WO2006064805A1 - ディーゼルエンジンの排気ガス用電気式処理方法およびその装置 - Google Patents

ディーゼルエンジンの排気ガス用電気式処理方法およびその装置 Download PDF

Info

Publication number
WO2006064805A1
WO2006064805A1 PCT/JP2005/022881 JP2005022881W WO2006064805A1 WO 2006064805 A1 WO2006064805 A1 WO 2006064805A1 JP 2005022881 W JP2005022881 W JP 2005022881W WO 2006064805 A1 WO2006064805 A1 WO 2006064805A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
diesel engine
plate
electric processing
collection
Prior art date
Application number
PCT/JP2005/022881
Other languages
English (en)
French (fr)
Inventor
Munekatsu Furugen
Original Assignee
Munekatsu Furugen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Munekatsu Furugen filed Critical Munekatsu Furugen
Priority to EP05816706A priority Critical patent/EP1837489B9/en
Priority to JP2006548856A priority patent/JP4931602B2/ja
Priority to KR1020077016136A priority patent/KR101406649B1/ko
Priority to CN2005800474346A priority patent/CN101111667B/zh
Priority to AT05816706T priority patent/ATE548546T1/de
Publication of WO2006064805A1 publication Critical patent/WO2006064805A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/9454Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/08Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces parallel to the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/09Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces at right angles to the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/38Particle charging or ionising stations, e.g. using electric discharge, radioactive radiation or flames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/01Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust by means of electric or electrostatic separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • F01N3/0275Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means using electric discharge means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/30Details of magnetic or electrostatic separation for use in or with vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/06Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an inertial, e.g. centrifugal, device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas treatment technology for removing and purifying particulate matter (Particulate Matter: hereinafter referred to as "PM") mainly composed of carbon contained in exhaust gas of a diesel engine and harmful gas, More specifically, the present invention relates to an electric processing technology for exhaust gas of a diesel engine using corona discharge.
  • PM particulate Matter
  • An exhaust gas purifying device having a dropping part see Patent Document 2
  • a plurality of PM collecting electrodes each having an electric insulator layer and a catalyst layer, and each of the PM collecting electrodes Many proposals have been made, such as an exhaust gas purification device (see Patent Document 3) having a discharge electrode provided with a plurality of needle-like electrodes protruding toward a layer.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-112246
  • Patent Document 2 JP-A-6-173637
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-269133
  • the exhaust PM collection device described in Patent Documents 1 and 2 employs a so-called single-stage electrostatic precipitator system.
  • the discharge voltage and the collection deflection voltage are at the same potential. For this reason, it is difficult to set both voltages to appropriate conditions, and it is necessary to increase the distance between the deflection electrode and the collection electrode in order to prevent the occurrence of sparks.
  • the exhaust PM collection device described in Patent Documents 1 and 2 has a drawback that the collection efficiency decreases because more particles pass through the collection section without being collected.
  • it is necessary to increase the capacity of the collection unit which necessitates an increase in the size of the device and is inappropriate as an automobile part.
  • the exhaust gas purifying device described in Patent Document 3 employs a so-called two-stage electrostatic precipitator method, and since there are no countermeasures against contamination of force needle electrodes, there are tens of thousands of discharge electrodes.
  • a high voltage of volt is applied, there is a disadvantage that the PM collection performance cannot be exhibited due to a decrease in electrical insulation due to contamination.
  • the discharge electrode is inevitably contaminated by corrosive exhaust gas, and cannot maintain stable performance over a long period of time.
  • exhaust gas treatment that uses an electrical method using conventional corona discharge The means has a difficulty in practicality in which it is difficult to ensure high insulation of the discharge electrode.
  • the present invention eliminates the above-mentioned problems of the conventional diesel engine exhaust gas treatment technology using corona discharge, and can remove PM in the exhaust gas of a diesel engine with high efficiency and is stable over a long period of time. It is an object of the present invention to provide an electrical processing method and apparatus for exhaust gas of a diesel engine capable of exhibiting the above performance.
  • An electric processing method for exhaust gas of a diesel engine according to the present invention is provided with a discharge charging unit comprising a corona discharge unit and a charging unit upstream of an exhaust gas passage, and the corona discharged electrons are exhausted. It is characterized in that the particulate matter mainly composed of carbon is charged and the charged particulate matter is collected by a collection part disposed in the exhaust gas passage.
  • the exhaust gas electrical processing device for a diesel engine of the present invention corona discharge for charging electrons corona discharged upstream of the exhaust gas passage to particulate matter mainly composed of carbon in the exhaust gas.
  • a discharge charging unit including a charging unit and a charging unit is provided, and a collecting unit that collects the charged particulate matter is disposed in the exhaust gas passage.
  • the apparatus of the present invention is arranged such that the discharge-side tip of the electrode needle of the corona discharge portion is directed toward the downstream side of the exhaust gas flow, and corona electrons are discharged toward the downstream side.
  • the pole needle is placed in a seal gas pipe made of an insulator, the seal gas pipe is made of alumina ceramic, and the protruding portion of the electrode needle from the end of the seal gas pipe is connected to the potential of the gas flow in the seal gas pipe.
  • Positioning in the core coating the electrode needle with a material having electrical insulation and corrosion resistance, using quartz glass, alumina or ceramic as the coating material for the electrode needle, and simply collecting the collecting portion.
  • the collecting part is made up of a punching metal type collecting plate or a slit type collecting plate, and is defined as the total area of the apertures / the actual front area of the collecting part Ru An aperture ratio of 3 to 20%, a base plate made of a single plate that does not have an opening on the collection surface of the collection portion, and a lattice-shaped fin provided on the collection surface side of the base plate
  • the electrode plate holding rod in the collector fixing portion of the single-layer plate structure or the multilayer plate structure is disposed in an insulating seal tube, and the rectifying member is entirely or partially disposed in the seal gas tube. Arrangement, before A dummy tube portion is provided on the tube wall opposite to the electrode needle tip side of the seal gas tube in parallel with the exhaust gas flow direction.
  • the seal gas pipe having the dummy pipe part has an inner diameter of the seal gas pipe D, a length of the dummy pipe part of the seal gas pipe part L1, and a length from the dummy pipe part to the tip part L2. In this case, it is preferable to satisfy the conditions of L1 / D> 1.5 and L2 / D> 0.5.
  • the apparatus of the present invention uses a combination of the exhaust gas electrical processing apparatus and a catalyst.
  • a cyclone dust collector is provided after the electric processing apparatus for exhaust gas. It is.
  • the collection unit includes a base plate made of a single plate having no collection surface and a collection of the base plate.
  • a plurality of collecting plates constituted by lattice-like fins provided on the surface side may be arranged so that a gap is formed between the inner wall of the apparatus body.
  • particle aggregation and coarsening means may be disposed in the subsequent stage of the exhaust gas electric processing apparatus and in the previous stage of the cyclone dust collector.
  • particle aggregation coarsening means a particle aggregation tube having a honeycomb structure, or a particle aggregation plate formed by arranging a plurality of punching metals or metal meshes at intervals can be used.
  • an exhaust gas bypass pipe is connected between the upstream side and the downstream side of the apparatus, and the bypass is provided by a gas switching valve. It is possible to use a method of regenerating the collecting plate while flowing the exhaust gas through the pipeline.
  • the inner wall of the apparatus main body of the exhaust gas electric processing apparatus can also be used as the particulate matter collection surface.
  • the electric processing method and apparatus for exhaust gas of a diesel engine of the present invention can remove PM in exhaust gas of a diesel engine with a high purification rate, and is combined with an oxidation catalyst and a NOx reduction catalyst. It is a harmful gas component in the exhaust gas. HC, C0, N0x can also be removed with a high purification rate. In addition, PM can be stably removed at a high purification rate over a long period of time, and excellent effects such as achieving substantially maintenance-free required for automobile parts can be achieved.
  • the present invention is effective for purifying various exhaust gases such as exhaust gas purification not only for diesel engines but also for direct injection type gasoline engines.
  • FIG. 1 is a schematic diagram showing a first embodiment of an exhaust gas electrical processing apparatus for a diesel engine according to the present invention
  • Fig. 2 is an electrode needle and a seal of a discharge electrode in the first embodiment apparatus
  • FIG. 3 is a schematic diagram showing another embodiment of the seal gas pipe in the first embodiment apparatus
  • FIG. 4 is another implementation of the seal gas pipe in the first embodiment apparatus.
  • FIG. 5 is a schematic explanatory diagram showing a PM collection plate in the first embodiment apparatus same as above, FIG.
  • FIG. 6 is an explanatory diagram of a through hole of the PM collection plate in the first embodiment apparatus same as the above, (A) is an explanatory diagram showing the positions and diameters of the through holes of the PM collection plate, (b) is a cross-sectional view taken along the line AA of (a), and FIG. 7 is another PM in the first embodiment apparatus.
  • FIG. 8 is a schematic view showing a collecting plate, (a) is a front view, (b) is a side view, and FIG. 8 is a diagram of an electric processing apparatus for diesel engine exhaust gas according to the present invention.
  • FIG. 9 is a schematic cross-sectional view showing an enlarged main part of the second embodiment apparatus, and FIG. 10 is a first view of an electric processing apparatus for diesel engine exhaust gas according to the present invention.
  • FIG. 11 is a schematic diagram showing an example of a means for removing PM oxidation of a collecting plate in the apparatus of the present invention.
  • Fig. 12 is a schematic diagram showing an example of a combination of the apparatus of the present invention and a catalyst.
  • FIG. 13 is a schematic view showing another embodiment of the combination of the device of the present invention and a catalyst, and
  • FIG. 14 is a diagram of a fourth embodiment of an electric processing device for diesel engine exhaust gas according to the present invention (with a cyclone dust collector).
  • 15 is an enlarged schematic perspective view showing the collecting plate in the fourth embodiment apparatus shown in FIG. 14, and FIGS. 16 and 17 are views of the cyclone dust collector in the fourth embodiment apparatus shown in FIG. Fig.
  • FIG. 16 shows an example of particle aggregation and coarsening means installed in the previous stage.
  • Fig. 17 is a schematic perspective view showing a particle aggregation tube having a cam structure
  • Fig. 17 is a schematic perspective view showing a particle aggregation plate formed by arranging a plurality of punching metals
  • Fig. 18 is a diagram showing a method for regenerating the collection plate of the apparatus of the present invention. It is the schematic which shows one Example.
  • the exhaust gas electrical processing apparatus of the present invention is provided upstream of the exhaust gas passage 1. It consists of a corona discharge part 2-1 and a charging part 2-2 for charging the corona-discharged electrons 10 to the particulate matter S mainly composed of carbon in the exhaust gas G 1 in the main body wall 11 provided on the side
  • the discharge charging unit 2 is provided, and the collector plate 3 for collecting the charged particulate matter S is arranged in the exhaust gas passage 1 in the main body wall 1 1 1 (two-stage type).
  • the electrode needle 4 constituting the discharge electrode is arranged in the exhaust gas passage 1 through the seal gas pipe 5 made of a ceramic such as alumina and an insulating material such as heat-resistant glass toward the downstream of the exhaust gas flow.
  • the section protrudes from the opening end of the seal gas pipe 5 by a predetermined length and is wired so that a direct high voltage of several tens of thousands of volts is applied from the external high-voltage power supply 6.
  • the electrode needle 4 is made of a conductive material such as stainless steel or cemented carbide. Also, in order to promote the charging of the corona electrons 10, an exhaust gas guide pipe 7 is projected inside the main body wall 1 _ 1 provided in the middle of the exhaust gas passage 1, and the exhaust gas G1 is near the tip of the electrode needle 4. To flow.
  • the relationship between the inner diameter ⁇ 1 of the main body wall 1 _ 1 and the inner diameter ⁇ 2 of the outlet of the exhaust gas guide pipe 7 is not particularly limited, but is preferably about ⁇ 2 / ⁇ 1 ⁇ 0.5. .
  • the relationship between the distance La between the tip of the electrode needle 4 and the collection plate 3 and the distance Lb between the tip of the electrode needle 4 and the body wall is expressed as La. ⁇ Lb is preferred.
  • the inner wall of the main body wall 11 1 is preferably covered with an insulator 11 such as ceramic in order to avoid thermal effects as much as possible.
  • the inner wall surface of the main body wall 11 is also made of the particulate material S. It may be used as a collection surface.
  • a collection plate 71-1 shown in FIG. 15 to be described later may be attached to the inner wall surface of the main body wall 1-1 to form a collection surface.
  • the direction of the seal gas G2 outlet of the seal gas pipe 5 is directed downstream of the exhaust gas G1 flow in order to prevent the electrode needle 4 from being contaminated.
  • the flow velocity Qs of the seal gas G2 flowing in the seal gas pipe 5 (Fig. 2) is as long as the ratio (Qs / Qo) to the average flow velocity Qo of the exhaust gas G1 flowing outside the seal gas pipe 5 is 0.15 or more.
  • the exhaust gas G1 can be prevented from getting inside the seal gas pipe 5.
  • an insulating gas such as air is used as the sealing gas.
  • the protruding length L of the electrode needle 4 from the tip of the seal gas pipe 5 (Fig. 2) is within the potential core Pc of the seal gas flow in the seal gas pipe 5 in consideration of electrode needle fouling. Position. Practical protrusion length L is 20-70mm.
  • the potential core Pc will be briefly described. When seal gas (fluid) is ejected from the seal gas pipe 5, the seal gas pipe A uniform conical flow field is created at the outlet with the same flow velocity and gas components as in the inside of the nozzle. This area is called the potential core. The length of this potential core Pc region is usually about 5 times the inner diameter D of the seal gas pipe 5.
  • the inner diameter D of the seal gas pipe 5 should be selected so that it does not spark from the electrode needle 4 to the PM adhering to the outer peripheral surface of the pipe at the outlet of the pipe.
  • the practical inner diameter D should be about 15 to 40 mm.
  • the tip of the electrode needle 4_1 reacts with nitrogen in the atmosphere to generate nitrate, and the discharge characteristics deteriorate.
  • a coating to prevent corrosion.
  • the coating material a material having electrical insulation and corrosion resistance, for example, quartz glass, alumina, ceramic and the like is suitable. If the coating thickness is too thick, the electric field strength at the outer surface of the coating will be less than the corona discharge starting electric field strength Ec, so there is an appropriate thickness that depends on the electrode shape, DC voltage applied to the electrode needle, and exhaust gas conditions. However, practically, a thickness of about 0.:! To 0.5 mm is sufficient. The thickness of the portion other than the tip of the electrode needle may be thick without any particular restrictions.
  • the shape of the electrode that generates the corona discharge is not specified as long as it is an unequal electric field.
  • it may have a structure (not shown) in which a rod-shaped electrode tip is provided with a small sphere or a short electrode.
  • the measures shown in Figs. 3 and 4 are taken as means for further stabilizing the flow of the seal gas at the outlet of the seal gas pipe 5.
  • the measure shown in FIG. 3 is that a rectifying member 5-1 is arranged in the seal gas pipe 5, and for example, a plate-like member or a honeycomb-like member is used as the rectifying member 5-1.
  • the rectifying member 5_1 may not be necessarily provided over the entire length of the seal gas pipe 5, but may be provided only in a portion where the gas flow direction changes, such as a bent portion of the seal gas pipe 5. By the action of this rectifying plate 5-1, the seal gas flow at the outlet of the seal gas pipe 5 becomes more stable, and an extremely stable potential core Pc is formed at the outlet of the seal gas pipe 5.
  • the countermeasure shown in FIG. 4 is to provide a gas flow in the seal gas pipe 5 by providing a dummy pipe part 5 _ 2 protruding to the upstream side of the exhaust gas passage 1 at the bent part of the seal gas pipe 5.
  • the stabilization of is a powerful one.
  • the conditions for stabilizing the seal gas flow are as follows. As a result of the experiment, when the inside diameter of the seal gas pipe 5 is D, the length L2 of the dummy pipe part 5-2 of the seal gas pipe 5 part and the length L1 from the dummy pipe part to the tip part are respectively expressed as L1 / It has been found that D> 1.5 and L2 / D> 0.5 should be set.
  • the inner diameter di of the dummy pipe section 5-2 can be larger or smaller than the inner diameter D of the seal gas pipe 5. Due to the action of this dummy pipe section 5-2, the seal gas flow at the outlet of the seal gas pipe 5 is stable, and it is extremely stable at the outlet section of the seal gas pipe 5 as with the seal gas pipe provided with the rectifying plate 5-1. A potential core Pc is formed.
  • the reason why the seal gas flow is stabilized by providing the dummy gas pipe 5-2 in the seal gas pipe 5 is that a so-called buffer effect that attenuates pressure fluctuations in the cross section of the seal gas pipe due to bending of the seal gas flow occurs. It is thought that it is from.
  • the upstream end face of the dummy tube portion 5-2 is not limited to a flat shape, and may be a semicircular shape or an elliptical shape that bulges upstream.
  • the sealing gas is also stopped. It is desirable that the sealing gas is stopped after a while after the engine stops. This is because if the engine and seal gas are stopped simultaneously, there is a risk S that exhaust gas remaining in the exhaust gas pipe and collection device may enter the seal gas pipe 5 and contaminate the inside of the seal gas pipe and the electrode needle 4 . Further, it is desirable that the direction of the pipe when penetrating the seal gas pipe 5 through the main body of the collecting device is made to penetrate from the upper part to the lower part. The reason for this is to cause zero when exhaust gas is condensed to flow out to the seal gas pipe outlet side.
  • the collection plate 3 arranged on the downstream side of the electrode needle 4 is arranged so that the collection surface is perpendicular to the flow of exhaust gas, and the DC voltage of the electrode needle 4 and the collection are collected.
  • This is a type that collects the PM8 charged by the discharge charging unit 2 by the Coulomb force by generating an electric field with the collector plate, and the punching metal type collector plates 3a and 3b shown in Figs. Fig. 7 shows three types of slit-type collecting plate 3c. That is, the punching metal type collecting plates 3a and 3b shown in FIGS.
  • the collecting plate 3b shown in FIG. Has a structure in which a protruding flange (burring wall) 3b_2 is provided around the through hole 3b_l.
  • the protruding flange 3b_ 2 When the protruding flange 3b_ 2 is provided, The vortex and stagnation are generated in the gas flow, and the collection efficiency of charged PM8 is improved.
  • the height h of the projection flange 3b-2 may be about 0.:!
  • the slit-type collecting plate 3c may be configured by using a plurality of strip-shaped plate members.
  • the hole area ratio can be defined as the total opening area NSZ collection area real front area SO.
  • the aperture ratio can be defined as the total opening area NS of the slit / the real front area S0 of the collecting portion.
  • the hole area ratio is 3 to 20% for both the punching metal type collecting plate and the slit type collecting plate. The reason is that when the open area ratio is less than 3%, the amount of collected PM8 is high, but the pressure loss becomes large.On the other hand, when it exceeds 20%, the amount of collected PM8 cannot be obtained sufficiently. .
  • the average flow velocity of the exhaust gas G1 flowing through the collection unit is preferably slower from the viewpoint of collection efficiency, but practically, the actual front area SO of the collection unit is the amount before the exhaust gas treatment device. It is desirable to have a cross-sectional area that is at least 1.5 times the cross-sectional area of the exhaust gas introduction pipe and that the average flow velocity of the exhaust gas G1 flowing through the collection section is 20 m / sec.
  • the material of the collection plates 3a, 3b, 3c is not particularly limited, but is a ferritic stainless steel plate, austenitic stainless steel plate, or a high alloy heat generator material excellent in heat resistance and corrosion resistance.
  • a metal plate such as nickel chrome can be used.
  • the collecting plate can be covered with a washcoat layer to carry a catalyst.
  • the front shape of the collection plate 3 is not particularly limited as long as the exhaust gas flows without resistance, but the shape is round, square, other shapes, or the cross-sectional shape of the main body. Can be decided.
  • This apparatus has a collecting portion 23 having a multilayer plate structure, and the structure thereof is an electrode plate holding rod 23.
  • a number of electrode plates 23-2 attached to 1 and grounded (not shown) collecting plates 23-3 arranged alternately with the electrode plates 23-2. 2 and the collection plate 23-3 are electrically insulated, and each plate surface is arranged parallel to the exhaust gas flow.
  • the collecting part of this multilayer plate structure generates an electric field between the electrode plate 23-2 and the collector plate 23_3 to which the deflection voltage is applied from the high-voltage power supply device 26 via the electrode plate holding rod 23-1.
  • the deflection voltage is set to a voltage equal to or lower than the spark voltage depending on the gap L, exhaust gas atmosphere, etc. between the electrode plate 23-2 and the collection plate 23-3.
  • the electric field strength (deflection voltage / gap L) between the electrode plate 2 3-2 and the collection plate 23-3 is practically about 250 to 100 OKv / m. Therefore, the deflection voltage is about 0.8 to 5 Kv. It's okay.
  • Insulation of the electrode plate holding rod 23-1 is basically covered with quartz glass, alumina, ceramic, etc. having electrical insulation and corrosion resistance, as in the case of the insulation of the electrode needle 4 described above.
  • the voltage supply to the electrode plate 23-2 is performed from the high voltage power supply device 26 through the conductive wire and the electrode plate holding rod 23-1, but the main body wall of the exhaust gas treatment device of the electrode plate holding rod 23-1 is used. 1 Electrical insulation at the fixed part to 1 is important.
  • the electrode plate holding rod 23_1 in the fixed portion of the main body wall 1_1 is disposed in a holding rod seal tube 9 made of an electrical insulator such as alumina or ceramic, and has an insulating seal gas G2 such as air. Shed.
  • the flow rate Qs of the seal gas G2 flowing in the holding rod seal tube 9 is set to a ratio (Qs / Qo) of 0.15 or more to the average flow velocity Qo of the exhaust gas G1 outside the holding rod seal tube 9, and the holding rod seal Prevent the exhaust gas G1 from entering the pipe 9.
  • the gap (interval) C between the inner surface of the holding rod seal tube 9 and the electrode plate holding rod 23-1 does not spark to the PM adhering to the vicinity of the opening of the main body wall of the holding rod seal tube 9.
  • the deflection voltage is a voltage of several thousand volts by selecting such an inner diameter, a practical range of about 3 to 1 Omm is preferable.
  • the cross-sectional area of the collecting part of the multilayer plate structure in the second embodiment apparatus shown in FIGS. 8 and 9 is set by the average flow velocity Qo of the exhaust gas G1 flowing through the collecting part.
  • the average flow velocity Qo of the exhaust gas G1 that flows through the collection section is preferably slower from the viewpoint of collection efficiency, but practically 1.5 times or more the cross-sectional area of the exhaust gas introduction pipe before the exhaust gas treatment device Therefore, it is desirable that the cross-sectional area be such that the average flow velocity Qo of the exhaust gas G1 flowing through the collection section is 20 m / sec or less.
  • the material of the electrode plate 23-2 and the collection plate 23-3 of the apparatus of the second embodiment is similar to the collection plates 3a, 3b, 3c, and is a ferritic stainless steel plate having excellent heat resistance and corrosion resistance. It is desirable to use an austenitic stainless steel plate or a metal plate such as nickel-chromium, which is a high alloy heating element material, and the collection plate 23-3 that is coated with a washcoat layer and carries a catalyst. .
  • the apparatus of the third embodiment having the multilayer plate structure collection section 33 shown in Fig. 10 is configured so that the collection plate 33 1 for collecting PM8 in the exhaust gas G1 is formed in a multilayer shape and substantially in the exhaust gas flow.
  • the collecting part is arranged in parallel to form the collecting part, and the plate surface of the collecting plate 33 1 is substantially flat, and the whole collecting part is joined to the main body wall 11 1 to apply a voltage. Since the electrode plate does not move, the entire collection part is grounded through the main body wall.
  • repulsive force works between PMs charged to the same polarity in the discharge charging unit 2, so that each charged PM 8 moves in the direction of the collection plate 331 and is collected.
  • the gap Lc between the collecting plates 33 can be narrowed because there is no electrode plate for applying a voltage and no spark occurs between the collecting plates 331, and the total collecting area can be increased. it can. Further, the gap Lc between the collecting plates 331 is practically about 0.5 to 5 mm. However, since this type of collecting part has no electric field between the electrode plate and the collecting plate as shown in FIG. 8, the collection efficiency per unit area is lowered, but the total collecting area is reduced. It can be compensated by an increase.
  • the collecting area is the same as the electrode plates 23-2 and the collecting plates 23-3 of the second embodiment apparatus shown in FIG.
  • a honeycomb structure that can be taken larger than the collecting part of the multilayer plate structure consisting of the above is advantageous in terms of collection efficiency.
  • the average flow velocity Qo of the exhaust gas G1 flowing through the collection part consisting of this collection plate 33-1 is also As in the second embodiment, the average flow velocity Qo of the exhaust gas G1 that is 1.5 times or more the cross-sectional area of the exhaust gas introduction pipe before the exhaust gas treatment device and flows through the collection part is practically 20 m / se.
  • a cross-sectional area that is less than or equal to c is desirable.
  • the material of the collection plate 33-1 of the apparatus of the third embodiment is also a metal plate such as a fluorescent stainless steel plate and an austenitic stainless steel plate that is excellent in corrosion resistance, as described above. Further, the collecting plate 33-1 can be coated with a washcoat layer and loaded with a catalyst.
  • the charged PM8 once collected on the collection plate cannot fall off due to gravity or the fluid force of the gas flow. This is a characteristic of adhesion of fine particles. For particles with a particle size of 30 zm or less, the adhesion force by van 'Del' Warska increases even with gravity, and the ratio is said to be harmful to the human body. As a result, PM8 collected by running vibrations will not fall off.
  • each exhaust gas treatment device since the collection part of each exhaust gas treatment device has a structure with extremely small pressure loss, even if PM8 is deposited on the collection plate, there is almost no trouble with pressure loss. Therefore, under normal operating conditions, PM8 is naturally oxidized and removed if the exhaust gas temperature becomes high due to high-speed operation or high-load operation. However, when PM8 cannot be oxidized and removed spontaneously, such as when there is a long traffic jam in an urban area, PM8 deposited on the collection plate can be forcibly removed by electric heating.
  • FIG. 11 shows an example of the PM oxidation removal means of the collecting plate in the first embodiment of the present invention.
  • a material for the collecting plate ferritic stainless steel and austenitic stainless steel having excellent heat resistance and corrosion resistance are shown.
  • a thin plate made of steel or high alloy heating element material such as nickel chrome is used, and the collecting plate 3 is used as a heater.
  • the means is that a switching switch 40 is installed at the end of the holding rod 3-1 of the collecting plate 3, and when the collecting plate 3 is electrically heated, it is connected to the terminal 40 a on the heating power supply 41 side, When collecting PM, it is possible to use a method of connecting to the ground side terminal 40b.
  • the electric power required for this electric heating is as small as: ⁇ 4KW, so a battery mounted on the vehicle can be used as the heating power source.
  • PM8 collected on the collection plate 3 is removed by oxidation at a temperature of about 550 ° C without generating a flame. Note that In order to avoid the necessary temperature rise, it is desirable to install a temperature measuring device (not shown) such as a thermocouple on the collection plate 3 to control the temperature during electric heating.
  • FIG. 12 shows an example of a combination of the apparatus of the present invention and a catalyst.
  • an oxidation catalytic converter 52 is installed on the upstream side (previous stage) of the exhaust gas electric processing apparatus 51 of the present invention.
  • HC high-pressure gas
  • CO carbon monoxide
  • H ⁇ water
  • CO carbon dioxide
  • the PM8 collected on the collection plate 3 of the exhaust gas electric processing device 51 is oxidized and removed by electric heating or when the exhaust gas temperature becomes high during high-speed operation, etc. Is done.
  • nitrogen oxide (Nx) does not change significantly after passing through the purification device.
  • the collection part of an above-mentioned multilayer board structure as a collection part of the electric processing apparatus for exhaust gas of this invention instead of a single layer board structure, exhaust gas and a collection board contact.
  • the surface area can be made larger than that of the collection part of the single-layer plate structure, it is advantageous for supporting the catalyst, and at least one of an oxidation catalyst and a three-way catalyst can be supported on the collection plate.
  • the oxidation catalyst and the three-way catalyst at least one of platinum (Pt), palladium (Pb), rhodium (Rh), or a combination thereof is used.
  • a promoter such as cerium (Ce) oxide.
  • FIG. 13 is the downstream side of the exhaust gas electric processing apparatus 51 of the present invention.
  • Nx reduction catalytic converter 53 and oxidation catalytic converter 52 or a three-way catalytic converter (not shown) are installed, and further upstream of the exhaust gas electric processing device 51.
  • the N0x reducing agent addition device 54 corresponding to the type of N0x reduction catalyst of the N0x reduction catalytic converter 53 is arranged on the side, and the addition device 54 uses the N0x reducing agent fuel and other Hydrocarbon and urea water can be appropriately added to the exhaust gas.
  • PM8 collected on the collection plate 3 of the exhaust gas electric processing device 51 is oxidized when the exhaust gas temperature becomes high due to oxidation removal or high speed operation by electric heating. Ox is removed by oxidation, and Nx is reduced and purified to N and O by the Nx reduction catalyst of NOx reduction catalytic converter 53, and further by the oxidation catalyst of oxidation catalytic converter 52.
  • HC and CO are oxidized and purified to H 2 O and CO to remove all harmful components in the exhaust gas.
  • Cu-SAPO-34 silicon aluminophosphate
  • Cu_ZMS_5 copper ion exchange zeolite
  • the NOx catalyst it is possible to use a known urea water as a reducing agent, a NOx reduction catalyst or a NOx occlusion reduction catalyst.
  • PM in the exhaust gas of the diesel engine can be effectively collected on the collection plate.
  • the electrical resistivity p may be low, and in such a case, the above collecting plate may not be able to cope with it sufficiently. Therefore, according to the present invention, a cyclone dust collector is attached after the electrical processing apparatus for exhaust gas.
  • Diesel engine exhaust gases have a PM electrical resistivity p that varies significantly depending on operating conditions, etc., and some PM has a high electrical resistivity p and some PM has a low electrical resistivity p.
  • a high temperature combustion during high-speed operation electric resistance rate p tends to decrease the electrical resistivity p is large instrument also low-temperature combustion. Therefore, as a means for removing PM in the exhaust gas of a diesel engine, it is necessary to have a performance capable of collecting PM with low electrical resistivity p, which is not only PM with high electrical resistivity p, but also with high efficiency. Therefore, the present invention provides an exhaust gas for a diesel engine that can sufficiently cope with a high, low or low electrical resistivity P by attaching a cyclone dust collector to the subsequent stage of the exhaust gas electrical processing device.
  • the device of the fourth embodiment shown in FIG. 14 is sufficient for both cases where the electrical resistivity p is high and low.
  • This is an example of a diesel engine exhaust gas electrical treatment device that can handle the above, and a configuration in which a cyclone dust collector 62 is arranged downstream of the exhaust gas electrical treatment device 61 having substantially the same configuration as described above. is there.
  • the collection plate 71_1 in the exhaust gas electric processing device 61 is a base plate 71- consisting of a single plate having no openings such as holes on the collection surface, as shown in an enlarged view in FIG. la and the grid-like fins 71 _ lb provided on the base plate 71 _ la collecting surface side
  • the collecting plate 71-1 is a main body wall 61-1 of the exhaust gas electric processing device 61. It is arranged at an appropriate interval so as to form a gap 61-2 for allowing the exhaust gas to flow between it and the inner wall. The size of the gap 61-2 essentially does not affect the dust collection efficiency, so it can be determined in consideration of pressure loss.
  • the reason why the grid-like fins 71-lb are provided on the collecting plate 71-1 is to efficiently collect the charged PM on the base plate 71_la by generating a stagnation effect on the gas flow.
  • the base plate 71-la and the lattice fins 71-lb of the collecting plate 71-1 are made of a conductive material such as metal because the base plate 71-la is grounded.
  • 71- lb is an insulating material such as ceramics, considering the efficiency of PM collection and diving agglomeration (a phenomenon in which particles collide and coarsen in the process of repeated adhesion and scattering on the base plate). Is preferred. That is, when the grid fin 71-lb is made of metal, the electric force lines are concentrated on the tip of the grid fin 71-lb near the tip of the electrode needle 4, so that the charged PM is in the grid fin 71-lb.
  • a plate 61-3 with a guide hole is arranged upstream to promote the flow of exhaust gas and charging, and the collecting plate 71-1 and the collecting plate 71 —
  • a plate 61_3 with a guide hole for promoting PM flow and collection and a field plate 61-4 for the purpose of applying an electric field may be installed between 1 and 1, respectively.
  • a high voltage is supplied to the electric field plate 61-4 from a high-voltage power supply device (not shown), and the collecting plate 71-1 is grounded.
  • the charged PM is collected on the collecting plate 71-1 composed of the base plate 71-la and the lattice fins 71-lb.
  • PM having a high electrical resistivity p is collected and deposited as it is on the base plate 71_la
  • PM having a low electrical resistivity p is It is coarsened by the gathering phenomenon and collected on the base plate 71_la.
  • the amount of PM collected on the base plate 71_la subsequently increases beyond the limit amount, it will fall off naturally in a layered form, and the loose coarse PM will be removed by this electric treatment for exhaust gas.
  • It is collected by a cyclone dust collector 62 arranged at the rear stage of the device 61.
  • the PM collected in the cyclone dust collector 62 can be taken out and collected periodically, and a heater, etc. is installed in the cyclone dust collector.
  • the particle-aggregating pipe 80 having a honeycomb structure shown in Fig. 16 has a gas flow velocity gradient.
  • the particle aggregating plate 90 shown in FIG. 17 utilizes agglomeration due to turbulent flow, and a plurality of punching metals 90-1 (three in this case) are arranged at a desired interval, and the exhaust gas is supplied to these three.
  • the PM particles exiting the exhaust gas electric processing device 61 are grown into larger particles. Therefore, it can be efficiently collected by the cyclone dust collector 62 in the latter stage.
  • FIG. 18 shows a method for regenerating the collection plates 3, 3a, 3b, 3c, 23-3, 33_1, 71_1 of the electric processing apparatus for exhaust gas of the present invention.
  • exhaust gas Between the upstream side and downstream side of the electrical processing equipment 51, 61 for industrial use, a bypass pipe 55 without an electrical processing equipment for exhaust gas is installed, and the switching valve V provided in the upstream exhaust gas pipe is used.
  • the method of collecting and regenerating PM by controlling the flow of exhaust gas can be used. That is, when PM8 is collected by the exhaust gas electric processing devices 51 and 61, the A route is used by the switching valve V, and when the collection plate is regenerated, the switching valve V is used as a bypass pipe.
  • an exhaust gas electric processing device 51 is also installed in the bypass route 55 of the B route to alternately collect and regenerate.
  • the exhaust gas electrical processing device for a diesel engine of the present invention can reliably collect and oxidize and remove PM in the exhaust gas. Therefore, by combining various catalyst technologies, harmful gases other than PM can be obtained. Components can also be removed efficiently, and PM particles can be collected more effectively when combined with a cyclone dust collector and particle agglomeration / roughening means. It can also be applied to purification treatment of various exhaust gases containing various exhaust gases and harmful components, and contributes greatly to the prevention of air pollution pollution.
  • FIG. 1 is a schematic view showing an apparatus of a first embodiment of an electric processing apparatus for exhaust gas of a diesel engine according to the present invention.
  • FIG. 2 is an explanatory view of the electrode needle of the discharge electrode and the tip of the seal tube in the first embodiment apparatus.
  • 3 It is a schematic diagram showing another embodiment of the seal gas pipe in the first embodiment apparatus same as above.
  • FIG. 5 is a schematic explanatory view showing a PM collecting plate in the first embodiment apparatus.
  • FIG. 6 An explanatory view of the through hole of the PM collection plate, (a) is an explanatory view showing the position and diameter of the through hole of the PM collection plate, and (b) is a cross section along the A_A line of (a).
  • FIG. 7 A schematic diagram showing another PM collection plate in the first embodiment apparatus, wherein (a) is a front view and (b) is a side view.
  • FIG. 8 is a schematic diagram showing an apparatus of a second embodiment of the electric processing apparatus for exhaust gas of a diesel engine according to the present invention.
  • FIG. 9 is an enlarged schematic cross-sectional view showing the main part of the second embodiment apparatus.
  • FIG. 10 is a schematic diagram showing an apparatus of a third embodiment of the electric processing apparatus for exhaust gas of a diesel engine according to the present invention.
  • FIG. 12 is a schematic view showing an example of the combination of the device of the present invention and a catalyst.
  • FIG. 14 is a schematic view showing the apparatus of the fourth embodiment (with a dust collector with a cyclone) of an electric processing apparatus for exhaust gas of a diesel engine according to the present invention.
  • FIG. 15 is a schematic perspective view showing the collection plate in the fourth embodiment apparatus shown in FIG. 14 in an enlarged manner.
  • FIG. 16 is a schematic perspective view showing a honeycomb-structured particle aggregating tube as an example of particle aggregating and coarsening means installed in the front stage of the cyclone dust collector in the fourth embodiment apparatus shown in FIG. 17]
  • FIG. 17 is a schematic perspective view showing a particle aggregating plate in which a plurality of punching metals are arranged at intervals in another example of the particle aggregating and coarsening means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrostatic Separation (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

【課題】 ディーゼルエンジンの排気ガス中のPMを高効率で除去できるとともに、長期にわたって安定した性能を発揮し得るディーゼルエンジンの排気ガス処理技術の提供。 【解決手段】 排気ガス通路の上流側にコロナ放電部と帯電部とからなる放電帯電部を設けて、コロナ放電された電子を排気ガス中のカーボンを主体とする粒状物質に帯電させ、同排気ガス通路に配置した捕集部で前記帯電した粒状物質を捕集することを特徴とする。

Description

明 細 書
ディーゼルエンジンの排気ガス用電気式処理方法およびその装置 技術分野
[0001] 本発明は、ディーゼルエンジンの排気ガスに含まれるカーボンを主体とする粒状物 質(Particulate Matter :以下「PM」と称する)や有害ガスを除去し、浄化する排気 ガス処理技術に係り、より詳しくはコロナ放電を利用したディーゼルエンジンの排気ガ ス用電気式処理技術に関する。
背景技術
[0002] ディーゼルエンジンの排気ガスに含まれる PMは、周知の通り大気汚染をきたすの みならず、人体に極めて有害な物質であるため、その排気ガスの浄化は極めて重要 である。このため、ディーゼルエンジンの燃焼方式の改善や各種フィルターの採用、 あるいはコロナ放電を利用して電気的に処理する方法等が提案されている。
[0003] しかし、燃焼方式の改善だけでは、ディーゼノレエンジンの冷温始動時や登板時、 過積載時等の多用な運転が行われるので、 PMの大幅な削減は困難である。また、 例えばセラミックフィルタ一等で PMを捕集する方式は、微細な孔または間隙によって PMを捕集するため、一定量の PMを捕集すると排気ガスの圧力損失 (通気抵抗)が 急激に増大して燃費の悪化やエンジントラブルの原因となる。さらに、捕集した PMを 触媒で燃焼させるフィルター再生方式は、長期間にわたる触媒使用による触媒劣化 のため排気ガスの圧力損失の程度が高くなり、好ましくない。
[0004] 一方、コロナ放電を利用して電気的に処理する方法としては、図 19にその一例を 示すように、針先 121aの周りにコロナ放電を起こして排気ガス中の PM123を帯電さ せるためのニードル電極 121と、帯電した PM123aを静電気力で捕集するための捕 集電極 124と、前記ニードル電極 121と前記捕集電極 124との間に所定の直流高電 圧を印加するための高圧直流電源 125とを備えたディーゼルエンジンの排気 PM捕 集装置 (特許文献 1参照)が知られている。また、排気経路中に設けた PM捕集用の 収集電極対の一方を構成する円筒体と、該円筒体の中心部に軸方向に延設されて 収集電極対の他方を構成する電極体と、前記収集電極対間に静電界を形成して排 気ガス中の PMを前記円筒体内面に集積させる高電圧電源部と、前記円筒体内面 に沿って当該円筒体に対し相対回動して該円筒体内面に堆積した PMを搔き落とす 搔き落とし部を備えた排気ガス浄化装置 (特許文献 2参照)や、電気絶縁体層および 触媒層を備えた複数の PM捕集電極と、この PM捕集電極の各々に組み合わされ、 前記電気絶縁体層に向けて突出する複数の針状電極を備えた放電電極を具備した 排気ガス浄化装置 (特許文献 3参照)等、多くの提案がなされてレ、る。
特許文献 1:特開平 9一 112246号公報
特許文献 2:特開平 6 - 173637号公報
特許文献 3 :特開 2003— 269133号公報
発明の開示
発明が解決しょうとする課題
し力、しながら、コロナ放電を利用して電気的に処理する従来のディーゼルエンジン の排気ガス処理技術は、以下に記載する問題点を有する。
特許文献 1、 2に記載の排気 PM捕集装置は、いわゆる一段式と呼ばれる電気集塵 機方式を採用したもので、基本的な問題点として、放電電圧と捕集偏向電圧が同電 位であるため両電圧をそれぞれの適正条件に設定することが難しいことと、偏向電極 と捕集電極間のスパーク発生を防止するためにその間隔を大きくとらざるを得ないこ とである。このため、特許文献 1、 2に記載の排気 PM捕集装置は、捕集されずに捕 集区間を素通りする粒子が多くなり、捕集効率が低下するという欠点がある。また、捕 集効率を上げるためには、捕集部の容量を大きくとる必要があり、装置の大型化を余 儀なくされて自動車部品としては不適当である。さらに、特許文献 3に記載の排気ガ ス浄化装置は、いわゆる二段式と呼ばれる電気集塵機の方式を採用したものである 力 針状電極の汚染対策が施されていないため、放電電極に数万ボルトの高電圧が 印加された場合、汚染による電気絶縁性の低下のため PM捕集性能を発揮できなく なるという欠点がある。また、放電電極は、腐食性を有する排気ガスによる汚損も避け られず、長期間にわたって安定した性能を維持できない。さらにまた、線状電極の場 合は、 自動車の場合は走行中の振動や衝撃により断線を起こし易ぐ強度的にも問 題がある。すなわち、従来のコロナ放電を利用して電気式に処理する排気ガス処理 手段は、放電電極の高い絶縁性の確保が難しぐ実用性に難点があった。
[0006] 本発明は、コロナ放電を利用した従来のディーゼノレエンジンの排気ガス処理技術 の前記問題点を解消し、ディーゼルエンジンの排気ガス中の PMを高効率で除去で きるとともに、長期にわたって安定した性能を発揮し得るディーゼノレエンジンの排気 ガス用電気式処理方法およびその装置を提供しょうとするものである。
課題を解決するための手段
[0007] 本発明に係るディーゼルエンジンの排気ガス用電気式処理方法は、排気ガス通路 の上流側にコロナ放電部と帯電部とからなる放電帯電部を設けて、コロナ放電された 電子を排気ガス中のカーボンを主体とする粒状物質に帯電させ、同排気ガス通路に 配置した捕集部で前記帯電した粒状物質を捕集することを特徴とする。
[0008] また、本発明のディーゼルエンジンの排気ガス用電気式処理装置は、排気ガス通 路の上流側にコロナ放電された電子を排気ガス中のカーボンを主体とする粒状物質 に帯電させるコロナ放電部と帯電部とからなる放電帯電部を設け、前記帯電した粒 状物質を捕集する捕集部を同排気ガス通路に配置した構成となしたことを特徴とす るものである。
[0009] さらに、本発明の装置は、前記コロナ放電部の電極針の放電側先端を排気ガス流 れの下流側に向けて配置し、コロナ電子を下流側に向けて放電させること、前記電 極針を絶縁体製のシールガス管内に揷通配置すること、前記シールガス管をアルミ ナセラミック製とすること、前記電極針のシールガス管端からの突出部をシールガス 管内ガス流のポテンシャルコア内に位置させること、前記電極針を電気絶縁性と耐食 性を有する材料で被覆すること、前記電極針の被覆材料に、石英ガラスまたはアルミ ナまたはセラミックを用いること、前記捕集部を単層板構造または多層板構造とする こと、前記捕集部をパンチングメタルタイプの捕集板またはスリットタイプの捕集板で 構成し、かつ開孔部総面積/捕集部実質正面面積で定義される開孔率を 3〜20% とすること、前記捕集部を捕集面に開口を有しない一枚板からなるベース板および該 ベース板の捕集面側に設けた格子状のフィンとで構成すること、前記単層板構造ま たは多層板構造の捕集部固定部における電極板保持棒を絶縁体製シール管内に 配置すること、前記シールガス管内に整流部材を全体または一部に配設すること、前 記シールガス管の電極針先端側と反対側管壁に排気ガス流れ方向と平行してダミー 管部を設けること、を特徴とするものである。
なお、前記ダミー管部を有するシールガス管は、シールガス管の内径を D、シール ガス管部のダミー管部の長さを L1、該ダミー管部より先端部までの長さを L2とした場 合、 L1/D > 1. 5、L2/D > 0. 5の条件を満足させることを好ましい態様とするもの である。
[0010] また、本発明の装置は、前記排気ガス用電気式処理装置と触媒とを組合せて用い ることも可肯である。
[0011] さらに、本発明の他のディーゼルエンジンの排気ガス用電気式処理装置として、前 記排気ガス用電気式処理装置の後段にサイクロン集塵機を付設した構成となしたこ とを特徴とするものである。
[0012] また、このサイクロン集塵機付きのディーゼルエンジンの排気ガス用電気式処理装 置における前記捕集部は、捕集面に開口を有しない一枚板からなるベース板および 該ベース板の捕集面側に設けた格子状のフィンとで構成した捕集板を当該装置本 体内壁との間に隙間が形成されるごとく複数枚配置して構成してもよい。
[0013] さらに、前記排気ガス用電気式処理装置の後段であって前記サイクロン集塵機の 前段に粒子凝集粗大化手段を配設してもよい。この粒子凝集粗大化手段としては、 ハニカム構造の粒子凝集管、またはパンチングメタルや金網を複数枚間隔配置して 構成した粒子凝集板等を用いることができる。
[0014] 一方、前記排気ガス用電気式処理装置の捕集板の再生方式として、当該装置の 上流側と下流側間に排気ガスのバイパス管路を配管し、ガス切替弁にて前記バイパ ス管路に排気ガスを流す間に捕集板の再生を行う方式を用レ、ることができる。
[0015] なお、本発明装置は、前記排気ガス用電気式処理装置の当該装置本体内壁も前 記粒状物質の捕集面とすることも可能である。
発明の効果
[0016] 本発明のディーゼルエンジンの排気ガス用電気式処理方法および装置は、ディー ゼルエンジンの排気ガス中の PMを高い浄化率で除去することができると共に、酸化 触媒および NOx還元触媒と組合せることによって、排気ガス中の有害ガス成分であ る HC、 C〇、 N〇xも高い浄化率で除去することができる。さらに、長期間にわたって PMを高い浄化率で安定して除去することができる上、 自動車部品として要求される 実質的メンテナンスフリーを達成できる等の優れた効果を奏する。
なお、本発明はディーゼルエンジンのみならず、直噴タイプのガソリンエンジンの排 気ガス浄化など、各種排気ガスの浄化にも有効であることはいうまでもない。
発明を実施するための最良の形態
[0017] 図 1は本発明に係るディーゼルエンジンの排気ガス用電気式処理装置の第 1実施 例装置を示す概略図、図 2は同上の第 1実施例装置における放電極の電極針とシー ル管先端部の説明図、図 3は同上の第 1実施例装置におけるシールガス管の他の実 施例を示す概略図、図 4は同上の第 1実施例装置におけるシールガス管の別の実施 例を示す概略図、図 5は同上の第 1実施例装置における PM捕集板を示す概略説明 図、図 6は同上の第 1実施例装置における PM捕集板の貫通孔の説明図で、 (a)は P M捕集板の貫通孔の位置および孔径を示す説明図、 (b)は(a)の A— A線上の断面 図、図 7は同上の第 1実施例装置における他の PM捕集板を示す概略図で、(a)は 正面図、(b)は側面図、図 8は本発明に係るディーゼルエンジン排気ガス用電気式 処理装置の第 2実施例装置を示す概略図、図 9は同上の第 2実施例装置の要部を 拡大して示す概略断面図、図 10は本発明に係るディーゼルエンジン排気ガス用電 気式処理装置の第 3実施例装置を示す概略図、図 11は本発明装置における捕集板 の PM酸化除去手段の一例を示す概略説明図、図 12は本発明装置と触媒との組合 せの実施例を示す概略図、図 13は同じく本発明装置と触媒との組合せの他の実施 例を示す概略図、図 14は本発明に係るディーゼルエンジン排気ガス用電気式処理 装置の第 4実施例装置 (サイクロン集塵機付き)を示す概略図、図 15は図 14に示す 第 4実施例装置における捕集板を拡大して示す概略斜視図、図 16、図 17は図 14に 示す第 4実施例装置におけるサイクロン集塵機の前段に設置する粒子凝集粗大化 手段を例示したもので、図 16はハニカム構造の粒子凝集管を示す概略斜視図、図 1 7はパンチングメタルを複数枚間隔配置して構成した粒子凝集板を示す概略斜視図 、図 18は本発明装置の捕集板の再生方式の一実施例を示す概略図である。
[0018] 本発明の排気ガス用電気式処理装置は、図 1に示すように、排気ガス通路 1の上流 側に設けた本体壁 1 1内に、コロナ放電された電子 10を排気ガス G 1中のカーボン を主体とする粒状物質 Sに帯電させるコロナ放電部 2—1と帯電部 2— 2とからなる放 電帯電部 2を設け、同排気ガス通路 1に前記帯電した粒状物質 Sを捕集する捕集板 3を同本体壁 1一 1内に配置した構成(二段式)となしたもので、放電極を構成する電 極針 4はアルミナ等のセラミック、耐熱ガラス等の絶縁体で作られたシールガス管 5内 を通して排気ガス通路 1内に排気ガス流れの下流に向けて配置され、先端部はシー ルガス管 5の開口端から所定長さ突出し、外部の高圧電源装置 6から数万ボルトの直 流高電圧が印加されるように配線されている。この電極針 4の材質としては、ステンレ ス鋼、超硬合金等の導電材料が使用される。また、コロナ電子 10の帯電を促進する ため、排気ガス通路 1の途中に設けられた本体壁 1 _ 1の内部に排気ガス誘導管 7を 突設し、排気ガス G1が電極針 4の先端近傍を流れるようにする。さらに、本体壁 1 _ 1 部の内径 φ 1と前記排気ガス誘導管 7の出口部の内径 φ 2の関係は、特に限定する ものではないが、 φ 2/ φ 1 < 0. 5程度が好ましい。またさらに、粒状物質 Sをより効 果的に捕集するために、電極針 4の先端と捕集板 3との距離 La、電極針 4の先端と本 体内壁との距離 Lbの関係を La<Lbとするのが好ましい。なお、本体壁 1 1の内壁 は可及的に熱影響を回避するためセラミック等の絶縁体 11で覆うのが望ましいが、 本発明装置では、この本体壁 1 1の内壁面も粒状物質 Sの捕集面としてもよぐまた 、後述する図 15に示す捕集板 71— 1を本体壁 1—1の内壁面に貼り付けて捕集面と してもよい。
[0019] シールガス管 5のシールガス G2流出口の向きは、電極針 4の汚損を防止するため に排気ガス G1流れの下流に向ける。シールガス管 5内を流れるシールガス G2の流 速 Qs (図 2)は、シールガス管 5外を流れる排気ガス G1の平均流速 Qoとの比(Qs/ Qo)を 0. 15以上とすれば、シールガス管 5内部への排気ガス G1の巻き込みを防止 できる。シールガスとしては、空気等の絶縁性を有するガスを用いる。
[0020] また、電極針 4のシールガス管 5先端からの突出長さ L (図 2)は、電極針の汚損を 考慮して、シールガス管 5内のシールガス流のポテンシャルコア Pc内に位置させる。 実用上の突出長さ Lは、 20〜70mmである。なお、ポテンシャルコア Pcについて簡 単に説明すると、シールガス管 5からシールガス(流体)が噴出すると、シールガス管 出口に流速とガス成分がノズノレの内部と同じで均一な円錐形状の流れ場ができる。 その領域をポテンシャルコアと称している。このポテンシャルコア Pcの領域の長さは、 通常シールガス管 5の内径 Dの約 5倍である。シールガス管 5の内径 Dは、該管出口 において電極針 4から管外周面に付着した PMにスパークしないような内径寸法を選 択すればよレ、。数万ボルトの電圧ならば、実用上の内径 Dは 15〜40mm程度とすれ ばよい。
[0021] さらに、電極針 4は、裸のままで長時間コロナ放電させると、電極針の先端部が 4_ 1が大気中の窒素と反応して硝酸塩を生成し、放電特性が劣化するので、長時間の メンテナンスフリーを実現するためには腐食防止のための被覆を施すことが必要であ る。その被覆材料としては、電気絶縁性と耐食性を有する材料、例えば石英ガラス、 アルミナ、セラミック等が適している。被覆厚さは、厚すぎると被覆外表面部での電界 強度がコロナ放電開始電界強度 Ec以下となるため、電極形状や電極針に印加する 直流電圧、排気ガス条件に依存する適正厚さが存在するが、実用的には、 0.:!〜 0 . 5mm程度の厚さで十分である。なお、電極針の先端部以外の部分の膜厚につい ては特に制約はなぐ厚くてもよい。
[0022] なお、コロナ放電を発生させる電極形状は、不平等電界ならば特定されず、例えば 棒状の電極先端に小球または電極短線を付けた構造(図示せず)でもよレ、。
[0023] また、本発明装置では、シールガス管 5出口でのシールガスの流れをより安定化さ せる手段として、図 3、図 4に示す対策を講じる。
すなわち、図 3に示す対策は、シールガス管 5内に整流部材 5— 1を配置したもので 、その整流部材 5—1としては、例えば板状のものゃハニカム状のもの等を用いる。こ の整流部材 5 _ 1は、必ずしもシールガス管 5の全長にわたって設ける必要はなぐシ ールガス管 5の曲り部等ガス流れの方向が変化する部分のみに設けてもよい。この整 流板 5—1の作用により、シールガス管 5出口でのシールガス流れがより安定し、シー ルガス管 5出口部に極めて安定したポテンシャルコア Pcが形成される。
[0024] また、図 4に示す対策は、シールガス管 5の屈曲部に排気ガス通路 1の上流側に突 出するダミー管部 5 _ 2を設けることにより、シールガス管 5内のガス流れの安定化を は力 たものである。ここで、シールガス流れを安定化させるための条件としては、実 験の結果、シールガス管 5の内径を Dとした場合、シールガス管 5部のダミー管部 5— 2の長さ L2と該ダミー管部より先端部までの長さ L1を、それぞれ L1/D > 1. 5、 L2 /D > 0. 5に設定すればよいことが判明した。ダミー管部 5— 2の内径 diは、シール ガス管 5の内径 Dより大径もしくは小径でもよレ、。このダミー管部 5— 2の作用により、 前記整流板 5—1を備えたシールガス管と同様、シールガス管 5出口でのシールガス 流れが安定し、シールガス管 5出口部に極めて安定したポテンシャルコア Pcが形成 される。なお、シールガス管 5にダミー管部 5— 2を設けることによりシールガス流れが 安定するのは、シールガスの流れが曲げられることによるシールガス管断面の圧力 変動を減衰させるいわゆるバッファー効果が生ずるからであると考えられる。また、 L1 /D > 1. 5、L2/D > 0. 5に設定する理由は、 L1/Dが 1. 5未満では、シールガス 流れの曲げられた影響が消えず、他方、 L2/Dが 0. 5未満では、十分なバッファー 効果が得られないためである。なお、ダミー管部 5— 2の上流側端面は、フラット状に 限らず、上流側に膨出する半円状または楕円状としてもよい。
[0025] 一方、エンジン停止の時にはシールガスも供給を停止することになる力 シールガ ス停止時期はエンジン停止後しばらく経ってからシールガスを止めることが望ましい。 エンジンとシールガスを同時に止めると、排気ガス管や捕集装置に残留している排気 ガスがシールガス管 5内部に侵入しシールガス管内部や電極針 4を汚損するおそれ 力 Sあるからである。また、シールガス管 5を当該捕集装置本体に貫通させる時の管の 向きは、上部から下部に向かって貫通させるようにすることが望ましい。その理由は、 排気ガスが結露した場合の零をシールガス管出口側へ流出させるためである。
[0026] また、本発明装置において、電極針 4の下流側に配置する捕集板 3は、捕集面が 排気ガス流れに垂直になるように配置し、電極針 4の直流電圧と当該捕集板との間 で電界を発生させ、放電帯電部 2で帯電した PM8をクーロン力によって捕集するタイ プのもので、図 5〜図 6に示すパンチングメタルタイプの捕集板 3a、 3bと、図 7に示す スリットタイプの捕集板 3cの 3種類を示す。すなわち、図 5、図 6に示すパンチングメタ ルタイプの捕集板 3a、 3bは、それぞれ一枚板に多数の貫通孔 3a_ l、 3b_ lを設け た構造で、かつ図 6に示す捕集板 3bは、貫通孔 3b_ lの周囲に突起フランジ (バー リング壁) 3b_ 2を設けた構造となしている。突起フランジ 3b_ 2を設けた場合には、 ガス流れに渦流や澱みができ、帯電した PM8の捕集効率が向上する。突起フランジ 3b— 2の高さ hは、実用的には 0.:!〜 5mm程度でよい。また、図 7に示すスリットタイ プの捕集板 3cは、一枚の板部材に多数のスリット 3c— 1を設けると共に、裏面(PM 付着面の裏側)には捕集板加熱時の抜熱防止のためにセラミック等の断熱材 3c_ 2 を貼付けたり、あるいは断熱塗料等を塗布した構造である。なお、スリットタイプの捕 集板 3cは、短冊状の板部材を複数用いて構成してもよい。
[0027] 図 5、図 6に示すパンチングメタルタイプの捕集板 3a、 3bの場合は、貫通孔 3a_ l の開孔面積を S、孔数を Nとすれば、開口部の総面積は NSとなり、捕集部実質正面 面積を SOとすれば、開孔率は開口部総面積 NSZ捕集部実質正面面積 SOと定義 できる。また、スリットタイプの捕集板 3cの場合も、パンチングメタルタイプの捕集板 3a の場合と同様、開孔率はスリットの開口部総面積 NS/捕集部実質正面面積 S〇と定 義できる。そして、上記開孔率はパンチングメタルタイプの捕集板、スリットタイプの捕 集板共に、 3〜20%とする。その理由は、開孔率が 3%未満では、 PM8の捕集量は 高いが圧力損失が大きくなり、他方、 20%を超えると、 PM8の捕集量が十分に得ら れないためである。
[0028] また、捕集部を流れる排気ガス G1の平均流速は、捕集効率の点から遅い方が好ま しいが、実用的には捕集部の実質正面面積 SOを排気ガス処理装置前の排気ガス 導入管の横断面積の 1. 5倍以上で、かつ捕集部を流れる排気ガス G1の平均流速 が 20m/sec以下となるような横断面積が望ましい。
[0029] 前記捕集板 3a、 3b、 3cの材質としては、特に限定するものではないが、耐熱'耐食 性に優れたフェライト系ステンレス鋼板、オーステナイト系ステンレス鋼板、高合金発 熱体材料であるニッケノレ一クロム等の金属板を用いることができる。また、捕集板に は、ゥォッシュコート層を被覆して触媒を担持させることもできる。
[0030] なお、捕集板 3の正面形状は、排気ガスが抵抗なく流れればよぐ特に限定されな レ、が、円形、四角形、その他の形状、あるいは本体部の断面形状等に合わせて決め られる。
[0031] 図 1に示す装置において、電極針 4に外部の高圧電源装置 6から数万ボルトの直 流高電圧を印加すると、電極針先端でコロナ放電現象を起こしてコロナ電子 10が放 出される。放電帯電部 2の空間を流れる排気ガス Gl中の PM8は、コロナ電子 10に より帯電される。電極針 4に印加する直流電圧は、電極先端付近の電界強度がコロ ナ開始電界強度以上となるように与える。直流電圧の設定値は、排気ガス条件 (流速 、 PM含有量、温度等)に依存するが、実用的には 20〜70Kv程度で十分である。
[0032] 次に、本発明の第 2実施例装置を図 8、図 9に基づいて説明すると、この装置は捕 集部 23を多層板構造としたもので、その構造は電極板保持棒 23— 1に取付けられ た多数の電極板 23— 2と、該電極板 23— 2と交互に配設したアースされた(図示せ ず)捕集板 23— 3とから構成され、電極板 23— 2と捕集板 23— 3は電気的に絶縁構 造となっており、かつそれぞれの板面は排気ガス流れに平行に配置されている。この 多層板構造の捕集部は、高圧電源装置 26から電極板保持棒 23— 1を介して偏向電 圧を与えられた電極板 23 - 2と捕集板 23 _ 3との間で電界を発生させ、帯電した Ρ Μ8をクーロン力によって捕集板 23— 3に捕集する方式である。力、かる方式における 電極板 23— 2と捕集板 23— 3の間隙 Ηは、狭い方が捕集効率が向上するが、実用 的には:!〜 10mm程度が望ましい。偏向電圧は、電極板 23— 2と捕集板 23— 3の間 隙 Lや排気ガス雰囲気等に依存するスパーク電圧以下の電圧に設定する。電極板 2 3— 2と捕集板 23— 3間の電界強度 (偏向電圧/間隙 L)は、実用的には 250〜100 OKv/m程度でよぐしたがって偏向電圧は 0. 8〜5Kv程度でよい。
[0033] 電極板保持棒 23— 1の絶縁は、基本的には前記した電極針 4の絶縁の場合と同様 、電気絶縁性と耐食性を有する石英ガラス、アルミナ、セラミック等により被覆する。電 極板 23— 2への電圧供給は、高圧電源装置 26から導電線と電極板保持棒 23— 1を 経由して行われるが、電極板保持棒 23— 1の排気ガス処理装置の本体壁 1 1への 固定部における電気絶縁が重要である。前記本体壁 1 _ 1の固定部における電極板 保持棒 23_ 1は、アルミナ、セラミック等電気絶縁体で作られた保持棒シール管 9の 中に配置し、空気等の絶縁性のあるシールガス G2を流す。保持棒シール管 9内を流 れるシールガス G2の流速 Qsは、該保持棒シール管 9外の排気ガス G1の平均流速 Qoとの比(Qs/Qo)を 0. 15以上とし、保持棒シール管 9内部への排気ガス G1の卷 込みを防止する。また、保持棒シール管 9の内面と電極板保持棒 23— 1間の隙間( 間隔) Cは、該保持棒シール管 9の本体壁開口部付近に付着した PMにスパークしな レ、ような内径寸法を選択すればよぐ偏向電圧が数千ボルトの電圧の場合には実用 上 3〜: 1 Omm程度が好ましい。
[0034] 上記図 8、図 9に示す第 2実施例装置における多層板構造の捕集部の横断面積は 、該捕集部を流れる排気ガス G1の平均流速 Qoにより設定される。捕集部を流れる 排気ガス G1の平均流速 Qoは、捕集効率の点から遅い方が好ましいが、実用的には 、排気ガス処理装置前の排気ガス導入管の横断面積の 1. 5倍以上で、捕集部を流 れる排気ガス G1の平均流速 Qoが 20m/sec以下となるような横断面積が望ましい。
[0035] また、上記第 2実施例装置の電極板 23— 2と捕集板 23— 3の材質も、前記捕集板 3a、 3b、 3cと同様、耐熱'耐食性に優れたフェライト系ステンレス鋼板、オーステナイ ト系ステンレス鋼板、高合金発熱体材料であるニッケル—クロム等の金属板を用い、 捕集板 23— 3には、ゥォッシュコート層を被覆して触媒を担持させたものを用いること が望ましい。
[0036] 図 10に示す多層板構造の捕集部 33を持った第 3実施例装置は、排気ガス G1中 の PM8を捕集する捕集板 33 1を多層状に、排気ガス流れに実質的に平行に配置 して捕集部を構成したもので、捕集板の 33 1の板面は実質的に平面状で、捕集部 全体が本体壁 1 1に接合され、電圧を付与する電極板がなレ、ため捕集部全体を本 体壁を介してアースしている。このタイプにおける PM捕集の機構は、放電帯電部 2 で同一極性に帯電した PMどうしには斥力が働くため個々の帯電した PM8は捕集板 33 1の方向へ移動して捕集される。また、捕集板 33間の間隙 Lcは、電圧を付与 する電極板がなく各捕集板 33 1間でのスパークが起こらないため狭くすることがで き、総捕集面積を大きくとることができる。また、捕集板 33 1間の間隙 Lcは、実用的 には 0. 5〜5mm程度である。し力し、このタイプの捕集部は前記図 8に示すタイプの ような電極板と捕集板間の電界がないため、単位面積当たりの捕集効率が低くなる が、総捕集面積の増加で補うことができる。
[0037] この第 3実施例装置における捕集板 33は、装置容積が同一ならば捕集面積は前 記図 8に示す第 2実施例装置の電極板 23— 2と捕集板 23— 3とからなる多層板構造 の捕集部に比べて大きくとれるハニカム構造とすれば、捕集効率の面では有利であ る。この捕集板 33— 1で構成される捕集部を流れる排気ガス G1の平均流速 Qoも、 前記第 2実施例装置と同様、実用的には排気ガス処理装置前の排気ガス導入管の 横断面積の 1. 5倍以上で、捕集部を流れる排気ガス G1の平均流速 Qoが 20m/se c以下となるような横断面積が望ましい。
[0038] また、上記第 3実施例装置の捕集板 33— 1の材質も、前記のものと同様、耐食性に 優れたフヱライト系ステンレス鋼板、オーステナイト系ステンレス鋼板等の金属板を用 いる。さらに、捕集板 33— 1には、ゥォッシュコート層を被覆して触媒を担持させたも のを用レ、ることもできる。
[0039] 前記した本発明の各排気ガス処理装置において、捕集板上に一旦捕集された帯 電した PM8は、重力やガス流れの流体力により脱落することはなレ、。それは、微粒子 付着の特徴であり、粒径 30 z m以下の粒子ではファン 'デル'ワールスカによる付着 力が重力によりも大きくなり、その比率は人体に有害といわれる 2. 5 z m以下では極 端に大きくなり(100倍以上)、走行中の振動等で捕集した PM8が脱落することはな レ、。
[0040] また、各排気ガス処理装置の捕集部は、圧損が極めて小さい構造となっているため 、 PM8が捕集板上に堆積しても圧損に伴うトラブルはほとんど生じなレ、。したがって、 通常の運転状態では、高速運転や高負荷運転等により排気ガス温度が高温になれ ば、 PM8は自然に酸化除去される。しかし、市街地等で長時間の交通渋滞が続く場 合などにおいて、 PM8を自然に酸化除去できない場合には、捕集板に堆積した PM 8を電気加熱で強制的に酸化除去することができる。
図 11は本発明の第 1実施例装置における捕集板の PM酸化除去手段の一例を示 したもので、捕集板 3の材料として耐熱'耐食性に優れたフェライト系ステンレス鋼、ォ ーステナイト系ステンレス鋼、高合金発熱体材料であるニッケノレクロム等の薄板を用 レ、、該捕集板 3を加熱ヒーターとして用いる。その手段は、捕集板 3の保持棒 3— 1の 端部に切替えスィッチ 40を設置し、該捕集板 3を電気加熱する場合は、加熱電源装 置 41側の端子 40aに接続し、 PMを捕集する場合は、アース側の端子 40bに接続す る方式を用レ、ること力 Sできる。この電気加熱のための所要電力は:!〜 4KWと小さいの で、加熱電源としては車両搭載のバッテリ等を使用することができる。捕集板 3に捕集 された PM8は 550°C程度の温度で火炎を発することなく酸化除去される。なお、不 必要な温度上昇を避けるため、捕集板 3に熱電対等の温度計測器 (図示せず)を設 置して、電気加熱時の温度を制御することが望ましレ、。
[0041] 次に、本発明装置と触媒との組合せの実施例を図 12、図 13に基づいて説明する。
なお、ここでは本発明装置として図 1に示す第 1実施例装置を採用した場合を例にと り説明する。
ディーゼルエンジンの排気ガス中の有害成分は、煤(PM)、炭化水素(HC)、一酸 化炭素(CO)、窒素酸化物(N〇x)の四種に分類される。ディーゼルエンジンの性能 や運転条件によっては、 PMのみを除去するだけで十分な場合もあり、その場合には 本発明の排気ガス用電気式処理装置のみで排気ガス浄化の目的を達成することが できるが、本発明の排気ガス電気式処理装置と各触媒を組合せると排気ガス中の前 記 PM以外の有害成分をより効率的に除去することが可能となる。
図 12に示す本発明装置と触媒との組合せ例は、本発明の排気ガス用電気式処理 装置 51の上流側(前段)に例えば酸化触媒コンバータ 52を設置し、この酸化触媒で 主に炭化水素 (HC)と一酸化炭素 (CO)が酸化されて水 (H〇)と二酸化炭素 (CO
2 2
)に浄化され、また、排気ガス電気式処理装置 51の捕集板 3に捕集された PM8は、 電気加熱による酸化除去ないし高速運転等の排気ガス温度が高温になったときに酸 化除去される。なお、この場合には窒素酸化物(N〇x)は浄化装置通過後も大きな 変化はない。
なお、本発明の排気ガス用電気式処理装置の捕集部として、単層板構造に替えて 、前記した多層板構造の捕集部を用いる場合には、排気ガスと捕集板の接触する表 面積を単層板構造の捕集部に比べて大きくとれるので、触媒担持に有利であり、捕 集板に酸化触媒、三元触媒の少なくとも 1種を担持させることができる。酸化触媒、三 元触媒としては、白金(Pt)、パラジウム(Pb)、ロジウム(Rh)、あるいはそれらの組合 せの少なくとも 1種を用いる。また、触媒性能を高めるためには、セリウム(Ce)酸化物 等の助触媒を添加することが望ましレ、。
[0042] また、図 13に示す組合せ例は、本発明の排気ガス用電気式処理装置 51の下流側
(後段)に、 N〇x還元触媒コンバータ 53と酸化触媒コンバータ 52もしくは三元触媒コ ンバータ(図示せず)を設置して構成し、さらに排気ガス電気式処理装置 51の上流 側に、 N〇x還元触媒コンバータ 53の N〇x還元触媒の種類に応じた N〇x還元剤の 添加装置 54を配置し、該添加装置 54により N〇x還元剤である燃料やその他の炭化 水素、尿素水を排気ガス中に適宜添カ卩できるようにしたものである。
上記構成の組合せ例の場合、排気ガス用電気式処理装置 51の捕集板 3に捕集さ れた PM8は、電気加熱による酸化除去ないし高速運転等の排気ガス温度が高温に なったときに酸化除去され、また N〇xは NOx還元触媒コンバータ 53の N〇x還元触 媒で Nおよび Oに還元浄化され、さらに酸化触媒コンバータ 52の酸化触媒で主に
2 2
HCと COが酸化されて H Oと COに浄化され、排気ガス中の全ての有害成分が除
2 2
去される。
なお、 NOx還元触媒としては、 Cu— SAPO— 34 (シリコンアルミノホスフェート)や Cu_ZMS _ 5 (銅イオン交換ゼォライト)等を用いる。また、 N〇x触媒としては、公知 の尿素水を還元剤として用レ、る NOx還元触媒あるいは NOx吸蔵還元触媒を用レ、る こと力 Sできる。
[0043] 上記した本発明の第 1〜第 3実施例装置によれば、ディーゼルエンジンの排気ガス 中の PMを捕集板に効果的に捕集することができるが、ディーゼルエンジンの燃焼条 件によっては電気抵抗率 pが低くなる場合があり、その場合には上記捕集板では十 分に対応できない場合が生じる。このため本発明は、前記排気ガス用電気式処理装 置の後段にサイクロン集塵機を付設することにした。
ディーゼルエンジンの排気ガスは運転条件等によって PMの電気抵抗率 pが大幅 に変動し、高電気抵抗率 pの PMもあれば、低電気抵抗率 pの PMもある。一般的 に高速運転時の高温燃焼時では電気抵抗率 pは大きぐまた低温燃焼では電気抵 抗率 pは小さくなる傾向がある。したがって、ディーゼルエンジンの排気ガス中の PM の除去手段としては、電気抵抗率 pの高い PMだけでなぐ電気抵抗率 pの低い P Mをも高効率で捕集できる性能を備える必要がある。そこで、本発明は前記排気ガス 用電気式処理装置の後段にサイクロン集塵機を付設することによって、電気抵抗率 Pが高レ、場合にも低レ、場合にも十分に対応できるディーゼルエンジンの排気ガス用 電気処理装置を提案するものである。
[0044] 図 14に示す第 4実施例装置は、電気抵抗率 pが高い場合にも低い場合にも十分 に対応できるディーゼルエンジンの排気ガス用電気処理装置を例示したもので、前 記と実質的に同じ構成の排気ガス用電気式処理装置 61の後段にサイクロン集塵機 62を配置した構成となしたものである。
ここで、排気ガス用電気式処理装置 61における捕集板 71 _ 1は、図 15に拡大して 示すように、捕集面に孔等の開口を有しない一枚板からなるベース板 71— laと、該 ベース板 71 _ laの捕集面側に設けた格子状フィン 71 _ lbとからなり、かつ該捕集 板 71— 1は排気ガス用電気式処理装置 61の本体壁 61— 1の内壁との間に排気ガス を通流させるための隙間 61— 2が形成されるように適当間隔に配設される。この隙間 61— 2の大きさは、本質的に集塵効率には影響を与えないため、圧力損失を考慮し て決定すればよい。捕集板 71— 1に格子状フィン 71— lbを設けたのは、ガス流れに よどみ効果を発生させることによって、帯電 PMを効率よくベース板 71 _ laに捕集す るためである。
この捕集板 71— 1のベース板 71— laと格子状フィン 71— lbの材質としては、ベー ス板 71— laはアースするから金属等の導体材質を使うのは当然として、格子状フィ ン 71— lbは PMの捕集効率およびジヤンビング凝集 (ベース板上で付着飛散を繰り 返す過程で粒子どうしが衝突して凝集粗大化する現象)の効率を考慮すると、セラミ ック等の絶縁体が好ましい。すなわち、格子状フィン 71— lbが金属製の場合は、電 気力線が電極針 4の先端に近い格子状フィン 71— lbの先端に集中するため帯電し た PMは格子状フィン 71— lbの先端に向って流れ、その部位はガス流れが速いこと から PMはベース板 71— laに到達し難ぐ捕集されずに後方へ飛散流出しやすいた め、ベース板 71— laでの捕集効率が悪ぐまたジヤンビング凝集の効率も悪くなるか らで
ある。
なお、排気ガス用電気式処理装置 61の本体内には、上流側に排ガスの流れと帯 電を促進するためにガイド孔付き板 61— 3を、捕集板 71 - 1と捕集板 71— 1の間に PMの流れと捕集を促進するためのガイド孔付き板 61 _ 3および電界付与を目的と する電界板 61—4を、それぞれ設置してもよい。その場合、電界板 61—4には高圧 電源装置(図示せず)から高電圧を供給し、捕集板 71— 1はアースする。 [0045] 上記図 14、図 15に示すディーゼルエンジンの排気ガス用電気処理装置の場合は 、帯電 PMはベース板 71— laと格子状フィン 71— lbとからなる捕集板 71— 1に捕集 される力 その際ベース板 71— laに到達した帯電 PMのうち電気抵抗率 pの高い P Mはベース板 71 _ laにそのまま捕集され堆積し、他方、電気抵抗率 pの低い PM は前記のジヤンビング凝集現象により粗大化してベース板 71 _ laに捕集される。ベ ース板 71 _ laに捕集された PMは、その後堆積量が増えてある限界量を超えると、 自然に層状に脱落し、その脱落した粗大粒の PMはこの排気ガス用電気式処理装置 61の後段に配設したサイクロン集塵機 62により捕集される。サイクロン集塵機 62に 捕集された PMは、定期的に取出して回収してもよぐまた該サイクロン集塵機に加熱 ヒータ等を設置し
て、運転中あるいは停機時に燃焼してもよい。
[0046] なお、排気ガス用電気式処理装置 61の後段であってサイクロン集塵機 62の前段 に設置する粒子凝集粗大化手段として図 16に示すハニカム構造の粒子凝集管 80 は、ガス流れの速度勾配による凝集作用を利用したもので、排気ガスをこのハニカム 構造の粒子凝集管 80内を通過させると、その時に発生する境界層の速度勾配で効 率よく衝突凝集が行われる。また、図 17に示す粒子凝集板 90は、乱流による凝集作 用を利用したもので、パンチングメタル 90— 1を複数枚 (ここでは 3枚)所望の間隔に 配置し、排気ガスをこの 3枚のパンチングメタル 90— 1で構成した粒子凝集板 90を通 過させると、強い乱流が発生し効率よく衝突凝集が行われる。乱流による凝集作用を 起こさせる方法としては、前記パンチングメタルに替えて、金網あるいは金属細線を 3 次元的に束ねたもの等を用いる
ことも可能である。
本発明では、上記したハニカム構造の粒子凝集管 80あるいは粒子凝集板 90等の 粒子凝集粗大化手段を用いることによって、排気ガス用電気式処理装置 61を出た P M粒子をさらに大きな粒子に成長させることができるので、後段のサイクロン集塵機 6 2で効率よく捕集することができる。
[0047] 一方、本発明の排気ガス用電気式処理装置の捕集板 3、 3a、 3b、 3c、 23- 3, 33 _ 1、 71 _ 1を再生する方法としては、図 18にその一実施例を示すように、排気ガス 用電気式処理装置 51、 61の上流側と下流側間に、排気ガス用電気式処理装置の ないバイパス管路 55を配管し、上流側の排気ガス管路に設けた切替弁 Vを使って、 排気ガスの流れを制御し、 PM捕集と再生を行う方式を用いることができる。すなわち 、排気ガス用電気式処理装置 51、 61により PM8の捕集を行う場合は、切替弁 Vにて Aルートを使用し、捕集板の再生を行う場合は、切替弁 Vにてバイパス管路 55の Bル ートを使用する。なお、 Bルートのバイパス管路 55には排気ガス用電気式処理装置 がないため、当該ルートの使用時には PMは捕集されずに排出される力 捕集板の 再生時間は:!〜 2分程度の短時間であるため大気汚染等の実害はほとんどない。
[0048] なお、図 18に示す再生方式以外にも、図示しないが、例えば前記 Bルートのバイパ ス管路 55にも排気ガス用電気式処理装置 51を設置し、捕集と再生を交互に行う方 式、あるいは排気ガス用電気式処理装置 51を 2基直列に設置し、捕集と再生を交互 に行う方式等があり、このうち排気ガス用電気式処理装置 51を 2基直列に設置する 方式は、 PM8の捕集効率が高くなる上、一方の排気ガス用電気式処理装置が故障 した場合でも他方の装置により捕集できるので、大気汚染防止に対してより安全であ る。
産業上の利用可能性
[0049] 本発明のディーゼルエンジンの排気ガス用電気式処理装置は、排気ガス中の PM を確実に捕集しかつ酸化除去できるので、種々の触媒技術を組合わせることにより、 PM以外の有害ガス成分も効率よく除去することができ、さらにサイクロン集塵機や粒 子凝集粗大化手段を組合わせるとより効果的に PM粒子を捕集できるので、ディーゼ ルエンジンのみならず、特に直噴タイプのガソリンエンジンの排気ガスや有害成分を 含有する各種排ガスの浄化処理にも適用可能であり、大気汚染公害の防止にも大き く寄与する。
図面の簡単な説明
[0050] [図 1]本発明に係るディーゼルエンジンの排気ガス用電気式処理装置の第 1実施例 装置を示す概略図である。
[図 2]同上の第 1実施例装置における放電極の電極針とシール管先端部の説明図で ある。 園 3]同上の第 1実施例装置におけるシールガス管の他の実施例を示す概略図であ る。
園 4]同上の第 1実施例装置におけるシールガス管の別の実施例を示す概略図であ る。
[図 5]同上の第 1実施例装置における PM捕集板を示す概略説明図である。
園 6]同上の PM捕集板の貫通孔の説明図で、(a)は PM捕集板の貫通孔の位置お よび孔径を示す説明図、(b)は(a)の A_A線上の断面図である。
園 7]同上の第 1実施例装置における他の PM捕集板を示す概略図で、 (a)は正面 図、(b)は側面図である。
園 8]本発明に係るディーゼルエンジンの排気ガス用電気式処理装置の第 2実施例 装置を示す概略図である。
[図 9]同上の第 2実施例装置の要部を拡大して示す概略断面図である。
園 10]本発明に係るディーゼルエンジンの排気ガス用電気式処理装置の第 3実施例 装置を示す概略図である。
園 11]本発明装置における捕集板の PM酸化除去手段の一例を示す概略説明図で ある。
[図 12]本発明装置と触媒との組合せの実施例を示す概略図である。
園 13]同じく本発明装置と触媒との組合せの他の実施例を示す概略図である。
[図 14]本発明に係るディーゼルエンジン排気ガス用電気式処理装置の第 4実施例装 置 (サイクロン付集塵機付き)を示す概略図である。
園 15]図 14に示す第 4実施例装置における捕集板を拡大して示す概略斜視図であ る。
園 16]図 14に示す第 4実施例装置におけるサイクロン集塵機の前段に設置する粒子 凝集粗大化手段の一例で、ハニカム構造の粒子凝集管を示す概略斜視図である。 園 17]同じく粒子凝集粗大化手段の他の例で、パンチングメタルを複数枚間隔配置 して構成した粒子凝集板を示す概略斜視図である。
園 18]本発明装置の捕集板の再生方式の一実施例を示す概略図である。
園 19]本発明の対象とする従来のディーゼルエンジンの排気 PM捕集装置の一例を 示す概略説明図である。
符号の説明
1 排気ガス通路
1- 1, 61-1 本体壁
2 放電帯電部
2- 1 コロナ放電部
2-2 帯電部
3、 3a、 3b、 3c、 23— 3、 33— 1、 71— 1 捕集板
4 電極針
5 シールガス管
5-1 整流部材
5-2 ダミー管部
6 高圧電源装置
7 排気ガス誘導管
8 PM
9 保持棒シール管
10 コロナ電子
11 絶縁体
23、 33 捕集部
23-1 電極板保持棒
23-2 電極板
0 切替スィッチ
0a、40b 端子
1 加熱電源装置
51、 61 排気ガス用電気式処理装置
2 酸化触媒コンバータ
3 NOx還元触媒コンバータ 53
4 添加装置 55 バイパス管路 G1 排気ガス
G2 シールガス Pc ポテンシャノレコア V 切替弁

Claims

請求の範囲
[1] ディーゼルエンジンの排気ガス用電気式処理方法において、排気ガス通路の上流 側にコロナ放電部と帯電部とからなる放電帯電部を設けて、コロナ放電された電子を 排気ガス中のカーボンを主体とする粒状物質に帯電させ、同排気ガス通路に配置し た捕集部で前記帯電した粒状物質を捕集することを特徴とするディーゼルエンジン の排気ガス用電気式処理方法。
[2] ディーゼルエンジンの排気ガス用電気式処理装置において、排気ガス通路の上流 側にコロナ放電された電子を排気ガス中のカーボンを主体とする粒状物質に帯電さ せるコロナ放電部と帯電部とからなる放電帯電部を設け、前記帯電した粒状物質を 捕集する捕集部を同排気ガス通路に配置した構成となしたことを特徴とするディーゼ ルエンジンの排気ガス用電気式処理装置。
[3] 前記コロナ放電部の電極針の放電側先端を排気ガス流れの下流側に向けて配置 し、コロナ電子を下流側に向けて放電させることを特徴とする請求項 2に記載のディ ーゼルエンジンの排気ガス用電気式処理装置。
[4] 前記電極針を絶縁体製のシールガス管内に挿通配置したことを特徴とする請求項
3に記載のディーゼルエンジンの排気ガス用電気式処理装置。
[5] 前記シールガス管をアルミナセラミック製としたことを特徴とする請求項 4に記載の ディーゼルエンジンの排気ガス用電気式処理装置。
[6] 前記電極針のシールガス管端からの突出部をシールガス管内ガス流のポテンシャ ルコア内に位置させたことを特徴とする請求項 4または 5に記載のディーゼルェンジ ンの排気ガス用電気式処理装置。
[7] 前記電極針を電気絶縁性と耐食性を有する材料で被覆したことを特徴とする請求 項 4〜6のいずれか 1項に記載のディーゼルエンジンの排気ガス用電気式処理装置
[8] 前記電極針の被覆材料に、石英ガラスまたはアルミナまたはセラミックを用いたこと を特徴とする請求項 7に記載のディーゼルエンジンの排気ガス用電気式処理装置。
[9] 前記捕集部を単層板構造または多層板構造としたことを特徴とする請求項 2〜8の いずれか 1項に記載のディーゼルエンジンの排気ガス用電気式処理装置。
[10] 前記捕集部をパンチングメタルタイプの捕集板またはスリットタイプの捕集板で構成 し、かつ開孔部総面積/捕集部実質正面面積で定義される開孔率を 3〜20%とした ことを特徴とする請求項 2〜8のいずれか 1項に記載のディーゼルエンジンの排気ガ ス用電気式処理装置。
[11] 前記捕集部を捕集面に開口を有しない一枚板からなるベース板および該ベース板 の捕集面側に設けた格子状のフィンとで構成した請求項 2〜8のいずれ力 4項に記 載のディーゼルエンジンの排気ガス用電気式処理装置。
[12] 前記単層板構造または多層板構造の捕集部固定部における電極板保持棒を絶縁 体製シール管内に配置したことを特徴とする請求項 9に記載のディーゼルエンジンの 排気ガス用電気式処理装置。
[13] 前記シールガス管内に整流部材を全体または一部に配設したことを特徴とする請 求項 4〜: 12のいずれ力 4項に記載のディーゼルエンジンの排気ガス用電気式処理 装置。
[14] 前記整流部材には、板状のものまたはハニカム状のものを用いることを特徴とする 請求項 13に記載のディーゼルエンジンの排気ガス用電気式処理装置。
[15] 前記シールガス管の電極針先端側と反対側管壁に排気ガス流れ方向と平行してダ ミー管部を設けたことを特徴とする請求項 4〜: 13のいずれ力 1項に記載のディーゼル エンジンの排気ガス用電気式処理装置。
[16] 前記ダミー管部を有するシールガス管は、シールガス管の内径を D、シールガス管 部のダミー管部の長さを Ll、該ダミー管部より先端部までの長さを L2とした場合、 L1
/D > 1. 5、L2/D > 0. 5の条件を満足させることを特徴とする請求項 15に記載の ディーゼルエンジンの排気ガス用電気式処理装置。
[17] 前記排気ガス用電気式処理装置と触媒とを組合せて用いることを特徴とする請求 項 4〜: 16のいずれか 1項に記載のディーゼルエンジンの排気ガス用電気式処理装 置。
[18] 前記排気ガス用電気式処理装置の後段にサイクロン集塵機を付設した構成となし たことを特徴とする請求項 2〜: 17のいずれ力、 1項に記載のディーゼルエンジンの排 気ガス用電気式処理装置。
[19] 前記排気ガス用電気式処理装置の前記捕集部を、捕集面に開口を有しない一枚 板からなるベース板および該ベース板の捕集面側に設けた格子状のフィンとで構成 した捕集板を当該装置本体内壁との間に隙間が形成されるごとく 1ないし複数枚配 置して構成したことを特徴とする請求項 18に記載のディーゼルエンジンの排気ガス 用電気式処理装置。
[20] 前記排気ガス用電気式処理装置の後段であって前記サイクロン集塵機の前段に粒 子凝集粗大化手段を配設したことを特徴とする請求項 18または 19に記載のディー ゼルエンジンの排気ガス用電気式処理装置。
[21] 前記粒子凝集粗大化手段として、ハニカム構造の粒子凝集管、またはパンチングメ タルあるいは金網を複数枚間隔配置して構成した粒子凝集板を用いることを請求項 19または 20に記載のディーゼルエンジンの排気ガス用電気式処理装置。
[22] 前記排気ガス用電気式処理装置の当該装置本体内壁も前記粒状物質の捕集面あ るいは捕集部とすることを特徴とする請求項 2〜21のいずれ力 1項に記載のディーゼ ルエンジンの排気ガス用電気式処理装置。
[23] 前記排気ガス用電気式処理装置の捕集板の再生方式として、当該装置の上流側 と下流側間に排気ガスのバイパス管路を配管し、ガス切替弁にて前記バイパス管路 に排気ガスを流す間に捕集板の再生を行う方式を用いることを特徴とする請求項 2〜 22のいずれか 1項に記載のディーゼルエンジンの排気ガス用電気式処理装置。
PCT/JP2005/022881 2004-12-17 2005-12-13 ディーゼルエンジンの排気ガス用電気式処理方法およびその装置 WO2006064805A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP05816706A EP1837489B9 (en) 2004-12-17 2005-12-13 Electric treating method for exhaust gas of diesel engine and its device
JP2006548856A JP4931602B2 (ja) 2004-12-17 2005-12-13 ディーゼルエンジンの排気ガス用電気式処理装置
KR1020077016136A KR101406649B1 (ko) 2004-12-17 2005-12-13 디젤 엔진의 배기 가스용 전기식 처리 방법 및 그 장치
CN2005800474346A CN101111667B (zh) 2004-12-17 2005-12-13 柴油发动机的排放气体用电气式处理方法及其装置
AT05816706T ATE548546T1 (de) 2004-12-17 2005-12-13 Elektrisches behandlungsverfahren für abgas eines dieselmotors und vorrichtung dafür

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-366313 2004-12-17
JP2004366313 2004-12-17
JP2005357030 2005-12-09
JP2005-357030 2005-12-09

Publications (1)

Publication Number Publication Date
WO2006064805A1 true WO2006064805A1 (ja) 2006-06-22

Family

ID=36587860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022881 WO2006064805A1 (ja) 2004-12-17 2005-12-13 ディーゼルエンジンの排気ガス用電気式処理方法およびその装置

Country Status (6)

Country Link
EP (1) EP1837489B9 (ja)
JP (1) JP4931602B2 (ja)
KR (1) KR101406649B1 (ja)
CN (1) CN101111667B (ja)
AT (1) ATE548546T1 (ja)
WO (1) WO2006064805A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008118434A1 (en) * 2007-03-26 2008-10-02 Pq Corporation Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same
FR2915234A1 (fr) * 2007-04-18 2008-10-24 Renault Sas Systeme de filtration electrostatique pour les gaz d'echappement d'un moteur a combustion interne.
WO2008132452A2 (en) 2007-04-26 2008-11-06 Johnson Matthey Public Limited Company Transition metal/zeolite scr catalysts
WO2012066825A1 (ja) 2010-11-16 2012-05-24 臼井国際産業株式会社 ディーゼルエンジン排ガス処理装置
WO2012081290A1 (ja) 2010-12-16 2012-06-21 臼井国際産業株式会社 重油以下の低質燃料を使用するディーゼルエンジンの排気ガス浄化装置
WO2013172380A1 (ja) 2012-05-15 2013-11-21 臼井国際産業株式会社 重油より低質な燃料を使用する船舶用ディーゼルエンジン排ガス処理装置
JP2014139440A (ja) * 2008-01-31 2014-07-31 Basf Corp Cha結晶構造を有する分子篩を含む非沸石系金属を利用する触媒、システム、および方法
WO2014175467A1 (ja) 2013-04-26 2014-10-30 臼井国際産業株式会社 高濃度に硫黄成分を含有する重油等の低質燃料を使用する船舶用ディーゼルエンジンの排気ガス浄化装置
WO2014181717A1 (ja) 2013-05-09 2014-11-13 臼井国際産業株式会社 重油を使用する船舶用ディーゼルエンジンの排ガス処理装置
JP2015508863A (ja) * 2012-03-02 2015-03-23 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング 中心領域から径方向外側に流れるガス流の処理装置
WO2015093172A1 (ja) 2013-12-17 2015-06-25 臼井国際産業株式会社 高濃度に硫黄成分を含有する重油等の低質燃料を使用する船舶用ディーゼルエンジンの排気ガス浄化装置
JP2015166083A (ja) * 2007-02-27 2015-09-24 ビーエーエスエフ コーポレーション 選択的アンモニア酸化用の二官能性触媒
KR20160140938A (ko) 2014-04-07 2016-12-07 우수이 고쿠사이 산교 가부시키가이샤 고농도로 황 성분을 함유하는 저질 연료를 사용하는 선박용 디젤 엔진의 배기가스 정화 장치
US10384162B2 (en) 2007-03-26 2019-08-20 Pq Corporation High silica chabazite for selective catalytic reduction, methods of making and using same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4823027B2 (ja) * 2006-06-14 2011-11-24 臼井国際産業株式会社 ディーゼルエンジン排気ガスの電気式処理方法およびその装置
US7998423B2 (en) 2007-02-27 2011-08-16 Basf Corporation SCR on low thermal mass filter substrates
BRPI0808091A2 (pt) 2007-02-27 2014-07-15 Basf Catalysts Llc Catalisador, sistema de tratamento de gás de exaustão, processo para a redução de óxidos de nitrogênio, e, artigo de catalisador.
US10583424B2 (en) 2008-11-06 2020-03-10 Basf Corporation Chabazite zeolite catalysts having low silica to alumina ratios
KR101032613B1 (ko) * 2009-02-17 2011-05-06 한국기계연구원 탄소섬유를 이용한 1단 전기집진기
US8293198B2 (en) 2009-12-18 2012-10-23 Basf Corporation Process of direct copper exchange into Na+-form of chabazite molecular sieve, and catalysts, systems and methods
US8293199B2 (en) 2009-12-18 2012-10-23 Basf Corporation Process for preparation of copper containing molecular sieves with the CHA structure, catalysts, systems and methods
US9764333B2 (en) 2010-03-10 2017-09-19 Msp Corporation Electrical ionizer for aerosol charge conditioning and measurement
WO2011141827A1 (en) * 2010-05-11 2011-11-17 Flsmidth A/S Method and plant for dedusting a stream of dust-laden gases in a hybrid filter installation
EP2687689B1 (en) * 2011-03-16 2016-04-27 Toyota Jidosha Kabushiki Kaisha Particulate Matter Processing Apparatus
CN106593580B (zh) * 2016-12-30 2022-07-08 三河市科达科技有限公司 一种发动机废气循环净化消声***
JP6881610B2 (ja) * 2017-12-27 2021-06-02 日産自動車株式会社 ガソリンエンジンの排気浄化方法および排気浄化装置
CN108240247A (zh) * 2018-01-16 2018-07-03 航天凯天环保科技股份有限公司 一种发动机尾气后处理装置
US20220250087A1 (en) * 2018-10-22 2022-08-11 Shanghai Bixiufu Enterprise Management Co., Ltd. Engine exhaust dust removing system and method
TW202015779A (zh) * 2018-10-22 2020-05-01 大陸商上海必修福企業管理有限公司 空氣除塵系統

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148017A (en) * 1981-03-09 1982-09-13 Toyota Central Res & Dev Lab Inc Device for disposing of exhaust smoke of internal combustion engine
JPH05222915A (ja) * 1992-02-10 1993-08-31 Nippon Soken Inc 内燃機関の排気ガス浄化装置
JPH06159036A (ja) * 1991-02-18 1994-06-07 Nagao Kogyo:Kk 車両用ディ−ゼル機関の排気ガス浄化装置
JPH06173637A (ja) 1991-02-18 1994-06-21 Nagao Kogyo:Kk 車両用ディ−ゼル機関の排気ガス浄化装置
JPH09112246A (ja) 1995-10-24 1997-04-28 Ooden:Kk 電気的制御によるディーゼルエンジンの排気微粒子捕集装置
JPH11156241A (ja) * 1997-11-28 1999-06-15 Ngk Insulators Ltd 電気集塵装置
JP2000246139A (ja) * 1999-02-26 2000-09-12 Amano Corp 電気集塵装置
WO2003074184A1 (en) * 2002-03-01 2003-09-12 Per-Tec Limited Electrode mounting
JP2003269133A (ja) 2002-03-15 2003-09-25 Toyota Motor Corp 排気ガス浄化装置
JP2004293417A (ja) * 2003-03-27 2004-10-21 Isuzu Motors Ltd 内燃機関の排気ガス浄化方法及びその装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3841182A1 (de) * 1988-12-07 1990-06-13 Bosch Gmbh Robert Einrichtung zum entfernen von festkoerperpartikeln, insbesondere russteilchen, aus dem abgas von brennkraftmaschinen
JPH0333579U (ja) * 1989-08-11 1991-04-02
US5263317A (en) * 1990-05-25 1993-11-23 Kabushiki Kaisha Nagao Kogyo Exhaust gas purifying apparatus for automobile diesel engine
US5147423A (en) * 1991-03-01 1992-09-15 Richards Clyde N Corona electrode for electrically charging aerosol particles
FR2798303B1 (fr) * 1999-09-14 2001-11-09 Daniel Teboul Dispositif de traitement d'un milieu gazeux, en particulier des gaz d'echappement d'un moteur a combustion interne, et vehicule equipe d'un tel dispositif
CN1309232A (zh) * 2000-02-15 2001-08-22 株式会社五十铃硅酸盐研究所 柴油机废气微粒过滤装置
JP3946063B2 (ja) * 2002-03-18 2007-07-18 株式会社豊田中央研究所 排気浄化装置
DE20303087U1 (de) * 2003-02-26 2004-07-08 Hengst Gmbh & Co.Kg Elektroabscheider mit isolierter Sprühelektrode

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148017A (en) * 1981-03-09 1982-09-13 Toyota Central Res & Dev Lab Inc Device for disposing of exhaust smoke of internal combustion engine
JPH06159036A (ja) * 1991-02-18 1994-06-07 Nagao Kogyo:Kk 車両用ディ−ゼル機関の排気ガス浄化装置
JPH06173637A (ja) 1991-02-18 1994-06-21 Nagao Kogyo:Kk 車両用ディ−ゼル機関の排気ガス浄化装置
JPH05222915A (ja) * 1992-02-10 1993-08-31 Nippon Soken Inc 内燃機関の排気ガス浄化装置
JPH09112246A (ja) 1995-10-24 1997-04-28 Ooden:Kk 電気的制御によるディーゼルエンジンの排気微粒子捕集装置
JPH11156241A (ja) * 1997-11-28 1999-06-15 Ngk Insulators Ltd 電気集塵装置
JP2000246139A (ja) * 1999-02-26 2000-09-12 Amano Corp 電気集塵装置
WO2003074184A1 (en) * 2002-03-01 2003-09-12 Per-Tec Limited Electrode mounting
JP2003269133A (ja) 2002-03-15 2003-09-25 Toyota Motor Corp 排気ガス浄化装置
JP2004293417A (ja) * 2003-03-27 2004-10-21 Isuzu Motors Ltd 内燃機関の排気ガス浄化方法及びその装置

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015166083A (ja) * 2007-02-27 2015-09-24 ビーエーエスエフ コーポレーション 選択的アンモニア酸化用の二官能性触媒
JP2010522688A (ja) * 2007-03-26 2010-07-08 ピーキュー コーポレイション 8員環細孔開口構造を有するモレキュラーシーブまたはゼオライトを含んで成る新規マイクロポーラス結晶性物質およびその製法およびその使用
EP2944377A1 (en) * 2007-03-26 2015-11-18 PQ Corporation Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same
US7645718B2 (en) 2007-03-26 2010-01-12 Pq Corporation Microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same
EP3189893A1 (en) * 2007-03-26 2017-07-12 PQ Corporation Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same
EP2517790A3 (en) * 2007-03-26 2013-08-21 PQ Corporation Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same
EP3401010A1 (en) * 2007-03-26 2018-11-14 PQ Corporation Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same
US7883678B2 (en) 2007-03-26 2011-02-08 Pq Corporation Microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same
JP2011167690A (ja) * 2007-03-26 2011-09-01 Pq Corp 8員環細孔開口構造を有するモレキュラーシーブまたはゼオライトを含んで成る新規マイクロポーラス結晶性物質およびその製法およびその使用
EP2246111A3 (en) * 2007-03-26 2011-09-07 PQ Corporation Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same
JP4889807B2 (ja) * 2007-03-26 2012-03-07 ピーキュー コーポレイション 8員環細孔開口構造を有するモレキュラーシーブまたはゼオライトを含んで成る新規マイクロポーラス結晶性物質およびその製法およびその使用
US10384162B2 (en) 2007-03-26 2019-08-20 Pq Corporation High silica chabazite for selective catalytic reduction, methods of making and using same
WO2008118434A1 (en) * 2007-03-26 2008-10-02 Pq Corporation Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same
FR2915234A1 (fr) * 2007-04-18 2008-10-24 Renault Sas Systeme de filtration electrostatique pour les gaz d'echappement d'un moteur a combustion interne.
EP2517774A2 (en) 2007-04-26 2012-10-31 Johnson Matthey Public Limited Company Transition metal/eri-zeolite scr catalyst
US20150078968A1 (en) * 2007-04-26 2015-03-19 Johnson Matthey Public Limited Company Transition metal/zeolite scr catalysts
EP2517776A1 (en) 2007-04-26 2012-10-31 Johnson Matthey Public Limited Company Transition metal/kfi-zeolite scr catalyst
EP2517775A2 (en) 2007-04-26 2012-10-31 Johnson Matthey Public Limited Company Transition metal/zeolite SCR catalysts
EP2517773A2 (en) 2007-04-26 2012-10-31 Johnson Matthey Public Limited Company Transition metal/lev-zeolite scr catalyst
EP2517778A1 (en) 2007-04-26 2012-10-31 Johnson Matthey Public Limited Company Transition metal/aei-zeolite scr catalyst
KR101589760B1 (ko) 2007-04-26 2016-01-28 존슨 맛쎄이 퍼블릭 리미티드 컴파니 전이 금속/제올라이트 scr 촉매
CN101730575B (zh) * 2007-04-26 2013-01-02 约翰逊马西有限公司 过渡金属/沸石scr催化剂
EP3981502A1 (en) 2007-04-26 2022-04-13 Johnson Matthey Public Limited Company Transition metal/zeolite scr catalysts
EP3626329A1 (en) 2007-04-26 2020-03-25 Johnson Matthey Public Limited Company Exhaust system comprising transition metal/zsm-34 zeolite scr catalyst
JP2016195992A (ja) * 2007-04-26 2016-11-24 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company 遷移金属/ゼオライトscr触媒
US8603432B2 (en) 2007-04-26 2013-12-10 Paul Joseph Andersen Transition metal/zeolite SCR catalysts
RU2506989C2 (ru) * 2007-04-26 2014-02-20 Джонсон Мэттей Паблик Лимитед Компани Катализаторы скв: переходный металл/цеолит
KR20160142411A (ko) * 2007-04-26 2016-12-12 존슨 맛쎄이 퍼블릭 리미티드 컴파니 전이 금속/제올라이트 scr 촉매
EP2786796A1 (en) 2007-04-26 2014-10-08 Johnson Matthey Public Limited Company Copper/AEI-zeolite SCR catalyst
JP2019076895A (ja) * 2007-04-26 2019-05-23 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company 遷移金属/ゼオライトscr触媒
KR101965943B1 (ko) * 2007-04-26 2019-04-04 존슨 맛쎄이 퍼블릭 리미티드 컴파니 전이 금속/제올라이트 scr 촉매
JP2015027673A (ja) * 2007-04-26 2015-02-12 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company 遷移金属/ゼオライトscr触媒
EP2150328B1 (en) 2007-04-26 2015-03-11 Johnson Matthey PLC SCR METHOD AND SYSTEM USING Cu/SAPO-34 ZEOLITE CATALYST
EP2517777A2 (en) 2007-04-26 2012-10-31 Johnson Matthey Public Limited Company Transition metal/cha-zeolite scr catalyst
JP2010524677A (ja) * 2007-04-26 2010-07-22 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー 遷移金属/ゼオライトscr触媒
KR20100017347A (ko) * 2007-04-26 2010-02-16 존슨 맛쎄이 퍼블릭 리미티드 컴파니 전이 금속/제올라이트 scr 촉매
WO2008132452A3 (en) * 2007-04-26 2009-02-26 Johnson Matthey Plc Transition metal/zeolite scr catalysts
WO2008132452A2 (en) 2007-04-26 2008-11-06 Johnson Matthey Public Limited Company Transition metal/zeolite scr catalysts
JP2014139440A (ja) * 2008-01-31 2014-07-31 Basf Corp Cha結晶構造を有する分子篩を含む非沸石系金属を利用する触媒、システム、および方法
WO2012066825A1 (ja) 2010-11-16 2012-05-24 臼井国際産業株式会社 ディーゼルエンジン排ガス処理装置
WO2012081290A1 (ja) 2010-12-16 2012-06-21 臼井国際産業株式会社 重油以下の低質燃料を使用するディーゼルエンジンの排気ガス浄化装置
KR20130121920A (ko) 2010-12-16 2013-11-06 우수이 고쿠사이 산교 가부시키가이샤 중유 이하의 저질 연료를 사용하는 선박용 디젤 엔진의 배기 가스 정화 장치
JP2012140928A (ja) * 2010-12-16 2012-07-26 Usui Kokusai Sangyo Kaisha Ltd 重油以下の低質燃料を使用するディーゼルエンジンの排気ガス浄化装置
JP2015508863A (ja) * 2012-03-02 2015-03-23 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング 中心領域から径方向外側に流れるガス流の処理装置
WO2013172380A1 (ja) 2012-05-15 2013-11-21 臼井国際産業株式会社 重油より低質な燃料を使用する船舶用ディーゼルエンジン排ガス処理装置
KR20160008201A (ko) 2013-04-26 2016-01-21 우수이 고쿠사이 산교 가부시키가이샤 고농도로 황 성분을 함유하는 중유 등의 저질 연료를 사용하는 선박용 디젤 엔진의 배기 가스 정화 장치
WO2014175467A1 (ja) 2013-04-26 2014-10-30 臼井国際産業株式会社 高濃度に硫黄成分を含有する重油等の低質燃料を使用する船舶用ディーゼルエンジンの排気ガス浄化装置
KR20160006742A (ko) 2013-05-09 2016-01-19 우수이 고쿠사이 산교 가부시키가이샤 중유를 사용하는 선박용 디젤 엔진의 배기 가스 처리 장치
WO2014181717A1 (ja) 2013-05-09 2014-11-13 臼井国際産業株式会社 重油を使用する船舶用ディーゼルエンジンの排ガス処理装置
KR20160093075A (ko) 2013-12-17 2016-08-05 우수이 고쿠사이 산교 가부시키가이샤 고농도로 황 성분을 함유하는 중유 등의 저질 연료를 사용하는 선박용 디젤 엔진의 배기가스 정화 장치
WO2015093172A1 (ja) 2013-12-17 2015-06-25 臼井国際産業株式会社 高濃度に硫黄成分を含有する重油等の低質燃料を使用する船舶用ディーゼルエンジンの排気ガス浄化装置
KR20160140938A (ko) 2014-04-07 2016-12-07 우수이 고쿠사이 산교 가부시키가이샤 고농도로 황 성분을 함유하는 저질 연료를 사용하는 선박용 디젤 엔진의 배기가스 정화 장치

Also Published As

Publication number Publication date
EP1837489B9 (en) 2012-09-12
JPWO2006064805A1 (ja) 2008-06-12
JP4931602B2 (ja) 2012-05-16
KR20070100940A (ko) 2007-10-15
EP1837489A1 (en) 2007-09-26
EP1837489B1 (en) 2012-03-07
ATE548546T1 (de) 2012-03-15
KR101406649B1 (ko) 2014-07-18
EP1837489A4 (en) 2010-08-04
CN101111667B (zh) 2010-05-12
CN101111667A (zh) 2008-01-23

Similar Documents

Publication Publication Date Title
WO2006064805A1 (ja) ディーゼルエンジンの排気ガス用電気式処理方法およびその装置
JP4823027B2 (ja) ディーゼルエンジン排気ガスの電気式処理方法およびその装置
US8115373B2 (en) Self-regenerating particulate trap systems for emissions and methods thereof
US7442218B2 (en) Exhaust gas treatment apparatus
JP4913309B2 (ja) 粒子捕獲装置
EP2305976A2 (en) Exhaust gas treatment apparatus
WO2008062554A1 (fr) Dispositif de purification de gaz, système de purification de gaz et procédé de purification de gaz
US20090205315A1 (en) Apparatus and Method for PM Purification
WO2005083241A1 (en) Plasma reactor power source, plasma reactor, exhaust gas purification device and exhaust gas purifying method
WO2008123557A1 (ja) 排ガス浄化装置
EP2174707A1 (en) Electrode for plasma generation
JP4896629B2 (ja) 排気ガス処理装置
JP2004028026A (ja) 排ガス浄化装置
JP2004245096A (ja) プラズマリアクタ
JP2003269133A (ja) 排気ガス浄化装置
JP2004076669A (ja) 排気ガス浄化装置
JP2004011592A (ja) 排気ガス浄化装置
US20100186376A1 (en) Electrically stimulated catalytic converter apparatus, and method of using same
JP2006105078A (ja) 排気浄化装置
JP2004293417A (ja) 内燃機関の排気ガス浄化方法及びその装置
JP2009074438A (ja) 排気浄化装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006548856

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005816706

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077016136

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580047434.6

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005816706

Country of ref document: EP