JP4351120B2 - Method for producing metal particles - Google Patents

Method for producing metal particles Download PDF

Info

Publication number
JP4351120B2
JP4351120B2 JP2004239040A JP2004239040A JP4351120B2 JP 4351120 B2 JP4351120 B2 JP 4351120B2 JP 2004239040 A JP2004239040 A JP 2004239040A JP 2004239040 A JP2004239040 A JP 2004239040A JP 4351120 B2 JP4351120 B2 JP 4351120B2
Authority
JP
Japan
Prior art keywords
cnts
metal particles
cnt
metal
types
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004239040A
Other languages
Japanese (ja)
Other versions
JP2006057129A (en
Inventor
浩一 市来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinano Kenshi Co Ltd
Original Assignee
Shinano Kenshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinano Kenshi Co Ltd filed Critical Shinano Kenshi Co Ltd
Priority to JP2004239040A priority Critical patent/JP4351120B2/en
Publication of JP2006057129A publication Critical patent/JP2006057129A/en
Application granted granted Critical
Publication of JP4351120B2 publication Critical patent/JP4351120B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、電気接点、電池、電磁波シールド、導電材、摩擦材接点、摺動材等の材料として好適に用いることのできる金属材料の製造方法に関する。 The present invention relates to a method for producing a metal material that can be suitably used as a material such as an electrical contact, a battery, an electromagnetic wave shield, a conductive material, a friction material contact, and a sliding material.

金属内にカーボンナノチューブを分散させた複合金属体が知られている。
特許文献1(特開2000−223004号)に示される複合金属体は、カーボンナノチューブと金属粉とを混合し、焼結してブロック状となしたものである。
A composite metal body in which carbon nanotubes are dispersed in a metal is known.
A composite metal body disclosed in Patent Document 1 (Japanese Patent Application Laid-Open No. 2000-220304) is obtained by mixing carbon nanotubes and metal powder and sintering them into a block shape.

また、特許文献2(特開2004−186102号)に示すように、複合金属体に用いるカーボンナノチューブとしてはある特定の種類のものを用いるのが一般的である。
特開2000−223004号公報 特開2004−186102号公報
In addition, as shown in Patent Document 2 (Japanese Patent Application Laid-Open No. 2004-186102), it is common to use a specific type of carbon nanotube used for the composite metal body.
Japanese Patent Laid-Open No. 2000-220304 JP 2004-186102 A

しかしながら、上述した従来の技術のように特定の種類のカーボンナノチューブを混入させた複合金属体では、その電気伝導性や熱伝導性等の性能は混入させたカーボンナノチューブの性能に依存しているので、性能に限界があるという課題がある。   However, in the composite metal body in which a specific type of carbon nanotube is mixed as in the conventional technique described above, the performance such as electric conductivity and thermal conductivity depends on the performance of the mixed carbon nanotube. There is a problem that performance is limited.

そこで、本発明は上記課題を解決すべくなされたものであり、その目的とするところは従来よりも電気伝導性や熱伝導性等の性能を向上させた複合金属体の材料となる金属粒子の製造方法を提供することにある。 Therefore, the present invention has been made to solve the above-mentioned problems, and the object of the present invention is to provide a metal particle that is a material of a composite metal body with improved performance such as electrical conductivity and thermal conductivity than before. It is to provide a manufacturing method .

本発明にかかる金属粒子の製造方法によれば、2種類以上のカーボンナノチューブを分散した電解液を電解して、カソード電極上に、カーボンナノチューブが混入した金属粒子を析出させる工程と、該析出した金属粒子をカソード電極上から分離する工程とを含むことを特徴とする。According to the method for producing metal particles according to the present invention, the step of electrolyzing an electrolytic solution in which two or more types of carbon nanotubes are dispersed to deposit metal particles mixed with carbon nanotubes on the cathode electrode, and the deposition Separating the metal particles from the cathode electrode.
この方法によれば、性能の向上を図った複合金属体の材料として、カーボンナノチューブが均一に分散した金属粒子が得られる。  According to this method, metal particles in which carbon nanotubes are uniformly dispersed can be obtained as a composite metal body material with improved performance.
なお、本明細書中においてはカーボンナノチューブをCNTと省略して称する場合がある。また、カーボンナノチューブの種類とは、構造的に違うもの、および同一構造であっても直径や線長さが異なるものを含めた概念である。In the present specification, the carbon nanotube may be abbreviated as CNT. Further, the type of carbon nanotube is a concept that includes structurally different ones and those that have the same structure but different diameters and line lengths.

また、前記カーボンナノチューブとしては、互いの直径比が5以上である少なくとも2種類のカーボンナノチューブを含むことを特徴としてもよく、前記カーボンナノチューブとしては、互いの線長さ比が2以上である少なくとも2種類のカーボンナノチューブを含むことを特徴としてもよい。The carbon nanotubes may include at least two types of carbon nanotubes having a diameter ratio of 5 or more. The carbon nanotubes have at least a line length ratio of 2 or more. Two types of carbon nanotubes may be included.

本発明によれば、従来の単一種類のカーボンナノチューブが混入した複合金属体よりも、電気伝導性や熱伝導性といった性能の向上を図ることができる。また2種類以上のカーボンナノチューブの相互作用により、さらなる性能の向上も期待できる。   According to the present invention, performances such as electrical conductivity and thermal conductivity can be improved as compared with the conventional composite metal body mixed with a single type of carbon nanotube. Further, further improvement in performance can be expected due to the interaction of two or more types of carbon nanotubes.

(複合金属体)
以下、本発明の好適な実施の形態について説明する。
複合金属体の概略説明図を図1に示す。
複合金属体10は、銅などの金属に2種類のカーボンナノチューブ(CNT)が混入して構成されている。
図1に示すCNTは、大径且つ線方向の長さが長いCNT12(以下、長大CNTと称する)と、小径且つ線方向の長さが短いCNT13(以下、短小CNTと称する)の2種類である。
このため、複合金属体10全体としては、長大CNT12の性能と短小CNTの性能の双方の性能を有することとなり、単一のCNTが混入した複合金属体と比較して高性能の金属材料とすることができる
(Composite metal)
Hereinafter, preferred embodiments of the present invention will be described.
A schematic illustration of the composite metal body is shown in FIG.
The composite metal body 10 is configured by mixing two types of carbon nanotubes (CNT) in a metal such as copper.
The CNTs shown in FIG. 1 are of two types: CNTs 12 having a large diameter and a long linear direction (hereinafter referred to as long CNTs) and CNTs 13 having a small diameter and a short length in the linear direction (hereinafter referred to as short CNTs). is there.
For this reason, the composite metal body 10 as a whole has both the performance of long CNTs 12 and the performance of short CNTs, and is a high-performance metal material compared to a composite metal body mixed with a single CNT. be able to

また、複合金属体10では、長大CNT12の間の金属マトリクス14中に、短小CNT13が介在する。このため、短小CNT13は、長大CNT12のどうしの間を接続し長大CNTのネットワークも形成する。このネットワークの形成によって、長大CNT12が本来有している性能をさらに上回る性能が引き出されることが期待される。   In the composite metal body 10, short and small CNTs 13 are interposed in the metal matrix 14 between the long and large CNTs 12. For this reason, the short CNTs 13 connect the long CNTs 12 to form a network of long CNTs. With the formation of this network, it is expected that performance that exceeds the performance inherent in the long CNT 12 will be derived.

なお、ここでは複合金属体に混入されているCNTの種類として、直径や長さの違いによるものを例として説明したが、種類の違いとしては直径や長さの違いに限られることはなく、構造の違いであってもよい。例えば年輪状のCNT、シングルウォールCNT、カップスタック状のCNT等の形状が異なるCNTを複数種類混入させたものであってもよい。
また、CNTは2種類に限定されることはなく、2種類以上混入されていればよい。
In addition, here, as a type of CNT mixed in the composite metal body, as described as an example due to the difference in diameter and length, the difference in type is not limited to the difference in diameter and length, It may be a difference in structure. For example, a plurality of CNTs having different shapes such as annual ring-shaped CNT, single-wall CNT, and cup-stacked CNT may be mixed.
Moreover, CNT is not limited to two types, What is necessary is just to mix two or more types.

(複合金属体の製造方法)
上述したような、2種類以上のCNTが混入された複合金属体を製造する製造方法について説明する。製造方法については、いくつかの方法が考えられる。
(Production method of composite metal body)
A manufacturing method for manufacturing a composite metal body mixed with two or more kinds of CNTs as described above will be described. Several methods can be considered for the manufacturing method.

(製造方法1)
図2に複合金属体の製造方法1について示す。
まず、2種類以上のCNTと、金属粉とを混合する(ステップS100)。
次に、2種類以上のCNTと金属粉とを混合して成る混合物を所定の型に充填して成形する(ステップS102)。
成形した成形物を焼成または溶融する(ステップS104)。これにより、金属粉が結着し、2種類以上のCNTが混入した複合金属体を得ることができる。
(Manufacturing method 1)
FIG. 2 shows a method 1 for producing a composite metal body.
First, two or more types of CNT and metal powder are mixed (step S100).
Next, a mixture obtained by mixing two or more types of CNTs and metal powder is filled into a predetermined mold and molded (step S102).
The molded product is fired or melted (step S104). Thereby, the metal powder is bound and a composite metal body in which two or more kinds of CNTs are mixed can be obtained.

場合によっては、2種類以上のCNTと金属粉に加え、ステップS100においてバインダーを混合させてもよい。バインダーを用いることにより、ステップS102の成形時にCNTと金属粉との間の隙間を十分に埋めることができる。
バインダーとしては、樹脂バインダーまたは金属バインダーを用いることができる。樹脂バインダーを用いた場合には、ステップS104の焼成または溶融時に樹脂バインダーは飛散して消失する。
In some cases, a binder may be mixed in step S100 in addition to two or more types of CNT and metal powder. By using the binder, the gap between the CNT and the metal powder can be sufficiently filled at the time of molding in step S102.
As the binder, a resin binder or a metal binder can be used. When a resin binder is used, the resin binder scatters and disappears during firing or melting in step S104.

(製造方法2)
図3に複合金属体の製造方法2について示す。
この方法によれば、2種類以上のCNTを用意しておき、これと溶融した金属とを混合させる(ステップS200)だけで、複合金属体を得ることができる。
ただし、この方法によればCNTをどのようにして均一に分散させるかが課題になると考えられる。
(Manufacturing method 2)
FIG. 3 shows a method 2 for producing a composite metal body.
According to this method, a composite metal body can be obtained simply by preparing two or more types of CNTs and mixing them with molten metal (step S200).
However, according to this method, it is considered how to uniformly disperse CNTs.

(製造方法3)
図4に複合金属体の製造方法3について示す。
本方法は、2種類以上のCNTで修飾された金属粒子を用いて複合金属体を得る方法である。
まず、2種類以上のCNTで修飾された金属粒子を所定の型に充填して成形する(ステップS300)。
次いで、成形した成形物を焼成または溶融する(ステップS302)。これにより、金属粒子が結着し、2種類以上のCNTが混入した複合金属体を得ることができる。
この方法によれば、CNTが均一に行き渡った複合金属体を製造できる。
なお、2種類以上のCNTで修飾された金属粒子の製造方法については、後述する。
(Manufacturing method 3)
FIG. 4 shows a method 3 for producing a composite metal body.
This method is a method of obtaining a composite metal body using metal particles modified with two or more types of CNTs.
First, metal particles modified with two or more types of CNTs are filled into a predetermined mold and molded (step S300).
Next, the molded product is fired or melted (step S302). Thereby, the metal particle is bound and a composite metal body in which two or more kinds of CNTs are mixed can be obtained.
According to this method, a composite metal body in which CNTs are uniformly distributed can be manufactured.
A method for producing metal particles modified with two or more types of CNTs will be described later.

(製造方法4)
図5に複合金属体の製造方法4について示す。
まず、1種類のCNTで修飾された金属粒子と、該金属粒子とは異なる種類のCNTで修飾された金属粒子とを混合する(ステップS400)。
次に、金属粒子が混合されて成る混合物を所定の型に充填して成形する(ステップS402)。
成形した成形物を焼成または溶融する(ステップS404)。これで、2種類以上のCNTが混入した複合金属体を得ることができる。
この方法によっても、CNTが均一に行き渡った複合金属体を製造できる。
(Manufacturing method 4)
FIG. 5 shows a method 4 for producing a composite metal body.
First, metal particles modified with one type of CNT and metal particles modified with a type of CNT different from the metal particles are mixed (step S400).
Next, the mixture obtained by mixing the metal particles is filled into a predetermined mold and molded (step S402).
The molded product is fired or melted (step S404). Thus, a composite metal body in which two or more kinds of CNTs are mixed can be obtained.
This method can also produce a composite metal body in which CNTs are uniformly distributed.

(金属粒子およびその製造方法)
上述した複合金属体の製造方法3と製造方法4では、CNTが修飾された金属粒子を用いて複合金属体を製造することを説明したが、以下に2種類以上のCNTで修飾された金属粒子とその製造方法について説明する。
なお、単一種類のCNTで修飾された金属粒子とその製造方法については従来から特願2003−40308等で本発明者等が提案しているので、ここでは2種類以上のCNTで修飾された金属粒子についてのみ説明する。
(Metal particles and manufacturing method thereof)
In the manufacturing method 3 and manufacturing method 4 of the composite metal body described above, it has been described that a composite metal body is manufactured using metal particles modified with CNTs. The metal particles modified with two or more types of CNTs are described below. The manufacturing method will be described.
In addition, since the present inventors have proposed in Japanese Patent Application No. 2003-40308 etc. about the metal particle modified with a single type of CNT and the method for producing the same, here it was modified with two or more types of CNT. Only the metal particles will be described.

本発明の金属粒子の製造方法は、2種類以上のCNTを分散した電解液を電解して、カソード電極上に、CNTが混入した金属粒子を析出させる工程と、析出した金属粒子をカソード電極上から分離する工程を含んでいる。
分離した金属粒子を回収、洗浄、乾燥することによって所要の金属粒子を得ることができる。
The method for producing metal particles of the present invention includes a step of electrolyzing an electrolytic solution in which two or more types of CNTs are dispersed to deposit metal particles mixed with CNTs on the cathode electrode, and the deposited metal particles on the cathode electrode. A step of separating from.
The required metal particles can be obtained by collecting, washing and drying the separated metal particles.

電流密度や電解時間などの電解条件を調節することによって平均粒径数百nm〜数十μmの範囲の金属粒子を析出させることができる。電流密度は粒径や生産性を考慮して最適値を選択する。
例えば銅の電解液の場合、電解槽に硫酸銅水溶液と硫酸を主成分とする電解液を入れ、2種類以上のカーボンナノチューブを電解液に入れる。
電解槽中ではアノード電極として電気銅を使用し、電解中の銅イオンの補給を行う。電解液への銅イオンの補給は、銅以外の金属、例えば鉛をアノード電極として使用し、外部から銅イオンを補給しても構わない。
場合によっては、電解中の電解液は撹拌装置により撹拌されると同時に、電解液濃度および成分量も所定の比率となるように制御する。
By adjusting electrolysis conditions such as current density and electrolysis time, metal particles having an average particle size in the range of several hundred nm to several tens of μm can be deposited. The optimum current density is selected in consideration of the particle size and productivity.
For example, in the case of a copper electrolytic solution, an electrolytic solution containing a copper sulfate aqueous solution and sulfuric acid as main components is placed in an electrolytic bath, and two or more types of carbon nanotubes are placed in the electrolytic solution.
In the electrolytic bath, electrolytic copper is used as the anode electrode to replenish copper ions during electrolysis. For supplying copper ions to the electrolytic solution, a metal other than copper, for example, lead may be used as the anode electrode, and copper ions may be supplied from the outside.
In some cases, the electrolytic solution being electrolyzed is stirred by the stirring device, and at the same time, the electrolytic solution concentration and the component amount are controlled to have a predetermined ratio.

また、2種類以上のCNTを電解液中に分散させるために、有機化合物からなる分散剤を添加するか、あるいは超音波による振動を与えるとよい。分散剤としてはポリアクリル酸等を用いることができる。   Further, in order to disperse two or more types of CNTs in the electrolytic solution, it is preferable to add a dispersant made of an organic compound or to apply vibration by ultrasonic waves. A polyacrylic acid etc. can be used as a dispersing agent.

析出した金属粒子をカソード電極上から分離する場合、金属粒子が析出したカソード電極よりブレード等を用いて機械的に分離できる。   When the deposited metal particles are separated from the cathode electrode, they can be mechanically separated from the cathode electrode on which the metal particles are deposited using a blade or the like.

析出粒子の粒径や強度、およびカソード電極からの分離性を調整するため、電解液にチオ尿素、ゼラチン、タングステン、塩化物等の有機、無機化合物を添加してもよい。
カソード電極には、析出する金属(本実施例では銅)の密着性が悪く、析出粒子を分離しやすいニオブを使用すると好適である。カソード電極としてはニオブに限られることはなく、ステンレス鋼、チタン、タンタル、白金等を使用することができる。
またカソード電極の表面は析出する金属を粒子化するため表面を粗面化しておくことが望ましい。例えば、カソード電極の表面にカソード電極とは異なる金属材料から成る微小突起を形成するとよい。
In order to adjust the particle size and strength of the deposited particles and the separability from the cathode electrode, an organic or inorganic compound such as thiourea, gelatin, tungsten, or chloride may be added to the electrolytic solution.
For the cathode electrode, it is preferable to use niobium which has poor adhesion to the deposited metal (copper in this embodiment) and can easily separate the deposited particles. The cathode electrode is not limited to niobium, and stainless steel, titanium, tantalum, platinum or the like can be used.
Further, it is desirable that the surface of the cathode electrode is roughened in order to make the deposited metal into particles. For example, microprotrusions made of a metal material different from the cathode electrode may be formed on the surface of the cathode electrode.

生産される、2種類以上のCNTで修飾された金属粒子の粒径は、カソード表面の微小突起の大きさと形状、電解電流密度などが相互に関連して決まる。
なお、金属粒子の金属の種類は銅に限定されるものではない。
The particle size of the metal particles modified with two or more types of CNTs to be produced is determined in relation to the size and shape of the microprojections on the cathode surface, the electrolytic current density, and the like.
Note that the metal type of the metal particles is not limited to copper.

上記のようにして得られる金属粒子は数百nm〜数十μmの極めて微細なものであり、しかも各金属粒子に2種類以上のCNTが混入している。したがって、これら金属粒子の集合体を焼成または溶融して得られる複合材料中には、2種類以上のCNTが均一に混入されたものとなる。   The metal particles obtained as described above are extremely fine particles of several hundred nm to several tens of μm, and two or more kinds of CNTs are mixed in each metal particle. Therefore, two or more types of CNTs are uniformly mixed in the composite material obtained by firing or melting these aggregates of metal particles.

また、電解液へのCNTの分散量、電解条件などを変えることによって、種々のCNTの混入量、粒径の金属粒子が得られるから、これら金属粒子を焼成または溶融することによって得られる複合金属体中の各CNT量も任意にコントロールすることが可能となる。
このような複合金属体は、2種類以上の各CNTの特質を生かして、摺動性が必要な軸受、高い電気伝導率が必要な電極や電気接点、高い熱伝導率の必要な放熱機構など、多様な用途に利用可能である。
In addition, by changing the amount of CNT dispersed in the electrolytic solution, electrolysis conditions, etc., various CNT mixing amounts and metal particles with particle sizes can be obtained, so composite metals obtained by firing or melting these metal particles The amount of each CNT in the body can also be arbitrarily controlled.
Such composite metal bodies make use of the characteristics of each of two or more types of CNTs, such as bearings that require slidability, electrodes and electrical contacts that require high electrical conductivity, and heat dissipation mechanisms that require high thermal conductivity. It can be used for various purposes.

以下、金属粒子の製造方法の実施例について説明する。
電解液
CuSO4・5H2O 40g/L
2SO4 100g/L
CNT(A) 2.5g/L
CNT(B) 2.5g/L
ポリアクリル酸分子量5000 0.05g/L
上記電解液を用いて、撹拌下、液温25℃、20A/dm2の電流密度で15分間電解を行った場合に、カソード電極の表面に析出した皮膜の走査型電子顕微鏡写真を図6に示す。
なお、CNT(A)とは、年輪状のもの(MWCNT)で直径が100〜300nmのものであり、CNT(B)とは、カップスタック状のもので直径が100〜200nmのものである。
図6に見られるように、粒径約10μm程度の微細な球状の銅粒に2種類のCNTが多数取り込まれた、Cu-CNT複合物が形成されている。
これら複合物は、安定してカソード電極から分離し、粒子化できた。
Hereinafter, the Example of the manufacturing method of a metal particle is described.
Electrolyte CuSO 4 · 5H 2 O 40g / L
H 2 SO 4 100 g / L
CNT (A) 2.5g / L
CNT (B) 2.5g / L
Polyacrylic acid molecular weight 5000 0.05g / L
FIG. 6 shows a scanning electron micrograph of the film deposited on the surface of the cathode electrode when electrolysis is performed for 15 minutes with stirring at a liquid temperature of 25 ° C. and a current density of 20 A / dm 2 using the above electrolytic solution. Show.
The CNT (A) is an annual ring (MWCNT) having a diameter of 100 to 300 nm, and the CNT (B) is a cup stack having a diameter of 100 to 200 nm.
As seen in FIG. 6, a Cu—CNT composite is formed in which a large number of two types of CNTs are incorporated into fine spherical copper particles having a particle diameter of about 10 μm.
These composites could be stably separated from the cathode electrode and granulated.

電解液
CuSO4・5H2O 40g/L
2SO4 100g/L
CNT(C) 0.8g/L
CNT(D) 0.5g/L
上記電解液を用いて、撹拌下、超音波発生器により超音波振動を与えつつ液温25℃、40A/dm2の電流密度で15分間電解を行った場合に、カソード電極の表面に析出した皮膜の走査型電子顕微鏡写真を図7に示す。超音波発生器として、超音波洗浄機(アズワン株式会社:US−1)を使用した。
なお、CNT(C)とは、シングルウォールカーボンナノチューブ(SWCNT)で直径が100〜300nmのものであり、CNT(D)とは、カップスタック状のもので直径が100〜200nmのものである。
図7に見られるように、粒径数十μm程度の微細な球状の銅粒に2種類のCNTが多数取り込まれた、Cu-CNT複合物が形成されている。
これら複合物は、安定してカソード電極から分離し、粒子化できた。
Electrolyte CuSO 4 · 5H 2 O 40g / L
H 2 SO 4 100 g / L
CNT (C) 0.8g / L
CNT (D) 0.5g / L
When electrolysis was performed for 15 minutes at a liquid temperature of 25 ° C. and a current density of 40 A / dm 2 while applying ultrasonic vibration with an ultrasonic generator with stirring using the above electrolytic solution, it was deposited on the surface of the cathode electrode. A scanning electron micrograph of the film is shown in FIG. As an ultrasonic generator, an ultrasonic cleaning machine (As One Corporation: US-1) was used.
CNT (C) is a single-wall carbon nanotube (SWCNT) having a diameter of 100 to 300 nm, and CNT (D) is a cup-stacked one having a diameter of 100 to 200 nm.
As can be seen in FIG. 7, a Cu—CNT composite is formed in which a large number of two types of CNTs are incorporated into fine spherical copper particles having a particle size of several tens of μm.
These composites could be stably separated from the cathode electrode and granulated.

以上本発明につき好適な実施例を挙げて種々説明したが、本発明はこの実施例に限定されるものではなく、発明の精神を逸脱しない範囲内で多くの改変を施し得るのはもちろんである。   While the present invention has been described in detail with reference to a preferred embodiment, the present invention is not limited to this embodiment, and it goes without saying that many modifications can be made without departing from the spirit of the invention. .

複合金属体のカーボンナノチューブの混入の様子を示す説明図である。It is explanatory drawing which shows the mode of mixing of the carbon nanotube of a composite metal body . 複合金属体の製造方法1を示すフローチャートである。It is a flowchart which shows the manufacturing method 1 of a composite metal body. 複合金属体の製造方法2を示すフローチャートである。It is a flowchart which shows the manufacturing method 2 of a composite metal body. 複合金属体の製造方法3を示すフローチャートである。It is a flowchart which shows the manufacturing method 3 of a composite metal body. 複合金属体の製造方法4を示すフローチャートである。It is a flowchart which shows the manufacturing method 4 of a composite metal body. 本発明の金属粒子の製造方法の実施例1でカソード電極上に析出した金属粒子の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the metal particle which precipitated on the cathode electrode in Example 1 of the manufacturing method of the metal particle of this invention. 本発明の金属粒子の製造方法の実施例2でカソード電極上に析出した金属粒子の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the metal particle which precipitated on the cathode electrode in Example 2 of the manufacturing method of the metal particle of this invention.

10 複合金属体
12 長大CNT
13 短小CNT
14 金属マトリクス
10 Composite metal body 12 Long CNT
13 Short CNT
14 Metal matrix

Claims (3)

2種類以上のカーボンナノチューブを分散した電解液を電解して、カソード電極上に、カーボンナノチューブが混入した金属粒子を析出させる工程と、該析出した金属粒子をカソード電極上から分離する工程とを含むことを特徴とする金属粒子の製造方法。A step of electrolyzing an electrolytic solution in which two or more types of carbon nanotubes are dispersed to deposit metal particles mixed with carbon nanotubes on the cathode electrode; and a step of separating the deposited metal particles from the cathode electrode. A method for producing metal particles characterized by the above. 前記カーボンナノチューブとしては、互いの直径比が5以上である少なくとも2種類のカーボンナノチューブを含むことを特徴とする請求項1記載の金属粒子の製造方法。2. The method for producing metal particles according to claim 1, wherein the carbon nanotubes include at least two types of carbon nanotubes having a diameter ratio of 5 or more. 前記カーボンナノチューブとしては、互いの線長さ比が2以上である少なくとも2種類のカーボンナノチューブを含むことを特徴とする請求項1または請求項2記載の金属粒子の製造方法。The method for producing metal particles according to claim 1 or 2, wherein the carbon nanotubes include at least two types of carbon nanotubes having a line length ratio of 2 or more.
JP2004239040A 2004-08-19 2004-08-19 Method for producing metal particles Expired - Fee Related JP4351120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004239040A JP4351120B2 (en) 2004-08-19 2004-08-19 Method for producing metal particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004239040A JP4351120B2 (en) 2004-08-19 2004-08-19 Method for producing metal particles

Publications (2)

Publication Number Publication Date
JP2006057129A JP2006057129A (en) 2006-03-02
JP4351120B2 true JP4351120B2 (en) 2009-10-28

Family

ID=36104853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004239040A Expired - Fee Related JP4351120B2 (en) 2004-08-19 2004-08-19 Method for producing metal particles

Country Status (1)

Country Link
JP (1) JP4351120B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147170A (en) * 2004-11-16 2006-06-08 Sumitomo Electric Ind Ltd Conductive material and its manufacturing method
JP4999072B2 (en) * 2007-03-22 2012-08-15 古河電気工業株式会社 Surface coating material
US8628746B2 (en) 2007-04-12 2014-01-14 Raytheon Company System and method for dispersing nanostructures in a composite material
CN100463745C (en) * 2007-06-13 2009-02-25 湖南大学 Method for preparing copper-base composite particles of internal carbon-inlaid nano pipe
US8491292B1 (en) 2007-07-31 2013-07-23 Raytheon Company Aligning nanomaterial in a nanomaterial composite
US8636972B1 (en) * 2007-07-31 2014-01-28 Raytheon Company Making a nanomaterial composite
DE102009054427B4 (en) * 2009-11-25 2014-02-13 Kme Germany Ag & Co. Kg Method for applying mixtures of carbon and metal particles to a substrate, substrate obtainable by the method and its use
BR112012012525A2 (en) * 2009-12-01 2019-09-24 Applied Nanostructured Sols electrical matrix composite materials containing carbon nanotube infused fiber materials and methods for their production
WO2011146151A2 (en) 2010-02-02 2011-11-24 Applied Nanostructured Solutions, Llc Fiber containing parallel-aligned carbon nanotubes
US9017854B2 (en) 2010-08-30 2015-04-28 Applied Nanostructured Solutions, Llc Structural energy storage assemblies and methods for production thereof
JP6118540B2 (en) 2012-11-08 2017-04-19 新光電気工業株式会社 Heat dissipation component and manufacturing method thereof
JP5876817B2 (en) * 2012-12-04 2016-03-02 日信工業株式会社 Heat resistant seal
JP6483616B2 (en) * 2013-10-08 2019-03-13 日本ゼオン株式会社 Method for producing metal composite material
WO2016013219A1 (en) * 2014-07-23 2016-01-28 日本ゼオン株式会社 Plating solution and method for producing same, composite material, copper composite material, and method for producing same
JP6066007B1 (en) 2016-05-10 2017-01-25 日立金属株式会社 Method for producing purified copper and method for producing electric wire

Also Published As

Publication number Publication date
JP2006057129A (en) 2006-03-02

Similar Documents

Publication Publication Date Title
JP4351120B2 (en) Method for producing metal particles
JP2007070689A (en) Nanocarbon/aluminum composite material, method for producing the same, and plating liquid used therefor
TWI460126B (en) Carbon nanotube reinforced metal composites
JP5551161B2 (en) Conductive solid composite material and method for obtaining the same
JP4390807B2 (en) Composite metal body and method for producing the same
JP2007157372A (en) Light-weighted wire with high conductivity and its manufacturing method
WO2018019231A1 (en) Mosx/carbon black composite material, and manufacturing method and application method thereof
JP4421556B2 (en) Metal particle and method for producing the same
JP2008056950A (en) Silver composite material and producing method thereof
JP4878196B2 (en) Method for producing metal fine particles using conductive nanodot electrode
Sundaram et al. The influence of Cu electrodeposition parameters on fabricating structurally uniform CNT-Cu composite wires
JP2015042776A (en) Metal film and method for forming metal film
JP5342976B2 (en) Granules and method for producing the same
Zhang et al. A flexible platform containing graphene mesoporous structure and carbon nanotube for hydrogen evolution
JP2004076031A (en) Plating bath for electroplating and plating bath for composite plating, and their production method
JP2007162080A (en) Thermally conductive member, automotive parts and manufacturing method therefor
JP2007327117A (en) Electrode, apparatus for manufacturing metallic fine particle and method of manufacturing metallic fine particle
JP2007211305A (en) Composite foil of electrolytic copper, and production method therefor
Moyano et al. Remarkable effects of an electrodeposited copper skin on the strength and the electrical and thermal conductivities of reduced graphene oxide-printed scaffolds
JP2006063445A (en) Metal particle and method for producing the same
KR20140089056A (en) Anode for electroplating or electrolysis having cnt-ti combined structure and method for manufacturing the same
Wang et al. Challenge-driven printing strategies toward high-performance solid-state lithium batteries
US20060021877A1 (en) Metallic particle and method of producing the same
JP4643714B2 (en) Discharge surface treatment electrode and method for producing the same
JP5094056B2 (en) Fuel cell separator and fuel cell using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees