 株式会社東芝 直交変調器におけるキャリアリーク補正方法
CN111316563B (zh) * 2017-11-15 2023-07-14 三菱电机株式会社 多赫蒂放大器和多赫蒂放大电路
US10469292B1 (en) * 2018-06-29 2019-11-05 Keysight Technologies, Inc. Apparatus and method for characterizing amplifiers in decision feedback equalizers
US10581646B1 (en) * 2018-12-10 2020-03-03 Texas Instruments Incorporated Asynchronous data correction filter
TWI681636B (zh) * 2018-12-11 2020-01-01 瑞昱半導體股份有限公司 用於特徵化發送器之非線性失真的方法、相關發送器及其特徵化電路
US11646919B2 (en) * 2020-01-08 2023-05-09 Mediatek Singapore Pte. Ltd. IQ generator for mixer
US11469721B2 (en) 2020-01-08 2022-10-11 Qorvo Us, Inc. Uplink multiple input-multiple output (MIMO) transmitter apparatus
US11336240B2 (en) 2020-01-16 2022-05-17 Qorvo Us, Inc. Uplink multiple input-multiple output (MIMO) transmitter apparatus using transmit diversity
US11387795B2 (en) * 2020-01-28 2022-07-12 Qorvo Us, Inc. Uplink multiple input-multiple output (MIMO) transmitter apparatus with pre-distortion
JP7367557B2 (ja) * 2020-02-21 2023-10-24 富士通オプティカルコンポーネンツ株式会社 光通信装置及び補正方法
CN113054919B (zh) * 2021-03-16 2023-05-05 成都德芯数字科技股份有限公司 一种数字预失真信号反馈电路的测试方法、装置及设备
US11757695B2 (en) * 2021-12-06 2023-09-12 Sumitomo Electric Device Innovations, Inc. Predistortion system with targeted spectrum emission for wireless communication
WO2024087023A1 (zh) * 2022-10-25 2024-05-02 华为技术有限公司 信号调整电路、信号调整方法、信号处理电路及发射设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0969733A (ja) * 1995-08-31 1997-03-11 Fujitsu Ltd 歪補償を有する増幅器
JP2003513498A (ja) * 1999-10-26 2003-04-08 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 電力増幅器の適応線形化
JP2004005893A (ja) * 2002-04-23 2004-01-08 Matsushita Electric Ind Co Ltd 信号処理装置
JP2004120451A (ja) * 2002-09-27 2004-04-15 Hitachi Kokusai Electric Inc 増幅装置
JP2004165900A (ja) * 2002-11-12 2004-06-10 Hitachi Kokusai Electric Inc 通信装置
JP2005005781A (ja) * 2003-06-09 2005-01-06 Japan Telecom Co Ltd パイロット信号送信方法及び基地局装置
JP2005065211A (ja) * 2002-12-10 2005-03-10 Ntt Docomo Inc 線形電力増幅方法、線形電力増幅器及びそのディジタルプリディストータ設定方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0891041B1 (de) * 1997-07-08 2004-03-03 Siemens Aktiengesellschaft Sendeeinrichtung
JP2002050933A (ja) 2000-08-01 2002-02-15 Hitachi Kokusai Electric Inc 電力増幅装置
KR100553252B1 (ko) 2002-02-01 2006-02-20 아바고테크놀로지스코리아 주식회사 휴대용 단말기의 전력 증폭 장치
JP3502087B2 (ja) * 2002-05-14 2004-03-02 松下電器産業株式会社 ハイブリッド歪補償方法およびハイブリッド歪補償装置
US7170342B2 (en) 2002-12-10 2007-01-30 Ntt Docomo, Inc. Linear power amplification method and linear power amplifier
JP2004312344A (ja) * 2003-04-07 2004-11-04 Hitachi Kokusai Electric Inc 歪補償装置
JP2005020515A (ja) 2003-06-27 2005-01-20 Fujitsu Ltd 適応プリディストータ型歪補償送信装置及びその遅延制御フィルタ係数の切替え方法
JP2005073032A (ja) 2003-08-26 2005-03-17 Hitachi Kokusai Electric Inc 歪補償増幅装置及び歪補償方法
JP4374963B2 (ja) 2003-09-26 2009-12-02 三菱電機株式会社 適応型プリディストータ
JP2005117599A (ja) 2003-10-08 2005-04-28 Hiroshi Suzuki 高周波増幅器
KR100555520B1 (ko) * 2003-10-28 2006-03-03 삼성전자주식회사 다중 캐리어 신호의 비선형적 왜곡을 보상하는 다중캐리어 신호 왜곡 보상 장치, 이를 구비한 다중 캐리어신호 수신기, 및 그 방법
US7026873B2 (en) * 2003-11-07 2006-04-11 Scintera Networks LMS-based adaptive pre-distortion for enhanced power amplifier efficiency
US20050163249A1 (en) * 2004-01-27 2005-07-28 Crestcom, Inc. Predistortion circuit and method for compensating linear distortion in a digital RF communications transmitter
US7099399B2 (en) * 2004-01-27 2006-08-29 Crestcom, Inc. Distortion-managed digital RF communications transmitter and method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0969733A (ja) * 1995-08-31 1997-03-11 Fujitsu Ltd 歪補償を有する増幅器
JP2003513498A (ja) * 1999-10-26 2003-04-08 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 電力増幅器の適応線形化
JP2004005893A (ja) * 2002-04-23 2004-01-08 Matsushita Electric Ind Co Ltd 信号処理装置
JP2004120451A (ja) * 2002-09-27 2004-04-15 Hitachi Kokusai Electric Inc 増幅装置
JP2004165900A (ja) * 2002-11-12 2004-06-10 Hitachi Kokusai Electric Inc 通信装置
JP2005065211A (ja) * 2002-12-10 2005-03-10 Ntt Docomo Inc 線形電力増幅方法、線形電力増幅器及びそのディジタルプリディストータ設定方法
JP2005005781A (ja) * 2003-06-09 2005-01-06 Japan Telecom Co Ltd パイロット信号送信方法及び基地局装置

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218769A (ja) * 2008-03-10 2009-09-24 Fujitsu Ltd 歪み補償係数更新装置および歪み補償増幅器
WO2010001357A1 (en) * 2008-07-02 2010-01-07 Innovaradio S.A. A pre-distortion method and device to enhance the power utility of power amplifiers in wireless digital communication applications
JP2011526763A (ja) * 2008-07-02 2011-10-13 イノバラジオ エス.アー. 無線デジタル通信用途における電力増幅器の電力有用性を高める予歪方法及び装置
US8417197B2 (en) 2008-07-02 2013-04-09 Innovaradio Sa Pre-distortion method and device to enhance the power utility of power amplifiers in wireless digital communication applications
JP2010045791A (ja) * 2008-08-18 2010-02-25 Fujitsu Ltd 電力増幅器の非線形度測定装置及び方法、先行歪ませ補正装置
US8350557B2 (en) 2008-08-18 2013-01-08 Fujitsu Limited Nonlinear degree measuring apparatus and method for a power amplifier, predistortion compensation apparatus
JP2010114759A (ja) * 2008-11-07 2010-05-20 Sumitomo Electric Ind Ltd 歪補償回路
US8737523B2 (en) 2009-06-04 2014-05-27 Xilinx, Inc. Apparatus and method for predictive over-drive detection
JP2012529225A (ja) * 2009-06-04 2012-11-15 ザイリンクス インコーポレイテッド 予測的オーバードライブ検出のための装置および方法
US8542062B2 (en) 2009-11-16 2013-09-24 Innovaradio Sa Adaptive digital pre-distortion method and device to enhance the power utility of power amplifiers in wireless digital communication applications
JP2011151787A (ja) * 2010-01-20 2011-08-04 Pohang Univ Of Science & Technology Academy-Industry Cooperation 分布ドハティ電力増幅器
US8305141B2 (en) 2010-01-20 2012-11-06 Postech Academy-Industry Foundation Distributed Doherty power amplifier
US8588711B2 (en) 2010-09-21 2013-11-19 Fujitsu Limited Transmission apparatus and distortion compensation method
JP2012070063A (ja) * 2010-09-21 2012-04-05 Fujitsu Ltd 送信装置及び歪補償方法
US8837633B2 (en) 2011-10-21 2014-09-16 Xilinx, Inc. Systems and methods for digital processing based on active signal channels of a communication system
US9680423B2 (en) 2013-03-13 2017-06-13 Analog Devices Global Under-sampling digital pre-distortion architecture
JP2014179981A (ja) * 2013-03-13 2014-09-25 Analog Devices Technology アンダーサンプリングデジタル前置歪アーキテクチャ
WO2014196504A1 (ja) * 2013-06-03 2014-12-11 住友電気工業株式会社 歪補償装置および無線通信装置
US9484868B2 (en) 2013-06-03 2016-11-01 Sumitomo Electric Industries, Ltd. Distortion compensation apparatus and wireless communication apparatus
JP2014236384A (ja) * 2013-06-03 2014-12-15 住友電気工業株式会社 歪補償装置および無線通信装置
US9270231B2 (en) 2014-02-17 2016-02-23 Fujitsu Limited Distortion compensation apparatus, wireless transmission apparatus, and distortion compensation method
US9236893B2 (en) 2014-05-21 2016-01-12 Fujitsu Limited Distortion compensation device and distortion compensation method
US9768891B2 (en) 2015-12-21 2017-09-19 Fujitsu Limited Distortion compensation device and distortion compensation method
CN105811901A (zh) * 2016-05-06 2016-07-27 广州市兴世电子有限公司 基于伺服驱动的音频功率放大器及其音频输出方法
CN105811901B (zh) * 2016-05-06 2018-08-24 广州市兴世电子有限公司 基于伺服驱动的音频功率放大器及其音频输出方法
JP2019050465A (ja) * 2017-09-08 2019-03-28 株式会社日立国際電気 無線伝送装置及び無線伝送方法

Also Published As

Publication number Publication date
CN101233684A (zh) 2008-07-30
US8014443B2 (en) 2011-09-06
JP4755651B2 (ja) 2011-08-24
CN101233684B (zh) 2011-08-24
JPWO2007046370A1 (ja) 2009-04-23
US20080187035A1 (en) 2008-08-07

Similar Documents

Publication Publication Date Title
JP4755651B2 (ja) 非線形歪検出方法及び歪補償増幅装置
US7606322B2 (en) Digital pre-distortion technique using nonlinear filters
US7170342B2 (en) Linear power amplification method and linear power amplifier
CA2557334C (en) Digital predistortion system and method for high efficiency transmitters
KR100789125B1 (ko) 광대역 향상된 디지털 주입 전치왜곡 시스템 및 방법
JP5137973B2 (ja) プレディストータ
US7755425B2 (en) Method and apparatus for reducing frequency memory effects in RF power amplifiers
WO2013153485A1 (en) Digital predistorter (dpd) structure based on dynamic deviation reduction (ddr)-based volterra series
JP2008022513A (ja) 歪制御機能付き増幅装置
JPWO2011086752A1 (ja) 増幅装置及び信号処理装置
JP2008172544A (ja) ダイオードリニアライザを用いた歪補償回路
KR20220055417A (ko) 디지털 전치-왜곡을 위한 구성가능 비-선형 필터
JP4825495B2 (ja) 歪制御機能付き増幅装置
JP2008028746A (ja) 歪み補償装置
KR100865886B1 (ko) 고주파 증폭기의 비선형성을 보정하기 위한 장치
KR101470817B1 (ko) 복수의 비선형 증폭기에 대하여 단일 피드백 회로를 사용하는 전치보상 장치 및 방법
Nasr et al. On the critical issues of DSP/FPGA mixed digital predistorter implementation
KR20240016415A (ko) 전력 증폭기의 전하 트래핑 효과들을 위해 전송 신호를 보상하는 시스템들 및 방법들
KR20010016864A (ko) 전력 증폭기의 사전 왜곡 선형화 방법 및 장치
JP2024523532A (ja) 電力増幅器の電荷トラップ効果のために送信信号を補償するシステム及び方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680028390.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007540981

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06821887

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)