KR100748228B1 - Method of making metal/carbon nanotube composite materials by electroplating - Google Patents

Method of making metal/carbon nanotube composite materials by electroplating Download PDF

Info

Publication number
KR100748228B1
KR100748228B1 KR1020060019369A KR20060019369A KR100748228B1 KR 100748228 B1 KR100748228 B1 KR 100748228B1 KR 1020060019369 A KR1020060019369 A KR 1020060019369A KR 20060019369 A KR20060019369 A KR 20060019369A KR 100748228 B1 KR100748228 B1 KR 100748228B1
Authority
KR
South Korea
Prior art keywords
metal
carbon nanotubes
electroplating
carbon nanotube
plating solution
Prior art date
Application number
KR1020060019369A
Other languages
Korean (ko)
Inventor
손윤철
유정준
유진
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020060019369A priority Critical patent/KR100748228B1/en
Priority to CNA2006101647175A priority patent/CN101050542A/en
Priority to US11/589,305 priority patent/US20070199826A1/en
Priority to JP2006293550A priority patent/JP2007231414A/en
Application granted granted Critical
Publication of KR100748228B1 publication Critical patent/KR100748228B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Abstract

A method for producing metal/carbon nano-tube composite materials is provided to distribute the carbon nano-tube at the molecule level in the composite materials. A method includes the steps of: dipping carbon nano-tubes in an acid solution, followed by cutting, filtrating and thermal treating, adding the thermally treated carbon nano-tubes and cationic surfactant to a metal electroplating solution containing a metal or metal salt and distributing the carbon nano-tubes, installing cathode and anode in the metal electroplating solution containing carbon nano-tubes and cationic surfactant, and applying a current for electroplating to prepare metal/carbon nano-tube composite materials in a thin film.

Description

전기도금을 이용한 금속/탄소나노튜브 복합재료 제조방법{Method of making metal/carbon nanotube composite materials by electroplating}Method of manufacturing metal / carbon nanotube composites using electroplating {Method of making metal / carbon nanotube composite materials by electroplating}

도 1은 탄소나노튜브를 산용액에서 정제하고 절단하는 단계를 나타내는 개략도이다. 1 is a schematic diagram showing the steps of purifying and cutting carbon nanotubes in an acid solution.

도 2는 전기도금을 위한 도금용액을 제조하는 과정을 보여주는 개략도이다.2 is a schematic view showing a process of preparing a plating solution for electroplating.

도 3은 탄소나노튜브와 양이온성 계면활성제를 첨가한 도금용액에 전기도금을 실시하여 금속/탄소나노튜브 복합재료를 제조하는 과정을 나타내는 개략도이다. 3 is a schematic diagram showing a process of preparing a metal / carbon nanotube composite material by electroplating a plating solution to which a carbon nanotube and a cationic surfactant are added.

도 4는 전기도금법으로 형성된 구리/탄소나노튜브 복합재료의 SEM 사진이다. 4 is an SEM photograph of a copper / carbon nanotube composite formed by electroplating.

도 5는 전기도금법으로 형성된 구리/탄소나노튜브 복합재료의 EDS 성분분석표이다. 5 is an EDS component analysis table of copper / carbon nanotube composites formed by electroplating.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

10 : 탄소나노튜브(Carbon Nanotube)10: Carbon Nanotube

12 : 산용액(H2SO4/HNO3 3:1 solution)12: acid solution (H 2 SO 4 / HNO 3 3: 1 solution)

14 : 금속염 및 첨가제(Metal salts & Additives)14 metal salts & additives

16 : 양이온성 계면활성제(Cationic surfactants)16: cationic surfactants

18 : 초음파 처리(Sonication)18: Sonication

20 : 양극(Anode)20: Anode

22 : 음극(Cathode) 22: cathode

24 : 금속 양이온, 탄소나노튜브 및 양이온성 계면활성제가 함유된 전기도금 용액(Electroplating Solution With Metal Cations, Carbon Nanotubes and Cationic Surfactants)24: Electroplating Solution With Metal Cations, Carbon Nanotubes and Cationic Surfactants

26 : 금속/탄소나노튜브 복합재료(Metal/CNT Complex material)26: Metal / CNT Complex material

28 : 금속 양이온(Metal Cations)28 Metal Cations

30 : 양이온성 계면활성제가 도포된 탄소나노튜브(CNTs covered with cationic surfactants)30: CNTs covered with cationic surfactants

본 발명은 전기도금을 이용한 금속/탄소나노튜브(metal/carbon nanotube) 복합재료 제조방법에 관한 것으로서 보다 상세하게는 금속 또는 금속염을 포함하는 금속도금용액에 탄소나노튜브와 양이온성 계면활성제를 첨가한 다음 전기도금하여 음극에서 금속/탄소나노튜브 복합재료를 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a metal / carbon nanotube composite material using electroplating, and more specifically, adding a carbon nanotube and a cationic surfactant to a metal plating solution containing a metal or metal salt. The present invention relates to a method of manufacturing a metal / carbon nanotube composite material at a cathode by electroplating.

탄소나노튜브는 전기전도도와 열전도도 및 강도가 우수하여, 이러한 성질이 특정 금속의 특정 성질과 결합하여 더욱 우수한 물성을 나타내기를 기대되어 왔다. 그래서 탄소나노튜브가 포함된 복합재료의 개발이 많이 선행되어 왔다.Carbon nanotubes are excellent in electrical conductivity, thermal conductivity, and strength, and these properties have been expected to combine with specific properties of specific metals to exhibit more excellent physical properties. Therefore, the development of a composite material containing carbon nanotubes has been preceded a lot.

특히, 금속과 탄소나노튜브의 복합재료를 형성함에 있어서, 기계적 특성의 향상을 주목적으로 연구되어져 왔으며, 주로 덩어리 형태로 만들어져왔다. 이러한 형태의 복합재료 제조는 주로 분말법 및 소결공정을 통해 많이 이루어져왔다.In particular, in forming a composite material of metal and carbon nanotubes, the improvement of mechanical properties has been mainly studied and mainly made in the form of agglomerates. Manufacturing of this type of composite material has been mainly made through a powder method and a sintering process.

순수한 탄소나노튜브는 화학기상증착방법을 통하여 600∼1000℃의 고온에서 이루어지며 성장방향이나 성장속도를 제어하기 위해서는 증착방법 및 증착전 표면처리가 중요하다. 탄소나노튜브는 성장시 완전히 치밀한 구조를 이루지 못하고 탄소나노튜브들 사이에 빈 공간들이 존재하게 되며 이러한 성장형태는 기존의 금속박막 재료를 대체하는데 있어서 큰 문제점으로 남아 있다. 그간 탄소나노튜브들 사이의 빈 공간들을 SiO2 등으로 채워서 반도체 배선 등으로 사용하려는 노력이 있었으나 이러한 배선들이 연결되면서 여러 층을 이루게 될 때 다음 층을 위한 공정을 어떻게 할 것인지에 대한 대안이 없는 상태이다. Pure carbon nanotubes are made at a high temperature of 600 ~ 1000 ℃ through chemical vapor deposition method, the deposition method and the surface treatment before deposition is important to control the growth direction or growth rate. Carbon nanotubes do not form a fully compact structure upon growth, and empty spaces exist between the carbon nanotubes, and this growth pattern remains a big problem in replacing the existing metal thin film materials. While efforts have been made to fill the empty spaces between the carbon nanotubes with SiO 2 and use them as semiconductor wirings, there is no alternative to what to do for the next layer when these wirings form multiple layers. .

탄소나노튜브의 막대모양의 특징적인 튜브 구조와 일반적으로 전하를 띠지 않는 특성으로 인해, 지금까지 전기도금 방법으로 금속/탄소나노튜브 복합재료를 박막형태로 형성한 예는 없었다. 전기도금 방법으로 금속과 탄소나노튜브를 동시에 증착하게 되면 순수한 탄소나노튜브 성장에서와는 달리 완전히 치밀한 구조를 얻을 수 있고 원하는 부분에 박막형태로 증착이 가능하므로 기존의 반도체 배선을 포함한 모든 금속박막을 대체하면서 그것의 전기적, 기계적, 열적 물성을 향상시킬 수 있다. 또한 기존의 반도체 배선 공정이나 전자제품의 표면처리 공정을 바꾸지 않고 그대로 적용할 수 있어서 경제적으로 큰 시장성과 실용성을 가지고 있다. Due to the rod-like characteristic tube structure of carbon nanotubes and generally non-chargeable characteristics, there have been no examples of forming metal / carbon nanotube composites in a thin film form by electroplating. When metal and carbon nanotubes are deposited simultaneously by electroplating, it is possible to obtain a completely dense structure unlike in pure carbon nanotube growth, and to deposit a thin film on a desired portion, thereby replacing all metal thin films including conventional semiconductor wiring. Its electrical, mechanical and thermal properties can be improved. In addition, since it can be applied as it is without changing the existing semiconductor wiring process or surface treatment process of electronic products, it has economical great marketability and practicality.

본 발명은 금속 또는 금속염을 포함하는 금속도금용액에 탄소나노튜브와 탄소나노튜브 표면에 흡착되어 양전하를 띠는 계면활성제를 첨가하여 도금용액을 구성하고 개개의 탄소나노튜브를 서로 완전히 분리 및 분산시킨 후 전기도금함으로써 탄소나노튜브가 분자 수준으로 분포되어 있는 금속/탄소나노튜브 복합재료 제조방법 제공을 목적으로 한다. According to the present invention, a plating solution is added to a metal plating solution containing a metal or metal salt by adsorbing a surface of a carbon nanotube and a carbon nanotube, and a positively charged surfactant is used to completely separate and disperse the individual carbon nanotubes. The purpose of the present invention is to provide a method for manufacturing a metal / carbon nanotube composite material in which carbon nanotubes are distributed at a molecular level by electroplating.

본 발명에서 전기도금을 이용한 금속/탄소나노튜브 복합재료는 박막 형태의 복합재료를 제조할 수 있다. In the present invention, the metal / carbon nanotube composite material using electroplating may prepare a composite material in the form of a thin film.

본 발명은 기존의 금속 또는 금속염을 포함하는 금속도금용액에 탄소나노튜브와 탄소나노튜브의 표면에 흡착되어 양전하를 띠는 계면활성제를 첨가하여 도금용액을 구성하고 개개의 탄소나노튜브를 서로 완전히 분리 및 분산시킨 후 전기도금함으로써 탄소나노튜브가 분자 수준으로 분포되어 있는 금속/탄소나노튜브 복합재료를 제조할 수 있다.The present invention forms a plating solution by adding a positively charged surfactant adsorbed on the surface of carbon nanotubes and carbon nanotubes to a metal plating solution containing a conventional metal or metal salt, and completely separates individual carbon nanotubes from each other. And dispersing and then electroplating to prepare a metal / carbon nanotube composite material in which carbon nanotubes are distributed at a molecular level.

본 발명의 전기도금을 이용한 금속/탄소나노튜브 복합재료 제조방법은 산용액에 탄소나노튜브를 침지하고 절단하여 여과한 후 열처리를 실시하는 단계, 금속 또는 금속염을 포함하는 금속도금용액에 상기의 열처리한 탄소나노튜브와 양이온성 계면활성제를 첨가하고 탄소나노튜브를 분산시키는 단계, 탄소나노튜브와 양이온성 계면활성제를 첨가한 금속도금용액에 음극과 양극을 설치한 후 전류를 흘려 전기도금 하여 음극에서 박막형태의 금속/탄소나노튜브의 복합재료를 얻는 단계를 포함한다.In the method of manufacturing a metal / carbon nanotube composite material using the electroplating of the present invention, the carbon nanotubes are immersed in an acid solution, cut, filtered and subjected to heat treatment, and the heat treatment of the metal plating solution containing a metal or metal salt. Adding a carbon nanotube and a cationic surfactant, dispersing the carbon nanotube, installing a negative electrode and a positive electrode in a metal plating solution containing the carbon nanotube and the cationic surfactant, and then electroplating by flowing a current. Obtaining a composite material of metal / carbon nanotubes in the form of a thin film.

이하 본 발명을 첨부한 도면에 의해 각 단계 별로 보다 상세히 설명하고자 한다.Hereinafter, each step will be described in more detail with reference to the accompanying drawings.

도 1은 탄소나노튜브를 산용액에서 정제하고 절단하는 단계를 나타내는 개략도이다. 1 is a schematic diagram showing the steps of purifying and cutting carbon nanotubes in an acid solution.

탄소나노튜브의 촉매금속과 같은 불순물을 제거하여 정제하고 산화과정을 통해 탄소나노튜브를 분자 수준으로 절단하기 위해 산용액(acid solution)에서 탄소나노튜브의 산처리를 한다. Purification by removing impurities such as catalytic metal of carbon nanotubes and acid treatment of carbon nanotubes in an acid solution to cut carbon nanotubes to molecular level through oxidation process.

상기에서 산용액은 황산, 질산, 염산 중에서 선택된 어느 하나 이상의 산용액을 사용할 수 있다. 후술하는 본 발명의 실시예에서는 산용액의 바람직한 성분으로 황산과 질산이 3:1의 부피비로 혼합한 것을 사용하였다.The acid solution may be any one or more acid solutions selected from sulfuric acid, nitric acid, hydrochloric acid. In the examples of the present invention described below, sulfuric acid and nitric acid were mixed at a volume ratio of 3: 1 as a preferable component of the acid solution.

상기에서 산용액에 탄소나노튜브를 침지한 후 탄소나노튜브의 정제 및 절단을 보다 향상시키기 위해 소정의 처리를 추가로 더 실시할 수 있다. 이러한 처리의 일예로 산용액에서 탄소나노튜브를 초음파 처리, 레이저 처리, 교반기에 의한 교반 중에서 선택된 어느 하나 이상의 처리를 실시할 수 있다. 탄소나노튜브를 산용액에 침지하고 상기에서 언급한 하나 이상의 처리방법을 실시하면 상용 탄소나노튜브에 존재하는 촉매와 탄소나노튜브의 불순물을 제거할 수 있으며, 마이크로미터(㎛) 길 이의 탄소나노튜브를 나노미터(nm) 길이의 탄소나노튜브(carbon nanotube, CNT)로 절단할 수 있다. After the carbon nanotubes are immersed in the acid solution, a predetermined treatment may be further performed to further improve the purification and cleavage of the carbon nanotubes. As an example of such treatment, one or more treatments selected from ultrasonic treatment, laser treatment, and stirring with a stirrer may be performed in the acid solution. The carbon nanotubes are immersed in an acid solution and one or more of the above-mentioned treatment methods can be used to remove impurities from the catalyst and carbon nanotubes present in commercial carbon nanotubes. May be cut into carbon nanotubes (CNTs) of nanometer length.

상기에서 탄소나노튜브의 정제 및 절단을 보다 향상시키기 위해 실시하는 초음파 처리, 레이저 처리, 고속 교반기에 의한 교반은 당해 기술분야에서 통상의 지식을 가진 당업자가 적의 선택하여 실시할 수 있으므로, 이하 이들에 대한 자세한 설명은 생략하기로 한다.Ultrasonic treatment, laser treatment, and agitation performed by a high speed stirrer may be appropriately performed by those skilled in the art to improve the purification and cutting of carbon nanotubes. Detailed description thereof will be omitted.

산용액에서 탄소나노튜브를 초음파 처리, 레이저 처리, 고속 교반기에 의한 교반 중에서 선택된 어느 하나 이상의 처리를 실시한 다음 산용액을 필터로 걸러서 여과한 탄소나노튜브를 이물질(비정질탄소 등)을 제거하기 위해 열처리를 실시할 수 있다. The carbon nanotubes in the acid solution are subjected to one or more treatments selected from ultrasonic treatment, laser treatment, and stirring by a high speed stirrer, and then the carbon nanotubes filtered by filtering the acid solution are filtered to remove foreign substances (amorphous carbon, etc.). Can be carried out.

상기에서 산용액을 여과한 탄소나노튜브는 비정질탄소와 같은 이물질을 제거할 수 있을 정도로 열처리를 실시할 수 있다. 본 발명에서 이러한 열처리의 일예로서 200∼500℃에서 30분∼2시간 동안 실시할 수 있다.The carbon nanotubes filtered with the acid solution may be heat-treated to the extent that foreign substances such as amorphous carbon can be removed. As an example of such heat treatment in the present invention it can be carried out for 30 minutes to 2 hours at 200 ~ 500 ℃.

도 1에서 도면부호 10은 탄소나노튜브(Carbon Nanotube)를 나타내고, 도면부호 12는 산용액(H2SO4/HNO3 3:1 solution)을 나타낸다.In FIG. 1, reference numeral 10 denotes a carbon nanotube, and reference numeral 12 denotes an acid solution (H 2 SO 4 / HNO 3 3: 1 solution).

도 2는 전기도금을 위한 도금용액을 제조하는 과정을 보여주는 개략도이다.2 is a schematic view showing a process of preparing a plating solution for electroplating.

도 2에서 도금용액은 금속 또는 금속염을 포함하는 금속도금용액에 도 1에서 얻은 탄소나노튜브와 탄소나노튜브의 표면에 흡착되어 양전하를 띠는 계면활성제를 첨가하여 얻을 수 있다. In FIG. 2, the plating solution may be obtained by adding a positively charged surfactant adsorbed on the surface of the carbon nanotubes and the carbon nanotubes obtained in FIG. 1 to a metal plating solution containing a metal or a metal salt.

상기의 도금용액에서 양이온성 계면활성제는 탄소나노튜브의 표면에 흡착되어 탄소나노튜브를 감싸서 분리시키는 역할을 하며 상기의 도금용액에 초음파(sonication) 처리, 레이저 처리, 기계적 처리 중에서 선택된 어느 하나 이상의 처리방법을 실시하면 탄소나노튜브의 분리 및 용액 중에 고른 분산이 원활히 일어날 수 있다. 이때 기계적 처리는 교반기로 도금용액을 교반하여 탄소나노튜브의 분산이 원활이 되도록 할 수 있다.In the plating solution, the cationic surfactant is adsorbed on the surface of the carbon nanotubes and serves to encapsulate and separate the carbon nanotubes, and any one or more treatments selected from sonication, laser treatment, and mechanical treatment of the plating solution. The method can facilitate the separation of carbon nanotubes and even dispersion in solution. In this case, the mechanical treatment may be performed by stirring the plating solution with a stirrer to facilitate the dispersion of the carbon nanotubes.

상기에서 금속도금용액은 금속 또는 금속염을 포함한다.The metal plating solution includes a metal or a metal salt.

기존의 금속도금용액 중의 한 성분인 금속은 전기도금이 가능한 모든 금속을 사용할 수 있으며, 본 발명에서 이러한 금속의 일예로서 구리, 니켈, 크롬, 아연, 카드뮴, 주석, 금, 은, 로듐 중에서 선택된 어느 하나 이상의 금속을 사용할 수 있다. 또한 금속염은 상기의 금속이 함유된 염을 사용할 수 있다. 본 발명에서 이러한 금속염의 일예로 황산구리, 시안화구리, 피로인산구리, 붕플루오르화구리, 황산니켈, 염화니켈, 붕산 중에서 선택된 어느 하나 이상의 금속염을 사용할 수 있다.Metal, which is one component of the existing metal plating solution, may use any metal capable of electroplating, and as an example of the metal in the present invention, any one selected from copper, nickel, chromium, zinc, cadmium, tin, gold, silver, rhodium One or more metals may be used. In addition, as the metal salt, salts containing the above metals can be used. As one example of the metal salt in the present invention, any one or more metal salts selected from copper sulfate, copper cyanide, copper pyrophosphate, copper fluoride, nickel sulfate, nickel chloride, and boric acid may be used.

본 발명에서 금속도금용액의 일예로 구리도금용액을 사용할 수 있다. 이때 구리도금용액의 조성은 황산구리 100∼300g/ℓ, 황산 30∼100g/ℓ인 것을 사용할 수 있으며, 이러한 구리도금용액에 탄소나노튜브는 0.1∼10g/ℓ, 양이온성 계면활성제는 1.0×10-5∼3.0×10-6M 첨가할 수 있다. Copper plating solution may be used as an example of the metal plating solution in the present invention. The copper plating solution may be composed of copper sulfate 100 ~ 300g / ℓ, sulfuric acid 30 ~ 100g / ℓ, carbon nanotube 0.1 ~ 10g / ℓ, cationic surfactant 1.0 × 10 -in the copper plating solution 5 ~3.0 × 10 -6 M, may be added.

그러나 금속도금용액의 조성과 이러한 금속도금용액에 탄소나노튜브 및 양이 온성 계면활성제의 첨가량은 당업자가 원하는 금속/탄소나노튜브 복합재료에 따라 적의 선택하여 실시할 수 있으므로 이하 자세한 내용은 생략하기로 한다.However, the composition of the metal plating solution and the amount of carbon nanotube and cationic surfactant added to the metal plating solution may be appropriately selected according to the metal / carbon nanotube composite material desired by those skilled in the art, and thus the detailed description thereof will be omitted. do.

본 발명에서 금속도금용액은 도금용액의 특성을 향상시키기 위해 첨가제를 추가로 포함할 수 있다. 본 발명에서 이러한 첨가제는 도금용액의 특성을 향상시킬 수 있는 것이라면 어떠한 것이라도 사용할 수 있다. 본 발명에서 이러한 첨가제의 일예로서 도금면을 평활하게 하면서 광택을 내어주는 역할을 하는 광택제를 사용할 수 있다.In the present invention, the metal plating solution may further include an additive to improve the properties of the plating solution. In the present invention, such an additive may be used as long as it can improve the properties of the plating solution. As an example of such an additive in the present invention may be used a polishing agent that serves to give a gloss while smoothing the plating surface.

상기에서 금속도금용액에 첨가제의 일예로 사용할 수 있는 광택제는 현재 시중에서 상품으로 유통중인 것을 적용할 수 있어 당해 기술분야에서 통상의 지식을 가진 당업자가 적의 선택하여 적용할 수 있으므로 이하 상세한 내용은 생략하기로 한다. 상기에서 상품으로 유통중인 광택제의 일예로서 CO-16A(보성화학, 대한민국), CO-16B(보성화학, 대한민국), N-160A(보성화학, 대한민국), N-160B(보성화학, 대한민국) 중에서 선택된 어느 하나 이상을 사용할 수 있다.In the above, a gloss agent that can be used as an example of an additive to a metal plating solution can be applied to those currently in the market as a commodity, and those skilled in the art can be selected and applied appropriately, so the following detailed description is omitted. Let's do it. Examples of varnishes in circulation as products above include CO-16A (Bosung Chemical, Korea), CO-16B (Bosung Chemical, Korea), N-160A (Bosung Chemical, Korea), and N-160B (Bosung Chemical, Korea). Any one or more selected may be used.

상기에서 기존의 금속도금용액에 첨가되는 주요한 성분은 탄소나노튜브와 양이온성 계면활성제(Cationic surfactants)이다.The main components added to the existing metal plating solution are carbon nanotubes and cationic surfactants.

탄소나노튜브는 상기 도 1의 설명에서 언급한 것을 사용할 수 있다.As the carbon nanotubes, those mentioned in the description of FIG. 1 may be used.

본 발명에서 양이온성 계면활성제는 각각의 탄소나노튜브의 표면에 흡착되어 탄소나노튜브를 감싸서 분리시키는 역할을 한다. In the present invention, the cationic surfactant is adsorbed on the surface of each carbon nanotube and serves to separate the carbon nanotubes by wrapping them.

본 발명에서 양이온성 계면활성제는 양이온성을 띠는 모든 계면활성제를 사용할 수 있으며, 이러한 양이온성 계면활성제의 일례로 폴리(다이알릴다이메틸암모 니움클로라이드(poly(diallyldimethylammonium chrolide), PDMA), 세틸트리메틸암모니움클로라이드(cetyltrimethylammonium chloride, CTAC), 세틸트리메틸아모니움브로마이드(cetyltrimethylammonium bromide, CTAB), 도데실트리메틸암모니움브로마이드(dodecyltrimethylammonium bromide, DTAB), 도데실트리메틸암모니움클로라이드(dodecyltrimethylammonium chloride, DTAC), 데실아민(Decylamine), 도데실아민(Dodecylamine), 헥사데실아민(Hexadecylamine), 트리에틸아민(Triethylamine), 옥틸설페이트(Octylsulfate), 소디움 염(sodium salt), 헥실아민(Hexylamine), 옥타데실아민(Octadecylamine) 중에서 선택된 어느 하나 이상을 사용할 수 있다.In the present invention, cationic surfactants may be used as all cationic surfactants, and examples of such cationic surfactants include poly (diallyldimethylammonium chrolide (PDMA) and cetyltrimethyl. Cetyltrimethylammonium chloride (CTAC), cetyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DTAB), dodecyltrimethylammonium chloride (dodecyltrimethylammonium chloride, dedecyltrimethylammonium chloride, DTAC) Decylamine, Dodecylamine, Hexadecylamine, Triethylamine, Octylsulfate, Sodium salt, Hexylamine, Octadecylamine ) Can be used any one or more selected.

도 2에서 도면부호 14는 금속염 및 첨가제(Metal salts & Additives)을 나타내고, 도면부호 16은 양이온성 계면활성제(Cationic surfactants)을 나타내고, 도면부호 18은 초음파 처리(Sonication)를 나타낸다.In FIG. 2, reference numeral 14 denotes metal salts & additives, reference numeral 16 denotes cationic surfactants, and reference numeral 18 denotes sonication.

도 3은 탄소나노튜브와 양이온성 계면활성제를 첨가한 도금용액에 전기도금을 실시하여 금속/탄소나노튜브 복합재료를 제조하는 과정을 나타내는 개략도이다. 3 is a schematic diagram showing a process of preparing a metal / carbon nanotube composite material by electroplating a plating solution to which a carbon nanotube and a cationic surfactant are added.

탄소나노튜브와 양이온성 계면활성제를 첨가한 도금용액에 양극으로는 금속양이온을 공급해 주는 금속막대를 설치하고, 음극으로는 금속/탄소나노튜브의 복합재료를 증착하려는 금속이나 기판재료를 설치할 수 있다. 양극과 음극을 설치한 후 적절한 전류를 인가하면 금속양이온과 계면활성제가 탄소나노튜브의 표면에 흡착되어 양전하를 띠는 탄소나노튜브가 동시에 음극으로 이동하여 음극에서 증착되면서 박막형태의 금속/탄소나노튜브 복합재료를 형성한다.In the plating solution containing the carbon nanotubes and the cationic surfactant, a metal rod for supplying a metal cation may be provided as an anode, and a metal or a substrate material for depositing a composite material of a metal / carbon nanotube may be installed as a cathode. . After the positive and negative electrodes are installed, metal cations and surfactants are adsorbed on the surface of the carbon nanotubes, and the positively charged carbon nanotubes move to the negative electrode and are deposited on the negative electrode. Form a tube composite.

상기에서 전기도금시 전류밀도가 5∼100mA/cm2가 되도록 전류를 인가하여 전기도금을 실시할 수 있다. Electroplating may be performed by applying a current such that the current density is 5 to 100 mA / cm 2 during electroplating.

상기에서 전기도금시 설치하는 양극은 구리, 니켈, 크롬, 아연, 카드뮴, 주석, 금, 은, 로듐 중에서 선택된 어느 하나 이상의 금속을 사용할 수 있다. As the anode installed during the electroplating, any one or more metals selected from copper, nickel, chromium, zinc, cadmium, tin, gold, silver, and rhodium may be used.

상기에서 양극의 재료는 금속도금용액의 금속 또는 금속액과 같은 금속재료를 사용하는 것이 좋다. 왜냐하면 전류를 흘려서 음극에 도금용액의 금속이 석출되기 시작하면, 도금용액 내 금속이온들이 소비되기 때문에, 도금용액 속 금속이온들은 그 수가 줄어들게 된다. 그러나 줄어든 만큼 동일 금속으로 이루어진 양극의 금속이온들이 용액에 용해됨으로써 부족해진 도금용액 내 금속이온들을 보충하게 되기 때문이다.In the above, the material of the anode may be a metal material such as metal or metal liquid of the metal plating solution. Because the metal in the plating solution begins to precipitate on the cathode by flowing a current, the metal ions in the plating solution are reduced because the metal ions in the plating solution are consumed. However, as the metal ions of the positive electrode made of the same metal are reduced, the metal ions in the plating solution that are insufficient are replenished.

상기에서 전기도금시 설치하는 음극은 금속/탄소나노튜브의 복합재료를 증착하려는 금속이나 기판재료를 사용할 수 있다. 본 발명에서 이러한 음극의 일예로 구리, 니켈, 알루미늄, 구리가 증착된 기판, 니켈이 증착된 기판, 알루미늄이 증착된 기판 중에서 선택된 어느 하나 이상을 사용할 수 있다. 상기에서 기판으로 실리콘웨이퍼를 사용하여 구리가 증착된 실리콘웨이퍼, 니켈이 증착된 실리콘웨이퍼, 알루미늄이 증착된 실리콘웨이퍼 중에서 선택된 어느 하나 이상을 사용할 수 있다. The cathode installed during the electroplating may use a metal or a substrate material to deposit a composite material of the metal / carbon nanotubes. Examples of such a cathode in the present invention is a copper, nickel, aluminum, a substrate on which copper is deposited, a substrate on which nickel is deposited, a substrate on which aluminum is deposited Any one or more selected from among them can be used. As the substrate, any one or more selected from silicon wafers deposited with copper, silicon wafers deposited with nickel, and silicon wafers deposited with aluminum may be used as the substrate.

도 3에서 도면부호 20은 양극(Anode), 도면부호 22는 음극(Cathode)을 나타내고, 도면부호 24는 금속 양이온, 탄소나노튜브 및 양이온성 계면활성제가 함유된 전기도금 용액(Electroplating Solution With Metal Cations, Carbon Nanotubes and Cationic Surfactants)을 나타내고, 도면부호 26은 금속/탄소나노튜브 복합재료(Metal/CNT Complex material)를 나타내고, 도면부호 28은 금속 양이온(Metal Cations)을 나타내고, 도면부호 30은 양이온성 계면활성제(16)로 둘러싸인 탄소나노튜브(CNTs covered with cationic surfactants)를 나타낸다.In FIG. 3, reference numeral 20 denotes an anode, reference numeral 22 denotes a cathode, and reference numeral 24 denotes an electroplating solution with metal cations containing a metal cation, carbon nanotubes, and a cationic surfactant. , Carbon Nanotubes and Cationic Surfactants, reference numeral 26 denotes metal / CNT complex material, reference numeral 28 denotes metal cations, and reference numeral 30 denotes cationic CNTs covered with cationic surfactants are shown.

이하 본 발명의 내용을 실시예를 통하여 구체적으로 설명한다. 그러나, 이들은 본 발명을 보다 상세하게 설명하기 위한 것으로 본 발명의 권리범위가 이들에 의해 한정되는 것은 아니다.Hereinafter, the content of the present invention will be described in detail through examples. However, these are intended to explain the present invention in more detail, and the scope of the present invention is not limited thereto.

<실시예><Example>

황산과 질산이 3:1의 부피비로 혼합된 산용액에 탄소나노튜브를 첨가하고 초음파 처리(상온, 10시간, 40KHz)를 실시하여 탄소나노튜브를 정제하고 절단하였다. 초음파 처리 후 산용액을 필터로 여과하여 여과된 탄소나노튜브를 350℃에서 1시간 동안 열처리를 실시하여 비정질 탄소와 같은 이물질을 제거하였다.Carbon nanotubes were added to an acid solution mixed with sulfuric acid and nitric acid at a volume ratio of 3: 1, and the carbon nanotubes were purified and cut by ultrasonication (at room temperature, 10 hours, 40 KHz). After sonication, the acid solution was filtered with a filter, and the filtered carbon nanotubes were heat-treated at 350 ° C. for 1 hour to remove foreign substances such as amorphous carbon.

열처리를 하여 이물질을 제거한 탄소나노튜브와 양이온성 계면활성제를 도금용액에 첨가하여 탄소나노튜브와 양이온성 계면활성제가 첨가된 도금용액을 얻었다. 상기에서 도금용액은 구리도금용액을 사용하였다. 사용된 구리도금용액의 조성은 황산구리 250g/ℓ, 황산 75g/ℓ를 포함하고 있다. 이 구리도금용액에 탄소나노튜브를 1g/ℓ 첨가하였고, 양이온성 계면활성제로 PDMA(poly(diallyldimethylammonium chrolide)) 1.25×10-6 M 첨가하였다. Carbon nanotubes and cationic surfactants from which foreign materials were removed by heat treatment were added to the plating solution, thereby obtaining a plating solution to which carbon nanotubes and cationic surfactants were added. In the above plating solution, a copper plating solution was used. The copper plating solution used contained 250 g / l copper sulfate and 75 g / l sulfuric acid. 1 g / L of carbon nanotubes were added to the copper plating solution, and 1.25 × 10 −6 M of PDMA (poly (diallyldimethylammonium chrolide)) was added as a cationic surfactant.

상기의 탄소나노튜브와 양이온성 계면활성제가 첨가된 도금용액에 양극으로는 구리막대를 넣고, 음극으로는 니켈이 증착된 실리콘웨이퍼를 설치하고 20mA/cm2의 전류밀도가 되도록 전류를 흘려 음극에 박막 형태의 구리/탄소나노튜브 나노복합재료를 형성하였다. In the plating solution to which the carbon nanotubes and the cationic surfactant are added, a copper rod is placed as a positive electrode, and a nickel wafer with nickel is deposited as a negative electrode, and a current flows to a current density of 20 mA / cm 2 . A thin film copper / carbon nanotube nanocomposite material was formed.

도 4는 상기 실시예에서 얻은 구리/탄소나노튜브 복합재료의 SEM 사진이다. SEM 사진에서 보는 바와 같이, 탄소나노튜브가 분자수준으로 구리 기지 안에 분산되어 있는 것을 볼 수 있다(도 4의 화살표 참조).4 is an SEM image of the copper / carbon nanotube composite material obtained in the above example. As shown in the SEM photograph, it can be seen that carbon nanotubes are dispersed in the copper matrix at the molecular level (see arrow of FIG. 4).

탄소나노튜브가 구리 기지 내에 분자수준으로 분산되어 있으며 구리 기지 내의 탄소나노튜브의 양은 도금시 전류밀도 및 양이온성 계면활성제(cationic surfactant)의 양 등에 의존한다.The carbon nanotubes are dispersed at the molecular level in the copper base, and the amount of carbon nanotubes in the copper base depends on the current density and the amount of cationic surfactant during plating.

도 5는 도 4에서 보여준 구리/탄소나노튜브 복합재료의 EDS(energy dispersive spectroscopy) 성분분석표이다. EDS 성분분석을 통하여 구리 기지 내의 탄소나노튜브 함량이 원자분율로 13.93% 임을 알 수 있다. 5 is an energy dispersive spectroscopy (EDS) component analysis table of the copper / carbon nanotube composite shown in FIG. 4. The EDS component analysis shows that the carbon nanotube content in the copper matrix is 13.93% in atomic fraction.

금속 기지내의 탄소나노튜브 함량은 도금용액의 구성, 탄소나노튜브의 분산, 전기도금시 전류밀도 중에서 선택된 어느 하나 이상을 조절하여 결정할 수 있다. The carbon nanotube content in the metal matrix can be determined by adjusting one or more selected from the composition of the plating solution, the dispersion of the carbon nanotubes, and the current density during electroplating.

상술한 바와 같이, 본 발명의 바람직한 실시예를 참조하여 설명하였지만 해당 기술 분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. As described above, although described with reference to a preferred embodiment of the present invention, those skilled in the art will be variously modified and modified within the scope of the present invention without departing from the spirit and scope of the present invention described in the claims below. It will be appreciated that it can be changed.

본 발명에 의해 제조한 금속/탄소나노튜브 복합재료는 전기도금을 이용하여 박막 형태의 금속/탄소나노튜브 복합재료를 얻을 수 있어 알루미늄, 구리 등의 반도체 배선 재료를 포함한 전기도금 가능한 모든 금속박막 재료를 대체하여 사용 가능하다. The metal / carbon nanotube composite material prepared according to the present invention can obtain a thin metal / carbon nanotube composite material in the form of a thin film by using electroplating, and thus all metal thin film materials which can be electroplated including semiconductor wiring materials such as aluminum and copper. Can be used instead of

본 발명에 의해 제조한 금속/탄소나노튜브 복합재료는 순수한 탄소나노튜브의 성장과는 달리 완전히 치밀한 구조를 가진 박막형태로 성장하고 기존 공정 방법을 바꾸지 않고 그대로 사용할 수 있다. Unlike the growth of pure carbon nanotubes, the metal / carbon nanotube composite prepared by the present invention can be grown in a thin film form with a completely compact structure and can be used as it is without changing the existing process method.

본 발명에 의해 제조한 금속/탄소나토튜브 복합재료는 탄소나노튜브를 분자수준으로 금속 기지 내에 분산시킴으로써 기존 금속박막의 전기적, 기계적, 열적 물성의 향상을 기대할 수 있다.Metal / carbon nanotube composite material prepared by the present invention can be expected to improve the electrical, mechanical, and thermal properties of the existing metal thin film by dispersing the carbon nanotubes in the metal matrix at the molecular level.

Claims (8)

산용액에 탄소나노튜브를 침지하고 절단하여 여과한 후 열처리를 실시하는 단계,Dipping and cutting carbon nanotubes in an acid solution, followed by filtration and heat treatment; 금속 또는 금속염을 포함하는 금속도금용액에 상기의 열처리한 탄소나노튜브와 양이온성 계면활성제를 첨가하고 탄소나노튜브를 분산시키는 단계,Adding the heat-treated carbon nanotubes and cationic surfactant to a metal plating solution containing a metal or metal salt and dispersing the carbon nanotubes; 탄소나노튜브와 양이온성 계면활성제를 첨가한 금속도금용액에 음극과 양극을 설치한 후 전류를 흘려 전기도금 하여 음극에서 박막형태의 금속/탄소나노튜브 복합재료를 얻는 것을 특징으로 하는 전기도금을 이용한 금속/탄소나노튜브 복합재료 제조방법.After the negative electrode and the positive electrode were installed in a metal plating solution containing carbon nanotubes and a cationic surfactant, electroplating was performed by flowing an electric current to obtain a metal / carbon nanotube composite material having a thin film form at the negative electrode. Method for manufacturing metal / carbon nanotube composites. 제1항에 있어서, 산용액은 질산, 황산, 염산 중에서 선택된 어느 하나 이상 임을 특징으로 하는 전기도금을 이용한 금속/탄소나노튜브 복합재료 제조방법.The method of claim 1, wherein the acid solution is any one or more selected from nitric acid, sulfuric acid, and hydrochloric acid. 제1항에 있어서, 탄소나노튜브를 절단하는 단계는 산용액에서 초음파 처리, 레이저 처리, 교반기에 의한 교반 중에서 선택된 어느 하나 이상의 방법으로 실시하는 것을 특징으로 하는 전기도금을 이용한 금속/탄소나노튜브 복합재료 제조방법.The metal / carbon nanotube composite of claim 1, wherein the cutting of the carbon nanotubes is performed by any one or more methods selected from ultrasonic treatment, laser treatment, and stirring with an agitator in an acid solution. Material manufacturing method. 제1항에 있어서, 금속은 구리, 니켈, 크롬, 아연, 카드뮴, 주석, 금, 은, 로듐 중에서 선택된 어느 하나 이상의 금속 또는 이들 금속을 포함하는 금속염 임을 특징으로 하는 전기도금을 이용한 금속/탄소나노튜브 복합재료 제조방법.The metal / carbon nano-electroplating method of claim 1, wherein the metal is at least one metal selected from copper, nickel, chromium, zinc, cadmium, tin, gold, silver, rhodium, or a metal salt containing these metals. Method for manufacturing tube composites. 제1항에 있어서, 금속도금용액에 첨가제로서 광택제를 추가로 더 포함함을 특징으로 하는 전기도금을 이용한 금속/탄소나노튜브 복합재료 제조방법.The method of claim 1, further comprising a polishing agent as an additive to the metal plating solution. 제1항에 있어서, 양이온성 계면활성제는 폴리(다이알릴다이메틸암모니움클로라이드(poly(diallyldimethylammonium chrolide), PDMA), 세틸트리메틸암모니움클로라이드(cetyltrimethylammonium chloride, CTAC), 세틸트리메틸아모니움브로마이드(cetyltrimethylammonium bromide, CTAB), 도데실트리메틸암모니움브로마이드(dodecyltrimethylammonium bromide, DTAB), 도데실트리메틸암모니움클로라이드(dodecyltrimethylammonium chloride, DTAC), 데실아민(Decylamine), 도데실아민(Dodecylamine), 헥사데실아민(Hexadecylamine), 트리에틸아민(Triethylamine), 옥틸설페이트(Octylsulfate), 소디움 염(sodium salt), 헥실아민(Hexylamine), 옥타데실아민(Octadecylamine) 중에서 선택된 어느 하나 이상 임을 특징으로 하는 전기도금을 이용한 금속/탄소나노튜브 복합재료 제조방법.The method of claim 1, wherein the cationic surfactant is poly (diallyldimethylammonium chrolide (PDMA), cetyltrimethylammonium chloride (CTAC), cetyltrimethylammonium bromide (cetyltrimethylammonium bromide) bromide (CTAB), dodecyltrimethylammonium bromide (DTAB), dodecyltrimethylammonium chloride (DTAC), decylamine, dodecylamine, hexadecylamine , Triethylamine, octylsulfate, octylsulfate, sodium salt, hexylamine, hexylamine, octadecylamine, or any one or more of metal / carbon nano using electroplating Method for manufacturing tube composites. 제1항에 있어서, 탄소나노튜브를 분산은 초음파 처리, 레이저 처리, 교반기에 의한 교반 중에서 선택된 어느 하나 이상의 방법으로 실시함을 특징으로 하는 전기도금을 이용한 금속/탄소나노튜브 복합재료 제조방법.The method of claim 1, wherein dispersing the carbon nanotubes is performed by any one or more methods selected from ultrasonic treatment, laser treatment, and stirring with a stirrer. 삭제delete
KR1020060019369A 2006-02-28 2006-02-28 Method of making metal/carbon nanotube composite materials by electroplating KR100748228B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020060019369A KR100748228B1 (en) 2006-02-28 2006-02-28 Method of making metal/carbon nanotube composite materials by electroplating
CNA2006101647175A CN101050542A (en) 2006-02-28 2006-10-27 Method of making metal/carbon nanotube composite materials by electroplating
US11/589,305 US20070199826A1 (en) 2006-02-28 2006-10-30 Method for manufacturing metal/carbon nanotube nano-composite using electroplating
JP2006293550A JP2007231414A (en) 2006-02-28 2006-10-30 Method for manufacturing metal/carbon nanotube composite using electroplating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060019369A KR100748228B1 (en) 2006-02-28 2006-02-28 Method of making metal/carbon nanotube composite materials by electroplating

Publications (1)

Publication Number Publication Date
KR100748228B1 true KR100748228B1 (en) 2007-08-09

Family

ID=38442965

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060019369A KR100748228B1 (en) 2006-02-28 2006-02-28 Method of making metal/carbon nanotube composite materials by electroplating

Country Status (4)

Country Link
US (1) US20070199826A1 (en)
JP (1) JP2007231414A (en)
KR (1) KR100748228B1 (en)
CN (1) CN101050542A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100907334B1 (en) * 2008-01-04 2009-07-13 성균관대학교산학협력단 Method of covalent bond formation between aluminum and carbon materials, method of preparing aluminum and carbon materials composite and aluminum and carbon materials composite prepared by the same
KR100907804B1 (en) * 2007-04-26 2009-07-16 주식회사 대유신소재 Apparatus and method for aluminum plating of carbon materials using electroplating
WO2010024548A2 (en) * 2008-08-26 2010-03-04 서울대학교산학협력단 Cnt/metal composite cable
KR100962429B1 (en) * 2009-06-08 2010-06-14 성균관대학교산학협력단 Method of covalent bond formation between aluminum and carbon materials, method of preparing aluminum and carbon materials composite and aluminum and carbon materials composite prepared by the same
KR101071688B1 (en) 2008-10-27 2011-10-11 주식회사 펨빅스 Method and Devices for Carbon Nanotube Cutting-Dispersion
US8593049B2 (en) 2009-01-08 2013-11-26 Samsung Electronics Co., Ltd. Field electron emitter, field electron emission device including the same, and method of manufacturing the field electron emitter
KR101339529B1 (en) 2013-10-18 2013-12-10 경희대학교 산학협력단 Metal nanowire with carbon nanotube and method for manufacturing the same
KR101388839B1 (en) 2011-04-13 2014-04-23 경희대학교 산학협력단 Metal nanowire with carbon nanotube and method for manufacturing the same
KR101503283B1 (en) 2013-09-23 2015-03-17 전자부품연구원 Coaxial cable comprising graphene coating layer and method the same
KR101561639B1 (en) 2014-04-14 2015-10-20 전자부품연구원 Cables having a coating layer of graphene

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8663446B2 (en) * 2005-05-20 2014-03-04 University Of Central Florida Research Foundation, Inc. Electrochemical-codeposition methods for forming carbon nanotube reinforced metal composites
US7892956B2 (en) * 2007-09-24 2011-02-22 International Business Machines Corporation Methods of manufacture of vertical nanowire FET devices
DE102009002178A1 (en) 2008-04-04 2009-10-15 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Extruded composite electrical conductor has core consisting of metal and/or metal nitrides, oxides and/or carbides containing an embedded carbon nano-material
DE102008001000B4 (en) 2008-04-04 2010-02-18 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Layer system for electrodes
DE102008019864B3 (en) * 2008-04-16 2009-09-24 Siemens Aktiengesellschaft Process for the electrochemical coating of a substrate by brush plating and apparatus for carrying out this process
TWI434965B (en) * 2008-05-28 2014-04-21 Mitsui Mining & Smelting Co A roughening method for copper foil, and a copper foil for a printed wiring board which is obtained by the roughening method
JP2010027916A (en) * 2008-07-22 2010-02-04 Meiko:Kk Printed wiring board
JP5329206B2 (en) * 2008-10-28 2013-10-30 コリア インスティチュート オブ マシナリー アンド マテリアルズ Multi-functional composite fiber by simultaneous multi-component adhesion, composite material including the same, and method for producing the same
KR101116472B1 (en) * 2009-02-06 2012-03-07 (주)엘지하우시스 carbon nanotube-metal particle complex composition and steering wheel with heating element using the same
DE102009054427B4 (en) * 2009-11-25 2014-02-13 Kme Germany Ag & Co. Kg Method for applying mixtures of carbon and metal particles to a substrate, substrate obtainable by the method and its use
KR101156532B1 (en) 2009-11-27 2012-06-20 삼성에스디아이 주식회사 Negative electrode for lithium battery and lithium battery comprising the same
JP5631775B2 (en) * 2011-02-24 2014-11-26 新光電気工業株式会社 Composite plating solution
US8754041B2 (en) 2011-03-29 2014-06-17 King Fahd University Of Petroleum And Minerals Method of removing E. coli bacteria from an aqueous solution
WO2013072687A2 (en) 2011-11-16 2013-05-23 Nanoridge Materials, Incorporated Conductive metal enhanced with conductive nanomaterial
CN102528038B (en) * 2011-12-31 2013-09-11 浙江工业大学 Preparation method of copper/carbon nanotube composite superhydrophobic material
CH706336B1 (en) 2012-04-02 2016-03-31 Haute Ecole Arc Galvanic bath for the electrolytic deposition of a composite material.
JP6175702B2 (en) * 2012-12-03 2017-08-09 山形県 Carbon nanotube-containing fine crystal nickel plating film, resin molding fine mold and method
US10006141B2 (en) 2013-06-20 2018-06-26 Baker Hughes, A Ge Company, Llc Method to produce metal matrix nanocomposite
CN103943170B (en) * 2014-05-09 2016-03-02 浙江大学 Core-sheath structural conductive core of a kind of electric wire and preparation method thereof
US10669635B2 (en) 2014-09-18 2020-06-02 Baker Hughes, A Ge Company, Llc Methods of coating substrates with composite coatings of diamond nanoparticles and metal
KR101591454B1 (en) * 2014-10-07 2016-02-03 주식회사 동희홀딩스 Manufacturing method for Metal and Oxide hybrid coated Nano Carbon
DE102014114721B4 (en) 2014-10-10 2019-08-29 Harting Electric Gmbh & Co. Kg An electrical connector and method for monitoring the condition of a contact surface of an electrical connector contact
US9873827B2 (en) 2014-10-21 2018-01-23 Baker Hughes Incorporated Methods of recovering hydrocarbons using suspensions for enhanced hydrocarbon recovery
US10167392B2 (en) 2014-10-31 2019-01-01 Baker Hughes Incorporated Compositions of coated diamond nanoparticles, methods of forming coated diamond nanoparticles, and methods of forming coatings
US10155899B2 (en) 2015-06-19 2018-12-18 Baker Hughes Incorporated Methods of forming suspensions and methods for recovery of hydrocarbon material from subterranean formations
CN106087003A (en) * 2016-06-13 2016-11-09 中国科学院金属研究所 A kind of improve the method for Cr nano-particle content in Ni Cr nano-composite plate
US11008664B2 (en) * 2017-07-20 2021-05-18 The Board Of Trustees Of The University Of Alabama Methods and systems for electrochemical additive manufacturing
CN108034984A (en) * 2017-12-07 2018-05-15 哈尔滨工业大学 A kind of preparation method of carbon nanotubes copper-based laminated composite material
US11938715B2 (en) * 2017-12-28 2024-03-26 Texas Instruments Incorporated SP2-bonded carbon structures
CN108906336B (en) * 2018-09-06 2020-08-28 宁波敬业控股集团有限公司 Iron ore reverse flotation reagent and using method thereof
EP3970166A4 (en) * 2019-05-15 2023-08-09 Technion Research & Development Foundation Limited Carbon-nanotubes copper composite conductors
KR102355237B1 (en) * 2020-06-15 2022-02-28 대성볼트 (주) a carbon nano method for corrosion and scratch prevent of stainless steel product
CN113046732B (en) * 2021-03-10 2022-11-22 中国科学院苏州纳米技术与纳米仿生研究所 Carbon nano tube/metal composite conductor and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040078002A (en) * 2003-03-03 2004-09-08 (주) 나노텍 Carbon Nano-Composite Materials for Shielding of Electromagnetic Wave and Preparation Method Thereof
JP2005290474A (en) 2004-03-31 2005-10-20 Nissei Plastics Ind Co Treatment method for carbon nanofiber and composite plated article
JP2005320579A (en) 2004-05-07 2005-11-17 Shinko Electric Ind Co Ltd Lumpy granule, linear granule and method for producing granule
JP2006028636A (en) 2004-06-18 2006-02-02 Shinshu Univ Fibrous nano carbon-metallic composite material and its production method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2853443A (en) * 1956-04-25 1958-09-23 Westinghouse Electric Corp Addition agent for acid copper electrolytes
US7252749B2 (en) * 2001-11-30 2007-08-07 The University Of North Carolina At Chapel Hill Deposition method for nanostructure materials
WO2008063148A2 (en) * 2005-05-20 2008-05-29 University Of Central Florida Carbon nanotube reinforced metal composites

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040078002A (en) * 2003-03-03 2004-09-08 (주) 나노텍 Carbon Nano-Composite Materials for Shielding of Electromagnetic Wave and Preparation Method Thereof
JP2005290474A (en) 2004-03-31 2005-10-20 Nissei Plastics Ind Co Treatment method for carbon nanofiber and composite plated article
JP2005320579A (en) 2004-05-07 2005-11-17 Shinko Electric Ind Co Ltd Lumpy granule, linear granule and method for producing granule
JP2006028636A (en) 2004-06-18 2006-02-02 Shinshu Univ Fibrous nano carbon-metallic composite material and its production method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100907804B1 (en) * 2007-04-26 2009-07-16 주식회사 대유신소재 Apparatus and method for aluminum plating of carbon materials using electroplating
KR100907334B1 (en) * 2008-01-04 2009-07-13 성균관대학교산학협력단 Method of covalent bond formation between aluminum and carbon materials, method of preparing aluminum and carbon materials composite and aluminum and carbon materials composite prepared by the same
WO2010024548A2 (en) * 2008-08-26 2010-03-04 서울대학교산학협력단 Cnt/metal composite cable
WO2010024548A3 (en) * 2008-08-26 2010-06-24 서울대학교산학협력단 Cnt/metal composite cable
KR101088835B1 (en) 2008-08-26 2011-12-06 서울대학교산학협력단 Cnt/metal composite cable
KR101071688B1 (en) 2008-10-27 2011-10-11 주식회사 펨빅스 Method and Devices for Carbon Nanotube Cutting-Dispersion
US8593049B2 (en) 2009-01-08 2013-11-26 Samsung Electronics Co., Ltd. Field electron emitter, field electron emission device including the same, and method of manufacturing the field electron emitter
KR100962429B1 (en) * 2009-06-08 2010-06-14 성균관대학교산학협력단 Method of covalent bond formation between aluminum and carbon materials, method of preparing aluminum and carbon materials composite and aluminum and carbon materials composite prepared by the same
KR101388839B1 (en) 2011-04-13 2014-04-23 경희대학교 산학협력단 Metal nanowire with carbon nanotube and method for manufacturing the same
KR101503283B1 (en) 2013-09-23 2015-03-17 전자부품연구원 Coaxial cable comprising graphene coating layer and method the same
WO2015041439A1 (en) * 2013-09-23 2015-03-26 전자부품연구원 Coaxial cable including graphene coating layer and manufacturing method therefor
KR101339529B1 (en) 2013-10-18 2013-12-10 경희대학교 산학협력단 Metal nanowire with carbon nanotube and method for manufacturing the same
KR101561639B1 (en) 2014-04-14 2015-10-20 전자부품연구원 Cables having a coating layer of graphene

Also Published As

Publication number Publication date
US20070199826A1 (en) 2007-08-30
JP2007231414A (en) 2007-09-13
CN101050542A (en) 2007-10-10

Similar Documents

Publication Publication Date Title
KR100748228B1 (en) Method of making metal/carbon nanotube composite materials by electroplating
JP6180457B2 (en) Methods for applying carbon / tin mixtures to metal or alloy coatings
US9840782B2 (en) Electrochemical process for producing graphene, graphene oxide, metal composites, and coated substrates
US11369929B2 (en) Nanoparticles and systems and methods for synthesizing nanoparticles through thermal shock
EP3192773B1 (en) Method for producing porous graphite, and porous graphite
JP2007070689A (en) Nanocarbon/aluminum composite material, method for producing the same, and plating liquid used therefor
JP2015164896A5 (en)
JP6324237B2 (en) Fine particles, method for producing fine particles, and fine particle dispersion solution
Stando et al. Copper recovery from industrial wastewater-Synergistic electrodeposition onto nanocarbon materials
KR101836110B1 (en) Catalytic composition for synthesizing carbon nanotubes
CN102083749A (en) Method for separating nanomaterials
KR101999144B1 (en) Methods of preparing metal nanoplates and metal nanoplates prepared by using the same
JP2006057129A (en) Composite metal body, method for producing the same, metal grain and method for producing the same
JP2007162080A (en) Thermally conductive member, automotive parts and manufacturing method therefor
EP2909867A1 (en) Method for deposition of thermoelectric material
JP5922810B1 (en) Fine particles, fine particle dispersion solution, and method for producing fine particles
Zhang et al. High yield preparation of silver nanowires by CuCl2-mediated polyol method and application in semitransparent conduction electrode
Ko et al. Architectural growth of Cu nanoparticles through electrodeposition
Ashkarran et al. Stability, size and optical properties of colloidal silver nanoparticles prepared by electrical arc discharge in water
KR101042634B1 (en) Method of fabricating metal oxide-carbon nanotube composite films using a combined electrochemical deposition and thermal oxidation
Kim et al. Rational electrodeposition of Cu on highly oxidized multiwalled carbon nanotube films
Mao et al. Cu/graphene composite coatings electrodeposited in a directly dispersed graphene solution after electrochemical exfoliation with enhanced oxidation resistance
JP2004162096A (en) Paste for electroless plating, and method for producing metallic structure and fine metallic component obtained by using the same
Tan et al. One-pot synthesis of high aspect ratio copper nanowires in aqueous solution
Jaleh et al. Pulse electrodeposition of Ni2Sb nanowires in polycarbonate template

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20110729

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20120730

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee