WO2004095613A1 - リチウムイオン二次電池電極用バインダー - Google Patents

リチウムイオン二次電池電極用バインダー Download PDF

Info

Publication number
WO2004095613A1
WO2004095613A1 PCT/JP2004/005769 JP2004005769W WO2004095613A1 WO 2004095613 A1 WO2004095613 A1 WO 2004095613A1 JP 2004005769 W JP2004005769 W JP 2004005769W WO 2004095613 A1 WO2004095613 A1 WO 2004095613A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
mass
binder
lithium ion
secondary battery
Prior art date
Application number
PCT/JP2004/005769
Other languages
English (en)
French (fr)
Inventor
Akira Nakayama
Takao Suzuki
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corporation filed Critical Zeon Corporation
Priority to KR1020057020111A priority Critical patent/KR101116546B1/ko
Priority to JP2005505779A priority patent/JP4736804B2/ja
Priority to US10/553,865 priority patent/US7700234B2/en
Publication of WO2004095613A1 publication Critical patent/WO2004095613A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder for a lithium ion secondary battery electrode, a slurry composition for a lithium ion secondary battery electrode containing the binder, an electrode for a lithium ion secondary battery, a method for producing the electrode, and lithium having the electrode. It relates to an ion secondary battery. Background art
  • Secondary batteries such as lithium-ion secondary batteries are often used as power sources for portable terminals such as notebook computers, mobile phones, and PDAs, which have become increasingly popular in recent years.
  • portable terminals such as notebook computers, mobile phones, and PDAs
  • the lithium ion secondary battery has a structure in which a positive electrode and a negative electrode are arranged via a separator, and are housed in a container together with an electrolytic solution.
  • the electrodes (positive electrode and negative electrode) are composed of an electrode active material (hereinafter sometimes simply referred to as “active material”) and, if necessary, a conductivity-imparting agent or the like, and a binder for a lithium ion secondary battery electrode (hereinafter simply referred to as “binder”). It may be referred to as a "binder.”) And is bound to a current collector such as aluminum or copper.
  • the electrode is usually prepared by dissolving or dispersing a binder in a liquid medium such as water or N-methylpyrrolidone (NMP), and mixing this with an active material to prepare a slurry composition for a lithium ion secondary battery electrode ( Hereinafter, it may be simply referred to as “slurry.”) Is applied to a current collector, the liquid medium is removed by drying or the like, and the resultant is bound as an electrode layer.
  • a liquid medium such as water or N-methylpyrrolidone (NMP)
  • Battery capacity is strongly affected by the amount of active material used.
  • the rate characteristics are affected by the ease of electron transfer, and increasing the amount of a conductivity-imparting agent such as carbon is effective for improving the rate characteristics.
  • a conductivity-imparting agent such as carbon
  • Acrylic acid or methacrylic acid ester A copolymer comprising a vinyl monomer having a retoritol and an acid component is known (see Japanese Patent Application Laid-Open No. 8-287179). Since this copolymer is insoluble in water and NMP, a slurry is used in combination with a thickener to adjust the viscosity to be suitable for application to a current collector when producing a slurry.
  • the solid content of the slurry is usually as high as 70% or more, the mixing of the slurry is insufficient and the components are aggregated, and the dispersion of the active material and the conductivity-imparting agent in the slurry is uneven. There was a problem. If an electrode is made using a non-uniform slurry, the ion conductivity will deteriorate and the battery capacity will decrease, or the binding of the active material will decrease and the active material will peel off from the current collector. Problems arise.
  • paste A obtained by kneading the active material and the binder, and paste B obtained by kneading the conductivity-imparting agent and the thickener are used.
  • paste B obtained by kneading the conductivity-imparting agent and the thickener has been proposed to obtain a slurry by mixing them (see Japanese Patent Application Laid-Open No. 2003-45432).
  • this method involved complicated processes, and also required large production facilities for each of pastes A, B, and slurry.
  • NMP-soluble polymer such as polyvinylidene fluoride-polyacrylonitrile
  • Electrodes manufactured using these binders lack the flexibility, and when folded and wound into a battery container, the electrode layer may crack or peel off. . Disclosure of the invention
  • an object of the present invention is to provide a binder for a lithium ion secondary battery electrode capable of industrially obtaining an electrode having good binding properties and a flexible electrode layer, and the binder It is an object of the present invention to provide a slurry for a lithium ion secondary battery electrode containing, and an electrode for a lithium ion secondary battery, a method for producing the electrode, and a lithium ion secondary battery having the electrode.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, a polymer obtained by homopolymerization was converted into a monomer obtained by homopolymerization with a monomer unit soluble in NMP. It contains a unit of insoluble monomer in a specific ratio and has a low degree of swelling in a specific electrolytic solution. It has been found that, when a polymer is used as a binder, a slurry in which the active material and the conductivity-imparting agent are highly dispersed and which has good coatability can be obtained. Furthermore, they have found that an electrode having an electrode layer that is flexible and has excellent binding properties can be obtained by using the slurry. Then, based on these findings, the present invention has been completed.
  • the polymer obtained by homopolymerization contains 15 to 80% by mass of the unit of the ethylenically unsaturated monomer (A) soluble in N-methylpyrrolidone (NMP), 20 to 85 mass units of ethylenically unsaturated monomer (B) whose polymer is insoluble in NMP. / 0 and
  • Ethylene carbonate (EC): Jefferies chill carbonate (DEC) 1: 2 at a rate of (20 ° volume ratio in C), EC and DEC and the mixture to become mixed L i PF 6 1 molar liter solvent
  • the present invention provides a binder for a lithium ion secondary battery electrode comprising a copolymer having a swelling degree of 4 or less in an electrolytic solution dissolved at a concentration of 4 or less.
  • a component (component (a)) comprising at least one ethylenically unsaturated monomer, wherein a polymer obtained by polymerizing the monomer is soluble in NMP, and at least one ethylenically unsaturated monomer A polymer consisting of monomers and obtained by polymerizing it is obtained by multi-stage polymerization of a component (b component) insoluble in NMP,
  • EC: DEC 1: 2 in a ratio of (volume ratio at 20 ° C), an electrolyte comprising an L i PF 6 in a mixed solvent made by mixing EC and DEC was dissolved at a concentration of 1 mol / liter
  • a lithium ion secondary battery electrode binder comprising a copolymer having a degree of swelling of 4 or less.
  • the multi-stage polymerization preferably includes a first-stage polymerization step of polymerizing the component a and a second-stage polymerization step of subsequently adding and polymerizing the component b.
  • the first-stage polymerization step is a step of polymerizing 15 to 80 parts by mass of the component a until the polymerization conversion reaches 60 to 97% by mass. More preferably, it is a step of adding 85 parts by mass (the total amount of the monomers is 100 parts by mass) and polymerizing until the polymerization conversion rate with respect to the total amount of the monomers reaches 90% by mass or more.
  • the multi-stage polymerization is preferably a three-stage polymerization process, in which a first polymerization process in which a part of the component a is added and polymerization is performed, and then a polymerization is performed in which the component b is added.
  • a second polymerization step, followed by a three-step polymerization in which the remainder of component a is added More preferably, it has an eye polymerization step.
  • the first-stage polymerization step is a step of polymerizing 5 to 50 parts by mass of the component a until the polymerization conversion reaches 60 to 97% by mass.
  • the component a is added in an amount of 5 to 50 parts by mass (however, the total amount of the monomers is 100 parts by mass), and the polymerization conversion rate with respect to the total amount of the monomers is 90% by mass. It is particularly preferable to carry out the polymerization until reaching the above.
  • a slurry composition for a lithium ion secondary battery electrode comprising the above binder for a lithium ion secondary battery electrode, an electrode active material, and an organic liquid medium.
  • an electrode for a lithium ion secondary battery wherein the slurry composition for an electrode of a lithium ion secondary battery is applied to a current collector and dried.
  • an electrode for a lithium ion secondary battery in which an electrode layer containing the above binder for an electrode of a lithium ion secondary battery and an electrode active material is bound to a current collector, and A lithium ion secondary battery having the same is provided.
  • the binder for an electrode of a lithium ion secondary battery of the present invention is a polymer obtained by homopolymerization, wherein the unit of the ethylenically unsaturated monomer (A) 15 to 15 which is soluble in N-methylpyrrolidone (NMP) 80% by mass, and 20 to 85% by mass of units of an ethylenically unsaturated monomer (B) in which a polymer obtained by homopolymerization is insoluble in NMP,
  • EC: DEC 1: 2 (volume ratio at 20 ° C) in a mixture of EC and DEC in a mixed solvent of Li 6 dissolved at a concentration of 1 mole in an electrolyte. It is composed of a copolymer having a swelling degree of 4 or less.
  • Examples of the ethylenically unsaturated monomers (A) in which the polymer obtained by homopolymerization is soluble in NMP include a, j3 _ ethylenically unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile; Aromatic vinyl compounds such as styrene, ⁇ -methinolestyrene,] 3-methynolestyrene, ⁇ -t-butynolestyrene, and chlorostyrene;
  • An ethylenically unsaturated carboxylic acid ester of an alkyl group bonded to a non-carbonyl oxygen atom such as isobutyl citrate, methyl crotonate, ethyl crotonate, propyl crotonate, butyl crotonate, or isobutyl crotonate, having an alkyl group having 6 or less carbon atoms. And the like. Of these, o, / 3-ethylenically unsaturated nitrile compound / methyl methacrylate is preferred. These monomers may
  • the ethylenically unsaturated monomers (B) in which the polymer obtained by homopolymerization is insoluble in NMP include 2-ethylhexyl acrylate, isooctyl acrylate, isosodecyl acrylate, lauryl acrylate, and acrylic Non-carbonyls such as stearyl acrylate, tridecyl acrylate, 2-ethylhexyl methacrylate, isooctyl methacrylate, isodecinole methacrylate, lauryl methacrylate, tridecyl methacrylate, stearyl methacrylate, 2-ethylhexyl tonoate
  • Ethylenically unsaturated monocarboxylic acids such as atarilic acid, methacrylic acid, crotonic acid and isocrotonic acid
  • ethylenically unsaturated dicarboxylic acids such as maleic acid, fumaric acid, citraconic acid, mesaconic acid, glutaconic acid and itaconic acid
  • Conjugated genes such as 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,3-butadiene and 1,3-pentadiene;
  • 1-olefins such as ethylene, propylene, and 1-butene; Among them, from the viewpoint of obtaining a binder having excellent flexibility, an ethylenically unsaturated carboxylic acid ester or a conjugated ester having an alkyl group bonded to a non-carbonyl oxygen atom having 7 or more carbon atoms is preferable, and a non-carbonyl oxygen atom is preferable.
  • An ethylenically unsaturated carboxylic acid ester having an alkyl group having 7 or more carbon atoms bonded to is particularly preferred.
  • the amount of the unit of the ethylenically unsaturated monomer (A) is from 15 to 80% by mass of all the monomer units, Preferably from 20 to 75 weight 0/0, more preferably from. 25 to 7 ⁇ mass 0/0.
  • the amount of units of ethylenically unsaturated monomer (B) is 20 to 85% by weight of the total monomer units, are preferably 25 to 80 weight 0/0, more preferably 30 to 75 weight 0/0 .
  • Degree of swelling of 4 or less in the C and mixed solvent and by mixing the DEC for L i PF 6 1 mole Z l concentration dissolved in the composed electrolyte preferably 3.5 or less, more preferably 3 It is as follows. If the degree of swelling is too large, cycle characteristics and rate characteristics deteriorate. This is considered to be because the binder swells, and the binding force gradually decreases to separate the active material from the current collector, or the swollen binder covers the current collector and hinders the movement of electrons. .
  • the degree of swelling is measured by the following method. First, a cast film of a binder is prepared by a conventional method, and its weight is measured. Then, the film is immersed in the electrolytic solution at 60 ° C. The immersed film is pulled up after 72 hours, and the electrolyte attached to the film surface is wiped off with a towel paper, and the weight of the film is measured immediately. The degree of swelling is obtained as a value of (mass after immersion) (mass before immersion). Can be
  • the method for producing the binder is not particularly limited, but can be preferably obtained by multistage polymerization of the ethylenically unsaturated monomer (A) and the ethylenically unsaturated monomer (B).
  • the multi-stage polymerization means that a part of the monomer is first polymerized, and subsequently, monomers having different types and / or mixing ratios are added and polymerized.
  • “continuously” polymerization means that the next-stage polymerization is performed in a state where the monomer remains in the previous polymerization step, that is, when the polymerization conversion does not reach 100%.
  • the binder of the present invention comprises at least one type of ethylenically unsaturated monomer, and a polymer obtained by polymerizing the monomer (a component) is soluble in NMP; and at least one type of ethylenically unsaturated monomer.
  • EC: DEC 1: 2 (volume ratio at 20 ° C) is obtained by multi-stage polymerization of monomer (b) which is a polymer obtained by polymerizing monomer and insoluble in NMP.
  • Li i PF 6 in a mixture of EC and DEC It is made of a copolymer having a swelling degree of 4 or less in an electrolytic solution dissolved at a concentration of 1 liter.
  • the monomers used as the component a and the component b may each be one kind or a mixture of two or more kinds of monomers.
  • the ethylenically unsaturated monomer (B) is used as the component a as long as the polymer obtained by polymerizing the component a is soluble in NMP. May be included.
  • the component b may contain an ethylenically unsaturated monomer (A).
  • the copolymer obtained by copolymerizing the monomer mixture is soluble in NMP, it can be used as component a, and if it is insoluble, it can be used as component b.
  • the multi-stage polymerization is preferably performed in two or three stages, more preferably in three stages. If it is performed in four or more steps, the process becomes complicated and productivity may be reduced.
  • the polymerization is a multi-stage polymerization comprising a first polymerization step of polymerizing the component a and a second polymerization step of subsequently adding and polymerizing the component b.
  • the amount of the component a in the first polymerization step is preferably 15 to 80 parts by mass, more preferably 20 to 75 parts by mass, and still more preferably 25 to 70 parts by mass.
  • the amount of the component b in the second polymerization step is preferably from 20 to 85 parts by mass, more preferably from 25 to 80 parts by mass, and still more preferably from 30 to 75 parts by mass.
  • the total amount of the monomers is 100 parts by mass).
  • the polymerization conversion in the first polymerization step is preferably 60 to 97% by mass, more preferably 65 to 97% by mass, and further preferably 70 to 95% by mass. Further, the polymerization conversion rate based on the total amount of monomers in the second polymerization step is preferably 90% by mass or more, more preferably 95% by mass or more.
  • the polymerization is a multi-stage polymerization including a third polymerization step in which polymerization is performed by adding the component a.
  • the component a used in the first polymerization step and the component a used in the third polymerization step may be the same or different.
  • the amount of the component a in the first polymerization step is preferably 5 to 50 parts by mass, more preferably 5 to 45 parts by mass, and still more preferably 10 to 40 parts by mass; Ocular
  • the amount of the component b in the polymerization step is preferably 20 to 85 parts by mass, more preferably 25 to 80 parts by mass, and still more preferably 30 to 75 parts by mass;
  • the amount of the component a in the above is preferably 5 to 50 parts by mass, more preferably 5 to 45 parts by mass, and still more preferably 10 to 40 parts by mass (however, the total monomer amount is 10 to 40 parts by mass). 0 parts by mass).
  • the polymerization conversion based on the total amount of monomers added up to each step is preferably 60 to 97% by mass, more preferably 65 to 97% by mass. %, More preferably 70 to 95% by mass. Further, the polymerization conversion rate based on the total amount of monomers in the third polymerization step is preferably 90% by mass or more, and more preferably 95% by mass or more.
  • the binder obtained is excellent in binding properties, and the slurry obtained using the binder has a high degree of dispersion of the active material and the conductivity-imparting agent and has good coatability. It will be.
  • the polymerization method of the binder of the present invention is not particularly limited, and a known polymerization method such as an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method, or a solution polymerization method can be employed. Among them, the emulsion polymerization method is preferred.
  • the slurry composition for an electrode of a lithium ion secondary battery of the present invention contains the binder, an electrode active material, and an organic liquid medium.
  • the organic liquid medium is not particularly limited as long as it can dissolve or disperse the binder in the form of fine particles.
  • Specific examples include amides such as N-methylpyrrolidone, N, N-dimethylacetamide, and dimethylformamide. Among them, N-methylpyrrolidone is particularly preferred because of its good coatability on the current collector and good dispersibility of the binder.
  • the method for dissolving or dispersing the binder of the present invention in an organic liquid medium is not particularly limited.
  • a method of replacing water in the latex with a specific organic liquid substance may be mentioned.
  • the substitution method include a method in which an organic dispersion medium is added to latex, and then water in the dispersion medium is removed by a distillation method, a dispersion medium phase conversion method, or the like.
  • the amount of the organic liquid medium depends on the type of the binder, the active material described later, and the conductivity-imparting agent.
  • the slurry composition is adjusted to have a viscosity suitable for coating.
  • the concentration of the solid content of the binder, the active material, and the conductivity-imparting agent is preferably 50 to 90% by mass, more preferably 70 to 90% by mass.
  • the active material used in the slurry of the present invention is appropriately selected depending on the type of the electrode.
  • the slurry of the present invention can be used for both the positive electrode and the negative electrode, but is preferably used for the positive electrode.
  • the active material any material can be used as long as it is used for an ordinary lithium ion secondary battery.
  • the negative electrode active material examples include amorphous carbon, graphite, natural graphite, mesocarbon microbeads (MCMB), carbonaceous materials such as pitch-based carbon fibers, and conductive polymers such as polyacene.
  • the shape and size of the active material are not particularly limited, and those having a conductivity imparting agent adhered to the surface by a mechanical reforming method can be used.
  • the slurry of the present invention may contain another binder in addition to the binder of the present invention.
  • the viscosity and fluidity of the slurry and the binding properties and flexibility of the electrode obtained using the slurry can be adjusted in a wider range.
  • the ratio of the amount of the binder of the present invention to the amount of the other binder is not particularly limited, but is preferably 5 ::! To 1: 5, more preferably 3 ::! To 1: 3 by mass ratio.
  • the other binder examples include cellulosic polymers such as carboxymethyl senorelose, methylcellulose, and hydroxypropylcellulose, and ammonium salts and alkali metal salts thereof; ⁇ ,] 3_ Homopolymer of ethylenically unsaturated nitrile compound; copolymer of ⁇ , 3_ethylenically unsaturated nitrile compound and 1-olefin, ethylenically unsaturated carboxylic acid or ethylenically unsaturated carboxylic acid ester; acrylic acid 2 _Ethylhexyl methacrylic acid noacrylonitrile ⁇ ethylene dalicol dimethacrylate copolymer, Acryl rubber such as butyl acrylate Z acrylate Z trimethylolpropane trimethacrylate copolymer; acrylonitrile z butadiene rubber and its hydride; vinyl such as ethylene z butyl alcohol copolymer, bul alcohol
  • a conductivity imparting agent is added to the slurry of the present invention as needed.
  • the conductivity-imparting agent carbonaceous materials such as graphite, activated carbon, acetylene black, ketjen black, furnace black, graphite, carbon fiber, fullerenes, conductive polymers, and metal powders are used. Of these, acetylene black and furnace black are preferred.
  • the amount of the conductivity-imparting agent to be used is generally 0.5 to 20 parts by mass, preferably 1 to 10 parts by mass, per 100 parts by mass of the active material.
  • a viscosity modifier e.g., a viscosity modifier, a fluidizing agent and the like may be added.
  • the slurry of the present invention is produced by mixing the above components.
  • the mixing method and the mixing order are not particularly limited.
  • a slurry in which the active material and the conductivity-imparting agent are highly dispersed can be obtained regardless of the mixing method and the mixing order.
  • a mixer such as a ball mill, a sand mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, and a planetary mixer can be used.
  • an electrode layer containing the binder and the electrode active material is bound to a current collector.
  • the current collector is not particularly limited as long as it is made of a conductive material.
  • metals such as iron, copper, aluminum, nickel, and stainless steel can be mentioned.
  • the shape of the current collector is not particularly limited, but is preferably a sheet having a thickness of about 0.01 to 0.5 mm.
  • the electrode of the present invention is obtained by applying the slurry of the present invention to a current collector and drying the same to form an electrode containing a binder, an active material, and, if necessary, a conductivity-imparting agent.
  • the method of applying the slurry to the current collector is not particularly limited.
  • methods such as a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, and a brush coating method can be used.
  • the amount of the slurry to be applied is not particularly limited, but the thickness of the electrode layer formed after drying and removing the organic liquid medium and comprising an active material, a binder, and the like is usually 0.005 to 5 mm, preferably 0 to 5 mm. Amounts that are between 01 and 2 mm are common.
  • the drying method is not particularly limited, and examples thereof include drying with warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
  • the drying speed is adjusted so that the liquid medium can be removed as quickly as possible within a speed range where the electrode layer is not cracked due to stress concentration or the electrode layer does not peel off from the current collector.
  • the density of the active material of the electrode may be increased by pressing the dried current collector.
  • a pressing method a method such as a mold press or a roll press is used.
  • a lithium ion secondary battery of the present invention has the above-mentioned electrode for a lithium ion secondary battery.
  • the lithium ion secondary battery can be manufactured by using a component such as the above-mentioned electrode, electrolytic solution, and separator according to a conventional method.
  • a component such as the above-mentioned electrode, electrolytic solution, and separator according to a conventional method.
  • a specific manufacturing method for example, a negative electrode and a positive electrode are overlapped with a separator interposed therebetween, and this is rolled or folded according to the shape of the battery, placed in a battery container, and an electrolytic solution is injected into the battery container. Seal it.
  • an overcurrent protection element such as an expanded metal, a fuse or a PTC element, and a lead plate can be inserted to prevent the internal pressure of the battery from rising and preventing overcharging and discharging.
  • the shape of the battery may be any of a coin type, a button type, a sheet type, a cylindrical type, a square type, a flat type, and the like.
  • the electrolyte may be in a liquid or gel form as long as it is used for a normal lithium ion secondary battery, and an electrolyte that functions as a battery according to the type of the negative electrode active material and the positive electrode active material may be selected.
  • any of known lithium salts can be used as the electrolyte.
  • the medium in which these electrolytes are dissolved is not particularly limited.
  • Specific examples include carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, and dimethyl carbonate; lactones such as y-butyrolactone; trimethoxymethane, 1,2-dimethoxetane And ethers such as dimethyl ether, 2-ethylethoxyfuran, tetrahydrofuran, and 2-methyltetrahydrofuran; sulfoxides such as dimethyl sulfoxide; and among them, carbonates are chemically, electrochemically and thermally stable. It is preferable because it is excellent.
  • the binder of the present invention has a low degree of swelling with respect to carbonates, the binding force gradually decreases due to the swelling of the binder, and the active material is peeled off from the current collector, or the binder covers the current collector, and the binder covers the current collector. It does not hinder the movement of the child.
  • the polymerization conversion rate during the polymerization reaction was determined by calculating from the mass of the solid content obtained by drying the aqueous dispersion of the polymer.
  • the polymerization conversion rate represents the polymerization conversion rate with respect to the total amount of the monomers added up to that stage.
  • the degree of swelling of the polymer used as the binder in the electrolytic solution was determined as follows.
  • a solution prepared by dissolving or dispersing 0.2 g of the polymer in 10 ml of ⁇ ⁇ ⁇ -methylpyrrolidone ( ⁇ ) was cast on a polytetrafluoroethylene sheet, and dried to obtain a cast film. After 4 cm 2 of the cast film was cut out and weighed, it was immersed in an electrolytic solution at 60 ° C. Pull up the soaked film after 72 hours and use towel paper
  • the weight of the film was measured immediately after wiping the electrolytic solution adhered to the film surface with the above, and the value of (mass after immersion) / (mass before immersion) was defined as the degree of swelling.
  • the slurry for the positive electrode was uniformly applied to one side of an aluminum foil (thickness 20 / zm) by a doctor blade method, and dried at 120 ° C for 45 minutes by a drier. Furthermore, after drying under reduced pressure at 0.6 kPa and 120 ° C for 2 hours using a vacuum dryer, it was compressed by a biaxial roll press so that the electrode density became 3.3 gZ cm 3 to obtain a positive electrode. .
  • the slurry for the negative electrode was uniformly applied to one surface of a copper foil (thickness 18 / m) by a doctor blade method, and dried under the same conditions as for the positive electrode.
  • the negative electrode was obtained by compression using a biaxial roll press so that the electrode density became 1.4 g / cm 3 .
  • the electrode (positive electrode or negative electrode) obtained by the above method was cut into a rectangle having a width of 2.5 cm and a length of 10 cm, and was fixed with the electrode layer face up.
  • a cellophane tape was attached to the surface of the electrode layer, the electrode was fixed, and the stress (N / cm) when the tape was peeled in the 180 ° direction at a speed of 5 OmmZ was measured 10 times, and the average value was calculated. This was defined as the peel strength. The larger the value, the higher the binding strength, indicating that the active material is less likely to be separated from the current collector.
  • the electrode obtained by the method described in (4) above was cut into a rectangle having a width of 3 cm and a length of 9 cm to obtain a test piece. Place the test piece on the desk, center in the longitudinal direction (4.5 cm from the end), current collector side
  • the positive electrode produced by the method described in (4) above was cut into a circle having a diameter of 15 mm.
  • a separator made of a 18 mm-diameter and 25 ⁇ m-thick circular polypropylene porous membrane, lithium metal of the negative electrode, and expanded metal were laminated in this order on the electrode layer side of the positive electrode, and a polypropylene packing was installed.
  • This was housed in a stainless steel coin-shaped outer container (diameter 20 mm, height 1.8 mm, stainless steel thickness 0.25 mm). Inject the electrolyte into this container so that no air remains, cover the outer container with a 0.2 mm thick stainless steel cap via polypropylene packing, and fix the battery can.
  • a coin-type battery (for positive electrode evaluation) with a diameter of 20 mm and a thickness of about 2 mm was manufactured. The same electrolyte used for the measurement of the degree of swelling was used.
  • the negative electrode produced by the method described in the above (4) was cut into a circle having a diameter of 15 mm.
  • a separator, a positive electrode metal lithium, and an expanded metal are sequentially stacked on the negative electrode layer surface side, and the layers are stored in a coin-type outer container.
  • the coin-type battery (For negative electrode evaluation) was produced.
  • the same separator, coin-type outer container, and electrolyte solution as those used for the evaluation of the positive electrode were used.
  • the unit is niAhZg (per active material).
  • the ratio of the discharge capacity at the 50th cycle to the discharge capacity at the third cycle was calculated as a percentage. The larger the value, the smaller the capacity decrease, indicating that the charge / discharge cycle characteristics are excellent.
  • the discharge capacity at the third cycle at each constant current was measured in the same manner as the measurement of the battery capacity, except that the measurement conditions were changed to a constant current of 1 C.
  • the ratio of the discharge capacity at 1 C to the discharge capacity at 0.1 C in the third cycle was calculated as a percentage. The larger the value, the faster the charge / discharge is possible and the better the charge / discharge rate characteristics.
  • NMP N-methylpyrrolidone
  • a planetary mixer was charged with 100 parts of lithium cobaltate as an active material and 3 parts of acetylene black (Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductivity-imparting agent, and NMP was added so that the solid content concentration was 90%. Then, the mixture was stirred and mixed for 20 minutes. Thereafter, 1 part of the above-mentioned NMP solution of the polymer A-1 was added on a solid basis and kneaded at a solid concentration of 82% for 90 minutes, and NMP was further added to adjust the slurry viscosity. A positive electrode was manufactured using this slurry. Table 1 shows the measurement results of the composition and the degree of swelling of the polymer A-1, and the characteristics of the obtained electrode and battery.
  • the first-stage polymerization was started in the same manner as in Example 1 except that the amount of acrylonitrile in the first stage was changed to 40 parts.
  • a mixture of 58 parts of 2-ethylhexyl acrylate and 2 parts of methacrylic acid was added as a second-stage monomer to give a polymerization conversion of 98%. %.
  • the polymerization was stopped by cooling, and a latex was obtained by two-stage polymerization. Thereafter, an NMP dispersion of the polymer A-2 having a solid content of 8% by mass was obtained in the same manner as in Example 1.
  • a positive electrode was produced using this polymer A-2.
  • Table 1 shows the measurement results of the composition and the degree of swelling of the polymer A-2, and the characteristics of the electrode and the battery obtained using the polymer.
  • a polymer A-6 was obtained in the same manner as in Example 2, except that the formulations shown in Table 1 were used.
  • Table 1 shows the composition and the degree of swelling of the obtained polymer, and the results of measuring the characteristics of the electrode and the battery produced in the same manner as in Example 1 using the polymer.
  • NMP dispersion of polymer A-7 was obtained in the same manner as in Example 1 except that the formulation shown in Table 1 was used.
  • Polymer B-1 was obtained in the same manner as in Example 1, except that the polymerization conversion in each polymerization step was changed as shown in Table 1.
  • the obtained polymer was dissolved in the electrolytic solution (the degree of swelling was infinite).
  • Table 1 shows the composition and degree of swelling of the obtained polymer, and the results of measuring the characteristics of the electrode and the battery produced in the same manner as in Example 1 using the polymer.
  • a polymer B-3 was obtained in the same manner as in Comparative Example 2, except that the formulation shown in Table 1 was used.
  • the composition ratio of the NMP soluble component (A) / insoluble component (B) in the obtained polymer was 12 Z88.
  • Second stage polymerization Reduction rate (%) 90 98 85 80 85 97 90 50
  • a polymer C was obtained in the same manner as in Comparative Example 2, except that the formulations shown in Table 2 were used. Table 2 shows the composition and swelling degree of the obtained polymer.
  • a polymer D was obtained in the same manner as in Comparative Example 4, except that 97 parts of acrylonitrile and 3 parts of acrylic acid were used instead of 100 parts of atarilonitrile.
  • Table 2 shows the composition and swelling degree of the obtained polymer.
  • Polymer E was obtained in the same manner as in Production Example 2 except that the amount of acrylonitrile was 90 parts, and 10 parts of methyl acrylate was used instead of 3 parts of acrylic acid. Table 2 shows the composition and swelling degree of the obtained polymer.
  • An electrode was produced in the same manner as in Example 8, except that the type and amount of the polymer used as the binder were as shown in Table 3.
  • the polymer F polyvinylidene fluoride # 1100 (manufactured by Kureha Chemical Co., Ltd.) was used.
  • Table 3 shows the results of measurement of the ratio of the NMP-soluble component / NMP-insoluble component in all the binders used, and the characteristics of the obtained electrodes and batteries.
  • the electrode manufactured using the binder of the present invention exhibited excellent binding performance and high flexibility whether used alone or in combination with other binders. Further, a lithium ion secondary battery having this electrode had a high battery capacity, good cycle characteristics, and excellent rate characteristics (Example 11 1). On the other hand, when a binder that dissolves in the electrolyte is used, the flexibility of the electrode is high, but the resistance to the electrolyte is inferior when a battery is made. Example 1 2).
  • the binder for a lithium ion secondary battery electrode of the present invention When the binder for a lithium ion secondary battery electrode of the present invention is used, an electrode having good binding properties and a flexible electrode layer can be easily obtained. Since this electrode has excellent electrolytic solution resistance, a lithium ion secondary battery provided with the electrode has high charge / discharge capacity, good cycle characteristics, and excellent rate characteristics.

Abstract

単独重合して得られる重合体がN−メチルピロリドン(NMP)に可溶であるエチレン性不飽和単量体(A)の単位15~80質量%と、単独重合して得られる重合体がNMPに不溶であるエチレン性不飽和単量体(B)の単位20~85質量%とを有し、エチレンカーボネート(EC):ジエチルカーボネート(DEC)=1:2(20℃での容積比)の割合で、ECとDECとを混合してなる混合溶媒にLiPF6を1モル/リットルの濃度で溶解させてなる電解液に対する膨潤度が4以下の共重合体からなるリチウムイオン二次電池電極用バインダーにより、結着性が良好で、かつ柔軟な電極層を有する電極を工業的有利に得ることができるリチウムイオン二次電池電極用バインダーを提供する。

Description

明 細 書 リチウムィオン二次電池電極用バインダ一 技術分野
本発明は、 リチウムイオン二次電池電極用バインダ一、 該バインダーを含有するリ チウムイオン二次電池電極用スラリー組成物、 リチウムイオン二次電池用電極、 該電 極の製造方法および該電極を有するリチウムイオン二次電池に関する。 背景技術
近年普及が著しいノート型パソコンや携帯電話、 P D Aなどの携帯端末の電源には、 リチウムイオン二次電池などの二次電池が多用されている。 最近では、 携帯端末の使 用時間の延長や充電時間の短縮などの要望が高まり、 これに伴い電池の高性能化、 特 に高容量化と充放電速度 (レート特性) の向上が、 強く求められている。
リチウムイオン二次電池は、 正極と負極とをセパレーターを介して配置し、 電解液 とともに容器内に収納した構造を有する。電極(正極および負極) は、電極活物質(以 下、 単に 「活物質」 ということがある。) と、 必要に応じて導電付与剤などとをリチ ゥムイオン二次電池電極用バインダー(以下、単に「バインダー」 ということがある。) によりアルミニウムや銅などの集電体に結着させたものである。 電極は、 通常、 バイ ンダーを水や N—メチルピロリ ドン(NM P )などの液状媒体に溶解または分散させ、 これに活物質などを混合して得られるリチウムイオン二次電池電極用スラリー組成 物 (以下、 単に 「スラリー」 ということがある。) を集電体に塗布して、 該液状媒体 を乾燥などにより除去し、 電極層として結着させて、 形成される。
電池容量は、 活物質の充填量に強く影響される。 一方、 レート特性は電子の移動の 容易さに影響され、 レート特性の向上にはカーボンなどの導電付与剤の増量が効果的 である。 電池という限られた空間内で活物質と導電付与剤とを増量するには、 バイン ダー量を低減する必要がある。 し力 しながら、 バインダー量を少なくすると電極層の 結着性が損なわれるという問題があった。
結着性に優れたバインダーとして、 アクリル酸またはメタクリル酸エステル、 ァク リロ-卜リルおよび酸成分を有するビニルモノマーからなる共重合体が知られてい る(特開平 8— 2 8 7 9 1 5号公報参照)。この共重合体は水や NM Pに不溶なため、 スラリーを製造する際には、 増粘剤を併用し、 集電体に塗布するのに好適な粘度に調 整して用いられる。
ところが、 スラリーの固形分濃度が通常 7 0 %以上と高いため、 スラリーの混合が 不十分になったり各成分が凝集したりして、 スラリー中の活物質や導電付与剤の分散 状態が不均一になる問題があった。 不均一なスラリーを用いて電極を作成すると、 ィ オン伝導性が悪化して電池容量が低下したり、活物質の結着性が低下して集電体から 活物質が剥離したりするとレ、う問題が生じる。
活物質や導電付与剤が高度に分散したスラリーを得る方法として、活物質とバイン ダーを混練して得られるペースト Aと、導電付与剤と増粘剤とを混練して得られるぺ ースト Bとを混合してスラリーを得る方法が提案されている (特開 2 0 0 3 - 4 5 4 3 2号公報参照)。 し力 し、 この方法では工程が煩雑であり、 またペースト A、 Bお よびスラリーについてそれぞれに製造設備が必要になるなど、設備面での制約も大き 力 つた。
ポリフッ化ビニリデンゃポリアクリロ二トリノレなどの、 NM Pに可溶な重合体をバ インダ一として用いる方法も知られている。 し力、し、 これらのバインダーを用いて製 造した電極は柔軟性に欠けるため、 折る、 卷くなどして電池容器に収納する際に、 電 極層のひび割れや剥離が起こる場合があつた。 発明の開示
かかる状況のもとで、 本発明の目的は、 結着性が良好で、 かつ柔軟な電極層を有す る電極を工業的有利に得ることができるリチウムイオン二次電池電極用バインダー および該バインダーを含有するリチウムイオン二次電池電極用スラリー、 ならびにリ チウムイオン二次電池用電極、該電極の製造方法および該電極を有するリチウムィォ ン二次電池を提供することである。
本発明者らは上記課題を解決すべく鋭意検討の結果、単独重合して得られる重合体 が NM Pに可溶である単量体の単位と単独重合して得られる重合体が NM Pに不溶 である単量体の単位とを特定の割合で含有し、特定の電解液に対する膨潤度が低い共 重合体をバインダーとして用いると、 活物質や導電付与剤が高度に分散し、 かつ塗布 性が良好なスラリーが得られることを見出した。 さらに該スラリーを用いると、 柔軟 で結着性に優れる電極層を有する電極が得られることを見出した。 そして、 これらの 知見に基づいて本発明を完成するに至った。
かくして本発明によれば、 単独重合して得られる重合体が N—メチルピロリ ドン (NMP) に可溶であるエチレン性不飽和単量体 (A) の単位 1 5〜80質量%と、 単独重合して得られる重合体が NMPに不溶であるエチレン性不飽和単量体 (B) の 単位 20〜 85質量。 /0とを有し、
エチレンカーボネート (E C) :ジェチルカーボネート (DEC) = 1 : 2 (20°C での容積比) の割合で、 ECと DECとを混合してなる混合溶媒に L i PF6を 1モ ル リットルの濃度で溶解させてなる電解液に対する膨潤度が 4以下の共重合体か らなるリチウムィオン二次電池電極用バインダーが提供される。
また本発明によれば、 少なくとも一種のエチレン性不飽和単量体からなり、 それを 重合して得られる重合体が NMPに可溶である成分 (a成分) と、 少なくとも一種の エチレン性不飽和単量体からなり、それを重合して得られる重合体が NMPに不溶で ある成分 (b成分) とを多段重合して得られ、
EC : DEC= 1 : 2 (20°Cでの容積比) の割合で、 ECと DECとを混合して なる混合溶媒に L i PF6を 1モル/リットルの濃度で溶解させてなる電解液に対す る膨潤度が 4以下の共重合体からなるリチウムイオン二次電池電極用バインダ一が 提供される。
前記多段重合は、 前記 a成分を重合する一段目の重合工程と、 引き続いて前記 b成 分を添加して重合する二段目の重合工程とを有するものであることが好ましい。 さら に、 前記一段目の重合工程が、 a成分 15〜 80質量部を重合転化率が 60〜 97質 量%に達するまで重合する工程であり、 前記二段目の重合工程が、 b成分 20〜85 質量部 (ただし、 全単量体量は 100質量部である) を添加して全単量体量に対する 重合転化率が 90質量%以上に達するまで重合する工程であることがより好ましい。 また前記多段重合は、 三段階の重合工程からなるものであることが好ましく、 前記 a成分の一部を添加して重合する一段目の重合工程と、 引き続いて前記 b成分を添加 して重合する二段目の重合工程と、 引き続いて a成分の残部を添加して重合する三段 目の重合工程とを有するものであることがより好ましい。 さらに、 前記一段目の重合 工程が、 a成分 5〜 5 0質量部を重合転化率が 6 0〜9 7質量%に達するまで重合す る工程であり、 前記二段目の重合工程が、 b成分 2 0〜8 5質量部を添カ卩してその段 階までに添加された単量体の総量に対する重合転化率が 6 0〜9 7質量%に達する まで重合する工程であり、前記三段目の重合工程が、 a成分 5〜 5 0質量部(ただし、 全単量体量は 1 0 0質量部である) を添加して全単量体量に対する重合転化率が 9 0 質量%以上に達するまで重合する工程であることが特に好ましい。
また本発明によれば、 上記のリチウムイオン二次電池電極用バインダーと、 電極活 物質と、 有機液状媒体とを、 含有してなるリチウムイオン二次電池電極用スラリー組 成物が提供される。
また本発明によれば、上記のリチウムイオン二次電池電極用スラリー組成物を集電 体に塗布し、 乾燥する、 リチウムイオン二次電池用電極の製造方法が提供される。 さらに本発明によれば、上記のリチウムイオン二次電池電極用バインダーと電極活 物質とを含有する電極層が集電体に結着してあるリチウムイオン二次電池用電極、お よび該電極を有するリチウムイオン二次電池が提供される。 発明を実施するための最良の形態
以下、 本発明を項分けして詳細に説明する。
( 1 ) リチウムイオン二次電池電極用バインダー
本発明のリチウムイオン二次電池電極用バインダーは、単独重合して得られる重合 体が N—メチルピロリ ドン (NM P ) に可溶であるエチレン性不飽和単量体 (A) の 単位 1 5〜8 0質量%と、 単独重合して得えられる重合体が NM Pに不溶であるェチ レン性不飽和単量体 (B ) の単位 2 0〜8 5質量%とを有し、
E C : D E C = 1 : 2 ( 2 0 °Cでの容積比) の割合で、 E Cと D E Cとを混合して なる混合溶媒に L i 6を1モル リットルの濃度で溶解させてなる電解液に対す る膨潤度が 4以下の共重合体からなるものである。
単独重合して得られる重合体が NM Pに可溶であるェチレン性不飽和単量体 ( A) としては、 アクリロニトリル、 メタクリロニトリルなどの a, j3 _エチレン性不飽和 二トリル化合物; スチレン、 α—メチノレスチレン、 ]3—メチノレスチレン、 ρ— t —ブチノレスチレン、 クロロスチレンなどの芳香族ビニル化合物;
アクリル酸メチル、 アクリル酸ェチル、 アクリル酸プロピル、 アクリル酸イソプロ ピル、 アクリル酸 n—ブチル、 アクリル酸イソブチル、 メタクリル酸メチル、 メタク リル酸ェチル、 メタクリル酸プロピル、 メタクリル酸ィソプロピル、 メタクリル酸 n ーブチル、 メタクリル酸ィソブチル、 クロトン酸メチル、 クロトン酸ェチル、 クロト ン酸プロピル、 クロトン酸ブチル、 クロトン酸イソブチルなどの非カルボニル性酸素 原子に結合するアルキル基の炭素数が 6以下のエチレン性不飽和カルボン酸エステ ノレ ;などが挙げられる。 中でも、 o , /3—エチレン性不飽和二トリル化合物ゃメタク リル酸メチルが好ましい。 これらの単量体は単独でも二種以上組み合わせて用いても 良レヽ。
単独重合して得られる重合体が NM Pに不溶であるエチレン性不飽和単量体 (B ) としては、 アクリル酸 2—ェチルへキシル、 アクリル酸イソォクチル、 アクリル酸ィ ソデシル、 アクリル酸ラウリル、 アクリル酸ステアリル、 アクリル酸トリデシル、 メ タクリル酸 2—ェチルへキシル、 メタクリル酸イソォクチル、 メタクリル酸イソデシ ノレ、 メタクリル酸ラウリル、 メタクリル酸トリデシル、 メタクリル酸ステアリル、 ク 口 トン酸 2—ェチルへキシルなどの非カルボニル性酸素原子に結合するアルキル基 の炭素数が 7以上のエチレン性不飽和カルボン酸エステル;
アタリル酸、 メタクリル酸、 クロトン酸、 イソクロトン酸などのェチレン性不飽和 モノカルボン酸;マレイン酸、 フマル酸、シトラコン酸、メサコン酸、 グルタコン酸、 ィタコン酸などのエチレン性不飽和ジカルボン酸;
1, 3—ブタジエン、 2—メチル一 1, 3 _ブタジエン (イソプレン)、 2、 3— ジメチル一 1 , 3—ブタジエン、 1, 3—ペンタジェンなどの共役ジェン;
エチレン、 プロピレン、 1—ブテンなどの 1—ォレフィン;などが挙げられる。 中 でも、 柔軟性に優れるバインダーを得る観点から、 非カルボニル性酸素原子に結合す るアルキル基の炭素数が 7以上のエチレン性不飽和カルボン酸エステルや共役ジェ ンが好ましく、非カルボニル性酸素原子に結合するアルキル基の炭素数が 7以上のェ チレン性不飽和カルボン酸エステルが特に好ましい。
エチレン性不飽和単量体 (A) の単位の量は、 全単量体単位の 1 5〜8 0質量%、 好ましくは 20〜 75質量0 /0、 より好ましくは 25〜 7◦質量0 /0である。
エチレン性不飽和単量体 (B) の単位の量は、 全単量体単位の 20〜85質量%、 好ましくは 25〜 80質量0 /0、 より好ましくは 30〜 75質量0 /0である。
エチレン性不飽和単量体 (A) とエチレン性不飽和単量体 (B) との共重合体とす ることで、 スラリーとしたときの良好な塗布性と、 該スラリーを用いて製造した電極 の柔軟性および結着性とを両立させることができる。
本発明のバインダーは、 EC : DEC= 1 : 2 (20°Cでの容積比) の割合で、 E
Cと D E Cとを混合してなる混合溶媒に L i P F 6を 1モル Zリ ッ トルの濃度で溶解 させてなる電解液に対する膨潤度が 4以下、 好ましくは 3. 5以下、 より好ましくは 3以下である。 膨潤度が大きすぎると、 サイクル特性やレート特性が悪化する。 これ は、 バインダーが膨潤することにより、 結着力が次第に低下して集電体から活物質が 剥離したり、膨潤したバインダ一が集電体を覆って電子の移動を妨げたりするためと 考えられる。
膨潤度は、 以下の方法で測定する。 まず常法によりバインダーのキャストフィルム を作成して質量を測定した後、 60°Cの前記電解液中に浸漬する。 浸漬したフィルム を 72時間後に引き上げ、 タオルペーパーでフィルム表面に付着した電解液を拭きと つてすぐに該フィルムの質量を測定し、 (浸漬後質量) (浸漬前質量) の値として 膨潤度が求められる。
上記のバインダーの製法は、 特に限定されないが、 好適には、 エチレン性不飽和単 量体 (A) とエチレン性不飽和単量体 (B) とを多段重合して得ることができる。 本発明において多段重合とは、 単量体の一部をまず重合し、 引き続いて種類および /または混合比の異なる単量体を添カ卩して重合することをいう。 また、 「引き続いて」 重合するとは、 前段の重合工程において単量体が残存した状態、 すなわち重合転化率 が 100%にならない時点で次段の重合を行うことをいう。
また本発明のバインダーは、 少なくとも一種のエチレン性不飽和単量体からなり、 それを重合して得られる重合体が NMPに可溶である成分 (a成分) と、 少なくとも 一種のエチレン性不飽和単量体からなり、それを重合して得られる重合体が NMPに 不溶である成分 (b成分) とを多段重合して得られ、 EC : DEC= 1 : 2 (20°C での容積比) の割合で、 ECと DECとを混合してなる混合溶媒に L i PF6を 1モ リットルの濃度で溶解させてなる電解液に対する膨潤度が 4以下の共重合体か らなるものである。
a成分および b成分として用いる単量体は、 それぞれ一種でも二種以上の単量体の 混合物でもよい。 二種以上の単量体の混合物を用いる場合、 a成分を重合して得られ る重合体が NM Pに可溶である範囲において、 a成分にはエチレン性不飽和単量体 ( B ) を含んでいてもよい。 また、 b成分を重合して得られる重合体が NM Pに不溶 である範囲において、 b成分にはエチレン性不飽和単量体(A)を含んでいてもよい。 すなわち、該単量体混合物を共重合して得られる共重合体が N M Pに可溶であれば a 成分として用いることができ、 不溶であれば b成分として用いることができる。 多段重合は、 二段階または三段階で行うことが好ましく、 三段階で行うことがより 好ましい。 四段階以上で行うと、 工程が煩雑になり生産性が低下するおそれがある。 二段階で重合を行う場合は、 前記 a成分を重合する一段目の重合工程と、 引き続い て前記 b成分を添加して重合する二段目の重合工程とを有する多段重合であること が好ましい。 前記一段目の重合工程における a成分の量は、 好ましくは 1 5〜8 0質 量部、より好ましくは 2 0〜 7 5質量部、さらに好ましくは 2 5〜 7 0質量部であり、 前記二段目の重合工程における b成分の量は、 好ましくは 2 0〜 8 5質量部、 より好 ましくは 2 5〜8 0質量部、 さらに好ましくは 3 0〜7 5質量部である (ただし、 全 単量体量は 1 0 0質量部である)。
前記一段目の重合工程における重合転化率は、 好ましくは 6 0〜 9 7質量%、 より 好ましくは 6 5〜9 7質量%、 さらに好ましくは 7 0〜9 5質量%である。 また、 二 段目の重合工程における全単量体量に対する重合転化率は、好ましくは 9 0質量%以 上、 より好ましくは 9 5質量%以上である。
三段階で重合を行う場合は、 前記 a成分を添加して重合する一段目の重合工程と、 引き続レ、て前記 b成分を添加して重合する二段目の重合工程と、 引き続いて前記 a成 分を添加して重合する三段目の重合工程とを有する多段重合であることが好ましい。 この場合、 一段目の重合工程に用いる a成分と三段目の重合工程に用レ、る a成分は、 同一であっても異なっていてもよい。
前記一段目の重合工程における a成分の量は、 好ましくは 5〜 5 0質量部、 より好 ましくは 5〜4 5質量部、 さらに好ましくは 1 0〜 4 0質量部であり ;前記二段目の 重合工程における b成分の量は、 好ましくは 2 0〜 8 5質量部、 より好ましくは 2 5 〜 8 0質量部、 さらに好ましくは 3 0〜 7 5質量部であり ;前記三段目の重合工程に おける a成分の量は、 好ましくは 5〜5 0質量部、 より好ましくは 5〜4 5質量部、 さらに好ましくは 1 0〜4 0質量部である (ただし、 全単量体量は 1 0 0質量部であ る)。
前記一段目および二段目の重合工程における、それぞれの段階までに添加された単 量体の総量に対する重合転化率は、 好ましくは 6 0〜 9 7質量%、 より好ましくは 6 5〜9 7質量%、 さらに好ましくは 7 0〜9 5質量%である。 また、 三段目の重合ェ 程における全単量体量に対する重合転化率は、 好ましくは 9 0質量%以上、 より好ま しくは 9 5質量%以上である。
多段で重合を行うことにより、得られるバインダ一は、結着性に優れたものとなり、 該バインダーを用いて得られるスラリーは、活物質や導電付与剤が高度に分散しかつ 塗布性が良好なものとなる。
本発明のバインダーの重合方法は、 特に限定されず、 乳化重合法、 懸濁重合法、 分 散重合法、 または溶液重合法などの公知の重合法が採用できる。 中でも、 乳化重合法 が好ましい。
( 2 ) リチウムイオン二次電池電極用スラリー組成物
本発明のリチウムイオン二次電池電極用スラリー組成物は、 前記のバインダーと、 電極活物質と、 有機液状媒体とを含有するものである。 有機液状媒体は、 前記のバイ ンダーを溶解または微粒子状に分散させることができるものであれば特に制限され ない。 具体的には、 N—メチルピロリ ドン、 N, N—ジメチルァセトアミ ド、 ジメチ ルホルムアミ ドなどのアミ ド類が挙げられる。 中でも N—メチルピロリ ドンが、 集電 体への塗布性やバインダ一の分散性が良好なので特に好ましい。
本発明のバインダーを有機液状媒体に溶解または分散させる方法は特に制限され なレ、。 例えば、 乳化重合法によりラテックス状で本発明のバインダーを製造した場合 は、 ラテックス中の水を特定の有機液状物質に置換する方法が挙げられる。 置換方法 としては、 ラテックスに有機分散媒を加えた後、 分散媒中の水分を蒸留法、 分散媒相 転換法などにより除去する方法などが挙げられる。
有機液状媒体の量は、バインダーや後述する活物質および導電付与剤の種類に応じ、 スラリ一組成物が塗工に好適な粘度になるように調整される。 バインダ一、活物質お よび導電付与剤を合わせた固形分の濃度は、 好ましくは 50〜 90質量%、 より好ま しくは 70〜90質量%である。
本発明のスラリーに用いられる活物質は、 電極の種類により適宜選択される。 本発 明のスラリーは、 正極、 負極のいずれにも使用することができるが、 正極に使用する のが好ましレ、。活物質は、通常のリチウムィオン二次電池に使用されるものであれば、 いずれであっても用いることができる。 正極活物質としては、 L i CoO2、 L i N i〇2、 L iMnO2、 L iMn2O4、 L i F e PO4、 L i F e VO4などのリチウ ム含有複合金属酸化物; T i S2、 T i S3、 非晶質 Mo S3などの遷移金属硫化物; Cu2V2O3、 非晶質 V2O— P 205、 Mo03、 v2o5、 v6o13などの遷移金属酸 化物が例示される。 さらに、 ポリアセチレン、 ポリ一 p—フエ二レンなどの導電性高 分子を用いることもできる。
また、 負極活物質としては、 例えば、 アモルファスカーボン、 グラフアイ ト、 天然 黒鉛、 メゾカーボンマイクロビーズ (MCMB)、 ピッチ系炭素繊維などの炭素質材 料、 ポリアセン等の導電性高分子などが挙げられる。 活物質の形状や大きさについて は特に制限はなく、機械的改質法により表面に導電付与剤を付着させたものも使用で さる。
本発明のスラリーは、 前記本発明のバインダーの他に、 他のバインダ一を含有して もよレ、。 他のバインダーと併用することにより、 スラリーの粘度や流動性、 および該 スラリーを用いて得られる電極の結着性や柔軟性をより広い範囲で調整することが できる。 本発明のバインダーと他のバインダーとの量の割合は特に限定されないが、 質量比で好ましくは 5 : :!〜 1 : 5、 より好ましくは 3 : :!〜 1 : 3である。
前記他のバインダーとしては、 カルボキシメチルセノレロース、 メチルセルロース、 ヒ ドロキシプロピルセルロースなどのセルロース系ポリマーおよびこれらのアンモ ニゥム塩ならびにアルカリ金属塩;ポリアクリロニトリル、 ポリメタクリロニトリル などの α, ]3 _エチレン性不飽和二トリル化合物の単独重合体; α, 3 _エチレン性 不飽和二トリル化合物と 1ーォレフイン、エチレン性不飽和カルボン酸またはェチレ ン性不飽和カルボン酸エステルとの共重合体;ァクリル酸 2 _ェチルへキシル メタ クリル酸ノアクリロニトリル Ζエチレンダリコールジメタクリレート共重合体、 ァク リル酸ブチル Zァクリル酸 Zトリメチロールプロパントリメタクリレート共重合体 などのァクリルゴム;ァクリロニトリル zブタジエンゴムおよびその水素化物;ェチ レン zビュルアルコール共重合体、 ビュルアルコールノ酢酸ビュル共重合体などのビ ニルアルコール系重合体;ポリフッ化ビニリデン、 ポリテトラフルォロエチレン、 ポ リペンタフルォロプロピレンのようなフッ素系ポリマーなどが挙げられる。
本発明のスラリーには、 必要に応じて導電付与剤が添加される。 導電付与剤として は、 グラフアイト、 活性炭、 アセチレンブラック、 ケッチェンブラック、 ファーネス ブラック、 黒鉛、 炭素繊維、 フラーレン類などの炭素質材料や、 導電性ポリマー、 金 属粉末などが用いられる。 中でも、 アセチレンブラック、 ファーネスブラックが好ま しい。 導電付与剤の使用量は、 活物質 1 0 0質量部あたり、 通常、 0 . 5〜2 0質量 部、 好ましくは 1〜1 0質量部である。
本発明のスラリーには、 その他必要に応じて粘度調整剤、 流動化剤などを添加して ちょい。
本発明のスラリーは、 前記各成分を混合して製造される。 混合方法および混合順序 は特に限定されない。 本発明のバインダーを用いることで、 混合方法や混合順序によ らず活物質や導電付与剤が高度に分散されたスラリーを得ることができる。混合には、 ボールミル、 サンドミル、 顔料分散機、 擂潰機、 超音波分散機、 ホモジナイザー、 プ ラネタリーミキサーなどの混合機を用いることができる。
( 3 ) リチウムイオン二次電池用電極
本発明のリチウムイオン二次電池用電極は、上記のバインダーと電極活物質とを含 有する電極層が集電体に結着してあるものである。
集電体は、 導電性材料からなるものであれば特に制限されない。 例えば、 鉄、 銅、 アルミニウム、 ニッケル、 ステンレス鋼などの金属が挙げられ、 特に正極にアルミ二 ゥムを、 負極に銅を用いた場合、 本発明のスラリーの効果が最もよく現れる。 集電体 の形状は特に制限されないが、 厚さ 0 . 0 0 1〜0 . 5 mm程度のシート状のものが 好ましい。
( 4 ) リチウムイオン二次電池用電極の製造方法
本発明の電極は、 集電体に、 本発明のスラリーを塗布し、 乾燥することにより、 バ ィンダ一および活物質、 さらに必要に応じ加えられた導電付与剤などを含有する電極
0 層を結着させることで製造することができる。
スラリ一の集電体への塗布方法は特に制限されない。例えば、 ドクターブレード法、 ディップ法、 リバースロール法、 ダイレク トロール法、 グラビア法、 ハケ塗り法など の方法が挙げられる。 塗布するスラリー量は特に制限されないが、 有機液状媒体を乾 燥して除去した後に形成される、 活物質、 バインダーなどからなる電極層の厚さが、 通常、 0. 005〜5mm、 好ましくは 0. 01〜 2 mmになる量が一般的である。 乾燥方法は特に制限されず、 例えば温風、 熱風、 低湿風による乾燥、 真空乾燥、 (遠) 赤外線や電子線などの照射による乾燥法が挙げられる。 乾燥速度は、 通常は応力集中 によって電極層に亀裂が入ったり、電極層が集電体から剥離したりしない程度の速度 範囲の中で、 できるだけ早く液状媒体が除去できるように調整する。 さらに、 乾燥後 の集電体をプレスすることにより電極の活物質の密度を高めてもよい。 プレス方法は、 金型プレスやロールプレスなどの方法が挙げられる。
(5) リチウムイオン二次電池
本発明のリチウムィオン二次電池は、上記のリチゥムイオン二次電池用電極を有す るものである。
リチウムイオン二次電池は、上記の電極や電解液、セパレーター等の部品を用いて、 常法に従って製造することができる。 具体的な製造方法としては、 例えば、 負極と正 極とをセパレーターを介して重ね合わせ、 これを電池形状に応じて巻く、 折るなどし て電池容器に入れ、 電池容器に電解液を注入して封口する。 また必要に応じてエキス パンドメタルや、ヒューズ、 PTC素子などの過電流防止素子、リード板などを入れ、 電池内部の圧力上昇、過充放電の防止をすることもできる。電池の形状は、コイン型、 ボタン型、 シート型、 円筒型、 角形、 扁平型などいずれであってもよい。
電解液は、 通常のリチウムイオン二次電池に用いられるものであれば、 液状でもゲ ル状でもよく、 負極活物質、 正極活物質の種類に応じて電池としての機能を発揮する ものを選択すればよレ、。
電解質としては、公知のリチウム塩がいずれも使用でき、 L i C 1 O4、 L i B F4、 L i PF6、 L i CF3C02、 L i As F6、 L i S b Fい L i B1 QC l 1Q、 L i A 1 C 14、 L i C l、 L i B r、 L i B (C2H5) 4、 L i CF3S03、 Li CH3S 03、 L i C4F9S3、 L i (CF3S02) 2N、 低級脂肪酸カルボン酸リチウムなど が挙げられる。
これらの電解質を溶解させる媒体 (電解質溶媒) は特に限定されるものではない。 具体例としてはプロピレンカーボネート、 エチレンカーボネート、 ブチレンカーボネ —ト、 ジメチルカーボネート、 ェチルメチルカーボネート、 ジェチルカーボネートな どのカーボネート類; y—ブチロラクトンなどのラク トン類; トリメ トキシメタン、 1 , 2—ジメ トキシェタン、 ジェチルエーテル、 2 _エトキシェタン、 テトラヒ ドロ フラン、 2—メチルテトラヒ ドロフランなどのエーテル類;ジメチルスルホキシドな どのスルホキシド類等が挙げられ、 中でもカーボネート類が化学的、 電気化学的およ び熱安定性に優れているので好ましい。
これらは単独または二種以上の混合溶媒として使用することができる。本発明のバ ィンダーはカーボネート類に対する膨潤度が低レ、ので、バインダ一の膨潤により結着 力が次第に低下して集電体から活物質が剥離したり、バインダーが集電体を覆って電 子の移動を妨げたりすることがない。 (実施例)
以下に、 実施例を挙げて本発明を説明するが、 本発明はこれに限定されるものでは ない。 なお、 本実施例における部おょび%は、 特に断りがない限り質量基準である。 実施例および比較例中の試験および評価は以下の方法で行った。
( 1 ) 重合転化率
重合反応時の重合転化率は、重合体の水分散液を乾燥して得られる固形分質量から 計算して求めた。 なお、 重合転化率は、 その段階までに添加された単量体の総量に対 する重合転化率を表す。
( 2 ) 対電解液膨潤度
バインダーとして用いた重合体の、電解液に対する膨潤度は以下のようにして求め た。
重合体 0 . 2 gを Ν—メチルピロリ ドン (ΝΜ Ρ ) 1 0ミリリットルに溶解または 分散させた液をポリテトラフルォロエチレン製シートに流延し、乾燥してキャストフ イルムを得た。このキャス トフイルム 4 c m2を切り取って質量を測定した後、 6 0 °C の電解液中に浸漬した。 浸漬したフィルムを 7 2時間後に引き上げ、 タオルペーパー
2 でフィルム表面に付着した電解液を拭きとってすぐに該フィルムの質量を測定し、 (浸漬後質量) / (浸漬前質量) の値を膨潤度とした。 電解液としては、 エチレン力 ーボネート (EC) :ジェチルカーボネート (DEC) =1 : 2 (20°Cでの容積比) の割合で、 ECと DECとを混合してなる混合溶媒に L i PF6を1モルZリットル の濃度で溶解させた溶液を用いた。
(3) 重合体の組成比
バインダーを構成する重合体中の、 N M Pに可溶な単独重合体を与えるエチレン性 不飽和単量体 (A) の単位 (NMP可溶成分) と NMPに不溶な単独重合体を与える エチレン性不飽和単量体 (B) の単位 (NMP不溶成分) との比率は、 ifi—および1 3C_NMR測定により求めた。
(4) ピール強度
<正極の製造 >
正極用スラリーをアルミニウム箔 (厚さ 20/zm) の片面にドクターブレード法に よって均一に塗布し、 120°Cで 45分間乾燥機により乾燥した。 さらに真空乾燥機 にて 0. 6 k P a、 120°Cで 2時間減圧乾燥した後、 二軸のロールプレスによって 電極密度が 3. 3 gZ cm3となるように圧縮して正極を得た。
<負極の製造 >
負極用スラリーを銅箔 (厚さ 18 / m) の片面にドクターブレード法によって均一 に塗布し、正極と同様の条件で乾燥した。二軸のロールプレスによって電極密度が 1. 4 g/ cm3となるように圧縮して負極を得た。
<ピール強度の測定 >
上記の方法で得た電極 (正極または負極) を幅 2. 5 c mX長さ 10 c mの矩形に 切り、 電極層面を上にして固定した。 電極層の表面にセロハンテープを貼り付け、 電 極を固定し、 テープを 5 OmmZ分の速度で 180° 方向に剥離したときの応力 (N /cm) を 10回測定し、 その平均値を求めてこれをピール強度とした。 この値が大 きいほど結着強度が高く、 活物質が集電体から剥離しにくいことを示す。
(5) 折り曲げ試験
上記 (4) に記す方法で得た電極を幅 3 c mX長さ 9 c mの矩形に切って試験片と した。 試験片を机上に置き、 長手方向の中央 (端部から 4. 5 cmの所)、 集電体側
3 の面に直径 1 mmのステンレス鋼丸棒を短手方向に横たえて設置した。 このステンレ ス鋼棒を中心にして試験片を 1 8 0 ° 折り曲げ、 折り曲げ部分外側の塗膜 (電極層) の状態を観察した。 1 0枚の試験片について試験し、 1 0枚のいずれにもひび割れま たは剥がれが全く生じていない場合を 「〇」、 1枚以上に 1箇所以上のひび割れまた は剥がれが生じた場合を 「X」 と評価した。 電極層にひび割れまたは剥がれが生じて いないことは、 電極が柔軟性に優れていることを示す。
( 6 ) 電池容量および充放電サイクル特性
<リチウムイオン二次電池 (正極評価用) の製造〉
正極評価では、 負極として金属リチウムを用いた。
上記 (4 ) に記す方法で製造した正極を直径 1 5 mmの円形に切り抜いた。 この正 極の電極層面側に直径 1 8 mm、厚さ 2 5 μ mの円形ポリプロピレン製多孔膜からな るセパレーター、 負極の金属リチウム、 エキスパンドメタルを順に積層し、 ポリプロ ピレン製パッキンが設置されたステンレス鋼製のコイン型外装容器 (直径 2 0 mm, 高さ 1 . 8 mm、 ステンレス鋼厚さ 0 . 2 5 mm) 中に、 これを収納した。 この容器 中に電解液を空気が残らないように注入し、 ポリプロピレン製パッキンを介して外装 容器に厚さ 0 . 2 mmのステンレス鋼のキャップをかぶせて固定し、 電池缶を封止し て、 直径 2 0 mm、 厚さ約 2 mmのコイン型電池 (正極評価用) を製造した。 電解液 は膨潤度の測定に使用したものと同じものを用いた。
<リチウムイオン電池 (負極評価用) の製造 >
負極評価では、 正極として金属リチウムを用いた。
上記 (4 ) に記す方法で製造した負極を直径 1 5 mmの円形に切り抜いた。 この負 極の電極層面側にセパレーター、 正極の金属リチウム、 エキスパンドメタルを順に積 層し、 これをコイン型外装容器中に収納し、 後の工程は正極評価用電池と同様にして コイン型電池 (負極評価用) を製造した。 なお、 セパレーター、 コイン型外装容器お よび電解液も、 正極評価用と同種のものを用いた。
<電池容量および充放電サイクル特性の測定 >
上記の方法で製造したコイン型電池を用いて、 正極の評価においては 3 Vから 4 . 2 Vまで、 負極の評価においては 0 Vから 1 . 2 Vまで、 2 3 °Cで 0 . 1 Cの定電流 法によつて充放電を繰り返した。 3サイクノレ目および 5 0サイクル目の放電容量を測
4 定し、 3サイクル目の放電容量を電池容量とした。単位は niAhZg (活物質当たり) である。
また、 3サイクル目の放電容量に対する 50サイクル目の放電容量の割合を百分率 で算出した。 この値が大きいほど容量減が少なく、 充放電サイクル特性に優れている ことを示す。
(8) 充放電レート特性
測定条件を、 定電流量を 1 Cに変更した他は、 電池容量の測定と同様に各定電流量 における 3サイクル目の放電容量を測定した。 3サイクル目における 0. 1 Cでの放 電容量に対する 1 Cでの放電容量の割合を百分率で算出した。 この値が大きいほど、 高速充放電が可能であり、 充放電レート特性に優れていることを示す。
(実施例 1 )
撹拌機付きのォートクレーブに、ィオン交換水 400部、アクリロニトリル 26部、 ドデシルベンゼンスルホン酸ナトリゥム 5部および過硫酸力リゥム 3部を入れ、十分 に撹拌した後、 60°Cに加温して一段目の重合を開始した。 重合転化率が 85%に到 達した時点で、二段目の単量体として 2—ェチルへキシルァクリレート 48部を添加 して反応を継続した。 二段目の重合転化率が 90 %に到達した時点で、 三段目の単量 体としてァクリロトリノレ 26部を添加し、重合転化率が 99%になった時点で冷却し て重合を停止した。以上のように三段重合で得られたラテックスに水酸化リチウムを 加え、 pHを 7に調整した。 次いで、 ラテックスの総質量の 3倍量の N—メチルピロ リ ドン (NMP) を加え、 エバポレーターで水分を蒸発させ、 固形分濃度が 8%の重 合体 A— 1の NMP分散液を得た。
プラネタリーミキサーに活物質としてコバルト酸リチウム 100部、導電付与剤と してアセチレンブラック (デンカブラック、 電気化学工業社製) 3部を仕込み、 固形 分濃度が 90%となるように NMPを添カ卩して、 20分撹拌、 混合した。 その後、 上 記の重合体 A— 1の NMP溶液を固形分基準で 1部加え、 固形分濃度 82%で 90分 混練した後、 さらに NMPを加えスラリー粘度を調整した。 このスラリーを用いて正 極電極を作製した。 重合体 A— 1の組成および膨潤度、 ならびに得られた電極および 電池の特性を測定した結果を表 1に示す。
(実施例 2)
5 一段目のァクリロニトリルの量を 4 0部とした他は実施例 1と同様にして一段目 の重合を開始した。 重合転化率が 9 0 %に到達した時点で、 二段目の単量体として 2 一ェチルへキシルァクリレート 5 8部とメタクリル酸 2部の混合物を添加し、重合転 化率が 9 8 %になった時点で冷却して重合を停止し、 二段重合でラテックスを得た。 以後は実施例 1と同様にして固形分濃度が 8質量%の重合体 A— 2の NM P分散液 を得た。 この重合体 A— 2を用いて正極電極を作製した。 重合体 A— 2の組成および 膨潤度、 ならびに該重合体を用いて得られた電極および電池の特性を測定した結果を 表 1に示す。
(実施例 3〜 5 )
表 1に示す処方とした他は、 実施例 1と同様にして重合体 A— 3〜A— 5を得た。 得られた重合体の組成および膨潤度、 ならびに該重合体を用いて実施例 1と同様にし て製造した電極および電池の特性を測定した結果を表 1に示す。
(実施例 6 )
表 1に示す処方とした他は、 実施例 2と同様にして重合体 A— 6を得た。 得られた 重合体の組成および膨潤度、 ならびに該重合体を用いて実施例 1と同様にして製造し た電極および電池の特性を測定した結果を表 1に示す。
(実施例 7 )
表 1に示す処方とした他は、実施例 1と同様にして重合体 A— 7の NM P分散液を 得た。
プラネタリーミキサーに上記の重合体 A— 7の NM P溶液を固形分基準で 1 . 3部、 活物質としてメゾカーボンマイク口ビーズを 9 6部仕込み、 固形分濃度が 6 5 %とな るように NM Pを添カ卩して、 撹拌、 混合した。 このスラリーを用いて負極電極を作製 した。 重合体 A— 7の組成おょび膨潤度、 ならびに該重合体を用いて得られた電極お よび電池の特性を測定した結果を表 1に示す。
(比較例 1 )
各重合段階での重合転化率を表 1に示すように変えた他は、実施例 1と同様にして 重合体 B— 1を得た。得られた重合体は電解液に溶解した(膨潤度は無限大であった)。 得られた重合体の組成および膨潤度、 ならびに該重合体を用いて実施例 1と同様にし て製造した電極および電池の特性を測定した結果を表 1に示す。
6 (比較例 2 )
撹拌機付きのオートクレープに、イオン交換水 4 0 0部、アクリロニトリル 4 0部、 2 _ェチルへキシルァクリ レート 5 8部、 メタクリル酸 2部、 ドデシルベンゼンスル ホン酸ナトリウム 5部および過硫酸カリウム 3部を入れ、 十分に撹拌した後、 6 0 °C に加温して重合を開始した。重合転化率が 9 6 %になった時点で冷却して重合を停止 し、一括重合でラテツクスを得た。以後は実施例 1と同様にして重合体 B - 2を得た。 得られた重合体は電解液に溶解した (膨潤度は無限大であった)。 得られた重合体の 組成および膨潤度、 ならびに該重合体を用いて実施例 1と同様にして製造した電極お よび電池の特性を測定した結果を表 1に示す。
(比較例 3 )
表 1に示す処方とした他は、 比較例 2と同様にして重合体 B - 3を得た。 得られた 重合体の NM P可溶成分 (A) /不溶成分 (B ) の組成比は 1 2 Z 8 8であった。 こ の重合体 B—3を用いて、 実施例 1と同様にして正極電極の作製を試みたが、 スラリ 一の流動性が悪く、 またプレス時に塗膜が集電体から剥がれたため電極の製造ができ な力つた。
(比較例 4 )
撹拌機付きのオートクレープに、 イオン交換水 4 0 0部、 部分ケン化ポリビニルァ ノレコーノレ 0 . 3部、 メチルセルロース 0 . 2部、 ァゾビスイソブチ口-トリルを 0 . 2部、 ァクリロ二トリル 1 0 0部を仕込み、 8 0 °Cで 8時間反応させてァクリロニト リルの単独重合体 B— 4を得た。 得られた重合体の組成および膨潤度、 ならびに該重 合体を用いて実施例 1と同様にして製造した電極および電池の特性を測定した結果 を表 1に示す。
比お例
1 2 3 4 5 6 7 1 2 3 4 バインダー A— 1 A— 2 A— 3 A— 4 A— 5 A— 6 A— 7 B— 1 B— 2 B— 3 B— 4 一段目重合成分(部) .
2—ェチルへキシルァクリレー卜 58 83 ァクリロ二卜リル 26 40 20 16 25 26 40 12 100 メタクリル 2 5 メタクリル酸メチル 20 40
一段目重合転化率(%) 85 90 70 81 72 88 85 55 96 98 97 二段目重合成分 (部)
2—ェチルへキシルァクリレート 8 58 58 68 60 48
ドデシルァクリレート 60
ブタジエン 55
メタクリル酸 2 2
二段目重合 ¾化率(%) 90 98 85 80 85 97 90 50
三段目重合成分(部)
アクリロニトリル 26 20 16 20 20 26
三段目重合転化率 (%) 99 97 95 97 96 98
重合体の組成比 (NMP可溶成分/不溶成分) 52/48 40/60 40/60 32/68 40/60 40/60 45/55 52/48 40/60 12/88 100/0 対鼋解液膨潤度 1.7 1.8 2 1.8 2.2 2 1.6 溶解 2.8 1.3 特性
電極種 正極 正極 正極 正極 正極 正極 負極 正極 正極 製造不可 正極 パインダ一使用量 (部) 1 1 1 1 1 1 1.3 1 1 1.5 ピール強度(N/cm) 0.09 0.10 0.10 0.08 0.08 0.08 0.10 0.08 0.10 0.10 折り曲げ試験 O o 〇 O 〇 O o O O
電池容量(mAh/g) 145 147 145 146 142 145 345 138 127 138 充放電サイクル特性 (W) 69 66 63 65 65 68 75 39 40 38 充放電レート特性 (%) 49 42 43 46 45 48 65 28 25 28
(製造例 1 )
表 2に示す処方とした他は、 比較例 2と同様にして重合体 Cを得た。 得られた重合 体の組成および膨潤度を表 2に示す。
(製造例 2 )
アタリロニトリノレ 1 0 0部に代えて、 アクリロニトリル 9 7部とァクリル酸 3部を 用いた他は、 比較例 4と同様にして重合体 Dを得た。 得られた重合体の組成および膨 潤度を表 2に示す。
(製造例 3 )
ァクリロ二トリルの量を 9 0部とし、 ァクリル酸 3部に代えてァクリル酸メチル 1 0部を用いた他は、 製造例 2と同様にして重合体 Eを得た。 得られた重合体の組成お よび膨潤度を表 2に示す。
8 表 2
Figure imgf000020_0001
(実施例 8)
プラネタリーミキサーに活物質としてコバルト酸リチウム 1 00部、導電付与剤と してアセチレンブラック (電気化学工業社製) 3部を仕込み、 固形分濃度が 90%と なるように NMPを添加して、 20分撹拌、 混合した。 その後、 実施例 1で得た重合 体 A— 1の NMP分散液を固形分基準で 0. 5部と表 2に示す組成、 膨潤度の重合体 Cの NMP分散液を固形分基準で 0. 5部加え、 固形分濃度 82%で 90分混練した 後、 さらに NMPを加えスラリー粘度を調整した。 このスラリーを用いて正極電極を 作製した。 用いた全バインダー中の NMP可溶成分 ZNMP不溶成分の割合、 ならび に得られた電極および電池の特性を測定した結果を表 3に示す。
(実施例 9〜: I 1 , 比較例 5, 6)
バインダーとして用いる重合体の種類および量を表 3に示すものとした他は、実施 例 8と同様にして電極を作製した。 なお、 重合体 Fとしては、 ポリフッ化ビニリデン # 1 1 00 (呉羽化学社製) を用いた。 用いた全バインダー中の NMP可溶成分/ N MP不溶成分の割合、ならびに得られた電極および電池の特 14を測定した結果を表 3 に示す。
9 表 3
Figure imgf000021_0001
本発明のバインダーを用いて製造された電極は、単独で用いても他のバインダーと 併用しても結着性能が優れ、 かつ高い柔軟性を示した。 また、 この電極を有するリチ ゥムイオン二次電池は、 高い電池容量と良好なサイクル特性を有し、 かつレート特'性 にも優れるものであった (実施例 1 1 1 )。 一方、 電解液に溶解するバインダーを 用いた場合は、電極の柔軟性は高いが電池を作成した場合に電解液に対する耐性が劣 るため、 充放電サイクル特性ゃ充放電レート特性が低下した (比較例 1 2 )。
また、 NM P不溶成分が多すぎるバインダーを用いると、 均一なスラリーを得るこ とが困難であるため、 電極の製造ができなかった (比較例 3 )。 反面、 NM P可溶成 分が多すぎるバインダーを用いると、 得られる電極は柔軟性に劣るため、 電極層にひ び割れ、 剥がれが生じる場合があり、 電池を作成した場合に充放電サイクル特性ゃ充 放電レート特性が低下した (比較例 4 )。 また NM P可溶成分が多すぎるバインダー と NM P不溶成分が多すぎるバインダ一とを併用した場合でも、均一なスラリ を得 ることが困難なために結着力が劣り、 得られる電池の性能も低いものであった (比較 例 5 6 )。
本発明のいくつかの実施態様について、 上記に実施例として記載したが、 上記実施 例を変形した態様についても、本発明の要旨および思想から実質的に離れなレ、範囲に おいて実施可能であることは、 当業者にとって明らかであり、 そのような変形した態 様は、 本発明の範囲に含まれる。 また、 上記比較例は、 あくまで、 上記実施例と比較 することにより、上記実施例が優れた態様であることを示すために記載したものであ る。 従って、 上記比較例の内容においても、 本発明の目的を達成することができる場 合がある。
産業上の利用可能性
本発明のリチウムイオン二次電池電極用バインダーを用いると、 結着性が良好で、 かつ柔軟な電極層を有する電極を容易に得ることができる。 この電極は耐電解液性に 優れるので、 該電極を備えたリチウムイオン二次電池は、 高い充放電容量と良好なサ ィクル特性を有し、 かつレート特性にも優れる。
2

Claims

請 求 の 範 囲
1. 単独重合して得られる重合体が N—メチルピロリ ドン (NMP) に可溶であるェ チレン性不飽和単量体 (A) の単位 1 5〜80質量%と、
単独重合して得られる重合体が NMPに不溶であるエチレン性不飽和単量体 (B) の単位 20-85質量0 /0とを有し、
エチレンカーボネート (E C) :ジェチルカーボネート (DEC) = 1 : 2 (20°C での容積比) の割合で、 ECと DECとを混合してなる混合溶媒に L i PF6を 1モ ル リットルの濃度で溶解させてなる電解液に対する膨潤度が 4以下の共重合体か らなるリチウムイオン二次電池電極用バインダー。
2. 少なくとも一種のエチレン性不飽和単量体からなり、 それを重合して得られる重 合体が N_メチルピロリ ドン (NMP) に可溶である成分 (a成分) と、
少なくとも一種のエチレン性不飽和単量体からなり、それを重合して得られる重合 体が NMPに不溶である成分 (b成分) とを多段重合して得られ、
エチレンカーボネート (E C):ジェチルカーボネート (DE C) = 1 : 2 (20°C での容積比) の割合で、 ECと DECとを混合してなる混合溶媒に L i PF6を 1モ ル リットルの濃度で溶解させてなる電解液に対する膨潤度が 4以下の共重合体か らなるリチウムイオン二次電池電極用バインダー。
3. 前記多段重合が、 前記 a成分を重合する一段目の重合工程と、 引き続いて前記 b 成分を添加して重合する二段目の重合工程とを有するものである請求の範囲第 2項 に記載のリチウムイオン二次電池電極用バインダー。
4. 前記一段目の重合工程が、 a成分 15〜80質量部を重合転化率が 60〜97質 量%に達するまで重合する工程であり、 前記二段目の重合工程が、 b成分 20〜85 質量部 (ただし、 全単量体量は 100質量部である) を添加して全単量体量に対する 重合転化率が 90質量%以上に達するまで重合する工程である請求の範囲第 3項に 記載のリチウムイオン二次電池電極用バインダ一。
5. 前記多段重合が三段階の重合工程からなるものである請求の範囲第 2項に記載の リチウムィオン二次電池電極用バインダ一。
6. 前記多段重合が、 前記 a成分の一部を添加して重合する一段目の重合工程と、 引 き続レ、て前記 b成分を添加して重合する二段目の重合工程と、 引き続いて a成分の残 部を添加して重合する三段目の重合工程とを有するものである請求の範囲第 5項に 記載のリチウムィオン二次電池電極用バインダ一。
7 . 前記一段目の重合工程が、 a成分 5〜 5 0質量部を重合転化率が 6 0〜 9 7質 量%に達するまで重合する工程であり、 前記二段目の重合工程が、 b成分 2 0〜8 5 質量部を添加してその段階までに添加された単量体の総量に対する重合転化率が 6 0〜9 7質量%に達するまで重合する工程であり、 前記三段目の重合工程が、 a成分 5〜5 0質量部 (ただし、 全単量体量は 1 0 0質量部である) を添加して全単量体量 に対する重合転化率が 9 0質量%以上に達するまで重合する工程である請求の範囲 第 6項に記載のリチゥムイオン二次電池電極用バインダ一。
8 . 請求の範囲第 1項〜第 7項のいずれかに記載のリチウムイオン二次電池電極用バ インダ一と、 電極活物質と、 有機液状媒体とを、 含有してなるリチウムイオン二次電 池電極用スラリー組成物。
9 . 有機液状媒体が N—メチルピロリ ドン (NM P ) である請求の範囲第 8項に記載 のリチウムイオン二次電池電極用スラリー組成物。
1 0 . 請求の範囲第 8項に記載のリチウムイオン二次電池電極用スラリー組成物を集 電体に塗布し、 乾燥する、 リチウムイオン二次電池用電極の製造方法。
1 1 . 請求の範囲第 1項〜第 7項のいずれかに記載のリチウムイオン二次電池電極用 バインダーと電極活物質とを含有する電極層が集電体に結着してあるリチウムィォ ン二次電池用電極。
1 2 . 請求の範囲第 1 1項に記載の電極を有するリチウムイオン二次電池。
PCT/JP2004/005769 2003-04-24 2004-04-22 リチウムイオン二次電池電極用バインダー WO2004095613A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020057020111A KR101116546B1 (ko) 2003-04-24 2004-04-22 리튬 이온 2차 전지 전극용 바인더
JP2005505779A JP4736804B2 (ja) 2003-04-24 2004-04-22 リチウムイオン二次電池電極用バインダー
US10/553,865 US7700234B2 (en) 2003-04-24 2004-04-22 Binder for electrode of lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-120463 2003-04-24
JP2003120463 2003-04-24

Publications (1)

Publication Number Publication Date
WO2004095613A1 true WO2004095613A1 (ja) 2004-11-04

Family

ID=33308139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005769 WO2004095613A1 (ja) 2003-04-24 2004-04-22 リチウムイオン二次電池電極用バインダー

Country Status (4)

Country Link
US (1) US7700234B2 (ja)
JP (1) JP4736804B2 (ja)
KR (1) KR101116546B1 (ja)
WO (1) WO2004095613A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006048932A (ja) * 2004-07-30 2006-02-16 Hitachi Chem Co Ltd リチウム電池電極用バインダ樹脂組成物、電極および電池
JP2007141504A (ja) * 2005-11-15 2007-06-07 Hitachi Chem Co Ltd リチウムイオン二次電池用負極材
WO2007122947A1 (ja) * 2006-03-31 2007-11-01 Zeon Corporation リチウムイオン二次電池
JP2011076916A (ja) * 2009-09-30 2011-04-14 Nippon Zeon Co Ltd 二次電池電極用バインダー、二次電池電極および二次電池
JP2011513911A (ja) * 2008-04-16 2011-04-28 エルジー・ケム・リミテッド ポリアクリロニトリル−アクリル酸共重合体バインダーを含む負極材料組成物、その製造方法およびその負極材料組成物を含むリチウム二次電池
JP2012164675A (ja) * 2005-03-23 2012-08-30 Nippon Zeon Co Ltd 非水電解質二次電池電極用バインダー、電極、ならびに非水電解質二次電池
WO2013080989A1 (ja) * 2011-11-28 2013-06-06 日本ゼオン株式会社 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物、二次電池正極及び二次電池
JP2016126856A (ja) * 2014-12-26 2016-07-11 三星エスディアイ株式会社Samsung SDI Co., Ltd. 二次電池用バインダ、二次電池用セパレータ、及び二次電池
JPWO2014051067A1 (ja) * 2012-09-28 2016-08-25 日本ゼオン株式会社 リチウムイオン二次電池
WO2018173839A1 (ja) 2017-03-24 2018-09-27 日本ゼオン株式会社 バインダー組成物の保管方法
WO2020004145A1 (ja) * 2018-06-29 2020-01-02 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物及びその製造方法、非水系二次電池用電極、並びに非水系二次電池
JP2020105508A (ja) * 2018-12-27 2020-07-09 ユニチカ株式会社 ポリオレフィン樹脂分散体

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4874868B2 (ja) * 2007-05-23 2012-02-15 ソニー株式会社 ゲル状電解質二次電池
TWI385844B (zh) * 2008-11-25 2013-02-11 Ind Tech Res Inst 儲能元件
JP5482173B2 (ja) * 2008-12-22 2014-04-23 住友化学株式会社 電極合剤、電極および非水電解質二次電池
JP2010272272A (ja) * 2009-05-20 2010-12-02 Hitachi Ltd リチウム二次電池用正極及びリチウム二次電池
TW201115813A (en) * 2009-10-16 2011-05-01 Sunyen Co Ltd Active material of compound electrode of lithium battery and method of fabricating the same
KR101161145B1 (ko) * 2010-01-20 2012-06-29 주식회사 엘지화학 접착력과 사이클 특성이 우수한 이차전지용 바인더
US8076026B2 (en) * 2010-02-05 2011-12-13 International Battery, Inc. Rechargeable battery using an aqueous binder
US7931985B1 (en) * 2010-11-08 2011-04-26 International Battery, Inc. Water soluble polymer binder for lithium ion battery
US20110143206A1 (en) * 2010-07-14 2011-06-16 International Battery, Inc. Electrode for rechargeable batteries using aqueous binder solution for li-ion batteries
US8102642B2 (en) * 2010-08-06 2012-01-24 International Battery, Inc. Large format ultracapacitors and method of assembly
CN104247109B (zh) * 2012-04-23 2016-08-24 日本瑞翁株式会社 锂离子二次电池
WO2014010866A1 (ko) * 2012-07-11 2014-01-16 주식회사 엘지화학 접착력과 수명 특성이 우수한 이차전지의 전극용 바인더
WO2017073589A1 (ja) * 2015-10-30 2017-05-04 東亞合成株式会社 非水電解質二次電池電極用バインダー及びその製造方法、並びに、その用途
WO2018194101A1 (ja) * 2017-04-19 2018-10-25 日本エイアンドエル株式会社 電極用バインダー、電極用組成物及び電極
CN109585904B (zh) * 2017-09-29 2021-11-23 辉能科技股份有限公司 可挠式锂电池
CN108832125B (zh) * 2018-05-28 2022-04-12 九江华先新材料有限公司 一种锂电池负极水性粘结剂及制备方法、电极片制备方法
KR20210103464A (ko) 2018-12-19 2021-08-23 아란세오 도이치란드 게엠베하 리튬 이온 배터리의 전지의 캐소드에 대한 전극 조성물, 캐소드 슬러리 조성물, 캐소드 및 이를 혼입한 배터리

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08287915A (ja) * 1995-04-19 1996-11-01 Fuji Photo Film Co Ltd 非水二次電池
JPH11149929A (ja) * 1997-11-14 1999-06-02 Nippon Zeon Co Ltd 電池用バインダー組成物、電池電極用スラリー、リチウム二次電池用電極およびリチウム二次電池
JP2002093420A (ja) * 2000-09-13 2002-03-29 Sharp Corp 非水電解質二次電池
WO2002039518A1 (fr) * 2000-11-13 2002-05-16 Zeon Corporation Composition de combustible mixte pour electrode positive de cellule secondaire, electrode positive de cellule secondaire et cellule secondaire

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3755544B2 (ja) * 1995-09-25 2006-03-15 日本ゼオン株式会社 有機溶媒系バインダー組成物、電極、および電池
JP3624921B2 (ja) * 1996-02-05 2005-03-02 日本ゼオン株式会社 電池用バインダー、バインダー組成物、電極、および電池
JP3721727B2 (ja) * 1997-07-04 2005-11-30 Jsr株式会社 電池電極用バインダー
US6756153B1 (en) * 1999-01-28 2004-06-29 Zeon Corporation Binder composition for electrode for lithium-ion secondary battery and utilization thereof
JP4259778B2 (ja) 2001-08-02 2009-04-30 パナソニック株式会社 非水系二次電池用正極の製造方法
KR100960757B1 (ko) * 2001-10-26 2010-06-01 니폰 제온 가부시키가이샤 전극용 슬러리 조성물, 전극 및 이차 전지
JP4200349B2 (ja) * 2001-10-26 2008-12-24 日本ゼオン株式会社 電極用スラリー組成物、電極およびリチウムイオン二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08287915A (ja) * 1995-04-19 1996-11-01 Fuji Photo Film Co Ltd 非水二次電池
JPH11149929A (ja) * 1997-11-14 1999-06-02 Nippon Zeon Co Ltd 電池用バインダー組成物、電池電極用スラリー、リチウム二次電池用電極およびリチウム二次電池
JP2002093420A (ja) * 2000-09-13 2002-03-29 Sharp Corp 非水電解質二次電池
WO2002039518A1 (fr) * 2000-11-13 2002-05-16 Zeon Corporation Composition de combustible mixte pour electrode positive de cellule secondaire, electrode positive de cellule secondaire et cellule secondaire

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006048932A (ja) * 2004-07-30 2006-02-16 Hitachi Chem Co Ltd リチウム電池電極用バインダ樹脂組成物、電極および電池
JP2012164675A (ja) * 2005-03-23 2012-08-30 Nippon Zeon Co Ltd 非水電解質二次電池電極用バインダー、電極、ならびに非水電解質二次電池
JP2007141504A (ja) * 2005-11-15 2007-06-07 Hitachi Chem Co Ltd リチウムイオン二次電池用負極材
JP5326566B2 (ja) * 2006-03-31 2013-10-30 日本ゼオン株式会社 リチウムイオン二次電池
WO2007122947A1 (ja) * 2006-03-31 2007-11-01 Zeon Corporation リチウムイオン二次電池
JP2011513911A (ja) * 2008-04-16 2011-04-28 エルジー・ケム・リミテッド ポリアクリロニトリル−アクリル酸共重合体バインダーを含む負極材料組成物、その製造方法およびその負極材料組成物を含むリチウム二次電池
JP2011076916A (ja) * 2009-09-30 2011-04-14 Nippon Zeon Co Ltd 二次電池電極用バインダー、二次電池電極および二次電池
JPWO2013080989A1 (ja) * 2011-11-28 2015-04-27 日本ゼオン株式会社 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物、二次電池正極及び二次電池
WO2013080989A1 (ja) * 2011-11-28 2013-06-06 日本ゼオン株式会社 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物、二次電池正極及び二次電池
US9601775B2 (en) 2011-11-28 2017-03-21 Zeon Corporation Binder composition for secondary battery positive electrode, slurry composition for secondary battery positive electrode, secondary battery positive electrode, and secondary battery
JPWO2014051067A1 (ja) * 2012-09-28 2016-08-25 日本ゼオン株式会社 リチウムイオン二次電池
JP2016126856A (ja) * 2014-12-26 2016-07-11 三星エスディアイ株式会社Samsung SDI Co., Ltd. 二次電池用バインダ、二次電池用セパレータ、及び二次電池
WO2018173839A1 (ja) 2017-03-24 2018-09-27 日本ゼオン株式会社 バインダー組成物の保管方法
WO2020004145A1 (ja) * 2018-06-29 2020-01-02 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物及びその製造方法、非水系二次電池用電極、並びに非水系二次電池
JPWO2020004145A1 (ja) * 2018-06-29 2021-07-15 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物及びその製造方法、非水系二次電池用電極、並びに非水系二次電池
JP7480704B2 (ja) 2018-06-29 2024-05-10 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物及びその製造方法、非水系二次電池用電極、並びに非水系二次電池
JP2020105508A (ja) * 2018-12-27 2020-07-09 ユニチカ株式会社 ポリオレフィン樹脂分散体
JP7462287B2 (ja) 2018-12-27 2024-04-05 ユニチカ株式会社 ポリオレフィン樹脂分散体

Also Published As

Publication number Publication date
JPWO2004095613A1 (ja) 2006-07-13
JP4736804B2 (ja) 2011-07-27
US20060228627A1 (en) 2006-10-12
KR101116546B1 (ko) 2012-02-28
KR20060004685A (ko) 2006-01-12
US7700234B2 (en) 2010-04-20

Similar Documents

Publication Publication Date Title
WO2004095613A1 (ja) リチウムイオン二次電池電極用バインダー
JP4433509B2 (ja) リチウムイオン二次電池電極用バインダー組成物及びその利用
JP5195749B2 (ja) リチウムイオン二次電池電極用スラリーの製造方法
US8802289B2 (en) Composition for electrode comprising an iron compound with carbon and a (meth)acrylate-nitrile copolymer
JP4311002B2 (ja) 電極用スラリー組成物、電極および二次電池
WO2003036744A1 (en) Slurry composition, electrode and secondary cell
WO2001006584A1 (en) Binder composition for lithium ion secondary battery electrodes and use thereof
JP2001076731A (ja) リチウムイオン二次電池電極用バインダー、およびその利用
TW201244234A (en) Binder composition for positive electrodes
JP2003223895A (ja) 二次電池電極用スラリー組成物、二次電池電極および二次電池
WO2015064099A1 (ja) リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極およびリチウムイオン二次電池
WO2019044452A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
JP2001256980A (ja) リチウムイオン二次電池電極用バインダーおよびその利用
JP4258614B2 (ja) 電極用スラリー組成物、電極および二次電池
JP4412443B2 (ja) リチウムイオン二次電池負極用増粘剤およびリチウムイオン二次電池
JP2017069108A (ja) リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
JP2002231251A (ja) リチウムイオン二次電池電極用バインダー組成物およびリチウムイオン二次電池
JP4200349B2 (ja) 電極用スラリー組成物、電極およびリチウムイオン二次電池
JP7298592B2 (ja) リチウムイオン二次電池用スラリー組成物およびリチウムイオン二次電池用電極
JP2001332265A (ja) リチウムイオン二次電池電極用バインダーおよびその利用
WO2020004526A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物及びその製造方法、非水系二次電池用電極、並びに非水系二次電池
WO2020213721A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池正極用スラリー組成物、非水系二次電池用正極、および非水系二次電池
JP2004172017A (ja) 電極用スラリー組成物、電極およびリチウムイオン二次電池
JPWO2020004145A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物及びその製造方法、非水系二次電池用電極、並びに非水系二次電池
JP2006107958A (ja) 電極組成物、電極および電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005505779

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006228627

Country of ref document: US

Ref document number: 10553865

Country of ref document: US

Ref document number: 1020057020111

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057020111

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10553865

Country of ref document: US