JP2004076031A - Plating bath for electroplating and plating bath for composite plating, and their production method - Google Patents

Plating bath for electroplating and plating bath for composite plating, and their production method Download PDF

Info

Publication number
JP2004076031A
JP2004076031A JP2002234101A JP2002234101A JP2004076031A JP 2004076031 A JP2004076031 A JP 2004076031A JP 2002234101 A JP2002234101 A JP 2002234101A JP 2002234101 A JP2002234101 A JP 2002234101A JP 2004076031 A JP2004076031 A JP 2004076031A
Authority
JP
Japan
Prior art keywords
plating
metal
bath
fine particles
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002234101A
Other languages
Japanese (ja)
Inventor
Tetsuji Hirafuji
平藤 哲司
Akihiro Sato
佐藤 彰洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2002234101A priority Critical patent/JP2004076031A/en
Publication of JP2004076031A publication Critical patent/JP2004076031A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To form a plating film even in the case of a metal having a low reduction potential, and to perform composite plating in such a manner that uniform dispersion is made possible even in the case of inert fine particles in a nanoorder. <P>SOLUTION: Dimethylsulfone (step S1) is mixed with a metal anhydrous salt (step S2). Thereafter, the mixed liquid is heated-up, and the metal anhydrous salt is melted to form an electrolytic bath (step S3). Inert fine particles in a nanoorder are added to the electrolytic bath, and they are mixed and stirred (step S4) to be formed into plating bath for composite plating. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はめっき対象物をカソードとして電解することによりめっき対象物表面にめっき皮膜を形成させるために用いる電解めっき用めっき浴及び複合めっき用めっき浴並びにこれらの製造方法に関するものである。
【0002】
【従来の技術】
電解めっき(電気めっき)は、従来一般に、めっき皮膜を形成させるべき金属イオン、たとえば、NiイオンやZnイオン等を含む水溶液(電解浴)をめっき浴として調製し、該めっき浴中にて、電気伝導性を有するめっき対象物をカソードとして外部より直流電流を流して電解を行わせることにより、上記めっき対象物の表面に、めっき浴中の金属イオンを還元析出させてめっき皮膜を形成させるようにしている。
【0003】
又、近年では、めっき皮膜に耐磨耗性、耐熱性、自己潤滑性やその他の機能性を付加したり、あるいは、これらの機能性を有する複合材料を皮膜として製造することを目的として、上記と同様な金属イオンを含む水溶液に、上記各種機能をを付与するための繊維状や粒子状の所要の不活性微粒子(電解浴と反応しない微粒子)を加えて均一なサスペンションを形成させた後、該サスペンションをめっき浴として電解めっきを実施することにより、金属表面に吸着する上記不活性微粒子を、析出する金属によりめっき皮膜中に埋め込ませ、これにより上記共析した不活性微粒子を、金属マトリックス内に取り込ませて分散相を形成させてなる複合材料によるめっき皮膜を形成させるようにした複合めっき(分散めっき)の技術が開発されてきており、たとえば、金属イオンを含む水溶液に、マイクロメートルオーダーの不活性微粒子を分散させためっき浴を用いた複合めっきは、既に工業的に利用されてきており、エンジンシリンダ内の耐摩耗性向上等に用いられている。
【0004】
ところで、上記複合めっきでは、優れた特性を有し、且つ品質のばらつきをなくすために、めっき皮膜中に均質に不活性微粒子が分散していることが要求される。
【0005】
【発明が解決しようとする課題】
ところが、還元電位が低い(イオン化傾向が大きい)AlやMg等の金属では、これらの金属イオンを含む水溶液に直流電流を流すと、上記還元電位が低い金属がカソードにて還元析出される以前に水の電気分解が行われてしまい、カソードでは水素が発生して、めっき皮膜が形成されないため、従来の金属イオンを含む水溶液をめっき浴とする手法では、上記還元電位が低い金属によるめっき処理を行うことができないという問題がある。
【0006】
又、金属イオンを含む水溶液に、不活性微粒子を分散させてなるめっき浴を用いて行う上記従来の複合めっきでは、ナノ(ナノメートル)オーダーの粒子、ウィスカ、繊維、カーボンナノチューブ、フラーレン等の不活性微粒子を金属イオンを含む電解浴に分散させると、水溶液中では、高いイオン強度により拡散二重層が圧縮されるため、上記ナノオーダーの不活性粒子等は凝集し易く、又、凝集した粒子に働く剪断応力は、粒径が小さくなればなるほど小さくなることから、粒子が凝集したままめっき皮膜中に埋め込まれてしまい、均質な複合材料が形成されなくなるため、安定した機械的、化学的、物理的性質は達成されないという問題がある。
【0007】
更に、粒子径が小さくなるほど不活性微粒子の複合めっき皮膜中に含有される粒子数は減少し、たとえば、マイクロオーダーの粒子では5〜15vol%含有する条件であっても、ナノオーダーの粒子では0.1vol%以下に減少してしまうという問題があり、この原因としては、親水性である不活性微粒子の表面に吸着した水分子と、析出する金属の表面に吸着した水分子との間に働く斥力の影響が指摘されている。
【0008】
因みに、従来、還元電位の低い金属によるめっき皮膜を形成させるためのめっき方法としては、たとえば、Alでは高温溶融塩系の条件を用いることによりめっきする方法も提案されているが、この場合、蒸気圧の高いAlClの揮発と共に、形成されるめっき皮膜組織がデンドライト状となり、特性がよくないという問題がある。
【0009】
又、水溶液系以外のめっき浴を使用するめっき方法としては、非水溶媒として有機溶媒、たとえば、トリアルキルアルミニウム等を使用する方法も提案されているが、この場合には、上記トリアルキルアルミニウム等の有機溶媒は、空気と触れると爆発の虞があるため、取扱いが難しいという問題があり、更に、非水溶媒を用いた室温溶融塩系のめっき浴では、イオンの溶解度が小さいため、成膜速度が小さいという問題もある。
【0010】
そこで、本発明は、還元電位の低い金属であっても比較的穏やかな条件の下でめっき皮膜を形成できるようにする電解めっき用めっき浴の製造方法、及び、分散相を形成させるべき不活性微粒子がナノオーダーのサイズであっても均質に分散相を分散してなる複合めっき皮膜を形成できるようにする複合めっき用めっき浴の製造方法を提供しようとするものである。
【0011】
【課題を解決するための手段】
本発明は、上記課題を解決するために、ジメチルスルホンにめっき皮膜を形成させるべき金属の無水塩を混合した後、該混合液を加熱して上記金属無水塩を溶融させてなる電解めっき用めっき浴とその製造方法とする。
【0012】
金属無水塩をジメチルスルホンに混合した後、徐々に加熱すると、110℃程度で上記金属無水塩は溶融されて、めっき浴中には、ジメチルスルホンを配位した金属錯イオンが生成される。したがって、該めっき浴を用いて電解めっきを行うと、カソードのめっき対象物の表面にて、上記金属錯イオンに含まれる金属が還元析出させられ、これによりめっき対象物表面にめっき皮膜を形成できる。
【0013】
又、ジメチルスルホンにめっき皮膜を形成させるべき金属の無水塩を混合した後、該混合液を加熱し上記金属無水塩を溶融させて電解浴とし、該電解浴中に、めっき金属と共析させてめっき皮膜内に分散相を形成させるための不活性微粒子を添加し撹拌混合して、該不活性微粒子を分散してなる複合めっき用めっき浴とその製造方法とすると、ジメチルスルホンは水素統合性が低いため、めっき皮膜の金属マトリックス中に分散相を形成させるべく添加するための不活性微粒子がナノオーダーのサイズであっても、該不活性微粒子を凝集させることなく電解浴中に均一に分散させることができ、且つ水を用いないことにより、めっき皮膜形成時に、不活性微粒子の表面に吸着した水分子と、めっき金属表面に吸着した水分子との間に働く斥力の影響が生じる虞をなくすことができることから、めっき皮膜となる金属マトリックス中に、均質に且つ多くの不活性微粒子を共析させて埋め込ませて、上記不活性微粒子による分散相を備えた均質な複合めっき皮膜を得ることができる。よって、複合めっき皮膜の品質のばらつきをなくすことができると共に、該複合めっき皮膜に、めっき金属及び分散相となる不活性微粒子の特性に基づく機能性を、安定して発揮させることが可能となる。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
【0015】
図1は本発明の実施の一形態として、複合めっき用めっき浴とその製造方法の手順のフローを示すもので、先ず、所要の容器、たとえば、めっき槽内に非水溶媒であるジメチルスルホン(DMSO)を用意し(ステップ1)(S1)、該ジメチルスルホン中に、めっき皮膜を形成させるべき金属無水塩の粉末或いは粒子を加えて室温で混合(ステップ2)(S2)した後、該混合物を、徐々に温度を上昇させて、たとえば、110℃まで昇温させ、これにより、上記金属無水塩を溶融させて電解浴を形成させる(ステップ3)(S3)。次いで、該電解浴中に、めっき皮膜内にて分散相を形成させるための不活性微粒子を添加して撹拌混合(ステップ4)(S4)して、本発明の複合めっき用めっき浴とする。
【0016】
上記金属無水塩としては、Ni、Zn等の通常のめっきで用いられている金属元素に加えて、Al、Mg等の還元電位の低い金属元素の塩化物を使用できる。又、これらの金属無水塩は、単独で用いてもよく、あるいは、複数の金属元素を共析させることにより、これら複数の金属元素からなる合金によるめっき皮膜を形成できるように、複数の金属元素の塩を組み合わせて用いてもよい。
【0017】
又、上記不活性微粒子としては、従来の分散めっきに使用されている微粒子を使用でき、たとえば、SiO、SiC、Al、TiB、TiO、BN、ZrO、C、AlN、TiN、TiC、Si、WC、MgO、金属、合金の粒子、繊維ウィスカ、カーボンナノチューブ、フラーレン等を用いることができる。又、そのサイズは、直径あるいは長さ寸法が数nm〜20μm程度となるようにする。
【0018】
上記ステップ2(S2)において作成したジメチルスルホンを溶媒とする金属無水塩の混合液を、上記ステップ3(S3)にて徐々に昇温させると、該混合液中においては、上記金属無水塩に由来する金属元素に、ジメチルスルホンが配位してなる金属錯イオンを含む電解浴が形成される。すなわち、たとえば、金属無水塩として塩化アルミニウム(AlCl)を用いた場合には、
4AlCl+3DMSO=3AlCl +[Al(DMSO3+
となり、ジメチルスルホンを配位したAlの錯イオンを含んだ電解浴が形成される。
【0019】
その後、ステップ4(S4)にて、上記電解浴中に、不活性微粒子を添加すると、上記電解浴の溶媒として用いられているジメチルスルホンは、水素統合性が弱いため、混合撹拌することにより上記不活性微粒子は、ナノオーダーのサイズであっても凝集されることなく電解浴中に均一に分散させられる。
【0020】
したがって、上記製造方法により調製した複合めっき用めっき浴をめっき槽内で撹拌しながら、めっき対象物をカソードとして定電流電解を行わせると、上記金属錯イオンがめっき対象物の表面にて還元され、該金属錯イオン中の金属が析出されてめっき対象物の表面にめっき皮膜が形成される。この際、上記電解浴中には水分子が存在しないため、水溶液を電解液とした場合の如き不活性微粒子の凝集や不活性微粒子の表面に吸着した水分子と、めっき金属表面に吸着した水分子との間に斥力の影響が生じる虞はないため、上記金属無水塩に由来する金属によるめっき皮膜の形成と同時に、金属表面に吸着する不活性微粒子が、還元析出する金属に均一に分散した状態で埋め込まれ、これにより、不活性微粒子による分散相を均質に分散してなる複合材料によるめっき皮膜が形成されるようになる。
【0021】
このように、上記本発明の複合めっき用めっき浴とその製造方法によれば、製造されるめっき浴中には水が存在しないことから、カソードにおける水の電気分解が生じる虞はなく、したがって、還元電位の低い金属、たとえば、AlやMgであってもめっき皮膜を形成させることができる。又、ジメチルスルホン中においては、金属無水塩は、ジメチルスルホン金属錯イオンを形成するため、AlClの揮発が問題となった従来の高温溶融塩系を用いためっき方法に比して、穏やかな反応条件の下で、複合めっきを実施することができる。
【0022】
又、上記ジメチルスルホンは、空気との接触により爆発する虞はないため、従来、非水溶媒としてトリアルキルアルミニウム等を使用した場合に比して、溶媒及びめっき浴の取扱いを容易にすることができる。更に、ジメチルスルホンは、他の非水溶媒に比してイオンの溶解度が大きいため、めっき皮膜の成膜速度を大とすることができる。
【0023】
更に、後述する実施例における図3(イ)(ロ)乃至図6(イ)(ロ)に示す結果からも明らかなように、本発明の複合めっき用めっき浴を用いて複合めっきを行えば、不活性微粒子のサイズがナノオーダーであっても、該不活性微粒子を金属マトリックス中に分散相として均質に分散させてなる複合材料のめっき皮膜を形成できて、該複合めっき皮膜の品質のばらつきをなくすことができると共に、めっき皮膜に、めっき金属の特性、及び、複合された不活性微粒子の特性に基づく機能性を、安定して発揮させることができる。したがって、得られた複合材料によるめっき皮膜や、該めっき皮膜から形成する電鋳品は、ヒートシンクや配線等のエレクトロニクス分野、マイクロマシン等の用途へ利用することも可能となる。
【0024】
次に、図2は本発明の実施の他の形態として、電解めっき用めっき浴とその製造方法の手順のフローを示すもので、図1に示したフローと同様に、ステップ1(S1)で用意したジメチルスルホン中に、金属無水塩を混合し(ステップ2)(S2)、該混合液を昇温させて金属錯イオンを含む浴を形成(ステップ3)(S3)させて、該浴を電解めっきに用いるためのめっき浴としたものである。
【0025】
本実施の形態によれば、ステップ3(S3)にて、ジメチルスルホンを溶媒とする金属無水塩の混合液を昇温させると、先に述べた如く、上記金属無水塩に由来する金属元素にジメチルスルホンが配位してなる錯イオンを含む浴が形成されるため、上記製造されるめっき浴を用いて電解めっきを行うことにより、たとえば、AlやMgのように還元電位の低い金属であってもめっき皮膜を形成させることができると共に、従来提案されている他の非水溶媒を用いた手法に比して成膜速度を高めることが可能になる。
【0026】
なお、本発明は上記実施の形態のみに限定されるものではなく、塩化物やヨウ化物、硝酸塩、硝酸塩等の各種の無水塩を形成でき且つ該金属無水塩を、ジメチルスルホンを溶媒とした混合液中で昇温させることにより、ジメチルスルホンを配位してなる金属錯イオンを形成させることができれば、金属元素としては、Ni、Zn、Al、Mgに限定されることなくいかなるものを用いてもよいこと、上記混合液を昇温させるときの温度は、上記金属錯イオンが形成できれば、110℃程度以外の温度として自在に設定してもよいこと、その他本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0027】
【実施例】
以下、本発明者等の行った実験結果について説明する。
【0028】
(1)実施例1
ジメチルスルホンを溶媒として、金属無水塩としてのAlClを、2.1mol/kgの濃度となるように混合し、該混合物を110℃まで昇温させて電解浴を形成させ、該電解浴に、不活性微粒子として平均粒径約200nmのSiO粒子を、30g/Lとなるように添加して混合、撹拌して複合めっき用めっき浴を製造した。
【0029】
上記複合めっき用めっき浴を用いて、電流密度130mA/cmで定電流電解による電解めっきを行わせて、得られためっき皮膜の表面及び断面を、SEMにより観察した。めっき皮膜表面のSEM像は図3(イ)(ロ)に示すとおりであった。なお、図3(イ)では倍率を1000倍、図3(ロ)では倍率を14000倍としてある。
【0030】
図3(イ)(ロ)から明らかなように、本発明の複合めっき用めっき浴の製造方法によって製造されためっき浴を用いて複合めっきを行うことにより、Alのめっき皮膜表面に、SiO粒子が凝集することなく均一に分散された状態の複合めっき皮膜が得られることがわかる。
【0031】
(2)実施例2
上記と同様にして複合めっき用めっき浴を製造し、該めっき浴を用いて定電流電解の電流密度を80mA/cmとして電解めっきを行わせ、その結果得られためっき皮膜の断面をSEMにより観察した。倍率を7000倍としたときの像を図4に示す。
【0032】
図4から明らかなように、上記めっき浴を用いた複合めっきにより、Alの金属マトリックス中に、SiO粒子を、凝集させることなく均質に分散させて分散相を形成してなる複合めっき皮膜が得られることが判明した。
【0033】
(3)実施例3
実施例(1)と同様にして複合めっき用めっき浴を製造し、該めっき浴を用いて定電流電解を行わせるときの電流密度を、80mA/cmと130mA/cmに変化させてそれぞれ電解めっきを行わせた。得られためっき皮膜表面のSEM像を図5(イ)(ロ)にそれぞれ示す。
【0034】
図5(イ)(ロ)より明らかなように、上記のように電流密度を変化させてもSiO粒子を凝集させることなく複合めっき皮膜を形成でき、更に、図5(イ)に示す如く、電流密度を80mA/cmとしたときよりも、図5(ロ)に示す如く、130mA/cmとしたときの方が、Alの金属マトリックス中により多くのSiO粒子を付着させ、埋め込ませてなる複合めっき皮膜を形成できることがわかる。したがって、電流密度が高いほど共析するのSiO粒子の共析量は多くなることが推定される。
【0035】
(4)実施例4
実施例(1)と同様の複合めっき用めっき浴の製造方法において、電解浴に添加するSiO粒子の量を、15g/Lと53g/Lに変化させてそれぞれ複合めっき用めっき浴を製造した。それぞれ得られためっき浴を用いて電流密度130mA/cmにて複合めっきを行った結果得られためっき皮膜表面のSEM像を図6(イ)(ロ)に示す。
【0036】
図6(イ)(ロ)より明らかなように、上記の如く電解浴に添加するSiO粒子の量を変化させて製造したいずれの複合めっき用めっき浴であっても、SiO粒子を凝集させることなく複合めっき皮膜を形成できることが判明した。更に、図6(イ)に示す如きSiO粒子の添加量を15g/Lとしたときよりも、図6(ロ)に示す如き添加量を53g/Lとしたときの方が、Alの金属マトリックス中により多くのSiO粒子を付着、埋め込ませてなる複合めっき皮膜を形成できることがわかる。したがって、SiO粒子の添加量が多いほど共析するSiO粒子の共析量は多くなると推定される。
【0037】
【発明の効果】
以上述べた如く、本発明によれば、以下の如き優れた効果を発揮する。
(1)ジメチルスルホンにめっき皮膜を形成させるべき金属の無水塩を混合した後、該混合物を加熱して上記金属無水塩を溶融させてめっき浴を製造する電解めっき用めっき浴とその製造方法としてあるので、還元電位の低い金属であっても穏やかな条件の下でめっきを行うことが可能なめっき浴を得ることできる。
(2)溶媒としてジメチルスルホンを用いていることから、従来のめっきに用いられている他の非水溶媒に比して溶媒自体及びめっき浴の取扱いを容易なものとすることができる。
(3)溶媒としてのジメチルスルホンは、従来用いられている他の非水溶媒に比してイオンの溶解度が大きいため、電解めっき時における成膜速度を大とすることができる。
(4)ジメチルスルホンにめっき皮膜を形成させるべき金属の無水塩を混合した後、該混合液を加熱し上記金属無水塩を溶融させて電解浴とし、該電解浴中に、めっき金属と共析させてめっき皮膜内に分散相を形成させるための不活性微粒子を添加し撹拌混合して、該不活性微粒子を分散してなるめっき浴を製造する複合めっき用めっき浴とその製造方法とすると、ジメチルスルホンは水素統合性が低いため、めっき皮膜の金属マトリックス中に分散相を形成させるべく添加するための不活性微粒子がナノオーダーのサイズであっても、該不活性微粒子を凝集させることなく電解浴中に均一に分散させることができ、且つ水を用いないことにより、めっき皮膜形成時に、不活性微粒子の表面に吸着した水分子と、めっき金属表面に吸着した水分子との間に働く斥力の影響が生じる虞をなくすことができることから、めっき皮膜となる金属マトリックス中に、均質に且つ多くの不活性微粒子を共析させて埋め込ませて、上記不活性微粒子による分散相を備えた均質な複合めっき皮膜を得ることができる。よって、複合めっき皮膜の品質のばらつきをなくすことができると共に、該複合めっき皮膜に、めっき金属及び分散相となる不活性微粒子の特性に基づく機能性を、安定して発揮させることが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の一形態として、複合めっき用めっき浴の製造方法の手順のフローを示す図である。
【図2】本発明の他の実施の形態として、電解めっき用めっき浴の製造方法の手順のフローを示す図である。
【図3】(イ)(ロ)はいずれも実施例(1)にて製造した複合めっき用めっき浴を用いて形成させた複合めっき皮膜表面のSEM像である。
【図4】実施例(2)にて形成させた複合めっき皮膜の断面を示すSEM像である。
【図5】実施例(3)にて、定電流電解により複合めっきを行わせるときに用いる電流密度を変えてめっき皮膜を形成させたもので、(イ)は電流密度を80mA/cm2とした場合、(ロ)は電流密度を130mA/cm2とした場合に得られた複合めっき皮膜表面のSEM像である。
【図6】実施例(4)にて、電解浴に添加するSiO粒子の添加量を変えて製造した複合めっき用めっき浴をそれぞれ用いて複合めっきを行うことにより得られた複合めっき皮膜の表面のSEM像で、(イ)はSiOの添加量を15g/Lとした場合、(ロ)は添加量を53g/Lとした場合をそれぞれ示す図である。
【符号の説明】
S1 ステップ1
S2 ステップ2
S3 ステップ3
S4 ステップ4
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a plating bath for electrolytic plating and a plating bath for composite plating used for forming a plating film on the surface of a plating object by electrolyzing the object to be plated as a cathode, and a method for producing these baths.
[0002]
[Prior art]
Conventionally, electrolytic plating (electroplating) is generally performed by preparing an aqueous solution (electrolytic bath) containing a metal ion for forming a plating film, for example, a Ni ion or a Zn ion, as a plating bath, and performing electroplating in the plating bath. By causing a direct current to flow from the outside and conducting electrolysis using a conductive plating object as a cathode, metal ions in a plating bath are reduced and deposited on the surface of the plating object to form a plating film. ing.
[0003]
In recent years, in order to add abrasion resistance, heat resistance, self-lubricating properties and other functions to a plating film, or to produce a composite material having these functions as a film, After adding necessary fibrous or particulate inert fine particles (fine particles that do not react with the electrolytic bath) to give the above various functions to an aqueous solution containing the same metal ions as above, a uniform suspension is formed, By performing electroplating using the suspension as a plating bath, the inert fine particles adsorbed on the metal surface are embedded in the plating film by the deposited metal, whereby the eutectoid inert fine particles are deposited in the metal matrix. Of composite plating (dispersion plating) has been developed to form a plating film of a composite material that is formed by incorporating a dispersed phase into a composite material. For example, composite plating using a plating bath in which inert fine particles of the order of micrometers are dispersed in an aqueous solution containing metal ions has already been used industrially, and has been used to improve wear resistance in engine cylinders. It is used for
[0004]
By the way, in the composite plating, it is required that the inert fine particles are uniformly dispersed in the plating film in order to have excellent characteristics and eliminate the variation in quality.
[0005]
[Problems to be solved by the invention]
However, in the case of metals such as Al and Mg having a low reduction potential (high ionization tendency), when a direct current is applied to an aqueous solution containing these metal ions, the metal having a low reduction potential is reduced and precipitated at the cathode. Since water is electrolyzed and hydrogen is generated at the cathode and a plating film is not formed, the conventional method of using an aqueous solution containing metal ions as a plating bath involves plating with a metal having a low reduction potential. There is a problem that can not be done.
[0006]
In addition, in the above-described conventional composite plating performed using a plating bath in which inert fine particles are dispersed in an aqueous solution containing metal ions, nano (nanometer) order particles, whiskers, fibers, carbon nanotubes, fullerenes, etc. When active fine particles are dispersed in an electrolytic bath containing metal ions, in an aqueous solution, the diffusion double layer is compressed by high ionic strength, so that the nano-order inactive particles and the like are easily aggregated. Since the working shear stress decreases as the particle size decreases, the particles are embedded in the plating film as agglomerates, and a homogeneous composite material is not formed, resulting in stable mechanical, chemical, and physical properties. The problem is that the objective property is not achieved.
[0007]
Further, as the particle diameter becomes smaller, the number of particles contained in the composite plating film of the inert fine particles decreases. For example, even if the particle size is 5 to 15 vol% for micro-order particles, it is 0 for nano-order particles. There is a problem that the water molecules are adsorbed on the surface of the hydrophilic inert fine particles and the water molecules adsorbed on the surface of the deposited metal. The effects of repulsion have been pointed out.
[0008]
Incidentally, conventionally, as a plating method for forming a plating film of a metal having a low reduction potential, for example, a method of plating by using high-temperature molten salt-based conditions has been proposed for Al. With the volatilization of high pressure AlCl 3 , the formed plating film structure becomes dendritic, and there is a problem that the characteristics are not good.
[0009]
Further, as a plating method using a plating bath other than the aqueous solution, a method using an organic solvent as a non-aqueous solvent, for example, a trialkylaluminum has been proposed. The organic solvent has a problem that it is difficult to handle because there is a risk of explosion when it comes into contact with air. Furthermore, in a room temperature molten salt plating bath using a non-aqueous solvent, the solubility of ions is small, so that a film is formed. There is also the problem of low speed.
[0010]
Therefore, the present invention provides a method for producing a plating bath for electrolytic plating that enables a plating film to be formed under relatively mild conditions even with a metal having a low reduction potential, and an inert phase for forming a dispersed phase. An object of the present invention is to provide a method for producing a plating bath for composite plating that enables formation of a composite plating film in which a dispersed phase is uniformly dispersed even if the fine particles have a nano-order size.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides an electrolytic plating plating method in which dimethyl sulfone is mixed with an anhydrous salt of a metal to form a plating film, and then the mixed solution is heated to melt the anhydrous metal salt. The bath and its manufacturing method.
[0012]
When the metal anhydride is mixed with dimethyl sulfone and then gradually heated, the metal anhydride is melted at about 110 ° C., and a metal complex ion coordinated with dimethyl sulfone is generated in the plating bath. Therefore, when electrolytic plating is performed using the plating bath, the metal contained in the metal complex ion is reduced and precipitated on the surface of the cathode plating object, whereby a plating film can be formed on the surface of the plating object. .
[0013]
Also, after mixing anhydrous salt of a metal to form a plating film with dimethyl sulfone, the mixed solution is heated to melt the above-mentioned metal anhydrous salt to form an electrolytic bath. Inert fine particles for forming a dispersed phase in the plating film are added and mixed by stirring, and the plating bath for composite plating in which the inert fine particles are dispersed and the method for producing the same are as follows. Is low, so that even if the inert fine particles to be added to form a dispersed phase in the metal matrix of the plating film have a nano-order size, the inert fine particles are uniformly dispersed in the electrolytic bath without agglomeration. Repelling force acting between the water molecules adsorbed on the surface of the inert fine particles and the water molecules adsorbed on the plating metal surface during plating film formation by using water and not using water Since it is possible to eliminate the possibility of influence, a homogeneous composite having a dispersed phase of the above-mentioned inert fine particles is embedded in the metal matrix to be a plating film by co-depositing a large number of inactive fine particles uniformly. A plating film can be obtained. Therefore, it is possible to eliminate variations in the quality of the composite plating film, and to stably exhibit the functionality based on the characteristics of the plating metal and the inert fine particles serving as the dispersed phase in the composite plating film. .
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0015]
FIG. 1 shows a flow of a plating bath for composite plating and a procedure of a manufacturing method thereof as an embodiment of the present invention. First, dimethyl sulfone (a non-aqueous solvent) is placed in a required container, for example, a plating tank. DMSO 2 ) is prepared (Step 1) (S1), and powder or particles of a metal anhydride to form a plating film are added to the dimethyl sulfone and mixed at room temperature (Step 2) (S2). The temperature of the mixture is gradually increased, for example, to 110 ° C., whereby the metal anhydride is melted to form an electrolytic bath (step 3) (S3). Next, inert fine particles for forming a dispersed phase in the plating film are added to the electrolytic bath and mixed by stirring (Step 4) (S4) to obtain a plating bath for composite plating of the present invention.
[0016]
As the metal anhydrous salt, chlorides of metal elements having low reduction potential, such as Al and Mg, can be used in addition to metal elements used in ordinary plating, such as Ni and Zn. These metal anhydrous salts may be used alone, or a plurality of metal elements may be co-deposited to form a plating film of an alloy composed of the plurality of metal elements. May be used in combination.
[0017]
As the inert fine particles, fine particles used in conventional dispersion plating can be used. For example, SiO 2 , SiC, Al 2 O 3 , TiB, TiO 2 , BN, ZrO 2 , C, AlN, TiN , TiC, Si 3 N 4 , WC, MgO, metal, alloy particles, fiber whiskers, carbon nanotubes, fullerene, and the like. In addition, the size is set so that the diameter or the length is about several nm to 20 μm.
[0018]
When the temperature of the mixed solution of the metal anhydride using dimethyl sulfone prepared in step 2 (S2) as a solvent is gradually increased in step 3 (S3), the mixed solution is mixed with the metal anhydride. An electrolytic bath containing a metal complex ion in which dimethyl sulfone is coordinated with the derived metal element is formed. That is, for example, when aluminum chloride (AlCl 3 ) is used as the metal anhydrous salt,
4AlCl 3 + 3DMSO 2 = 3AlCl 4 + [Al (DMSO 2 ) 3 ] 3+
Thus, an electrolytic bath containing an Al complex ion coordinated with dimethyl sulfone is formed.
[0019]
Thereafter, in step 4 (S4), when inert fine particles are added to the electrolytic bath, the dimethyl sulfone used as the solvent of the electrolytic bath has weak hydrogen integration. The inert fine particles are uniformly dispersed in the electrolytic bath without being agglomerated even if they have a nano-order size.
[0020]
Therefore, when the plating bath for composite plating prepared by the above manufacturing method is stirred in the plating bath and constant-current electrolysis is performed using the plating target as a cathode, the metal complex ions are reduced on the surface of the plating target. Then, the metal in the metal complex ion is precipitated, and a plating film is formed on the surface of the plating object. At this time, since water molecules do not exist in the electrolytic bath, aggregation of inert fine particles and water molecules adsorbed on the surface of the inert fine particles and water adsorbed on the surface of the plated metal as in the case of using an aqueous solution as the electrolytic solution are performed. Since there is no danger of the repulsive force being exerted between the metal and the molecules, the inert fine particles adsorbed on the metal surface were uniformly dispersed in the metal to be reduced and precipitated at the same time as the formation of the plating film by the metal derived from the metal anhydride. Thus, a plating film of a composite material in which a dispersed phase of inert fine particles is homogeneously dispersed is formed.
[0021]
Thus, according to the plating bath for composite plating and the method for producing the same according to the present invention, since water does not exist in the produced plating bath, there is no risk of electrolysis of water at the cathode, and therefore, A plating film can be formed even with a metal having a low reduction potential, for example, Al or Mg. Further, in dimethyl sulfone, since the metal anhydride forms a dimethyl sulfone metal complex ion, the metal anhydrous salt is milder than the conventional plating method using a high-temperature molten salt system in which volatilization of AlCl 3 has become a problem. Under the reaction conditions, composite plating can be performed.
[0022]
In addition, since the dimethyl sulfone does not explode upon contact with air, the handling of the solvent and the plating bath can be facilitated as compared with the conventional case where trialkylaluminum or the like is used as a non-aqueous solvent. it can. Furthermore, since dimethyl sulfone has a higher ion solubility than other non-aqueous solvents, the deposition rate of the plating film can be increased.
[0023]
Furthermore, as is clear from the results shown in FIGS. 3 (a) (b) to 6 (a) (b) in the examples described later, if composite plating is performed using the plating bath for composite plating of the present invention. Even if the size of the inert fine particles is on the order of nanometers, it is possible to form a plating film of a composite material in which the inert fine particles are homogeneously dispersed as a disperse phase in a metal matrix, and the quality of the composite plating film varies. Can be eliminated, and the plating film can stably exhibit the properties based on the characteristics of the plating metal and the characteristics of the composite inert fine particles. Therefore, the plating film obtained from the obtained composite material and the electroformed product formed from the plating film can be used for applications in the electronics field such as heat sinks and wiring, micro machines, and the like.
[0024]
Next, FIG. 2 shows a flow of a procedure of a plating bath for electrolytic plating and a method of manufacturing the same as another embodiment of the present invention. As in the flow shown in FIG. 1, step 1 (S1) is performed. The anhydrous metal salt is mixed into the prepared dimethyl sulfone (Step 2) (S2), and the mixture is heated to form a bath containing metal complex ions (Step 3) (S3). This is a plating bath used for electrolytic plating.
[0025]
According to the present embodiment, in Step 3 (S3), when the temperature of the mixed solution of the metal anhydride using dimethyl sulfone as the solvent is raised, as described above, the metal element derived from the metal anhydride is removed. Since a bath containing a complex ion formed by coordination of dimethyl sulfone is formed, by performing electroplating using the above-prepared plating bath, it is possible to use a metal having a low reduction potential such as Al or Mg. Thus, a plating film can be formed, and the film forming speed can be increased as compared with the conventionally proposed methods using other non-aqueous solvents.
[0026]
Note that the present invention is not limited to only the above embodiment, and various anhydrous salts such as chlorides and iodides, nitrates and nitrates can be formed, and the metal anhydrous salts can be mixed using dimethyl sulfone as a solvent. By raising the temperature in the liquid, if a metal complex ion coordinated with dimethyl sulfone can be formed, the metal element is not limited to Ni, Zn, Al, and Mg, and any metal element can be used. The temperature at which the temperature of the mixed solution is raised may be freely set as a temperature other than about 110 ° C. as long as the metal complex ions can be formed, and may be set within a range not departing from the gist of the present invention. It goes without saying that various changes can be made in.
[0027]
【Example】
Hereinafter, the results of experiments performed by the present inventors will be described.
[0028]
(1) Example 1
Using dimethyl sulfone as a solvent, AlCl 3 as a metal anhydrous salt was mixed to a concentration of 2.1 mol / kg, and the mixture was heated to 110 ° C. to form an electrolytic bath. SiO 2 particles having an average particle size of about 200 nm were added as inert fine particles so as to have a concentration of 30 g / L, mixed and stirred to produce a plating bath for composite plating.
[0029]
Electroplating by constant current electrolysis was performed at a current density of 130 mA / cm 2 using the plating bath for composite plating, and the surface and cross section of the resulting plating film were observed by SEM. The SEM images of the plating film surface were as shown in FIGS. In FIG. 3A, the magnification is 1000 times, and in FIG. 3B, the magnification is 14000 times.
[0030]
As is clear from FIGS. 3 (a) and (b), by performing composite plating using the plating bath produced by the method for producing a plating bath for composite plating of the present invention, the surface of the Al plating film is coated with SiO 2. It can be seen that a composite plating film in which particles are uniformly dispersed without agglomeration can be obtained.
[0031]
(2) Example 2
A plating bath for composite plating is manufactured in the same manner as above, and electrolytic plating is performed at a current density of constant current electrolysis of 80 mA / cm 2 using the plating bath. A cross section of the resulting plating film is observed by SEM. Observed. FIG. 4 shows an image when the magnification is set to 7000 times.
[0032]
As is clear from FIG. 4, the composite plating film formed by dispersing the SiO 2 particles homogeneously without agglomeration in the Al metal matrix by the composite plating using the plating bath to form a dispersed phase. It turned out to be obtained.
[0033]
(3) Example 3
To produce a composite plating for plating bath in the same manner as in Example (1), respectively, the current density when to perform constant current electrolysis using the plating bath is changed to 80 mA / cm 2 and 130 mA / cm 2 Electroplating was performed. SEM images of the obtained plating film surface are shown in FIGS.
[0034]
As is clear from FIGS. 5A and 5B, the composite plating film can be formed without agglomerating the SiO 2 particles even when the current density is changed as described above, and further, as shown in FIG. , than when the current density 80 mA / cm 2, as shown in FIG. 5 (b), who when a 130 mA / cm 2 is deposited a lot of SiO 2 particles with a metal matrix of Al, embedded It can be seen that a composite plating film can be formed. Therefore, it is estimated that the higher the current density, the larger the amount of eutectoid SiO 2 particles that eutect.
[0035]
(4) Example 4
In the same method for producing a plating bath for composite plating as in Example (1), the amount of SiO 2 particles added to the electrolytic bath was changed to 15 g / L and 53 g / L to produce plating baths for composite plating. . FIGS. 6A and 6B show SEM images of the plating film surface obtained as a result of performing composite plating at a current density of 130 mA / cm 2 using the obtained plating baths.
[0036]
As is clear from FIGS. 6 (a) and 6 (b), in any of the plating baths for composite plating manufactured by changing the amount of SiO 2 particles added to the electrolytic bath as described above, the SiO 2 particles are aggregated. It has been found that a composite plating film can be formed without causing this. Further, when the addition amount of 53 g / L as shown in FIG. 6B was higher than that when the addition amount of the SiO 2 particles was 15 g / L as shown in FIG. It can be seen that a composite plating film in which more SiO 2 particles are attached and embedded in the matrix can be formed. Therefore, it is estimated that the larger the amount of added SiO 2 particles, the larger the amount of eutectoid SiO 2 particles.
[0037]
【The invention's effect】
As described above, according to the present invention, the following excellent effects are exhibited.
(1) A plating bath for electrolytic plating, in which an anhydrous salt of a metal to form a plating film is mixed with dimethyl sulfone, and then the mixture is heated to melt the anhydrous metal salt to produce a plating bath. Therefore, it is possible to obtain a plating bath that can perform plating under mild conditions even with a metal having a low reduction potential.
(2) Since dimethyl sulfone is used as the solvent, handling of the solvent itself and the plating bath can be made easier than other non-aqueous solvents used in conventional plating.
(3) Since dimethyl sulfone as a solvent has a higher ion solubility than other conventionally used non-aqueous solvents, the film formation rate during electrolytic plating can be increased.
(4) After mixing an anhydrous salt of a metal for forming a plating film with dimethyl sulfone, the mixed solution is heated to melt the above-mentioned anhydrous metal to form an electrolytic bath. Addition of the inert fine particles for forming a dispersed phase in the plating film and stirring and mixing, and a plating bath for composite plating and a method of manufacturing the plating bath to produce a plating bath formed by dispersing the inert fine particles, Since dimethyl sulfone has low hydrogen integration, even if the inert fine particles to be added in order to form a dispersed phase in the metal matrix of the plating film have a nano-order size, electrolysis is performed without aggregating the inert fine particles. Since water can be uniformly dispersed in the bath and no water is used, water molecules adsorbed on the surface of the inert fine particles and water adsorbed on the plating metal surface during the formation of the plating film are formed. Since it is possible to eliminate the possibility of the influence of repulsive force acting between the inert particles, a large amount of inert fine particles are uniformly and co-deposited and embedded in the metal matrix serving as the plating film, and A homogeneous composite plating film provided with a dispersed phase can be obtained. Therefore, it is possible to eliminate variations in the quality of the composite plating film, and to stably exhibit the functionality based on the characteristics of the plating metal and the inert fine particles serving as the dispersed phase in the composite plating film. .
[Brief description of the drawings]
FIG. 1 is a diagram showing a flow of a procedure of a method of manufacturing a plating bath for composite plating as one embodiment of the present invention.
FIG. 2 is a diagram showing a flow of a procedure of a method of manufacturing a plating bath for electrolytic plating as another embodiment of the present invention.
FIGS. 3A and 3B are SEM images of the surface of a composite plating film formed using the plating bath for composite plating manufactured in Example (1).
FIG. 4 is an SEM image showing a cross section of a composite plating film formed in Example (2).
FIG. 5 is a diagram in which a plating film is formed by changing the current density used when performing composite plating by constant current electrolysis in Example (3), and (a) the current density was set to 80 mA / cm 2. (B) is an SEM image of the composite plating film surface obtained when the current density was 130 mA / cm 2.
FIG. 6 shows a composite plating film obtained by performing composite plating using each of the plating baths for composite plating manufactured in Example (4) by changing the amount of SiO 2 particles added to the electrolytic bath. In the SEM image of the surface, (a) shows the case where the added amount of SiO 2 is 15 g / L, and (b) shows the case where the added amount is 53 g / L.
[Explanation of symbols]
S1 Step 1
S2 Step 2
S3 Step 3
S4 Step 4

Claims (4)

ジメチルスルホンにめっき皮膜を形成させるべき金属の無水の塩を混合した後、該混合物を加熱して上記金属無水塩を溶融させてなることを特徴とする電解めっき用めっき浴。A plating bath for electrolytic plating, characterized by mixing dimethyl sulfone with an anhydrous salt of a metal to form a plating film, and then heating the mixture to melt the metal anhydrous salt. ジメチルスルホンにめっき皮膜を形成させるべき金属の無水塩を混合した後、該混合物を加熱し上記金属無水塩を溶融させて電解浴とし、該電解浴中に、めっき金属と共析させてめっき皮膜内に分散相を形成させるための不活性微粒子を添加し撹拌混合して、該不活性微粒子を分散してなることを特徴とする複合めっき用めっき浴。After mixing an anhydrous salt of a metal to form a plating film with dimethyl sulfone, the mixture is heated to melt the anhydrous metal salt to form an electrolytic bath. A plating bath for composite plating, characterized by adding inert fine particles for forming a dispersed phase therein, stirring and mixing, and dispersing the inert fine particles. ジメチルスルホンにめっき皮膜を形成させるべき金属の無水の塩を混合した後、該混合物を加熱して上記金属無水塩を溶融させてめっき浴を製造することを特徴とする電解めっき用めっき浴の製造方法。After mixing an anhydrous salt of a metal to form a plating film with dimethyl sulfone, heating the mixture to melt the anhydrous metal salt to produce a plating bath, thereby producing a plating bath for electrolytic plating. Method. ジメチルスルホンにめっき皮膜を形成させるべき金属の無水塩を混合した後、該混合物を加熱し上記金属無水塩を溶融させて電解浴とし、該電解浴中に、めっき金属と共析させてめっき皮膜内に分散相を形成させるための不活性微粒子を添加し撹拌混合して、該不活性微粒子を分散してなるめっき浴を製造することを特徴とする複合めっき用めっき浴の製造方法。After mixing an anhydrous salt of a metal to form a plating film with dimethyl sulfone, the mixture is heated to melt the anhydrous metal salt to form an electrolytic bath. A method for producing a plating bath for composite plating, comprising adding inert fine particles for forming a dispersed phase therein, stirring and mixing, and manufacturing a plating bath in which the inert fine particles are dispersed.
JP2002234101A 2002-08-09 2002-08-09 Plating bath for electroplating and plating bath for composite plating, and their production method Pending JP2004076031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002234101A JP2004076031A (en) 2002-08-09 2002-08-09 Plating bath for electroplating and plating bath for composite plating, and their production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002234101A JP2004076031A (en) 2002-08-09 2002-08-09 Plating bath for electroplating and plating bath for composite plating, and their production method

Publications (1)

Publication Number Publication Date
JP2004076031A true JP2004076031A (en) 2004-03-11

Family

ID=32019035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002234101A Pending JP2004076031A (en) 2002-08-09 2002-08-09 Plating bath for electroplating and plating bath for composite plating, and their production method

Country Status (1)

Country Link
JP (1) JP2004076031A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005091345A1 (en) * 2004-03-24 2005-09-29 Japan Science And Technology Agency Carbon nanotube-containing metal thin film
JPWO2004051726A1 (en) * 2002-11-29 2006-04-06 日本電気株式会社 Semiconductor device and manufacturing method thereof
JP2006161154A (en) * 2004-11-09 2006-06-22 Hitachi Metals Ltd Electrolytic aluminum-plating liquid
WO2007029395A1 (en) * 2005-09-07 2007-03-15 Nissan Motor Co., Ltd. Nanocarbon/aluminum composite material, process for producing the same, and plating liquid for use in said process
JP2007179871A (en) * 2005-12-28 2007-07-12 Totoku Electric Co Ltd Fullerene composite plated wire, method of manufacturing same and fullerene composite-plated enameled wire
JP2007291490A (en) * 2006-03-31 2007-11-08 Hitachi Metals Ltd Aluminum electroplating solution and aluminum plating film
JP2007326078A (en) * 2006-06-09 2007-12-20 Hitachi Metals Ltd Hydrogen producing substrate and its manufacturing method
WO2008001717A1 (en) 2006-06-29 2008-01-03 Hitachi Metals, Ltd. Aluminum deposit formed by plating, metallic member, and process for producing the same
JP2010090414A (en) * 2008-10-06 2010-04-22 Hitachi Metals Ltd Aluminum-electroplating solution, and plated aluminum film
JP2010232171A (en) * 2009-03-05 2010-10-14 Hitachi Metals Ltd Aluminum porous material and its manufacturing method, and power storage device using the aluminum porous material as electrode current collector
CN102216499A (en) * 2008-10-15 2011-10-12 日立金属株式会社 Electrolytic aluminum plating solution and method for forming aluminum plating film
WO2012043129A1 (en) 2010-09-30 2012-04-05 株式会社日立製作所 Aluminum electroplating solution
JP2013023712A (en) * 2011-07-19 2013-02-04 Kyoto Univ Method of producing glossy aluminum material
WO2014148227A1 (en) * 2013-03-19 2014-09-25 ソニー株式会社 Plating film, method for manufacturing same, and plated product
EP2450476B1 (en) * 2009-06-29 2022-10-12 Hitachi Metals, Ltd. Method for manufacturing aluminum foil

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4683188B2 (en) * 2002-11-29 2011-05-11 日本電気株式会社 Semiconductor device and manufacturing method thereof
JPWO2004051726A1 (en) * 2002-11-29 2006-04-06 日本電気株式会社 Semiconductor device and manufacturing method thereof
WO2005091345A1 (en) * 2004-03-24 2005-09-29 Japan Science And Technology Agency Carbon nanotube-containing metal thin film
JP2006161154A (en) * 2004-11-09 2006-06-22 Hitachi Metals Ltd Electrolytic aluminum-plating liquid
WO2007029395A1 (en) * 2005-09-07 2007-03-15 Nissan Motor Co., Ltd. Nanocarbon/aluminum composite material, process for producing the same, and plating liquid for use in said process
JP2007179871A (en) * 2005-12-28 2007-07-12 Totoku Electric Co Ltd Fullerene composite plated wire, method of manufacturing same and fullerene composite-plated enameled wire
JP2007291490A (en) * 2006-03-31 2007-11-08 Hitachi Metals Ltd Aluminum electroplating solution and aluminum plating film
JP2007326078A (en) * 2006-06-09 2007-12-20 Hitachi Metals Ltd Hydrogen producing substrate and its manufacturing method
EP2037007A4 (en) * 2006-06-29 2012-10-17 Hitachi Metals Ltd Aluminum deposit formed by plating, metallic member, and process for producing the same
US8262893B2 (en) 2006-06-29 2012-09-11 Hitachi Metals, Ltd. Aluminum plated film, metallic member, and its fabrication method
US8586196B2 (en) 2006-06-29 2013-11-19 Hitachi Metals, Ltd. Aluminum plated film and metallic member
EP2037007A1 (en) * 2006-06-29 2009-03-18 Hitachi Metals, Ltd. Aluminum deposit formed by plating, metallic member, and process for producing the same
WO2008001717A1 (en) 2006-06-29 2008-01-03 Hitachi Metals, Ltd. Aluminum deposit formed by plating, metallic member, and process for producing the same
JP2010090414A (en) * 2008-10-06 2010-04-22 Hitachi Metals Ltd Aluminum-electroplating solution, and plated aluminum film
CN102216499A (en) * 2008-10-15 2011-10-12 日立金属株式会社 Electrolytic aluminum plating solution and method for forming aluminum plating film
US9068270B2 (en) 2008-10-15 2015-06-30 Hitachi Metals, Ltd. Aluminum electroplating solution and method for forming aluminum plating film
JP2010232171A (en) * 2009-03-05 2010-10-14 Hitachi Metals Ltd Aluminum porous material and its manufacturing method, and power storage device using the aluminum porous material as electrode current collector
EP2450476B1 (en) * 2009-06-29 2022-10-12 Hitachi Metals, Ltd. Method for manufacturing aluminum foil
WO2012043129A1 (en) 2010-09-30 2012-04-05 株式会社日立製作所 Aluminum electroplating solution
JP2013023712A (en) * 2011-07-19 2013-02-04 Kyoto Univ Method of producing glossy aluminum material
WO2014148227A1 (en) * 2013-03-19 2014-09-25 ソニー株式会社 Plating film, method for manufacturing same, and plated product
JPWO2014148227A1 (en) * 2013-03-19 2017-02-16 ソニー株式会社 Plating film, manufacturing method thereof and plated product

Similar Documents

Publication Publication Date Title
JP2004076031A (en) Plating bath for electroplating and plating bath for composite plating, and their production method
Islam et al. Recent developments in the sonoelectrochemical synthesis of nanomaterials
Li et al. Electro-codeposition of Ni-SiO2 nanocomposite coatings from deep eutectic solvent with improved corrosion resistance
Protsenko et al. Application of a deep eutectic solvent to prepare nanocrystalline Ni and Ni/TiO2 coatings as electrocatalysts for the hydrogen evolution reaction
Mohanty Electrodeposition: a versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals
WO2007029395A1 (en) Nanocarbon/aluminum composite material, process for producing the same, and plating liquid for use in said process
Ünal et al. Effects of ultrasonic agitation prior to deposition and additives in the bath on electrodeposited Ni-B/hBN composite coatings
JP4390807B2 (en) Composite metal body and method for producing the same
Wang et al. A study on the electrocodeposition processes and properties of Ni–SiC nanocomposite coatings
JP2007157372A (en) Light-weighted wire with high conductivity and its manufacturing method
Wang et al. Preparation of nickel–carbon nanofiber composites by a pulse-reverse electrodeposition process
JP4421556B2 (en) Metal particle and method for producing the same
Chen et al. Copper@ carbon fiber composites prepared by a simple electroless plating technique
Rouhollahi et al. Effects of different surfactants on the silica content and characterization of Ni–SiO 2 nanocomposites
JP5342976B2 (en) Granules and method for producing the same
JP2006057129A (en) Composite metal body, method for producing the same, metal grain and method for producing the same
CN110079839B (en) Method for preparing metal aluminum three-dimensional ordered porous photonic crystal through electrodeposition
JP2007211305A (en) Composite foil of electrolytic copper, and production method therefor
Danilov et al. Electrodeposition of composite coatings using electrolytes based on deep eutectic solvents: a mini-review
JP2019002034A (en) Copper/monolayer carbon nanotube composite plating method
CN109070208A (en) Metal nanoparticle aqueous dispersions
JP5544527B2 (en) Composite plating film, method for forming the same, and electrolytic plating solution
JP2008019456A (en) Electrically composite-plated wire rod, manufacturing method therefor, and manufacturing apparatus therefor
JP2015145324A (en) Production method of nano carbon fiber-coated diamond particle
Protsenko et al. Ni–TiO 2 Functional Composite Coatings Deposited from an Electrolyte Based on a Choline-Containing Ionic Liquid