JP2007157372A - Light-weighted wire with high conductivity and its manufacturing method - Google Patents

Light-weighted wire with high conductivity and its manufacturing method Download PDF

Info

Publication number
JP2007157372A
JP2007157372A JP2005347454A JP2005347454A JP2007157372A JP 2007157372 A JP2007157372 A JP 2007157372A JP 2005347454 A JP2005347454 A JP 2005347454A JP 2005347454 A JP2005347454 A JP 2005347454A JP 2007157372 A JP2007157372 A JP 2007157372A
Authority
JP
Japan
Prior art keywords
electric wire
aluminum
conductivity
carbon
nanocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005347454A
Other languages
Japanese (ja)
Inventor
Atsushi Ehira
淳 江平
Akira Murakami
亮 村上
Nobuyuki Koura
延幸 小浦
Koichi Ui
幸一 宇井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005347454A priority Critical patent/JP2007157372A/en
Publication of JP2007157372A publication Critical patent/JP2007157372A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light-weighted wire with high conductivity, and its manufacturing method. <P>SOLUTION: The light-weighted wire with high conductivity is made up of core wires with plated coating applied, of which, the core wires are made of copper, aluminum or the like, and the plated coating is structured of a complex material of nano carbon and aluminum. The carbon nanotube is of a diameter of 1 to 100 nm, a length of 1 to 100 μm, an aspect ratio of 10 to 100, of a single-layer or a laminated structure, and an electric volume resistivity of 0.5 to 3 μΩ cm. The light weighted wires with high-conductivity are manufactured with the use of plating liquid with the nano carbon contained in molten salt made by mixing and melting 20 to 80 mol% aluminum halide, 80 to 20 mol% 1, 3-dialkylimidazolium halide (provided that the carbon number of an alkyl group is 1 to 12), and monoalkylpyridinium halide (provided that the carbon number of an alkyl group is 1 to 12). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、軽量高導電率電線及びその製造方法に係り、更に詳細には、高導電率を示し、例えば、送電線、リード線、電気機器のコイル等に用いられる導電線材に適用できる軽量高導電率電線及びその製造方法に関する。   The present invention relates to a light-weight and high-conductivity electric wire and a method for manufacturing the same, and more particularly, exhibits high conductivity, and is applicable to, for example, a conductive wire used for a power transmission line, a lead wire, a coil of an electric device, The present invention relates to a conductive wire and a method for manufacturing the same.

一般に、送電線やリード線、コイルなどを構成する銅やアルミニウムを主体とした導電線材は、高い導電率が要求されている。
また、最近は、地球環境保護などの観点からこれら導電線材には、軽量化及び小型化が要求される方向にある。
特に、軽量化を必要とする場合はアルミニウム線材が用いられ、高導電率を必要とする場合は銅線材が用いられている。
しかし、アルミニウムは銅と比較すると導電率が劣り、銅はアルミニウムと比較すると比重が高いため、単一材料から成る線材で軽量化と高導電率を両立することは困難であった。
In general, high conductivity is required for conductive wires mainly composed of copper and aluminum constituting power transmission lines, lead wires, coils, and the like.
Recently, these conductive wires are required to be reduced in weight and size from the viewpoint of protecting the global environment.
In particular, an aluminum wire is used when weight reduction is required, and a copper wire is used when high conductivity is required.
However, aluminum is inferior in electrical conductivity compared to copper, and copper has a higher specific gravity than aluminum. Therefore, it has been difficult to achieve both weight reduction and high electrical conductivity with a wire made of a single material.

更に、近年、銅に勝る導電率を有し、比重の小さい材料としてカーボンナノチューブ(以下「CNT」という。)が注目されている。CNTは強靭性、導電性、熱伝導性等、優れた諸特性から様々な分野での応用が研究されている。
CNTの利用方法として導電線材が提案されている。但し、この導電線材はバンドルした状態でも数100nm程度の直径であり、半導体集積回路などへの応用のみを目的としている(例えば、特許文献1参照。)。
特開2004−185985号公報
Further, in recent years, carbon nanotubes (hereinafter referred to as “CNT”) have attracted attention as materials having a conductivity higher than that of copper and a low specific gravity. CNT has been studied for application in various fields because of its excellent properties such as toughness, conductivity, and thermal conductivity.
Conductive wires have been proposed as a method of using CNTs. However, this conductive wire has a diameter of about several hundred nm even in a bundled state, and is intended only for application to a semiconductor integrated circuit or the like (for example, see Patent Document 1).
JP 2004-185985 A

更にまた、軽量、高導電率を特徴とするカーボンナノチューブ複合材料の検討も行われている。
これまで、CNT複合材料としては、銅、ニッケル、アルミニウム等、様々な金属がマトリックスとして用いられてきた(例えば、特許文献2〜4参照。)。
特に、アルミニウムとCNTの複合材料としては高強度、高導電率を利用した送電線等の線材への応用についても検討されている(例えば、特許文献5,6参照。)。
特開2004−156074号公報 特開2004−315297号公報 特開2005−068492号公報 特開2005−008989号公報 特開2005−048206号公報
Furthermore, a carbon nanotube composite material characterized by light weight and high conductivity has been studied.
Until now, various metals, such as copper, nickel, aluminum, etc. have been used as a matrix as a CNT composite material (for example, refer patent documents 2-4).
In particular, as a composite material of aluminum and CNT, application to a wire material such as a transmission line using high strength and high conductivity has been studied (for example, see Patent Documents 5 and 6).
JP 2004-156074 A JP 2004-315297 A Japanese Patent Laying-Open No. 2005-068492 JP 2005008989 A JP 2005-048206 A

一方、アルミニウムの製造方法としては、三層式電解法、分別結晶法、電析法といったものが知られている。
これらの中でも、電析法は単一工程で作製できることが魅力的である。しかし、アルミニウムは卑な標準電極電位(−1.68Vvs.SHE)を有するため、水系からの電析は水素発生の競争反応によって不可能である。
また、有機溶媒系からのアルミニウムの電析も行われている。しかし、引火の危険を有するため工業的に実用化するのは困難である。
On the other hand, methods for producing aluminum are known, such as a three-layer electrolytic method, a fractional crystallization method, and an electrodeposition method.
Among these, it is attractive that the electrodeposition method can be produced in a single step. However, since aluminum has a base standard electrode potential (−1.68 V vs. SHE), electrodeposition from an aqueous system is impossible due to a competitive reaction of hydrogen generation.
Electrodeposition of aluminum from organic solvent systems is also performed. However, since there is a risk of ignition, it is difficult to put it to practical use industrially.

他方、常温型溶融塩(常温溶融塩、室温溶融塩又は室温イオン液体)は、1)アルミニウムのような卑な標準電極電位を有する金属や合金のめっきを容易に行える、2)常温での使用が可能なため扱いが容易、3)不揮発生・不燃性のため引火の危険性がない、といった利点を有し、更に、各種合金の電析浴、電池用電解液としても非常に有望である。   On the other hand, room temperature molten salt (room temperature molten salt, room temperature molten salt or room temperature ionic liquid) can be easily plated with 1) metals and alloys having a base electrode potential such as aluminum. 2) Use at room temperature 3) It has the advantage that it is easy to handle because it is non-volatile and non-flammable, and there is no risk of ignition, and it is also very promising as an electrodeposition bath for various alloys and battery electrolytes. .

従来のナノカーボン/アルミニウム複合線材の製造方法は、アルミニウムのケースにアルミニウム粉末とCNTを入れ、5.3×10−1Pa減圧下で600℃、1.5h加熱した後、100MPaで60min加圧し、500℃、10MPa・min−1で押し出すという、複雑な多段階工程であった。 In a conventional method for producing a nanocarbon / aluminum composite wire, aluminum powder and CNT are placed in an aluminum case, heated at 600 ° C. for 1.5 hours under a reduced pressure of 5.3 × 10 −1 Pa, and then pressurized at 100 MPa for 60 minutes. , 500 ° C., 10 MPa · min −1 , and a complicated multi-step process.

この製造方法は、溶融金属中にナノカーボンを添加し、攪拌、混合することになるが、金属とナノカーボンとでは比重が大きく異なることから、ナノカーボンを均一に溶融金属中に分散するのは極めて困難である。   In this manufacturing method, nanocarbon is added to the molten metal, and the mixture is stirred and mixed. However, since the specific gravity of the metal and nanocarbon is greatly different, the nanocarbon is uniformly dispersed in the molten metal. It is extremely difficult.

また、炭素繊維/アルミニウム系複合材料は、非酸化性雰囲気下では500℃以下であれば加熱保持を行っても強度低下は認められないが、保持温度が550℃以上となると、炭素繊維とマトリックスの界面反応によりAlが形成され、炭素繊維の断面積が減少するとともに、この炭化物の根本でのノッチ効果により強度が低下する。
更に、大気中での加熱は、酸化による炭素繊維の劣化が重大な問題となることがこれまでの研究によって明らかにされている。
In addition, when the carbon fiber / aluminum composite material is heated and held at 500 ° C. or lower in a non-oxidizing atmosphere, no decrease in strength is observed, but when the holding temperature is 550 ° C. or higher, the carbon fiber and matrix As a result of the interfacial reaction, Al 4 C 3 is formed, the cross-sectional area of the carbon fiber is reduced, and the strength is reduced by the notch effect at the base of the carbide.
Furthermore, it has been clarified by previous studies that heating in the atmosphere is a serious problem of deterioration of carbon fibers due to oxidation.

他の複合材製造方法としては、アルミニウム又はアルミニウム合金粉末とカーボンナノチューブを混合後、加圧、加熱を行う粉末冶金的方法、半溶融状態のアルミニウム合金を連続的に攪拌しながら所定量のカーボンナノチューブを添加する半溶融攪拌凝固的方法、カーボンナノチューブを加圧して多孔質予備成形体に溶融したアルミニウム合金を含浸させて複合化する溶融加圧含浸的方法などが提案されている。   Other composite material manufacturing methods include powder metallurgy in which aluminum or aluminum alloy powder and carbon nanotubes are mixed and then pressurized and heated, and a predetermined amount of carbon nanotubes while continuously stirring a semi-molten aluminum alloy There have been proposed a semi-melt stirring and solidification method in which a carbon nanotube is added, a melt-pressure impregnation method in which a carbon preform is pressurized and impregnated with a molten aluminum alloy to form a composite.

しかし、いずれの方法も得られる複合材はインゴットのような塊状であり、更に線材化する工程が必要と考えられるが、線材化に関する具体的提案は見当たらない。   However, the composite material that can be obtained by any of the methods is in an ingot-like mass, and it is considered that a process for forming a wire is necessary, but no specific proposal for forming a wire is found.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、軽量且つ高導電率である軽量高導電率電線及びその製造方法を提供することにある。   This invention is made | formed in view of the subject which such a prior art has, The place made into the objective is to provide the lightweight high electrical conductivity electric wire which is lightweight and high electrical conductivity, and its manufacturing method. .

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、所定の芯材にナノカーボンとアルミニウムの複合めっきを施すことにより、上記目的が達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that the above object can be achieved by subjecting a predetermined core material to composite plating of nanocarbon and aluminum, and to complete the present invention. It came.

即ち、本発明の軽量高導電率電線は、芯線にめっき皮膜を施して成る軽量高導電率電線であって、
上記芯線は、銅及び/又はアルミニウムから構成され、上記めっき皮膜は、ナノカーボンとアルミニウムの複合材料から構成されていることを特徴とする。
That is, the lightweight high-conductivity electric wire of the present invention is a lightweight high-conductivity electric wire formed by applying a plating film to the core wire,
The core wire is made of copper and / or aluminum, and the plating film is made of a composite material of nanocarbon and aluminum.

また、本発明の軽量高導電率電線の製造方法は、該軽量高導電率電線を製造するに当たり、
20〜80モル%のアルミニウムハロゲン化物と、80〜20モル%の1,3‐ジアルキルイミダゾリウムハロゲン化物(但し、アルキル基の炭素数は1〜12)又はモノアルキルピリジニウムハロゲン化物(但し、アルキル基の炭素数は1〜12)とを混合溶融して成る溶融塩に、ナノカーボンを含めてめっき液とすることを特徴とする。
Moreover, the manufacturing method of the lightweight high-conductivity electric wire of the present invention, in manufacturing the lightweight high-conductivity electric wire,
20 to 80 mol% aluminum halide and 80 to 20 mol% 1,3-dialkylimidazolium halide (wherein the alkyl group has 1 to 12 carbon atoms) or monoalkylpyridinium halide (wherein the alkyl group) The number of carbon atoms of 1 to 12) is characterized by using a molten salt obtained by mixing and melting 1 to 12) as a plating solution including nanocarbon.

本発明によれば、所定の芯材にナノカーボンとアルミニウムの複合めっきを施すこととしたため、軽量且つ高導電率である軽量高導電率電線及びその製造方法を提供できる。   According to the present invention, since composite plating of nanocarbon and aluminum is performed on a predetermined core material, it is possible to provide a lightweight and highly conductive electric wire that is lightweight and highly conductive and a method for manufacturing the same.

以下、本発明の軽量高導電率電線について詳細に説明する。なお、本明細書において、「%」は特記しない限り、質量百分率を表すものとする。   Hereinafter, the lightweight high conductivity electric wire of the present invention will be described in detail. In the present specification, “%” represents mass percentage unless otherwise specified.

上述の如く、本発明の軽量高導電率電線は、芯線にめっき皮膜を施して成る。
上記芯線は、銅、アルミニウムの双方又はこれらのいずれか一方を材料として構成する。
上記めっき皮膜は、ナノカーボンとアルミニウムの複合材料で構成する。
As described above, the lightweight high-conductivity electric wire of the present invention is formed by applying a plating film to the core wire.
The core wire is composed of both copper and aluminum, or any one of them.
The plating film is composed of a composite material of nanocarbon and aluminum.

ここで、芯線として上記材料を用いることにより、めっき液に対して、化学的、電気化学的に安定し、導電率の高い電線が得られる。特に、導電率を向上させる観点からは、銅又はアルミニウムを単体で使用するのが好ましい。   Here, by using the above-mentioned material as the core wire, an electric wire that is chemically and electrochemically stable and has high conductivity with respect to the plating solution can be obtained. In particular, from the viewpoint of improving the conductivity, it is preferable to use copper or aluminum alone.

また、上記めっき皮膜において、ナノカーボンとしては特に限定されないが、代表的には、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、カーボンブラック、フラーレン、アセチレンブラック又はケッチェンブラック、及びこれらを任意に組合わせたものを適宜使用できる。   In the plating film, nanocarbon is not particularly limited, but typically, carbon nanotube, carbon nanofiber, carbon nanohorn, carbon black, fullerene, acetylene black or ketjen black and any combination thereof Can be used as appropriate.

上記ナノカーボンとしてカーボンナノチューブを使用するときは、直径1〜100nm、長さ1〜100μm、アスペクト比10〜100であり、単層構造又は積層構造であるカーボンナノチューブを用いることが好適である。   When carbon nanotubes are used as the nanocarbon, it is preferable to use carbon nanotubes having a diameter of 1 to 100 nm, a length of 1 to 100 μm, an aspect ratio of 10 to 100, and a single-layer structure or a laminated structure.

更に、上記めっき皮膜は、該電線の総体積に対して10〜90vol%の割合で含まれていることが好適である。
めっき皮膜の体積比率が10vol%より小さいと、複合線材の導電率が、芯線の導電率に近くなってしまい、めっき皮膜の高い導電率が効果的に作用しないことがある。体積比率が90vol%より大きいと、めっき皮膜の製膜にかかる時間が非常に長くなり、実用上好ましくない。
Furthermore, it is preferable that the plating film is contained at a rate of 10 to 90 vol% with respect to the total volume of the electric wire.
When the volume ratio of the plating film is smaller than 10 vol%, the conductivity of the composite wire becomes close to the conductivity of the core wire, and the high conductivity of the plating film may not work effectively. When the volume ratio is larger than 90 vol%, it takes a very long time to form the plating film, which is not preferable for practical use.

更にまた、上記めっき皮膜を100重量部としたときに、上記ナノカーボンが0.1〜50重量部の割合で含まれることが好適である。
ナノカーボンが0.1重量部より少ないと、十分な導電率が得られないことがある。また、50重量部より多いと、電解めっきによる複合めっき皮膜の製膜が困難となりやすい。
Furthermore, when the said plating film is 100 weight part, it is suitable that the said nano carbon is contained in the ratio of 0.1-50 weight part.
If the amount of nanocarbon is less than 0.1 parts by weight, sufficient conductivity may not be obtained. On the other hand, when the amount is more than 50 parts by weight, it is difficult to form a composite plating film by electrolytic plating.

かかる本発明の軽量高導電率電線は、電気体積抵抗率が、0.5〜3μΩ・cmであることが好適である。
電気体積抵抗率を0.5μΩ・cmよりも小さくするには、めっき皮膜中のナノカーボン含有率を50%より多くする必要があるため、電解めっきによる複合めっき皮膜の製膜が困難となりやすい。また、電気体積抵抗率が3μΩ・cmよりも大きいと高導電率が得られず、アルミニウムよりも導電率が悪化してしまうことがある。
The lightweight high conductivity electric wire of the present invention preferably has an electric volume resistivity of 0.5 to 3 μΩ · cm.
In order to make the electric volume resistivity smaller than 0.5 μΩ · cm, it is necessary to increase the nanocarbon content in the plating film to more than 50%, so that it is difficult to form a composite plating film by electrolytic plating. Further, if the electric volume resistivity is larger than 3 μΩ · cm, a high conductivity cannot be obtained, and the conductivity may be worse than that of aluminum.

次に、本発明の軽量高導電率電線の製造方法について詳細に説明する。
本発明では、まず、20〜80モル%のアルミニウムハロゲン化物と、80〜20モル%の1,3‐ジアルキルイミダゾリウムハロゲン化物(但し、アルキル基の炭素数は1〜12)、モノアルキルピリジニウムハロゲン化物(但し、アルキル基の炭素数は1〜12)のいずれか一方又は双方と、を混合溶融して成る溶融塩を精製する。
次いで、この溶融塩に、ナノカーボンを含めてめっき液を得る。このめっき液を用いて芯線をめっきすることで、上述の軽量高導電率電線を製造する。
Next, the manufacturing method of the lightweight high electrical conductivity electric wire of this invention is demonstrated in detail.
In the present invention, first, 20 to 80 mol% of aluminum halide, 80 to 20 mol% of 1,3-dialkylimidazolium halide (wherein the alkyl group has 1 to 12 carbon atoms), monoalkylpyridinium halogen, A molten salt obtained by mixing and melting one or both of a compound (wherein the alkyl group has 1 to 12 carbon atoms) is purified.
Next, a plating solution containing nanocarbon is obtained in the molten salt. By plating the core wire using this plating solution, the above-described lightweight high-conductivity electric wire is manufactured.

このように無機系溶媒のめっき液を使用することで、アルミニウムとナノカーボンがほぼ均一に分散混合されためっき皮膜を簡易に作製できる。
なお、有機溶媒系のめっき液を使用して、アルミニウムの電解めっきを行うこともできるが、引火の危険を有するため工業的に実用化は難しい。
また、アルミニウムハロゲン化物と1,3‐ジアルキルイミダゾリウムハロゲン化物又はモノアルキルピリジニウムハロゲン化物との混合比が上記範囲を外れると、常温で溶融せずめっき液にならない。仮に温度を上げて溶融させても、めっき液の粘度が高くめっき液としては不向きとなってしまう。
更に、1,3‐ジアルキルイミダゾリウムハロゲン化物、モノアルキルピリジニウムハロゲン化物のアルキル基の炭素数が13以上となると、常温で溶融せずめっき液にならない。仮に温度を上げて溶融させても、めっき液の粘度が高くめっき液としては不向きとなってしまう。
Thus, by using a plating solution of an inorganic solvent, it is possible to easily produce a plating film in which aluminum and nanocarbon are dispersed and mixed almost uniformly.
Although aluminum electroplating can be performed using an organic solvent-based plating solution, it is difficult to put it to practical use industrially because of the danger of ignition.
If the mixing ratio of aluminum halide to 1,3-dialkylimidazolium halide or monoalkylpyridinium halide is out of the above range, it will not melt at room temperature and will not become a plating solution. Even if the temperature is raised and melted, the viscosity of the plating solution is high and it is not suitable as a plating solution.
Furthermore, when the carbon number of the alkyl group of 1,3-dialkylimidazolium halide or monoalkylpyridinium halide is 13 or more, it does not melt at room temperature and does not form a plating solution. Even if the temperature is raised and melted, the viscosity of the plating solution is high and it is not suitable as a plating solution.

また、本発明においては、乾燥無酸素雰囲気中で、直流又はパルス電流により浴温0〜300℃、電流密度0.01〜50A/dmの電解条件でめっきすることが好適である。
浴温が0℃より低くなると、めっき液が凝固することがあり、浴温が300℃より高くなると、めっき液が熱分解してしまうことがあるので、いずれも電解が困難となる。
電流密度が0.01A/dmより低くなると、電解時間が長くなる傾向があるので実用的ではない。また、電流密度が50A/dmより高くなると、めっき液が分解電圧に到達し、めっきそのものが困難になることがある。
Moreover, in this invention, it is suitable to plate by electrolysis conditions with a bath temperature of 0 to 300 ° C. and a current density of 0.01 to 50 A / dm 2 by a direct current or a pulse current in a dry oxygen-free atmosphere.
When the bath temperature is lower than 0 ° C., the plating solution may be solidified, and when the bath temperature is higher than 300 ° C., the plating solution may be thermally decomposed, which makes it difficult to perform electrolysis.
If the current density is lower than 0.01 A / dm 2 , the electrolysis time tends to be long, so it is not practical. On the other hand, if the current density is higher than 50 A / dm 2 , the plating solution may reach a decomposition voltage, and plating itself may be difficult.

ここで、アルミニウムハロゲン化物としては、特に無水AlClを使用するのが好ましい。 Here, it is particularly preferable to use anhydrous AlCl 3 as the aluminum halide.

また、1,3−ジアルキルイミダゾリウムハロゲン化物としては、例えば、1−エチル−3−メチルイミダゾリウムクロリド(以下、「EMIC」という。)が使用できる。
更に、モノアルキルピリジニウムハロゲン化物としては、例えば、1−ブチルピリジニウムクロリド(以下、「BPC」という。)が使用できる。
特に、めっき液の物性(導電率、粘度、融点)を考慮すると、融点の低いEMICを用いることがより好ましい。
As the 1,3-dialkylimidazolium halide, for example, 1-ethyl-3-methylimidazolium chloride (hereinafter referred to as “EMIC”) can be used.
Furthermore, as the monoalkylpyridinium halide, for example, 1-butylpyridinium chloride (hereinafter referred to as “BPC”) can be used.
In particular, considering the physical properties (conductivity, viscosity, melting point) of the plating solution, it is more preferable to use an EMIC having a low melting point.

更にまた、めっき液としては、例えば、アルミニウムハロゲン化物の一例であるAlClとEMICとを所定のモル比で混合した常温型溶融塩をベースとし、ナノカーボンの一例であるCNTを添加したものが好適に用いられる。そして、CNTを添加する際には、用いるAlClやEMICに予め分散させておくことがハンドリングが容易となる観点から望ましい。
なお、不純物を除去することを目的に、CNTを添加する前にAlCl−EMIC常温型溶融塩にAl線を1週間以上浸すことが好ましい。これに、ナノカーボンを所定量加えることにより、めっき液が得られる。また、AlCl−EMIC常温型溶融塩にナノカーボンを分散させる方法としては、特に限定されるものではないが、超音波照射又は攪拌を行うこと等が挙げられる。
Furthermore, as a plating solution, for example, a solution obtained by adding CNT, which is an example of nanocarbon, based on a room temperature molten salt in which AlCl 3 which is an example of aluminum halide and EMIC are mixed at a predetermined molar ratio is used. Preferably used. When adding CNTs, it is desirable to disperse them in advance in AlCl 3 or EMIC to be used from the viewpoint of easy handling.
For the purpose of removing impurities, it is preferable to immerse an Al wire in an AlCl 3 -EMIC room temperature molten salt for one week or more before adding CNTs. A plating solution is obtained by adding a predetermined amount of nanocarbon thereto. The method for dispersing nanocarbon in the AlCl 3 -EMIC room temperature molten salt is not particularly limited, and examples include ultrasonic irradiation or stirring.

本発明の軽量高導電率電線の製造方法においては、特に限定されないが、代表的には、2電極式セルを使用して電解めっきを行うことができる。
具体的には、電解方法としては、例えば、AlCl−EMIC常温型溶融塩にナノカーボンを分散させためっき液に、負極(カソード)と正極(アノード)とを浸漬した状態で、両電極に接続されている直流電源によって、両電極に定電流又はパルス等を印加することができる。これらの印加は、所定間隔ごとにその大きさを変化させてもよい。
Although it does not specifically limit in the manufacturing method of the lightweight high electrical conductivity electric wire of this invention, Typically, it can electroplate using a 2 electrode type cell.
Specifically, as an electrolysis method, for example, in a state where a negative electrode (cathode) and a positive electrode (anode) are immersed in a plating solution in which nanocarbon is dispersed in an AlCl 3 -EMIC room temperature molten salt, A constant current or a pulse can be applied to both electrodes by a connected DC power source. The magnitudes of these applications may be changed at predetermined intervals.

このとき、電流密度は0.01A/dm程度に設定することができる。また、電着時間は継続的に0.1〜600秒間、印加することができる。更に、必要に応じて周期的に0.1〜1秒の間隔で、印加と停止を繰り返してもよい。 At this time, the current density can be set to about 0.01 A / dm 2 . The electrodeposition time can be continuously applied for 0.1 to 600 seconds. Furthermore, application and stop may be repeated periodically at intervals of 0.1 to 1 second as necessary.

また、負極(カソード)としては、芯線の表面にナノカーボン/アルミニウム複合めっき皮膜を施すことができる。
なお、ナノカーボンとアルミニウムのめっき量は、ナノカーボンの分散量、電流密度、電解時間等により制御することが可能である。例えば、めっき被膜の膜厚を厚くするためには、電解電圧を高めにしたり、電解時間を長くする等の制御をすればよい。
連続生産時には、ナノカーボンとAlCl−EMIC常温型溶融塩を順次補給してナノカーボンの分散量の低下を補うことが望ましい。
As the negative electrode (cathode), a nanocarbon / aluminum composite plating film can be applied to the surface of the core wire.
The plating amount of nanocarbon and aluminum can be controlled by the amount of nanocarbon dispersion, current density, electrolysis time, and the like. For example, in order to increase the thickness of the plating film, control such as increasing the electrolysis voltage or extending the electrolysis time may be performed.
During continuous production, it is desirable to supplement the decrease in the amount of nanocarbon by sequentially replenishing nanocarbon and AlCl 3 -EMIC room temperature molten salt.

更に、正極(アノード)としては、公知の導電性基板のいずれをも使用することができる。例えば、化学的、電気化学的に安全な白金、グラファイト等、又は溶解してもめっき液の汚染されることのないアルミニウムなどが好適に用いられる。
正極の形状は特に制限されるものではないが、芯線表面に均一にめっき皮膜を生成する点を考慮すると、正極の形状をパイプ状とし、その中に芯線を通した状態で電解めっきを行うことが好ましい。
Furthermore, any known conductive substrate can be used as the positive electrode (anode). For example, chemically and electrochemically safe platinum, graphite, or the like, or aluminum that does not contaminate the plating solution even when dissolved is preferably used.
The shape of the positive electrode is not particularly limited, but considering the point that a plating film is uniformly formed on the surface of the core wire, the shape of the positive electrode is made into a pipe shape, and electrolytic plating is performed with the core wire passed through it. Is preferred.

以下、本発明を実施例及び比較例により詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited to these Examples.

(実施例1)
塩化アルミニウム(AlCl)と1−エチル−3−メチルイミダゾリウムクロリド(EMIC)をモル比2:1となるように秤量し、攪拌しながら混合した。完全に溶融したものにAl線を1週間浸す置換法によって精製した。
これに、多層カーボンナノチューブ(MWCNT;チューブ径1.2〜20nm、チューブ長2〜5μm)を、10.0g・L−1添加し、充分に攪拌を行い、めっき液とした。
Example 1
Aluminum chloride (AlCl 3 ) and 1-ethyl-3-methylimidazolium chloride (EMIC) were weighed to a molar ratio of 2: 1 and mixed with stirring. It refine | purified by the substitution method which immerses Al wire in the completely melted thing for 1 week.
To this, 10.0 g · L −1 of multi-walled carbon nanotubes (MWCNT; tube diameter 1.2 to 20 nm, tube length 2 to 5 μm) was added, and stirred sufficiently to obtain a plating solution.

得られためっき液を用いて、定電流電解めっきを行った。
電解条件は、浴温度30℃、電流密度10mA・cm−2、電析電気量50C・cm−2とした。カソード芯線として線径1mmのCu線(99.96%)を、アノードにAl(99.99%)で作製した内径5mmのパイプを用いて、2電極セルで行った。
なお、カソードの前処理として、エメリー紙(2000番)による研磨の後、10% ο−ケイ酸ナトリウム水溶液で電解脱脂、10vol%HCIによる酸処理を施した。
Constant current electrolytic plating was performed using the obtained plating solution.
The electrolysis conditions were a bath temperature of 30 ° C., a current density of 10 mA · cm −2 , and an amount of electrodeposition of 50 C · cm −2 . A Cu wire (99.96%) having a wire diameter of 1 mm was used as a cathode core wire, and a pipe having a 5 mm inner diameter made of Al (99.99%) as an anode was used in a two-electrode cell.
As a pretreatment of the cathode, after polishing with emery paper (No. 2000), electrolytic degreasing with 10% o-sodium silicate aqueous solution and acid treatment with 10 vol% HCI were performed.

上記条件にて表面に厚さ約100μmのアルミニウム/カーボンナノチューブ複合めっき皮膜を有する電線を得た。   An electric wire having an aluminum / carbon nanotube composite plating film with a thickness of about 100 μm on the surface was obtained under the above conditions.

(比較例1)
カーボンナノチューブの添加を行わず、純粋なアルミめっき皮膜のみを芯線上に施したこと以外は、実施例1と同様の操作を繰返して、表面に厚さ約100μmのアルミニウムめっき皮膜を有する電線を得た。
(Comparative Example 1)
An electric wire having an aluminum plating film with a thickness of about 100 μm on the surface is obtained by repeating the same operation as in Example 1 except that only the pure aluminum plating film is applied on the core wire without adding carbon nanotubes. It was.

(性能評価)
走査電子顕微鏡(SEM;JOEL、JSM−6500F&HITACHI、S−2600N)を用いて、上記実施例1で得られた電線表面のめっき皮膜表面状態を観察した。
MWCNTがAl析出物中に取り込まれていく様子が、実際に観察された。
まず、MWCNTが電析物表面に吸着した直後、Alの初期析出核(原子数として1〜10万個程度)に取り押さえられている様子が観察された。
次いで、MWCNTが、核から成長したAl析出核に完全に取り込まれた様子が観察された。そして、MWCNTがほぼ完全にAl析出物中に埋没した様子が観察された。
以上のことから、MWCNTが単分散の形でAlと共析することを確認した。図1にその状況を示す。
(Performance evaluation)
Using a scanning electron microscope (SEM; JOEL, JSM-6500F & HITACHI, S-2600N), the surface state of the plating film on the surface of the electric wire obtained in Example 1 was observed.
It was actually observed that MWCNT was taken into the Al precipitate.
First, immediately after MWCNT was adsorbed on the surface of the deposit, it was observed that the initial precipitation nuclei of Al (the number of atoms was about 1 to 100,000) were suppressed.
Next, it was observed that MWCNT was completely taken into Al precipitation nuclei grown from the nuclei. And it was observed that MWCNT was almost completely buried in the Al precipitate.
From the above, it was confirmed that MWCNT co-deposited with Al in a monodispersed form. The situation is shown in FIG.

また、実施例1、比較例1で得られた電線について、断面観察によりめっき皮膜厚を測定したところ、ともに約100μmであることを確認した。
これにより、得られた電線の約30vol%がめっき皮膜により占められていることが分かった。
Moreover, about the electric wire obtained in Example 1 and Comparative Example 1, when plating film thickness was measured by cross-sectional observation, it was confirmed that both are about 100 micrometers.
Thereby, it turned out that about 30 vol% of the obtained electric wire is occupied by the plating film.

更に、これらの電線に対して、体積電気抵抗率、比重、カーボン含有量を測定した。
なお、体積電気抵抗率は4端子法により測定した。比重はアルキメデス法により測定した。カーボン含有量は燃焼−赤外線吸収法により測定した。
これらの測定結果を表1に示す。
Furthermore, volume electric resistivity, specific gravity, and carbon content were measured for these electric wires.
The volume resistivity was measured by the 4-terminal method. Specific gravity was measured by Archimedes method. The carbon content was measured by a combustion-infrared absorption method.
These measurement results are shown in Table 1.

Figure 2007157372
Figure 2007157372

表1より、実施例1で得られた電線は、比較例1で得られた電線よりも電気抵抗率が低く、且つ比重も小さいので、軽量高導電率であると言える。   From Table 1, it can be said that the electric wire obtained in Example 1 has a lower electrical resistivity and a lower specific gravity than the electric wire obtained in Comparative Example 1, and thus has a light weight and high conductivity.

以上、本発明を若干の好適実施例により詳細に説明したが、本発明はこれら実施例に限定されるものではなく、本発明の要旨の範囲内において種々の変形実施が可能である。
例えば、上述の実施例で用いためっき液は、電解めっき以外の方法、即ち、蒸着めっき、溶融めっきなどに用いても、本発明の軽量高導電率電線を得ることができる。
Although the present invention has been described in detail with some preferred embodiments, the present invention is not limited to these embodiments, and various modifications can be made within the scope of the gist of the present invention.
For example, even if the plating solution used in the above-described embodiment is used in a method other than electrolytic plating, that is, vapor deposition plating, hot dipping, etc., the lightweight high-conductivity electric wire of the present invention can be obtained.

本発明によれば、電解めっきという簡便な工程によって軽量及び高電気伝導率を兼備した電線材を得ることができる。
また、本発明の軽量高伝導率電線を送電線、リード線、電気機器のコイル等に用いることにより、高い電気伝導率や高い熱伝導率を維持したまま、軽量化及び小型化を促進することができるため、産業的意義は非常に大きい。
According to the present invention, an electric wire material having both light weight and high electrical conductivity can be obtained by a simple process called electrolytic plating.
Further, by using the light and high conductivity wire of the present invention for a power transmission line, a lead wire, a coil of an electric device, etc., it is possible to promote weight reduction and downsizing while maintaining high electrical conductivity and high thermal conductivity. Therefore, the industrial significance is very large.

本発明の軽量高導電率電線の一例のめっき皮膜表面の状態を示す写真(×13000)である。It is a photograph (x13000) which shows the state of the plating film surface of an example of the lightweight high conductivity electric wire of the present invention.

Claims (8)

芯線にめっき皮膜を施して成る軽量高導電率電線であって、
上記芯線は、銅及び/又はアルミニウムから構成され、上記めっき皮膜は、ナノカーボンとアルミニウムの複合材料から構成されていることを特徴とする軽量高導電率電線。
It is a lightweight high-conductivity electric wire that is made by applying a plating film to the core wire,
The said core wire is comprised from copper and / or aluminum, and the said plating film is comprised from the composite material of nanocarbon and aluminum, The lightweight high electrical conductivity electric wire characterized by the above-mentioned.
上記めっき皮膜が、該電線の総体積に対して10〜90vol%の割合で含まれていることを特徴とする請求項1に記載の軽量高導電率電線。   The lightweight high-conductivity electric wire according to claim 1, wherein the plating film is contained at a rate of 10 to 90 vol% with respect to the total volume of the electric wire. 上記めっき皮膜を100重量部としたときに、上記ナノカーボンが0.1〜50重量部の割合で含まれることを特徴とする請求項1又は2に記載の軽量高導電率電線。   The lightweight high-conductivity electric wire according to claim 1 or 2, wherein the nanocarbon is contained in a proportion of 0.1 to 50 parts by weight when the plating film is 100 parts by weight. 上記ナノカーボンが、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、カーボンブラック、フラーレン、アセチレンブラック及びケッチェンブラックから成る群より選ばれた少なくとも1種のものから構成されていることを特徴とする請求項1〜3のいずれか1つの項に記載の軽量高導電率電線。   The nanocarbon is composed of at least one selected from the group consisting of carbon nanotubes, carbon nanofibers, carbon nanohorns, carbon black, fullerene, acetylene black and ketjen black. The lightweight high electrical conductivity electric wire according to any one of items 1 to 3. 上記カーボンナノチューブが、直径1〜100nm、長さ1〜100μm、アスペクト比10〜100であり、単層構造又は積層構造であることを特徴とする請求項4に記載の軽量高導電率電線。   5. The lightweight high-conductivity electric wire according to claim 4, wherein the carbon nanotube has a diameter of 1 to 100 nm, a length of 1 to 100 μm, an aspect ratio of 10 to 100, and a single-layer structure or a laminated structure. 電気体積抵抗率が、0.5〜3μΩ・cmであることを特徴とする請求項1〜5のいずれか1つの項に記載の軽量高導電率電線。   The lightweight high-conductivity electric wire according to any one of claims 1 to 5, wherein the electric volume resistivity is 0.5 to 3 µΩ · cm. 請求項1〜6のいずれか1つの項に記載の軽量高導電率電線を製造するに当たり、
20〜80モル%のアルミニウムハロゲン化物と、80〜20モル%の1,3‐ジアルキルイミダゾリウムハロゲン化物(但し、アルキル基の炭素数は1〜12)及び/又はモノアルキルピリジニウムハロゲン化物(但し、アルキル基の炭素数は1〜12)とを混合溶融して成る溶融塩に、ナノカーボンを含めてめっき液とすることを特徴とする軽量高導電率電線の製造方法。
In manufacturing the lightweight high conductivity electric wire according to any one of claims 1 to 6,
20 to 80 mol% of aluminum halide and 80 to 20 mol% of 1,3-dialkylimidazolium halide (wherein the alkyl group has 1 to 12 carbon atoms) and / or monoalkylpyridinium halide (provided that A method for producing a lightweight, high-conductivity electric wire, characterized in that nanocarbon is used as a plating solution in a molten salt obtained by mixing and melting an alkyl group having 1 to 12 carbon atoms.
乾燥無酸素雰囲気中で、直流又はパルス電流により浴温0〜300℃、電流密度0.01〜50A/dmの電解条件でめっきすることを特徴とする請求項7に記載の軽量高導電率電線の製造方法。 The light and high electrical conductivity according to claim 7, wherein plating is performed under electrolytic conditions of a bath temperature of 0 to 300 ° C and a current density of 0.01 to 50 A / dm 2 by a direct current or a pulse current in a dry oxygen-free atmosphere. Electric wire manufacturing method.
JP2005347454A 2005-12-01 2005-12-01 Light-weighted wire with high conductivity and its manufacturing method Pending JP2007157372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005347454A JP2007157372A (en) 2005-12-01 2005-12-01 Light-weighted wire with high conductivity and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005347454A JP2007157372A (en) 2005-12-01 2005-12-01 Light-weighted wire with high conductivity and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007157372A true JP2007157372A (en) 2007-06-21

Family

ID=38241498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005347454A Pending JP2007157372A (en) 2005-12-01 2005-12-01 Light-weighted wire with high conductivity and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007157372A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007179871A (en) * 2005-12-28 2007-07-12 Totoku Electric Co Ltd Fullerene composite plated wire, method of manufacturing same and fullerene composite-plated enameled wire
JP2011171291A (en) * 2010-01-20 2011-09-01 Furukawa Electric Co Ltd:The Wire using composite material, method of manufacturing the same, and electric wire using the same wire
JP2012009427A (en) * 2010-05-25 2012-01-12 Yazaki Corp Conductive material and manufacturing method thereof
WO2012020167A1 (en) * 2010-08-09 2012-02-16 Spindeco Oy Spin-current effect in carbon coated conductors
WO2012145267A1 (en) * 2011-04-19 2012-10-26 Commscope, Inc. Of North Carolina Carbon nanotube enhanced conductors for communications cables and related communications cables and methods
WO2013127444A1 (en) 2012-02-29 2013-09-06 Adamco Ag Carbon nanotube enhanced electrical cable
JP2013211212A (en) * 2012-03-30 2013-10-10 Toshiba Corp Laminated electrode, manufacturing method therefor and photoelectric conversion element
ITMI20121657A1 (en) * 2012-10-03 2014-04-04 Antonio Sambusseti COVERED ELECTRIC CONDUCTOR
WO2015139736A1 (en) * 2014-03-18 2015-09-24 Abb Technology Ltd A method for manufacturing a high-power cable
JP2015176733A (en) * 2014-03-14 2015-10-05 古河電気工業株式会社 Wire, coated electric wire using the same and wire harness for automobiles and method for producing wire
US9159463B2 (en) 2011-09-30 2015-10-13 Kabushiki Kaisha Toshiba Conductive material
US9419152B2 (en) 2012-03-30 2016-08-16 Kabushiki Kaisha Toshiba Carbon electrode, carbon electrode production method, and photoelectric conversion device
EP2579433A4 (en) * 2010-05-27 2017-01-18 Yazaki Corporation Rotor of induction motor, and induction motor using same
US10483104B2 (en) 2012-03-30 2019-11-19 Kabushiki Kaisha Toshiba Method for producing stacked electrode and method for producing photoelectric conversion device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007179871A (en) * 2005-12-28 2007-07-12 Totoku Electric Co Ltd Fullerene composite plated wire, method of manufacturing same and fullerene composite-plated enameled wire
US9362022B2 (en) 2010-01-20 2016-06-07 Furukawa Electric Co., Ltd. Composite electric cable and process for producing same
JP2011171291A (en) * 2010-01-20 2011-09-01 Furukawa Electric Co Ltd:The Wire using composite material, method of manufacturing the same, and electric wire using the same wire
JP2012009427A (en) * 2010-05-25 2012-01-12 Yazaki Corp Conductive material and manufacturing method thereof
EP2579433A4 (en) * 2010-05-27 2017-01-18 Yazaki Corporation Rotor of induction motor, and induction motor using same
WO2012020167A1 (en) * 2010-08-09 2012-02-16 Spindeco Oy Spin-current effect in carbon coated conductors
WO2012145267A1 (en) * 2011-04-19 2012-10-26 Commscope, Inc. Of North Carolina Carbon nanotube enhanced conductors for communications cables and related communications cables and methods
US8853540B2 (en) 2011-04-19 2014-10-07 Commscope, Inc. Of North Carolina Carbon nanotube enhanced conductors for communications cables and related communications cables and methods
US9159463B2 (en) 2011-09-30 2015-10-13 Kabushiki Kaisha Toshiba Conductive material
WO2013127444A1 (en) 2012-02-29 2013-09-06 Adamco Ag Carbon nanotube enhanced electrical cable
JP2013211212A (en) * 2012-03-30 2013-10-10 Toshiba Corp Laminated electrode, manufacturing method therefor and photoelectric conversion element
US9419152B2 (en) 2012-03-30 2016-08-16 Kabushiki Kaisha Toshiba Carbon electrode, carbon electrode production method, and photoelectric conversion device
US10483104B2 (en) 2012-03-30 2019-11-19 Kabushiki Kaisha Toshiba Method for producing stacked electrode and method for producing photoelectric conversion device
ITMI20121657A1 (en) * 2012-10-03 2014-04-04 Antonio Sambusseti COVERED ELECTRIC CONDUCTOR
JP2015176733A (en) * 2014-03-14 2015-10-05 古河電気工業株式会社 Wire, coated electric wire using the same and wire harness for automobiles and method for producing wire
WO2015139736A1 (en) * 2014-03-18 2015-09-24 Abb Technology Ltd A method for manufacturing a high-power cable

Similar Documents

Publication Publication Date Title
JP2007157372A (en) Light-weighted wire with high conductivity and its manufacturing method
JP2007070689A (en) Nanocarbon/aluminum composite material, method for producing the same, and plating liquid used therefor
KR100748228B1 (en) Method of making metal/carbon nanotube composite materials by electroplating
US8709226B2 (en) Instantaneous electrodeposition of metal nanostructures on carbon nanotubes
Martis et al. Electro-generated nickel/carbon nanotube composites in ionic liquid
JP4999072B2 (en) Surface coating material
US20200399748A1 (en) Metal Matrix Composite Comprising Nanotubes And Method Of Producing Same
TW201241243A (en) Process for production of aluminum structure, and aluminum structure
JP2007162080A (en) Thermally conductive member, automotive parts and manufacturing method therefor
Pereira et al. Electrodeposition of Co and Co composites with carbon nanotubes using choline chloride-based ionic liquids
JP4351120B2 (en) Method for producing metal particles
Chen et al. Electrodeposited Cu/buckypaper composites with high electrical conductivity and ampacity
Sharma et al. Electrochemical tailoring of Pb-free Sn coatings modified with SiC nanoparticles by surfactant-assisted reverse pulse plating
Ashraf et al. Novel 3-D urchin-like Ni–Co–W porous nanostructure as efficient bifunctional superhydrophilic electrocatalyst for both hydrogen and oxygen evolution reactions
Martis et al. Impact of surface functionalization of MWCNTs on electrogenerated Ni/MWCNT composites from aqueous solutions
JP2008019456A (en) Electrically composite-plated wire rod, manufacturing method therefor, and manufacturing apparatus therefor
TW201224161A (en) Method for producing aluminum structure and aluminum structure
TW201217575A (en) Method for producing aluminum structure, and aluminum structure
CN111188074B (en) Preparation method of Cu-CNTs composite material
JP2007162079A (en) Slide member for automobile engine and method of manufacturing the same
US20220223314A1 (en) Carbon-nanotubes copper composite conductors
JP4133655B2 (en) Method for producing nanocarbon material and method for producing wiring structure
KR20110033333A (en) Cable having light weight and high conductivity
JP2009200038A (en) Anticorrosive conductive coating, anticorrosive conductive material, solid polymer fuel cell, its separator, and manufacturing method of anticorrosive conductive material
WO2018211740A1 (en) Aluminum plating film and production method for aluminum plating film