WO2005112217A1 - 過電流検出回路及びこれを有する電源装置 - Google Patents

過電流検出回路及びこれを有する電源装置 Download PDF

Info

Publication number
WO2005112217A1
WO2005112217A1 PCT/JP2005/008967 JP2005008967W WO2005112217A1 WO 2005112217 A1 WO2005112217 A1 WO 2005112217A1 JP 2005008967 W JP2005008967 W JP 2005008967W WO 2005112217 A1 WO2005112217 A1 WO 2005112217A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
detection
mos transistor
electrode
overcurrent
Prior art date
Application number
PCT/JP2005/008967
Other languages
English (en)
French (fr)
Inventor
Hirokazu Oki
Yuzo Ide
Original Assignee
Rohm Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co., Ltd filed Critical Rohm Co., Ltd
Priority to US11/597,012 priority Critical patent/US20070229041A1/en
Publication of WO2005112217A1 publication Critical patent/WO2005112217A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0822Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/18Modifications for indicating state of switch

Definitions

  • the present invention relates to an overcurrent detection circuit used for a power supply device or the like. More particularly, the present invention relates to an overcurrent detection circuit including a MOS transistor (insulated gate type field effect transistor) as a switching element for outputting a current to a load. Further, the present invention relates to a power supply device having the overcurrent detection circuit.
  • MOS transistor insulated gate type field effect transistor
  • FIG. 5 As a conventional overcurrent detection circuit including a MOS transistor as a switching element, there is one as shown in FIG.
  • a power supply voltage 105 is supplied to the source electrode of a P-channel (P-type semiconductor) power MOS transistor 100, and its drain electrode is connected to one end of a load 103 via a detection resistor 101. It is connected. The other end of the load 103 is grounded!
  • connection point between the drain electrode of the power MOS transistor 100 and the detection resistor 101 is connected to the base electrode of the NPN transistor 102, and the connection point between the detection resistor 101 and the load 103 is connected to the emitter electrode of the transistor 102.
  • the power supply voltage 105 is connected to the collector electrode of the transistor 102 via the resistor 104, and a pulse voltage for turning on and off the power MOS transistor 100 is supplied to the gate electrode of the power MOS transistor 100 from the outside. Is done.
  • FIG. 6 there is one as shown in FIG. 6 (for example, see Patent Document 1).
  • a power supply voltage 110 is supplied to a drain electrode of an N-channel (N-type semiconductor) power MOS transistor 112, and a source electrode thereof is connected to one end of a load 116. The other end of the load 116 is grounded.
  • a power supply voltage 110 is supplied to a drain electrode of an N-channel (N-type semiconductor) detection MOS transistor 111, and its source electrode is connected to one end of a detection resistor 114 and a non-inverting input terminal (+) of a comparator 115. Connected in common.
  • the other end of the detection resistor 114 is connected to a connection point between the source electrode of the power MOS transistor 112 and the load 116, and to the inverting input terminal (-) of the comparator 115.
  • the gate electrodes of the power MOS transistor 112 and the detection MOS transistor 111 are commonly connected to a terminal 113.
  • the terminal 113 has a pulse voltage for controlling on / off of both the power MOS transistor 112 and the detection MOS transistor 111. Is supplied from outside.
  • the power MOS transistor 112 has a large number (k; k is an integer of 2 or more, for example, 100) of unit cell transistors, and connects their drain, source, and gate in parallel. Thereby, it is formed as a single MOS transistor.
  • the detection MOS transistor 111 is formed of, for example, one and the same unit cell transistor! RU
  • the area ratio of the channel between the power MOS transistor 112 and the detection MOS transistor 111 is 100: 1, and the ratio of the current flowing through these transistors is also 100: 1 (the configuration example shown in FIG. It is referred to as "first example of Patent Document 1."
  • the overcurrent detection circuit configured as described above, when an overcurrent flows through the power MOS transistor 112 and a current of 1Z100 flows through the detection MOS transistor, a comparison is made between the two terminals of the detection resistor 114. A voltage drop that is higher than the reference voltage determined inside the unit 115 occurs. At this time, the comparator 115 outputs an overcurrent detection signal indicating that an overcurrent is flowing to the power MOS transistor 112, and notifies a control unit (not shown) of the overcurrent state of the power MOS transistor 112.
  • Patent Document 1 discloses the following configuration example! A large number of unit MOS transistor elements are arranged in parallel, and the sources, gates, and drains of the unit elements are connected in parallel by wiring to derive the source, gate, and drain, and a single element Detects the voltage drop across both ends of the wiring resistance of the source or drain wiring due to the parallel connection of the output power MOS transistor and the source or drain of the unit element, and detects the overcurrent flowing through the power MOS transistor.
  • a semiconductor device in which an overcurrent detection circuit unit and the overcurrent detection circuit are formed in the same element this configuration example is hereinafter referred to as "second example of Patent Document 1").
  • Patent Document 1 Registered Utility Model No. 2525470 (Japan)
  • a detection resistor 101 is provided between the power MOS transistor 100 and the load 103 in order to detect an overcurrent state of the power MOS transistor 100.
  • a power loss occurs in the detection resistor 101, deteriorating the power efficiency of the entire circuit and increasing the problem of heat generation.
  • the resistance value has a large temperature dependency (for example, about 2000 ppm Z ° C.). That is, the temperature coefficient of the detection resistor 101 increases.
  • the threshold value of the current for detecting the overcurrent state of the power MOS transistor 100 has a large temperature dependence, and as a result, the detection error of the overcurrent detection (hereinafter, simply referred to as “detection error”) increases.
  • detection error increases because the base-emitter voltage at which the transistor 102 is turned on has a large temperature dependency.
  • the heat generated by the detection resistor 101 affects the resistance value of the detection resistor 101 and the base-emitter voltage at which the transistor 102 is turned on, so that the detection error further increases.
  • the area ratio between the channels of the power MOS transistor 112 and the detection MOS transistor 111 is set to k: 1 (100: 1), and the current ratio flowing through these transistors is set to k: 1. Even if it is measured, the voltage between the drain and the source electrode in the detection MOS transistor 111 becomes smaller than the voltage between the drain and the source electrode in the power MOS transistor 112 due to the voltage drop generated in the detection resistor 114. Because the on-resistance (resistance between the drain and source electrode when the transistor is on; resistance of the channel) becomes larger than ideal (ideally k times the on-resistance of the power MOS transistor 112), the actual The current ratio is not as designed. That is, due to the Early effect, the actual current ratio does not become as designed, and this also causes a large detection error.
  • the voltage between the gate and the source in the detection MOS transistor 111 becomes smaller than the voltage between the gate and the source in the power MOS transistor 112 due to the voltage drop generated in the detection resistor 114. Also according to this, the on-resistance of the detection MOS transistor becomes larger than ideal, and the detection error further increases.
  • the wiring resistance of the source or drain is used as the detection resistance.
  • the design is difficult. The freedom is lost.
  • the present invention eliminates the detection error caused by the early effect while maintaining high power efficiency of the entire circuit, and has high accuracy overcurrent detection with little temperature dependence of the detection error. It is intended to provide a circuit. Another object of the present invention is to provide a power supply device having the overcurrent detection circuit.
  • an overcurrent detection circuit is an overcurrent detection circuit that detects an overcurrent state of an output transistor that outputs a current to a load and outputs an overcurrent detection signal.
  • a detection transistor connected in parallel with the output transistor; a constant current circuit connected to one end of the detection transistor for flowing a predetermined constant current to the detection transistor; and flowing a current to the load. Based on a comparison result between a voltage generated between the first electrode and the second electrode of the output transistor and a voltage generated between the first electrode and the second electrode of the detection transistor when the constant current flows.
  • a comparator for outputting a current detection signal.
  • the comparator when detecting an overcurrent state, applies a current to the load.
  • the magnitude of a voltage generated between the first electrode and the second electrode of the output transistor by flowing the current is compared with a voltage generated between the first electrode and the second electrode of the detection transistor by the flow of the constant current.
  • the comparator determines "the voltage generated between the first electrode and the second electrode of the output transistor" and "the detection transistor". This is the case when it is determined that the voltage between the first electrode and the second electrode has become equal. No deviation of the actual current ratio from the designed value occurs. That is, since a detection error due to the Early effect hardly occurs, overcurrent detection with high accuracy is possible.
  • a detection resistor (detection resistor 101 and the like) which is indispensable for detection of an overcurrent state is replaced with the above-described configuration according to the present invention. Since the configuration is not used, there is no large temperature dependence of the detection error due to the large temperature coefficient. That is, it is possible to realize overcurrent detection in which the temperature dependence of the detection error is small (the increase in the detection error due to the temperature change).
  • the overcurrent detection circuit according to the present invention and the power supply device including the overcurrent detection circuit have improved reliability, and can reduce the mounting area and cost.
  • the overcurrent detection circuit is an overcurrent detection circuit that detects an overcurrent state of an output transistor that outputs a current from a second electrode to a load and outputs an overcurrent detection signal.
  • the first electrode and the control electrode are connected to a detection transistor commonly connected to the first electrode and the control electrode of the output transistor, respectively, and the second electrode of the detection transistor is connected to the detection transistor.
  • a constant current circuit that supplies a predetermined constant current; and a comparator that outputs the overcurrent detection signal based on a comparison result between the potential of the second electrode of the output transistor and the potential of the second electrode of the detection transistor.
  • the comparator compares the potential of the second electrode of the output transistor with the potential of the second electrode of the detection transistor. Further, the first electrode and the control electrode of the detection transistor are connected to the first electrode and the control electrode of the output transistor, respectively.
  • the comparator determines “the voltage generated between the first electrode and the second electrode of the output transistor” and “the detection transistor”. This is the case when it is determined that the voltage between the first electrode and the second electrode has become equal. No deviation of the actual current ratio from the designed value occurs. That is, since a detection error due to the Early effect hardly occurs, overcurrent detection with high accuracy is possible.
  • a detection resistor (detection resistor 101 and the like) which is indispensable for detecting an overcurrent state is replaced with the above-described detection device according to the present invention. Since the configuration is not used, there is no large temperature dependence of the detection error due to the large temperature coefficient. That is, overcurrent detection in which the temperature dependence of the detection error is small can be realized.
  • the overcurrent detection circuit according to the present invention and the power supply device including the overcurrent detection circuit have improved reliability, and can reduce the mounting area and cost.
  • the output transistor and the detection transistor are a power MOS transistor and a detection MOS transistor, respectively, and the current value of the constant current is a predetermined value of the power MOS transistor. It may be set based on the maximum output current value, the on-resistance of the power MOS transistor, and the on-resistance of the detection MOS transistor.
  • the “maximum output current value” is a threshold value for detecting an overcurrent state of the power MOS transistor, and is predetermined according to the characteristics of the power MOS transistor. Value. If the magnitude of the current flowing through the power MOS transistor is less than the maximum output current value, it is detected that the power MOS transistor is not in an overcurrent state, while the magnitude of the current flowing through the power MOS transistor is less than the maximum output current value. If so, the overcurrent detection circuit is designed so that "the power MOS transistor is in an overcurrent state" is detected.
  • the output transistor is a power MOS transistor, and has n (n is an integer of 2 or more) unit cell transistors, and has drains of the n unit cell transistors.
  • a source and a gate are connected in parallel to form a single MOS transistor
  • the detection transistor is a detection MOS transistor, and is formed by a single unit cell transistor.
  • m (m is an integer of 2 or more; m ⁇ n) unit cell transistors, and the drain, source, and gate of the m unit cell transistors are connected in parallel to form a single MOS transistor.
  • a unit cell transistor forming the power MOS transistor and a unit cell forming the detection MOS transistor All the transistors are formed on the same semiconductor substrate by using the same manufacturing process.
  • the temperature coefficient of the on-resistance of the power MOS transistor and the detection MOS transistor becomes substantially the same, so that the temperature dependence of the threshold value of the current for detecting the overcurrent state is reduced (temperature change). , The fluctuation of the threshold value is reduced). That is, the temperature dependency of the detection error and the overcurrent detection can be realized.
  • the ratio of the actual resistance of the on-resistance of the MOS transistor for detection to the resistance of the on-resistance of the power MOS transistor is approximately the same as the design value. It becomes possible.
  • a current obtained by applying a predetermined reference voltage to a combined resistance of a resistor having a positive temperature coefficient and a resistor having a negative temperature coefficient is defined as the constant current, It is good to configure so that the resistance value of the combined resistance is constant regardless of the temperature change
  • the current value of the constant current is constant regardless of a temperature change.
  • the temperature dependence of the detection error of the overcurrent detection can be further reduced.
  • a power supply device includes the overcurrent detection circuit, the output transistor, and a smoothing circuit that smoothes a voltage on an output side of the output transistor and outputs the voltage to the load.
  • the power supply device includes a voltage detection circuit that outputs a voltage corresponding to a voltage supplied to the load, and the output transistor and the detection transistor according to an output of the voltage detection circuit. And a control unit for controlling the control.
  • control unit may be controlled according to the output of the comparator.
  • the overcurrent detection circuit of the present invention it is possible to eliminate the detection error due to the Early effect while maintaining high power efficiency of the entire circuit, and to reduce the temperature dependence of the detection error. Character can be reduced.
  • FIG. 1 is a circuit diagram of a power supply device including an overcurrent detection circuit according to an embodiment of the present invention.
  • FIG. 2 is a detailed circuit diagram of a power MOS transistor in FIG. 1.
  • FIG. 3 is a detailed circuit diagram of the constant current circuit in FIG. 1.
  • FIG. 4 is a detailed circuit diagram of the constant voltage generation circuit in FIG.
  • FIG. 5 is a circuit diagram showing a first example of a conventional overcurrent detection circuit.
  • FIG. 6 is a circuit diagram showing a second example of a conventional overcurrent detection circuit.
  • FIG. 1 is a circuit configuration diagram of a power supply device 1 including an overcurrent detection circuit 14 according to an embodiment of the present invention.
  • FIG. 2 is a detailed circuit configuration diagram of the power MOS transistor 2 in FIG.
  • the power supply voltage Vcc is supplied to the source electrode of the P-channel (P-type semiconductor) power MOS transistor 2 (output transistor), and the drain electrode of the power MOS transistor 2 is grounded.
  • the power source of the connected diode 10 and one end of the inductor 11 are connected.
  • the other end of the inductor 11 is grounded via a parallel circuit of the load 6 and the capacitor 12, and is also grounded via a series circuit of the resistors 8 and 9.
  • the power MOS transistor 2 outputs current (supplies power) to the load 6 from the drain electrode.
  • the diode 10, the inductor 11, and the capacitor 12 form a smoothing circuit that smoothes the output voltage (drain electrode voltage) of the power MOS transistor 2 and outputs the smoothed voltage to the load 6.
  • the power supply voltage Vcc is supplied to the source electrode of the P-channel detection MOS transistor 3 (detection transistor), and its drain electrode is connected to one end of the constant current circuit 4 and the non-connected terminal of the comparator 5 which is a comparator. Connected to inverting input terminal (+). The other end of the constant current circuit 4 is grounded, and the constant current circuit 4 supplies a constant current Ic between the source and drain electrodes of the detection MOS transistor 3 when the detection MOS transistor 3 is on. Shed.
  • connection point between the power MOS transistor 2 and the power source of the diode 10 is connected to the inverting input terminal (1) of the comparator 5.
  • the connection point between the resistor 8 and the resistor 9 is connected to the control unit 7, and the voltage supplied to the load 6 is divided by a series circuit of the resistor 8 and the resistor 9, and the divided voltage is The value is given to the control unit 7. That is, the resistors 8 and 9 function as a voltage detection circuit that outputs a voltage corresponding to the voltage supplied to the load 6 to the control unit 7.
  • the output of the comparator 5 is provided to the control unit 7 as an overcurrent detection signal indicating the overcurrent state of the power MOS transistor 2. Specifically, when the voltage output from the comparator 5 is a high signal (high-potential signal), it indicates that the power MOS transistor 2 is in an overcurrent state, and when the voltage output from the comparator 5 is a low signal (low-potential signal), Indicates normal status (not overcurrent status).
  • the comparator 5 compares the potential of the drain electrode of the power MOS transistor 2 with the potential of the drain electrode of the detection MOS transistor 3, and outputs the comparison result as an overcurrent detection signal.
  • the “overcurrent state” means a state where the current value of the drain current of the power MOS transistor 2 exceeds the maximum output current value of the power MOS transistor 2.
  • the “maximum output current value” is a threshold value for detecting an overcurrent state of the power MOS transistor 2, and is a value predetermined according to the characteristics of the power MOS transistor 2.
  • the overcurrent detection circuit 14 is designed so that “the power MOS transistor 2 is in an overcurrent state” is detected.
  • the overcurrent detection circuit 14 may include the power MOS transistor 2 including the detection MOS transistor 3, the constant current circuit 4, and the comparator 5. Hereinafter, the description will be made assuming that the overcurrent detection circuit 14 includes the power MOS transistor 2.
  • the output of the control unit 7 is commonly connected to the gate electrodes of the power MOS transistor 2 and the detection MOS transistor 3.
  • the control unit 7 monitors the overcurrent state of the power MOS transistor 2 with reference to the overcurrent detection signal, detects the voltage applied to the load 6 from the potential at the midpoint between the resistors 8 and 9, and detects the load 6
  • a pulsed voltage is supplied to each gate electrode of the power MOS transistor 2 and the detection MOS transistor 3 so that the voltage applied to the
  • the series circuit of the resistor 8 and the resistor 9 is provided to detect the voltage applied to the load 6, and its combined resistance value is sufficiently larger than the resistance value (or impedance) of the load 6 ( Therefore, the power loss in the series circuit is negligibly small).
  • the power MOS transistor 2 includes a large number (n; n is an integer of 2 or more) of unit cell transistors (the unit cell transistors are also insulated gate type field effect transistors).
  • n is an integer of 2 or more
  • the power MOS transistor 2 is formed as a single MOS transistor by connecting the drain, source, and gate of each unit cell transistor in parallel. That is, the electrodes of the unit cell transistors Trl, Tr2, ⁇ , Trn connected in parallel with the drain, source and gate are respectively connected to the drain electrode 15, source electrode 16 and gate electrode 17 of the power MOS transistor 2.
  • the detection MOS transistor 3 is formed only by a single unit cell transistor. Like the power MOS transistor 2, the detection MOS transistor 3 also has a plurality (m; m is an integer of 2 or more and m ⁇ n) of unit cell transistors (not shown). The drain, source and gate of each unit cell transistor may be connected in parallel to form a single MOS transistor. That is, The electrodes in which the drains, sources and gates of the m unit cell transistors are connected in parallel may be used as the drain electrode, source electrode and gate electrode of the detection MOS transistor 3, respectively.
  • the unit cell transistors constituting the power MOS transistor 2 and the unit cell transistors constituting the detection MOS transistor 3 are all formed on the same semiconductor substrate by using the same manufacturing process. That is, since all unit cell transistors have the same structure, the temperature coefficient of the resistance value of each on-resistance is substantially the same, and the gate-source electrode voltage, the drain-source electrode voltage, and the ambient temperature are the same. Under these conditions (these conditions are hereinafter referred to as “the same conditions”), the resistance values of the on-resistances are substantially the same.
  • the power MOS transistor 2 also has a parallel connection power of 1000 unit cell transistors and the detection MOS transistor 3 has a single unit cell transistor power.
  • the area ratio of the channels of the power MOS transistor 2 and the detection MOS transistor 3 is 1000: 1, the ratio of the on-resistance values is 1: 1000.
  • the maximum output current value of power MOS transistor 2 is defined as Io. That is, power MOS tiger max
  • comparator 5 When the drain current of transistor 2 exceeds the maximum output current value Io, comparator 5
  • One MOS transistor 2 is in an overcurrent state and outputs a high signal to the control unit 7.
  • the comparator 5 outputs a low signal.
  • the comparator 5 Since the voltage between the in-source electrodes becomes larger than the voltage between the drain and the source electrodes of the detection MOS transistor 3, the comparator 5 outputs a high signal.
  • control unit 7 When the control unit 7 receives the high signal from the comparator 5, the control unit 7 recognizes that the power MOS transistor 2 is in an overcurrent state, and outputs a voltage for turning off the power MOS transistor 2 to the power MOS transistor 2. Applied to the gate electrode of transistor 2. This prevents the power MOS transistor 2, diode 10, inductor 11 and load 6 from being damaged.
  • the control unit 7 detects an overcurrent state of the power MOS transistor 2, a release signal is input from the outside or the power supply voltage Vcc is turned on again (the supply of the power supply voltage Vcc is interrupted once). The power MOS transistor 2 remains off until the power MOS transistor 2 is turned on again.
  • the degree of the detection error becomes a problem when the drain current of the power MOS transistor 2 is near the maximum output current value Io (for example, 100% to 120% of Io).
  • the voltage between the gate and source electrodes of the power MOS transistor 2 and the detection MOS transistor 3 are equal. Further, when the drain current of the power MOS transistor 2 is equal to the maximum output current value Io, the voltages between the drain and source electrodes of the power MOS transistor 2 and the detection MOS transistor 3 are equal, so that the comparator 5 The potentials of the non-inverting input terminal (+) and the inverting input terminal (-) are equal.
  • the ratio of the on-resistances of the power MOS transistor 2 and the detection MOS transistor 3 is exactly 1: 1000 (because an error due to the Early effect can be eliminated). That is, no detection error occurs due to the Early effect seen in the configuration and the like described in Patent Document 1. Further, as described above, since the temperature coefficient of the resistance value of the on-resistance of these transistors is substantially the same, the temperature dependence of the threshold value of the current for detecting the overcurrent state is reduced. Few (the fluctuation of the threshold value due to temperature change is small).
  • the overcurrent detection circuit 14 and the power supply device 1 having the same it is possible to detect the overcurrent with extremely high accuracy and small temperature dependency as compared with the related art.
  • the error (including temperature dependence) is mainly due to the relative variation of the on-resistance of the unit cell transistor.
  • the maximum output current value I taking into account the detection error. I have to set max to a small value. Then, although the power MOS transistor 2 and the like can still operate safely, the power MOS transistor 2 is cut off because it can be in an overcurrent state.
  • the product can be reduced and the cost can be reduced.
  • FIG. 3 shows a specific electrical configuration of the constant current circuit 4 in FIG. Constant voltage generator
  • the reference voltage Vref output from the raw circuit 25 is connected to the base of a PNP transistor 23, and its emitter is commonly connected to one end of the constant current circuit 24 and the base of the NPN transistor 20.
  • the collector of the transistor 23 is grounded, and the other end of the constant current circuit 24 is supplied with the power supply voltage Vcc.
  • the emitter of the transistor 20 is grounded via a series circuit of the resistor 21 and the resistor 22, and the collector thereof is connected to the drain electrode of the MOS transistor 3 for detection. That is, the collector current and the constant current Ic of the transistor 20 are obtained.
  • the value obtained by dividing the reference voltage Vref by the resistance value of the combined resistance of the resistors 21 and 22 is the current value of the constant current Ic.
  • the resistor 21 and the resistor 22 are formed on the semiconductor substrate by diffusion of impurities or the like. At this time, by appropriately selecting the impurities, the resistance value of the combined resistance of the resistors 21 and 22 is formed to be constant regardless of the temperature change.
  • the resistance values of the resistors 21 and 22 at room temperature are 10 k ⁇ (kiloohm) and 20 k ⁇ , respectively, and the temperature coefficients of the resistors 21 and 22 are as follows. + 2000ppmZ each. C,-1000 ppmZ. Set to C.
  • the current obtained by applying the reference voltage Vref to the combined resistance of the resistor 21 having a positive temperature coefficient and the resistor 22 having a negative temperature coefficient is defined as a constant current Ic.
  • resistors 21 and 22 may be carbon film resistors, metal film resistors, or the like, which need not necessarily be formed on the semiconductor substrate by diffusion of impurities or the like.
  • FIG. 4 shows an example of a circuit configuration of the constant voltage generation circuit 25.
  • 31 PNP transistors In this case, the base and the collector are connected, and the power supply voltage Vcc is applied to the emitter.
  • the base of the PNP transistor 32 is connected to the base of the transistor 31, and the power supply voltage Vcc is applied to the emitter.
  • the base of the PNP transistor 33 is connected to the collector of the transistor 32, and the power supply voltage Vcc is applied to the emitter.
  • the NPN transistor 34 the base is connected to the collector of the transistor 33, the emitter is grounded via the resistor 37, and the collector is connected to the collector of the transistor 31.
  • the base is connected to the collector of the transistor 33, the emitter is connected to the emitter of the transistor 34 via the resistor 36, and the collector is connected to the collector of the transistor 32. Then, the voltage is output as a reference voltage Vref at a connection point between the collector of the transistor 33, the base of the transistor 34, and the base of the transistor 35.
  • the reference voltage Vref is set based on a band gap voltage of a semiconductor (1.205 [V] in the case of silicon). Therefore, by using such a constant voltage generation circuit 25 in the constant current circuit 4, the temperature dependence of the current value of the constant current Ic can be made extremely small.
  • FIG. 1 shows an embodiment in which the source electrode and the gate electrode of the power MOS transistor 2 and the detection MOS transistor 3 are commonly connected.
  • a voltage obtained by subtracting the source-drain electrode voltage of the power MOS transistor 2 from the power supply voltage Vcc is applied to the inverting input terminal (1) of the comparator 5, and the non-inverting input terminal (+) is applied to the non-inverting input terminal (+).
  • a voltage obtained by subtracting the voltage between the source and drain electrodes of the detection MOS transistor 3 from the power supply voltage Vcc is applied.
  • the comparator 5 compares the voltage V generated between the source and drain electrodes of the (Specifically, when it becomes larger than v,
  • the comparator 5 outputs an overcurrent detection signal.
  • the overcurrent detection circuit according to the present invention can be variously modified.
  • the present invention is not limited to the power supply device 1 shown in FIG. 1, but is applicable to a power supply device having various switching regulator ⁇ DC-DC converters and the like. Furthermore, the present invention is also applicable to a power supply device provided with a series regulator (dropper-type regulator) such as a three-terminal regulator.
  • a series regulator dropper-type regulator
  • the first electrode, the second electrode, and the control electrode of the power MOS transistor according to the present invention mean the source electrode, the drain electrode, and the gate electrode of the power MOS transistor 2, respectively, in FIG.
  • the first electrode, the second electrode, and the control electrode of the detection MOS transistor mean the source electrode, the drain electrode, and the gate electrode of the detection MOS transistor 3 in FIG.
  • the first electrode and the second electrode of the power MOS transistor according to the present invention may mean the drain electrode and the source electrode of the power MOS transistor, respectively.
  • the first electrode and the second electrode of the detection MOS transistor according to the present invention may mean the drain electrode and the source electrode of the detection MOS transistor, respectively.
  • both the power MOS transistor 2 and the detection MOS transistor 3 are constituted by unit cell transistors having the same structure, so that the power MOS transistor 2 and the detection MOS transistor 3
  • the ratio of the on-resistance to the MOS transistor 3 was controlled (1: 1000 in the above embodiment)
  • the ratio of those WZLs without using the unit cell transistors W: channel width, L: : Channel length
  • the ratio of the on-resistance of the power MOS transistor 2 and the detection MOS transistor 3 may be controlled.
  • the channel widths of the power MOS transistor 2 and the detection MOS transistor 3 are set to W and W, respectively.
  • the resistance value of the on-resistance of the power MOS transistor 2 and the detection MOS transistor 3 becomes 1: 1000.
  • the power MOS transistor 2 composed of a MOS transistor is used as an output transistor
  • the detection MOS transistor 3 composed of a MOS transistor is used as a detection transistor.
  • the transistor 2 and the detection MOS transistor 3 can be replaced with a PNP-type output bipolar transistor (output transistor) and a PNP-type detection bipolar transistor (detection transistor), respectively.
  • the configuration needs to be made in consideration of the base current of the bipolar transistor.
  • the configuration can be the same as that of the above embodiment.
  • the power MOS transistor 2 is replaced with the output bipolar transistor, and the source electrode, the drain electrode and the gate electrode of the power MOS transistor 2 are respectively replaced by the emitter electrode and the collector of the output bipolar transistor.
  • the detection MOS transistor 3 is replaced with the above detection bipolar transistor, and the source electrode, drain electrode and gate electrode of the detection MOS transistor 3 are replaced with the emitter electrode of the detection bipolar transistor, respectively. And a collector electrode and a base electrode.
  • the output bipolar transistor is composed of a large number (p; n is an integer of 2 or more) of unit cell bipolar transistors, and the collector, emitter and base of each unit cell bipolar transistor are formed. Each is connected in parallel to form a single bipolar transistor, and the detection bipolar transistor is composed of a single unit cell bipolar transistor, or a plurality (q; q is an integer of 2 or more, p > q), the collector, emitter and base of each unit cell bipolar transistor are connected in parallel to form a single bipolar transistor.
  • the unit cell bipolar transistors are all manufactured on the same semiconductor It should be formed using a fabrication process.
  • the output bipolar transistor and the detection bipolar transistor may not be configured using unit cell bipolar transistors, and the driving capabilities of the respective bipolar transistors may be appropriately set.
  • the output bipolar transistor may be manufactured by controlling each emitter area or the like so that the driving capability of the output bipolar transistor is 1000 times the driving capability of the detection bipolar transistor.
  • the present invention is suitable for a power supply device, a high-side switch, and the like that require an overcurrent detection circuit that has a small absolute detection error ignoring a temperature change and has a small detection error variation due to a temperature change. It is suitable for an in-vehicle power supply device that requires high-accuracy overcurrent detection at a temperature (for example, ⁇ 40 ° C. to 125 ° C.).

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Control Of Voltage And Current In General (AREA)

Abstract

 ドレイン電極より負荷(6)に電流を出力するパワーMOSトランジスタ(2)の過電流状態を検出して、過電流検出信号を出力する過電流検出回路(14)であって、ソース電極及びゲート電極が、それぞれパワーMOSトランジスタ(2)のソース電極及びゲート電極に接続された検出用MOSトランジスタ(3)と、検出用MOSトランジスタ(3)のドレイン電極に接続され、検出用MOSトランジスタ(3)に所定の定電流を流す定電流回路(4)と、パワーMOSトランジスタ(2)のドレイン電極の電位と検出用MOSトランジスタ(3)のドレイン電極の電位との比較結果に基づいて、前記過電流検出信号を出力するコンパレータ(5)とを備えている。

Description

過電流検出回路及びこれを有する電源装置
技術分野
[0001] 本発明は、電源装置等に用いられる過電流検出回路に関する。特に負荷に電流を 出力するスイッチング素子として MOSトランジスタ(絶縁ゲート型の電界効果トランジ スタ)を備えた過電流検出回路に関する。また、本発明は、その過電流検出回路を有 する電源装置に関する。
背景技術
[0002] スイッチング素子として MOSトランジスタを備えた従来の過電流検出回路としては、 図 5に示すようなものがある。図 5における過電流検出回路においては、電源電圧 10 5が Pチャンネル(P形半導体)のパワー MOSトランジスタ 100のソース電極に供給さ れ、そのドレイン電極は検出抵抗 101を介して負荷 103の一端に接続されている。負 荷 103の他端は接地されて!ヽる。
[0003] パワー MOSトランジスタ 100のドレイン電極と検出抵抗 101の接続点は NPN型の トランジスタ 102のベース電極に接続され、検出抵抗 101と負荷 103の接続点はトラ ンジスタ 102のェミッタ電極に接続されている。また、電源電圧 105は、抵抗 104を介 してトランジスタ 102のコレクタ電極に接続されており、パワー MOSトランジスタ 100 のゲート電極には、パワー MOSトランジスタ 100をオン Zオフ制御するパルス電圧が 外部から供給される。
[0004] パワー MOSトランジスタ 100がオンの状態では、検出抵抗 101を介して負荷 103 に電流が流れる力 何らかの原因により負荷 103の両端子間が短絡等し、パワー M OSトランジスタ 100に過電流が流れると、検出抵抗 100の両端子間に生じる電圧降 下によりトランジスタ 102がオンする。すると、トランジスタ 102のコレクタ電極の電位が 高電圧状態 (電源電圧 105と同じ電圧の状態)から低電圧状態に遷移する。そして、 その遷移は、過電流検出信号として制御部(不図示)に与えられ、制御部はパワー M OSトランジスタが過電流状態にあることを認識する。これにより、制御部はパワー MO Sトランジスタ 100を遮断する。 [0005] また、他の従来構成例としては、図 6に示すようなものがある(例えば、特許文献 1参 照)。図 6における過電流検出回路においては、電源電圧 110が Nチャンネル (N形 半導体)のパワー MOSトランジスタ 112のドレイン電極に供給され、そのソース電極 は負荷 116の一端に接続されている。また、負荷 116の他端は接地されている。
[0006] また、電源電圧 110が Nチャンネル(N形半導体)の検出用 MOSトランジスタ 111 のドレイン電極に供給され、そのソース電極は検出抵抗 114の一端と比較器 115の 非反転入力端子(+ )に共通接続されている。検出抵抗 114の他端は、パワー MOS トランジスタ 112のソース電極と負荷 116の接続点に接続されるとともに、比較器 115 の反転入力端子(―)に接続されている。また、パワー MOSトランジスタ 112及び検 出用 MOSトランジスタ 111の各ゲート電極は端子 113に共通接続され、端子 113に は、パワー MOSトランジスタ 112、検出用 MOSトランジスタ 111の双方をオン/オフ 制御するパルス電圧が外部から供給される。
[0007] また、パワー MOSトランジスタ 112は、多数 (k個; kは 2以上の整数であり、例えば 1 00)の単位セルトランジスタを有し、それらのドレイン、ソース及びゲートをそれぞれ並 列接続することにより単一の MOSトランジスタとして形成されている。一方、検出用 M OSトランジスタ 111は、例えば 1個の同じ単位セルトランジスタより形成されて!、る。 パワー MOSトランジスタ 112と検出用 MOSトランジスタ 111のチャネルの面積比は 1 00: 1となっており、これらのトランジスタに流れる電流比も 100: 1となる(この図 6に示 す構成例を、以下「特許文献 1の第 1例」という)。
[0008] このように構成された過電流検出回路において、パワー MOSトランジスタ 112に過 電流が流れ、その 1Z100の電流が検出用 MOSトランジスタに流れると、検出抵抗 1 14の両端子間には、比較器 115内部で定められた基準電圧以上の電圧降下が発 生する。この時、比較器 115は、パワー MOSトランジスタ 112に過電流が流れている ことを示す過電流検出信号を出力して、図示しない制御部にパワー MOSトランジス タ 112の過電流状態を知らせる。
[0009] また、下記特許文献 1にお 、ては、以下の構成例も開示されて!、る。多数の単位 M OSトランジスタ素子の並列配置すると共に、上記単位素子の各ソース、ゲート、ドレ インをそれぞれ配線により並列結合してソース、ゲート、ドレインを導出し、単一素子 を形成した出力用パワー MOSトランジスタと、上記単位素子の各ソース又はドレイン の並列結合によってソース又はドレインの配線に生じる配線抵抗の両端の電圧降下 を検出して上記パワー MOSトランジスタに流れる過電流を検出する過電流検出回路 部とを同一素子内に形成した半導体装置 (この構成例を、以下「特許文献 1の第 2例 」という)。
[0010] 特許文献 1 :登録実用新案 2525470号公報(日本国)
発明の開示
発明が解決しょうとする課題
[0011] しかしながら、図 5に示した従来構成例においては、パワー MOSトランジスタ 100 の過電流状態を検出するために、パワー MOSトランジスタ 100と負荷 103との間に 検出抵抗 101を設けているため、検出抵抗 101で電力損失が発生してしまい、回路 全体の電力効率が劣化するとともに、発熱の問題が大きくなる。
[0012] また、半導体基板上に不純物の拡散等することにより、検出抵抗 101を形成すると 、その抵抗値には大きな温度依存性 (例えば、 2000ppmZ°C程度)が生じる。つまり 、検出抵抗 101の温度係数が大きくなる。このため、パワー MOSトランジスタ 100の 過電流状態を検出する電流の閾値にも大きな温度依存性が生じ、結果として過電流 検出の検出誤差 (以下、単に「検出誤差」と記すことがある)が大きくなる (検出誤差の 温度依存性が大きくなる)。また、トランジスタ 102がオンするベース一ェミッタ間電圧 にも大きな温度依存性があることからも、検出誤差が増大する。
[0013] カロえて、検出抵抗 101で発生する発熱が、検出抵抗 101の抵抗値やトランジスタ 1 02がオンするベースーェミッタ間電圧に影響を与えるため、検出誤差が更に増大す る。
[0014] 図 6に示す特許文献 1の第 1例においても、図 5におけるものと同様、検出抵抗 114 の有する大きな温度依存性に起因して過電流状態を検出する電流の閾値に大きな 温度依存性が生じ、検出誤差が大きくなつてしまう (検出誤差の温度依存性が大きく なる)。
[0015] また、パワー MOSトランジスタ 112と検出用 MOSトランジスタ 111のチャネルの面 積比を k: 1 (100 : 1)とし、これらのトランジスタに流れる電流比が k: 1となるように設 計したとしても、検出抵抗 114で発生する電圧降下により、検出用 MOSトランジスタ 111におけるドレイン一ソース電極間電圧はパワー MOSトランジスタ 112におけるド レイン一ソース電極間電圧より小さくなるため、検出用 MOSトランジスタ 111のオン抵 抗(トランジスタがオンしている時のドレイン一ソース電極間抵抗;チャネルの抵抗)が 理想(理想はパワー MOSトランジスタ 112のオン抵抗の k倍)より大きくなつてしまうた め、実際の電流比も設計どおりにはならない。即ち、アーリー効果により、実際の電 流比が設計どおりにならず、これによつても大きな検出誤差が発生する。
[0016] 力!]えて、検出抵抗 114で発生する電圧降下により、検出用 MOSトランジスタ 111に おけるゲート ソース間電圧はパワー MOSトランジスタ 112におけるゲート ソース 間電圧より小さくなる。これによつても、検出用 MOSトランジスタのオン抵抗が理想よ り大きくなつてしまい、検出誤差が更に増大する。
[0017] また、特許文献 1の第 2例においては、ソース又はドレインの配線抵抗を検出抵抗と して用いているが、配線抵抗を用いて設定できる抵抗値には限界があるため、設計 の自由度が奪われる。
[0018] 本発明は、上記の点に鑑み、回路全体の電力効率を高く維持しつつ、アーリー効 果に起因する検出誤差をなくし、且つ検出誤差の温度依存性が少ない高精度な過 電流検出回路を提供することを目的とする。また、本発明は、その過電流検出回路を 有する電源装置を提供することを目的とする。
課題を解決するための手段
[0019] 上記目的を達成するために本発明に係る過電流検出回路は、負荷に電流を出力 する出力トランジスタの過電流状態を検出して、過電流検出信号を出力する過電流 検出回路であって、前記出力トランジスタと並列に接続された検出用トランジスタと、 前記検出用トランジスタの一端に接続され、前記検出用トランジスタに所定の定電流 を流す定電流回路と、前記負荷に電流を流したことにより前記出力トランジスタの第 1 電極 第 2電極間に生じる電圧と前記定電流を流したことにより前記検出用トランジ スタの第 1電極 第 2電極間に生じる電圧との比較結果に基づいて、前記過電流検 出信号を出力する比較器と、を備えている。
[0020] このように構成すれば、過電流状態を検出するに際して、比較器は、負荷に電流を 流したことにより出力トランジスタの第 1電極 第 2電極間に生じる電圧と定電流を流 したことにより検出用トランジスタの第 1電極一第 2電極間に生じる電圧との大小を比 較する。
[0021] そうすると、出力トランジスタに流れる電流が大きくなつて、過電流状態にちょうど達 したときは、比較器が「出力トランジスタの第 1電極一第 2電極間に生じる電圧」と「検 出用トランジスタの第 1電極一第 2電極間に生じる電圧」とが等しくなつたと判断すると きに相当することとなるから、図 6に示す従来構成例で問題となったような「アーリー効 果に起因する実際の電流比の設計値からのずれ」は生じない。つまり、アーリー効果 に起因する検出誤差が殆ど生じないため、高精度の過電流検出が可能である。
[0022] また、図 5や図 6 (特許文献 1の第 1例)に示す従来構成例において過電流状態の 検出に必須であった検出抵抗 (検出抵抗 101等)を、本発明に係る上記構成は用い ていないので、その大きな温度係数に起因する検出誤差の大きな温度依存性は生じ ない。即ち、検出誤差の温度依存性が小さい (温度変化に起因する検出誤差の増大 力 、さ 、)過電流検出が実現できる。
[0023] このように高精度且つ温度依存性の小さい過電流検出が可能となるため、出力トラ ンジスタの最大出力電流値 (過電流状態を検出するための閾値)を理想的な値に近 づけることができる。これにより、本発明に係る過電流検出回路及びこれを含む電源 装置等は、信頼性が向上し、実装面積の減少やコストダウンを実現することができる
[0024] 更にまた、出力トランジスタと負荷との間に、検出抵抗 (検出抵抗 101等)を設けて いないので、電力効率が優れ、検出抵抗の存在による発熱も抑えられる。
[0025] また、本発明に係る過電流検出回路は、第 2電極より負荷に電流を出力する出力ト ランジスタの過電流状態を検出して、過電流検出信号を出力する過電流検出回路で あって、第 1電極及び制御電極が、それぞれ前記出力トランジスタの第 1電極及び制 御電極に共通に接続された検出用トランジスタと、前記検出用トランジスタの第 2電極 に接続され、前記検出用トランジスタに所定の定電流を流す定電流回路と、前記出 カトランジスタの第 2電極の電位と前記検出用トランジスタの第 2電極の電位との比較 結果に基づいて、前記過電流検出信号を出力する比較器と、を備えている。 [0026] このように構成すれば、過電流状態を検出するに際して、前記比較器は、前記出力 トランジスタの第 2電極の電位と前記検出用トランジスタの第 2電極の電位との大小を 比較する。また、検出用トランジスタの第 1電極及び制御電極は、それぞれ出カトラン ジスタの第 1電極及び制御電極に接続されて 、る。
[0027] そうすると、出力トランジスタに流れる電流が大きくなつて、過電流状態にちょうど達 したときは、比較器が「出力トランジスタの第 1電極一第 2電極間に生じる電圧」と「検 出用トランジスタの第 1電極一第 2電極間に生じる電圧」とが等しくなつたと判断すると きに相当することとなるから、図 6に示す従来構成例で問題となったような「アーリー効 果に起因する実際の電流比の設計値からのずれ」は生じない。つまり、アーリー効果 に起因する検出誤差が殆ど生じないため、高精度の過電流検出が可能である。
[0028] また、図 5や図 6 (特許文献 1の第 1例)に示す従来構成例において過電流状態の 検出に必須であった検出抵抗 (検出抵抗 101等)を、本発明に係る上記構成は用い ていないので、その大きな温度係数に起因する検出誤差の大きな温度依存性は生じ ない。即ち、検出誤差の温度依存性が小さい過電流検出が実現できる。
[0029] このように高精度且つ温度依存性の小さい過電流検出が可能となるため、出力トラ ンジスタの最大出力電流値 (過電流状態を検出するための閾値)を理想的な値に近 づけることができる。これにより、本発明に係る過電流検出回路及びこれを含む電源 装置等は、信頼性が向上し、実装面積の減少やコストダウンを実現することができる
[0030] 更にまた、出力トランジスタと負荷との間に、検出抵抗 (検出抵抗 101等)を設けて いないので、電力効率が優れ、検出抵抗の存在による発熱も抑えられる。
[0031] また、例えば、上記構成において、前記出力トランジスタ及び前記検出用トランジス タは、夫々パワー MOSトランジスタ及び検出用 MOSトランジスタであり、前記定電流 の電流値は、前記パワー MOSトランジスタの予め定められた最大出力電流値、前記 パワー MOSトランジスタのオン抵抗の抵抗値及び前記検出用 MOSトランジスタのォ ン抵抗の抵抗値に基づ 、て設定されるようにするとよ 、。
[0032] ここにおいて、「最大出力電流値」とは、パワー MOSトランジスタの過電流状態を検 出するための閾値であって、パワー MOSトランジスタの特性に応じて予め定められる 値である。パワー MOSトランジスタに流れる電流の大きさが最大出力電流値未満の 場合、「パワー MOSトランジスタは過電流状態ではない」と検出される一方、パワー MOSトランジスタに流れる電流の大きさが最大出力電流値を超える場合、「パワー M OSトランジスタは過電流状態である」と検出されるように、上記過電流検出回路は設 計される。
[0033] また、例えば、上記構成において、前記出力トランジスタはパワー MOSトランジスタ であって、 n(nは 2以上の整数)個の単位セルトランジスタを有し、該 n個の単位セルト ランジスタのドレイン、ソース及びゲートをそれぞれ並列接続することにより単一の M OSトランジスタとして形成されており、前記検出用トランジスタは検出用 MOSトランジ スタであって、単一の単位セルトランジスタより形成されている力、または m (mは 2以 上の整数; m<n)個の単位セルトランジスタを有し、該 m個の単位セルトランジスタの ドレイン、ソース及びゲートをそれぞれ並列接続することにより単一の MOSトランジス タとして形成されており、前記パワー MOSトランジスタを構成する単位セルトランジス タ及び前記検出用 MOSトランジスタを構成する単位セルトランジスタは、全て同一の 半導体基板上に同一の製造プロセスを用いて形成されて 、るようにするとよ 、。
[0034] これにより、パワー MOSトランジスタと検出用 MOSトランジスタのオン抵抗の抵抗 値の温度係数は、略同じとなるため、過電流状態を検出する電流の閾値の温度依存 性が少なくなる (温度変化による前記閾値の変動が小さくなる)。即ち、より検出誤差 の温度依存性力 、さい過電流検出が実現できる。また、実際の「検出用 MOSトラン ジスタのオン抵抗の抵抗値」の「パワー MOSトランジスタのオン抵抗の抵抗値」に対 する比が、略設計値どおりになるため、高精度の過電流検出が可能となる。
[0035] また、上記構成において、所定の基準電圧を、正の温度係数を有する抵抗と負の 温度係数を有する抵抗との合成抵抗に印加することにより得られる電流を前記定電 流とし、前記合成抵抗の抵抗値が温度変化によらず一定となるように構成するとよい
[0036] これにより、前記定電流の電流値は、温度変化によらず一定となる。この結果、過電 流検出の検出誤差の温度依存性をより小さくすることができる。
[0037] しカゝしながら、製造誤差等を加味すれば、実際の合成抵抗の抵抗値が温度変化に よって全く変動しないようにすることは困難である。従って、ここにおける「温度変化に よらず一定」とは、製造誤差等を加味した幅を持った概念である。
[0038] また、本発明に係る電源装置は、上記過電流検出回路と、前記出力トランジスタと、 前記出力トランジスタの出力側の電圧を平滑化して前記負荷へ出力する平滑回路と を備えている。
[0039] また、例えば、上記電源装置は、前記負荷に供給する電圧に応じた電圧を出力す る電圧検出回路と、該電圧検出回路力もの出力に応じて、前記出力トランジスタ及び 前記検出用トランジスタを制御する制御部とを更に備えるようにするとよい。
[0040] また、例えば、前記比較器の出力に応じて、前記制御部を制御するようにするとよ い。
発明の効果
[0041] 上述した通り、本発明に係る過電流検出回路によれば、回路全体の電力効率を高 く維持しつつ、アーリー効果に起因する検出誤差をなくすことができ、且つ検出誤差 の温度依存性を少なくすることができる。
図面の簡単な説明
[0042] [図 1]本発明の実施形態に係る過電流検出回路を含む電源装置の回路図である。
[図 2]図 1におけるパワー MOSトランジスタの詳細な回路図である。
[図 3]図 1における定電流回路の詳細な回路図である。
[図 4]図 3における定電圧発生回路の詳細な回路図である。
[図 5]従来の過電流検出回路の第 1例を示す回路図である。
[図 6]従来の過電流検出回路の第 2例を示す回路図である。
符号の説明
[0043] 1 電源装置
2、 100、 112 パワー MOSトランジスタ(出力トランジスタ)
3、 111 検出用 MOSトランジスタ (検出用トランジスタ)
4、 24 定電流回路
5 コンノ レータ
6、 103、 116 負荷 7 制御部
8、 9、 21、 22、 36、 37、 104 抵抗
10 ダイオード
11 インダクタ
12 コンデンサ
14 過電流検出回路
15 ドレイン電極
16 ソース電極
17 ゲート電極
20、 23、 31、 32、 33、 34、 35、 102 トランジスタ
101、 114 検出抵抗
115 比較器
Vcc 電源電圧
25 定電圧発生回路
Vref 基準電圧
Trl、 Tr2、 · · ·、 Trn 単位セルトランジスタ
発明を実施するための最良の形態
[0044] 以下、図面を参照しながら、本発明に係る過電流検出回路の実施形態について説 明する。図 1は、本発明の実施形態に係る過電流検出回路 14を含む電源装置 1の 回路構成図である。図 2は、図 1におけるパワー MOSトランジスタ 2の詳細な回路構 成図である。
[0045] 電源装置 1にお 、ては、電源電圧 Vccが Pチャンネル(P形半導体)のパワー MOS トランジスタ 2 (出力トランジスタ)のソース電極に供給され、そのドレイン電極は、ァノ ードが接地されたダイオード 10の力ソード及びインダクタ 11の一端に接続されている 。インダクタ 11の他端は、負荷 6とコンデンサ 12との並列回路を介して接地されてい るととともに、抵抗 8及び抵抗 9の直列回路を介しても接地されている。パワー MOSト ランジスタ 2は、ドレイン電極より負荷 6に電流を出力する(電力を供給する)ものであ り、ダイオード 10、インダクタ 11及びコンデンサ 12は、パワー MOSトランジスタ 2の出 力側の電圧 (ドレイン電極の電圧)を平滑化して負荷 6へ出力する平滑回路を構成し ている。
[0046] また、電源電圧 Vccが Pチャンネルの検出用 MOSトランジスタ 3 (検出用トランジス タ)のソース電極に供給され、そのドレイン電極は定電流回路 4の一端と比較器であ るコンパレータ 5の非反転入力端子(+ )に接続されている。また、定電流回路 4の他 端は接地されており、定電流回路 4は、検出用 MOSトランジスタ 3がオンしているとき に、検出用 MOSトランジスタ 3のソース一ドレイン電極間に定電流 Icを流す。
[0047] パワー MOSトランジスタ 2とダイオード 10の力ソードとの接続点は、コンパレータ 5 の反転入力端子(一)に接続されている。抵抗 8と抵抗 9との接続点は、制御部 7に接 続されており、負荷 6に供給される電圧は、抵抗 8と抵抗 9との直列回路によって分圧 され、その分圧された電圧値が制御部 7に与えられている。即ち、抵抗 8と抵抗 9は、 負荷 6に供給される電圧に応じた電圧を制御部 7に対して出力する電圧検出回路と して機能する。
[0048] コンパレータ 5の出力は、パワー MOSトランジスタ 2の過電流状態を示す過電流検 出信号として、制御部 7に与えられている。具体的には、コンパレータ 5の出力する電 圧がハイ信号(高電位の信号)のときは、パワー MOSトランジスタ 2が過電流状態で あることを示し、ロウ信号 (低電位の信号)のときは正常状態である (過電流状態でな い)ことを示す。
[0049] 即ち、コンパレータ 5は、パワー MOSトランジスタ 2のドレイン電極の電位と検出用 MOSトランジスタ 3のドレイン電極の電位とを比較して、その比較結果を過電流検出 信号として出力する。ここにおいて、「過電流状態」とは、パワー MOSトランジスタ 2の ドレイン電流の電流値がパワー MOSトランジスタ 2の最大出力電流値を超えている 状態を意味する。「最大出力電流値」とは、パワー MOSトランジスタ 2の過電流状態 を検出するための閾値であって、パワー MOSトランジスタ 2の特性に応じて予め定め られる値である。パワー MOSトランジスタ 2に流れるドレイン電流の大きさが最大出力 電流値未満の場合、「パワー MOSトランジスタ 2は過電流状態ではない」と検出され る一方、パワー MOSトランジスタ 2に流れるドレイン電流の大きさが最大出力電流値 を超える場合、「パワー MOSトランジスタ 2は過電流状態である」と検出されるように、 過電流検出回路 14は設計される。
[0050] 過電流検出回路 14は、検出用 MOSトランジスタ 3、定電流回路 4及びコンパレータ 5により構成されている力 パワー MOSトランジスタ 2も過電流検出回路 14に含まれ ると考えても良い。以下、過電流検出回路 14にはパワー MOSトランジスタ 2が含まれ ているものとして説明する。
[0051] 制御部 7の出力はパワー MOSトランジスタ 2と検出用 MOSトランジスタ 3の各ゲート 電極に共通接続されている。制御部 7は、過電流検出信号を参照してパワー MOSト ランジスタ 2の過電流状態を監視しつつ、抵抗 8と抵抗 9の中間点の電位より負荷 6に 加わる電圧を検知して、負荷 6に加わる電圧が一定となるように、パワー MOSトラン ジスタ 2及び検出用 MOSトランジスタ 3の各ゲート電極にパルス状の電圧を供給する
[0052] 抵抗 8と抵抗 9の直列回路は、負荷 6に加わる電圧を検出するために設けられたも のであり、その合成抵抗値は負荷 6の抵抗値 (またはインピーダンス)より十分に大き い (よって、その直列回路における電力損失は無視できるほど小さい)。
[0053] また、パワー MOSトランジスタ 2は、図 2に示すように、多数 (n個; nは 2以上の整数 )の単位セルトランジスタ(この、単位セルトランジスタも絶縁ゲート型の電界効果トラ ンジスタである) Trl、 Tr2、 · · ·、 Trnを有してなる。パワー MOSトランジスタ 2は、各 単位セルトランジスタのドレイン、ソース及びゲートをそれぞれ並列接続することにより 、単一の MOSトランジスタとして形成されている。つまり、 n個の単位セルトランジスタ Trl、 Tr2、 · · ·、 Trnの各ドレイン、ソース及びゲートをそれぞれ並列接続した電極を 、それぞれパワー MOSトランジスタ 2のドレイン電極 15、ソース電極 16及びゲート電 極 17として!/ヽる。
[0054] 一方、検出用 MOSトランジスタ 3は、単一の単位セルトランジスタのみによって形成 されている。尚、検出用 MOSトランジスタ 3も、パワー MOSトランジスタ 2と同様、複 数 (m個; mは 2以上の整数であって m<nが成立する)の単位セルトランジスタ(不図 示)を有してなり、各単位セルトランジスタのドレイン、ソース及びゲートをそれぞれ並 列接続することにより、単一の MOSトランジスタとして形成されていてもよい。つまり、 m個の単位セルトランジスタの各ドレイン、ソース及びゲートをそれぞれ並列接続した 電極を、それぞれ検出用 MOSトランジスタ 3のドレイン電極、ソース電極及びゲート 電極としてもよい。
[0055] パワー MOSトランジスタ 2を構成する単位セルトランジスタ、及び検出用 MOSトラ ンジスタ 3を構成する単位セルトランジスタは、全て同一の半導体基板上に同一の製 造プロセスを用いて形成されている。即ち、全ての単位セルトランジスタは同一の構 造を有しているため、各オン抵抗の抵抗値の温度係数は略同じであり、ゲートーソー ス電極間電圧、ドレイン ソース電極間電圧及び周囲温度が同一の条件(この条件 を、以下「同一条件」という)下において、各オン抵抗の抵抗値は略同じである。
[0056] 以下、例えば、パワー MOSトランジスタ 2が 1000個の単位セルトランジスタの並列 接続力もなり、検出用 MOSトランジスタ 3が単一の単位セルトランジスタ力もなるとし て説明する。このとき、パワー MOSトランジスタ 2と検出用 MOSトランジスタ 3のチヤ ネルの面積比は、 1000 : 1となるため、オン抵抗の抵抗値の比は、 1 : 1000となる。
[0057] パワー MOSトランジスタ 2の最大出力電流値を Io とする。即ち、パワー MOSトラ max
ンジスタ 2のドレイン電流が最大出力電流値 Io を超えると、コンパレータ 5は、パヮ max
一 MOSトランジスタ 2が過電流状態であるとして制御部 7にハイ信号を出力する。
[0058] 更にまた、最大出力電流値 Io と定電流回路 4における定電流 Icとの間には、 Ic = max
Io Z1000が成立するものとする。即ち、定電流 Icの電流値は、最大出力電流値 Io max
、パワー MOSトランジスタ 2のオン抵抗の抵抗値及び検出用 MOSトランジスタ 3の max
オン抵抗の抵抗値に基づいて設定されており、具体的には、同一条件下における「 検出用 MOSトランジスタ 3のオン抵抗の抵抗値」の「パワー MOSトランジスタ 2のオン 抵抗の抵抗値」に対する比(1000)で、最大出力電流値 Io を割った値を、定電流 I max
Cの電流値として設定して 、る。
[0059] (過電流検出動作説明)
次に、電源装置 1における過電流検出動作について説明する。パワー MOSトラン ジスタ 2がオンの状態において、パワー MOSトランジスタ 2に流れる電流が最大出力 電流値 Io 未満である場合、パワー MOSトランジスタ 2のドレイン ソース電極間電 max
圧は、検出用 MOSトランジスタ 3のドレイン ソース電極間電圧よりも小さいため、コ ンパレータ 5はロウ信号を出力する。
[0060] そして、負荷 6の両端子間が短絡する等の異常が発生し、パワー MOSトランジスタ 2に流れる電流が最大出力電流値 Io を超えると、パワー MOSトランジスタ 2のドレ max
イン ソース電極間電圧は、検出用 MOSトランジスタ 3のドレイン ソース電極間電 圧よりも大きくなるため、コンパレータ 5はハイ信号を出力する。
[0061] コンパレータ 5によるハイ信号を制御部 7が受けると、制御部 7はパワー MOSトラン ジスタ 2が過電流状態になっていることを認識し、パワー MOSトランジスタ 2をオフさ せる電圧をパワー MOSトランジスタ 2のゲート電極に与える。これにより、パワー MO Sトランジスタ 2、ダイオード 10、インダクタ 11及び負荷 6が破損等することを防止して いる。尚、ー且制御部 7によりパワー MOSトランジスタ 2の過電流状態が検出されると 、外部から解除信号が入力されるか、電源電圧 Vccを再投入しない限り(一度電源電 圧 Vccの供給を遮断した上で再投入しない限り)、パワー MOSトランジスタ 2がオフ の状態は維持される。
[0062] 負荷 6の両端子間が短絡等した場合は、最大出力電流値 Io を大きく超えた電流 max
がパワー MOSトランジスタ 2に流れるため、多少の検出誤差は問題とならない。この 検出誤差の程度 (検出精度)が問題となるのは、パワー MOSトランジスタ 2のドレイン 電流が最大出力電流値 Io 近辺(例えば、 Ioの 100%〜120%)にあるときである。
max
[0063] ここで、過電流検出回路 14においては、パワー MOSトランジスタ 2及び検出用 MO Sトランジスタ 3の各ゲート ソース電極間電圧は等しい。また、パワー MOSトランジ スタ 2のドレイン電流が最大出力電流値 Io に等しくなつている場合においては、パ ヮー MOSトランジスタ 2及び検出用 MOSトランジスタ 3の各ドレイン ソース電極間 電圧は等しいため、コンパレータ 5の非反転入力端子(+ )と反転入力端子(-)の電 位は等しい。
[0064] そしてこの時、パワー MOSトランジスタ 2と検出用 MOSトランジスタ 3のオン抵抗の 抵抗値の比は、正確に 1 : 1000となる(アーリー効果による誤差を排除できるため)。 即ち、特許文献 1に記載の構成等において見られるアーリー効果に起因した検出誤 差は発生しない。更に、上述したように、これらトランジスタのオン抵抗の抵抗値の温 度係数は、略同じであるため、過電流状態を検出する電流の閾値の温度依存性が 少な 、 (温度変化による前記閾値の変動が小さ 、)。
[0065] 以上のように、過電流検出回路 14及びこれを有する電源装置 1においては、従来 に比べ、非常に高精度且つ温度依存性の小さい過電流検出が可能となっており、そ の検出誤差 (温度依存性も含む)は、単位セルトランジスタのオン抵抗の相対ばらつ きによるものが主となっている。
[0066] 仮に、過電流検出の検出誤差が大きいと、電源装置 1においては以下(1)〜(3)の ような不具合が発生する。
(1)パワー MOSトランジスタ 2、ダイオード 10、インダクタ 11及び負荷 6が破損等す ることを防止するため、検出誤差を考慮して、最大出力電流値 I。 maxを小さく設定せざ るを得ない。そうすると、本来まだパワー MOSトランジスタ 2等が安全に動作できるの に、過電流状態でになりえるとしてパワー MOSトランジスタ 2が遮断されてしまう。
(2)上記(1)のような不具合は、特に負荷 6が容量性のものであったり、サージ状の 電流を引き込む負荷であったりする場合に顕在化するが、無理に過電流を検出する 値 (つまりは、最大出力電流値 Io )
maxを大きくすると、大きな検出誤差により過負荷が 力かりやすくなるのでパワー MOSトランジスタ 2の信頼性の低下、ひいてはこれを含 む過電流検出回路 14や電源装置 1全体の信頼性が低下する (故障する比率が高く なる)。
(3)大きな検出誤差は、本来、パワー MOSトランジスタ 2を遮断すべきであるのに、 遮断されないという事態の発生を増加させる。その場合においても、ダイオード 10等 が破損しないようにするためには、ダイオード 10やインダクタ 11等として、無駄に電 流定格の大き ヽものを採用せざるを得な ヽ。このような電流定格の大き ヽものの採用 は、実装面積の増大やコストアップを招く。
[0067] し力しながら、電源装置 1にお 、ては、上述のように非常に高精度且つ温度依存性 の小さ!/、過電流検出が可能であるので、上記(1)〜(3)のような不具合が低減される 。即ち、理想的な最大出力電流値 Io を設定できるため、信頼性が向上し、実装面 max
積の減少やコストダウンを実現することができる。
[0068] (定電流回路 4の説明)
次に、図 1における定電流回路 4の具体的な電気的構成を、図 3に示す。定電圧発 生回路 25が出力する基準電圧 Vrefは PNP型のトランジスタ 23のベースに接続され ており、そのェミッタは、定電流回路 24の一端と、 NPN型のトランジスタ 20のベース に共通接続されている。また、トランジスタ 23のコレクタは接地されており、定電流回 路 24の他端には電源電圧 Vccが与えられて 、る。
[0069] トランジスタ 20のェミッタは抵抗 21と抵抗 22の直列回路を介して接地されており、 そのコレクタが検出用 MOSトランジスタ 3のドレイン電極に接続されることとなる。即ち 、トランジスタ 20のコレクタ電流力 定電流 Icとなっている。図 3のように構成すること により、基準電圧 Vrefを抵抗 21と抵抗 22とによる合成抵抗の抵抗値で割った値が、 定電流 Icの電流値となる。
[0070] 抵抗 21と抵抗 22は、不純物の拡散等により半導体基板上に形成される。その際、 不純物を適当に選択する等することにより、抵抗 21と抵抗 22とによる合成抵抗の抵 抗値が温度変化によらず一定になるように形成されて 、る。
[0071] しカゝしながら、製造誤差等を加味すれば、実際の合成抵抗の抵抗値が温度変化に よって全く変動しないようにすることは困難である。従って、ここにおける「温度変化に よらず一定」とは、製造誤差等を加味した幅を持った概念である。
[0072] 具体的には、例えば、抵抗 21及び抵抗 22の室温 (例えば 25°C)における抵抗値を 、それぞれ 10k Ω (キロオーム)、 20k Ωとし、抵抗 21及び抵抗 22の温度係数を、そ れぞれ +2000ppmZ。C、 - 1000ppmZ。Cに設定する。
[0073] このように、基準電圧 Vrefを、正の温度係数を有する抵抗 21と負の温度係数を有 する抵抗 22との合成抵抗に印加することにより得られる電流を定電流 Icとし、前記合 成抵抗の抵抗値を温度変化によらず一定とすることにより、定電流 Icの電流値は温 度変化によらず、一定 (製造誤差より、厳密には「略一定」)となる。その結果、過電流 検出回路 14及びこれを含む電源装置 1は、高精度且つ温度依存性の小さ!/、過電流 検出を実現できる。
[0074] 尚、抵抗 21及び抵抗 22は、必ずしも不純物の拡散等により半導体基板上に形成 する必要はなぐ炭素皮膜抵抗や金属皮膜抵抗等であってもよい。
[0075] (定電圧発生回路 25の説明)
図 4に、定電圧発生回路 25の一回路構成例を示す。 PNP型のトランジスタ 31につ いては、ベースとコレクタとが接続されており、ェミッタには電源電圧 Vccが印加され る。 PNP型のトランジスタ 32については、ベースがトランジスタ 31のベースに接続さ れており、ェミッタには電源電圧 Vccが印加される。 PNP型のトランジスタ 33につい ては、ベースがトランジスタ 32のコレクタに接続されており、ェミッタには電源電圧 Vc cが印加される。 NPN型のトランジスタ 34については、ベースがトランジスタ 33のコレ クタに接続されており、ェミッタが抵抗 37を介して接地されており、コレクタがトランジ スタ 31のコレクタに接続されている。 NPN型のトランジスタ 35については、ベースが トランジスタ 33のコレクタに接続されており、ェミッタが抵抗 36を介してトランジスタ 34 のェミッタに接続されており、コレクタがトランジスタ 32のコレクタに接続されている。 そして、トランジスタ 33のコレクタ、トランジスタ 34のベース、及びトランジスタ 35のべ ースの接続点の電圧力 基準電圧 Vrefとして出力される。
[0076] この基準電圧 Vrefの温度係数を小さくするために、基準電圧 Vrefは半導体のバン ドギャップ電圧 (シリコンの場合は、 1. 205[V])を基準として設定されている。従って 、このような定電圧発生回路 25を定電流回路 4に利用することにより、定電流 Icの電 流値の温度依存性を、非常に小さなものとすることができる。
[0077] (実施形態の変形)
図 1においては、パワー MOSトランジスタ 2及び検出用 MOSトランジスタ 3の各ソー ス電極、ゲート電極を共通接続した実施形態を示した。この実施形態においては、コ ンパレータ 5の反転入力端子(一)には、電源電圧 Vcc力 パワー MOSトランジスタ 2 のソース—ドレイン電極間電圧を引いた電圧が加わり、非反転入力端子(+ )には、 電源電圧 Vccから検出用 MOSトランジスタ 3のソース ドレイン電極間電圧を引いた 電圧が加わる。このように構成することで、アーリー効果に起因する検出誤差をなくし ているのである。
[0078] 結局、アーリー効果に起因する検出誤差をなくすためには、「パワー MOSトランジ スタ 2及び検出用 MOSトランジスタ 3のゲート ソース電極間電圧が同じである状態 において、負荷 6に電流を流したことによりパワー MOSトランジスタ 2のソース ドレイ ン電極間に生じる電圧 V と、定電流 Icを流したことにより検出用 MOSトランジスタ 3
DS2
のソース一ドレイン電極間に生じる電圧 V とをコンパレータ 5が比較し、その比較結 果に基づいて (具体的には、 v より大きくなつたときに、過電流状態であると
DS2 DS3
して)過電流検出信号をコンパレータ 5が出力すればょ 、」のであるから、本発明に 係る過電流検出回路は様々な変形が可能である。
[0079] また、本発明は、図 1に示す電源装置 1に限らず、様々なスイッチングレギユレータゃ DC— DCコンバータ等を備えた電源装置に適用可能である。更にまた、本発明は、 3端子レギユレータ等のシリーズレギユレータ(ドロッパ型レギユレータ)を備えた電源 装置にも適用可能である。
[0080] (定義など)
本発明にいうパワー MOSトランジスタの第 1電極、第 2電極及び制御電極とは、図 1においては、それぞれパワー MOSトランジスタ 2のソース電極、ドレイン電極及びゲ ート電極を意味し、本発明にいう検出用 MOSトランジスタの第 1電極、第 2電極及び 制御電極とは、図 1においては、それぞれ検出用 MOSトランジスタ 3のソース電極、 ドレイン電極及びゲート電極を意味する。
[0081] しかしながら、パワー MOSトランジスタ 2及び検出用 MOSトランジスタを Nチャンネ ルの MOSトランジスタに代える変形は、勿論可能であるし、負荷 6をパワー MOSトラ ンジスタのソース側に接続する変形も、勿論可能である。
[0082] 従って、そのような変形をした場合は、本発明にいうパワー MOSトランジスタの第 1 電極及び第 2電極とは、それぞれパワー MOSトランジスタのドレイン電極及びソース 電極を意味する場合もあるし、本発明にいう検出用 MOSトランジスタの第 1電極及び 第 2電極とは、それぞれ検出用 MOSトランジスタのドレイン電極及びソース電極を意 味する場合もある。
[0083] また、上記実施形態においては、パワー MOSトランジスタ 2及び検出用 MOSトラン ジスタ 3の双方を、同一の構造を有した単位セルトランジスタカゝら構成することにより、 パワー MOSトランジスタ 2と検出用 MOSトランジスタ 3とのオン抵抗の抵抗値の比を 制御したが(上記実施形態の例では、 1 : 1000)、単位セルトランジスタを用いること なぐそれらの WZLの比(W:チャネル幅であり、 L :チャネル長)の適切に設定するこ とにより、パワー MOSトランジスタ 2と検出用 MOSトランジスタ 3とのオン抵抗の抵抗 値の比を制御してもよい。 [0084] 例えば、パワー MOSトランジスタ 2及び検出用 MOSトランジスタ 3のチャネル幅を 夫々 W及び W、パワー MOSトランジスタ 2及び検出用 MOSトランジスタ 3のチヤネ
2 3
ル長を夫々 L及び Lとしたとき、 W /L = 1000 XW ZLが成立するようにパワー
2 3 2 2 3 3
MOSトランジスタ 2及び検出用 MOSトランジスタ 3を半導体基板上に製造することに より、パワー MOSトランジスタ 2と検出用 MOSトランジスタ 3とのオン抵抗の抵抗値の itは、 1 : 1000となる。
[0085] また、上記実施形態においては、出力用のトランジスタとして MOSトランジスタから 成るパワー MOSトランジスタ 2を用い、検出用のトランジスタとして MOSトランジスタ 力 成る検出用 MOSトランジスタ 3を用いる例を示した力 パワー MOSトランジスタ 2 及び検出用 MOSトランジスタ 3を、夫々 PNP型の出力バイポーラトランジスタ(出力ト ランジスタ)及び PNP型の検出用ノイポーラトランジスタ (検出用トランジスタ)に代え ることがでさる。
[0086] この場合は、バイポーラトランジスタのベース電流を考慮して構成する必要があるが 、上記実施形態と同様の構成とすることができる。具体的には、図 1の構成において 、パワー MOSトランジスタ 2を上記出力バイポーラトランジスタに置換し、パワー MO Sトランジスタ 2のソース電極、ドレイン電極及びゲート電極を、夫々出力バイポーラト ランジスタのェミッタ電極、コレクタ電極及びベース電極と置換し、検出用 MOSトラン ジスタ 3を上記検出用ノイポーラトランジスタに置換し、検出用 MOSトランジスタ 3の ソース電極、ドレイン電極及びゲート電極を、夫々検出用バイポーラトランジスタのェ ミッタ電極、コレクタ電極及びベース電極と置換する。
[0087] ここで、出力バイポーラトランジスタを、多数 (p個; nは 2以上の整数)の単位セルバ イポーラトランジスタカゝら構成して、各単位セルバイポーラトランジスタのコレクタ、エミ ッタ及びベースをそれぞれ並列接続することにより、単一のバイポーラトランジスタとし て形成し、検出用ノイポーラトランジスタを、単一の単位セルバイポーラトランジスタ から構成するか、または複数 (q個; qは 2以上の整数、 p>q)の単位セルバイポーラト ランジスタから構成して、各単位セルバイポーラトランジスタのコレクタ、ェミッタ及び ベースをそれぞれ並列接続することにより、単一のバイポーラトランジスタとして形成 する。上記単位セルバイポーラトランジスタは、全て同一の半導体基板上に同一の製 造プロセスを用いて形成されるようにするとよ 、。
[0088] 上記のように出力バイポーラトランジスタ及び検出用バイポーラトランジスタを用い、 図 1を用いて説明したのと同様に電源装置を構成すれば、アーリー効果に起因する 検出誤差を殆ど無視できる過電流検出が実現される。
[0089] 尚、単位セルバイポーラトランジスタを用いて上記出力バイポーラトランジスタ及び 上記検出用バイポーラトランジスタを構成するのではなぐ夫々のバイポーラトランジ スタの駆動能力を適切に設定するようにしてもよい。例えば、出力バイポーラトランジ スタの駆動能力を検出用バイポーラトランジスタの駆動能力の 1000倍になるように、 夫々のェミッタ面積等を制御して製造すればよ 、。
産業上の利用可能性
[0090] 本発明は、温度変化を無視した絶対的な検出誤差が少なぐ且つ温度変化による 検出誤差変動が少ない過電流検出回路を必要とする電源装置やハイサイドスィッチ 等に好適であり、広範囲の温度 (例えば— 40°C〜125°C)にて高精度な過電流検出 が求められる車載用の電源装置に好適である。

Claims

請求の範囲
[1] 負荷に電流を出力する出力トランジスタの過電流状態を検出して、過電流検出信 号を出力する過電流検出回路であって、
前記出力トランジスタと並列に接続された検出用トランジスタと、
前記検出用トランジスタの一端に接続され、前記検出用トランジスタに所定の定電 流を流す定電流回路と、
前記負荷に電流を流したことにより前記出力トランジスタの第 1電極 第 2電極間に 生じる電圧と前記定電流を流したことにより前記検出用トランジスタの第 1電極 第 2 電極間に生じる電圧との比較結果に基づいて、前記過電流検出信号を出力する比 較器と、
を備えたことを特徴とする過電流検出回路。
[2] 第 2電極より負荷に電流を出力する出力トランジスタの過電流状態を検出して、過 電流検出信号を出力する過電流検出回路であって、
第 1電極及び制御電極が、それぞれ前記出力トランジスタの第 1電極及び制御電 極に共通に接続された検出用トランジスタと、
前記検出用トランジスタの第 2電極に接続され、前記検出用トランジスタに所定の定 電流を流す定電流回路と、
前記出力トランジスタの第 2電極の電位と前記検出用トランジスタの第 2電極の電位 との比較結果に基づいて、前記過電流検出信号を出力する比較器と、
を備えたことを特徴とする過電流検出回路。
[3] 前記出力トランジスタ及び前記検出用トランジスタは、夫々パワー MOSトランジスタ 及び検出用 MOSトランジスタであり、
前記定電流の電流値は、前記パワー MOSトランジスタの予め定められた最大出力 電流値、前記パワー MOSトランジスタのオン抵抗の抵抗値及び前記検出用 MOSト
Figure imgf000022_0001
ヽて設定されて ヽることを特徴とする請求項 1 または請求項 2に記載の過電流検出回路。
[4] 前記出力トランジスタはパワー MOSトランジスタであって、 n (nは 2以上の整数)個 の単位セルトランジスタを有し、該 n個の単位セルトランジスタのドレイン、ソース及び ゲートをそれぞれ並列接続することにより単一の MOSトランジスタとして形成されて おり、
前記検出用トランジスタは検出用 MOSトランジスタであって、単一の単位セルトラン ジスタより形成されて 、る力 または m (mは 2以上の整数; mく n)個の単位セルトラ ンジスタを有し、該 m個の単位セルトランジスタのドレイン、ソース及びゲートをそれぞ れ並列接続することにより単一の MOSトランジスタとして形成されており、
前記パワー MOSトランジスタを構成する単位セルトランジスタ及び前記検出用 MO Sトランジスタを構成する単位セルトランジスタは、全て同一の半導体基板上に同一 の製造プロセスを用いて形成されていることを特徴とする請求項 1または請求項 2に 記載の過電流検出回路。
[5] 所定の基準電圧を、正の温度係数を有する抵抗と負の温度係数を有する抵抗との 合成抵抗に印加することにより得られる電流を前記定電流とし、前記合成抵抗の抵 抗値が温度変化によらず一定となるように構成したことを特徴とする請求項 1または 請求項 2に記載の過電流検出回路。
[6] 請求項 1または請求項 2に記載の過電流検出回路と、
前記出力トランジスタと、
前記出力トランジスタの出力側の電圧を平滑化して前記負荷へ出力する平滑回路 とを備えたことを特徴とする電源装置。
[7] 前記負荷に供給する電圧に応じた電圧を出力する電圧検出回路と、
該電圧検出回路力 の出力に応じて、前記出力トランジスタ及び前記検出用トラン ジスタを制御する制御部とを更に備えたことを特徴とする請求項 6に記載の電源装置
[8] 前記比較器の出力に応じて、前記制御部を制御することを特徴とする請求項 7に記 載の電源装置。
PCT/JP2005/008967 2004-05-18 2005-05-17 過電流検出回路及びこれを有する電源装置 WO2005112217A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/597,012 US20070229041A1 (en) 2004-05-18 2005-05-17 Excess Current Detecting Circuit and Power Supply Device Provided with it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-147290 2004-05-18
JP2004147290A JP2005333691A (ja) 2004-05-18 2004-05-18 過電流検出回路及びこれを有する電源装置

Publications (1)

Publication Number Publication Date
WO2005112217A1 true WO2005112217A1 (ja) 2005-11-24

Family

ID=35394466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008967 WO2005112217A1 (ja) 2004-05-18 2005-05-17 過電流検出回路及びこれを有する電源装置

Country Status (6)

Country Link
US (1) US20070229041A1 (ja)
JP (1) JP2005333691A (ja)
KR (1) KR20070009712A (ja)
CN (1) CN1954469A (ja)
TW (1) TW200540431A (ja)
WO (1) WO2005112217A1 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100483905C (zh) * 2005-12-21 2009-04-29 鸿富锦精密工业(深圳)有限公司 电源供应电路
JP4878181B2 (ja) * 2006-03-06 2012-02-15 株式会社リコー 電流検出回路および該電流検出回路を利用した電流モードdc−dcコンバータ
JP5022668B2 (ja) * 2006-10-25 2012-09-12 オンセミコンダクター・トレーディング・リミテッド Dc/dcコンバータ
KR100836900B1 (ko) * 2007-02-09 2008-06-11 한양대학교 산학협력단 전류 감지 회로
JP2008276611A (ja) * 2007-05-01 2008-11-13 Nec Electronics Corp 過電流保護回路
US8174251B2 (en) 2007-09-13 2012-05-08 Freescale Semiconductor, Inc. Series regulator with over current protection circuit
US7576526B2 (en) 2008-01-16 2009-08-18 Freescale Semiconductor, Inc Overcurrent detection circuit
JP5129701B2 (ja) * 2008-09-12 2013-01-30 ルネサスエレクトロニクス株式会社 過電流検出回路
JP5332590B2 (ja) * 2008-12-22 2013-11-06 株式会社リコー 電流検出回路および該電流検出回路を用いたスイッチング電源ならびに電子機器
JP5434170B2 (ja) * 2009-03-17 2014-03-05 株式会社リコー 過電流保護装置
TW201040544A (en) * 2009-05-01 2010-11-16 Linear Artwork Inc Sensing system and its method
DE112010003655B4 (de) * 2009-10-20 2015-12-31 Mitsubishi Electric Corporation Fehler-Detektionsvorrichtung für eine Halbleitervorrichtung
GB2480648B (en) * 2010-05-26 2013-02-20 Ge Aviat Systems Ltd Measuring transient electrical activity in aircraft power distribution systems
JP5581907B2 (ja) 2010-09-01 2014-09-03 株式会社リコー 半導体集積回路及び半導体集積回路装置
JP5496038B2 (ja) * 2010-09-22 2014-05-21 三菱電機株式会社 Dc−dcコンバータ
JP2012135143A (ja) * 2010-12-22 2012-07-12 Howa Mach Ltd 負荷制御装置
EP2763318B1 (en) * 2011-09-29 2021-03-17 Fuji Electric Co., Ltd. Load driving circuit
CN103134977B (zh) * 2011-11-28 2015-08-19 统达能源股份有限公司 大电流侦测装置及其侦测方法
US11159009B2 (en) 2013-04-01 2021-10-26 Qualcomm Incorporated Voltage regulator over-current protection
CN103956708B (zh) * 2014-04-21 2016-09-07 杭州电子科技大学 低压直流负载过载测控电路
KR102245472B1 (ko) * 2014-08-18 2021-04-29 삼성디스플레이 주식회사 Dc-dc 컨버터 및 이를 포함하는 유기 발광 표시 장치
US9678111B2 (en) * 2015-10-07 2017-06-13 Nxp B.V. Current sensing with compensation for component variations
US9634657B1 (en) * 2015-12-01 2017-04-25 General Electric Company System and method for overcurrent protection for a field controlled switch
JP6629593B2 (ja) * 2015-12-28 2020-01-15 ローム株式会社 電源回路およびその制御回路、制御方法、ならびにそれを用いた電子機器
TWI603563B (zh) 2016-05-05 2017-10-21 創惟科技股份有限公司 電力供應控制單元、控制模組、控制裝置及其控制方法
CN106848998B (zh) * 2017-02-28 2019-05-24 浙江大华技术股份有限公司 一种电源输出保护电路及装置
US10903355B1 (en) 2019-11-27 2021-01-26 Analog Devices International Unlimited Company Power switch arrangement
CN113497435A (zh) * 2020-04-08 2021-10-12 法雷奥汽车空调湖北有限公司 过电流保护***
JP2022136418A (ja) 2021-03-08 2022-09-21 ローム株式会社 過電流保護回路、電源制御装置、反転型スイッチング電源
CN113300426A (zh) * 2021-04-27 2021-08-24 珠海迈巨微电子有限责任公司 功率器件、电池管理***及检测电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227520A (ja) * 1988-03-07 1989-09-11 Nippon Denso Co Ltd 電力用半導体装置
EP0402928A2 (en) * 1989-06-16 1990-12-19 National Semiconductor Corporation Circuit for internal current limiting in a fast high side power switch
JPH03143221A (ja) * 1989-10-26 1991-06-18 Fuji Electric Co Ltd 過電流検出回路
JPH03262209A (ja) * 1990-03-12 1991-11-21 Nec Kansai Ltd 電流検出回路
JPH04134271A (ja) * 1990-09-27 1992-05-08 Nec Corp 出力回路
JP2000059982A (ja) * 1998-08-05 2000-02-25 Toyota Motor Corp 過電流検出回路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3887863A (en) * 1973-11-28 1975-06-03 Analog Devices Inc Solid-state regulated voltage supply
US4055812A (en) * 1976-08-13 1977-10-25 Rca Corporation Current subtractor
US4553084A (en) * 1984-04-02 1985-11-12 Motorola, Inc. Current sensing circuit
JPH0769749B2 (ja) * 1990-10-25 1995-07-31 関西日本電気株式会社 直流電源回路
JPH05315852A (ja) * 1992-05-12 1993-11-26 Fuji Electric Co Ltd 電流制限回路および電流制限回路用定電圧源
US5670829A (en) * 1995-03-20 1997-09-23 Motorola, Inc. Precision current limit circuit
JP3171129B2 (ja) * 1996-11-01 2001-05-28 株式会社デンソー 定電流制御機能を有する乗員保護装置の駆動回路および定電流制御回路
JPH10283040A (ja) * 1997-04-08 1998-10-23 Toshiba Corp 電圧分圧回路、差動増幅回路および半導体集積回路装置
US6768623B1 (en) * 2000-11-17 2004-07-27 Texas Instruments Incorporated IC excess current detection scheme

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227520A (ja) * 1988-03-07 1989-09-11 Nippon Denso Co Ltd 電力用半導体装置
EP0402928A2 (en) * 1989-06-16 1990-12-19 National Semiconductor Corporation Circuit for internal current limiting in a fast high side power switch
JPH03143221A (ja) * 1989-10-26 1991-06-18 Fuji Electric Co Ltd 過電流検出回路
JPH03262209A (ja) * 1990-03-12 1991-11-21 Nec Kansai Ltd 電流検出回路
JPH04134271A (ja) * 1990-09-27 1992-05-08 Nec Corp 出力回路
JP2000059982A (ja) * 1998-08-05 2000-02-25 Toyota Motor Corp 過電流検出回路

Also Published As

Publication number Publication date
TW200540431A (en) 2005-12-16
KR20070009712A (ko) 2007-01-18
US20070229041A1 (en) 2007-10-04
JP2005333691A (ja) 2005-12-02
CN1954469A (zh) 2007-04-25

Similar Documents

Publication Publication Date Title
WO2005112217A1 (ja) 過電流検出回路及びこれを有する電源装置
US9531186B2 (en) Current detection circuit and semiconductor integrated circuit device
US7576524B2 (en) Constant voltage generating apparatus with simple overcurrent/short-circuit protection circuit
US8368363B2 (en) Current sensing circuit and switching regulator including the same
US6737905B1 (en) Clamp circuit
WO2006016456A1 (ja) 回路の保護方法、保護回路およびそれを利用した電源装置
US8729829B2 (en) Power supply arrangement and method for the power supply of an electrical load
WO2014199816A1 (ja) 過電流検出回路
JP2009071920A (ja) 同期整流型スイッチングレギュレータ
US6496049B2 (en) Semiconductor integrated circuit having a current control function
CN108599544B (zh) 应用于dc-dc变换器的高压使能电路
TWI381511B (zh) 單一接腳多功能信號偵測方法以及用於其之結構
WO2007049597A1 (ja) 電流検出回路
US20090224804A1 (en) Detecting circuit and electronic apparatus using detecting circuit
US20080309320A1 (en) Negative voltage detection circuit for synchronous rectifier mosfet
US11209464B2 (en) Current detection circuit and power converter
JP2007078427A (ja) 過電流検出回路及びそれを用いた電源装置
JP2009075957A (ja) 電源回路および半導体装置
JP3707355B2 (ja) 電流検出回路
US6967378B2 (en) Semiconductor integrated circuit device configured to prevent the generation of a reverse current in a MOS transistor
JP2020030179A (ja) 電流検出回路
JP4692267B2 (ja) 電流検出装置および電流制御装置
US7612550B2 (en) Dropper type regulator
JP2005295360A (ja) 電流検出回路およびそれを用いた半導体集積装置、レギュレータ装置
US7906955B2 (en) On-chip current sensing methods and systems

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580015613.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11597012

Country of ref document: US

Ref document number: 2007229041

Country of ref document: US

Ref document number: 1020067024162

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067024162

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11597012

Country of ref document: US