WO2007029395A1 - Nanocarbon/aluminum composite material, process for producing the same, and plating liquid for use in said process - Google Patents

Nanocarbon/aluminum composite material, process for producing the same, and plating liquid for use in said process Download PDF

Info

Publication number
WO2007029395A1
WO2007029395A1 PCT/JP2006/312152 JP2006312152W WO2007029395A1 WO 2007029395 A1 WO2007029395 A1 WO 2007029395A1 JP 2006312152 W JP2006312152 W JP 2006312152W WO 2007029395 A1 WO2007029395 A1 WO 2007029395A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanocarbon
halide
aluminum
aluminum composite
composite material
Prior art date
Application number
PCT/JP2006/312152
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuyuki Koura
Atsushi Ehira
Ryo Murakami
Koichi Ui
Takashi Yatsushiro
Original Assignee
Nissan Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co., Ltd. filed Critical Nissan Motor Co., Ltd.
Priority to EP06766838A priority Critical patent/EP1930481A1/en
Priority to US12/066,027 priority patent/US20090277793A1/en
Publication of WO2007029395A1 publication Critical patent/WO2007029395A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/66Electroplating: Baths therefor from melts
    • C25D3/665Electroplating: Baths therefor from melts from ionic liquids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current

Definitions

  • Nanocarbon z-aluminum composite method for producing the same, and liquid for use in the same
  • the present invention relates to a nanocarbon / aluminum composite material, a method for producing the same, and a plating solution used therefor, and more specifically, a conductor such as a power transmission line and a lead wire, a radiator, a capacitor, an evaporator, and the like.
  • the present invention relates to a nanocarbon Z-aluminum composite material having both high strength and electrical conductivity that can be suitably used in an exchanger or automotive part, a method for producing the same, and a plating solution used therefor.
  • conductive materials such as aluminum alloys constituting power transmission lines, lead wires, and materials used for heat exchangers are required to have high electrical conductivity and high thermal conductivity.
  • transmission lines, lead wires, heat exchangers, and automobile parts are in a direction that requires light weight and downsizing. While increasing the thickness of materials used for heat exchangers, heat exchangers or automotive parts, high strength is also strongly required.
  • CNT carbon nanotubes
  • Non-Patent Document 1 CNTZ aluminum composite materials have been reported to have improved strength and high thermal conductivity.
  • Patent Document 1 JP 2005-008989 A
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-048206
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2004-156074
  • Patent Document 4 Japanese Patent Laid-Open No. 2004-315297
  • Non-Patent Document 1 T. Kuzamaki, et al., “Journal of Materials Search (J. Mater. Res.)”, 1998, 13th, p2445
  • the manufacturing method of the nanocarbon Z aluminum composite material described in Patent Documents 1 to 4 and Non-Patent Document 1 described above is, for example, in which an aluminum powder and CNT are put in an aluminum case.
  • the force of adding nanocarbon to molten metal, stirring, and mixing The specific gravity of metal and nanocarbon is greatly different, so it is extremely difficult to uniformly disperse nanocarbon in molten metal. There was a problem.
  • the strength of the carbon fiber Z aluminum-based composite material is not observed even when heated and maintained at 500 ° C or less in a non-acidic atmosphere.
  • the holding temperature is 550 ° C or higher, aluminum carbide (Al C) is formed due to the interfacial reaction between the carbon fiber and the matrix, and the carbon fiber cross-sectional area is reduced.
  • the present invention has been made in view of such problems of the prior art, and the object of the present invention is to provide electric conductors such as power transmission lines and lead wires, radiators, capacitors, evaporators, and the like.
  • An object of the present invention is to provide a nanocarbon Z-aluminum composite material having both high strength and electrical conductivity that can be suitably used in a heat exchanger or an automotive part, a method for producing the same, and a dip solution used therefor.
  • room-temperature molten salts also referred to as normal-temperature molten salts, room-temperature molten salts, or ionic liquids
  • the nanocarbon / aluminum composite forming solution of the present invention comprises an aluminum halide, nanocarbon, 1,3-dialkylimidazolium halide and Z or monoalkylpyridium halide. Containing the aluminum halide, the 1,3-dialkylimidazolium halide and Z or the monoalkylpyridium halide in a molar ratio of 20:80 to 80:20,
  • the 1,3-dialkyl imidazolium halide has an alkyl group having 1 to 12 carbon atoms
  • the monoalkylpyridine-halogen halide has an alkyl group having 1 to 12 carbon atoms.
  • the first method for producing the nanocarbon Z-aluminum composite staking solution of the present invention includes the production of the aluminum carbon
  • the mixture is then mixed with the nanocarbon, then the resulting mixture is combined with 1,3-dialkylimidazole halide and Z or monoalkyl pyri Mix and melt the di-halogen halide, or mix 1,3-dialkylimidazolium halide and Z or monoalkylpyridium halide with nanocarbon, and then mix the resulting mixture with aluminum It is characterized by mixing and melting with halogenated materials.
  • the second method for producing the nanocarbon Z-aluminum composite staking solution of the present invention provides an aluminum halogen solution for producing the nanocarbon Z-aluminum composite staking solution of the present invention.
  • 1,3-dialkylimidazolium halide and Z or monoalkyl pyridinium halide and nanocarbon and then the resulting mixture is mixed with aluminum halide.
  • a molten salt containing a 1,3-dialkylimidazolium halide and a Z or monoalkylpyridium halide compound is molten salt containing a 1,3-dialkylimidazolium halide and a Z or monoalkylpyridium halide compound.
  • the method for producing the nanocarbon Z-aluminum composite of the present invention is a method using the nanocarbon Z-aluminum composite forming solution of the present invention, wherein the nanocarbon Z-aluminum composite is formed in a dry oxygen-free atmosphere. It is characterized in that the surface of the substrate is plated by electrolytic conditions of a bath temperature of 0 to 300 ° C. and a current density of 0.01 to 50 AZdm 2 by direct current and Z or pulse current.
  • the nanocarbon / aluminum composite material of the present invention is characterized by being produced by the above-described method for producing a nanocarbon Z aluminum composite material of the present invention.
  • a conductor such as a power transmission line and a lead wire, a heat exchanger such as a radiator, a capacitor, and an evaporator, or an automotive part
  • a conductor such as a power transmission line and a lead wire
  • a heat exchanger such as a radiator, a capacitor, and an evaporator, or an automotive part
  • an automotive part can provide a nanocarbon Z-aluminum composite material having both high strength and electrical conductivity that can be suitably used, and a method for producing the same.
  • the plating solution for forming a nanocarbon Z aluminum composite of the present invention comprises aluminum halide, nanocarbon, and 1,3-dialkylimidazolium halide. And a monoalkyl pyridinium halide, and the aluminum halide, the 1,3-dialkylimidazolium halide and the monoalkylpyridium halide. One or both of them are contained in a molar ratio of 20: 80-80: 20.
  • Such 1,3-dialkylimidazolium halides have an alkyl group having 1 to 12 carbon atoms, and powerful monoalkylpyridium halides have an alkyl group having 1 to 12 carbon atoms.
  • the aluminum halide and one or both of 1,3-dialkylimidazolium halide and monoalkylpyridium halide are used in a molar ratio of 20 : It needs to be contained at a ratio of 80-80: 20.
  • the ratio is not met, it will not melt at room temperature and will not become a plating solution, or even if the temperature is increased and melted, the viscosity of the plating solution is high and unsuitable for the plating solution. It does not become a plating solution that can form nanocarbon Z aluminum composites having both conductivity.
  • 1,3-dialkylimidazolium halide, monoalkylpyridyl-umuno and logene compounds can be used alone or in combination within a range satisfying the above ratio.
  • the 1,3-dialkylimidazolium halide has an alkyl group having 1 to 12 carbon atoms
  • the monoalkylpyridium halide has an alkyl group having 1 to 12 carbon atoms. It is necessary to have a group.
  • the viscosity of the plating solution is high and it is not suitable for the plating solution. It must be a plating solution that can form nanocarbon Z aluminum composites that have both high strength and electrical conductivity.
  • the plating solution can form a nanocarbon Z aluminum composite material having both high strength and electrical conductivity.
  • the total of aluminum halide and one or both of 1,3-dialkylimidazolium halide and monoalkylpyridium halide It is preferable to contain nanocarbon at a ratio of 0.01 to 50 gZL with respect to the volume. It is more preferable to contain nanocarbon at a ratio of 0.01 to 20 gZL.
  • the proportion of nanocarbon contained is less than 0. OlgZL, the amount of nanocarbon particles taken into the aluminum plating film is reduced, and it becomes difficult to obtain desired characteristics.
  • the proportion of the nanocarbon contained exceeds 50 gZL, the concentration of the nanocarbon particles in the electrolytic bath increases, and the nanocarbon particles aggregate and settle. When it is pulled up, the dispersed nanocarbon particles adhere excessively, which is not preferable.
  • the aluminum halide is not particularly limited as long as a plating solution capable of forming the nanocarbon Z aluminum composite as described above can be obtained.
  • salt aluminum (A1C1) is used. It is particularly preferable to use anhydrous A1C1.
  • the 1,3 dialkyl imidazolium halide has at least one alkyl group having 1 to 12 carbon atoms as described above, and can further form a nanocarbon Z aluminum composite as described above. However, it is preferable to have one alkyl group having 1 to 5 carbon atoms, for example, and more preferably.
  • 1-ethyl-3-methylimidazolium chloride hereinafter abbreviated as “EMIC” can be preferably used.
  • the two alkyl groups may be the same or different.
  • Monoalkyl pyridinium halides are particularly limited as long as a plating solution having an alkyl group having 1 to 12 carbon atoms as described above and capable of forming a nanocarbon Z aluminum composite as described above is obtained. However, it is preferable to have one alkyl group having 1 to 5 carbon atoms, for example. Specifically, 1 butyl pyridinium chloride (hereinafter abbreviated as “BPC”) can be preferably used. [0026] Considering the physical properties of the resulting plating solution, specifically, the conductivity, viscosity, melting point, etc. of the plating solution, it is particularly desirable to use EMIC with a melting point as low as about 84 ° C.
  • the nanocarbon is not particularly limited.
  • carbon nanotubes, carbon nanofibers, carbon nanohorns, fullerenes, carbon black, acetylene black or ketjen black, and any mixtures thereof may be used. Can do.
  • the diameter force is ⁇ lOOnm
  • the length is 1 ⁇ : LOO / zm
  • the aspect ratio is 10 ⁇ : It is preferable to use one that is LOO.
  • the diameter is less than lnm, it tends to agglomerate and precipitate easily, so that it is taken into the aluminum plating film.
  • sedimentation is likely to occur even when the diameter exceeds lOOnm, so that it is incorporated into the aluminum-plated film.
  • the length is less than 1 ⁇ m, it is easy to agglomerate and precipitate easily as in the case of a diameter less than 1 nm, so that it is difficult to be taken into the aluminum plating film.
  • the length exceeds 100 / zm, the precipitation is likely to occur as in the case where the diameter exceeds lOOnm, and therefore, it is difficult to be taken into the aluminum plating film.
  • the carbon nanotubes to be used may be either single-walled or multi-walled, or they may be mixed as appropriate.
  • the first method for producing the nanocarbon Z-aluminum composite staking solution of the present invention as described above provides an aluminum halide solution for producing the nanocarbon Z-aluminum composite staking solution of the present invention.
  • Mix the soot and nanocarbon then mix the resulting mixture with one or both of 1,3-dialkylimidazole halide and monoalkylpyridinium halide and melt or Mix one or both of 1,3-dialkylimidazolium halide and monoalkylpyridium halide with nanocarbon, then mix the resulting mixture with aluminum halide. Melt the desired nanocarbon Z aluminum composite This is a method for obtaining a forming solution.
  • the second method for producing the nanocarbon Z-aluminum composite staking solution of the present invention is a method for producing the nanocarbon Z-aluminum composite staking solution of the present invention.
  • Compound and nanocarbon, or one or both of 1,3-dialkylimidazolium halide and monoalkyl pyridinium halide and nanocarbon and then the resulting mixture , Aluminum halide, and 1,3-dialkylimidazolium halide and monoalkyl pyridinium halide, mixed with a molten salt containing either or both, to obtain the desired nanocarbon Z aluminum composite. It is a method to obtain a plating solution for forming
  • the 1,3-dialkylimidazolium halide and monoalkylpyridium halide used in the first or second production method each have an alkyl group having 1 to 12 carbon atoms, and May be the same or different.
  • aluminum halides and nanocarbons are not particularly limited, and those described above can be used.
  • the nanocarbon / aluminum composite forming solution of the present invention comprises an aluminum halide, nanocarbon, a predetermined 1,3-dialkylimidazole halide, and a monoalkylpyridium halide.
  • a predetermined ratio it is not limited to those produced by the first or second production method of the present invention as described above, but as described above, When the nanocarbon Z-aluminum composite plating solution of the present invention is produced by the first production method, the nanocarbon particles are not easily aggregated by previously mixing the nanocarbon particles with the salt.
  • a more specific example will be described.
  • aluminum is used as a method for producing a plating solution.
  • A1C1 which is an example of a halogenated halide, and 1,3-dialkylimidazolium halide
  • CNT which is an example of nano-powered bonbon
  • ultrasonic irradiation stirring, etc. can be mentioned, for example.
  • the method for producing the nanocarbon Z-aluminum composite of the present invention as described above is a production method using the plating solution for forming the nanocarbon Z-aluminum composite of the present invention, in a dry oxygen-free atmosphere.
  • the plating solution for forming the nanocarbon Z-aluminum composite of the present invention in a dry oxygen-free atmosphere.
  • the “dry oxygen-free atmosphere” means an atmosphere having a moisture content of 2 ppm or less and an oxygen content force of Slppm or less, and is usually in an argon (Ar) or nitrogen (N) atmosphere.
  • a nanocarbon / aluminum composite material (plating film) having both high strength and electrical conductivity can be formed on the substrate surface.
  • a method called electroplating is used, a plating film of nanocarbon Z aluminum-aluminum composite material can be obtained by a simple single process, and the force can be processed to an arbitrary shape.
  • the method for producing the nanocarbon Z aluminum composite material of the present invention is not particularly limited, but for example, a conventionally known two-electrode cell is used. it can.
  • A1C1-EMIC is obtained by dispersing CNTs in a room temperature molten salt.
  • a method of applying a voltage by combining either or both of a constant current and a pulse current to both electrodes with a direct current power source connected to both electrodes while a force sword and an anode are immersed in the liquor. Can be mentioned.
  • the magnitude of the applied voltage may be changed at predetermined intervals.
  • the electrolysis time may be continuously applied for about 0.1 to 600 seconds.
  • the amount of nanocarbon Z-aluminum composite can be controlled by appropriately adjusting the amount of nanocarbon dispersion, current density, electrolysis time, and the like.
  • nanocarbon Z-aluminum composite For example, to increase the amount of nanocarbon Z-aluminum composite, increase the amount of nano-bonbon dispersion, increase the electrolysis voltage to increase the current density, or increase the electrolysis time. If these are combined in an appropriate manner and electrolyzed, it is necessary.
  • nanocarbon and A1C1-EMIC room temperature molten salt are sequentially used.
  • the cathode (force sword or negative electrode) to be used is not particularly limited as long as it is a conductor that is chemically and electrochemically stable with respect to the plating solution. Various things can be used.
  • Examples of the material of the force sword include copper, brass, nickel, stainless steel, tungsten, molybdenum, etc. In consideration of electrochemical stability, stretchability, economy, etc., copper or brass is preferable. However, the present invention is not limited to this.
  • a foil-like plate As the shape of the force sword, its surface condition, thickness and size are particularly limited.
  • a foil-like plate For example, a foil-like plate, a wire spiral, a foam, a nonwoven, a mesh, a felt, an expanded porous metal substrate, and the like can be mentioned. Among them, a foil-like plate is preferable.
  • anode anode or positive electrode
  • a known conductive substrate can be used without particular limitation, and the material thereof is, for example, chemically and electrochemically stable. Platinum, graphite, or aluminum that does not contaminate the plating solution even when dissolved can be suitably used.
  • the shape of the positive electrode may be a plate shape or a spiral shape, and is not particularly limited.
  • the nanocarbon / aluminum composite material of the present invention as described above is produced by the method for producing the nanostrength Zvon aluminum composite material of the present invention.
  • a plating film of nanocarbon Z-aluminum composite material can be formed on the surface of the force sword by the electrolysis method as described above.
  • the nanocarbon content is preferably 0.1 to 50%, more preferably 0.1 to 20%.
  • the nanocarbon content is less than 0.1%, the characteristics of the nanocarbon are hardly reflected, and it is not preferable because desired characteristics cannot be obtained.
  • the nanocarbon content exceeds 50%, the amount of aluminum decreases, so the bonding strength between the nanocarbons bound by the matrix aluminum may weaken, and the strength may suddenly decrease. There is.
  • A1C1 and EMIC were weighed to a molar ratio of 66.7: 33.3 and mixed with stirring.
  • Multi-wall carbon nanotubes (MWCNT; tube diameter 1.2 to 2 Onm, tube length 2 to 5 ⁇ ) and 0.1 to 30 OgZL were added to the MWCNTZ aluminum-um composite. A plating solution for material formation was obtained.
  • the preparation of the plating solution and the electrolysis operation were performed in a dry nitrogen atmosphere.
  • a two-electrode cell was used for constant current electrolysis, a Cu plate (99.96%) was used as the force sword, and an A1 plate (99.99%) was used as the anode.
  • electrolytic degreasing with 10% o-sodium silicate aqueous solution and acid treatment with 10 vol% HCl were performed.
  • the electrolysis conditions were a bath temperature of 30 ° C., a current density of 5, 10, 20, 30 mA / cm 2 , and an amount of electrodeposition of 50 CZ cm ′.
  • the surface state of the MWCNTZ aluminum composite was observed using a scanning electron microscope (SEM: JEOL Ltd. CiEOL Ltd., JSM-6500F). The ability of MWCNT to be incorporated into the A1 precipitate was actually observed. First, immediately after MWCNT adsorbed on the surface of the deposit, it was observed that the initial precipitation nuclei (approximately 1 to 100,000 atoms) of A1 were caught. Next, it was observed that it was completely incorporated into A1 precipitation nuclei grown from MWCNT force nuclei. It was observed that MWCNT was almost completely buried in the A1 precipitate.
  • SEM scanning electron microscope
  • the relationship between the amount of MWCNT added in the plating solution and the Vickers hardness of the composite (See Fig. 1) o
  • the discussion will proceed semi-quantitatively, assuming that an increase in the amount of eutectoid in MWCNT predicts an increase in the hardness of the composite.
  • the hardness of the A1 plating film obtained when the added amount of MWCNT is OgZL is used as a comparative example.
  • the hardness of the A1 plating film was 50 Hv at any of current densities 5, 10, 20, and 30 mAZcm 2 . As shown in Fig.
  • nanocarbon Z aluminum composite material of the present invention Based on the above results, other nanocarbon particles were examined, and similar effects were obtained with single-walled carbon nanotubes, carbon nanofibers, carbon nanohorns, fullerenes, monobon black, acetylene black, or ketjen black. Therefore, the usefulness of the nanocarbon Z aluminum composite material of the present invention, its production method, and the plating solution used therefor has been divided.
  • a predetermined amount of EMIC and MWCNT (tube diameter 1.2-20 nm, tube length 2-5 ⁇ ) were mixed, and the mixture was mixed with A1C1 and melted. A1C1 and EMIC in the plating solution
  • nanocarbon Z aluminum composite material of the present invention Based on the above results, other nanocarbon particles were examined, and similar effects were obtained with single-walled carbon nanotubes, carbon nanofibers, carbon nanohorns, fullerenes, monobon black, acetylene black, or ketjen black. Therefore, the usefulness of the nanocarbon Z aluminum composite material of the present invention, its production method, and the plating solution used therefor has been divided.
  • a predetermined amount of EMIC and MWCNT (tube diameter 1.2-20 nm, tube length 2-5 ⁇ ) were mixed, and the mixture was mixed with A1C1-EMIC molten salt.
  • the molar ratio of EMIC is set to 66.7: 33.3, and the loading amount of MWCNT is set to be 0.1-30.Og / L to form MWCNTZ aluminum composite. A soaking solution was obtained.
  • Example 1 While this was sufficiently stirred, constant current electrolysis was performed to obtain the MWC NTZ aluminum composite material of this example in the same manner as in Example 1.
  • the plating solution was prepared and electrolyzed in a dry nitrogen atmosphere.
  • the two-electrode cell, force sword pretreatment used for electrolysis, and the electrolysis conditions were the same as in Example 1. [0054] Observation of the surface state of the MWCNTZ aluminum composite using SEM revealed that MWCNT co-deposited with A1 in monodispersed form, as in Example 1.
  • nanocarbon Z aluminum composite material of the present invention Based on the above results, other nanocarbon particles were examined, and similar effects were obtained with single-walled carbon nanotubes, carbon nanofibers, carbon nanohorns, fullerenes, monobon black, acetylene black, or ketjen black. Therefore, the usefulness of the nanocarbon Z aluminum composite material of the present invention, its production method, and the plating solution used therefor has been divided.
  • FIG. 1 is a graph showing the relationship between the amount of MWCNT added and hardness in Example 1 and Comparative Example.
  • FIG. 2 is a graph showing the relationship between the amount of MWCNT-added residue and hardness in Example 2 and Comparative Example.
  • FIG. 3 is a graph showing the relationship between the amount of MWCNT-added residue and hardness in Example 3 and Comparative Example.

Abstract

[PROBLEMS] To provide a nanocarbon/aluminum composite material having both high strength and electrical conductivity, which is suitable for use in lead wires, heat exchangers, and automobile components, and a process for producing the same. [MEANS FOR SOLVING PROBLEMS] A plating liquid for nanocarbon/aluminum composite material formation, comprising an aluminum halide, nanocarbon, a 1,3-dialkylimidazolium halide and the like, wherein the molar ratio of the aluminum halide to the 1,3-dialkylimidazolium halide and the like is 20:80 to 80:20. The 1,3-dialkylimidazolium halide and the like contain an alkyl group having 1 to 12 carbon atoms. In the production process of a nanocarbon/aluminum composite material, the surface of a base material is plated in a dry oxygen-free atmosphere using the plating liquid for nanocarbon/aluminum composite material formation, for example, by direct current under electrolysis conditions of bath temperature 0 to 300ºC and current density 0.01 to 50 A/dm2. There is also provided a nanocarbon/aluminum composite material produced by the production process.

Description

明 細 書  Specification
ナノカーボン zアルミニウム複合材、その製造方法及びこれに用いるめつ き液  Nanocarbon z-aluminum composite, method for producing the same, and liquid for use in the same
技術分野  Technical field
[0001] 本発明は、ナノカーボン/アルミニウム複合材、その製造方法及びこれに用いるめ つき液に係り、更に詳細には、送電線、リード線等の導電体、ラジェータ、コンデンサ 、エバポレータ等の熱交換器、又は自動車用部品において好適に使用し得る高い 強度及び電気伝導率を併有するナノカーボン Zアルミニウム複合材、その製造方法 及びこれに用いるめっき液に関する。  The present invention relates to a nanocarbon / aluminum composite material, a method for producing the same, and a plating solution used therefor, and more specifically, a conductor such as a power transmission line and a lead wire, a radiator, a capacitor, an evaporator, and the like. The present invention relates to a nanocarbon Z-aluminum composite material having both high strength and electrical conductivity that can be suitably used in an exchanger or automotive part, a method for producing the same, and a plating solution used therefor.
背景技術  Background art
[0002] 一般に、送電線、リード線等を構成するアルミニウム合金などの導電材料や、熱交 換器に使用される材料は、高 ヽ電気伝導率ゃ高 ヽ熱伝導率が要求されて ヽる。 また、最近、地球環境保護などの観点から、送電線、リード線、熱交換器又は自動 車用部品などは、軽量ィ匕及び小型化が要求される方向にあり、送電線やリード線の 微細化、熱交 又は自動車用部品に使用される材料の薄肉化が推進される一方 で、高強度であることも強く要求されている。  [0002] Generally, conductive materials such as aluminum alloys constituting power transmission lines, lead wires, and materials used for heat exchangers are required to have high electrical conductivity and high thermal conductivity. . Recently, from the viewpoint of protecting the global environment, transmission lines, lead wires, heat exchangers, and automobile parts are in a direction that requires light weight and downsizing. While increasing the thickness of materials used for heat exchangers, heat exchangers or automotive parts, high strength is also strongly required.
[0003] これまでのところ、軽量且つ高強度であることを特徴とする複合材料として、炭素繊 維強化アルミニウム合金が最も多く検討されている (特許文献 1及び 2参照。 )0 [0003] So far, as a composite material characterized by lightweight and high strength, carbon fiber-reinforced aluminum alloy is most frequently studied (see Patent Documents 1 and 2.) 0
[0004] 更に、近年、炭素繊維としてカーボンナノチューブ(以下、「CNT」と略記する。 )が 注目されている。 CNTは強靱性、導電性、熱伝導性等の優れた諸特性から様々な 分野での応用が研究されており、より一層の機能性向上が期待されている。 Furthermore, in recent years, carbon nanotubes (hereinafter abbreviated as “CNT”) have attracted attention as carbon fibers. CNT has been studied for application in various fields because of its excellent properties such as toughness, conductivity, and thermal conductivity, and further improvements in functionality are expected.
これまでに CNT複合材料として、銅、ニッケル、アルミニウム等の様々な金属がマト リックスとして用いられてきた (特許文献 3及び 4参照。)。  So far, various metals such as copper, nickel, and aluminum have been used as matrices for CNT composite materials (see Patent Documents 3 and 4).
特に、 CNTZアルミニウム複合材料は、強度の向上及び高い熱伝導性が報告され ている (非特許文献 1参照。)。  In particular, CNTZ aluminum composite materials have been reported to have improved strength and high thermal conductivity (see Non-Patent Document 1).
[0005] 一方、アルミニウムの製造方法としては、三層式電解法、分別結晶法、電析法と ヽ つたものが知られている。 その中でも、電析法は単一工程で作製できることが魅力的である。しかし、アルミ- ゥムは卑 (負)な標準電極電位(一 1. 68Vvs. SHE(standard hydrogen electro de))を有するため、水系からの電析は水素発生の競争反応によって不可能である。 また、有機溶媒系からのアルミニウムの電析も行われているが、引火の危険を有す るため工業的に実用化は難しい。 [0005] On the other hand, as a method for producing aluminum, there are known three-layer electrolytic method, fractional crystallization method, and electrodeposition method. Among them, it is attractive that the electrodeposition method can be produced in a single step. However, since aluminum has a negative standard electrode potential (1.68 Vvs. SHE (standard hydrogen electrode)), electrodeposition from aqueous systems is impossible due to the competitive reaction of hydrogen generation. Aluminum is also electrodeposited from organic solvents, but it is difficult to put it to practical use industrially because of the danger of ignition.
特許文献 1 :特開 2005— 008989号公報  Patent Document 1: JP 2005-008989 A
特許文献 2 :特開 2005— 048206号公報  Patent Document 2: Japanese Patent Laid-Open No. 2005-048206
特許文献 3:特開 2004— 156074号公報  Patent Document 3: Japanese Unexamined Patent Publication No. 2004-156074
特許文献 4:特開 2004 - 315297号公報  Patent Document 4: Japanese Patent Laid-Open No. 2004-315297
非特許文献 1 :葛巻ら(T. Kuzamaki, et al. ) ,「ジャーナル ォブ マテリアルズリ サーチ (J. Mater. Res. )」、 1998年、第 13卷、 p2445  Non-Patent Document 1: T. Kuzamaki, et al., “Journal of Materials Search (J. Mater. Res.)”, 1998, 13th, p2445
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] し力しながら、上記特許文献 1〜4及び非特許文献 1に記載されたナノカーボン Z アルミニウム複合材料の製造方法は、例えばアルミニウムのケースにアルミニウム粉 末と CNTを入れ、 5. 3 · 10— &減圧下、 600°C、 1. 5hでカ卩熱した後、 lOOMPaで 6 Omin加圧し、 500°C、 lOMPaZminで押し出すという、複雑な多段階工程であった この製造方法は、溶融金属中にナノカーボンを添加し、撹拌、混合することになる 力 金属とナノカーボンとでは比重が大きく異なることから、ナノカーボンを均一に溶 融金属中に分散させることは極めて困難であるという問題点があった。  [0006] The manufacturing method of the nanocarbon Z aluminum composite material described in Patent Documents 1 to 4 and Non-Patent Document 1 described above is, for example, in which an aluminum powder and CNT are put in an aluminum case. · This was a complex multi-step process that was heated at 600 ° C for 1.5h under reduced pressure at 10 ° C and then pressurized for 6 Omin with lOOMPa and extruded at 500 ° C and lOMPaZmin. The force of adding nanocarbon to molten metal, stirring, and mixing The specific gravity of metal and nanocarbon is greatly different, so it is extremely difficult to uniformly disperse nanocarbon in molten metal. There was a problem.
[0007] また、炭素繊維 Zアルミニウム系複合材料は、非酸ィ匕性雰囲気下では 500°C以下 であれば、加熱保持を行っても強度低下は認められない。しかし、保持温度が 550 °C以上の場合には、炭素繊維とマトリックスとの界面反応により、アルミニウム炭化物( Al C )が形成され、炭素繊維の断面積が減少すると共に、この炭化物の根本でのノ[0007] In addition, the strength of the carbon fiber Z aluminum-based composite material is not observed even when heated and maintained at 500 ° C or less in a non-acidic atmosphere. However, when the holding temperature is 550 ° C or higher, aluminum carbide (Al C) is formed due to the interfacial reaction between the carbon fiber and the matrix, and the carbon fiber cross-sectional area is reduced. No
4 3 4 3
ツチ効果により強度が低下するという問題点があった。  There was a problem that the strength was lowered due to the sticking effect.
更に、大気中での加熱は、酸ィ匕による炭素繊維の劣化が重大な問題となることがこ れまでの研究によって明らかにされている。 [0008] 本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目 的とするところは、送電線、リード線等の導電体、ラジェータ、コンデンサ、エバポレー タ等の熱交換器、又は自動車用部品において好適に使用し得る高い強度及び電気 伝導率を併有するナノカーボン Zアルミニウム複合材、その製造方法及びこれに用 いるめつき液を提供することにある。 Furthermore, it has been clarified by previous studies that heating in the atmosphere is a serious problem due to the deterioration of carbon fiber by acid. [0008] The present invention has been made in view of such problems of the prior art, and the object of the present invention is to provide electric conductors such as power transmission lines and lead wires, radiators, capacitors, evaporators, and the like. An object of the present invention is to provide a nanocarbon Z-aluminum composite material having both high strength and electrical conductivity that can be suitably used in a heat exchanger or an automotive part, a method for producing the same, and a dip solution used therefor.
課題を解決するための手段  Means for solving the problem
[0009] 本発明者らは、上記目的を達成すべく鋭意研究を重ねたところ、常温型溶融塩 (常 温溶融塩、室温溶融塩又はイオン液体とも呼ばれる。 )は、以下の(1)〜(3)に列挙 する利点を有し、各種合金の電析浴や、電池用電解液として非常に有望であるという 技術知見を得た。  [0009] The inventors of the present invention have made extensive studies to achieve the above-mentioned object. As a result, room-temperature molten salts (also referred to as normal-temperature molten salts, room-temperature molten salts, or ionic liquids) are as follows: We obtained the technical knowledge that they have the advantages listed in (3) and are very promising as electrodeposition baths for various alloys and electrolytes for batteries.
(1)アルミニウムのような卑な標準電極電位を有する金属や合金のめっきを容易に行 うことができる。  (1) It is possible to easily plate a metal or alloy having a base standard electrode potential such as aluminum.
(2)常温での使用が可能であるため扱いが容易である。  (2) Easy to handle because it can be used at room temperature.
(3)不揮発性 ·不燃性であるため弓 I火の危険性がな 、。  (3) Non-volatile · Non-flammable, so there is no danger of bow I fire.
[0010] そして、かかる技術知見に基づき、更に研究を進めたところ、所定のめっき液を作 製し、これを用いることなどにより、上記目的が達成できることを見出し、本発明を完 成するに至った。  [0010] Then, further research has been conducted based on such technical knowledge, and as a result, it has been found that the above object can be achieved by producing a predetermined plating solution and using it, and the present invention has been completed. It was.
[0011] 即ち、本発明のナノカーボン /アルミニウム複合材形成用めつき液は、アルミニウム ハロゲン化物、ナノカーボン、 1, 3—ジアルキルイミダゾリゥムハロゲン化物及び Z又 はモノアルキルピリジ-ゥムハロゲン化物を含有し、該アルミニウムハロゲン化物と、 該 1, 3—ジアルキルイミダゾリゥムハロゲン化物及び Z又は該モノアルキルピリジ-ゥ ムハロゲン化物とをモル比で 20 : 80〜80: 20の割合で含有し、該 1, 3—ジアルキル イミダゾリゥムハロゲン化物は、炭素数 1〜12のアルキル基を有し、該モノアルキルピ リジ -ゥムハロゲンィ匕物は、炭素数 1〜12のアルキル基を有することを特徴とする。  [0011] That is, the nanocarbon / aluminum composite forming solution of the present invention comprises an aluminum halide, nanocarbon, 1,3-dialkylimidazolium halide and Z or monoalkylpyridium halide. Containing the aluminum halide, the 1,3-dialkylimidazolium halide and Z or the monoalkylpyridium halide in a molar ratio of 20:80 to 80:20, The 1,3-dialkyl imidazolium halide has an alkyl group having 1 to 12 carbon atoms, and the monoalkylpyridine-halogen halide has an alkyl group having 1 to 12 carbon atoms.
[0012] また、本発明のナノカーボン Zアルミニウム複合材形成用めつき液の第 1の製造方 法は、上記本発明のナノカーボン Zアルミニウム複合材形成用めつき液を製造する に当たり、アルミニウムハロゲンィ匕物とナノカーボンとを混合し、次いで、得られた混 合物と 1 , 3—ジアルキルイミダゾリゥムハロゲン化物及び Z若しくはモノアルキルピリ ジ -ゥムハロゲンィ匕物とを混合し、溶融するか又は 1, 3—ジアルキルイミダゾリゥムハ ロゲン化物及び Z若しくはモノアルキルピリジ-ゥムハロゲン化物とナノカーボンとを 混合し、次いで、得られた混合物とアルミニウムハロゲンィ匕物とを混合し、溶融するこ とを特徴とする。 [0012] In addition, the first method for producing the nanocarbon Z-aluminum composite staking solution of the present invention includes the production of the aluminum carbon The mixture is then mixed with the nanocarbon, then the resulting mixture is combined with 1,3-dialkylimidazole halide and Z or monoalkyl pyri Mix and melt the di-halogen halide, or mix 1,3-dialkylimidazolium halide and Z or monoalkylpyridium halide with nanocarbon, and then mix the resulting mixture with aluminum It is characterized by mixing and melting with halogenated materials.
[0013] 更に、本発明のナノカーボン Zアルミニウム複合材形成用めつき液の第 2の製造方 法は、上記本発明のナノカーボン Zアルミニウム複合材形成用めつき液を製造する に当たり、アルミニウムハロゲン化物とナノカーボンとを混合するか又は 1, 3—ジアル キルイミダゾリゥムハロゲン化物及び Z若しくはモノアルキルピリジ-ゥムハロゲン化 物とナノカーボンとを混合し、次いで、得られた混合物と、アルミニウムハロゲンィ匕物 並びに 1, 3—ジアルキルイミダゾリゥムハロゲン化物及び Z又はモノアルキルピリジ -ゥムハロゲンィ匕物を含有する溶融塩とを混合することを特徴とする。  [0013] Further, the second method for producing the nanocarbon Z-aluminum composite staking solution of the present invention provides an aluminum halogen solution for producing the nanocarbon Z-aluminum composite staking solution of the present invention. Or 1,3-dialkylimidazolium halide and Z or monoalkyl pyridinium halide and nanocarbon, and then the resulting mixture is mixed with aluminum halide. And a molten salt containing a 1,3-dialkylimidazolium halide and a Z or monoalkylpyridium halide compound.
[0014] また、本発明のナノカーボン Zアルミニウム複合材の製造方法は、上記本発明のナ ノカーボン Zアルミニウム複合材形成用めつき液を用いた製造方法であって、乾燥 無酸素雰囲気中、直流及び Z又はパルス電流により、浴温 0〜300°C、電流密度 0. 01〜50AZdm2の電解条件で基材表面にめっきすることを特徴とする。 [0014] The method for producing the nanocarbon Z-aluminum composite of the present invention is a method using the nanocarbon Z-aluminum composite forming solution of the present invention, wherein the nanocarbon Z-aluminum composite is formed in a dry oxygen-free atmosphere. It is characterized in that the surface of the substrate is plated by electrolytic conditions of a bath temperature of 0 to 300 ° C. and a current density of 0.01 to 50 AZdm 2 by direct current and Z or pulse current.
[0015] 更に、本発明のナノカーボン/アルミニウム複合材は、上記本発明のナノカーボン Zアルミニウム複合材の製造方法によって作製されたことを特徴とする。  Furthermore, the nanocarbon / aluminum composite material of the present invention is characterized by being produced by the above-described method for producing a nanocarbon Z aluminum composite material of the present invention.
発明の効果  The invention's effect
[0016] 本発明によれば、所定のめっき液を作製し、これを用いることなどとしたため、送電 線、リード線等の導電体、ラジェータ、コンデンサ、エバポレータ等の熱交換器、又は 自動車用部品において好適に使用し得る高い強度及び電気伝導率を併有するナノ カーボン Zアルミニウム複合材、その製造方法を提供することができる。  [0016] According to the present invention, since a predetermined plating solution is prepared and used, a conductor such as a power transmission line and a lead wire, a heat exchanger such as a radiator, a capacitor, and an evaporator, or an automotive part Can provide a nanocarbon Z-aluminum composite material having both high strength and electrical conductivity that can be suitably used, and a method for producing the same.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、本発明のナノカーボン Zアルミニウム複合材形成用めつき液について詳細 に説明するが、本明細書及び特許請求の範囲において、「%」は特記しない限り質 量百分率を表すものとする。 [0017] The nanocarbon Z-aluminum composite forming solution according to the present invention will be described in detail below. In the present specification and claims, "%" represents a mass percentage unless otherwise specified. To do.
[0018] 上述の如ぐ本発明のナノカーボン Zアルミニウム複合材形成用めつき液は、アル ミニゥムハロゲン化物と、ナノカーボンと、 1, 3—ジアルキルイミダゾリゥムハロゲン化 物及びモノアルキルピリジ-ゥムハロゲンィ匕物のいずれか一方又は双方とを含有し、 該アルミニウムハロゲン化物と、該 1, 3—ジアルキルイミダゾリゥムハロゲン化物及び 該モノアルキルピリジ-ゥムハロゲン化物の 、ずれか一方又は双方とをモル比で 20: 80-80: 20の割合で含有するものである。 [0018] As described above, the plating solution for forming a nanocarbon Z aluminum composite of the present invention comprises aluminum halide, nanocarbon, and 1,3-dialkylimidazolium halide. And a monoalkyl pyridinium halide, and the aluminum halide, the 1,3-dialkylimidazolium halide and the monoalkylpyridium halide. One or both of them are contained in a molar ratio of 20: 80-80: 20.
そして、かかる 1, 3—ジアルキルイミダゾリゥムハロゲン化物は、炭素数 1〜12のァ ルキル基を有し、力かるモノアルキルピリジ-ゥムハロゲン化物は、炭素数 1〜12の アルキル基を有する。  Such 1,3-dialkylimidazolium halides have an alkyl group having 1 to 12 carbon atoms, and powerful monoalkylpyridium halides have an alkyl group having 1 to 12 carbon atoms.
[0019] 本発明においては、上記のように、アルミニウムハロゲン化物と、 1, 3—ジアルキル イミダゾリゥムハロゲン化物及びモノアルキルピリジ-ゥムハロゲン化物のいずれか一 方又は双方とを、モル比で 20: 80-80: 20の割合で含有することを要する。  In the present invention, as described above, the aluminum halide and one or both of 1,3-dialkylimidazolium halide and monoalkylpyridium halide are used in a molar ratio of 20 : It needs to be contained at a ratio of 80-80: 20.
力かる割合を満たさない場合には、常温で溶融せず、めっき液にならないか、仮に 温度を上げて溶融させても、めっき液の粘性が高く、めっき液に不向きであり、高い 強度及び電気伝導率を併有するナノカーボン Zアルミニウム複合材を形成し得るめ つき液とならない。  If the ratio is not met, it will not melt at room temperature and will not become a plating solution, or even if the temperature is increased and melted, the viscosity of the plating solution is high and unsuitable for the plating solution. It does not become a plating solution that can form nanocarbon Z aluminum composites having both conductivity.
なお、 1, 3—ジアルキルイミダゾリゥムハロゲン化物及びモノアルキルピリジ-ゥム ノ、ロゲンィ匕物は、上記の割合を満たす範囲で、それぞれ単独で又は混合して用いる ことができる。  In addition, 1,3-dialkylimidazolium halide, monoalkylpyridyl-umuno and logene compounds can be used alone or in combination within a range satisfying the above ratio.
[0020] また、本発明においては、 1, 3—ジアルキルイミダゾリゥムハロゲンィ匕物が炭素数 1 〜 12のアルキル基を有し、モノアルキルピリジ-ゥムハロゲン化物が炭素数 1〜 12の アルキル基を有することを要する。  [0020] In the present invention, the 1,3-dialkylimidazolium halide has an alkyl group having 1 to 12 carbon atoms, and the monoalkylpyridium halide has an alkyl group having 1 to 12 carbon atoms. It is necessary to have a group.
力かる炭素数のアルキル基を有さない場合には、常温で溶融せず、めっき液になら ないか、仮に温度を上げて溶融させても、めっき液の粘性が高く、めっき液に不向き であり、高 ヽ強度及び電気伝導率を併有するナノカーボン Zアルミニウム複合材を 形成し得るめっき液とならな 、。  If it does not have an alkyl group with a strong carbon number, it will not melt at room temperature and will not become a plating solution, or even if it is melted by raising the temperature, the viscosity of the plating solution is high and it is not suitable for the plating solution. It must be a plating solution that can form nanocarbon Z aluminum composites that have both high strength and electrical conductivity.
[0021] このような構成とすることにより、高い強度及び電気伝導率を併有するナノカーボン Zアルミニウム複合材を形成し得るめっき液となる。  [0021] With such a configuration, the plating solution can form a nanocarbon Z aluminum composite material having both high strength and electrical conductivity.
[0022] また、本発明においては、アルミニウムハロゲン化物と 1, 3—ジアルキルイミダゾリウ ムハロゲン化物及びモノアルキルピリジ-ゥムハロゲン化物の一方又は双方との合計 体積に対して、 0. 01〜50gZLの割合でナノカーボンを含有することが好ましぐ 0. 01〜20gZLの割合でナノカーボンを含有することがより好ましい。 [0022] In the present invention, the total of aluminum halide and one or both of 1,3-dialkylimidazolium halide and monoalkylpyridium halide. It is preferable to contain nanocarbon at a ratio of 0.01 to 50 gZL with respect to the volume. It is more preferable to contain nanocarbon at a ratio of 0.01 to 20 gZL.
含有するナノカーボンの割合が 0. OlgZL未満の場合には、アルミニウムめっき膜 に取り込まれるナノカーボン粒子の量が少なくなり、所望の特性を得にくくなるので、 好ましくない。一方、含有するナノカーボンの割合が 50gZLを超えると、電解浴にお けるナノカーボン粒子の濃度が高まり、ナノカーボン粒子が凝集して沈降してしまい、 また、電解終了時に電解浴力も電解物を引き上げる際に、分散しているナノカーボン 粒子が余分に付着してしまい、好ましくない。  When the proportion of nanocarbon contained is less than 0. OlgZL, the amount of nanocarbon particles taken into the aluminum plating film is reduced, and it becomes difficult to obtain desired characteristics. On the other hand, when the proportion of the nanocarbon contained exceeds 50 gZL, the concentration of the nanocarbon particles in the electrolytic bath increases, and the nanocarbon particles aggregate and settle. When it is pulled up, the dispersed nanocarbon particles adhere excessively, which is not preferable.
[0023] ここで、各構成成分について、より詳細に説明する。 [0023] Here, each component will be described in more detail.
まず、用いるアルミニウムハロゲンィ匕物にっ 、て説明する。  First, the aluminum halide used will be described.
アルミニウムハロゲン化物としては、上述のようなナノカーボン Zアルミニウム複合材 を形成し得るめっき液が得られれば特に限定されるものではないが、例えば、塩ィ匕ァ ルミ-ゥム (A1C1 )を使用することが好ましぐ特に無水 A1C1を好適に使用することが  The aluminum halide is not particularly limited as long as a plating solution capable of forming the nanocarbon Z aluminum composite as described above can be obtained. For example, salt aluminum (A1C1) is used. It is particularly preferable to use anhydrous A1C1.
3 3  3 3
できる。  it can.
[0024] 次に、用いる 1, 3 ジアルキルイミダゾリゥムハロゲン化物について説明する。  Next, the 1,3 dialkyl imidazolium halide used will be described.
1, 3 ジアルキルイミダゾリゥムハロゲン化物は、上述の如ぐ炭素数が 1〜12のァ ルキル基を少なくとも 1つ有し、更に、上述のようなナノカーボン Zアルミニウム複合 材を形成し得るめっき液が得られれば特に限定されるものではな 、が、例えば炭素 数が 1〜5のアルキル基を 1つ有することが好ましぐ 2つ有することがより好ましい。具 体的には、 1—ェチル—3—メチルイミダゾリゥムクロリド(以下、「EMIC」と略記する。 )を好適に使用することができる。  The 1,3 dialkyl imidazolium halide has at least one alkyl group having 1 to 12 carbon atoms as described above, and can further form a nanocarbon Z aluminum composite as described above. However, it is preferable to have one alkyl group having 1 to 5 carbon atoms, for example, and more preferably. Specifically, 1-ethyl-3-methylimidazolium chloride (hereinafter abbreviated as “EMIC”) can be preferably used.
なお、 2つのアルキル基は、同一でも異なってもよい。  The two alkyl groups may be the same or different.
[0025] 次に、用いるモノアルキルピリジニゥムハロゲン化物について説明する。 [0025] Next, the monoalkylpyridinium halide used will be described.
モノアルキルピリジ-ゥムハロゲン化物は、上述の如ぐ炭素数が 1〜12のアルキル 基を有し、更に、上述のようなナノカーボン Zアルミニウム複合材を形成し得るめっき 液が得られれば特に限定されるものではないが、例えば炭素数が 1〜5のアルキル 基を 1つ有することが好ましい。具体的には、 1 ブチルピリジ-ゥムクロリド(以下、「 BPC」と略記する。)を好適に使用することができる。 [0026] また、得られるめっき液の物性、具体的には、めっき液の導電率や粘度、融点など について考慮すると、融点が 84°C程度と低い、 EMICを用いることが特に望ましい。 Monoalkyl pyridinium halides are particularly limited as long as a plating solution having an alkyl group having 1 to 12 carbon atoms as described above and capable of forming a nanocarbon Z aluminum composite as described above is obtained. However, it is preferable to have one alkyl group having 1 to 5 carbon atoms, for example. Specifically, 1 butyl pyridinium chloride (hereinafter abbreviated as “BPC”) can be preferably used. [0026] Considering the physical properties of the resulting plating solution, specifically, the conductivity, viscosity, melting point, etc. of the plating solution, it is particularly desirable to use EMIC with a melting point as low as about 84 ° C.
[0027] 次に、用いるナノカーボンについて説明する。  Next, the nanocarbon to be used will be described.
ナノカーボンとしては、特に限定されるものではないが、例えば、カーボンナノチュ ーブ、カーボンナノファイバー、カーボンナノホーン、フラーレン、カーボンブラック、 アセチレンブラック又はケッチェンブラック、及びこれらの任意の混合物を用いること ができる。  The nanocarbon is not particularly limited. For example, carbon nanotubes, carbon nanofibers, carbon nanohorns, fullerenes, carbon black, acetylene black or ketjen black, and any mixtures thereof may be used. Can do.
[0028] 本発明にお!/、ては、ナノカーボンの一種であるカーボンナノチューブとして、直径 力^〜 lOOnmであり、且つ長さが 1〜: LOO /z mであり、且つアスペクト比が 10〜: LOO であるものを用いることが好適である。  [0028] In the present invention, as a carbon nanotube which is a kind of nanocarbon, the diameter force is ~~ lOOnm, the length is 1 ~: LOO / zm, and the aspect ratio is 10 ~ : It is preferable to use one that is LOO.
直径 lnm未満では凝集し易くなり沈降が起こり易いため、アルミニウムめっき膜中 に取り込まれに《なる。一方、直径 lOOnmを超えても沈降が起こり易いため、アルミ -ゥムめっき膜中に取り込まれに《なる。また、長さ 1 μ m未満でも直径 lnm未満の 場合と同様に凝集し易くなり沈降が起こり易いため、アルミニウムめっき膜中に取り込 まれにくくなる。一方、長さ 100 /z mを超えても直径 lOOnmを超えた場合と同様に沈 降が起こり易 、ため、アルミニウムめっき膜中に取り込まれにくくなる。  If the diameter is less than lnm, it tends to agglomerate and precipitate easily, so that it is taken into the aluminum plating film. On the other hand, sedimentation is likely to occur even when the diameter exceeds lOOnm, so that it is incorporated into the aluminum-plated film. In addition, even if the length is less than 1 μm, it is easy to agglomerate and precipitate easily as in the case of a diameter less than 1 nm, so that it is difficult to be taken into the aluminum plating film. On the other hand, even if the length exceeds 100 / zm, the precipitation is likely to occur as in the case where the diameter exceeds lOOnm, and therefore, it is difficult to be taken into the aluminum plating film.
なお、用いるカーボンナノチューブは、単層又は多層のいずれであってもよぐそれ らを適宜混合して用いてもょ ヽ。  The carbon nanotubes to be used may be either single-walled or multi-walled, or they may be mixed as appropriate.
[0029] 次に、本発明のナノカーボン Zアルミニウム複合材形成用めつき液の製造方法に ついて説明する。  [0029] Next, a method for producing a nanocarbon Z-aluminum composite forming solution according to the present invention will be described.
上述の如ぐ本発明のナノカーボン Zアルミニウム複合材形成用めつき液の第 1の 製造方法は、上記本発明のナノカーボン Zアルミニウム複合材形成用めつき液を製 造するに当たり、アルミニウムハロゲンィ匕物とナノカーボンとを混合し、次いで、得られ た混合物と 1, 3—ジアルキルイミダゾリゥムハロゲン化物及びモノアルキルピリジニゥ ムハロゲン化物のいずれか一方若しくは双方とを混合し、溶融するか又は 1, 3—ジ アルキルイミダゾリゥムハロゲン化物及びモノアルキルピリジ-ゥムハロゲン化物のい ずれか一方若しくは双方とナノカーボンとを混合し、次いで、得られた混合物とアルミ -ゥムハロゲンィ匕物とを混合し、溶融して、所望のナノカーボン Zアルミニウム複合材 形成用めつき液を得る方法である。 The first method for producing the nanocarbon Z-aluminum composite staking solution of the present invention as described above provides an aluminum halide solution for producing the nanocarbon Z-aluminum composite staking solution of the present invention. Mix the soot and nanocarbon, then mix the resulting mixture with one or both of 1,3-dialkylimidazole halide and monoalkylpyridinium halide and melt or Mix one or both of 1,3-dialkylimidazolium halide and monoalkylpyridium halide with nanocarbon, then mix the resulting mixture with aluminum halide. Melt the desired nanocarbon Z aluminum composite This is a method for obtaining a forming solution.
[0030] また、本発明のナノカーボン Zアルミニウム複合材形成用めつき液の第 2の製造方 法は、上記本発明のナノカーボン Zアルミニウム複合材形成用めつき液を製造する に当たり、アルミニウムハロゲン化物とナノカーボンとを混合するか又は 1, 3—ジアル キルイミダゾリゥムハロゲン化物及びモノアルキルピリジ-ゥムハロゲン化物のいずれ か一方若しくは双方とナノカーボンとを混合し、次いで、得られた混合物と、アルミ二 ゥムハロゲン化物並びに 1, 3—ジアルキルイミダゾリゥムハロゲン化物及びモノアル キルピリジ-ゥムハロゲンィ匕物の 、ずれか一方若しくは双方を含有する溶融塩とを混 合して、所望のナノカーボン Zアルミニウム複合材形成用めっき液を得る方法である  [0030] In addition, the second method for producing the nanocarbon Z-aluminum composite staking solution of the present invention is a method for producing the nanocarbon Z-aluminum composite staking solution of the present invention. Compound and nanocarbon, or one or both of 1,3-dialkylimidazolium halide and monoalkyl pyridinium halide and nanocarbon, and then the resulting mixture , Aluminum halide, and 1,3-dialkylimidazolium halide and monoalkyl pyridinium halide, mixed with a molten salt containing either or both, to obtain the desired nanocarbon Z aluminum composite. It is a method to obtain a plating solution for forming
[0031] なお、第 1又は第 2の製造方法において、用いる 1, 3—ジアルキルイミダゾリゥムハ ロゲン化物及びモノアルキルピリジ-ゥムハロゲン化物は、それぞれ炭素数 1〜12の アルキル基を有し、それらは同一でも異なって 、てもよ 、。 [0031] The 1,3-dialkylimidazolium halide and monoalkylpyridium halide used in the first or second production method each have an alkyl group having 1 to 12 carbon atoms, and May be the same or different.
また、アルミニウムハロゲンィ匕物やナノカーボンにつ 、ても特に限定されるものでは なぐ上述したものを用いることができる。  In addition, aluminum halides and nanocarbons are not particularly limited, and those described above can be used.
[0032] 本発明のナノカーボン /アルミニウム複合材形成用めつき液は、アルミニウムハロ ゲン化物と、ナノカーボンと、所定の 1, 3—ジアルキルイミダゾリゥムハロゲン化物及 びモノアルキルピリジ-ゥムハロゲンィ匕物のいずれか一方又は双方とを所定の割合 で含有すれば、上述の如き、本発明の第 1又は第 2の製造方法により作製されたもの に限定されるものではないが、上述の如き、本発明のナノカーボン Zアルミニウム複 合材形成用めつき液を第 1の製造方法により作製した場合には、あらかじめ塩にナノ カーボン粒子を混合することで、ナノカーボン粒子が凝集しにくい状態であり、ナノ力 一ボン粒子のめっき液への均一分散の観点から望ましぐ一方、第 2の製造方法によ り作製した場合には、アルミニウムハロゲンィ匕物並びに 1, 3—ジァノレキノレイミダゾリウ ムハロゲン化物及びモノアルキルピリジ-ゥムハロゲン化物の 、ずれか一方若しくは 双方を含有する混合物自体が溶融塩であり、混合物を直接溶融塩に投入することか ら、さらに均一分散が促進されるという観点力も望ましい。  [0032] The nanocarbon / aluminum composite forming solution of the present invention comprises an aluminum halide, nanocarbon, a predetermined 1,3-dialkylimidazole halide, and a monoalkylpyridium halide. As long as one or both of the products are contained in a predetermined ratio, it is not limited to those produced by the first or second production method of the present invention as described above, but as described above, When the nanocarbon Z-aluminum composite plating solution of the present invention is produced by the first production method, the nanocarbon particles are not easily aggregated by previously mixing the nanocarbon particles with the salt. However, it is desirable from the viewpoint of uniform dispersion of nano-forced single-bon particles in the plating solution, while aluminum halide and 1, Further, since the mixture itself containing either one or both of 3-halogenoylimidazolium halide and monoalkylpyridium halide is a molten salt, and the mixture is directly charged into the molten salt. The viewpoint power that uniform dispersion is promoted is also desirable.
[0033] より具体的な例を挙げて説明すると、例えば、めっき液の製法としては、アルミニゥ ムハロゲン化物の一例である A1C1と、 1, 3—ジアルキルイミダゾリゥムハロゲン化物 [0033] A more specific example will be described. For example, as a method for producing a plating solution, aluminum is used. A1C1, which is an example of a halogenated halide, and 1,3-dialkylimidazolium halide
3  Three
の一例である EMICとを所定のモル比で混合した常温型溶融塩をベースとし、ナノ力 一ボンの一例である CNTを適宜添カ卩すればよ!、。  Based on room-temperature molten salt mixed with EMIC, which is an example of the above, at a predetermined molar ratio, CNT, which is an example of nano-powered bonbon, can be added as appropriate!
そして、 CNTを添加する際には、用いる A1C1や EMICに予め分散させておくこと  When adding CNTs, disperse them beforehand in the A1C1 or EMIC used.
3  Three
力 Sハンドリングが容易となると 、う観点から望まし 、。  It is desirable from the point of view that force S handling becomes easy.
また、常温型溶融塩が完全に溶融していない場合には、加熱して完全に溶融する ことが望ましい。  In addition, when the room temperature molten salt is not completely melted, it is desirable to heat it and melt it completely.
更に、 A1C1—EMIC常温型溶融塩の不純物を除去するために、 CNTを添加する  Add CNT to remove impurities from A1C1-EMIC room temperature molten salt
3  Three
前に、完全に溶融した常温型溶融塩に A1線を 1週間以上浸す方が望ましい。  It is preferable to immerse the A1 wire in a completely molten room temperature molten salt for a week or more before.
更にまた、 A1C1—EMIC常温型溶融塩に、 CNTを分散させる方法としては、特に  Furthermore, as a method of dispersing CNT in A1C1-EMIC room temperature molten salt,
3  Three
限定されるものではないが、例えば超音波照射や攪拌などを挙げることができる。  Although not limited, ultrasonic irradiation, stirring, etc. can be mentioned, for example.
[0034] 次に、本発明のナノカーボン Zアルミニウム複合材の製造方法について説明する。 Next, a method for producing the nanocarbon Z aluminum composite of the present invention will be described.
上述の如ぐ本発明のナノカーボン Zアルミニウム複合材の製造方法は、上記本発 明のナノカーボン Zアルミニウム複合材形成用めつき液を用いた製造方法であって、 乾燥無酸素雰囲気中で、直流及びパルス電流の!/ヽずれか一方又は双方を適宜組 合わせることにより、浴温 0〜300°C、電流密度 0. 01〜50AZdm2の電解条件で基 材表面にめっきして、所望のナノカーボン Zアルミニウム複合材を得る方法である。 The method for producing the nanocarbon Z-aluminum composite of the present invention as described above is a production method using the plating solution for forming the nanocarbon Z-aluminum composite of the present invention, in a dry oxygen-free atmosphere. By appropriately combining one or both of direct current and / or pulse current, plating on the surface of the substrate under the electrolysis conditions of bath temperature 0 to 300 ° C, current density 0.01 to 50AZdm 2 , the desired This is a method for obtaining a nanocarbon Z aluminum composite.
[0035] 浴温力O°Cより低い場合には、めっき液が凝固してしまうことから、また、浴温が 300 °Cより高い場合には、めっき液自体が熱分解してしまうことから、いずれの場合も電解 が困難となる。 [0035] When the bath temperature is lower than O ° C, the plating solution is solidified, and when the bath temperature is higher than 300 ° C, the plating solution itself is thermally decomposed. In either case, electrolysis becomes difficult.
また、電流密度が 0. OlAZdm2より低い場合には、電解時間が長くなるので実用 的ではなぐ電流密度が 50AZdm2より高い場合には、めっき液が分解電圧に到達 し、めっきすること自体が困難になる。 In addition, when the current density is lower than 0. OlAZdm 2 , the electrolysis time becomes longer, so when the current density that is not practical is higher than 50 AZdm 2 , the plating solution reaches the decomposition voltage and the plating itself is not performed. It becomes difficult.
なお、本発明において、「乾燥無酸素雰囲気」とは、水分量が 2ppm以下、酸素量 力 Slppm以下である雰囲気を意味し、通常は、アルゴン (Ar)や窒素 (N )雰囲気中  In the present invention, the “dry oxygen-free atmosphere” means an atmosphere having a moisture content of 2 ppm or less and an oxygen content force of Slppm or less, and is usually in an argon (Ar) or nitrogen (N) atmosphere.
2  2
で行なえばよい。  Just do it.
[0036] このような方法とすることにより、基材表面に高い強度及び電気伝導率を併有する ナノカーボン/アルミニウム複合材 (めっき膜)を形成することができる。 また、電気めつきという手段を用いるので、簡単な単一工程でナノカーボン Zアルミ -ゥム複合材のめっき膜を得ることができ、し力も任意の形状に対して加工が可能と なる。 [0036] By adopting such a method, a nanocarbon / aluminum composite material (plating film) having both high strength and electrical conductivity can be formed on the substrate surface. In addition, since a method called electroplating is used, a plating film of nanocarbon Z aluminum-aluminum composite material can be obtained by a simple single process, and the force can be processed to an arbitrary shape.
[0037] より具体的な例を挙げて説明すると、本発明のナノカーボン Zアルミニウム複合材 の製造方法においては、特に限定されるものではないが、例えば従来公知の 2電極 式セルを用いることができる。  [0037] The method for producing the nanocarbon Z aluminum composite material of the present invention is not particularly limited, but for example, a conventionally known two-electrode cell is used. it can.
電解方法としては、例えば A1C1— EMIC常温型溶融塩に CNTを分散させて得ら  As an electrolysis method, for example, A1C1-EMIC is obtained by dispersing CNTs in a room temperature molten salt.
3  Three
れためつき液に、力ソード及びアノードを浸漬した状態で、両電極に接続した直流電 源によって、両電極に定電流及びパルス電流のいずれか一方又は双方を組合わせ ることにより電圧を印加する方法を挙げることができる。  A method of applying a voltage by combining either or both of a constant current and a pulse current to both electrodes with a direct current power source connected to both electrodes while a force sword and an anode are immersed in the liquor. Can be mentioned.
印加する電圧は、所定間隔ごとにその大きさを変化させてもよい。  The magnitude of the applied voltage may be changed at predetermined intervals.
また、電解時間は、継続的に 0. 1〜600秒間程度印加すればよい。  The electrolysis time may be continuously applied for about 0.1 to 600 seconds.
更に、必要に応じて、周期的に 0. 1〜1秒程度の間隔で、印加と停止を繰り返して ちょい。  If necessary, repeat application and stop periodically at intervals of about 0.1 to 1 second.
[0038] また、ナノカーボン Zアルミニウム複合材のめつき量は、ナノカーボンの分散量ゃ電 流密度、電解時間などを適宜調整することにより、制御することができる。  [0038] The amount of nanocarbon Z-aluminum composite can be controlled by appropriately adjusting the amount of nanocarbon dispersion, current density, electrolysis time, and the like.
例えば、ナノカーボン Zアルミニウム複合材のめつき量を多くするためには、ナノ力 一ボンの分散量を多くする、電解電圧を高めにして電流密度を高くする、又は電解 時間を長くする、及びこれらを適宜組合わせて電解すればょ ヽ。  For example, to increase the amount of nanocarbon Z-aluminum composite, increase the amount of nano-bonbon dispersion, increase the electrolysis voltage to increase the current density, or increase the electrolysis time. If these are combined in an appropriate manner and electrolyzed, it is necessary.
なお、連続生産する際には、ナノカーボンと A1C1— EMIC常温型溶融塩とを順次  For continuous production, nanocarbon and A1C1-EMIC room temperature molten salt are sequentially used.
3  Three
補給してナノカーボンの分散量の低下を補うことが望ましい。  It is desirable to supplement the decrease in the amount of nanocarbon dispersed.
[0039] 更に、用いる陰極 (力ソード若しくは負極)としては、めっき液に対して、化学的、電 気化学的に安定性のある導体であれば、その材質や形状については特に限定され ず、種々のものを用いることができる。 [0039] Further, the cathode (force sword or negative electrode) to be used is not particularly limited as long as it is a conductor that is chemically and electrochemically stable with respect to the plating solution. Various things can be used.
力ソードの材料としては、例えば銅や真鍮、ニッケル、ステンレス、タングステン、モリ ブデンなどを挙げることができ、電気化学的な安定性や延伸性、経済性などを考慮 すると、銅又は真鍮が好ましいが、これに限定されるものではない。  Examples of the material of the force sword include copper, brass, nickel, stainless steel, tungsten, molybdenum, etc. In consideration of electrochemical stability, stretchability, economy, etc., copper or brass is preferable. However, the present invention is not limited to this.
そして、力ソードの形状としては、その表面状態や厚さ、大きさについて特に限定さ れるものではなぐ例えば、箔状ゃ板状、ワイヤーをスパイラル状にしたもの、発泡状 、不織布状、メッシュ状、フェルト状、エキスパンデッド状のような多孔質金属基体など を挙げることができ、その中でも、箔状ゃ板状のものが好適である。 And as the shape of the force sword, its surface condition, thickness and size are particularly limited. For example, a foil-like plate, a wire spiral, a foam, a nonwoven, a mesh, a felt, an expanded porous metal substrate, and the like can be mentioned. Among them, a foil-like plate is preferable.
なお、上述のような方法で電解を行なうと、基材となる力ソードの表面にめっき膜が 被覆形成される。  When electrolysis is performed by the above-described method, a plating film is formed on the surface of the force sword serving as the base material.
[0040] 更にまた、用いる陽極 (アノード若しくは正極)としては、公知の導電性基板を特に 限定されることなく使用することができ、その材質については、例えばィ匕学的、電気 化学的に安定な白金やグラフアイト、又は溶解してもめっき液が汚染されることのない アルミニウムを好適に用いることができる。  [0040] Furthermore, as the anode (anode or positive electrode) to be used, a known conductive substrate can be used without particular limitation, and the material thereof is, for example, chemically and electrochemically stable. Platinum, graphite, or aluminum that does not contaminate the plating solution even when dissolved can be suitably used.
正極の形状は、板状でもスパイラル状であってもよぐ特に限定されるものではない  The shape of the positive electrode may be a plate shape or a spiral shape, and is not particularly limited.
[0041] 次に、本発明のナノカーボン/アルミニウム複合材について説明する。 [0041] Next, the nanocarbon / aluminum composite material of the present invention will be described.
上述の如ぐ本発明のナノカーボン /アルミニウム複合材は、上記本発明のナノ力 一ボン Zアルミニウム複合材の製造方法によって作製されるものである。  The nanocarbon / aluminum composite material of the present invention as described above is produced by the method for producing the nanostrength Zvon aluminum composite material of the present invention.
このような構成とすることにより、送電線やリード線、熱交^^、自動車部品などに 用いた場合に、高い電気伝導率や高い熱伝導率を維持して、材料の薄肉化による 軽量化や小型化を促進することができ、軽量で高強度な複合材料として望まし ヽもの となる。  With this configuration, when used in power transmission lines, lead wires, heat exchangers, automobile parts, etc., it maintains high electrical conductivity and high thermal conductivity and is lightened by thinning the material. Therefore, it is desirable as a lightweight, high-strength composite material.
[0042] 例えば、上述したような電解方法によって、力ソードの表面にナノカーボン Zアルミ -ゥム複合材のめっき膜を形成することができる。  [0042] For example, a plating film of nanocarbon Z-aluminum composite material can be formed on the surface of the force sword by the electrolysis method as described above.
本発明においては、ナノカーボンの含有率が 0. 1〜50%であることが好ましぐ 0. 1〜20%であることがより好ましい。  In the present invention, the nanocarbon content is preferably 0.1 to 50%, more preferably 0.1 to 20%.
ナノカーボンの含有率が 0. 1%未満の場合には、ナノカーボンの特性が殆ど反映 されないため、所望の特性を得ることができないため、好ましくない。また、ナノカーボ ンの含有率が 50%を超える場合には、アルミニウム量が少なくなるので、マトリックス であるアルミニウムによって結合されていたナノカーボン同士の結合力が弱まり、急 激に強度が低下する可能性がある。  When the nanocarbon content is less than 0.1%, the characteristics of the nanocarbon are hardly reflected, and it is not preferable because desired characteristics cannot be obtained. In addition, when the nanocarbon content exceeds 50%, the amount of aluminum decreases, so the bonding strength between the nanocarbons bound by the matrix aluminum may weaken, and the strength may suddenly decrease. There is.
実施例 [0043] 以下、本発明を実施例により更に詳細に説明するが、本発明はこれら実施例に限 定されるものではない。 Example [0043] Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
[0044] (実施例 1) [0044] (Example 1)
A1C1と EMICとをモル比で 66. 7 : 33. 3となるように秤量し、撹拌しながら混合した A1C1 and EMIC were weighed to a molar ratio of 66.7: 33.3 and mixed with stirring.
3 Three
。完全に溶融したものに A1線を 1週間以上浸す置換法によって精製した。  . It was purified by a replacement method in which the A1 wire was immersed in a completely melted material for over a week.
これに、多層 (multi— wall)カーボンナノチューブ(MWCNT;チューブ直径 1. 2〜2 Onm,チューブ長さ 2〜5 πι)を、 0. 1〜30. OgZL添加して、 MWCNTZアルミ -ゥム複合材形成用めつき液を得た。  Multi-wall carbon nanotubes (MWCNT; tube diameter 1.2 to 2 Onm, tube length 2 to 5 πι) and 0.1 to 30 OgZL were added to the MWCNTZ aluminum-um composite. A plating solution for material formation was obtained.
これを充分に撹拌しながら、定電流電解を行って、本例の MWCNTZアルミニウム 複合材を得た。  While this was sufficiently stirred, constant current electrolysis was performed to obtain the MWCNTZ aluminum composite material of this example.
[0045] なお、めっき液の作製と電解操作は乾燥窒素雰囲気下で行った。また、定電流電 解には 2電極セルを用いて、力ソードとして Cu板(99. 96%)を、アノードに A1板(99 . 99%)を用いた。力ソードの前処理として、エメリー紙(2000番)による研磨の後、 1 0% o—ケィ酸ナトリウム水溶液で電解脱脂、 10vol%HClによる酸処理を施した。 電解条件は、浴温度 30°C、電流密度 5、 10、 20、 30mA/cm2,電析電気量 50CZ cm 'とした。 [0045] The preparation of the plating solution and the electrolysis operation were performed in a dry nitrogen atmosphere. In addition, a two-electrode cell was used for constant current electrolysis, a Cu plate (99.96%) was used as the force sword, and an A1 plate (99.99%) was used as the anode. As pre-treatment of the force sword, after polishing with emery paper (No. 2000), electrolytic degreasing with 10% o-sodium silicate aqueous solution and acid treatment with 10 vol% HCl were performed. The electrolysis conditions were a bath temperature of 30 ° C., a current density of 5, 10, 20, 30 mA / cm 2 , and an amount of electrodeposition of 50 CZ cm ′.
[0046] 走査電子顕微鏡(SEM :日本電子株式会社 CiEOL Ltd. )製、 JSM— 6500F)を 用いて、 MWCNTZアルミニウム複合材の表面状態を観察した。 MWCNTが A1析 出物中に取り込まれていく様子力 実際に観察された。まず、 MWCNTが電析物表 面に吸着した直後、 A1の初期析出核 (原子数として 1〜10万個程度)に取り押さえら れている様子が観察された。ついで、 MWCNT力 核から成長した A1析出核に完全 に取り込まれた様子が観察された。そして、 MWCNTがほぼ完全に A1析出物中に 埋没した様子が観察された。  [0046] The surface state of the MWCNTZ aluminum composite was observed using a scanning electron microscope (SEM: JEOL Ltd. CiEOL Ltd., JSM-6500F). The ability of MWCNT to be incorporated into the A1 precipitate was actually observed. First, immediately after MWCNT adsorbed on the surface of the deposit, it was observed that the initial precipitation nuclei (approximately 1 to 100,000 atoms) of A1 were caught. Next, it was observed that it was completely incorporated into A1 precipitation nuclei grown from MWCNT force nuclei. It was observed that MWCNT was almost completely buried in the A1 precipitate.
以上のことから、 MWCNTが単分散の形で A1と共析することが明らかになった。  From the above, it became clear that MWCNT co-deposited with A1 in monodisperse form.
[0047] 次に、全有機炭素計(島津製作所製, TOC— 5000A)を用いて、得られた MWC NTZアルミニウム複合材中の MWCNTの含有率を測定した結果、 MWCNTの含 有率は 0. 1〜20%の範囲で含まれていることが分かった。  [0047] Next, as a result of measuring the content of MWCNT in the obtained MWC NTZ aluminum composite using a total organic carbon meter (Shimadzu Corporation, TOC-5000A), the content of MWCNT was 0. It was found to be included in the range of 1-20%.
そこで、めっき液中の MWCNT添カ卩量と、当該複合材のビッカース硬度の関係を 調べた(図 1参照。 ) o即ち、 MWCNTの共析量の増加が当該複合材の硬度の上昇 を予測させると考えて、半定量的に議論を進めることとする。また、 MWCNTの添加 量 OgZLの場合に得た A1めっき膜の硬度を比較例とする。電流密度 5、 10、 20、 30 mAZcm2のいずれにおいても、 A1めっき膜の硬度は 50Hvであった。図 1に示すよ うに、各電流密度において、浴中への MWCNT添カ卩量が増加するに伴い、複合材 の硬度は A1めっき膜の硬度よりも増力!]した。金属中にナノ粒子が存在すると、一般的 にその金属の硬度が上昇するといわれており、本例の複合材の強度が上昇したこと から、 MWCNTの共祈が裏付けられた。なお、硬度測定には、ビッカース硬度計 (株 式会社ァカシ製、 HM- 124)を用いた。 Therefore, the relationship between the amount of MWCNT added in the plating solution and the Vickers hardness of the composite (See Fig. 1) o In other words, the discussion will proceed semi-quantitatively, assuming that an increase in the amount of eutectoid in MWCNT predicts an increase in the hardness of the composite. In addition, the hardness of the A1 plating film obtained when the added amount of MWCNT is OgZL is used as a comparative example. The hardness of the A1 plating film was 50 Hv at any of current densities 5, 10, 20, and 30 mAZcm 2 . As shown in Fig. 1, at each current density, as the amount of MWCNT added to the bath increased, the hardness of the composite increased more than the hardness of the A1 plating film! It is said that the presence of nanoparticles in a metal generally increases the hardness of the metal, and the strength of the composite in this example increased, confirming the MWCNT prayer. For the hardness measurement, a Vickers hardness tester (manufactured by AKASI Co., Ltd., HM-124) was used.
[0048] また、 JIS C 2525に記載の四端子法 (four- terminal measurement)を用いて 、本例の複合材の抵抗率を測定したところ、いずれの複合材の抵抗率も A1めっき膜 のそれより低い値を示した。  [0048] Further, when the resistivity of the composite material of this example was measured using the four-terminal measurement described in JIS C 2525, the resistivity of any composite material was that of the A1 plating film. It showed a lower value.
以上の結果を踏まえて、その他のナノカーボン粒子について検討したところ、単層 カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、フラーレン、力 一ボンブラック、アセチレンブラック又はケッチェンブラックにおいても同様な効果が 得られたことから、本発明のナノカーボン Zアルミニウム複合材、その製造方法及び これに用いるめっき液の有用性が分力つた。  Based on the above results, other nanocarbon particles were examined, and similar effects were obtained with single-walled carbon nanotubes, carbon nanofibers, carbon nanohorns, fullerenes, monobon black, acetylene black, or ketjen black. Therefore, the usefulness of the nanocarbon Z aluminum composite material of the present invention, its production method, and the plating solution used therefor has been divided.
[0049] (実施例 2)  [0049] (Example 2)
所定量の EMICと MWCNT (チューブ直径 1. 2〜20nm,チューブ長さ 2〜5 πι )とを混合し、その混合物を A1C1と混合し、溶融した。めっき液中の A1C1と EMICの  A predetermined amount of EMIC and MWCNT (tube diameter 1.2-20 nm, tube length 2-5 πι) were mixed, and the mixture was mixed with A1C1 and melted. A1C1 and EMIC in the plating solution
3 3 モノ kttは 66. 7 : 33. 3となるように設定し、 MWCNTの添カロ量は 0. 1〜30. Og/L となるように設定して、 MWCNTZアルミニウム複合材形成用めっき液を得た。 これを充分に撹拌しながら、定電流電解を行って、実施例 1と同様に本例の MWC NTZアルミニウム複合材を得た。なお、めっき液の作製と電解操作は乾燥窒素雰囲 気下で行った。また、電解に用いた 2電極セル、力ソードの前処理およびその電解条 件は、実施例 1と同じにした。  3 3 Mono ktt is set to 66.7: 33.3, and the amount of added MWCNT is set to 0.1-30. Og / L, and the plating solution for forming MWCNTZ aluminum composite material Got. While this was sufficiently stirred, constant current electrolysis was performed to obtain the MWC NTZ aluminum composite material of this example in the same manner as in Example 1. The plating solution was prepared and electrolyzed in a dry nitrogen atmosphere. The two-electrode cell, force sword pretreatment used for electrolysis, and the electrolysis conditions were the same as in Example 1.
[0050] SEMを用いて、 MWCNTZアルミニウム複合材の表面状態を観察したところ、実 施例 1と同様に、 MWCNTが単分散の形で A1と共析することが明らかになった。 [0051] 次に、全有機炭素計(島津製作所製, TOC— 5000A)を用いて、得られた MWC NTZアルミニウム複合材中の MWCNTの含有率を測定した結果、 MWCNTの含 有率は 0. 1〜20%の範囲で含まれていることが分かった。 [0050] Observation of the surface state of the MWCNTZ aluminum composite using SEM revealed that MWCNT co-deposited with A1 in monodispersed form, as in Example 1. [0051] Next, as a result of measuring the content of MWCNT in the obtained MWC NTZ aluminum composite using a total organic carbon meter (Shimadzu Corporation, TOC-5000A), the content of MWCNT was 0. It was found to be included in the range of 1-20%.
そこで、めっき液中の MWCNT添カ卩量と、当該複合材のビッカース硬度の関係を 調べた(図 2参照。 ) o実施例 1と同様に、 MWCNTの添カ卩量 OgZLの場合に得た A1 めっき膜の硬度を比較例とした。図 2に示すように、各電流密度において、浴中への MWCNT添カ卩量が増加するに伴 、、複合材の硬度は A1めっき膜の硬度よりも増加 した。金属中にナノ粒子が存在すると、一般的にその金属の硬度が上昇するといわ れており、本例の複合材の強度が上昇したことから、 MWCNTの共祈が裏付けられ た。なお、硬度測定には、ビッカース硬度計 (株式会社ァカシ製, HM— 124)を用い た。  Therefore, the relationship between the amount of MWCNT added in the plating solution and the Vickers hardness of the composite was investigated (see Fig. 2). O Similar to Example 1, obtained in the case of OgZL with added amount of MWCNT. The hardness of the A1 plating film was used as a comparative example. As shown in Fig. 2, at each current density, as the amount of MWCNT added to the bath increased, the hardness of the composite increased more than the hardness of the A1 plating film. It is said that the presence of nanoparticles in a metal generally increases the hardness of the metal, and the strength of the composite material in this example increased, confirming the MWCNT prayer. For the hardness measurement, a Vickers hardness tester (manufactured by Akashi Co., Ltd., HM-124) was used.
[0052] また、四端子法を用いて、本例の複合材の抵抗率を測定したところ、 V、ずれの複合 材の抵抗率も A1めっき膜のそれより低 、値を示した。  [0052] Further, when the resistivity of the composite material of this example was measured using the four-terminal method, the resistivity of the composite material of V and deviation was lower than that of the A1 plating film, and showed a value.
以上の結果を踏まえて、その他のナノカーボン粒子について検討したところ、単層 カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、フラーレン、力 一ボンブラック、アセチレンブラック又はケッチェンブラックにおいても同様な効果が 得られたことから、本発明のナノカーボン Zアルミニウム複合材、その製造方法及び これに用いるめっき液の有用性が分力つた。  Based on the above results, other nanocarbon particles were examined, and similar effects were obtained with single-walled carbon nanotubes, carbon nanofibers, carbon nanohorns, fullerenes, monobon black, acetylene black, or ketjen black. Therefore, the usefulness of the nanocarbon Z aluminum composite material of the present invention, its production method, and the plating solution used therefor has been divided.
[0053] (実施例 3)  [0053] (Example 3)
所定量の EMICと MWCNT (チューブ直径 1. 2〜20nm,チューブ長さ 2〜5 πι )とを混合し、その混合物を A1C1— EMIC溶融塩と混合した。めっき液中の A1C1 - A predetermined amount of EMIC and MWCNT (tube diameter 1.2-20 nm, tube length 2-5 πι) were mixed, and the mixture was mixed with A1C1-EMIC molten salt. A1C1 in plating solution-
3 33 3
EMICのモル比は 66. 7 : 33. 3となるように設定し、 MWCNTの添力卩量は 0. 1〜30 . Og/Lとなるように設定して、 MWCNTZアルミニウム複合材形成用めつき液を得 た。 The molar ratio of EMIC is set to 66.7: 33.3, and the loading amount of MWCNT is set to be 0.1-30.Og / L to form MWCNTZ aluminum composite. A soaking solution was obtained.
これを充分に撹拌しながら、定電流電解を行って、実施例 1と同様に本例の MWC NTZアルミニウム複合材を得た。なお、めっき液の作製と電解操作は乾燥窒素雰囲 気下で行った。また、電解に用いた 2電極セル、力ソードの前処理およびその電解条 件は、実施例 1と同じにした。 [0054] SEMを用いて、 MWCNTZアルミニウム複合材の表面状態を観察したところ、実 施例 1と同様に、 MWCNTが単分散の形で A1と共析することが明らかになった。 While this was sufficiently stirred, constant current electrolysis was performed to obtain the MWC NTZ aluminum composite material of this example in the same manner as in Example 1. The plating solution was prepared and electrolyzed in a dry nitrogen atmosphere. The two-electrode cell, force sword pretreatment used for electrolysis, and the electrolysis conditions were the same as in Example 1. [0054] Observation of the surface state of the MWCNTZ aluminum composite using SEM revealed that MWCNT co-deposited with A1 in monodispersed form, as in Example 1.
[0055] 次に、全有機炭素計(島津製作所製, TOC— 5000A)を用いて、得られた MWC NTZアルミニウム複合材中の MWCNTの含有率を測定した結果、 MWCNTの含 有率は 0. 1〜20%の範囲で含まれていることが分かった。  [0055] Next, as a result of measuring the content of MWCNT in the obtained MWC NTZ aluminum composite using a total organic carbon meter (manufactured by Shimadzu Corporation, TOC-5000A), the content of MWCNT was 0. It was found to be included in the range of 1-20%.
そこで、めっき液中の MWCNT添カ卩量と、当該複合材のビッカース硬度の関係を 調べた(図 3参照。 ) o実施例 1と同様に、 MWCNTの添カ卩量 OgZLの場合に得た A1 めっき膜の硬度を比較例とした。図 3に示すように、各電流密度において、浴中への MWCNT添カ卩量が増加するに伴 、、複合材の硬度は A1めっき膜の硬度よりも増加 した。金属中にナノ粒子が存在すると、一般的にその金属の硬度が上昇するといわ れており、本例の複合材の強度が上昇したことから、 MWCNTの共祈が裏付けられ た。なお、硬度測定には、ビッカース硬度計 (株式会社ァカシ製, HM— 124)を用い た。  Therefore, we investigated the relationship between the amount of MWCNT added in the plating solution and the Vickers hardness of the composite (see Fig. 3). O Similar to Example 1, obtained in the case of OgZL with the added amount of MWCNT. The hardness of the A1 plating film was used as a comparative example. As shown in Fig. 3, at each current density, as the amount of MWCNT added to the bath increased, the hardness of the composite increased more than the hardness of the A1 plating film. It is said that the presence of nanoparticles in a metal generally increases the hardness of the metal, and the strength of the composite material in this example increased, confirming the MWCNT prayer. For the hardness measurement, a Vickers hardness tester (manufactured by Akashi Co., Ltd., HM-124) was used.
[0056] また、四端子法を用いて、本例の複合材の抵抗率を測定したところ、 V、ずれの複合 材の抵抗率も A1めっき膜のそれより低 、値を示した。  [0056] Further, when the resistivity of the composite material of this example was measured using the four-terminal method, the resistivity of the composite material of V and deviation was lower than that of the A1 plating film, and showed a value.
以上の結果を踏まえて、その他のナノカーボン粒子について検討したところ、単層 カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、フラーレン、力 一ボンブラック、アセチレンブラック又はケッチェンブラックにおいても同様な効果が 得られたことから、本発明のナノカーボン Zアルミニウム複合材、その製造方法及び これに用いるめっき液の有用性が分力つた。  Based on the above results, other nanocarbon particles were examined, and similar effects were obtained with single-walled carbon nanotubes, carbon nanofibers, carbon nanohorns, fullerenes, monobon black, acetylene black, or ketjen black. Therefore, the usefulness of the nanocarbon Z aluminum composite material of the present invention, its production method, and the plating solution used therefor has been divided.
図面の簡単な説明  Brief Description of Drawings
[0057] [図 1]実施例 1及び比較例の MWCNT添加量と硬度の関係を示すグラフである。  FIG. 1 is a graph showing the relationship between the amount of MWCNT added and hardness in Example 1 and Comparative Example.
[図 2]実施例 2及び比較例の MWCNT添カ卩量と硬度の関係を示すグラフである。  FIG. 2 is a graph showing the relationship between the amount of MWCNT-added residue and hardness in Example 2 and Comparative Example.
[図 3]実施例 3及び比較例の MWCNT添カ卩量と硬度の関係を示すグラフである。  FIG. 3 is a graph showing the relationship between the amount of MWCNT-added residue and hardness in Example 3 and Comparative Example.

Claims

請求の範囲 The scope of the claims
[1] アルミニウムハロゲン化物、ナノカーボン、 1, 3—ジアルキルイミダゾリゥムハロゲン 化物及び Z又はモノアルキルピリジ-ゥムハロゲンィ匕物を含有するナノカーボン Zァ ルミ-ゥム複合材形成用めつき液であって、  [1] A solution for forming nanocarbon Z-alum composites containing aluminum halides, nanocarbons, 1,3-dialkylimidazole halides, and Z or monoalkylpyridium halides. There,
上記アルミニウムハロゲン化物と、上記 1, 3—ジアルキルイミダゾリゥムハロゲン化 物及び Z又は上記モノアルキルピリジ-ゥムハロゲン化物とをモル比で 20: 80〜80 : 20の割合で含有し、  The aluminum halide, the 1,3-dialkylimidazolium halide and Z or the monoalkylpyridium halide in a molar ratio of 20:80 to 80:20,
上記 1, 3—ジアルキルイミダゾリゥムハロゲン化物は、炭素数 1〜12のアルキル基 を有し、  The 1,3-dialkylimidazolium halide has an alkyl group having 1 to 12 carbon atoms,
上記モノアルキルピリジ-ゥムハロゲン化物は、炭素数 1〜12のアルキル基を有す る、ナノカーボン /アルミニウム複合材形成用めつき液。  The monoalkylpyridium halide is a nanocarbon / aluminum composite forming solution having an alkyl group having 1 to 12 carbon atoms.
[2] 上記アルミニウムハロゲン化物と、上記 1, 3—ジアルキルイミダゾリゥムハロゲン化 物及び Z又は上記モノアルキルピリジ-ゥムハロゲンィ匕物との合計体積に対して、 0 . 01〜50gZLの割合で上記ナノカーボンを含有する、請求項 1に記載のナノカーボ ン zアルミニウム複合材形成用めつき液。 [2] With respect to the total volume of the aluminum halide, the 1,3-dialkylimidazolium halide and Z or the monoalkylpyridium halide, the ratio is 0.01 to 50 gZL. 2. The plating solution for forming a nanocarbon z aluminum composite material according to claim 1, comprising nanocarbon.
[3] 上記ナノカーボンが、カーボンナノチューブ、カーボンナノファイバー、カーボンナ ノホーン、フラーレン、カーボンブラック、アセチレンブラック及びケッチェンブラックか ら成る群より選ばれた少なくとも 1種のものである、請求項 1に記載のナノカーボン Z アルミニウム複合材形成用めつき液。  [3] The nanocarbon according to claim 1, wherein the nanocarbon is at least one selected from the group consisting of carbon nanotube, carbon nanofiber, carbon nanohorn, fullerene, carbon black, acetylene black, and ketjen black. Of nanocarbon Z aluminum composite forming solution.
[4] 上記カーボンナノチューブは、直径が 1〜: LOOnmであり、且つ長さが 1〜: L00 μ m であり、且つアスペクト比が 10〜: LOOである、請求項 3に記載のナノカーボン Zアルミ -ゥム複合材形成用めつき液。  [4] The nanocarbon Z according to claim 3, wherein the carbon nanotubes have a diameter of 1 to: LOOnm, a length of 1 to: L00 μm, and an aspect ratio of 10 to: LOO. A plating solution for forming aluminum-um composites.
[5] 請求項 1に記載のナノカーボン Zアルミニウム複合材形成用めつき液を製造するに 当たり、  [5] In producing the nanocarbon Z-aluminum composite forming solution according to claim 1,
アルミニウムハロゲンィ匕物とナノカーボンとを混合し、次いで、得られた混合物と 1, Mix aluminum halide and nanocarbon, then mix the resulting mixture with 1,
3—ジアルキルイミダゾリゥムハロゲン化物及び Z若しくはモノアルキルピリジ-ゥムハ ロゲン化物とを混合し、溶融するか又は 1, 3—ジアルキルイミダゾリゥムハロゲンィ匕物 及び Z若しくはモノアルキルピリジ-ゥムハロゲンィ匕物とナノカーボンとを混合し、次 いで、得られた混合物とアルミニウムハロゲンィ匕物とを混合し、溶融することより成る、 ナノカーボン zアルミニウム複合材形成用めつき液の製造方法。 Mix and melt 3-dialkyl imidazolium halide and Z or monoalkyl pyridinium halide, or 1,3-dialkyl imidazolium halide and Z or monoalkyl pyridinium halide The material and nanocarbon A method for producing a nanocarbon z-aluminum composite forming solution, comprising mixing and melting the obtained mixture and an aluminum halide.
[6] 請求項 1に記載のナノカーボン Zアルミニウム複合材形成用めつき液を製造するに 当たり、  [6] In producing the nanocarbon Z-aluminum composite forming solution according to claim 1,
アルミニウムハロゲン化物とナノカーボンとを混合するか又は 1, 3—ジアルキルイミ ダゾリゥムハロゲン化物及び Z又はモノアルキルピリジ-ゥムハロゲン化物とナノカー ボンとを混合し、次いで、得られた混合物と、アルミニウムハロゲンィ匕物並びに 1, 3- ジアルキルイミダゾリゥムハロゲン化物及び Z又はモノアルキルピリジ-ゥムハロゲン 化物を含有する溶融塩とを混合することより成る、ナノカーボン Zアルミニウム複合材 形成用めつき液の製造方法。  Mix aluminum halide with nanocarbon or mix 1,3-dialkylimidazolium halide and Z or monoalkylpyridium halide with nanocarbon, then mix the resulting mixture with aluminum A nanocarbon Z-aluminum composite plating solution comprising a mixture of a halide and a 1,3-dialkylimidazolium halide and a molten salt containing Z or monoalkylpyridium halide. Production method.
[7] 請求項 1に記載のナノカーボン Zアルミニウム複合材形成用めつき液を用いたナノ カーボン zアルミニウム複合材の製造方法であって、  [7] A method for producing a nanocarbon z-aluminum composite using the nanocarbon Z-aluminum composite forming solution according to claim 1,
乾燥無酸素雰囲気中、直流及び Z又はパルス電流により、浴温 0〜300°C、電流 密度 0. 01〜50AZdm2の電解条件で基材表面にめっきすることより成る、ナノカー ボン Zアルミニウム複合材の製造方法。 Nanocarbon Z-aluminum composite material comprising plating on the surface of the substrate under the electrolytic conditions of a bath temperature of 0 to 300 ° C and a current density of 0.01 to 50 AZdm 2 in a dry oxygen-free atmosphere by direct current and Z or pulse current. Manufacturing method.
[8] 請求項 7に記載のナノカーボン Zアルミニウム複合材の製造方法によって作製され た、ナノカーボン /アルミニウム複合材。 [8] A nanocarbon / aluminum composite material produced by the method for producing a nanocarbon Z aluminum composite material according to [7].
[9] ナノカーボンの含有率が 0. 1〜50%である、請求項 8に記載のナノカーボン Zァ ルミ-ゥム複合材。 [9] The nanocarbon Z-metal composite according to claim 8, wherein the content of nanocarbon is 0.1 to 50%.
PCT/JP2006/312152 2005-09-07 2006-06-16 Nanocarbon/aluminum composite material, process for producing the same, and plating liquid for use in said process WO2007029395A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06766838A EP1930481A1 (en) 2005-09-07 2006-06-16 Nanocarbon/aluminum composite material, process for producing the same, and plating liquid for use in said process
US12/066,027 US20090277793A1 (en) 2005-09-07 2006-06-16 Nanocarbon/aluminum composite material, process for producing the same, and plating liquid for use in said process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-258646 2005-09-07
JP2005258646A JP2007070689A (en) 2005-09-07 2005-09-07 Nanocarbon/aluminum composite material, method for producing the same, and plating liquid used therefor

Publications (1)

Publication Number Publication Date
WO2007029395A1 true WO2007029395A1 (en) 2007-03-15

Family

ID=37835526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312152 WO2007029395A1 (en) 2005-09-07 2006-06-16 Nanocarbon/aluminum composite material, process for producing the same, and plating liquid for use in said process

Country Status (5)

Country Link
US (1) US20090277793A1 (en)
EP (1) EP1930481A1 (en)
JP (1) JP2007070689A (en)
CN (1) CN101258269A (en)
WO (1) WO2007029395A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009019147A2 (en) * 2007-08-06 2009-02-12 Katholieke Universiteit Leuven Deposition from ionic liquids
US9514887B2 (en) 2009-11-11 2016-12-06 Hitachi Metals, Ltd. Aluminum foil with carbonaceous particles dispersed and supported therein

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4955268B2 (en) * 2005-12-28 2012-06-20 東京特殊電線株式会社 Fullerene composite plated electric wire, manufacturing method thereof, and fullerene composite plated enameled electric wire
KR100907804B1 (en) * 2007-04-26 2009-07-16 주식회사 대유신소재 Apparatus and method for aluminum plating of carbon materials using electroplating
KR100906746B1 (en) 2007-12-21 2009-07-09 성균관대학교산학협력단 Encapsulation of carbon material within aluminum
KR100907334B1 (en) 2008-01-04 2009-07-13 성균관대학교산학협력단 Method of covalent bond formation between aluminum and carbon materials, method of preparing aluminum and carbon materials composite and aluminum and carbon materials composite prepared by the same
DE102009035660A1 (en) * 2009-07-30 2011-02-03 Ewald Dörken Ag Process for the electrochemical coating of a workpiece
CN102041543B (en) * 2009-10-20 2012-10-10 宝山钢铁股份有限公司 Preparation method of fullerene/metal composite film on metal surface
EP2660361A1 (en) 2010-12-28 2013-11-06 National Institute of Advanced Industrial Science And Technology Carbon nanotube metal composite material and production method for same
ITRM20130146A1 (en) * 2013-03-12 2014-09-13 Stefano Guarino ELECTROPOSITION ON METAL FOAMS
JP6112639B2 (en) 2013-07-22 2017-04-12 国立研究開発法人産業技術総合研究所 CNT metal composite and manufacturing method thereof
US20160108534A1 (en) * 2014-10-17 2016-04-21 Ut-Battelle, Llc Aluminum deposition devices and their use in spot electroplating of aluminum
CN104726924A (en) * 2015-03-25 2015-06-24 西南石油大学 Nickel-tungsten multi-walled carbon nanotube (MWCNT) composite plating solution, plated film and preparation method thereof
CN107164660A (en) * 2017-04-18 2017-09-15 中北大学 A kind of C60Reinforced Al matrix composite and preparation method thereof
CN107313102B (en) * 2017-07-03 2019-02-26 鄂尔多斯市紫荆创新研究院 A kind of preparation method of aluminium base graphene, carbon nanotube composite heat dissipation material
US11512390B2 (en) 2018-07-16 2022-11-29 Rochester Institute Of Technology Method of site-specific deposition onto a free-standing carbon article
US20210156041A1 (en) * 2019-11-22 2021-05-27 Hamilton Sundstrand Corporation Metallic coating and method of application

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445298A (en) * 1990-06-11 1992-02-14 Nisshin Steel Co Ltd Aluminum electroplating bath
JP2004076031A (en) * 2002-08-09 2004-03-11 Ishikawajima Harima Heavy Ind Co Ltd Plating bath for electroplating and plating bath for composite plating, and their production method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4032116B2 (en) * 2002-11-01 2008-01-16 国立大学法人信州大学 Electronic component and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445298A (en) * 1990-06-11 1992-02-14 Nisshin Steel Co Ltd Aluminum electroplating bath
JP2004076031A (en) * 2002-08-09 2004-03-11 Ishikawajima Harima Heavy Ind Co Ltd Plating bath for electroplating and plating bath for composite plating, and their production method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009019147A2 (en) * 2007-08-06 2009-02-12 Katholieke Universiteit Leuven Deposition from ionic liquids
WO2009019147A3 (en) * 2007-08-06 2009-11-12 Katholieke Universiteit Leuven Deposition from ionic liquids
US9514887B2 (en) 2009-11-11 2016-12-06 Hitachi Metals, Ltd. Aluminum foil with carbonaceous particles dispersed and supported therein

Also Published As

Publication number Publication date
JP2007070689A (en) 2007-03-22
US20090277793A1 (en) 2009-11-12
EP1930481A1 (en) 2008-06-11
CN101258269A (en) 2008-09-03

Similar Documents

Publication Publication Date Title
WO2007029395A1 (en) Nanocarbon/aluminum composite material, process for producing the same, and plating liquid for use in said process
JP2007157372A (en) Light-weighted wire with high conductivity and its manufacturing method
Wang et al. Combining theories and experiments to understand the sodium nucleation behavior towards safe sodium metal batteries
Kumar et al. Graphene reinforced metal matrix composite (GRMMC): a review
KR100907334B1 (en) Method of covalent bond formation between aluminum and carbon materials, method of preparing aluminum and carbon materials composite and aluminum and carbon materials composite prepared by the same
Martis et al. Electro-generated nickel/carbon nanotube composites in ionic liquid
KR100748228B1 (en) Method of making metal/carbon nanotube composite materials by electroplating
US8709226B2 (en) Instantaneous electrodeposition of metal nanostructures on carbon nanotubes
TWI460126B (en) Carbon nanotube reinforced metal composites
JP4999072B2 (en) Surface coating material
Ujah et al. Influence of CNTs addition on the mechanical, microstructural, and corrosion properties of Al alloy using spark plasma sintering technique
Aryasomayajula et al. Carbon nanotube composites for electronic packaging applications: a review
Behera et al. Ultrasound assisted electroplating of nano-composite thin film of Cu matrix with electrochemically in-house synthesized few layer graphene nano-sheets as reinforcement
JP2007162080A (en) Thermally conductive member, automotive parts and manufacturing method therefor
Zhang et al. Fabrication of MWCNT incorporated Sn–Bi composite
JP4351120B2 (en) Method for producing metal particles
KR100907804B1 (en) Apparatus and method for aluminum plating of carbon materials using electroplating
Sharma et al. Electrochemical tailoring of Pb-free Sn coatings modified with SiC nanoparticles by surfactant-assisted reverse pulse plating
JP2004076031A (en) Plating bath for electroplating and plating bath for composite plating, and their production method
Martis et al. Impact of surface functionalization of MWCNTs on electrogenerated Ni/MWCNT composites from aqueous solutions
JP2008019456A (en) Electrically composite-plated wire rod, manufacturing method therefor, and manufacturing apparatus therefor
Aryasomayajula et al. Application of copper-carbon nanotubes composite in packaging interconnects
JP2007162079A (en) Slide member for automobile engine and method of manufacturing the same
US20220223314A1 (en) Carbon-nanotubes copper composite conductors
TW201217575A (en) Method for producing aluminum structure, and aluminum structure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680032831.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12066027

Country of ref document: US

Ref document number: 2006766838

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE