JP2008019456A - Electrically composite-plated wire rod, manufacturing method therefor, and manufacturing apparatus therefor - Google Patents

Electrically composite-plated wire rod, manufacturing method therefor, and manufacturing apparatus therefor Download PDF

Info

Publication number
JP2008019456A
JP2008019456A JP2006190012A JP2006190012A JP2008019456A JP 2008019456 A JP2008019456 A JP 2008019456A JP 2006190012 A JP2006190012 A JP 2006190012A JP 2006190012 A JP2006190012 A JP 2006190012A JP 2008019456 A JP2008019456 A JP 2008019456A
Authority
JP
Japan
Prior art keywords
wire
plating
composite
electrocomposite
composite plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006190012A
Other languages
Japanese (ja)
Inventor
Atsushi Ehira
淳 江平
Akira Murakami
亮 村上
Nobuyuki Koura
延幸 小浦
Koichi Ui
幸一 宇井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006190012A priority Critical patent/JP2008019456A/en
Publication of JP2008019456A publication Critical patent/JP2008019456A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrically composite-plated wire rod superior in electric conductivity in a longitudinal direction of the wire rod; a method for manufacturing the electrically composite-plated wire rod; and an apparatus for manufacturing the electrically composite-plated wire rod. <P>SOLUTION: The electrically composite-plated wire rod has an electrically composite-plated film formed on the surface of the wire rod, which contains fine particles having the length ratio of the major axis to the minor axis of 10 or more so that the major axes align in the longitudinal direction of the electrically composite-plated wire rod. The apparatus for manufacturing the electrically composite-plated wire rod comprises: a plating liquid tank 10 having a container 12 with the bottom and a cylindrical anode 14; a control means 20 for controlling the flow of a composite-plating liquid; and a control means 30 for controlling the travelling of the wire rod. The control means 20 for controlling the flow of the composite-plating liquid makes the composite-plating liquid 4 flow in one direction in the cylindrical anode 14, and the control means 30 for controlling the travelling of the wire rod makes the wire rod 2 travel in the same direction as or an opposite direction to the flow of the composite-plating liquid 4 in the cylindrical anode 14. The method for manufacturing the electrically composite-plated wire rod includes using the apparatus. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電気複合めっき線材、電気複合めっき線材の製造方法及び製造装置に係り、更に詳細には、所定形状の微粒子を所定の状態で含有する電気複合めっき被膜を線材の表面に形成して成り、線材の長さ方向における電気伝導性に優れた電気複合めっき線材、電気複合めっき線材の製造方法及び電気複合めっき線材の製造装置に関する。   The present invention relates to an electric composite plating wire, a method and an apparatus for manufacturing an electric composite plating wire, and more specifically, an electric composite plating film containing fine particles of a predetermined shape in a predetermined state is formed on the surface of the wire. The present invention relates to an electric composite plating wire excellent in electrical conductivity in the length direction of the wire, an electric composite plating wire manufacturing method, and an electric composite plating wire manufacturing apparatus.

従来より、線材に連続的に電気めっきを施す手段として、直線めっき法、ケンモア法及び横型回転法などのめっき法が知られている。
また、電気複合めっき法においては、プロペラ撹拌法やポンプ循環法、エア撹拌法などを適用して、金属イオンを含む複合めっき液中の微粒子を均一に分散させながら、被めっき金属材料を浸漬する方法が一般的に行われている。
Conventionally, plating methods such as a linear plating method, a Kenmore method, and a horizontal rotation method are known as means for continuously electroplating a wire.
Moreover, in the electric composite plating method, a propeller stirring method, a pump circulation method, an air stirring method, etc. are applied to immerse the metal material to be plated while uniformly dispersing the fine particles in the composite plating solution containing metal ions. The method is generally done.

そして、電気複合めっき法において、複合めっき液を容器底面に吹き当てながら送入し、微粒子を均一に分散させながら、送入された複合めっき液を容器内面と挿入された陽極又は陰極との間の流路から上昇させ、両極間に電流を流す方法が提案されている(特許文献1参照。)。
また、線材の電気めっき装置としては、めっき液槽内を回転する送線ドラムを用いて線材を螺旋移動させる装置が提案されている(特許文献2参照。)。
特開平7−157899号公報 特開平5−222580号公報
Then, in the electrocomposite plating method, the composite plating solution is fed while being sprayed on the bottom of the container, and while the fine particles are uniformly dispersed, the fed composite plating solution is placed between the inner surface of the container and the inserted anode or cathode. Has been proposed (see Patent Document 1).
In addition, as a wire electroplating apparatus, an apparatus that spirally moves a wire using a wire feeding drum that rotates in a plating solution tank has been proposed (see Patent Document 2).
JP-A-7-157899 JP-A-5-222580

しかしながら、上記特許文献1に記載の電気複合めっき装置においては、線材への適用を考慮した装置構成となっておらず、優れた電気伝導性を有する電気複合めっき線材を製造することができなかった。
また、上記特許文献2に記載の電気めっき装置においては、電気複合めっきについて何らの検討もなされておらず、そのめっき液槽も従来からのものを用いているため、線材の長さ方向において優れた電気伝導性を有する電気複合めっき線材を製造することが困難であった。
However, the electrocomposite plating apparatus described in Patent Document 1 does not have an apparatus configuration considering application to a wire, and an electrocomposite plating wire having excellent electrical conductivity could not be manufactured. .
In addition, in the electroplating apparatus described in Patent Document 2, no examination has been made on electrocomposite plating, and since the plating bath is a conventional one, it is excellent in the length direction of the wire. It was difficult to produce an electrocomposite plated wire having electrical conductivity.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的をするところは、線材の長さ方向における電気伝導性に優れた電気複合めっき線材、電気複合めっき線材の製造方法及び電気複合めっき線材の製造装置を提供することにある。   The present invention has been made in view of such problems of the prior art, and the purpose of the present invention is to provide an electric composite plating wire and an electric composite plating wire excellent in electrical conductivity in the length direction of the wire. It is providing the manufacturing method and the manufacturing apparatus of an electrocomposite plating wire.

本発明者らは、上記目的を達成するため鋭意検討を重ねたところ、長軸と短軸との長さ比が10以上である微粒子をその微粒子の長軸方向が当該電気複合めっき線材の長さ方向に沿うように含有している電気複合めっき被膜を、線材の表面に形成することなどにより、上記目的が達成できることを見出し、本発明を完成するに至った。   The inventors of the present invention have made extensive studies in order to achieve the above object. As a result, fine particles having a major axis / minor axis length ratio of 10 or more indicate that the major axis direction of the fine particles is the length of the electrocomposite plating wire. It has been found that the above object can be achieved by forming an electrocomposite plating film contained along the length direction on the surface of the wire, and the present invention has been completed.

即ち、本発明の電気複合めっき線材は、線材の表面に電気複合めっき被膜を形成して成る電気複合めっき線材であって、その電気複合めっき被膜は、長軸と短軸との長さ比が10以上である微粒子を、微粒子の長軸方向が電気複合めっき線材の長さ方向に沿うように含有していることを特徴とする。   That is, the electric composite plating wire of the present invention is an electric composite plating wire formed by forming an electric composite plating film on the surface of the wire, and the electric composite plating film has a length ratio between the major axis and the minor axis. 10 or more fine particles are contained so that the long axis direction of the fine particles is along the length direction of the electrocomposite plating wire.

また、本発明の電気複合めっき線材の製造方法は、長軸と短軸との長さ比が10以上である微粒子を含有する電気複合めっき被膜を、線材の表面に形成して成る電気複合めっき線材を電気複合めっきによって製造するに当たり、長軸と短軸との長さ比が10以上である微粒子と金属イオンとを含有する複合めっき液と、線材とを用い、複合めっき液を一方向に流し、その流れと同一又は逆方向に線材を走行させることを特徴とする。   Further, the method for producing an electrocomposite plated wire of the present invention is an electrocomposite plating formed by forming an electrocomposite plating film containing fine particles having a length ratio of a major axis and a minor axis of 10 or more on the surface of a wire. In producing a wire by electrocomposite plating, a composite plating solution containing fine particles and metal ions having a length ratio of the major axis to the minor axis of 10 or more and a wire are used, and the composite plating solution is unidirectional. The wire is caused to run in the same direction as the flow or in the opposite direction.

更に、本発明の電気複合めっき線材の製造装置は、有底容器と筒状陽極とを備えるめっき液槽と、複合めっき液流れ制御手段と、線材走行制御手段とを具備する電気複合めっき線材の製造装置であって、複合めっき液流れ制御手段が、筒状陽極内で複合めっき液を一方向に流し、線材走行制御手段が、筒状陽極内で複合めっきの流れと同一又は逆方向に線材を走行させることを特徴とする。   Furthermore, an apparatus for producing an electrocomposite plating wire according to the present invention comprises an electrocomposite plating wire comprising a plating bath comprising a bottomed container and a cylindrical anode, a composite plating solution flow control means, and a wire travel control means. In the manufacturing apparatus, the composite plating solution flow control means causes the composite plating solution to flow in one direction in the cylindrical anode, and the wire rod traveling control means performs the wire in the same direction as or in the opposite direction to the flow of the composite plating in the cylindrical anode. It is characterized by running.

本発明によれば、長軸と短軸との長さ比が10以上である微粒子をその微粒子の長軸方向が当該電気複合めっき線材の長さ方向に沿うように含有している電気複合めっき被膜を、線材の表面に形成することなどとしたため、線材の長さ方向における電気伝導性に優れた電気複合めっき線材、電気複合めっき線材の製造方法及び電気複合めっき線材の製造装置を提供することができる。   According to the present invention, an electrocomposite plating containing fine particles having a length ratio between the major axis and the minor axis of 10 or more so that the major axis direction of the fine particles is along the length direction of the electrocomposite plating wire. To provide an electric composite plating wire, an electric composite plating wire manufacturing method, and an electric composite plating wire manufacturing apparatus that are excellent in electrical conductivity in the length direction of the wire because the coating is formed on the surface of the wire. Can do.

以下、本発明の電気複合めっき線材について詳細に説明する。なお、本明細書において濃度及び含有量などについての「%」は、特記しない限り質量百分率を表わすものとする。
上述の如く、本発明の電気複合めっき線材は、線材の表面に電気複合めっき被膜を形成して成る電気複合めっき線材であって、電気複合めっき被膜は、長軸と短軸との長さ比が10以上である微粒子を、該微粒子の長軸方向が当該電気複合めっき線材の長さ方向に沿うように含有している。
このような構成とすることにより、優れた電気伝導性を有する電気複合めっき線材となる。また、副次的な効果として、熱伝導性を向上させることもできる。
Hereinafter, the electric composite plating wire of the present invention will be described in detail. In the present specification, “%” for concentration, content, and the like represents a mass percentage unless otherwise specified.
As described above, the electric composite plating wire of the present invention is an electric composite plating wire formed by forming an electric composite plating film on the surface of the wire, and the electric composite plating film has a length ratio between the major axis and the minor axis. Are contained so that the major axis direction of the fine particles is along the length direction of the electrocomposite plating wire.
By setting it as such a structure, it becomes an electrical composite plating wire which has the outstanding electrical conductivity. Moreover, thermal conductivity can also be improved as a secondary effect.

ここで、電気複合めっき被膜に含まれる微粒子の長軸と短軸との長さ比が10未満であると、電気伝導性の向上効果が小さいものとなる。
また、電気複合めっき被膜内において、所定の微粒子(例えば針状微粒子など。)が、その長軸方向が電気複合めっき線材の長さ方向に沿うように含まれていない場合、換言すれば、その長軸方向が電気複合めっき線材の長さに方向に配向せずに含まれている場合、更に換言すれば、その長軸方向が電気複合めっき線材の長さ方向に対して等方的に含まれている場合には、優れた電気伝導性を有する電気複合めっき線材とはならない。
Here, when the length ratio of the major axis to the minor axis of the fine particles contained in the electrocomposite plating film is less than 10, the effect of improving the electrical conductivity is small.
Further, in the electrocomposite plating film, when predetermined fine particles (for example, acicular microparticles) are not included so that the major axis direction is along the length direction of the electrocomposite plating wire, in other words, When the major axis direction is included in the length of the electrocomposite plated wire without being oriented in the direction, in other words, the major axis direction is included isotropically relative to the length direction of the electrocomposite plated wire. If it is, it is not an electrocomposite plating wire having excellent electrical conductivity.

また、本発明において、上述の微粒子としては、特に限定されるものではないが、例えばナノカーボンを用いることができる。具体的には、カーボンナノチューブ、カーボンナノファイバー又はカーボンナノホーン、及びこれらの任意の組み合せに係る混合物を挙げることができる。   In the present invention, the above-mentioned fine particles are not particularly limited, but for example, nanocarbon can be used. Specific examples include carbon nanotubes, carbon nanofibers, or carbon nanohorns, and mixtures of these arbitrary combinations.

更に、本発明において、上述のカーボンナノチューブとしては、特に限定されるものではないが、例えば直径が1〜100nmであり、且つ長さが1〜100μmであり、且つアスペクト比が10〜100であるものを用いることが好ましい。
ここで、「アスペクト比」とは、カーボンナノチューブの長軸と短軸との長さ比(長軸長さ/短軸長さ)をいう。
また、カーボンナノチューブは、一般的に短軸方向より長軸方向において電気伝導性に優れており、これを長軸配向して含有する複合めっき被膜は長軸方向における電気伝導性に優れたものとなる。
Further, in the present invention, the above-mentioned carbon nanotube is not particularly limited. For example, the diameter is 1 to 100 nm, the length is 1 to 100 μm, and the aspect ratio is 10 to 100. It is preferable to use one.
Here, the “aspect ratio” means the length ratio (major axis length / minor axis length) between the major axis and the minor axis of the carbon nanotube.
Carbon nanotubes are generally superior in electrical conductivity in the major axis direction than in the minor axis direction, and composite plating films containing this in the major axis orientation are superior in electrical conductivity in the major axis direction. Become.

ここで、カーボンナノチューブの直径が1nm未満では、詳しくは後述するが、電気複合めっき被膜を形成する際に、凝集し易くなり沈降が起こり易いため、電気複合めっき被膜中に十分に取り込まれないことがある。一方、100nm超でも、沈降が起こり易いため、電気複合めっき被膜中に十分に取り込まれないことがある。
また、カーボンナノチューブの長さが1μm未満でも、直径が1nm未満の場合と同様に凝集し易くなり沈降が起こり易いため、電気複合めっき被膜中に十分に取り込まれないことがある。一方、100μm超でも、直経が100nm超の場合と同様に凝集し易くなり沈降が起こり易いため、電気複合めっき被膜中に十分に取り込まれないことがある。
更に、カーボンナノチューブのアスペクト比が10未満の場合には、長軸方向と短軸方向における物性の違いが小さくなるため、長軸方向を電気複合めっき線材の長さ方向に配向させた際の向上効果があまり大きくならず、アスペクト比が100超の場合には、カーボンナノチューブ同士が絡み合い凝集し易くなり、長軸方向を電気複合めっき線材の長さ方向に配向させ難くなる。
なお、カーボンナノチューブは、単層カーボンナノチューブ及び多層カーボンナノチューブのいずれを用いてもよく、適宜混合して用いてもよい。
Here, when the diameter of the carbon nanotube is less than 1 nm, it will be described later in detail. There is. On the other hand, even if it exceeds 100 nm, sedimentation is likely to occur, so that it may not be sufficiently taken into the electric composite plating film.
Further, even if the length of the carbon nanotube is less than 1 μm, the carbon nanotube is likely to be aggregated and sedimentation is likely to occur as in the case where the diameter is less than 1 nm. On the other hand, even if it exceeds 100 μm, it tends to agglomerate and precipitate easily as in the case where the straight diameter exceeds 100 nm, so that it may not be sufficiently taken into the electric composite plating film.
In addition, when the aspect ratio of the carbon nanotube is less than 10, the difference in physical properties between the major axis direction and the minor axis direction is reduced, so that the improvement is achieved when the major axis direction is oriented in the length direction of the electrocomposite plating wire. When the effect is not so great and the aspect ratio exceeds 100, the carbon nanotubes are easily entangled and aggregated, and the long axis direction is difficult to be oriented in the length direction of the electrocomposite plating wire.
Note that the carbon nanotubes may be either single-walled carbon nanotubes or multi-walled carbon nanotubes, and may be used by appropriately mixing them.

更にまた、本発明において、上述の線材としては、例えば銅、銅基合金、アルミニウム又はアルミニウム基合金のいずれかを好適に用いることができる。特に線材を電線として使用する場合には優れた電気伝導率の観点から銅やアルミニウムを用いることが好ましい。しかしながら、これらに限定されるものではないことは言うまでもない。   Furthermore, in the present invention, for example, copper, a copper base alloy, aluminum, or an aluminum base alloy can be suitably used as the wire. In particular, when a wire is used as an electric wire, it is preferable to use copper or aluminum from the viewpoint of excellent electrical conductivity. However, it goes without saying that the present invention is not limited to these.

次に、本発明の電気複合めっき線材の製造方法について詳細に説明する。
上述の如く、本発明の電気複合めっき線材の製造方法は、長軸と短軸との長さ比が10以上である微粒子を含有する電気複合めっき被膜を、線材の表面に形成して成る電気複合めっき線材を電気複合めっきによって製造するに当たり、長軸と短軸との長さ比が10以上である微粒子と金属イオンとを含有する複合めっき液と、線材とを用い、複合めっき液を一方向に流し、その流れと同一又は逆方向に線材を走行させ、所望の電気複合めっき線材を得る製造方法である。
このように複合めっき液の流れを一方向に制御し、めっき液の流れと同一又は逆方向に線材を走行させることにより、電気複合めっき被膜中において、上述の微粒子が、その微粒子の長軸方向を電気複合めっき線材の長さ方向に配向させて含有させることができる。
Next, the manufacturing method of the electric composite plating wire of this invention is demonstrated in detail.
As described above, the method for producing an electrocomposite plated wire according to the present invention comprises an electric composite plating film containing fine particles having a length ratio of a major axis to a minor axis of 10 or more formed on the surface of a wire. In producing a composite plating wire by electrocomposite plating, a composite plating solution containing fine particles and metal ions having a length ratio of the major axis to the minor axis of 10 or more, and a wire are used. This is a manufacturing method in which a desired electric composite plating wire is obtained by flowing in the direction and running the wire in the same or opposite direction as the flow.
In this way, by controlling the flow of the composite plating solution in one direction and running the wire in the same direction or in the opposite direction to the flow of the plating solution, the above-mentioned fine particles are in the major axis direction of the fine particles. Can be contained by being oriented in the length direction of the electrocomposite plating wire.

また、電気複合めっき被膜中の微粒子(例えばナノカーボンなど。)の含有量は、複合めっき液中の微粒子の懸濁・分散濃度の上昇とともに増加するが、複合めっき被膜の電気伝導性などは、その含有率と相関性を有するので、各種の複合めっき液で最適な電解電流密度や電解時間を選択する必要がある。もちろん、複合めっき液中の微粒子は、均一分散していることが望ましい。
更に、電流密度を高くして生産性を向上させる場合には、複合めっき液の流速と、線材の走行速度との相対速度を大きくすることが効果的であり、複合めっき液の流れ方向と逆方向に線材を走行させることが好ましい。
更にまた、電気複合めっき法については、例えば直流及びパルス電流のいずれか一方又は双方などにより、浴温0〜300℃、電流密度0.01〜20,000mA/cmの電解条件で線材の表面に電気複合めっき被膜を形成することができるが、これに限定されるものでないことは言うまでもない。
なお、めっき作業時の雰囲気は、乾燥無酸素雰囲気中で行うことが望ましい。
In addition, the content of the fine particles (for example, nanocarbon) in the electroplating coating film increases with an increase in the suspension / dispersion concentration of the microparticles in the composite plating solution. Since it has a correlation with the content, it is necessary to select an optimum electrolysis current density and electrolysis time for various composite plating solutions. Of course, it is desirable that the fine particles in the composite plating solution are uniformly dispersed.
Furthermore, when improving the productivity by increasing the current density, it is effective to increase the relative speed between the flow rate of the composite plating solution and the traveling speed of the wire, which is opposite to the flow direction of the composite plating solution. It is preferable to run the wire in the direction.
Furthermore, with regard to the electrocomposite plating method, the surface of the wire under electrolysis conditions of a bath temperature of 0 to 300 ° C. and a current density of 0.01 to 20,000 mA / cm 2 , for example, by one or both of direct current and pulse current. It is needless to say that an electrocomposite plating film can be formed on, but not limited to.
The atmosphere during the plating operation is preferably performed in a dry oxygen-free atmosphere.

また、本発明において、例えば上述の複合めっき液として、長軸と短軸との長さ比が10以上である微粒子と、アルミニウムハロゲン化物と、1,3−ジアルキルイミダゾリウムハロゲン化物及びモノアルキルピリジニウムハロゲン化物のいずれか一方又は双方とを含有し、このような1,3−ジアルキルイミダゾリウムハロゲン化物が炭素数1〜12のアルキル基を有し、モノアルキルピリジニウムハロゲン化物が炭素数1〜12のアルキル基を有するものを用いる場合には、このようなアルミニウムハロゲン化物と、1,3−ジアルキルイミダゾリウムハロゲン化物及びモノアルキルピリジニウムハロゲン化物のいずれか一方又は双方とを、モル比で20:80〜80:20の割合で含有するものを用いることが、取り扱いや微粒子の分散性の観点から望ましいが、このような複合めっき液に限定されるものではない。即ち、ベンゼン、トルエン、o‐キシレン、m‐キシレン、p‐キシレンなどのような有機溶媒を所定の微粒子等を分散させるものとして用いることもできる。   In the present invention, for example, as the above-described composite plating solution, fine particles having a length ratio of the major axis to the minor axis of 10 or more, aluminum halide, 1,3-dialkylimidazolium halide, and monoalkylpyridinium One or both of the halides, such 1,3-dialkylimidazolium halides having an alkyl group having 1 to 12 carbon atoms, and monoalkylpyridinium halides having 1 to 12 carbon atoms. In the case of using one having an alkyl group, such an aluminum halide and one or both of 1,3-dialkylimidazolium halide and monoalkylpyridinium halide are used in a molar ratio of 20:80 to It is necessary to use a material contained at a ratio of 80:20 in order to handle and fine particles. From the viewpoint of sex, but is not limited to such a composite plating solution. That is, an organic solvent such as benzene, toluene, o-xylene, m-xylene, p-xylene or the like can be used as a dispersion of predetermined fine particles.

このような割合を満たさない場合には、めっき液の粘性が高く、めっき液として不向きであり、優れた電気伝導性を有する電気複合めっき線材が得られにくい。
また、1,3−ジアルキルイミダゾリウムハロゲン化物やモノアルキルピリジニウムハロゲン化物が炭素数1〜12のアルキル基を有さない場合には、常温で溶融せず、めっき液にならないか、仮に温度を上げて溶融させても、めっき液の粘性が高く、めっき液として不向きであり、優れた電気伝導性を柚須売る電気複合めっき線材が得られにくい。
なお、1,3−ジアルキルイミダゾリウムハロゲン化物及びモノアルキルピリジニウムハロゲン化物は、上記の割合を満たす範囲で、それぞれ単独で又は適宜混合して用いると、いわゆる常温溶融塩(イオン液体)となり好ましい。
When such a ratio is not satisfied, the plating solution has a high viscosity and is not suitable as a plating solution, and it is difficult to obtain an electric composite plating wire having excellent electrical conductivity.
In addition, when 1,3-dialkylimidazolium halide or monoalkylpyridinium halide does not have an alkyl group having 1 to 12 carbon atoms, it does not melt at room temperature and does not become a plating solution, or temporarily raise the temperature. Even if it is melted, the viscosity of the plating solution is high and unsuitable as a plating solution, and it is difficult to obtain an electric composite plating wire that sells excellent electrical conductivity.
In addition, 1,3-dialkylimidazolium halide and monoalkylpyridinium halide are preferably used as a so-called room temperature molten salt (ionic liquid) when used alone or in an appropriate mixture within a range satisfying the above ratio.

ここで、アルミニウムハロゲン化物と1,3−ジアルキルイミダゾリウムハロゲン化物及びモノアルキルピリジニウムハロゲン化物の一方又は双方との合計体積に対して、0.01〜50g/Lの割合で所定の微粒子(例えばナノカーボンなど。)を含有することが好ましく、0.01〜20g/Lの割合で微粒子を含有することがより好ましい。
含有する微粒子の割合が0.01g/L未満の場合には、複合めっき被膜に取り込まれる微粒子の量が少なくなり、所望の特性を得難くなる。一方、含有する微粒子の割合が50g/Lを超えると、めっき浴槽における微粒子の濃度が高まり、微粒子が凝集して沈降することがあり、また、めっき液槽から線材を引き上げる際に、分散している微粒子が余分に付着してしまうことがある。
また、用いるアルミニウムハロゲン化物としては、特に限定されるものではないが、例えば塩化アルミニウム(AlCl)を使用することが好ましく、特に無水AlClを好適に使用することができる。
更に、用いる1,3−ジアルキルイミダゾリウムハロゲン化物としては、上述の如く、炭素数が1〜12のアルキル基を少なくとも1つ有せば、特に限定されるものではないが、例えば炭素数が1〜5のアルキル基を1つ有することが好ましく、2つ有することがより好ましい。具体的には、1−エチル−3−メチルイミダゾリウムクロリド(以下、「EMIC」と略記する。)を好適に使用することができる。なお、2つのアルキル基は同一でも異なってもよい。
更にまた、用いるモノアルキルピリジニウムハロゲン化物としては、上述の如く、炭素数が1〜12のアルキル基を有せば、特に限定されるものではないが、例えば炭素数が1〜5のアルキル基を1つ有することが好ましい。具体的には、1−ブチルピリジニウムクロリド(以下、「BPC」と略記する。)を好適に使用することができる。
Here, predetermined fine particles (for example, nano particles) at a rate of 0.01 to 50 g / L with respect to the total volume of the aluminum halide and one or both of the 1,3-dialkylimidazolium halide and the monoalkylpyridinium halide. Carbon, etc.) is preferable, and it is more preferable to contain fine particles at a rate of 0.01 to 20 g / L.
When the ratio of the fine particles to be contained is less than 0.01 g / L, the amount of fine particles taken into the composite plating film is reduced, and it is difficult to obtain desired characteristics. On the other hand, when the proportion of the fine particles contained exceeds 50 g / L, the concentration of the fine particles in the plating bath increases, and the fine particles may agglomerate and settle, and when the wire is pulled up from the plating solution tank, In some cases, extra fine particles may adhere.
The aluminum halide to be used is not particularly limited. For example, aluminum chloride (AlCl 3 ) is preferably used, and anhydrous AlCl 3 can be particularly preferably used.
Further, the 1,3-dialkylimidazolium halide to be used is not particularly limited as long as it has at least one alkyl group having 1 to 12 carbon atoms as described above. It preferably has one alkyl group of ˜5, and more preferably has two. Specifically, 1-ethyl-3-methylimidazolium chloride (hereinafter abbreviated as “EMIC”) can be preferably used. Two alkyl groups may be the same or different.
Furthermore, the monoalkylpyridinium halide to be used is not particularly limited as long as it has an alkyl group having 1 to 12 carbon atoms as described above. For example, an alkyl group having 1 to 5 carbon atoms is used. It is preferable to have one. Specifically, 1-butylpyridinium chloride (hereinafter abbreviated as “BPC”) can be preferably used.

次に、本発明の電気複合めっき線材の製造装置について詳細に説明する。
図1は、本発明の電気複合めっき線材の製造装置の一実施形態を示す構成図である。同図に示すように、本実施形態の製造装置は、有底容器12と筒型陽極14とを備えるめっき液槽10と、複合めっき液循環用ポンプ22と、線材取り出し給電ドラム32と、線材巻き取り給電ドラム34と、線材支持絶縁性ロール36と、線材誘導絶縁性ロール38と、を具備する。また、必要に応じて具備する原料供給手段40を更に備える。なお、めっき液槽10内には、所望の濃度の複合めっき液4が満たされている。
Next, the manufacturing apparatus of the electrocomposite plating wire material of this invention is demonstrated in detail.
FIG. 1 is a configuration diagram showing an embodiment of an apparatus for producing an electrocomposite plated wire according to the present invention. As shown in the figure, the manufacturing apparatus of the present embodiment includes a plating bath 10 having a bottomed container 12 and a cylindrical anode 14, a composite plating solution circulating pump 22, a wire rod feeding and feeding drum 32, and a wire rod. A winding power supply drum 34, a wire support insulating roll 36, and a wire induction insulating roll 38 are provided. Moreover, the raw material supply means 40 provided further as needed is further provided. The plating solution tank 10 is filled with a composite plating solution 4 having a desired concentration.

そして、複合めっき液循環用ポンプ22は、その駆動により、図中破線矢印で示すように、筒状陽極14内での複合めっき液4の流れを一方向に制御して、複合めっき液流れ制御手段20として機能する。
また、本実施形態においては、複合めっき液循環用ポンプ22に、複合めっき液流れ制御手段20として機能させるだけでなく、複合めっき液中の微粒子を均一分散させる撹拌手段として機能させることもできる。なお、撹拌機能を有する手段は別途設けてもよい。
Then, the composite plating solution circulation pump 22 controls the flow of the composite plating solution 4 in the cylindrical anode 14 in one direction, as shown by the broken arrow in the figure, to drive the composite plating solution flow. It functions as the means 20.
Further, in the present embodiment, the composite plating solution circulation pump 22 can function not only as the composite plating solution flow control means 20 but also as a stirring means for uniformly dispersing fine particles in the composite plating solution. A means having a stirring function may be provided separately.

また、線材取り出し給電ドラム32から取り出された線材2は、図中実線矢印で示すように、線材誘導絶縁性ロール38により、筒状陽極14内に導かれ、複合めっき液4と逆方向に走行し、線材支持絶縁性ロール36にて一旦折り返した後、再度、線材誘導絶縁性ロール38により、筒状陽極14内に導かれ、複合めっき液4と逆方向に走行し、線材巻き取り給電ドラム34で巻き取られる。即ち、線材取り出し給電ドラム32と線材誘導絶縁性ロール38と線材支持絶縁性ロール36と線材巻き取り給電ドラム34とが協働して、線材走行制御手段30として機能する。   Moreover, the wire 2 taken out from the wire take-out power supply drum 32 is guided into the cylindrical anode 14 by the wire induction insulating roll 38 and travels in the opposite direction to the composite plating solution 4 as indicated by solid line arrows in the figure. Then, after being folded back once by the wire support insulating roll 36, it is again guided into the cylindrical anode 14 by the wire induction insulating roll 38, and travels in the opposite direction to the composite plating solution 4, and the wire take-up power supply drum It is wound up at 34. That is, the wire rod feeding power supply drum 32, the wire rod induction insulating roll 38, the wire rod support insulating roll 36, and the wire rod winding power supply drum 34 function as the wire rod travel control means 30.

このように、線材2の走行方向と複合めっき液4と流れ方向とが逆である筒状陽極14内において、線材2に連続的に電気複合めっきが施され、微粒子の長軸方向が線材の長さ方向に配向した状態で微粒子が含有される電気複合めっき線材が得られる。
また、筒状陽極14を用いて電気複合めっきを施すと、電流密度を高めることができ、生産性を向上させることができる。更に、筒状陽極14により、線材2の表面へ均一な電気複合めっき被膜が形成されるという効果も得られる。
なお、原料供給手段40は、めっき液槽10内に複合めっき被膜の原料となる金属イオンや所定の微粒子などを供給しながら、所望の濃度に調整する。これにより、線材に対して、更に連続的に電気複合めっきを施すことができる。
また、めっき液槽10は、少なくとも1つの有底容器12と少なくとも1つ以上の筒状陽極を備え、複合めっき液流れを制御し得れば、その形状については特に限定されるものではない。
In this way, in the cylindrical anode 14 in which the traveling direction of the wire 2 and the flow direction of the composite plating solution 4 are reversed, the wire 2 is continuously subjected to electrocomposite plating, and the long axis direction of the fine particles is the wire axis. An electrocomposite plating wire containing fine particles in a state oriented in the length direction is obtained.
Moreover, when electrocomposite plating is performed using the cylindrical anode 14, current density can be increased and productivity can be improved. Further, the cylindrical anode 14 can also provide an effect that a uniform electric composite plating film is formed on the surface of the wire 2.
In addition, the raw material supply means 40 adjusts to a desired density | concentration, supplying the metal ion used as the raw material of a composite plating film, a predetermined fine particle, etc. in the plating solution tank 10. FIG. Thereby, electrocomposite plating can be further continuously applied to the wire.
The plating solution tank 10 is not particularly limited as long as it has at least one bottomed container 12 and at least one cylindrical anode and can control the flow of the composite plating solution.

以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこのような実施例に限定されるものではない。
具体的には、以下の各例に記載したような操作を行い、電気複合めっき線材を作製し、その性能を評価した。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to such an Example.
Specifically, an operation as described in each of the following examples was performed to produce an electric composite plating wire, and its performance was evaluated.

(実施例1)
まず、AlClとEMICとをモル比で2:1となるように秤量し、撹拌しながら混合した。次に、完全に溶融したものにAl線を1週間以上浸す置換法によって精製した。しかる後、これに、多層カーボンナノチューブ(MWCNT:チューブ径1.2〜20nm、チューブ長さ2〜5μm)を、10.0g/Lとなるように添加して、複合めっき液を調製して、用意した。また、線材として、銅線(銅含有量:99.96%、線径:1mm)を用意した。
次に、図1に示すような、電気複合めっき線材の製造装置のめっき液槽に上述した複合めっき液を満たし、線材取り出し給電ドラムなどの線材走行制御手段に上述した線材を配置した。なお、筒状陽極としては、アルミニウム製のパイプ(内径:10mm)を用いた。
しかる後、複合めっき液を十分に撹拌すると共に、複合めっき液を一方向へと流し、その流れと逆方向に線材を走行させながら、定電流電解を行い、線材の表面に電気複合めっきを施し、本例の電気複合めっき線材を得た(線材の表面には、厚さ100μmのアルミニウム/カーボンナノチューブ複合めっき被膜が形成されている。従って、電気複合めっき線材の約30体積%がめっき被膜により占められている。更に、めっき被膜を電子顕微鏡により観察したところ、図2に示すように、電気複合めっき線材の長さ方向にカーボンナノチューブの長軸が配向していることが確認された。)。
なお、電解条件は、浴温度:30℃、電流密度:10,000mA/cm、電析電気量:50C/cmとした。
また、電気複合めっき中は、上述したAlClとEMICと多層カーボンナノチューブとを適宜供給して、所望の濃度となるように調整した。
(Example 1)
First, AlCl 3 and EMIC were weighed to a molar ratio of 2: 1 and mixed with stirring. Next, it refine | purified by the substitution method which immerses Al wire for 1 week or more in what was melted completely. Thereafter, to this, multi-walled carbon nanotubes (MWCNT: tube diameter 1.2-20 nm, tube length 2-5 μm) are added so as to be 10.0 g / L to prepare a composite plating solution, Prepared. Moreover, a copper wire (copper content: 99.96%, wire diameter: 1 mm) was prepared as a wire.
Next, the above-described composite plating solution was filled in the plating solution tank of the electric composite plating wire manufacturing apparatus as shown in FIG. 1, and the above-described wire was arranged in the wire travel control means such as a wire take-out power supply drum. As the cylindrical anode, an aluminum pipe (inner diameter: 10 mm) was used.
After that, while thoroughly stirring the composite plating solution, flowing the composite plating solution in one direction and running the wire in the opposite direction, constant current electrolysis is performed, and the surface of the wire is electrocomposite plated. Thus, an electrocomposite plating wire of this example was obtained (a 100 μm thick aluminum / carbon nanotube composite plating film was formed on the surface of the wire. Therefore, about 30% by volume of the electrocomposite plating wire was formed by the plating film. Furthermore, when the plating film was observed with an electron microscope, it was confirmed that the major axis of the carbon nanotube was oriented in the length direction of the electrocomposite plating wire as shown in FIG. .
The electrolysis conditions were bath temperature: 30 ° C., current density: 10,000 mA / cm 2 , and amount of electrodeposition: 50 C / cm 2 .
Further, during the electrocomposite plating, the above-described AlCl 3 , EMIC, and multi-walled carbon nanotubes were appropriately supplied to adjust to a desired concentration.

(比較例1)
複合めっき液を意図的に一方向に流さず、アルゴンガスによるガス撹拌のみで複合めっき液を撹拌しながら、定電流電解を行い、線材の表面に電気複合めっきを施した以外は、実施例1と同様の操作を繰り返し、本例の電気複合めっき線材を得た(線材の表面には、厚さ100μmのアルミニウム/カーボンナノチューブ複合めっき被膜が形成されている。従って、電気複合めっき線材の約30体積%がめっき被膜により占められている。更に、めっき被膜を電子顕微鏡により観察したところ、図3に示すように、電気複合めっき線材の長さ方向にカーボンナノチューブの長軸が配向しておらず、ランダムにめっき被膜に取り込まれていることが確認された。)。
(Comparative Example 1)
Example 1 except that the composite plating solution was not intentionally flowed in one direction, and constant current electrolysis was carried out while stirring the composite plating solution only by gas stirring with argon gas, and the surface of the wire was subjected to electrical composite plating. The electric composite plating wire of this example was obtained by repeating the same operation as above (an aluminum / carbon nanotube composite plating film having a thickness of 100 μm was formed on the surface of the wire. Therefore, about 30 of the electric composite plating wire was obtained. Further, when the plating film was observed with an electron microscope, the major axis of the carbon nanotube was not oriented in the length direction of the electric composite plating wire as shown in FIG. It was confirmed that it was randomly incorporated into the plating film.)

(比較例2)
めっき液へカーボンナノチューブの添加を行わなかったこと以外は、実施例1と同様の操作を繰り返し、本例の電気めっき線材を得た(線材の表面には、厚さ100μmのアルミニウムめっき被膜が形成されている。従って、電気めっき線材の約30体積%がめっき被膜により占められている。)。
(Comparative Example 2)
Except that carbon nanotubes were not added to the plating solution, the same operation as in Example 1 was repeated to obtain an electroplating wire of this example (a 100 μm thick aluminum plating film was formed on the surface of the wire) Therefore, about 30% by volume of the electroplated wire is occupied by the plating film).

[性能評価]
上記各例の電気複合めっき線材又は電気めっき線材に対して、線材の長さ方向の体積電気抵抗率、比重及びカーボン含有量を測定した。得られた結果を表1に示す。
ここで、体積電気抵抗率は、4端子法により測定した。また、比重はアルキメデス法により測定した。更に、カーボン含有量は、燃焼−赤外線吸収法により測定した。更にまた、複合めっき被膜中のカーボン含有量は、各例の電気複合めっき線材のカーボン含有量から計算により算出した。
また、実施例1において、めっき厚み(100μm)を得るための線材走行速度を基準値100としたときの各例の相対値を表1に併記する。
[Performance evaluation]
The volume electrical resistivity, specific gravity, and carbon content in the length direction of the wire were measured with respect to the electrocomposite-plated wire or the electroplated wire of each example. The obtained results are shown in Table 1.
Here, the volume resistivity was measured by a four-terminal method. The specific gravity was measured by the Archimedes method. Furthermore, the carbon content was measured by a combustion-infrared absorption method. Furthermore, the carbon content in the composite plating film was calculated from the carbon content of the electric composite plating wire of each example.
Moreover, in Example 1, the relative value of each example when the wire rod traveling speed for obtaining the plating thickness (100 μm) is defined as the reference value 100 is also shown in Table 1.

Figure 2008019456
Figure 2008019456

表1より、本発明の範囲に属する実施例1は、本発明外である比較例1と比較して、カーボン含有量は同じであるにもかかわらず、電気抵抗率が低いことが確認された。
また、本発明外である比較例1は、本発明の範囲に属する実施例1と比較して、電流密度が低くなってしまうため、同じめっき厚み(100μm)を得るために線材走行速度を低下させる必要があった。従って、本発明の範囲に属する実施例1は、本発明外である比較例1と比較して、生産性が高いと言える。
From Table 1, it was confirmed that Example 1 belonging to the scope of the present invention had a lower electrical resistivity than Comparative Example 1 outside the present invention, although the carbon content was the same. .
Further, in Comparative Example 1 which is outside the present invention, the current density is lower than that in Example 1 belonging to the scope of the present invention, so the wire travel speed is decreased to obtain the same plating thickness (100 μm). It was necessary to let them. Therefore, it can be said that Example 1 belonging to the scope of the present invention has higher productivity than Comparative Example 1 outside the present invention.

以上、本発明を若干の実施形態及び実施例によって説明したが、本発明はこれらに限定されるものではなく、本発明の要旨の範囲内で種々の変形が可能である。
例えば、上記の実施例では、微粒子としてナノカーボンを用いる場合について説明したが、長軸配向させてめっき被膜に含有させることによって、電気的、熱的、磁気的及び機械的性能などを向上させ得る他の異方性材料においても、本発明の製造方法を適用することができる。
As mentioned above, although this invention was demonstrated with some embodiment and an Example, this invention is not limited to these, A various deformation | transformation is possible within the range of the summary of this invention.
For example, in the above-described embodiment, the case where nanocarbon is used as the fine particles has been described. However, electrical, thermal, magnetic and mechanical performance can be improved by aligning the long axis and including it in the plating film. The manufacturing method of the present invention can also be applied to other anisotropic materials.

本発明の電気複合めっき線材の製造装置の一実施形態を示す構成図である。It is a block diagram which shows one Embodiment of the manufacturing apparatus of the electrocomposite plating wire material of this invention. 実施例1に係る電気複合めっき線材の一部を示す斜視説明図である。It is a perspective explanatory view showing a part of the electrocomposite plating wire according to the first embodiment. 比較例1に係る電気複合めっき線材の一部を示す斜視説明図である。It is a perspective explanatory view showing a part of the electrocomposite plating wire according to Comparative Example 1.

符号の説明Explanation of symbols

2 線材
4 複合めっき液
10 めっき液槽
12 有底容器
14 筒状陽極
20 複合めっき液流れ制御手段
22 複合めっき液循環用ポンプ
30 線材走行制御手段
32 線材取り出し給電ドラム
34 線材巻き取り給電ドラム
36 線材支持絶縁性ロール
38 線材誘導絶縁性ロール
40 原料供給手段
50 電気複合めっき線材
52 銅線
54 電気複合めっき被膜
56 カーボンナノチューブ
DESCRIPTION OF SYMBOLS 2 Wire material 4 Composite plating solution 10 Plating solution tank 12 Bottomed container 14 Cylindrical anode 20 Composite plating solution flow control means 22 Pump for composite plating solution circulation 30 Wire material travel control means 32 Wire material take-out power supply drum 34 Wire material take-up power supply drum 36 Wire material Support Insulating Roll 38 Wire Inductive Insulating Roll 40 Raw Material Supply Means 50 Electric Composite Plating Wire 52 Copper Wire 54 Electric Composite Plating Film 56 Carbon Nanotube

Claims (8)

線材の表面に電気複合めっき被膜を形成して成る電気複合めっき線材であって、
上記電気複合めっき被膜は、長軸と短軸との長さ比が10以上である微粒子を、該微粒子の長軸方向が当該電気複合めっき線材の長さ方向に沿うように含有していることを特徴とする電気複合めっき線材。
An electric composite plating wire formed by forming an electric composite plating film on the surface of the wire,
The electrocomposite plating film contains fine particles having a major axis / minor axis length ratio of 10 or more so that the major axis direction of the fine particles is along the length direction of the electrocomposite plating wire. Electrocomposite-plated wire characterized by
上記微粒子は、ナノカーボンであり、該ナノカーボンが、カーボンナノチューブ、カーボンナノファイバー及びカーボンナノホーンから成る群より選ばれた少なくとも1種のナノカーボンを含有することを特徴とする請求項1に記載の電気複合めっき線材。   The fine particle is nanocarbon, and the nanocarbon contains at least one kind of nanocarbon selected from the group consisting of a carbon nanotube, a carbon nanofiber, and a carbon nanohorn. Electrical composite plating wire. 上記カーボンナノチューブは、直径が1〜100nmであり、且つ長さが1〜100μmであり、且つアスペクト比が10〜100であるカーボンナノチューブであることを特徴とする請求項2に記載の電気複合めっき線材。   3. The electrocomposite plating according to claim 2, wherein the carbon nanotube is a carbon nanotube having a diameter of 1 to 100 nm, a length of 1 to 100 μm, and an aspect ratio of 10 to 100. 4. wire. 上記線材が、銅、銅基合金、アルミニウム及びアルミニウム基合金から成る群より選ばれた少なくとも1種の線材であることを特徴とする請求項1〜3のいずれか1つの項に記載の電気複合めっき線材。   The electrical composite according to any one of claims 1 to 3, wherein the wire is at least one wire selected from the group consisting of copper, a copper base alloy, aluminum, and an aluminum base alloy. Plating wire. 長軸と短軸との長さ比が10以上である微粒子を含有する電気複合めっき被膜を線材の表面に形成して成る電気複合めっき線材を電気複合めっきによって製造するに当たり、
長軸と短軸との長さ比が10以上である微粒子と金属イオンとを含有する複合めっき液と、線材と、を用い、
上記複合めっき液を一方向に流し、その流れと同一又は逆方向に上記線材を走行させることを特徴とする電気複合めっき線材の製造方法。
In producing an electric composite plating wire formed by forming an electric composite plating film containing fine particles having a length ratio of the major axis and the minor axis of 10 or more on the surface of the wire by electric composite plating,
Using a composite plating solution containing fine particles and metal ions having a length ratio of the major axis to the minor axis of 10 or more, and a wire,
A method for producing an electrocomposite plating wire, wherein the composite plating solution is allowed to flow in one direction, and the wire is caused to travel in the same direction as or opposite to the flow.
上記複合めっき液は、長軸と短軸との長さ比が10以上である微粒子、アルミニウムハロゲン化物、1,3−ジアルキルイミダゾリウムハロゲン化物及び/又はモノアルキルピリジニウムハロゲン化物を含有し、
上記アルミニウムハロゲン化物と、上記1,3−ジアルキルイミダゾリウムハロゲン化物及び/又は上記モノアルキルピリジニウムハロゲン化物とをモル比で20:80〜80:20の割合で含有し、
上記1,3−ジアルキルイミダゾリウムハロゲン化物が、炭素数1〜12のアルキル基を有し、
上記モノアルキルピリジニウムハロゲン化物が、炭素数1〜12のアルキル基を有する、ことを特徴とする請求項5に記載の電気複合めっき線材の製造方法。
The composite plating solution contains fine particles having a length ratio of the major axis to the minor axis of 10 or more, aluminum halide, 1,3-dialkylimidazolium halide and / or monoalkylpyridinium halide,
Containing the aluminum halide, the 1,3-dialkylimidazolium halide and / or the monoalkylpyridinium halide in a molar ratio of 20:80 to 80:20,
The 1,3-dialkylimidazolium halide has an alkyl group having 1 to 12 carbon atoms,
The said monoalkyl pyridinium halide has a C1-C12 alkyl group, The manufacturing method of the electrocomposite plating wire of Claim 5 characterized by the above-mentioned.
有底容器と筒状陽極とを備えるめっき液槽と、
複合めっき液流れ制御手段と、
線材走行制御手段と、
を具備する電気複合めっき線材の製造装置であって、
上記複合めっき液流れ制御手段が、上記筒状陽極内で、複合めっき液を一方向に流し、
上記線材走行制御手段が、上記筒状陽極内で、上記複合めっきの流れと同一又は逆方向に線材を走行させる、ことを特徴とする電気複合めっき線材の製造装置。
A plating bath with a bottomed container and a cylindrical anode;
Composite plating solution flow control means;
Wire travel control means;
An electrocomposite plating wire manufacturing apparatus comprising:
The composite plating solution flow control means flows the composite plating solution in one direction in the cylindrical anode,
The apparatus for producing an electro-composite-plated wire, wherein the wire travel control means causes the wire to travel in the same direction as or in the opposite direction to the flow of the composite plating in the cylindrical anode.
電気複合めっき被膜の原料を供給する原料供給手段を更に備えることを特徴とする請求項7に記載の電気複合めっき線材の製造装置。   The apparatus for producing an electrocomposite plating wire according to claim 7, further comprising a raw material supply means for supplying a raw material for the electrocomposite plating film.
JP2006190012A 2006-07-11 2006-07-11 Electrically composite-plated wire rod, manufacturing method therefor, and manufacturing apparatus therefor Pending JP2008019456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006190012A JP2008019456A (en) 2006-07-11 2006-07-11 Electrically composite-plated wire rod, manufacturing method therefor, and manufacturing apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006190012A JP2008019456A (en) 2006-07-11 2006-07-11 Electrically composite-plated wire rod, manufacturing method therefor, and manufacturing apparatus therefor

Publications (1)

Publication Number Publication Date
JP2008019456A true JP2008019456A (en) 2008-01-31

Family

ID=39075641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006190012A Pending JP2008019456A (en) 2006-07-11 2006-07-11 Electrically composite-plated wire rod, manufacturing method therefor, and manufacturing apparatus therefor

Country Status (1)

Country Link
JP (1) JP2008019456A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024548A2 (en) * 2008-08-26 2010-03-04 서울대학교산학협력단 Cnt/metal composite cable
WO2014061442A1 (en) * 2012-10-15 2014-04-24 住友電気工業株式会社 Aluminum film, article having aluminum film formed thereon, and method for producing aluminum film
JP2016012450A (en) * 2014-06-27 2016-01-21 Tdk株式会社 Conductive wire
JP2016012449A (en) * 2014-06-27 2016-01-21 Tdk株式会社 Conductive wire
CN111041542A (en) * 2019-11-22 2020-04-21 上海交通大学 Composite metal wire with composite electroplated nano carbon metal film and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024548A2 (en) * 2008-08-26 2010-03-04 서울대학교산학협력단 Cnt/metal composite cable
WO2010024548A3 (en) * 2008-08-26 2010-06-24 서울대학교산학협력단 Cnt/metal composite cable
KR101088835B1 (en) * 2008-08-26 2011-12-06 서울대학교산학협력단 Cnt/metal composite cable
WO2014061442A1 (en) * 2012-10-15 2014-04-24 住友電気工業株式会社 Aluminum film, article having aluminum film formed thereon, and method for producing aluminum film
JP2016012450A (en) * 2014-06-27 2016-01-21 Tdk株式会社 Conductive wire
JP2016012449A (en) * 2014-06-27 2016-01-21 Tdk株式会社 Conductive wire
CN111041542A (en) * 2019-11-22 2020-04-21 上海交通大学 Composite metal wire with composite electroplated nano carbon metal film and preparation method thereof
CN111041542B (en) * 2019-11-22 2021-03-30 上海交通大学 Composite metal wire with composite electroplated nano carbon metal film and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2007070689A (en) Nanocarbon/aluminum composite material, method for producing the same, and plating liquid used therefor
Hsu et al. Electrolytic formation of carbon nanostructures
Zakaria et al. Hybrid carbon fiber-carbon nanotubes reinforced polymer composites: A review
US11369929B2 (en) Nanoparticles and systems and methods for synthesizing nanoparticles through thermal shock
JP2007157372A (en) Light-weighted wire with high conductivity and its manufacturing method
Janas et al. Copper matrix nanocomposites based on carbon nanotubes or graphene
US9424960B2 (en) Aggregated thread structure, production method thereof, and electric wire using the same
Jagannatham et al. Electroless nickel plating of arc discharge synthesized carbon nanotubes for metal matrix composites
KR100598751B1 (en) Iron/Carbon Composite, Carbonaceous Material Comprising the Iron/Carbon Composite, and Process For Producing the Same
JP2008019456A (en) Electrically composite-plated wire rod, manufacturing method therefor, and manufacturing apparatus therefor
US20200399748A1 (en) Metal Matrix Composite Comprising Nanotubes And Method Of Producing Same
CN101976594A (en) Composite conductor application of carbon nano tube fiber and preparation method thereof
JP3569806B2 (en) Iron compound-encapsulated carbon composite and method for producing the same
Leggiero et al. High conductivity copper–carbon nanotube hybrids via site-specific chemical vapor deposition
JP4351120B2 (en) Method for producing metal particles
JP2007162080A (en) Thermally conductive member, automotive parts and manufacturing method therefor
Naeimi et al. In situ synthesis and electrophoretic deposition of CNT–ZnS: Mn luminescent nanocomposites
WO2014061442A1 (en) Aluminum film, article having aluminum film formed thereon, and method for producing aluminum film
US10364486B2 (en) Carbon-based nanotube/metal composite and methods of making the same
JP5544527B2 (en) Composite plating film, method for forming the same, and electrolytic plating solution
Çakmakçı et al. One-step copper electroplating of carbon nanotube buckypaper using optimized electrolyte with additive chemicals
CN111041542B (en) Composite metal wire with composite electroplated nano carbon metal film and preparation method thereof
Zhong et al. Core–shell heterostructures of SnM (M=(Fe, Ni, and Cr) or Cu) alloy nanowires@ CNTs on metallic substrates
Kim et al. Plasticizer for controlling single‐walled carbon nanotube fibers and zincophilic sites of microfiber supercapacitor
KR20200069153A (en) Carbon nanotube metal complex and method for manufacturing the same